Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
albertvillanova HF staff commited on
Commit
d7c015d
1 Parent(s): 1c93867

Delete loading script

Browse files
Files changed (1) hide show
  1. un_multi.py +0 -111
un_multi.py DELETED
@@ -1,111 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """MultiUN: Multilingual UN Parallel Text 2000—2009"""
16
-
17
-
18
- import itertools
19
- import os
20
-
21
- import datasets
22
-
23
-
24
- _CITATION = """\
25
- @inproceedings{eisele-chen-2010-multiun,
26
- title = "{M}ulti{UN}: A Multilingual Corpus from United Nation Documents",
27
- author = "Eisele, Andreas and
28
- Chen, Yu",
29
- booktitle = "Proceedings of the Seventh International Conference on Language Resources and Evaluation ({LREC}'10)",
30
- month = may,
31
- year = "2010",
32
- address = "Valletta, Malta",
33
- publisher = "European Language Resources Association (ELRA)",
34
- url = "http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf",
35
- abstract = "This paper describes the acquisition, preparation and properties of a corpus extracted from the official documents of the United Nations (UN). This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language. We describe the methods we used for crawling, document formatting, and sentence alignment. This corpus also includes a common test set for machine translation. We present the results of a French-Chinese machine translation experiment performed on this corpus.",
36
- }
37
-
38
- @InProceedings{TIEDEMANN12.463,
39
- author = {J�rg Tiedemann},
40
- title = {Parallel Data, Tools and Interfaces in OPUS},
41
- booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
42
- year = {2012},
43
- month = {may},
44
- date = {23-25},
45
- address = {Istanbul, Turkey},
46
- editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis},
47
- publisher = {European Language Resources Association (ELRA)},
48
- isbn = {978-2-9517408-7-7},
49
- }
50
- """
51
-
52
-
53
- _DESCRIPTION = """\
54
- This is a collection of translated documents from the United Nations. \
55
- This corpus is available in all 6 official languages of the UN, \
56
- consisting of around 300 million words per language
57
- """
58
-
59
-
60
- # Original:
61
- # _HOMEPAGE = "http://www.euromatrixplus.net/multi-un/"
62
- _HOMEPAGE = "https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN"
63
-
64
- _LANGUAGES = ["ar", "de", "en", "es", "fr", "ru", "zh"]
65
- _LANGUAGE_PAIRS = list(itertools.combinations(_LANGUAGES, 2))
66
-
67
- _BASE_URL = "https://object.pouta.csc.fi/OPUS-MultiUN/v1/moses"
68
- _URLS = {f"{l1}-{l2}": f"{_BASE_URL}/{l1}-{l2}.txt.zip" for l1, l2 in _LANGUAGE_PAIRS}
69
-
70
-
71
- class UnMulti(datasets.GeneratorBasedBuilder):
72
- """MultiUN: Multilingual UN Parallel Text 2000—2009"""
73
-
74
- VERSION = datasets.Version("1.0.0")
75
-
76
- BUILDER_CONFIGS = [
77
- datasets.BuilderConfig(name=f"{l1}-{l2}", version=datasets.Version("1.0.0"), description=f"MultiUN {l1}-{l2}")
78
- for l1, l2 in _LANGUAGE_PAIRS
79
- ]
80
-
81
- def _info(self):
82
- return datasets.DatasetInfo(
83
- description=_DESCRIPTION,
84
- features=datasets.Features(
85
- {"translation": datasets.features.Translation(languages=tuple(self.config.name.split("-")))}
86
- ),
87
- supervised_keys=None,
88
- homepage=_HOMEPAGE,
89
- citation=_CITATION,
90
- )
91
-
92
- def _split_generators(self, dl_manager):
93
- """Returns SplitGenerators."""
94
- lang_pair = self.config.name.split("-")
95
- data_dir = dl_manager.download_and_extract(_URLS[self.config.name])
96
- return [
97
- datasets.SplitGenerator(
98
- name=datasets.Split.TRAIN,
99
- gen_kwargs={
100
- "source_file": os.path.join(data_dir, f"MultiUN.{self.config.name}.{lang_pair[0]}"),
101
- "target_file": os.path.join(data_dir, f"MultiUN.{self.config.name}.{lang_pair[1]}"),
102
- },
103
- ),
104
- ]
105
-
106
- def _generate_examples(self, source_file, target_file):
107
- source, target = tuple(self.config.name.split("-"))
108
- with open(source_file, encoding="utf-8") as src_f, open(target_file, encoding="utf-8") as tgt_f:
109
- for idx, (l1, l2) in enumerate(zip(src_f, tgt_f)):
110
- result = {"translation": {source: l1.strip(), target: l2.strip()}}
111
- yield idx, result