File size: 4,485 Bytes
96d06f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import wandb
import numpy as np
import torch, torchvision
import torch.nn.functional as F
from PIL import Image
from tqdm.auto import tqdm
from fastcore.script import call_parse
from torchvision import transforms
from diffusers import DDPMPipeline
from diffusers import DDIMScheduler
from datasets import load_dataset
from matplotlib import pyplot as plt

@call_parse
def train(
    image_size = 256,
    batch_size = 16,
    grad_accumulation_steps = 2,
    num_epochs = 1,
    start_model = "google/ddpm-bedroom-256",
    dataset_name = "huggan/wikiart",
    device='cuda',
    model_save_name='wikiart_1e',
    wandb_project='dm_finetune',
    log_samples_every = 250,
    save_model_every = 2500,
    ):
        
    # Initialize wandb for logging
    wandb.init(project=wandb_project, config=locals())


    # Prepare pretrained model
    image_pipe = DDPMPipeline.from_pretrained(start_model);
    image_pipe.to(device)
    
    # Get a scheduler for sampling
    sampling_scheduler = DDIMScheduler.from_config(start_model)
    sampling_scheduler.set_timesteps(num_inference_steps=50)

    # Prepare dataset
    dataset = load_dataset(dataset_name, split="train")
    preprocess = transforms.Compose(
        [
            transforms.Resize((image_size, image_size)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )
    def transform(examples):
        images = [preprocess(image.convert("RGB")) for image in examples["image"]]
        return {"images": images}
    dataset.set_transform(transform)
    train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)


    # Optimizer & lr scheduler
    optimizer = torch.optim.AdamW(image_pipe.unet.parameters(), lr=1e-5)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

    for epoch in range(num_epochs):
        for step, batch in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):

            # Get the clean images
            clean_images = batch['images'].to(device)

            # Sample noise to add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
            bs = clean_images.shape[0]

            # Sample a random timestep for each image
            timesteps = torch.randint(0, image_pipe.scheduler.num_train_timesteps, (bs,), device=clean_images.device).long()

            # Add noise to the clean images according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_images = image_pipe.scheduler.add_noise(clean_images, noise, timesteps)

            # Get the model prediction for the noise
            noise_pred = image_pipe.unet(noisy_images, timesteps, return_dict=False)[0]

            # Compare the prediction with the actual noise:
            loss = F.mse_loss(noise_pred, noise)
            
            # Log the loss
            wandb.log({'loss':loss.item()})

            # Calculate the gradients
            loss.backward()

            # Gradient Acccumulation: Only update every grad_accumulation_steps 
            if (step+1)%grad_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()
                
            # Occasionally log samples
            if (step+1)%log_samples_every == 0:
                x = torch.randn(8, 3, 256, 256).to(device) # Batch of 8
                for i, t in tqdm(enumerate(sampling_scheduler.timesteps)):
                    model_input = sampling_scheduler.scale_model_input(x, t)
                    with torch.no_grad():
                        noise_pred = image_pipe.unet(model_input, t)["sample"]
                    x = sampling_scheduler.step(noise_pred, t, x).prev_sample
                grid = torchvision.utils.make_grid(x, nrow=4)
                im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
                im = Image.fromarray(np.array(im*255).astype(np.uint8))
                wandb.log({'Sample generations': wandb.Image(im)})
                
            # Occasionally save model
            if (step+1)%save_model_every == 0:
                image_pipe.save_pretrained(model_save_name+f'step_{step+1}')

        # Update the learning rate for the next epoch
        scheduler.step()

    # Save the pipeline one last time
    image_pipe.save_pretrained(model_save_name)
    
    # Wrap up the run
    wandb.finish()