ik-nlp-22_slp / ik-nlp-22_slp.py
gsarti's picture
Added questions
f2b5438
import csv
import sys
import datasets
import pandas as pd
from typing import List
csv.field_size_limit(sys.maxsize)
_CITATION = """\
@book{slp3ed-iknlp2022,
author = {Jurafsky, Daniel and Martin, James},
year = {2021},
month = {12},
pages = {1--235, 1--19},
title = {Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition},
volume = {3}
}
"""
_DESCRIPTION = """\
Paragraphs from the Speech and Language Processing book (3ed) by Jurafsky and Martin extracted semi-automatically
from Chapters 2 to 11 of the original book draft.
"""
_HOMEPAGE = "https://www.rug.nl/masters/information-science/?lang=en"
_LICENSE = "See https://web.stanford.edu/~jurafsky/slp3/"
_PARAGRAPHS_URL = "https://huggingface.co/datasets/GroNLP/ik-nlp-22_slp/raw/main/slp3ed.csv"
_QUESTIONS_URL = "https://huggingface.co/datasets/GroNLP/ik-nlp-22_slp/raw/main/slp_questions.csv"
class IkNlp22SlpConfig(datasets.BuilderConfig):
"""BuilderConfig for IK NLP '22 Speech and Language Processing."""
def __init__(
self,
features,
**kwargs,
):
"""
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
class IkNlp22Slp(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
IkNlp22SlpConfig(
name="paragraphs",
features=["n_chapter", "chapter", "n_section", "section", "n_subsection", "subsection", "text"],
),
IkNlp22SlpConfig(
name="questions",
features=["chapter", "section", "subsection", "question", "paragraph", "answer"],
),
]
DEFAULT_CONFIG_NAME = "paragraphs"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({feature: datasets.Value("string") for feature in self.config.features}),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "paragraphs":
paragraphs_file = dl_manager.download_and_extract(_PARAGRAPHS_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": paragraphs_file,
"features": self.config.features,
},
),
]
else:
pairs_file = dl_manager.download_and_extract(_QUESTIONS_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": pairs_file,
"features": self.config.features,
},
),
]
def _generate_examples(self, filepath: str, features: List[str]):
"""Yields examples as (key, example) tuples."""
data = pd.read_csv(filepath)
for id_, row in data.iterrows():
yield id_, row.to_dict()