update main loader script for new datasets
Browse files- genomics-long-range-benchmark.py +407 -56
genomics-long-range-benchmark.py
CHANGED
@@ -14,14 +14,12 @@ import pandas as pd
|
|
14 |
from datasets import DatasetInfo
|
15 |
from pyfaidx import Fasta
|
16 |
from abc import ABC, abstractmethod
|
17 |
-
|
18 |
-
from Bio import SeqIO
|
19 |
-
import pysam
|
20 |
|
21 |
"""
|
22 |
-
|
23 |
Reference Genome URLS:
|
24 |
-
|
25 |
"""
|
26 |
H38_REFERENCE_GENOME_URL = (
|
27 |
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
@@ -31,9 +29,9 @@ H19_REFERENCE_GENOME_URL = (
|
|
31 |
)
|
32 |
|
33 |
"""
|
34 |
-
|
35 |
Task Specific Handlers:
|
36 |
-
|
37 |
"""
|
38 |
|
39 |
class GenomicLRATaskHandler(ABC):
|
@@ -97,8 +95,8 @@ class GenomicLRATaskHandler(ABC):
|
|
97 |
|
98 |
def download_and_extract_gz(self, file_url, cache_dir_root):
|
99 |
"""
|
100 |
-
Downloads and extracts a gz file into the given cache directory. Returns the
|
101 |
-
of the extracted gz file.
|
102 |
Args:
|
103 |
file_url: url of the gz file to be downloaded and extracted.
|
104 |
cache_dir_root: Directory to extract file into.
|
@@ -138,29 +136,30 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
138 |
50,
|
139 |
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
140 |
NPZ_SPLIT = 1000 # number of files per npz file.
|
141 |
-
NUM_BP_PER_BIN = 128
|
142 |
|
143 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
144 |
"""
|
145 |
Creates a new handler for the CAGE task.
|
146 |
Args:
|
147 |
-
sequence_length: allows for increasing sequence context. Sequence length
|
148 |
-
|
|
|
149 |
"""
|
150 |
self.reference_genome = None
|
151 |
self.coordinate_csv_file = None
|
152 |
self.target_files_by_split = {}
|
153 |
|
|
|
154 |
assert (sequence_length // 128) % 2 == 0, (
|
155 |
-
f"Requested sequence length must be an even multuple of 128 to align
|
|
|
156 |
)
|
157 |
|
158 |
self.sequence_length = sequence_length
|
159 |
|
160 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
161 |
-
|
162 |
-
self.TARGET_SHAPE = (self.sequence_length//128,50)
|
163 |
-
|
164 |
|
165 |
def get_info(self, description: str) -> DatasetInfo:
|
166 |
"""
|
@@ -174,7 +173,11 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
174 |
# array of sequence length x num_labels
|
175 |
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
176 |
# chromosome number
|
177 |
-
"chromosome":datasets.Value(dtype="string")
|
|
|
|
|
|
|
|
|
178 |
}
|
179 |
)
|
180 |
return datasets.DatasetInfo(
|
@@ -192,31 +195,31 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
192 |
"""
|
193 |
|
194 |
# Manually download the reference genome since there are difficulties when
|
195 |
-
# streaming
|
196 |
reference_genome_file = self.download_and_extract_gz(
|
197 |
H38_REFERENCE_GENOME_URL, cache_dir_root
|
198 |
)
|
199 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
200 |
|
201 |
self.coordinate_csv_file = dl_manager.download_and_extract(
|
202 |
-
"
|
203 |
)
|
204 |
|
205 |
train_file_dict = {}
|
206 |
for train_key, train_file in self.generate_npz_filenames(
|
207 |
-
"train", self.NUM_TRAIN, folder="
|
208 |
):
|
209 |
train_file_dict[train_key] = dl_manager.download(train_file)
|
210 |
|
211 |
test_file_dict = {}
|
212 |
for test_key, test_file in self.generate_npz_filenames(
|
213 |
-
"test", self.NUM_TEST, folder="
|
214 |
):
|
215 |
test_file_dict[test_key] = dl_manager.download(test_file)
|
216 |
|
217 |
valid_file_dict = {}
|
218 |
for valid_key, valid_file in self.generate_npz_filenames(
|
219 |
-
"valid", self.NUM_VALID, folder="
|
220 |
):
|
221 |
valid_file_dict[valid_key] = dl_manager.download(valid_file)
|
222 |
|
@@ -225,7 +228,6 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
225 |
self.target_files_by_split["test"] = test_file_dict
|
226 |
self.target_files_by_split["validation"] = valid_file_dict
|
227 |
|
228 |
-
|
229 |
return [
|
230 |
datasets.SplitGenerator(
|
231 |
name=datasets.Split.TRAIN,
|
@@ -241,7 +243,6 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
241 |
),
|
242 |
]
|
243 |
|
244 |
-
|
245 |
def generate_examples(self, split):
|
246 |
"""
|
247 |
A generator which produces examples for the given split, each with a sequence
|
@@ -257,10 +258,10 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
257 |
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
258 |
for sequential_idx, row in filtered.iterrows():
|
259 |
start, stop = int(row["start"]) - 1, int(
|
260 |
-
row["stop"]) - 1 # -1 since
|
261 |
|
262 |
chromosome = row['chrom']
|
263 |
-
|
264 |
padded_sequence = pad_sequence(
|
265 |
chromosome=self.reference_genome[chromosome],
|
266 |
start=start,
|
@@ -277,21 +278,22 @@ class CagePredictionHandler(GenomicLRATaskHandler):
|
|
277 |
split == "validation"
|
278 |
): # npy files are keyed by ["train", "test", "valid"]
|
279 |
split = "valid"
|
280 |
-
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
|
281 |
-
|
282 |
-
|
283 |
# subset the targets if sequence length is smaller than 114688 (
|
284 |
# DEFAULT_LENGTH)
|
285 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
286 |
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
287 |
targets = targets[idx_diff:-idx_diff]
|
288 |
|
289 |
-
|
290 |
if padded_sequence:
|
291 |
yield key, {
|
292 |
"labels": targets,
|
293 |
"sequence": standardize_sequence(padded_sequence),
|
294 |
-
"chromosome": re.sub("chr","",chromosome)
|
|
|
|
|
295 |
}
|
296 |
key += 1
|
297 |
|
@@ -325,7 +327,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
325 |
Handler for the Bulk RNA Expression task.
|
326 |
"""
|
327 |
|
328 |
-
DEFAULT_LENGTH =
|
329 |
|
330 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
331 |
"""
|
@@ -351,7 +353,9 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
351 |
# list of expression values in each tissue
|
352 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
353 |
# chromosome number
|
354 |
-
"chromosome":datasets.Value(dtype="string")
|
|
|
|
|
355 |
}
|
356 |
)
|
357 |
return datasets.DatasetInfo(
|
@@ -368,7 +372,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
368 |
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
369 |
csv file,and label csv file to be saved.
|
370 |
"""
|
371 |
-
|
372 |
reference_genome_file = self.download_and_extract_gz(
|
373 |
H19_REFERENCE_GENOME_URL, cache_dir_root
|
374 |
)
|
@@ -398,7 +402,7 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
398 |
key = 0
|
399 |
for idx, coordinates_row in coordinates_split_df.iterrows():
|
400 |
start = coordinates_row[
|
401 |
-
"CAGE_representative_TSS"] - 1 # -1 since
|
402 |
|
403 |
chromosome = coordinates_row["chrom"]
|
404 |
labels_row = labels_df.loc[idx].values
|
@@ -412,21 +416,22 @@ class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
|
412 |
yield key, {
|
413 |
"labels": labels_row,
|
414 |
"sequence": standardize_sequence(padded_sequence),
|
415 |
-
"chromosome":re.sub("chr","",chromosome)
|
|
|
416 |
}
|
417 |
key += 1
|
418 |
|
419 |
|
420 |
-
class
|
421 |
"""
|
422 |
-
Handler for the Variant Effect
|
423 |
"""
|
424 |
|
425 |
-
DEFAULT_LENGTH =
|
426 |
|
427 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
428 |
"""
|
429 |
-
Creates a new handler for the Variant Effect
|
430 |
Args:
|
431 |
sequence_length: Length of the sequence to pad around the SNP position
|
432 |
|
@@ -436,9 +441,9 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
436 |
|
437 |
def get_info(self, description: str) -> DatasetInfo:
|
438 |
"""
|
439 |
-
Returns the DatasetInfo for the Variant Effect
|
440 |
-
includes a genomic sequence with the reference allele as well as the genomic
|
441 |
-
and a binary label.
|
442 |
"""
|
443 |
features = datasets.Features(
|
444 |
{
|
@@ -451,8 +456,10 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
451 |
"tissue": datasets.Value(dtype="string"),
|
452 |
# chromosome number
|
453 |
"chromosome": datasets.Value(dtype="string"),
|
|
|
|
|
454 |
# distance to nearest tss
|
455 |
-
"distance_to_nearest_tss":datasets.Value(dtype="int32")
|
456 |
}
|
457 |
)
|
458 |
|
@@ -478,7 +485,7 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
478 |
|
479 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
480 |
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
481 |
-
f"
|
482 |
)
|
483 |
|
484 |
return super().split_generators(dl_manager, cache_dir_root)
|
@@ -496,7 +503,7 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
496 |
|
497 |
key = 0
|
498 |
for idx, row in coordinates_split_df.iterrows():
|
499 |
-
start = row["POS"] - 1 # sub 1 to create idx since
|
500 |
alt_allele = row["ALT"]
|
501 |
label = row["label"]
|
502 |
tissue = row['tissue']
|
@@ -513,8 +520,8 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
513 |
|
514 |
# only if a valid sequence returned
|
515 |
if ref_forward:
|
516 |
-
# Mutate sequence with the alt allele at the SNP position,
|
517 |
-
# centered in the string returned from pad_sequence
|
518 |
alt_forward = list(ref_forward)
|
519 |
alt_forward[self.sequence_length // 2] = alt_allele
|
520 |
alt_forward = "".join(alt_forward)
|
@@ -525,14 +532,351 @@ class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
|
525 |
"chromosome": re.sub("chr", "", chromosome),
|
526 |
"ref_forward_sequence": standardize_sequence(ref_forward),
|
527 |
"alt_forward_sequence": standardize_sequence(alt_forward),
|
528 |
-
"distance_to_nearest_tss": distance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
}
|
530 |
key += 1
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
"""
|
533 |
-
|
534 |
Dataset loader:
|
535 |
-
|
536 |
"""
|
537 |
|
538 |
_DESCRIPTION = """
|
@@ -542,7 +886,13 @@ Dataset for benchmark of genomic deep learning models.
|
|
542 |
_TASK_HANDLERS = {
|
543 |
"cage_prediction": CagePredictionHandler,
|
544 |
"bulk_rna_expression": BulkRnaExpressionHandler,
|
545 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
}
|
547 |
|
548 |
|
@@ -558,7 +908,7 @@ class GenomicsLRAConfig(datasets.BuilderConfig):
|
|
558 |
**kwargs: keyword arguments forwarded to super.
|
559 |
"""
|
560 |
super().__init__()
|
561 |
-
self.handler = _TASK_HANDLERS[task_name](task_name=task_name
|
562 |
|
563 |
|
564 |
# DatasetBuilder
|
@@ -592,9 +942,9 @@ class GenomicsLRATasks(datasets.GeneratorBasedBuilder):
|
|
592 |
|
593 |
|
594 |
"""
|
595 |
-
|
596 |
Global Utils:
|
597 |
-
|
598 |
"""
|
599 |
|
600 |
|
@@ -625,7 +975,8 @@ def pad_sequence(chromosome, start, sequence_length, end=None, negative_strand=F
|
|
625 |
remainder is added to the end of the sequence.
|
626 |
end: End index of original sequence. If no end is specified, it creates a
|
627 |
centered sequence around the start index.
|
628 |
-
negative_strand: If negative_strand, returns the reverse compliment of the
|
|
|
629 |
"""
|
630 |
if end:
|
631 |
pad = (sequence_length - (end - start)) // 2
|
|
|
14 |
from datasets import DatasetInfo
|
15 |
from pyfaidx import Fasta
|
16 |
from abc import ABC, abstractmethod
|
17 |
+
|
|
|
|
|
18 |
|
19 |
"""
|
20 |
+
----------------------------------------------------------------------------------------
|
21 |
Reference Genome URLS:
|
22 |
+
----------------------------------------------------------------------------------------
|
23 |
"""
|
24 |
H38_REFERENCE_GENOME_URL = (
|
25 |
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
|
|
29 |
)
|
30 |
|
31 |
"""
|
32 |
+
----------------------------------------------------------------------------------------
|
33 |
Task Specific Handlers:
|
34 |
+
----------------------------------------------------------------------------------------
|
35 |
"""
|
36 |
|
37 |
class GenomicLRATaskHandler(ABC):
|
|
|
95 |
|
96 |
def download_and_extract_gz(self, file_url, cache_dir_root):
|
97 |
"""
|
98 |
+
Downloads and extracts a gz file into the given cache directory. Returns the
|
99 |
+
full file path of the extracted gz file.
|
100 |
Args:
|
101 |
file_url: url of the gz file to be downloaded and extracted.
|
102 |
cache_dir_root: Directory to extract file into.
|
|
|
136 |
50,
|
137 |
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
138 |
NPZ_SPLIT = 1000 # number of files per npz file.
|
139 |
+
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
|
140 |
|
141 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
142 |
"""
|
143 |
Creates a new handler for the CAGE task.
|
144 |
Args:
|
145 |
+
sequence_length: allows for increasing sequence context. Sequence length
|
146 |
+
must be an even multiple of 128 to align with binned labels. Note:
|
147 |
+
increasing sequence length may decrease the number of usable samples.
|
148 |
"""
|
149 |
self.reference_genome = None
|
150 |
self.coordinate_csv_file = None
|
151 |
self.target_files_by_split = {}
|
152 |
|
153 |
+
|
154 |
assert (sequence_length // 128) % 2 == 0, (
|
155 |
+
f"Requested sequence length must be an even multuple of 128 to align "
|
156 |
+
f"with the binned labels."
|
157 |
)
|
158 |
|
159 |
self.sequence_length = sequence_length
|
160 |
|
161 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
162 |
+
self.TARGET_SHAPE = (self.sequence_length // 128, 50)
|
|
|
|
|
163 |
|
164 |
def get_info(self, description: str) -> DatasetInfo:
|
165 |
"""
|
|
|
173 |
# array of sequence length x num_labels
|
174 |
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
175 |
# chromosome number
|
176 |
+
"chromosome": datasets.Value(dtype="string"),
|
177 |
+
# start
|
178 |
+
"start": datasets.Value(dtype="int32"),
|
179 |
+
# stop
|
180 |
+
"stop": datasets.Value(dtype="int32")
|
181 |
}
|
182 |
)
|
183 |
return datasets.DatasetInfo(
|
|
|
195 |
"""
|
196 |
|
197 |
# Manually download the reference genome since there are difficulties when
|
198 |
+
# streaming
|
199 |
reference_genome_file = self.download_and_extract_gz(
|
200 |
H38_REFERENCE_GENOME_URL, cache_dir_root
|
201 |
)
|
202 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
203 |
|
204 |
self.coordinate_csv_file = dl_manager.download_and_extract(
|
205 |
+
"cage_expression/sequences_coordinates.csv"
|
206 |
)
|
207 |
|
208 |
train_file_dict = {}
|
209 |
for train_key, train_file in self.generate_npz_filenames(
|
210 |
+
"train", self.NUM_TRAIN, folder="cage_expression/targets_subset"
|
211 |
):
|
212 |
train_file_dict[train_key] = dl_manager.download(train_file)
|
213 |
|
214 |
test_file_dict = {}
|
215 |
for test_key, test_file in self.generate_npz_filenames(
|
216 |
+
"test", self.NUM_TEST, folder="cage_expression/targets_subset"
|
217 |
):
|
218 |
test_file_dict[test_key] = dl_manager.download(test_file)
|
219 |
|
220 |
valid_file_dict = {}
|
221 |
for valid_key, valid_file in self.generate_npz_filenames(
|
222 |
+
"valid", self.NUM_VALID, folder="cage_expression/targets_subset"
|
223 |
):
|
224 |
valid_file_dict[valid_key] = dl_manager.download(valid_file)
|
225 |
|
|
|
228 |
self.target_files_by_split["test"] = test_file_dict
|
229 |
self.target_files_by_split["validation"] = valid_file_dict
|
230 |
|
|
|
231 |
return [
|
232 |
datasets.SplitGenerator(
|
233 |
name=datasets.Split.TRAIN,
|
|
|
243 |
),
|
244 |
]
|
245 |
|
|
|
246 |
def generate_examples(self, split):
|
247 |
"""
|
248 |
A generator which produces examples for the given split, each with a sequence
|
|
|
258 |
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
259 |
for sequential_idx, row in filtered.iterrows():
|
260 |
start, stop = int(row["start"]) - 1, int(
|
261 |
+
row["stop"]) - 1 # -1 since coords are 1-based
|
262 |
|
263 |
chromosome = row['chrom']
|
264 |
+
|
265 |
padded_sequence = pad_sequence(
|
266 |
chromosome=self.reference_genome[chromosome],
|
267 |
start=start,
|
|
|
278 |
split == "validation"
|
279 |
): # npy files are keyed by ["train", "test", "valid"]
|
280 |
split = "valid"
|
281 |
+
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][
|
282 |
+
0] # select 0 since there is extra dimension
|
283 |
+
|
284 |
# subset the targets if sequence length is smaller than 114688 (
|
285 |
# DEFAULT_LENGTH)
|
286 |
if self.sequence_length < self.DEFAULT_LENGTH:
|
287 |
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
288 |
targets = targets[idx_diff:-idx_diff]
|
289 |
|
|
|
290 |
if padded_sequence:
|
291 |
yield key, {
|
292 |
"labels": targets,
|
293 |
"sequence": standardize_sequence(padded_sequence),
|
294 |
+
"chromosome": re.sub("chr", "", chromosome),
|
295 |
+
"start": int(row["start"]),
|
296 |
+
"stop": int(row["stop"])
|
297 |
}
|
298 |
key += 1
|
299 |
|
|
|
327 |
Handler for the Bulk RNA Expression task.
|
328 |
"""
|
329 |
|
330 |
+
DEFAULT_LENGTH = 100000
|
331 |
|
332 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
333 |
"""
|
|
|
353 |
# list of expression values in each tissue
|
354 |
"labels": datasets.Sequence(datasets.Value("float32")),
|
355 |
# chromosome number
|
356 |
+
"chromosome": datasets.Value(dtype="string"),
|
357 |
+
# position
|
358 |
+
"position": datasets.Value(dtype="int32"),
|
359 |
}
|
360 |
)
|
361 |
return datasets.DatasetInfo(
|
|
|
372 |
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
373 |
csv file,and label csv file to be saved.
|
374 |
"""
|
375 |
+
|
376 |
reference_genome_file = self.download_and_extract_gz(
|
377 |
H19_REFERENCE_GENOME_URL, cache_dir_root
|
378 |
)
|
|
|
402 |
key = 0
|
403 |
for idx, coordinates_row in coordinates_split_df.iterrows():
|
404 |
start = coordinates_row[
|
405 |
+
"CAGE_representative_TSS"] - 1 # -1 since coords are 1-based
|
406 |
|
407 |
chromosome = coordinates_row["chrom"]
|
408 |
labels_row = labels_df.loc[idx].values
|
|
|
416 |
yield key, {
|
417 |
"labels": labels_row,
|
418 |
"sequence": standardize_sequence(padded_sequence),
|
419 |
+
"chromosome": re.sub("chr", "", chromosome),
|
420 |
+
"position": coordinates_row["CAGE_representative_TSS"]
|
421 |
}
|
422 |
key += 1
|
423 |
|
424 |
|
425 |
+
class VariantEffectCausalEqtl(GenomicLRATaskHandler):
|
426 |
"""
|
427 |
+
Handler for the Variant Effect Causal eQTL task.
|
428 |
"""
|
429 |
|
430 |
+
DEFAULT_LENGTH = 100000
|
431 |
|
432 |
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
433 |
"""
|
434 |
+
Creates a new handler for the Variant Effect Causal eQTL Task.
|
435 |
Args:
|
436 |
sequence_length: Length of the sequence to pad around the SNP position
|
437 |
|
|
|
441 |
|
442 |
def get_info(self, description: str) -> DatasetInfo:
|
443 |
"""
|
444 |
+
Returns the DatasetInfo for the Variant Effect Causal eQTL dataset. Each example
|
445 |
+
includes a genomic sequence with the reference allele as well as the genomic
|
446 |
+
sequence with the alternative allele, and a binary label.
|
447 |
"""
|
448 |
features = datasets.Features(
|
449 |
{
|
|
|
456 |
"tissue": datasets.Value(dtype="string"),
|
457 |
# chromosome number
|
458 |
"chromosome": datasets.Value(dtype="string"),
|
459 |
+
# variant position
|
460 |
+
"position": datasets.Value(dtype="int32"),
|
461 |
# distance to nearest tss
|
462 |
+
"distance_to_nearest_tss": datasets.Value(dtype="int32")
|
463 |
}
|
464 |
)
|
465 |
|
|
|
485 |
|
486 |
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
487 |
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
488 |
+
f"variant_effect_prediction/All_Tissues.csv"
|
489 |
)
|
490 |
|
491 |
return super().split_generators(dl_manager, cache_dir_root)
|
|
|
503 |
|
504 |
key = 0
|
505 |
for idx, row in coordinates_split_df.iterrows():
|
506 |
+
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
|
507 |
alt_allele = row["ALT"]
|
508 |
label = row["label"]
|
509 |
tissue = row['tissue']
|
|
|
520 |
|
521 |
# only if a valid sequence returned
|
522 |
if ref_forward:
|
523 |
+
# Mutate sequence with the alt allele at the SNP position,
|
524 |
+
# which is always centered in the string returned from pad_sequence
|
525 |
alt_forward = list(ref_forward)
|
526 |
alt_forward[self.sequence_length // 2] = alt_allele
|
527 |
alt_forward = "".join(alt_forward)
|
|
|
532 |
"chromosome": re.sub("chr", "", chromosome),
|
533 |
"ref_forward_sequence": standardize_sequence(ref_forward),
|
534 |
"alt_forward_sequence": standardize_sequence(alt_forward),
|
535 |
+
"distance_to_nearest_tss": distance,
|
536 |
+
"position": row["POS"]
|
537 |
+
}
|
538 |
+
key += 1
|
539 |
+
|
540 |
+
|
541 |
+
class VariantEffectPathogenicHandler(GenomicLRATaskHandler):
|
542 |
+
"""
|
543 |
+
Handler for the Variant Effect Pathogenic Prediction tasks.
|
544 |
+
"""
|
545 |
+
|
546 |
+
DEFAULT_LENGTH = 100000
|
547 |
+
|
548 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, task_name=None, subset=False,
|
549 |
+
**kwargs):
|
550 |
+
"""
|
551 |
+
Creates a new handler for the Variant Effect Pathogenic Tasks.
|
552 |
+
Args:
|
553 |
+
sequence_length: Length of the sequence to pad around the SNP position
|
554 |
+
subset: Whether to return a pre-determined subset of the data.
|
555 |
+
|
556 |
+
"""
|
557 |
+
self.sequence_length = sequence_length
|
558 |
+
|
559 |
+
if task_name == 'variant_effect_pathogenic_coding':
|
560 |
+
self.data_file_name = "variant_effect_pathogenic/vep_pathogenic_coding.csv"
|
561 |
+
elif task_name == 'variant_effect_pathogenic_non_coding':
|
562 |
+
self.data_file_name = "variant_effect_pathogenic/" \
|
563 |
+
"vep_pathogenic_non_coding_subset.csv" \
|
564 |
+
if subset else "variant_effect_pathogenic/vep_pathogenic_non_coding.csv"
|
565 |
+
|
566 |
+
def get_info(self, description: str) -> DatasetInfo:
|
567 |
+
"""
|
568 |
+
Returns the DatasetInfo for the Variant Effect Pathogenic datasets. Each example
|
569 |
+
includes a genomic sequence with the reference allele as well as the genomic
|
570 |
+
sequence with the alternative allele, and a binary label.
|
571 |
+
"""
|
572 |
+
features = datasets.Features(
|
573 |
+
{
|
574 |
+
# DNA sequence
|
575 |
+
"ref_forward_sequence": datasets.Value("string"),
|
576 |
+
"alt_forward_sequence": datasets.Value("string"),
|
577 |
+
# binary label
|
578 |
+
"label": datasets.Value(dtype="int8"),
|
579 |
+
# chromosome number
|
580 |
+
"chromosome": datasets.Value(dtype="string"),
|
581 |
+
# position
|
582 |
+
"position": datasets.Value(dtype="int32")
|
583 |
+
}
|
584 |
+
)
|
585 |
+
|
586 |
+
return datasets.DatasetInfo(
|
587 |
+
# This is the description that will appear on the datasets page.
|
588 |
+
description=description,
|
589 |
+
# This defines the different columns of the dataset and their types
|
590 |
+
features=features,
|
591 |
+
)
|
592 |
+
|
593 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
594 |
+
"""
|
595 |
+
Separates files by split and stores filenames in instance variables.
|
596 |
+
The variant effect prediction datasets require the reference hg38 genome and
|
597 |
+
coordinates_labels_csv_file to be saved.
|
598 |
+
"""
|
599 |
+
|
600 |
+
reference_genome_file = self.download_and_extract_gz(
|
601 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
602 |
+
)
|
603 |
+
|
604 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
605 |
+
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
606 |
+
self.data_file_name)
|
607 |
+
|
608 |
+
if 'non_coding' in self.data_file_name:
|
609 |
+
return [
|
610 |
+
datasets.SplitGenerator(
|
611 |
+
name=datasets.Split.TEST,
|
612 |
+
gen_kwargs={"handler": self, "split": "test"}
|
613 |
+
), ]
|
614 |
+
else:
|
615 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
616 |
+
|
617 |
+
def generate_examples(self, split):
|
618 |
+
"""
|
619 |
+
A generator which produces examples each with ref/alt allele
|
620 |
+
and corresponding binary label. The sequences are extended to
|
621 |
+
the desired sequence length and standardized before returning.
|
622 |
+
"""
|
623 |
+
|
624 |
+
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
|
625 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
626 |
+
|
627 |
+
key = 0
|
628 |
+
for idx, row in coordinates_split_df.iterrows():
|
629 |
+
start = row["POS"] - 1 # sub 1 to create idx since coords are 1-based
|
630 |
+
alt_allele = row["ALT"]
|
631 |
+
label = row["INT_LABEL"]
|
632 |
+
chromosome = row["CHROM"]
|
633 |
+
|
634 |
+
# get reference forward sequence
|
635 |
+
ref_forward = pad_sequence(
|
636 |
+
chromosome=self.reference_genome[chromosome],
|
637 |
+
start=start,
|
638 |
+
sequence_length=self.sequence_length,
|
639 |
+
negative_strand=False,
|
640 |
+
)
|
641 |
+
|
642 |
+
# only if a valid sequence returned
|
643 |
+
if ref_forward:
|
644 |
+
# Mutate sequence with the alt allele at the SNP position,
|
645 |
+
# which is always centered in the string returned from pad_sequence
|
646 |
+
alt_forward = list(ref_forward)
|
647 |
+
alt_forward[self.sequence_length // 2] = alt_allele
|
648 |
+
alt_forward = "".join(alt_forward)
|
649 |
+
|
650 |
+
yield key, {
|
651 |
+
"label": label,
|
652 |
+
"chromosome": re.sub("chr", "", chromosome),
|
653 |
+
"ref_forward_sequence": standardize_sequence(ref_forward),
|
654 |
+
"alt_forward_sequence": standardize_sequence(alt_forward),
|
655 |
+
"position": row['POS']
|
656 |
}
|
657 |
key += 1
|
658 |
|
659 |
+
|
660 |
+
class ChromatinFeaturesHandler(GenomicLRATaskHandler):
|
661 |
+
"""
|
662 |
+
Handler for the histone marks and DNA accessibility tasks also referred to
|
663 |
+
collectively as Chromatin features.
|
664 |
+
"""
|
665 |
+
|
666 |
+
DEFAULT_LENGTH = 100000
|
667 |
+
|
668 |
+
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
|
669 |
+
**kwargs):
|
670 |
+
"""
|
671 |
+
Creates a new handler for the Deep Sea Histone and DNase tasks.
|
672 |
+
Args:
|
673 |
+
sequence_length: Length of the sequence around and including the
|
674 |
+
annotated 200bp bin
|
675 |
+
subset: Whether to return a pre-determined subset of the entire dataset.
|
676 |
+
|
677 |
+
"""
|
678 |
+
self.sequence_length = sequence_length
|
679 |
+
|
680 |
+
if sequence_length < 200:
|
681 |
+
raise ValueError(
|
682 |
+
'Sequence length for this task must be greater or equal to 200 bp')
|
683 |
+
|
684 |
+
if 'histone' in task_name:
|
685 |
+
self.label_name = 'HISTONES'
|
686 |
+
elif 'dnase' in task_name:
|
687 |
+
self.label_name = 'DNASE'
|
688 |
+
|
689 |
+
self.data_file_name = "chromatin_features/histones_and_dnase_subset.csv" if \
|
690 |
+
subset else "chromatin_features/histones_and_dnase.csv"
|
691 |
+
|
692 |
+
def get_info(self, description: str) -> DatasetInfo:
|
693 |
+
"""
|
694 |
+
Returns the DatasetInfo for the histone marks and dna accessibility datasets.
|
695 |
+
Each example includes a genomic sequence and a list of label values.
|
696 |
+
"""
|
697 |
+
features = datasets.Features(
|
698 |
+
{
|
699 |
+
# DNA sequence
|
700 |
+
"sequence": datasets.Value("string"),
|
701 |
+
# list of binary chromatin marks
|
702 |
+
"labels": datasets.Sequence(datasets.Value("int8")),
|
703 |
+
# chromosome number
|
704 |
+
"chromosome": datasets.Value(dtype="string"),
|
705 |
+
# position
|
706 |
+
"position": datasets.Value(dtype="int32"),
|
707 |
+
}
|
708 |
+
)
|
709 |
+
return datasets.DatasetInfo(
|
710 |
+
# This is the description that will appear on the datasets page.
|
711 |
+
description=description,
|
712 |
+
# This defines the different columns of the dataset and their types
|
713 |
+
features=features,
|
714 |
+
|
715 |
+
)
|
716 |
+
|
717 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
718 |
+
"""
|
719 |
+
Separates files by split and stores filenames in instance variables.
|
720 |
+
The histone marks and dna accessibility datasets require the reference hg19
|
721 |
+
genome and coordinate csv file to be saved.
|
722 |
+
"""
|
723 |
+
reference_genome_file = self.download_and_extract_gz(
|
724 |
+
H19_REFERENCE_GENOME_URL, cache_dir_root
|
725 |
+
)
|
726 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
727 |
+
|
728 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(self.data_file_name)
|
729 |
+
|
730 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
731 |
+
|
732 |
+
def generate_examples(self, split):
|
733 |
+
"""
|
734 |
+
A generator which produces examples for the given split, each with a sequence
|
735 |
+
and the corresponding labels. The sequences are padded to the correct sequence
|
736 |
+
length and standardized before returning.
|
737 |
+
"""
|
738 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
739 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
740 |
+
|
741 |
+
key = 0
|
742 |
+
for idx, coordinates_row in coordinates_split_df.iterrows():
|
743 |
+
start = coordinates_row['POS'] - 1 # -1 since saved coords are 1-based
|
744 |
+
chromosome = coordinates_row["CHROM"]
|
745 |
+
|
746 |
+
# literal eval used since lists are saved as strings in csv
|
747 |
+
labels_row = literal_eval(coordinates_row[self.label_name])
|
748 |
+
|
749 |
+
padded_sequence = pad_sequence(
|
750 |
+
chromosome=self.reference_genome[chromosome],
|
751 |
+
start=start,
|
752 |
+
sequence_length=self.sequence_length,
|
753 |
+
)
|
754 |
+
if padded_sequence:
|
755 |
+
yield key, {
|
756 |
+
"labels": labels_row,
|
757 |
+
"sequence": standardize_sequence(padded_sequence),
|
758 |
+
"chromosome": re.sub("chr", "", chromosome),
|
759 |
+
"position": coordinates_row['POS']
|
760 |
+
}
|
761 |
+
key += 1
|
762 |
+
|
763 |
+
|
764 |
+
class RegulatoryElementHandler(GenomicLRATaskHandler):
|
765 |
+
"""
|
766 |
+
Handler for the Regulatory Element Prediction tasks.
|
767 |
+
"""
|
768 |
+
DEFAULT_LENGTH = 100000
|
769 |
+
|
770 |
+
def __init__(self, task_name=None, sequence_length=DEFAULT_LENGTH, subset=False,
|
771 |
+
**kwargs):
|
772 |
+
"""
|
773 |
+
Creates a new handler for the Regulatory Element Prediction tasks.
|
774 |
+
Args:
|
775 |
+
sequence_length: Length of the sequence around the element/non-element
|
776 |
+
subset: Whether to return a pre-determined subset of the entire dataset.
|
777 |
+
|
778 |
+
"""
|
779 |
+
|
780 |
+
if sequence_length < 200:
|
781 |
+
raise ValueError(
|
782 |
+
'Sequence length for this task must be greater or equal to 200 bp')
|
783 |
+
|
784 |
+
self.sequence_length = sequence_length
|
785 |
+
|
786 |
+
if 'promoter' in task_name:
|
787 |
+
self.data_file_name = 'regulatory_elements/promoter_dataset'
|
788 |
+
|
789 |
+
elif 'enhancer' in task_name:
|
790 |
+
self.data_file_name = 'regulatory_elements/enhancer_dataset'
|
791 |
+
|
792 |
+
if subset:
|
793 |
+
self.data_file_name += '_subset.csv'
|
794 |
+
else:
|
795 |
+
self.data_file_name += '.csv'
|
796 |
+
|
797 |
+
def get_info(self, description: str) -> DatasetInfo:
|
798 |
+
"""
|
799 |
+
Returns the DatasetInfo for the Regulatory Element Prediction Tasks.
|
800 |
+
Each example includes a genomic sequence and a label.
|
801 |
+
"""
|
802 |
+
features = datasets.Features(
|
803 |
+
{
|
804 |
+
# DNA sequence
|
805 |
+
"sequence": datasets.Value("string"),
|
806 |
+
# label corresponding to whether the sequence has
|
807 |
+
# the regulatory element of interest or not
|
808 |
+
"labels": datasets.Value("int8"),
|
809 |
+
# chromosome number
|
810 |
+
"chromosome": datasets.Value(dtype="string"),
|
811 |
+
# start
|
812 |
+
"start": datasets.Value(dtype="int32"),
|
813 |
+
# stop
|
814 |
+
"stop": datasets.Value(dtype="int32"),
|
815 |
+
}
|
816 |
+
)
|
817 |
+
return datasets.DatasetInfo(
|
818 |
+
# This is the description that will appear on the datasets page.
|
819 |
+
description=description,
|
820 |
+
# This defines the different columns of the dataset and their types
|
821 |
+
features=features,
|
822 |
+
|
823 |
+
)
|
824 |
+
|
825 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
826 |
+
"""
|
827 |
+
Separates files by split and stores filenames in instance variables.
|
828 |
+
"""
|
829 |
+
reference_genome_file = self.download_and_extract_gz(
|
830 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
831 |
+
)
|
832 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
833 |
+
|
834 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
835 |
+
self.data_file_name
|
836 |
+
)
|
837 |
+
|
838 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
839 |
+
|
840 |
+
def generate_examples(self, split):
|
841 |
+
"""
|
842 |
+
A generator which produces examples for the given split, each with a sequence
|
843 |
+
and the corresponding label. The sequences are padded to the correct sequence
|
844 |
+
length and standardized before returning.
|
845 |
+
"""
|
846 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
847 |
+
|
848 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
849 |
+
|
850 |
+
key = 0
|
851 |
+
for _, coordinates_row in coordinates_split_df.iterrows():
|
852 |
+
start = coordinates_row["START"] - 1 # -1 since vcf coords are 1-based
|
853 |
+
end = coordinates_row["STOP"] - 1 # -1 since vcf coords are 1-based
|
854 |
+
chromosome = coordinates_row["CHROM"]
|
855 |
+
|
856 |
+
label = coordinates_row['label']
|
857 |
+
|
858 |
+
padded_sequence = pad_sequence(
|
859 |
+
chromosome=self.reference_genome[chromosome],
|
860 |
+
start=start,
|
861 |
+
end=end,
|
862 |
+
sequence_length=self.sequence_length,
|
863 |
+
)
|
864 |
+
|
865 |
+
if padded_sequence:
|
866 |
+
yield key, {
|
867 |
+
"labels": label,
|
868 |
+
"sequence": standardize_sequence(padded_sequence),
|
869 |
+
"chromosome": re.sub("chr", "", chromosome),
|
870 |
+
"start": coordinates_row["START"],
|
871 |
+
"stop": coordinates_row["STOP"]
|
872 |
+
}
|
873 |
+
key += 1
|
874 |
+
|
875 |
+
|
876 |
"""
|
877 |
+
----------------------------------------------------------------------------------------
|
878 |
Dataset loader:
|
879 |
+
----------------------------------------------------------------------------------------
|
880 |
"""
|
881 |
|
882 |
_DESCRIPTION = """
|
|
|
886 |
_TASK_HANDLERS = {
|
887 |
"cage_prediction": CagePredictionHandler,
|
888 |
"bulk_rna_expression": BulkRnaExpressionHandler,
|
889 |
+
"variant_effect_causal_eqtl": VariantEffectCausalEqtl,
|
890 |
+
"variant_effect_pathogenic_clinvar": VariantEffectPathogenicHandler,
|
891 |
+
"variant_effect_pathogenic_omim": VariantEffectPathogenicHandler,
|
892 |
+
"chromatin_features_histone_marks": ChromatinFeaturesHandler,
|
893 |
+
"chromatin_features_dna_accessibility": ChromatinFeaturesHandler,
|
894 |
+
"regulatory_element_promoter": RegulatoryElementHandler,
|
895 |
+
"regulatory_element_enhancer": RegulatoryElementHandler,
|
896 |
}
|
897 |
|
898 |
|
|
|
908 |
**kwargs: keyword arguments forwarded to super.
|
909 |
"""
|
910 |
super().__init__()
|
911 |
+
self.handler = _TASK_HANDLERS[task_name](task_name=task_name, **kwargs)
|
912 |
|
913 |
|
914 |
# DatasetBuilder
|
|
|
942 |
|
943 |
|
944 |
"""
|
945 |
+
----------------------------------------------------------------------------------------
|
946 |
Global Utils:
|
947 |
+
----------------------------------------------------------------------------------------
|
948 |
"""
|
949 |
|
950 |
|
|
|
975 |
remainder is added to the end of the sequence.
|
976 |
end: End index of original sequence. If no end is specified, it creates a
|
977 |
centered sequence around the start index.
|
978 |
+
negative_strand: If negative_strand, returns the reverse compliment of the
|
979 |
+
sequence
|
980 |
"""
|
981 |
if end:
|
982 |
pad = (sequence_length - (end - start)) // 2
|