File size: 3,323 Bytes
47620ab
 
 
 
 
b0dec8d
47620ab
 
 
 
 
 
 
 
 
 
 
 
939175d
47620ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d0d74
47620ab
 
 
 
 
 
54d0d74
 
47620ab
 
 
 
 
 
 
 
 
 
 
6ff60f7
47620ab
c8f8435
56fd8de
27570d7
83884fc
927f55d
 
47620ab
c8f8435
e2e0f48
2970c73
cccb20f
47620ab
 
939175d
 
 
 
 
 
 
 
 
74315b5
 
 
939175d
 
ff114f8
 
 
 
 
 
 
 
 
 
 
54d0d74
cccb20f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

import os

import datasets
import json
import pandas as pd

_CITATION = """\
"""

_DESCRIPTION = """\
    CSAT-QA
"""

_HOMEPAGE = "https://huggingface.co/HAERAE-HUB"

_LICENSE = "Proprietary"

split_names = ["full","WR", "GR", "RCS", "RCSS", "RCH", "LI"]

class CSATQAConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)


class CSATQA(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        CSATQAConfig(
            name=name,
        )
        for name in split_names
    ]

    def _info(self):
        features = datasets.Features(
            {
                "question": datasets.Value("string"),
                "context" : datasets.Value("string"),
                "option#1": datasets.Value("string"),
                "option#2": datasets.Value("string"),
                "option#3": datasets.Value("string"),
                "option#4": datasets.Value("string"),
                "option#5": datasets.Value("string"),
                "gold": datasets.Value("int8"),
                "category": datasets.Value("string"),
                "human_peformance": datasets.Value("float16"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_path = dl_manager.download_and_extract("./data/csatqa.json")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": train_path,
                },
            ),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            buffer = []
            for key, row in enumerate(f):
                data = json.loads(row)
                if self.config.name == "full":
                    buffer.append({
                        "question": data["question"],
                        "context" : data["context"],
                        "option#1": data["option#1"],
                        "option#2": data["option#2"],
                        "option#3": data["option#3"],
                        "option#4": data["option#4"],
                        "option#5": data["option#5"],
                        "gold": data["gold"],
                        "category":"N/A",
                        "human_performance":0.0})
                    
                elif data["Category"] == self.config.name:
                    buffer.append({
                        "question": data["question"],
                        "context" : data["context"],
                        "option#1": data["option#1"],
                        "option#2": data["option#2"],
                        "option#3": data["option#3"],
                        "option#4": data["option#4"],
                        "option#5": data["option#5"],
                        "gold": data["gold"],
                        "category": data["Category"],
                        "human_peformance": data["Human_Peformance"]})
                
            for idx, dat in enumerate(buffer):
                yield idx,dat