Datasets:
File size: 3,323 Bytes
47620ab b0dec8d 47620ab 939175d 47620ab 54d0d74 47620ab 54d0d74 47620ab 6ff60f7 47620ab c8f8435 56fd8de 27570d7 83884fc 927f55d 47620ab c8f8435 e2e0f48 2970c73 cccb20f 47620ab 939175d 74315b5 939175d ff114f8 54d0d74 cccb20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import datasets
import json
import pandas as pd
_CITATION = """\
"""
_DESCRIPTION = """\
CSAT-QA
"""
_HOMEPAGE = "https://huggingface.co/HAERAE-HUB"
_LICENSE = "Proprietary"
split_names = ["full","WR", "GR", "RCS", "RCSS", "RCH", "LI"]
class CSATQAConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class CSATQA(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CSATQAConfig(
name=name,
)
for name in split_names
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"context" : datasets.Value("string"),
"option#1": datasets.Value("string"),
"option#2": datasets.Value("string"),
"option#3": datasets.Value("string"),
"option#4": datasets.Value("string"),
"option#5": datasets.Value("string"),
"gold": datasets.Value("int8"),
"category": datasets.Value("string"),
"human_peformance": datasets.Value("float16"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract("./data/csatqa.json")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": train_path,
},
),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
buffer = []
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "full":
buffer.append({
"question": data["question"],
"context" : data["context"],
"option#1": data["option#1"],
"option#2": data["option#2"],
"option#3": data["option#3"],
"option#4": data["option#4"],
"option#5": data["option#5"],
"gold": data["gold"],
"category":"N/A",
"human_performance":0.0})
elif data["Category"] == self.config.name:
buffer.append({
"question": data["question"],
"context" : data["context"],
"option#1": data["option#1"],
"option#2": data["option#2"],
"option#3": data["option#3"],
"option#4": data["option#4"],
"option#5": data["option#5"],
"gold": data["gold"],
"category": data["Category"],
"human_peformance": data["Human_Peformance"]})
for idx, dat in enumerate(buffer):
yield idx,dat
|