Create genomics-long-range-benchmark.py
Browse files- genomics-long-range-benchmark.py +530 -0
genomics-long-range-benchmark.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import urllib
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import List
|
7 |
+
from tqdm import tqdm
|
8 |
+
from ast import literal_eval
|
9 |
+
|
10 |
+
import re
|
11 |
+
import datasets
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from datasets import DatasetInfo
|
15 |
+
from pyfaidx import Fasta
|
16 |
+
from abc import ABC, abstractmethod
|
17 |
+
from Bio.Seq import Seq
|
18 |
+
from Bio import SeqIO
|
19 |
+
import pysam
|
20 |
+
|
21 |
+
"""
|
22 |
+
--------------------------------------------------------------------------------------------
|
23 |
+
Reference Genome URLS:
|
24 |
+
-------------------------------------------------------------------------------------------
|
25 |
+
"""
|
26 |
+
H38_REFERENCE_GENOME_URL = (
|
27 |
+
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
28 |
+
)
|
29 |
+
H19_REFERENCE_GENOME_URL = (
|
30 |
+
"https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/" "hg19.fa.gz"
|
31 |
+
)
|
32 |
+
|
33 |
+
"""
|
34 |
+
--------------------------------------------------------------------------------------------
|
35 |
+
Task Specific Handlers:
|
36 |
+
-------------------------------------------------------------------------------------------
|
37 |
+
"""
|
38 |
+
|
39 |
+
class GenomicLRATaskHandler(ABC):
|
40 |
+
"""
|
41 |
+
Abstract method for the Genomic LRA task handlers.
|
42 |
+
"""
|
43 |
+
|
44 |
+
@abstractmethod
|
45 |
+
def __init__(self, **kwargs):
|
46 |
+
pass
|
47 |
+
|
48 |
+
@abstractmethod
|
49 |
+
def get_info(self, description: str) -> DatasetInfo:
|
50 |
+
"""
|
51 |
+
Returns the DatasetInfo for the task
|
52 |
+
"""
|
53 |
+
pass
|
54 |
+
|
55 |
+
def split_generators(
|
56 |
+
self, dl_manager, cache_dir_root
|
57 |
+
) -> List[datasets.SplitGenerator]:
|
58 |
+
"""
|
59 |
+
Downloads required files using dl_manager and separates them by split.
|
60 |
+
"""
|
61 |
+
return [
|
62 |
+
datasets.SplitGenerator(
|
63 |
+
name=datasets.Split.TRAIN,
|
64 |
+
gen_kwargs={"handler": self, "split": "train"},
|
65 |
+
),
|
66 |
+
datasets.SplitGenerator(
|
67 |
+
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
|
68 |
+
),
|
69 |
+
]
|
70 |
+
|
71 |
+
@abstractmethod
|
72 |
+
def generate_examples(self, split):
|
73 |
+
"""
|
74 |
+
A generator that yields examples for the specified split.
|
75 |
+
"""
|
76 |
+
pass
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def hook(t):
|
80 |
+
last_b = [0]
|
81 |
+
|
82 |
+
def inner(b=1, bsize=1, tsize=None):
|
83 |
+
"""
|
84 |
+
b : int, optional
|
85 |
+
Number of blocks just transferred [default: 1].
|
86 |
+
bsize : int, optional
|
87 |
+
Size of each block (in tqdm units) [default: 1].
|
88 |
+
tsize : int, optional
|
89 |
+
Total size (in tqdm units). If [default: None] remains unchanged.
|
90 |
+
"""
|
91 |
+
if tsize is not None:
|
92 |
+
t.total = tsize
|
93 |
+
t.update((b - last_b[0]) * bsize)
|
94 |
+
last_b[0] = b
|
95 |
+
|
96 |
+
return inner
|
97 |
+
|
98 |
+
def download_and_extract_gz(self, file_url, cache_dir_root):
|
99 |
+
"""
|
100 |
+
Downloads and extracts a gz file into the given cache directory. Returns the full file path
|
101 |
+
of the extracted gz file.
|
102 |
+
Args:
|
103 |
+
file_url: url of the gz file to be downloaded and extracted.
|
104 |
+
cache_dir_root: Directory to extract file into.
|
105 |
+
"""
|
106 |
+
file_fname = Path(file_url).stem
|
107 |
+
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)
|
108 |
+
|
109 |
+
if not os.path.exists(file_complete_path):
|
110 |
+
if not os.path.exists(file_complete_path + ".gz"):
|
111 |
+
with tqdm(
|
112 |
+
unit="B",
|
113 |
+
unit_scale=True,
|
114 |
+
unit_divisor=1024,
|
115 |
+
miniters=1,
|
116 |
+
desc=file_url.split("/")[-1],
|
117 |
+
) as t:
|
118 |
+
urllib.request.urlretrieve(
|
119 |
+
file_url, file_complete_path + ".gz", reporthook=self.hook(t)
|
120 |
+
)
|
121 |
+
with gzip.open(file_complete_path + ".gz", "rb") as file_in:
|
122 |
+
with open(file_complete_path, "wb") as file_out:
|
123 |
+
shutil.copyfileobj(file_in, file_out)
|
124 |
+
return file_complete_path
|
125 |
+
|
126 |
+
|
127 |
+
class CagePredictionHandler(GenomicLRATaskHandler):
|
128 |
+
"""
|
129 |
+
Handler for the CAGE prediction task.
|
130 |
+
"""
|
131 |
+
|
132 |
+
NUM_TRAIN = 33891
|
133 |
+
NUM_TEST = 1922
|
134 |
+
NUM_VALID = 2195
|
135 |
+
DEFAULT_LENGTH = 114688 # 896 x 128bp
|
136 |
+
TARGET_SHAPE = (
|
137 |
+
896,
|
138 |
+
50,
|
139 |
+
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
140 |
+
NPZ_SPLIT = 1000 # number of files per npz file.
|
141 |
+
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
|
142 |
+
|
143 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
144 |
+
"""
|
145 |
+
Creates a new handler for the CAGE task.
|
146 |
+
Args:
|
147 |
+
sequence_length: allows for increasing sequence context. Sequence length must be a multiple of 128 to align with binned labels. Note: increasing
|
148 |
+
sequence length may decrease the number of usable samples.
|
149 |
+
"""
|
150 |
+
self.reference_genome = None
|
151 |
+
self.coordinate_csv_file = None
|
152 |
+
self.target_files_by_split = {}
|
153 |
+
|
154 |
+
assert (sequence_length // 128) % 2 == 0, (
|
155 |
+
f"Requested sequence length must be an even multuple of 128 to align with the binned labels."
|
156 |
+
)
|
157 |
+
|
158 |
+
self.sequence_length = sequence_length
|
159 |
+
|
160 |
+
if self.sequence_length < self.DEFAULT_LENGTH:
|
161 |
+
|
162 |
+
self.TARGET_SHAPE = (self.sequence_length//128,50)
|
163 |
+
|
164 |
+
|
165 |
+
def get_info(self, description: str) -> DatasetInfo:
|
166 |
+
"""
|
167 |
+
Returns the DatasetInfo for the CAGE dataset. Each example
|
168 |
+
includes a genomic sequence and a 2D array of labels
|
169 |
+
"""
|
170 |
+
features = datasets.Features(
|
171 |
+
{
|
172 |
+
# DNA sequence
|
173 |
+
"sequence": datasets.Value("string"),
|
174 |
+
# array of sequence length x num_labels
|
175 |
+
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
176 |
+
# chromosome number
|
177 |
+
"chromosome":datasets.Value(dtype="string")
|
178 |
+
}
|
179 |
+
)
|
180 |
+
return datasets.DatasetInfo(
|
181 |
+
# This is the description that will appear on the datasets page.
|
182 |
+
description=description,
|
183 |
+
# This defines the different columns of the dataset and their types
|
184 |
+
features=features,
|
185 |
+
)
|
186 |
+
|
187 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
188 |
+
"""
|
189 |
+
Separates files by split and stores filenames in instance variables.
|
190 |
+
The CAGE dataset requires reference genome, coordinate
|
191 |
+
csv file,and npy files to be saved.
|
192 |
+
"""
|
193 |
+
|
194 |
+
# Manually download the reference genome since there are difficulties when
|
195 |
+
# streaming the dataset
|
196 |
+
reference_genome_file = self.download_and_extract_gz(
|
197 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
198 |
+
)
|
199 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
200 |
+
|
201 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
202 |
+
"cage_prediction/sequences_coordinates.csv"
|
203 |
+
)
|
204 |
+
|
205 |
+
train_file_dict = {}
|
206 |
+
for train_key, train_file in self.generate_npz_filenames(
|
207 |
+
"train", self.NUM_TRAIN, folder="cage_prediction/targets_subset"
|
208 |
+
):
|
209 |
+
train_file_dict[train_key] = dl_manager.download(train_file)
|
210 |
+
|
211 |
+
test_file_dict = {}
|
212 |
+
for test_key, test_file in self.generate_npz_filenames(
|
213 |
+
"test", self.NUM_TEST, folder="cage_prediction/targets_subset"
|
214 |
+
):
|
215 |
+
test_file_dict[test_key] = dl_manager.download(test_file)
|
216 |
+
|
217 |
+
valid_file_dict = {}
|
218 |
+
for valid_key, valid_file in self.generate_npz_filenames(
|
219 |
+
"valid", self.NUM_VALID, folder="cage_prediction/targets_subset"
|
220 |
+
):
|
221 |
+
valid_file_dict[valid_key] = dl_manager.download(valid_file)
|
222 |
+
|
223 |
+
# convert file list to a dict keyed by target number
|
224 |
+
self.target_files_by_split["train"] = train_file_dict
|
225 |
+
self.target_files_by_split["test"] = test_file_dict
|
226 |
+
self.target_files_by_split["validation"] = valid_file_dict
|
227 |
+
|
228 |
+
|
229 |
+
return [
|
230 |
+
datasets.SplitGenerator(
|
231 |
+
name=datasets.Split.TRAIN,
|
232 |
+
gen_kwargs={"handler": self, "split": "train"},
|
233 |
+
),
|
234 |
+
datasets.SplitGenerator(
|
235 |
+
name=datasets.Split.VALIDATION,
|
236 |
+
gen_kwargs={"handler": self, "split": "validation"},
|
237 |
+
),
|
238 |
+
datasets.SplitGenerator(
|
239 |
+
name=datasets.Split.TEST,
|
240 |
+
gen_kwargs={"handler": self, "split": "test"}
|
241 |
+
),
|
242 |
+
]
|
243 |
+
|
244 |
+
|
245 |
+
def generate_examples(self, split):
|
246 |
+
"""
|
247 |
+
A generator which produces examples for the given split, each with a sequence
|
248 |
+
and the corresponding labels. The sequences are padded to the correct
|
249 |
+
sequence length and standardized before returning.
|
250 |
+
"""
|
251 |
+
|
252 |
+
target_files = self.target_files_by_split[split]
|
253 |
+
sequence_length = self.sequence_length
|
254 |
+
|
255 |
+
key = 0
|
256 |
+
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
|
257 |
+
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
258 |
+
for sequential_idx, row in filtered.iterrows():
|
259 |
+
start, stop = int(row["start"]) - 1, int(
|
260 |
+
row["stop"]) - 1 # -1 since vcf coords are 1-based
|
261 |
+
|
262 |
+
chromosome = row['chrom']
|
263 |
+
|
264 |
+
padded_sequence = pad_sequence(
|
265 |
+
chromosome=self.reference_genome[chromosome],
|
266 |
+
start=start,
|
267 |
+
sequence_length=sequence_length,
|
268 |
+
end=stop,
|
269 |
+
)
|
270 |
+
|
271 |
+
# floor npy_idx to the nearest 1000
|
272 |
+
npz_file = np.load(
|
273 |
+
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
|
274 |
+
)
|
275 |
+
|
276 |
+
if (
|
277 |
+
split == "validation"
|
278 |
+
): # npy files are keyed by ["train", "test", "valid"]
|
279 |
+
split = "valid"
|
280 |
+
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][0] # select 0 since there is extra dimension
|
281 |
+
|
282 |
+
|
283 |
+
# subset the targets if sequence length is smaller than 114688 (
|
284 |
+
# DEFAULT_LENGTH)
|
285 |
+
if self.sequence_length < self.DEFAULT_LENGTH:
|
286 |
+
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
287 |
+
targets = targets[idx_diff:-idx_diff]
|
288 |
+
|
289 |
+
|
290 |
+
if padded_sequence:
|
291 |
+
yield key, {
|
292 |
+
"labels": targets,
|
293 |
+
"sequence": standardize_sequence(padded_sequence),
|
294 |
+
"chromosome": re.sub("chr","",chromosome)
|
295 |
+
}
|
296 |
+
key += 1
|
297 |
+
|
298 |
+
@staticmethod
|
299 |
+
def generate_npz_filenames(split, total, folder, npz_size=NPZ_SPLIT):
|
300 |
+
"""
|
301 |
+
Generates a list of filenames for the npz files stored in the dataset.
|
302 |
+
Yields a tuple of floored multiple of 1000, filename
|
303 |
+
Args:
|
304 |
+
split: split to generate filenames for. Must be in ['train', 'test', 'valid']
|
305 |
+
due to the naming of the files.
|
306 |
+
total: total number of npy targets for given split
|
307 |
+
folder: folder where data is stored.
|
308 |
+
npz_size: number of npy files per npz. Defaults to 1000 because
|
309 |
+
this is the number currently used in the dataset.
|
310 |
+
"""
|
311 |
+
|
312 |
+
for i in range(total // npz_size):
|
313 |
+
yield i * npz_size, f"{folder}/targets-{split}-{i * npz_size}-{i * npz_size + (npz_size - 1)}.npz"
|
314 |
+
if total % npz_size != 0:
|
315 |
+
yield (
|
316 |
+
npz_size * (total // npz_size),
|
317 |
+
f"{folder}/targets-{split}-"
|
318 |
+
f"{npz_size * (total // npz_size)}-"
|
319 |
+
f"{npz_size * (total // npz_size) + (total % npz_size - 1)}.npz",
|
320 |
+
)
|
321 |
+
|
322 |
+
|
323 |
+
class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
324 |
+
"""
|
325 |
+
Handler for the Bulk RNA Expression task.
|
326 |
+
"""
|
327 |
+
|
328 |
+
DEFAULT_LENGTH = 114688
|
329 |
+
|
330 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
331 |
+
"""
|
332 |
+
Creates a new handler for the Bulk RNA Expression Prediction Task.
|
333 |
+
Args:
|
334 |
+
sequence_length: Length of the sequence around the TSS_CAGE start site
|
335 |
+
|
336 |
+
"""
|
337 |
+
self.reference_genome = None
|
338 |
+
self.coordinate_csv_file = None
|
339 |
+
self.labels_csv_file = None
|
340 |
+
self.sequence_length = sequence_length
|
341 |
+
|
342 |
+
def get_info(self, description: str) -> DatasetInfo:
|
343 |
+
"""
|
344 |
+
Returns the DatasetInfo for the Bulk RNA Expression dataset. Each example
|
345 |
+
includes a genomic sequence and a list of label values.
|
346 |
+
"""
|
347 |
+
features = datasets.Features(
|
348 |
+
{
|
349 |
+
# DNA sequence
|
350 |
+
"sequence": datasets.Value("string"),
|
351 |
+
# list of expression values in each tissue
|
352 |
+
"labels": datasets.Sequence(datasets.Value("float32")),
|
353 |
+
# chromosome number
|
354 |
+
"chromosome":datasets.Value(dtype="string")
|
355 |
+
}
|
356 |
+
)
|
357 |
+
return datasets.DatasetInfo(
|
358 |
+
# This is the description that will appear on the datasets page.
|
359 |
+
description=description,
|
360 |
+
# This defines the different columns of the dataset and their types
|
361 |
+
features=features,
|
362 |
+
|
363 |
+
)
|
364 |
+
|
365 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
366 |
+
"""
|
367 |
+
Separates files by split and stores filenames in instance variables.
|
368 |
+
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
369 |
+
csv file,and label csv file to be saved.
|
370 |
+
"""
|
371 |
+
# Manually download the reference genome since there are difficulties when streaming
|
372 |
+
reference_genome_file = self.download_and_extract_gz(
|
373 |
+
H19_REFERENCE_GENOME_URL, cache_dir_root
|
374 |
+
)
|
375 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
376 |
+
|
377 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
378 |
+
"bulk_rna_expression/gene_coordinates.csv"
|
379 |
+
)
|
380 |
+
|
381 |
+
self.labels_csv_file = dl_manager.download_and_extract(
|
382 |
+
"bulk_rna_expression/rna_expression_values.csv"
|
383 |
+
)
|
384 |
+
|
385 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
386 |
+
|
387 |
+
def generate_examples(self, split):
|
388 |
+
"""
|
389 |
+
A generator which produces examples for the given split, each with a sequence
|
390 |
+
and the corresponding labels. The sequences are padded to the correct sequence
|
391 |
+
length and standardized before returning.
|
392 |
+
"""
|
393 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
394 |
+
labels_df = pd.read_csv(self.labels_csv_file)
|
395 |
+
|
396 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
397 |
+
|
398 |
+
key = 0
|
399 |
+
for idx, coordinates_row in coordinates_split_df.iterrows():
|
400 |
+
start = coordinates_row[
|
401 |
+
"CAGE_representative_TSS"] - 1 # -1 since vcf coords are 1-based
|
402 |
+
|
403 |
+
chromosome = coordinates_row["chrom"]
|
404 |
+
labels_row = labels_df.loc[idx].values
|
405 |
+
padded_sequence = pad_sequence(
|
406 |
+
chromosome=self.reference_genome[chromosome],
|
407 |
+
start=start,
|
408 |
+
sequence_length=self.sequence_length,
|
409 |
+
negative_strand=coordinates_row["strand"] == "-",
|
410 |
+
)
|
411 |
+
if padded_sequence:
|
412 |
+
yield key, {
|
413 |
+
"labels": labels_row,
|
414 |
+
"sequence": standardize_sequence(padded_sequence),
|
415 |
+
"chromosome":re.sub("chr","",chromosome)
|
416 |
+
}
|
417 |
+
key += 1
|
418 |
+
|
419 |
+
|
420 |
+
class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
421 |
+
"""
|
422 |
+
Handler for the Variant Effect Prediction task.
|
423 |
+
"""
|
424 |
+
|
425 |
+
DEFAULT_LENGTH = 114688
|
426 |
+
|
427 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
428 |
+
"""
|
429 |
+
Creates a new handler for the Variant Effect Prediction Task.
|
430 |
+
Args:
|
431 |
+
sequence_length: Length of the sequence to pad around the SNP position
|
432 |
+
|
433 |
+
"""
|
434 |
+
self.reference_genome = None
|
435 |
+
self.sequence_length = sequence_length
|
436 |
+
|
437 |
+
def get_info(self, description: str) -> DatasetInfo:
|
438 |
+
"""
|
439 |
+
Returns the DatasetInfo for the Variant Effect Prediction dataset. Each example
|
440 |
+
includes a genomic sequence with the reference allele as well as the genomic sequence with the alternative allele,
|
441 |
+
and a binary label.
|
442 |
+
"""
|
443 |
+
features = datasets.Features(
|
444 |
+
{
|
445 |
+
# DNA sequence
|
446 |
+
"ref_forward_sequence": datasets.Value("string"),
|
447 |
+
"alt_forward_sequence": datasets.Value("string"),
|
448 |
+
# binary label
|
449 |
+
"label": datasets.Value(dtype="int8"),
|
450 |
+
# tissue type
|
451 |
+
"tissue": datasets.Value(dtype="string"),
|
452 |
+
# chromosome number
|
453 |
+
"chromosome": datasets.Value(dtype="string"),
|
454 |
+
# distance to nearest tss
|
455 |
+
"distance_to_nearest_tss":datasets.Value(dtype="int32")
|
456 |
+
}
|
457 |
+
)
|
458 |
+
|
459 |
+
return datasets.DatasetInfo(
|
460 |
+
# This is the description that will appear on the datasets page.
|
461 |
+
description=description,
|
462 |
+
# This defines the different columns of the dataset and their types
|
463 |
+
features=features,
|
464 |
+
)
|
465 |
+
|
466 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
467 |
+
"""
|
468 |
+
Separates files by split and stores filenames in instance variables.
|
469 |
+
The variant effect prediction dataset requires the reference hg38 genome and
|
470 |
+
coordinates_labels_csv_file to be saved.
|
471 |
+
"""
|
472 |
+
|
473 |
+
# Manually download the reference genome since there are difficulties
|
474 |
+
# when streaming
|
475 |
+
reference_genome_file = self.download_and_extract_gz(
|
476 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
477 |
+
)
|
478 |
+
|
479 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
480 |
+
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
481 |
+
f"variant_effect_prediction/All_Tissues.csv"
|
482 |
+
)
|
483 |
+
|
484 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
485 |
+
|
486 |
+
def generate_examples(self, split):
|
487 |
+
"""
|
488 |
+
A generator which produces examples each with ref/alt allele
|
489 |
+
and corresponding binary label. The sequences are extended to
|
490 |
+
the desired sequence length and standardized before returning.
|
491 |
+
"""
|
492 |
+
|
493 |
+
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
|
494 |
+
|
495 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
496 |
+
|
497 |
+
key = 0
|
498 |
+
for idx, row in coordinates_split_df.iterrows():
|
499 |
+
start = row["POS"] - 1 # sub 1 to create idx since vcf coords are 1-based
|
500 |
+
alt_allele = row["ALT"]
|
501 |
+
label = row["label"]
|
502 |
+
tissue = row['tissue']
|
503 |
+
chromosome = row["CHROM"]
|
504 |
+
distance = int(row["distance_to_nearest_TSS"])
|
505 |
+
|
506 |
+
# get reference forward sequence
|
507 |
+
ref_forward = pad_sequence(
|
508 |
+
chromosome=self.reference_genome[chromosome],
|
509 |
+
start=start,
|
510 |
+
sequence_length=self.sequence_length,
|
511 |
+
negative_strand=False,
|
512 |
+
)
|
513 |
+
|
514 |
+
# only if a valid sequence returned
|
515 |
+
if ref_forward:
|
516 |
+
# Mutate sequence with the alt allele at the SNP position, which is always
|
517 |
+
# centered in the string returned from pad_sequence
|
518 |
+
alt_forward = list(ref_forward)
|
519 |
+
alt_forward[self.sequence_length // 2] = alt_allele
|
520 |
+
alt_forward = "".join(alt_forward)
|
521 |
+
|
522 |
+
yield key, {
|
523 |
+
"label": label,
|
524 |
+
"tissue": tissue,
|
525 |
+
"chromosome": re.sub("chr", "", chromosome),
|
526 |
+
"ref_forward_sequence": standardize_sequence(ref_forward),
|
527 |
+
"alt_forward_sequence": standardize_sequence(alt_forward),
|
528 |
+
"distance_to_nearest_tss": distance
|
529 |
+
}
|
530 |
+
key += 1
|