import os import datasets import json import pandas as pd _CITATION = """\ """ _DESCRIPTION = """\ CSAT-QA """ _HOMEPAGE = "https://huggingface.co/HAERAE-HUB" _LICENSE = "Proprietary" split_names = ["all","WR", "GR", "RCS", "RCSS", "RCH", "LI"] class CSATQAConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class CSATQA(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ CSATQAConfig( name=name, ) for name in split_names ] def _info(self): features = datasets.Features( { "question": datasets.Value("string"), "context" : datasets.Value("string"), "option#1": datasets.Value("string"), "option#2": datasets.Value("string"), "option#3": datasets.Value("string"), "option#4": datasets.Value("string"), "option#5": datasets.Value("string"), "gold": datasets.Value("int8"), "category": datasets.Value("string"), "human_peformance": datasets.Value("float16"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract("./data/csatqa_eval.json") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, }, ), ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: buffer = [] for key, row in enumerate(f): data = json.loads(row) buffer.append({ "question": data["question"], "context" : data["context"], "option#1": data["option#1"], "option#2": data["option#2"], "option#3": data["option#3"], "option#4": data["option#4"], "option#5": data["option#5"], "gold": data["gold"], "category": data["Category"], "human_peformance": data["Human_Peformance"]}) for idx, dat in enumerate(buffer): yield idx,dat