|
import csv |
|
import sys |
|
|
|
import datasets |
|
import pandas as pd |
|
from typing import List |
|
|
|
csv.field_size_limit(sys.maxsize) |
|
|
|
|
|
_CITATION = """\ |
|
@book{slp3ed-iknlp2022, |
|
author = {Jurafsky, Daniel and Martin, James}, |
|
year = {2021}, |
|
month = {12}, |
|
pages = {1--235, 1--19}, |
|
title = {Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition}, |
|
volume = {3} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Paragraphs from the Speech and Language Processing book (3ed) by Jurafsky and Martin extracted semi-automatically |
|
from Chapters 2 to 11 of the original book draft. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.rug.nl/masters/information-science/?lang=en" |
|
|
|
_LICENSE = "See https://web.stanford.edu/~jurafsky/slp3/" |
|
|
|
_PARAGRAPHS_URL = "https://huggingface.co/datasets/GroNLP/ik-nlp-22_slp/raw/main/slp3ed.csv" |
|
|
|
_QUESTIONS_URL = "https://huggingface.co/datasets/GroNLP/ik-nlp-22_slp/raw/main/slp_questions.csv" |
|
|
|
|
|
class IkNlp22SlpConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for IK NLP '22 Speech and Language Processing.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = features |
|
|
|
|
|
class IkNlp22Slp(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
IkNlp22SlpConfig( |
|
name="paragraphs", |
|
features=["n_chapter", "chapter", "n_section", "section", "n_subsection", "subsection", "text"], |
|
), |
|
IkNlp22SlpConfig( |
|
name="questions", |
|
features=["chapter", "section", "subsection", "question", "paragraph", "answer"], |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "paragraphs" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({feature: datasets.Value("string") for feature in self.config.features}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == "paragraphs": |
|
paragraphs_file = dl_manager.download_and_extract(_PARAGRAPHS_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": paragraphs_file, |
|
"features": self.config.features, |
|
}, |
|
), |
|
] |
|
else: |
|
pairs_file = dl_manager.download_and_extract(_QUESTIONS_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": pairs_file, |
|
"features": self.config.features, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: str, features: List[str]): |
|
"""Yields examples as (key, example) tuples.""" |
|
data = pd.read_csv(filepath) |
|
for id_, row in data.iterrows(): |
|
yield id_, row.to_dict() |