Update README.md
Browse files
README.md
CHANGED
@@ -17,4 +17,72 @@ tags:
|
|
17 |
pretty_name: VALERIE22
|
18 |
size_categories:
|
19 |
- 1K<n<10K
|
20 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
pretty_name: VALERIE22
|
18 |
size_categories:
|
19 |
- 1K<n<10K
|
20 |
+
---
|
21 |
+
# Dataset Card for VALERIE22
|
22 |
+
|
23 |
+
## Dataset Description
|
24 |
+
|
25 |
+
- **Paper:** tba
|
26 |
+
- **Point of Contact:** korbinian.hagn@intel.com
|
27 |
+
|
28 |
+
### Dataset Summary
|
29 |
+
|
30 |
+
The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.
|
31 |
+
|
32 |
+
### Supported Tasks and Leaderboards
|
33 |
+
|
34 |
+
- pedestrian detection
|
35 |
+
- 2d object-detection
|
36 |
+
- 3d object-detection
|
37 |
+
- semantic-segmentation
|
38 |
+
- instance-segmentation
|
39 |
+
- ai validation
|
40 |
+
|
41 |
+
## Dataset Structure
|
42 |
+
|
43 |
+
- VALERIE22
|
44 |
+
- intel_results_sequence_0050
|
45 |
+
- ground-truth
|
46 |
+
- 2d-bounding-box_json
|
47 |
+
- car-camera000-0000-{UUID}-0000.json
|
48 |
+
- 3d-bounding-box_json
|
49 |
+
- car-camera000-0000-{UUID}-0000.json
|
50 |
+
- class-id_png
|
51 |
+
- car-camera000-0000-{UUID}-0000.png
|
52 |
+
- general-globally-per-frame-analysis_json
|
53 |
+
- car-camera000-0000-{UUID}-0000.json
|
54 |
+
- car-camera000-0000-{UUID}-0000.csv
|
55 |
+
- semantic-group-segmentation_png
|
56 |
+
- car-camera000-0000-{UUID}-0000.png
|
57 |
+
- semantic-instance-segmentation_png
|
58 |
+
- car-camera000-0000-{UUID}-0000.png
|
59 |
+
- car-camera000-0000-{UUID}-0000
|
60 |
+
- {Entity-ID}
|
61 |
+
- metadata
|
62 |
+
- car-camera000-0000-{UUID}-0000.json
|
63 |
+
- sensor
|
64 |
+
- camera
|
65 |
+
- left
|
66 |
+
- png
|
67 |
+
- car-camera000-0000-{UUID}-0000.png
|
68 |
+
- png_distorted
|
69 |
+
- car-camera000-0000-{UUID}-0000.png
|
70 |
+
- intel_results_sequence_0052
|
71 |
+
- intel_results_sequence_0054
|
72 |
+
- intel_results_sequence_0057
|
73 |
+
- intel_results_sequence_0058
|
74 |
+
- intel_results_sequence_0059
|
75 |
+
- intel_results_sequence_0060
|
76 |
+
- intel_results_sequence_0062
|
77 |
+
|
78 |
+
### Data Splits
|
79 |
+
|
80 |
+
Train/Val/Test
|
81 |
+
|
82 |
+
### Licensing Information
|
83 |
+
|
84 |
+
tba
|
85 |
+
|
86 |
+
### Citation Information
|
87 |
+
|
88 |
+
tba
|