Upload librispeech_tiny_creation.ipynb
Browse filesThe code that was used to extract this tiny dataset from the librispeech dataset.
- librispeech_tiny_creation.ipynb +374 -0
librispeech_tiny_creation.ipynb
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"id": "c4f101d6-ca08-4236-9034-c86968fc7830",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Found cached dataset librispeech_asr (/home/jupyter/.cache/huggingface/datasets/librispeech_asr/all/2.1.0/cff5df6e7955c80a67f80e27e7e655de71c689e2d2364bece785b972acb37fe7)\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"data": {
|
18 |
+
"application/vnd.jupyter.widget-view+json": {
|
19 |
+
"model_id": "8c87424fb2904b1894800b3ec3de48ec",
|
20 |
+
"version_major": 2,
|
21 |
+
"version_minor": 0
|
22 |
+
},
|
23 |
+
"text/plain": [
|
24 |
+
" 0%| | 0/7 [00:00<?, ?it/s]"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"metadata": {},
|
28 |
+
"output_type": "display_data"
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"Loading cached shuffled indices for dataset at /home/jupyter/.cache/huggingface/datasets/librispeech_asr/all/2.1.0/cff5df6e7955c80a67f80e27e7e655de71c689e2d2364bece785b972acb37fe7/cache-c0ea02798a773cf7.arrow\n"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"# load the dataset\n",
|
40 |
+
"from datasets import load_dataset, DatasetDict\n",
|
41 |
+
"import torch \n",
|
42 |
+
"\n",
|
43 |
+
"# fix a random seed to make sure different run give the same dataset\n",
|
44 |
+
"seed = 17\n",
|
45 |
+
"\n",
|
46 |
+
"# load the librispeech dataset and shuffle it \n",
|
47 |
+
"dataset = load_dataset(\"librispeech_asr\",\"all\")['train.clean.100']\n",
|
48 |
+
"dataset = dataset.shuffle(seed=seed)"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 6,
|
54 |
+
"id": "c5153afc-4ce3-45a6-9480-a33c636c7706",
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"# select enough element to get elements to get to 20 minutes\n",
|
59 |
+
"i_10mn = 0\n",
|
60 |
+
"duration = 0 \n",
|
61 |
+
"while duration < 600: # until we reach 1200s \n",
|
62 |
+
" duration += dataset[i_10mn]['audio']['array'].shape[0]/dataset[i_10mn]['audio']['sampling_rate']\n",
|
63 |
+
" i_10mn += 1\n",
|
64 |
+
"\n",
|
65 |
+
"librispeech_10mn = dataset.select(range(i_10mn)) \n",
|
66 |
+
"\n",
|
67 |
+
"# select elements on the following to get 1h\n",
|
68 |
+
"i_1h = i_10mn\n",
|
69 |
+
"duration=0\n",
|
70 |
+
"while duration < 3600: # until we reach 1200s \n",
|
71 |
+
" duration += dataset[i_1h]['audio']['array'].shape[0]/dataset[i_1h]['audio']['sampling_rate']\n",
|
72 |
+
" i_1h += 1\n",
|
73 |
+
" \n",
|
74 |
+
"librispeech_1h = dataset.select(range(i_10mn,i_1h))\n",
|
75 |
+
"\n",
|
76 |
+
"# select elements to get to 2h\n",
|
77 |
+
"i_2h = i_1h\n",
|
78 |
+
"duration = 0\n",
|
79 |
+
"while duration < 7200: # until we reach 1200s \n",
|
80 |
+
" duration += dataset[i_2h]['audio']['array'].shape[0]/dataset[i_2h]['audio']['sampling_rate']\n",
|
81 |
+
" i_2h += 1\n",
|
82 |
+
" \n",
|
83 |
+
"librispeech_2h = dataset.select(range(i_1h,i_2h))\n",
|
84 |
+
"\n",
|
85 |
+
"# put them together\n",
|
86 |
+
"librispeech_tiny = DatasetDict({'10mn':librispeech_10mn,\n",
|
87 |
+
" '1h': librispeech_1h,\n",
|
88 |
+
" '2h': librispeech_2h\n",
|
89 |
+
" }\n",
|
90 |
+
" )\n",
|
91 |
+
"\n",
|
92 |
+
"\n",
|
93 |
+
"\n"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 7,
|
99 |
+
"id": "5cc28e11-803c-4760-9005-516157eb8945",
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [
|
102 |
+
{
|
103 |
+
"data": {
|
104 |
+
"text/plain": [
|
105 |
+
"DatasetDict({\n",
|
106 |
+
" 10mn: Dataset({\n",
|
107 |
+
" features: ['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'],\n",
|
108 |
+
" num_rows: 50\n",
|
109 |
+
" })\n",
|
110 |
+
" 1h: Dataset({\n",
|
111 |
+
" features: ['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'],\n",
|
112 |
+
" num_rows: 284\n",
|
113 |
+
" })\n",
|
114 |
+
" 2h: Dataset({\n",
|
115 |
+
" features: ['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'],\n",
|
116 |
+
" num_rows: 576\n",
|
117 |
+
" })\n",
|
118 |
+
"})"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
"execution_count": 7,
|
122 |
+
"metadata": {},
|
123 |
+
"output_type": "execute_result"
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"source": [
|
127 |
+
"librispeech_tiny"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 11,
|
133 |
+
"id": "e08cddc6-364c-45cf-ac7b-d2a4d0ec8e65",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [
|
136 |
+
{
|
137 |
+
"name": "stderr",
|
138 |
+
"output_type": "stream",
|
139 |
+
"text": [
|
140 |
+
"Pushing split 10mn to the Hub.\n"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"data": {
|
145 |
+
"application/vnd.jupyter.widget-view+json": {
|
146 |
+
"model_id": "d2135c4ef2af4b72803dddaff88cb092",
|
147 |
+
"version_major": 2,
|
148 |
+
"version_minor": 0
|
149 |
+
},
|
150 |
+
"text/plain": [
|
151 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
"metadata": {},
|
155 |
+
"output_type": "display_data"
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"data": {
|
159 |
+
"application/vnd.jupyter.widget-view+json": {
|
160 |
+
"model_id": "d42ce27a96f448cc924703bfe0b30065",
|
161 |
+
"version_major": 2,
|
162 |
+
"version_minor": 0
|
163 |
+
},
|
164 |
+
"text/plain": [
|
165 |
+
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
"metadata": {},
|
169 |
+
"output_type": "display_data"
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"name": "stderr",
|
173 |
+
"output_type": "stream",
|
174 |
+
"text": [
|
175 |
+
"Pushing split 1h to the Hub.\n"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"data": {
|
180 |
+
"application/vnd.jupyter.widget-view+json": {
|
181 |
+
"model_id": "57a8cb106ff14b1fb186c3e86122f497",
|
182 |
+
"version_major": 2,
|
183 |
+
"version_minor": 0
|
184 |
+
},
|
185 |
+
"text/plain": [
|
186 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
"metadata": {},
|
190 |
+
"output_type": "display_data"
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"data": {
|
194 |
+
"application/vnd.jupyter.widget-view+json": {
|
195 |
+
"model_id": "a3c8ea385d1a46108db9a51144e82f66",
|
196 |
+
"version_major": 2,
|
197 |
+
"version_minor": 0
|
198 |
+
},
|
199 |
+
"text/plain": [
|
200 |
+
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
"metadata": {},
|
204 |
+
"output_type": "display_data"
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"name": "stderr",
|
208 |
+
"output_type": "stream",
|
209 |
+
"text": [
|
210 |
+
"Pushing split 2h to the Hub.\n"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"data": {
|
215 |
+
"application/vnd.jupyter.widget-view+json": {
|
216 |
+
"model_id": "33a0b8ce30d04b5c87e72efbee8e40d1",
|
217 |
+
"version_major": 2,
|
218 |
+
"version_minor": 0
|
219 |
+
},
|
220 |
+
"text/plain": [
|
221 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"metadata": {},
|
225 |
+
"output_type": "display_data"
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"data": {
|
229 |
+
"application/vnd.jupyter.widget-view+json": {
|
230 |
+
"model_id": "1ac0a669b0e54dffae68dce597d7486b",
|
231 |
+
"version_major": 2,
|
232 |
+
"version_minor": 0
|
233 |
+
},
|
234 |
+
"text/plain": [
|
235 |
+
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
"metadata": {},
|
239 |
+
"output_type": "display_data"
|
240 |
+
}
|
241 |
+
],
|
242 |
+
"source": [
|
243 |
+
"librispeech_tiny.push_to_hub('Isma/librispeech_tiny')"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": 8,
|
249 |
+
"id": "d938122a-3c6b-4585-951a-6e9aac77f804",
|
250 |
+
"metadata": {},
|
251 |
+
"outputs": [
|
252 |
+
{
|
253 |
+
"data": {
|
254 |
+
"text/plain": [
|
255 |
+
"(50, 334, 910, 7208.405187500002)"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
"execution_count": 8,
|
259 |
+
"metadata": {},
|
260 |
+
"output_type": "execute_result"
|
261 |
+
}
|
262 |
+
],
|
263 |
+
"source": [
|
264 |
+
"#i_10mn,i_1h, i_2h, duration "
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": null,
|
270 |
+
"id": "df7b7a37-1b07-4454-bb2e-f381b938ed41",
|
271 |
+
"metadata": {},
|
272 |
+
"outputs": [],
|
273 |
+
"source": []
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": 10,
|
278 |
+
"id": "71ae1e94-4d66-41db-9dd2-f54eaed61187",
|
279 |
+
"metadata": {},
|
280 |
+
"outputs": [
|
281 |
+
{
|
282 |
+
"data": {
|
283 |
+
"text/plain": [
|
284 |
+
"dict_keys(['path', 'array', 'sampling_rate'])"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
"execution_count": 10,
|
288 |
+
"metadata": {},
|
289 |
+
"output_type": "execute_result"
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"source": [
|
293 |
+
"#dataset[0]['audio'].keys()"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": 5,
|
299 |
+
"id": "7a934fa2-8273-496b-b20c-9431cc965181",
|
300 |
+
"metadata": {},
|
301 |
+
"outputs": [
|
302 |
+
{
|
303 |
+
"data": {
|
304 |
+
"text/plain": [
|
305 |
+
"6.1"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
"execution_count": 5,
|
309 |
+
"metadata": {},
|
310 |
+
"output_type": "execute_result"
|
311 |
+
}
|
312 |
+
],
|
313 |
+
"source": []
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": 21,
|
318 |
+
"id": "65d22ed9-f920-48eb-8ea4-670111c5dd47",
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [
|
321 |
+
{
|
322 |
+
"data": {
|
323 |
+
"text/plain": [
|
324 |
+
"(10, 127)"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
"execution_count": 21,
|
328 |
+
"metadata": {},
|
329 |
+
"output_type": "execute_result"
|
330 |
+
}
|
331 |
+
],
|
332 |
+
"source": [
|
333 |
+
"i_1h = i_10mn\n",
|
334 |
+
"i_1h = 10\n",
|
335 |
+
"i_1h, i_10mn"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
+
"id": "99bfbd13-93ca-4d64-bfe5-e6b883b24cef",
|
342 |
+
"metadata": {},
|
343 |
+
"outputs": [],
|
344 |
+
"source": []
|
345 |
+
}
|
346 |
+
],
|
347 |
+
"metadata": {
|
348 |
+
"environment": {
|
349 |
+
"kernel": "python3",
|
350 |
+
"name": "common-cu110.m102",
|
351 |
+
"type": "gcloud",
|
352 |
+
"uri": "gcr.io/deeplearning-platform-release/base-cu110:m102"
|
353 |
+
},
|
354 |
+
"kernelspec": {
|
355 |
+
"display_name": "Python 3",
|
356 |
+
"language": "python",
|
357 |
+
"name": "python3"
|
358 |
+
},
|
359 |
+
"language_info": {
|
360 |
+
"codemirror_mode": {
|
361 |
+
"name": "ipython",
|
362 |
+
"version": 3
|
363 |
+
},
|
364 |
+
"file_extension": ".py",
|
365 |
+
"mimetype": "text/x-python",
|
366 |
+
"name": "python",
|
367 |
+
"nbconvert_exporter": "python",
|
368 |
+
"pygments_lexer": "ipython3",
|
369 |
+
"version": "3.7.12"
|
370 |
+
}
|
371 |
+
},
|
372 |
+
"nbformat": 4,
|
373 |
+
"nbformat_minor": 5
|
374 |
+
}
|