File size: 4,438 Bytes
2dfe524
ae79f55
 
3a0be43
ae79f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73b206
 
ae79f55
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfe524
ae79f55
 
 
 
 
3a0be43
ae79f55
3a0be43
ae79f55
 
 
 
 
 
d281fdc
ae79f55
 
d281fdc
 
ae79f55
 
 
 
 
 
 
 
90098f9
ae79f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0be43
 
ae79f55
 
 
 
 
 
3a0be43
ae79f55
 
 
63e3973
 
 
 
cc14f50
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language:
- es
license: cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- summarization
pretty_name: NoticIA Human Validation
dataset_info:
  features:
  - name: web_url
    dtype: string
  - name: web_headline
    dtype: string
  - name: summary
    dtype: string
  - name: summary2
    dtype: string
  - name: web_text
    dtype: string
  splits:
  - name: test
    num_examples: 100
configs:
- config_name: default
  data_files:
  - split: test
    path: test.jsonl
tags:
- summarization
- clickbait
- news
---

<p align="center">
    <img src="https://huggingface.co/datasets/Iker/NoticIA/resolve/main/assets/logo.png" style="height: 250px;">
</p>

<h3 align="center">"A Clickbait Article Summarization Dataset in Spanish."</h3>

This repository contains the manual annotations from a second human to validate the test set of the NoticIA dataset. 

The full NoticIA dataset is available here: [https://huggingface.co/datasets/Iker/NoticIA](https://huggingface.co/datasets/Iker/NoticIA)


# Data explanation
- **web_url** (int): The URL of the news article
- **web_headline** (str):  The headline of the article, which is a Clickbait.
- **summary** (str):  The original summary in the NoticIA dataset.
- **summary2** (str): The second summary written by another human to validate the quality of `summary`
- **web_text** (int):  The body of the article. 

# Dataset Description
- **Curated by:** [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/), [Begoña Altura](https://www.linkedin.com/in/bego%C3%B1a-altuna-78014139)
- **Language(s) (NLP):** Spanish
- **License:** apache-2.0

# Dataset Usage

```Python
# pip install datasets evaluate rouge-score
from datasets import load_dataset
from evaluate import load

dataset = load_dataset("Iker/NoticIA_Human_Validation",split="test")
rouge = load("rouge")
results = rouge.compute(
                predictions=[x["summary2"] for x in dataset],
                references=[[x["summary"]] for x in dataset],
                use_aggregator=True,
            )
print(results)
```


# Uses
This dataset is intended to build models tailored for academic research that can extract information from large texts. The objective is to research whether current LLMs, given a question formulated as a Clickbait headline, can locate the answer within the article body and summarize the information in a few words. The dataset also aims to serve as a task to evaluate the performance of current LLMs in Spanish.

# Out-of-Scope Use
You cannot use this dataset to develop systems that directly harm the newspapers included in the dataset. This includes using the dataset to train profit-oriented LLMs capable of generating articles from a short text or headline, as well as developing profit-oriented bots that automatically summarize articles without the permission of the article's owner. Additionally, you are not permitted to train a system with this dataset that generates clickbait headlines.

This dataset contains text and headlines from newspapers; therefore, you cannot use it for commercial purposes unless you have the license for the data.

# Dataset Creation
The dataset has been meticulously created by hand. We utilize two sources to compile Clickbait articles:
- The Twitter user [@ahorrandoclick1](https://twitter.com/ahorrandoclick1), who reposts Clickbait articles along with a hand-crafted summary. Although we use their summaries as a reference, most of them have been rewritten (750 examples from this source).
- The web demo [⚔️ClickbaitFighter⚔️](https://iker-clickbaitfighter.hf.space/), which operates a pre-trained model using an early iteration of our dataset. We collect all the model inputs/outputs and manually correct them (100 examples from this source).

# Who are the annotators?
The dataset was originally by [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and has been validated by [Begoña Altura](https://www.linkedin.com/in/bego%C3%B1a-altuna-78014139).
The annotation took ~40 hours.


# Citation

Paper coming soon, for now, you can use this citation:
```bittext
@misc{noticia2024,
      title={NoticIA: A Clickbait Article Summarization Dataset in Spanish}, 
      author={Iker García-Ferrero and Begoña Altuna},
      year={2024},
      eprint={2404.07611},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```