paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2e801aa0-d823-4b8f-96ca-ab90de8fc577 | matt-multimodal-attention-level-estimation | 2301.09174 | null | https://arxiv.org/abs/2301.09174v1 | https://arxiv.org/pdf/2301.09174v1.pdf | MATT: Multimodal Attention Level Estimation for e-learning Platforms | This work presents a new multimodal system for remote attention level estimation based on multimodal face analysis. Our multimodal approach uses different parameters and signals obtained from the behavior and physiological processes that have been related to modeling cognitive load such as faces gestures (e.g., blink rate, facial actions units) and user actions (e.g., head pose, distance to the camera). The multimodal system uses the following modules based on Convolutional Neural Networks (CNNs): Eye blink detection, head pose estimation, facial landmark detection, and facial expression features. First, we individually evaluate the proposed modules in the task of estimating the student's attention level captured during online e-learning sessions. For that we trained binary classifiers (high or low attention) based on Support Vector Machines (SVM) for each module. Secondly, we find out to what extent multimodal score level fusion improves the attention level estimation. The mEBAL database is used in the experimental framework, a public multi-modal database for attention level estimation obtained in an e-learning environment that contains data from 38 users while conducting several e-learning tasks of variable difficulty (creating changes in student cognitive loads). | ['Javier Ortega-Garcia', 'Ruth Cobos', 'Ruben Tolosana', 'Julian Fierrez', 'Aythami Morales', 'Luis F. Gomez', 'Roberto Daza'] | 2023-01-22 | null | null | null | null | ['head-pose-estimation', 'facial-landmark-detection'] | ['computer-vision', 'computer-vision'] | [-1.36071905e-01 1.77356660e-01 8.73400830e-03 -3.22421134e-01
-5.96907258e-01 -3.14686149e-01 1.23920359e-01 2.32843578e-01
-5.07369041e-01 4.39210534e-01 1.49817899e-01 3.23162556e-01
-1.31687909e-01 -2.71623820e-01 -4.46122110e-01 -7.36727178e-01
9.46587548e-02 -1.07519761e-01 -2.03562170e-01 -1.68885231e-01
7.23981202e-01 9.32861626e-01 -2.45923066e+00 3.93126845e-01
6.02628946e-01 1.12860835e+00 -1.25129879e-01 1.08296549e+00
1.19365908e-01 8.07803273e-01 -7.47200668e-01 -2.87333041e-01
-5.61539769e-01 -2.38557398e-01 -6.92199051e-01 2.06946377e-02
9.11656439e-01 -3.24931324e-01 -1.26538292e-01 8.91978621e-01
1.12831688e+00 3.88563305e-01 5.13660371e-01 -1.54546273e+00
-1.37582093e-01 6.33553937e-02 -2.57511735e-01 4.98095304e-01
8.68260086e-01 1.35791332e-01 3.17797631e-01 -1.03395212e+00
3.96607891e-02 1.49935293e+00 3.10706437e-01 7.38205731e-01
-7.99033523e-01 -8.04714739e-01 -1.61686301e-01 7.74683952e-01
-1.33705628e+00 -7.06897676e-01 7.19112694e-01 -5.19224524e-01
6.80647254e-01 3.92449796e-01 3.94477516e-01 1.26442397e+00
2.28766769e-01 8.24063420e-01 1.30184317e+00 -6.14567816e-01
1.65280968e-01 7.20688522e-01 5.07865071e-01 8.15385222e-01
-4.01356936e-01 -2.89130390e-01 -1.10386026e+00 4.83691506e-02
3.25412244e-01 -2.40115628e-01 -1.40289724e-01 5.73834889e-02
-6.67415321e-01 6.07710421e-01 1.24328248e-01 3.05185288e-01
-3.99241149e-01 7.08909659e-03 2.25962102e-01 2.40703657e-01
1.69803619e-01 9.84348953e-02 -2.41627797e-01 -1.64552823e-01
-6.21772707e-01 -6.33550361e-02 6.00291252e-01 7.80014575e-01
6.44100487e-01 -7.51772523e-02 -7.30561316e-01 8.82017076e-01
6.69367850e-01 4.99679118e-01 7.17775822e-01 -7.47403562e-01
9.95395929e-02 7.23484933e-01 -1.42344847e-01 -9.04820025e-01
-6.93629205e-01 1.12823546e-01 -1.69956163e-01 3.13464612e-01
4.83790487e-01 -4.65695858e-01 -4.18557376e-01 1.76778746e+00
4.54986989e-01 1.12020046e-01 -1.67192683e-01 8.05917799e-01
1.40747178e+00 2.51580089e-01 4.99432534e-01 -1.82042658e-01
2.06742144e+00 -6.31210744e-01 -1.10817564e+00 -1.78516414e-02
2.26906523e-01 -8.14278603e-01 8.26665163e-01 7.78681457e-01
-1.53364277e+00 -7.56180465e-01 -7.03166068e-01 -1.85325313e-02
-8.72854054e-01 3.26363683e-01 3.66003931e-01 1.34975374e+00
-1.15788615e+00 1.06189094e-01 -3.13086748e-01 -5.36470950e-01
2.74313658e-01 5.89238644e-01 -4.39338595e-01 4.34677243e-01
-1.08173490e+00 1.13902199e+00 -1.93715304e-01 2.08634511e-01
-1.00984418e+00 -4.00517106e-01 -8.49965751e-01 4.33581769e-01
3.43133993e-02 -1.68781698e-01 1.14966393e+00 -1.22927248e+00
-1.97765100e+00 1.04884434e+00 -3.96973819e-01 3.23655665e-01
6.12888969e-02 -1.89106584e-01 -2.67617106e-01 3.07563573e-01
-5.81451952e-01 9.20544147e-01 1.02931917e+00 -9.63061452e-01
-2.70310998e-01 -8.79249334e-01 -1.52957186e-01 4.10816133e-01
-6.45578861e-01 4.97694105e-01 -1.52228743e-01 4.63904580e-03
-2.34648451e-01 -7.76073754e-01 5.24823070e-01 -2.61084110e-01
-4.78299968e-02 -5.61748803e-01 7.28490531e-01 -9.51007903e-01
1.22514522e+00 -1.93233156e+00 2.12366238e-01 3.82340312e-01
7.11660311e-02 2.23137021e-01 -4.58923765e-02 -3.51959504e-02
-3.81661862e-01 -1.44776970e-01 5.35430729e-01 -4.26177084e-01
2.63099253e-01 -1.96463957e-01 4.08651441e-01 5.23198783e-01
-4.39003594e-02 6.86430156e-01 -3.90307009e-01 -7.50467956e-01
5.31761348e-01 6.96774781e-01 -3.74214381e-01 5.90422809e-01
4.39093500e-01 4.13653493e-01 -1.89056158e-01 8.52330863e-01
6.16651356e-01 5.70823252e-01 -2.57551163e-01 -2.07379356e-01
-2.69628316e-01 -2.34993175e-01 -1.12616742e+00 1.36568272e+00
-6.15837634e-01 9.19412971e-01 4.11864042e-01 -6.29082918e-01
9.17068362e-01 6.50806427e-01 3.03660691e-01 -6.68983340e-01
8.44105542e-01 -3.74655843e-01 -2.02163249e-01 -1.18848133e+00
2.34578282e-01 3.15143913e-01 2.26571128e-01 2.83241034e-01
6.19712174e-01 2.79966354e-01 -1.61641940e-01 -2.70767152e-01
7.07139730e-01 1.85919914e-03 2.13145018e-01 -2.15949252e-01
1.10445130e+00 -7.36220896e-01 -2.54904836e-01 2.51496375e-01
-8.05114985e-01 1.75822282e-03 7.29586720e-01 -4.33359556e-02
-2.43652537e-01 -4.46558714e-01 -1.83182731e-01 2.04296255e+00
-2.56912142e-01 2.51269758e-01 -1.27884960e+00 -3.38031977e-01
-3.17867130e-01 6.63499713e-01 -7.11472332e-01 -4.70795840e-01
-1.08652659e-01 -6.92706287e-01 5.13261139e-01 3.40624154e-01
1.67530254e-01 -1.48673189e+00 -7.98167348e-01 -3.56322467e-01
-2.24272326e-01 -8.08100879e-01 -1.92134991e-01 2.07250953e-01
-4.89287555e-01 -1.03698730e+00 -5.16173899e-01 -7.89488912e-01
6.07987642e-01 -1.23355269e-01 9.97709095e-01 2.03940906e-02
-6.32098973e-01 1.27018416e+00 -4.85557579e-02 -7.96008527e-01
9.21238214e-02 -1.34888310e-02 -1.20202184e-01 3.16192418e-01
1.01441967e+00 -3.18826050e-01 -5.79387426e-01 3.39385986e-01
-6.25180840e-01 -6.22757912e-01 5.66160440e-01 1.72804058e-01
-2.28512492e-02 -5.88725209e-01 5.76807916e-01 -9.40470621e-02
9.99316990e-01 -4.67348248e-01 -4.13087100e-01 3.70573670e-01
-1.17008224e-01 -3.08631301e-01 -2.41674915e-01 -5.55412412e-01
-1.25695217e+00 1.06131369e-02 -2.15123594e-01 -3.61860991e-01
-1.09853327e+00 2.69263773e-03 -4.66087937e-01 -4.93786365e-01
5.72826385e-01 -1.00678997e-02 5.20076267e-02 -2.35293433e-01
-3.53382640e-02 1.12636292e+00 4.90017265e-01 -4.89891440e-01
-2.20450684e-02 -1.54234201e-01 1.94428593e-01 -1.07543135e+00
-7.77606070e-01 -4.28085387e-01 -1.13737285e+00 -1.14469898e+00
1.20530784e+00 -9.40804541e-01 -2.01531172e+00 6.26100421e-01
-1.05749011e+00 6.16161041e-02 6.36693895e-01 5.84143698e-01
-4.24327642e-01 3.70185412e-02 -5.91504216e-01 -1.47356439e+00
-4.93868619e-01 -1.11405241e+00 1.14010608e+00 7.50252843e-01
-2.47393847e-01 -9.71613348e-01 4.04862463e-02 9.56489563e-01
4.23245907e-01 1.58823654e-01 6.20148778e-01 -5.52476406e-01
-1.62705436e-01 -3.06048840e-01 1.34685040e-01 2.13019937e-01
-4.66680676e-01 1.13934986e-01 -1.86595285e+00 -3.90279777e-02
-7.91203454e-02 -7.81542242e-01 3.17771047e-01 4.83364850e-01
1.56390822e+00 6.17321618e-02 8.86516497e-02 1.04885846e-01
9.63909090e-01 2.80579239e-01 8.97809148e-01 9.73633230e-02
4.23375726e-01 1.02482164e+00 3.03956300e-01 4.55168694e-01
3.38625997e-01 6.53188825e-01 8.01556230e-01 1.07895724e-01
1.45977199e-01 3.75363261e-01 6.82870567e-01 4.22357053e-01
-2.15223923e-01 -1.72543406e-01 -7.70400584e-01 2.10504472e-01
-1.37425637e+00 -9.47987676e-01 -2.29186431e-01 2.36559558e+00
6.25880480e-01 -4.57339793e-01 4.29597527e-01 9.95483696e-02
8.54813218e-01 -3.83590192e-01 -3.80786210e-01 -9.91688490e-01
3.34628850e-01 3.40487391e-01 6.89692656e-03 5.64986408e-01
-1.05352080e+00 6.13223255e-01 5.67766476e+00 4.10777032e-01
-1.19070423e+00 1.90681785e-01 6.29163861e-01 -3.21532130e-01
4.25746799e-01 -1.00505042e+00 -9.71517920e-01 3.85208040e-01
1.38863766e+00 4.86416578e-01 4.88835961e-01 7.48681903e-01
1.88595146e-01 -5.00497103e-01 -1.07443535e+00 1.20830405e+00
7.90314436e-01 -2.52127856e-01 -5.35824716e-01 -1.59601659e-01
9.22599062e-02 -5.21364331e-01 3.28852832e-01 6.96851432e-01
-4.53925967e-01 -1.24227333e+00 4.18117404e-01 1.01756108e+00
4.88519907e-01 -9.30302143e-01 8.77544403e-01 2.88031876e-01
-7.36374438e-01 -2.36844391e-01 3.06077208e-02 2.88701598e-02
-5.29513597e-01 -2.57365227e-01 -6.62657142e-01 -8.22680369e-02
7.56761670e-01 -2.33195238e-02 -8.96332741e-01 8.35670173e-01
-1.73664391e-01 4.03756469e-01 -1.28639117e-02 -4.32419270e-01
-1.31636679e-01 2.13969693e-01 2.02684790e-01 1.27163076e+00
3.22833776e-01 8.71109068e-02 -3.22893530e-01 7.24302888e-01
-7.57895187e-02 2.64412880e-01 -2.79345304e-01 3.79818708e-01
1.49523139e-01 1.95734549e+00 -3.27141017e-01 -7.45047466e-04
-5.88748634e-01 6.51773155e-01 1.50385454e-01 3.12234789e-01
-9.04598415e-01 -4.91055429e-01 7.24392474e-01 -8.61993581e-02
-1.54470742e-01 3.55698645e-01 -4.63749282e-02 -6.85279965e-01
-4.52793270e-01 -7.69416749e-01 3.68938237e-01 -1.31919670e+00
-8.65617156e-01 2.29592368e-01 3.32749560e-02 -7.49467134e-01
-8.49945247e-02 -9.98398483e-01 -8.69720340e-01 1.12555528e+00
-1.16214108e+00 -8.30052018e-01 -1.03875721e+00 9.53697205e-01
5.64613760e-01 -7.66442344e-02 7.95437515e-01 4.70423609e-01
-1.15890110e+00 8.90394449e-01 -7.38701761e-01 -2.00803820e-02
1.05481732e+00 -1.21001089e+00 -9.82338846e-01 2.51939476e-01
-5.25044262e-01 3.47777247e-01 4.72258866e-01 -2.58462355e-02
-1.55422211e+00 -5.44378102e-01 8.01161766e-01 -8.09664726e-01
2.57875085e-01 -2.60505676e-01 -8.08278203e-01 6.06912017e-01
6.96909487e-01 -4.61389542e-01 1.12122679e+00 1.09993070e-01
2.61424929e-01 -3.15775834e-02 -1.41135406e+00 3.51535946e-01
2.97015876e-01 -5.40186882e-01 -5.42452037e-01 1.61875769e-01
-2.08070114e-01 -3.79251838e-01 -1.14944589e+00 1.38770923e-01
7.39589810e-01 -1.09954727e+00 9.47768390e-01 -7.45720685e-01
3.50124240e-01 1.61675870e-01 1.05890535e-01 -1.13377750e+00
-3.57570723e-02 -2.87893772e-01 -2.91234732e-01 1.35683095e+00
7.09454790e-02 -2.33532012e-01 6.25396788e-01 1.06926095e+00
8.76163393e-02 -5.69566488e-01 -7.98325300e-01 8.35665166e-02
-2.21041858e-01 -1.93901062e-01 2.41967767e-01 7.96037853e-01
4.72905189e-01 6.09836638e-01 -8.38714987e-02 3.15187544e-01
4.16850418e-01 -4.72138613e-01 7.62498796e-01 -1.48331738e+00
4.68127072e-01 -7.18998909e-01 -6.46641552e-01 -3.25926453e-01
4.38837081e-01 -5.43182969e-01 -2.39183322e-01 -7.88690746e-01
4.54168528e-01 6.33742869e-01 -4.22565788e-01 7.15303481e-01
-2.38172948e-01 1.58977091e-01 -6.12503327e-02 -6.41125798e-01
-6.26499832e-01 4.04876113e-01 1.09514451e+00 2.29283676e-01
-2.73290008e-01 4.67041358e-02 -4.59646851e-01 8.42529714e-01
6.47217512e-01 1.42043665e-01 -9.04200673e-02 1.64595336e-01
6.98892400e-02 3.40640575e-01 5.24423301e-01 -1.14761329e+00
4.28031296e-01 8.25523138e-02 9.04516757e-01 -5.72202921e-01
6.15708053e-01 -1.04308534e+00 -4.89571780e-01 3.13912809e-01
-5.31073153e-01 -2.24300902e-02 6.13097906e-01 -9.37585533e-02
-1.99964941e-01 -6.54454231e-01 9.59419966e-01 4.43565398e-02
-5.37167847e-01 -1.40015379e-01 -8.19472015e-01 -5.80336750e-01
1.23509371e+00 -2.07534239e-01 -3.82832587e-01 -6.22409582e-01
-1.27226341e+00 2.55777836e-01 -3.99140686e-01 5.47167301e-01
4.16082382e-01 -1.15532029e+00 -3.61805677e-01 4.14847702e-01
1.15186796e-01 -6.35524809e-01 5.16408026e-01 1.43838680e+00
-1.09742045e-01 5.10084093e-01 -7.33119369e-01 -6.24760985e-01
-2.22626257e+00 4.06781733e-01 5.97016931e-01 3.07729334e-01
5.10247886e-01 8.51361036e-01 -1.95571095e-01 -3.04228067e-01
8.10386539e-01 -7.82002360e-02 -1.16390240e+00 8.66347969e-01
8.75543118e-01 1.01899302e+00 3.30659896e-01 -7.98833966e-01
-2.87860513e-01 4.55908895e-01 4.19821203e-01 6.48477226e-02
1.14780855e+00 -2.88193911e-01 -1.40932962e-01 4.41893429e-01
9.42237020e-01 6.30422458e-02 -6.64061844e-01 1.98485330e-01
-2.79275417e-01 -1.40901268e-01 4.37514931e-01 -8.74098480e-01
-9.04404879e-01 1.30626714e+00 1.41461027e+00 4.62277718e-02
1.29248178e+00 -9.79883298e-02 2.58067437e-02 4.67449814e-01
-1.22168444e-01 -1.45923436e+00 4.60413367e-01 3.85331273e-01
8.55221093e-01 -1.36080801e+00 -2.96699941e-01 -1.23999275e-01
-6.12968862e-01 1.33958948e+00 1.12240386e+00 3.83590251e-01
6.02859378e-01 1.01087503e-01 8.35763477e-03 -4.83482420e-01
-7.20936418e-01 -4.54914600e-01 7.10015833e-01 2.84815520e-01
7.91159153e-01 1.88129563e-02 2.75800400e-03 7.71686792e-01
-6.58641532e-02 -1.54856920e-01 3.26776236e-01 7.05661297e-01
-9.15492952e-01 -3.53667110e-01 -1.19572878e+00 1.66579187e-01
-4.61152941e-01 2.08166167e-01 -7.49195933e-01 6.91952050e-01
3.83063763e-01 1.14300382e+00 1.60486579e-01 -2.64413595e-01
6.21060014e-01 9.12920892e-01 6.95266783e-01 -3.17515403e-01
-9.44691539e-01 1.50525570e-02 -2.38137424e-01 -6.94642484e-01
-5.67189932e-01 -7.69848347e-01 -8.20987999e-01 -2.65605986e-01
-1.97331861e-01 -3.24413061e-01 1.04510975e+00 8.01528096e-01
1.00916307e-02 7.43451178e-01 5.63098490e-01 -1.21599329e+00
1.13419130e-01 -1.53461349e+00 -5.00667393e-01 3.72757941e-01
1.05156690e-01 -8.92520189e-01 -4.62511480e-01 1.09770678e-01] | [13.506632804870605, 2.3923935890197754] |
46616c8b-bd08-43ee-81e8-8b14fd538a24 | a-comprehensive-study-of-batch-construction | 1705.02414 | null | http://arxiv.org/abs/1705.02414v1 | http://arxiv.org/pdf/1705.02414v1.pdf | A comprehensive study of batch construction strategies for recurrent neural networks in MXNet | In this work we compare different batch construction methods for mini-batch
training of recurrent neural networks. While popular implementations like
TensorFlow and MXNet suggest a bucketing approach to improve the
parallelization capabilities of the recurrent training process, we propose a
simple ordering strategy that arranges the training sequences in a stochastic
alternatingly sorted way. We compare our method to sequence bucketing as well
as various other batch construction strategies on the CHiME-4 noisy speech
recognition corpus. The experiments show that our alternated sorting approach
is able to compete both in training time and recognition performance while
being conceptually simpler to implement. | ['Hermann Ney', 'Pavel Golik', 'Patrick Doetsch'] | 2017-05-05 | null | null | null | null | ['noisy-speech-recognition'] | ['speech'] | [ 7.33895227e-02 -1.12162121e-01 -7.97594115e-02 -8.25318336e-01
-2.19109848e-01 -3.86758238e-01 6.05795622e-01 -3.47109139e-01
-9.36227083e-01 6.26857102e-01 1.97886512e-01 -1.09693849e+00
3.17131132e-02 -4.84426111e-01 -3.70520949e-01 -7.52295554e-01
-3.41583081e-02 6.86424911e-01 3.20139050e-01 -2.09808603e-01
3.26605856e-01 7.46796370e-01 -1.68625331e+00 6.42319739e-01
3.38315554e-02 7.78047562e-01 2.81252027e-01 1.00233233e+00
-4.85329717e-01 1.06688809e+00 -7.59233236e-01 -8.94605443e-02
2.65345007e-01 -4.11128283e-01 -1.10169184e+00 1.31766573e-01
3.55944097e-01 -2.05396295e-01 -3.55259567e-01 6.66329503e-01
6.68627739e-01 4.28960234e-01 1.04238018e-01 -7.63419986e-01
2.42285982e-01 1.16766167e+00 -5.01073822e-02 7.29890049e-01
3.52991112e-02 -1.49028793e-01 9.54829812e-01 -8.28501403e-01
7.02382505e-01 1.00986052e+00 7.20967114e-01 7.63007998e-01
-1.23861849e+00 -6.57022595e-01 3.49642545e-01 1.37070075e-01
-9.31011856e-01 -9.97672439e-01 4.22354549e-01 -1.12309836e-01
1.45578718e+00 4.96637136e-01 5.65258622e-01 9.60579574e-01
-3.73795718e-01 1.23259389e+00 8.69728088e-01 -6.56777084e-01
4.93775100e-01 -5.91926798e-02 7.52150178e-01 7.08649516e-01
-9.02006030e-02 -5.70986718e-02 -5.91101944e-01 -3.00173372e-01
4.76377130e-01 -3.47523428e-02 2.69359276e-02 -8.95672143e-02
-1.15828359e+00 8.03517699e-01 1.03343941e-01 5.06938159e-01
-4.30263400e-01 2.22214445e-01 9.97491002e-01 6.98436499e-01
5.45075357e-01 1.43126115e-01 -6.51236176e-01 -4.12871003e-01
-1.33442521e+00 1.56293377e-01 1.21394718e+00 7.03275442e-01
4.92940843e-01 4.75489080e-01 -1.86531954e-02 1.08634412e+00
5.70633002e-02 -2.49675959e-01 1.08501518e+00 -6.87399983e-01
6.67578816e-01 -6.40921295e-02 -1.43668845e-01 -3.65544468e-01
-5.51219702e-01 -3.40009123e-01 -7.43077815e-01 -9.86289699e-03
3.10482383e-01 -3.41305077e-01 -1.19850075e+00 1.30821526e+00
1.47112474e-01 2.57722437e-01 5.57335280e-02 6.70719087e-01
9.00966883e-01 7.03681111e-01 1.74908843e-02 -3.67798418e-01
8.81608546e-01 -1.29809594e+00 -4.51350510e-01 -7.79825151e-02
1.12531650e+00 -6.45085752e-01 7.88751662e-01 4.60492074e-01
-1.22253680e+00 -4.46071863e-01 -1.03309226e+00 2.72934496e-01
-1.60696700e-01 2.72622168e-01 1.04393840e+00 9.52731550e-01
-1.42706633e+00 9.14647579e-01 -1.18470991e+00 -2.33191133e-01
1.69371143e-01 6.61449850e-01 -2.64924258e-01 2.98771054e-01
-7.49715865e-01 6.42394602e-01 8.88513744e-01 2.76113540e-01
-6.13677740e-01 -3.90050381e-01 -5.23893952e-01 1.69629186e-01
1.07301712e-01 -4.41841125e-01 1.77007663e+00 -9.98163044e-01
-2.08844709e+00 6.76469862e-01 -4.26867127e-01 -1.18179381e+00
2.81628013e-01 1.29405251e-02 -1.43581361e-01 -6.68786019e-02
-5.87658107e-01 7.14847386e-01 7.00429559e-01 -4.29545641e-01
-7.82624543e-01 -4.74296883e-02 -2.99125999e-01 2.84742057e-01
-3.20064664e-01 2.68366098e-01 -1.89683452e-01 -6.15454793e-01
4.48291063e-01 -9.42729473e-01 -7.06893504e-01 -7.56425798e-01
-2.91028649e-01 -5.00619173e-01 6.72562242e-01 -2.11007744e-01
1.26359797e+00 -2.07111764e+00 3.29755321e-02 4.47805345e-01
1.03195287e-01 6.17505908e-01 -2.68219411e-02 4.15778726e-01
-3.27898383e-01 -2.89933085e-02 -2.61388104e-02 -8.99358332e-01
-1.60777524e-01 6.39322996e-01 -6.22271478e-01 4.39207762e-01
-1.05140194e-01 6.78682923e-01 -6.97554410e-01 -1.83095381e-01
6.36984557e-02 1.36933684e-01 -6.52269781e-01 1.09836310e-01
-2.02397943e-01 3.77162434e-02 -7.11757615e-02 3.69181812e-01
3.67308170e-01 -1.59308091e-01 5.76710463e-01 4.20716941e-01
-1.78867340e-01 1.10773611e+00 -1.09186089e+00 1.40332484e+00
-2.88617671e-01 7.19078183e-01 -1.28286794e-01 -1.33012557e+00
1.02184021e+00 6.08317912e-01 3.00304055e-01 -4.75274473e-01
1.06379334e-02 3.07949632e-01 -3.76747665e-03 -1.10572644e-01
8.08681548e-01 -3.42544973e-01 4.19673681e-01 6.20917141e-01
3.34133357e-01 2.96611309e-01 4.81232435e-01 7.44559914e-02
1.23235440e+00 -1.44168556e-01 2.10327264e-02 -8.22331309e-02
3.31594527e-01 -4.32867259e-02 4.47289348e-01 1.02231932e+00
7.94391036e-02 5.09773076e-01 5.38698912e-01 -7.75510132e-01
-1.18045247e+00 -5.75909078e-01 -1.54789034e-02 1.54281008e+00
-6.12573445e-01 -6.72697604e-01 -6.34123087e-01 -6.19870007e-01
-3.81533146e-01 4.79813069e-01 -3.61617953e-01 3.03693295e-01
-9.42392886e-01 -9.76996720e-01 8.11036170e-01 5.64065993e-01
1.73386589e-01 -1.43840718e+00 -7.67557800e-01 5.48066199e-01
1.12667114e-01 -8.61023903e-01 -2.07950428e-01 1.01302826e+00
-1.49272752e+00 -4.43328232e-01 -6.34066343e-01 -9.38860118e-01
5.29704094e-01 2.66311944e-01 1.16881156e+00 2.15461388e-01
-1.73885040e-02 -2.03761026e-01 -4.46709901e-01 2.13319610e-04
-4.67304885e-01 5.59904099e-01 1.07697099e-01 -2.10708141e-01
2.53594995e-01 -5.39632678e-01 -3.95440876e-01 1.25834927e-01
-8.92478347e-01 7.85614029e-02 4.47482228e-01 1.17180872e+00
3.19294274e-01 -2.32184276e-01 2.64088720e-01 -1.24605262e+00
7.45679319e-01 -3.69193852e-01 -6.96699321e-01 5.00203632e-02
-7.13228822e-01 2.15833560e-01 5.33173740e-01 -5.74738145e-01
-8.77212524e-01 4.57749635e-01 -6.79417253e-01 -5.45615911e-01
-1.47098362e-01 5.88703930e-01 4.42216098e-01 -4.03595343e-02
5.14255822e-01 3.53856891e-01 -6.46958360e-03 -7.79344022e-01
2.97893882e-01 5.46074510e-01 3.03380668e-01 -4.72344518e-01
2.99874023e-02 2.22971335e-01 -3.48940820e-01 -1.04823756e+00
-3.34514976e-01 -9.44381833e-01 -3.30809146e-01 1.37306735e-01
2.16350213e-01 -6.05114698e-01 -9.17240858e-01 5.84894955e-01
-1.16863716e+00 -5.79386473e-01 -2.97319084e-01 5.48877418e-01
-4.62181598e-01 2.72905320e-01 -1.17475224e+00 -8.35449159e-01
-5.42273760e-01 -1.15210032e+00 7.46284425e-01 -1.78752288e-01
-1.41084716e-01 -8.40222716e-01 3.62696201e-01 -1.22659758e-01
5.25551617e-01 -5.73995948e-01 4.12394941e-01 -1.08608723e+00
-1.99851483e-01 -1.25784501e-01 -6.76776934e-03 4.29630727e-01
-3.04807335e-01 -8.09252337e-02 -1.07271111e+00 -3.18399459e-01
2.05461770e-01 -3.15777779e-01 1.27049124e+00 3.29038143e-01
1.08951414e+00 -4.46244150e-01 -2.31478527e-01 6.76490009e-01
1.10318565e+00 4.09754515e-01 8.46590400e-01 5.07376492e-01
5.52247941e-01 4.02391016e-01 1.17735334e-01 5.37815154e-01
-1.33361369e-01 4.21999216e-01 6.26370544e-03 5.46244793e-02
6.34242222e-02 -5.41678816e-02 3.43389273e-01 1.42015874e+00
4.70237657e-02 -2.52641588e-01 -9.41938758e-01 4.06179458e-01
-1.89637697e+00 -1.26682663e+00 6.66039959e-02 1.93885624e+00
1.06077266e+00 3.21478724e-01 4.09506023e-01 4.86181170e-01
4.32755083e-01 2.56007791e-01 7.63377966e-03 -8.44500601e-01
-7.25545660e-02 5.87377906e-01 7.09019244e-01 5.44920146e-01
-1.06448138e+00 1.13389361e+00 8.29415417e+00 8.06856096e-01
-1.52053106e+00 1.52018517e-01 8.50078881e-01 -4.58471537e-01
-3.20840254e-02 1.79569051e-02 -1.33613122e+00 2.82989621e-01
1.57520497e+00 3.39716762e-01 2.14533150e-01 1.00380266e+00
-2.18827769e-01 1.07432283e-01 -1.00348794e+00 8.78403842e-01
-1.25420034e-01 -1.72592950e+00 -1.88378826e-01 -1.52875632e-01
4.99969006e-01 6.98707938e-01 -1.70151755e-01 3.37030172e-01
3.07500720e-01 -7.59065032e-01 8.25892925e-01 1.43712610e-01
2.59462714e-01 -6.91255808e-01 6.12211108e-01 3.75130266e-01
-9.37018633e-01 -4.54833135e-02 -4.45546299e-01 -2.83129811e-01
1.16481222e-01 6.33786440e-01 -1.30794811e+00 1.29350647e-01
5.94709933e-01 3.74203593e-01 -3.87664735e-01 1.29045594e+00
1.04664274e-01 1.22952926e+00 -6.75240397e-01 -3.14585716e-01
7.52968431e-01 -1.34547710e-01 3.92774612e-01 1.61664021e+00
-7.56670758e-02 -8.18310082e-02 5.04723489e-02 7.71945119e-02
-2.73334179e-02 1.17458746e-01 -3.87466878e-01 -1.22433133e-01
3.24908853e-01 9.29458380e-01 -1.08168030e+00 -8.31206679e-01
-1.46407992e-01 8.10773849e-01 5.82529724e-01 3.18224639e-01
-4.78921205e-01 -4.05471683e-01 3.54085684e-01 -2.83627570e-01
9.31991696e-01 -5.05885780e-01 -3.48692417e-01 -1.04526019e+00
1.38019091e-02 -8.32141280e-01 3.39862078e-01 -4.06122774e-01
-6.99378550e-01 1.19507217e+00 -7.19085112e-02 -7.51807988e-01
-6.99235797e-01 -8.06830287e-01 -4.89059001e-01 7.00468302e-01
-1.13645208e+00 -4.51683044e-01 3.57781231e-01 3.82957697e-01
8.46509993e-01 -3.62482816e-01 8.58512223e-01 3.80241275e-01
-7.00408697e-01 5.90809107e-01 3.43797594e-01 3.77048366e-02
1.98799074e-01 -1.08851147e+00 9.08826768e-01 7.00020015e-01
6.44393265e-01 8.67243886e-01 7.91557550e-01 -3.68910044e-01
-1.07457483e+00 -6.13051355e-01 1.19884622e+00 1.76773176e-01
6.14382684e-01 -3.66155446e-01 -1.14768982e+00 8.14888716e-01
2.65658051e-01 -1.23794273e-01 5.92530191e-01 4.97295678e-01
-4.22214210e-01 -1.34953067e-01 -5.63301504e-01 6.23644888e-01
9.23035622e-01 -5.70001006e-01 -6.44459903e-01 5.11546314e-01
7.01198995e-01 -5.59430063e-01 -3.99702758e-01 1.65298626e-01
5.33228934e-01 -1.03204083e+00 6.74844205e-01 -7.86842287e-01
-8.80893767e-02 3.84720452e-02 -7.27418810e-02 -9.71988022e-01
1.35427779e-02 -9.91384864e-01 -9.69649851e-02 8.80495071e-01
5.66076636e-01 -8.36906850e-01 1.36542380e+00 2.54513115e-01
-2.58671135e-01 -8.19849193e-01 -1.07000434e+00 -7.69153357e-01
-3.33889842e-01 -7.31667638e-01 4.66394275e-01 6.46240711e-01
1.81864426e-01 3.68674219e-01 -2.91337997e-01 -4.10496742e-01
1.27853617e-01 -9.26915035e-02 3.95969748e-01 -8.21770549e-01
-6.11417830e-01 -7.38591075e-01 -3.33320826e-01 -1.33002591e+00
1.33227065e-01 -8.55269134e-01 2.91920215e-01 -1.01595521e+00
-2.91098803e-01 -7.75465906e-01 -6.58519030e-01 7.47996449e-01
3.29252452e-01 1.72033012e-01 1.20363012e-01 3.89653802e-01
-6.34603202e-01 2.26983085e-01 3.70474249e-01 5.72635382e-02
-4.59872842e-01 2.74793833e-01 -1.94735117e-02 4.45702344e-01
9.39223647e-01 -6.27740920e-01 -5.11520624e-01 -5.09972692e-01
1.66615859e-01 2.12697670e-01 -5.11770733e-02 -1.04245150e+00
6.14359558e-01 2.91754246e-01 -2.63192859e-02 -9.63600457e-01
3.20315719e-01 -2.98900634e-01 9.49625522e-02 5.94867766e-01
-6.37945354e-01 3.67915630e-01 3.24542791e-01 2.54552990e-01
-3.09166193e-01 -7.47656882e-01 4.86092061e-01 -2.70655543e-01
-6.55725300e-01 1.74195394e-01 -7.93344021e-01 -4.34634238e-01
3.83832991e-01 -2.27577865e-01 1.43267242e-02 -1.20964222e-01
-8.91749203e-01 -8.21199939e-02 7.86173996e-03 1.45386532e-01
6.58481538e-01 -9.42949653e-01 -5.17243922e-01 5.42751253e-01
-2.94526786e-01 -1.98576584e-01 -1.45618424e-01 7.81430483e-01
-8.23588133e-01 7.71907330e-01 -8.61727968e-02 -5.64769864e-01
-1.52062964e+00 3.67679805e-01 3.62979770e-01 -4.53772515e-01
-8.67889166e-01 1.30368006e+00 -2.13454977e-01 -4.29074556e-01
7.69228697e-01 -5.13322175e-01 -8.26299340e-02 3.81273925e-02
7.04932928e-01 3.01433235e-01 6.85318768e-01 -1.41213134e-01
-3.43030006e-01 -2.12210149e-01 -5.81739187e-01 -5.54550231e-01
1.39332438e+00 1.91672146e-01 -2.29601130e-01 6.74830914e-01
1.12047195e+00 -4.55967605e-01 -8.75954390e-01 -3.32336873e-01
6.79050744e-01 -3.79288644e-02 1.06161073e-01 -3.05169076e-01
-1.04833436e+00 6.41980648e-01 4.89046186e-01 4.90744144e-01
1.01787102e+00 -2.86351293e-01 7.05729723e-01 1.05451035e+00
2.00265169e-01 -1.11144757e+00 -3.20974618e-01 1.00470972e+00
3.43493193e-01 -7.04061329e-01 -1.73573066e-02 -1.64924655e-02
-4.93717343e-01 1.27724135e+00 8.80450606e-02 -3.17251056e-01
6.44679546e-01 5.66763520e-01 1.15841098e-01 -3.98753993e-02
-1.36606324e+00 -1.41254276e-01 -2.18787454e-02 8.51267725e-02
7.99314916e-01 -8.40302706e-02 -4.71041411e-01 8.37844145e-03
-3.11874926e-01 1.26604810e-01 2.37459362e-01 1.23302066e+00
-4.35613155e-01 -1.33734262e+00 -1.63255900e-01 5.19608200e-01
-5.49511254e-01 -4.98319328e-01 -9.20930356e-02 4.50317204e-01
-2.63579905e-01 6.43958151e-01 3.19131434e-01 -4.81203318e-01
6.21076338e-02 3.94843996e-01 3.93115759e-01 -7.51481891e-01
-1.12355661e+00 2.41831914e-01 5.56973755e-01 -4.89358753e-01
-3.67252797e-01 -6.70852602e-01 -1.17103934e+00 -3.41506124e-01
-5.78740954e-01 4.74145383e-01 1.07146549e+00 1.01896799e+00
1.79061696e-01 5.30548453e-01 5.94499111e-01 -1.00175285e+00
-7.26237833e-01 -1.05667198e+00 -5.23281157e-01 -9.89410281e-02
3.89071077e-01 -1.70687005e-01 -2.53529102e-01 -3.45171615e-02] | [10.903983116149902, 6.394798755645752] |
34addedd-1b3f-498a-a63d-a5c603f3fca8 | video-representation-learning-with-visual | 2006.15489 | null | https://arxiv.org/abs/2006.15489v2 | https://arxiv.org/pdf/2006.15489v2.pdf | Video Representation Learning with Visual Tempo Consistency | Visual tempo, which describes how fast an action goes, has shown its potential in supervised action recognition. In this work, we demonstrate that visual tempo can also serve as a self-supervision signal for video representation learning. We propose to maximize the mutual information between representations of slow and fast videos via hierarchical contrastive learning (VTHCL). Specifically, by sampling the same instance at slow and fast frame rates respectively, we can obtain slow and fast video frames which share the same semantics but contain different visual tempos. Video representations learned from VTHCL achieve the competitive performances under the self-supervision evaluation protocol for action recognition on UCF-101 (82.1\%) and HMDB-51 (49.2\%). Moreover, comprehensive experiments suggest that the learned representations are generalized well to other downstream tasks including action detection on AVA and action anticipation on Epic-Kitchen. Finally, we propose Instance Correspondence Map (ICM) to visualize the shared semantics captured by contrastive learning. | ['Bolei Zhou', 'Ceyuan Yang', 'Yinghao Xu', 'Bo Dai'] | 2020-06-28 | null | null | null | null | ['action-anticipation'] | ['computer-vision'] | [ 3.79870057e-01 -1.53366506e-01 -7.67902434e-01 -4.96735901e-01
-5.93026221e-01 -2.85667211e-01 6.78701639e-01 -7.65672252e-02
-2.38692909e-01 4.45564598e-01 6.70909464e-01 3.65869433e-01
5.84757794e-03 -4.27400708e-01 -7.03663528e-01 -7.24197388e-01
-4.40044880e-01 -1.35103511e-02 1.58121243e-01 -1.35605752e-01
2.09148988e-01 -4.83157784e-02 -1.76727331e+00 1.14612448e+00
3.66450101e-01 9.37351167e-01 2.96978354e-01 7.63122201e-01
1.31860286e-01 1.62059426e+00 -5.13010740e-01 -6.89446344e-04
1.55359626e-01 -7.61095881e-01 -9.90001559e-01 2.65877992e-01
4.51149970e-01 -3.68437022e-01 -8.38456035e-01 8.25219810e-01
2.01039657e-01 4.73096788e-01 6.39263034e-01 -1.52498710e+00
-5.83534896e-01 6.67144477e-01 -7.77546108e-01 8.09190750e-01
6.34129226e-01 4.52131033e-01 1.18089020e+00 -6.01969302e-01
9.64412630e-01 1.32729685e+00 2.71051794e-01 5.99358380e-01
-1.08764780e+00 -6.15874469e-01 3.85255426e-01 8.67002666e-01
-1.14925218e+00 -5.18610716e-01 5.96586049e-01 -5.70700943e-01
1.09932148e+00 1.93463653e-01 7.34652877e-01 1.48716319e+00
3.61916088e-02 1.34866607e+00 8.06905925e-01 -8.48165080e-02
8.20751563e-02 -3.18113923e-01 -1.70502350e-01 6.38450861e-01
-4.22356039e-01 9.64619294e-02 -1.19405890e+00 3.44807923e-01
6.74180984e-01 2.20147595e-01 -4.57787007e-01 -2.25414544e-01
-1.67092860e+00 6.98738158e-01 4.11638886e-01 2.55940318e-01
-3.32486153e-01 5.72914243e-01 9.12907004e-01 3.96721870e-01
2.49794051e-01 2.23267123e-01 -2.86328614e-01 -6.15461648e-01
-5.45473039e-01 3.07218567e-03 1.62073225e-01 1.01432133e+00
5.42764008e-01 2.45520189e-01 -6.70027018e-01 5.03699303e-01
2.20030755e-01 4.51685905e-01 7.62474120e-01 -1.28649294e+00
6.00781560e-01 4.90320891e-01 -3.57154831e-02 -1.00964963e+00
-3.42344791e-01 3.38489637e-02 -7.76657283e-01 -8.61959830e-02
4.70377713e-01 2.29253933e-01 -7.46397614e-01 1.91455066e+00
6.47152811e-02 6.11106277e-01 2.42873847e-01 9.43856716e-01
7.92712688e-01 7.65652299e-01 5.29535115e-01 -4.56068933e-01
1.27471280e+00 -1.00206447e+00 -8.51204216e-01 -9.70321298e-02
8.94564092e-01 -3.45544755e-01 1.22814047e+00 2.98902810e-01
-1.00822353e+00 -9.40326631e-01 -9.13258255e-01 -5.73398806e-02
8.69131833e-02 2.60195017e-01 6.71491265e-01 3.95115688e-02
-7.48025119e-01 7.76649117e-01 -1.00858939e+00 -3.02500367e-01
6.23898566e-01 -1.33566082e-01 -4.83249009e-01 -3.20604667e-02
-1.15598798e+00 4.93042737e-01 5.94811916e-01 -1.21834874e-01
-1.39435995e+00 -5.88469148e-01 -1.02518153e+00 -3.06567699e-02
2.86630988e-01 -3.71282756e-01 1.11674297e+00 -1.42490423e+00
-1.48434329e+00 9.83908474e-01 -1.31797373e-01 -7.33785629e-01
5.34733891e-01 -5.12326598e-01 -5.49910307e-01 7.71552384e-01
1.83528572e-01 9.99117732e-01 1.03722429e+00 -6.33224189e-01
-8.67773235e-01 -1.14970095e-01 2.59640574e-01 4.60468173e-01
-4.13072467e-01 -7.30919093e-02 -4.17796940e-01 -8.02448213e-01
-9.42194313e-02 -7.77957737e-01 1.50120437e-01 2.59314962e-02
-1.60887748e-01 -2.84518301e-01 7.53935993e-01 -5.80731988e-01
1.34882343e+00 -2.40295148e+00 5.36006629e-01 -2.40344211e-01
1.28622204e-01 4.35724631e-02 -2.93855906e-01 2.12338790e-01
-3.29359025e-01 -1.97547972e-01 5.80434129e-02 -5.09682409e-02
-1.74896613e-01 2.43962333e-01 -3.15064579e-01 5.68581700e-01
1.99750394e-01 9.17888701e-01 -1.27009320e+00 -4.69035774e-01
3.36100578e-01 3.46511304e-01 -4.99691129e-01 2.79044360e-01
-1.83068231e-01 6.29742146e-01 -1.83026567e-01 5.89654505e-01
2.60812603e-02 -5.85794628e-01 4.54607695e-01 -4.02564466e-01
8.74829441e-02 1.35583729e-01 -9.42919910e-01 1.98504758e+00
-1.21791318e-01 1.01671076e+00 -5.47672093e-01 -1.03881645e+00
6.94485664e-01 2.14424834e-01 7.51284897e-01 -1.07325494e+00
-1.64112076e-01 -4.05102909e-01 -2.19448447e-01 -8.26436818e-01
3.98131937e-01 1.13558553e-01 -4.98994216e-02 3.61881435e-01
2.67475784e-01 4.93869513e-01 4.27478462e-01 3.52195144e-01
1.16107702e+00 4.60705668e-01 4.91033435e-01 7.97724500e-02
4.16280538e-01 -1.01616152e-01 6.74220800e-01 5.43503702e-01
-6.43864095e-01 5.32632291e-01 7.82463312e-01 -4.50102627e-01
-7.81999111e-01 -9.98676419e-01 2.73061872e-01 1.66876638e+00
2.83668816e-01 -8.21704984e-01 -3.60728651e-01 -7.51944005e-01
-1.81613073e-01 4.66071337e-01 -7.87087917e-01 -4.84397560e-01
-6.45510733e-01 -2.02266768e-01 4.18423504e-01 8.38766098e-01
5.78857720e-01 -1.29961872e+00 -8.50659370e-01 -3.15147117e-02
-5.26521325e-01 -1.21123326e+00 -5.37673354e-01 4.01260778e-02
-8.63081098e-01 -1.22873116e+00 -5.82417190e-01 -5.34336984e-01
2.12794483e-01 7.86162972e-01 1.08420765e+00 -1.54046282e-01
-2.58183897e-01 5.57993054e-01 -7.26459265e-01 2.51894027e-01
-2.62344271e-01 -2.31369168e-01 1.59610704e-01 2.18870446e-01
3.47516924e-01 -4.46810246e-01 -7.20742226e-01 4.96187866e-01
-6.61577404e-01 4.65377122e-01 2.37413988e-01 7.15700805e-01
8.30955148e-01 -3.08355421e-01 4.96589929e-01 -6.16490006e-01
-4.82302085e-02 -7.21177518e-01 -2.00430617e-01 2.44064465e-01
-1.17737420e-01 -8.03041384e-02 4.35137033e-01 -4.66034979e-01
-8.77429068e-01 1.70249298e-01 4.60732400e-01 -9.89226162e-01
-2.09559381e-01 1.63535997e-01 -2.50427630e-02 4.83073711e-01
6.52982056e-01 3.22594285e-01 1.45973852e-02 -1.92534491e-01
5.77744484e-01 3.31697971e-01 5.38604081e-01 -1.04077481e-01
3.05565476e-01 6.53619349e-01 -1.41628712e-01 -7.29479671e-01
-1.04026675e+00 -6.95252776e-01 -5.84682465e-01 -5.93553364e-01
1.37923408e+00 -1.31099737e+00 -1.00959599e+00 3.42518538e-01
-7.36649454e-01 -6.34391248e-01 -4.29349840e-01 6.79595709e-01
-1.21122169e+00 4.60055292e-01 -5.40667117e-01 -4.73764330e-01
-6.42124712e-02 -9.65885878e-01 1.06611550e+00 2.02697560e-01
-4.12501723e-01 -7.30067492e-01 4.37106229e-02 5.40924966e-01
-7.57514834e-02 3.70380640e-01 5.16106129e-01 -3.70235562e-01
-4.64132696e-01 2.85861999e-01 -1.65637970e-01 2.57111132e-01
2.37402543e-01 3.03093772e-02 -9.42326903e-01 -3.83205444e-01
-3.79479468e-01 -7.33783126e-01 1.05455244e+00 4.15227771e-01
1.44135010e+00 -2.22037748e-01 -8.47493336e-02 7.62868583e-01
1.01476920e+00 1.98357806e-01 7.76103377e-01 3.77645135e-01
8.64524186e-01 5.25593400e-01 1.00368667e+00 7.34614551e-01
3.00178140e-01 8.30395103e-01 4.35267091e-01 2.47321516e-01
-2.53176540e-01 -4.18978930e-01 9.42141533e-01 6.39767349e-01
-4.00986612e-01 -7.34180436e-02 -6.87795818e-01 3.17928344e-01
-2.18259072e+00 -1.68117535e+00 -6.78799748e-02 2.03923798e+00
6.30191028e-01 1.09121785e-01 5.56735873e-01 9.27772853e-05
7.66581595e-01 6.20198071e-01 -5.55293500e-01 4.80106361e-02
-1.73797548e-01 -1.88626766e-01 2.59806335e-01 1.71983000e-02
-1.52203035e+00 9.27390575e-01 6.62897635e+00 7.72105932e-01
-9.75426853e-01 1.53178439e-01 7.48682976e-01 -5.23138165e-01
7.71324337e-02 -3.16752017e-01 -4.99693155e-01 7.25777030e-01
1.17492890e+00 -1.32573843e-01 3.06237876e-01 9.98532116e-01
4.05122399e-01 6.64762333e-02 -1.32962370e+00 1.42043161e+00
1.11778751e-01 -1.51103270e+00 1.28801182e-01 -3.40012878e-01
6.91816449e-01 4.38769236e-02 7.69217908e-02 6.60165012e-01
1.43735796e-01 -9.60984111e-01 7.13786960e-01 6.90909147e-01
8.76855671e-01 -6.40659273e-01 3.42134684e-01 5.40394597e-02
-1.56752360e+00 -3.26945305e-01 -3.95220011e-01 3.74346599e-02
1.89795226e-01 -1.07068263e-01 -6.04949117e-01 3.79484206e-01
8.28328967e-01 1.73148620e+00 -5.46062529e-01 7.02705443e-01
-3.77279073e-01 6.17502034e-01 2.96514839e-01 2.85963714e-01
3.22357625e-01 6.81308936e-03 3.69433105e-01 1.31806481e+00
4.98810560e-02 1.47853479e-01 3.90826464e-01 4.27275717e-01
-3.18666026e-02 3.29215936e-02 -6.82965338e-01 -3.00435483e-01
1.29100725e-01 8.87012899e-01 -5.66536784e-01 -6.44331515e-01
-4.95904386e-01 1.28182435e+00 3.96234155e-01 3.91150981e-01
-1.10328698e+00 3.64068300e-02 9.87711668e-01 -9.59740803e-02
4.13098663e-01 7.58726289e-03 2.79094487e-01 -1.27604783e+00
-1.25178427e-01 -9.78438675e-01 9.04043496e-01 -9.86599624e-01
-9.18613851e-01 3.08206677e-01 1.30550444e-01 -1.93434858e+00
-4.39454854e-01 -4.22687680e-01 -3.39589983e-01 7.93621987e-02
-1.29238677e+00 -7.71300972e-01 -5.34821510e-01 8.56085002e-01
1.09081340e+00 -3.72806668e-01 6.88246489e-01 3.28434438e-01
-5.72728276e-01 4.80169773e-01 9.24941059e-03 1.43936947e-01
7.09605157e-01 -1.24297929e+00 9.94686484e-02 5.44954717e-01
4.62390006e-01 3.59518975e-02 6.02930307e-01 -4.70870733e-01
-1.41323102e+00 -1.25583470e+00 3.19841176e-01 -4.07924205e-01
7.04942763e-01 2.51862556e-02 -9.23268378e-01 8.10039759e-01
1.67135641e-01 1.99032336e-01 7.57755458e-01 -5.91820627e-02
-6.14233732e-01 -1.07183568e-01 -6.96190238e-01 4.25021559e-01
1.39277387e+00 -7.41205812e-01 -5.63708305e-01 6.39119208e-01
7.74615765e-01 -2.94721991e-01 -8.67537260e-01 1.52493000e-01
5.43894112e-01 -1.04064023e+00 1.06400061e+00 -1.17668939e+00
8.03976238e-01 -2.61540532e-01 -4.45206732e-01 -1.02217722e+00
-5.26770115e-01 -6.86611056e-01 -6.73334122e-01 9.99739647e-01
-1.93701208e-01 1.40232697e-01 6.78058684e-01 2.60989368e-02
-1.29015118e-01 -4.49804187e-01 -8.63801420e-01 -8.90318692e-01
-4.70013380e-01 -4.46100444e-01 1.66751340e-01 1.01714194e+00
2.44542837e-01 1.97071835e-01 -8.14956307e-01 -1.48304224e-01
4.02727038e-01 2.69753952e-02 7.04633713e-01 -7.61280656e-01
-4.95252162e-01 -3.73152107e-01 -8.99597168e-01 -1.16390145e+00
2.85763443e-01 -1.02103341e+00 -5.20193093e-02 -1.04297006e+00
5.40988982e-01 2.57044613e-01 -7.89870739e-01 4.56365138e-01
-1.50456950e-01 2.85833806e-01 5.14695644e-01 5.09526253e-01
-1.32745659e+00 7.24227309e-01 1.19870067e+00 -3.27553838e-01
-1.44249171e-01 -2.44382083e-01 -3.56690675e-01 8.19966316e-01
6.86839402e-01 -2.83379346e-01 -6.78665638e-01 -3.80832404e-01
1.69888195e-02 3.99951130e-01 1.93325907e-01 -1.04703796e+00
-2.18207344e-01 -4.28589970e-01 4.28806990e-01 -3.78985971e-01
3.58425289e-01 -4.39031780e-01 3.74788642e-02 5.36918163e-01
-9.13778305e-01 1.12242274e-01 -3.00913043e-02 1.07255745e+00
-4.26359206e-01 9.00848489e-03 7.88556099e-01 -1.72625706e-01
-1.41075039e+00 3.36077213e-01 -4.00337547e-01 2.54951477e-01
1.36514556e+00 -1.73273936e-01 -4.25322920e-01 -5.68768620e-01
-1.09150577e+00 2.18477666e-01 1.66812822e-01 6.85158014e-01
7.59117365e-01 -1.75106120e+00 -6.57321811e-01 2.29198765e-02
5.70459902e-01 -5.55647731e-01 6.42299712e-01 9.89335477e-01
-3.81878853e-01 1.77098721e-01 -6.88366055e-01 -9.13516939e-01
-1.53707981e+00 5.84964693e-01 6.06464148e-02 -1.50412858e-01
-9.47622538e-01 8.33960176e-01 3.82208467e-01 3.08202267e-01
4.41604227e-01 -2.01812968e-01 -4.82429504e-01 4.00977254e-01
1.05136776e+00 5.46450555e-01 -4.87278640e-01 -9.48686779e-01
-4.05241549e-01 3.05573732e-01 -3.62312682e-02 1.88864678e-01
1.33489025e+00 -1.97152615e-01 3.28025669e-01 7.47304320e-01
1.39731443e+00 -7.29510665e-01 -1.78415215e+00 -1.88651383e-01
1.23285785e-01 -7.84350574e-01 -1.49596736e-01 -2.90928423e-01
-1.33581030e+00 7.90764213e-01 8.86135876e-01 -6.40381128e-02
1.12246788e+00 1.44943863e-01 3.89861047e-01 5.19826889e-01
2.33284295e-01 -1.29273486e+00 7.90027261e-01 3.52014720e-01
9.37490761e-01 -1.49103785e+00 -8.53151679e-02 -1.06468119e-01
-1.31843829e+00 1.13369346e+00 7.05554068e-01 -7.82102644e-02
6.12147637e-02 -2.98577219e-01 -1.93258166e-01 -2.88142473e-01
-1.15099525e+00 -3.59670043e-01 2.94103473e-01 6.19183183e-01
5.46571791e-01 2.13837117e-01 3.81514877e-02 1.16633035e-01
3.10089201e-01 8.78950488e-03 4.82533664e-01 9.19949055e-01
-4.79346484e-01 -5.20372450e-01 1.22746706e-01 3.18517148e-01
-2.05296993e-01 2.39534736e-01 -7.19763711e-02 6.99164510e-01
-9.24686044e-02 7.79640853e-01 3.34953994e-01 -6.39437556e-01
1.39581457e-01 1.04629599e-01 5.06948352e-01 -5.48403680e-01
-3.69681776e-01 6.36587441e-02 1.00399502e-01 -1.27484941e+00
-7.54968762e-01 -7.80823052e-01 -1.41459823e+00 -8.82411301e-02
3.47102404e-01 -2.72283614e-01 3.73932235e-02 7.96625793e-01
3.56802106e-01 7.81383455e-01 7.23401070e-01 -8.23982596e-01
-3.93622547e-01 -8.90530646e-01 -5.79845369e-01 9.73044693e-01
1.85240909e-01 -9.22937691e-01 -3.52400005e-01 5.98733187e-01] | [8.601305961608887, 0.7505678534507751] |
68472d2c-da46-4bd1-917f-e0405033bbd9 | frenlys-a-tool-for-the-automatic | null | null | https://aclanthology.org/2021.ranlp-main.135 | https://aclanthology.org/2021.ranlp-main.135.pdf | FrenLyS: A Tool for the Automatic Simplification of French General Language Texts | Lexical simplification (LS) aims at replacing words considered complex in a sentence by simpler equivalents. In this paper, we present the first automatic LS service for French, FrenLys, which offers different techniques to generate, select and rank substitutes. The paper describes the different methods proposed by our tool, which includes both classical approaches (e.g. generation of candidates from lexical resources, frequency filter, etc.) and more innovative approaches such as the exploitation of CamemBERT, a model for French based on the RoBERTa architecture. To evaluate the different methods, a new evaluation dataset for French is introduced. | ['Thomas François', 'Patrick Watrin', 'Quentin Langlois', 'Eva Rolin'] | null | null | https://aclanthology.org/2021.ranlp-1.135 | https://aclanthology.org/2021.ranlp-1.135.pdf | ranlp-2021-9 | ['lexical-simplification'] | ['natural-language-processing'] | [-1.64917275e-01 3.25402766e-01 2.00971738e-01 -3.36149007e-01
-7.24006951e-01 -8.04954946e-01 8.79299998e-01 4.96674389e-01
-6.95876598e-01 1.22161210e+00 6.04299724e-01 -1.28975376e-01
-2.59264857e-01 -7.45667100e-01 -2.92630136e-01 4.58441041e-02
7.28702068e-01 8.86188626e-01 2.98521459e-01 -8.26719820e-01
2.92399496e-01 6.40588820e-01 -1.67801964e+00 6.57726228e-01
1.20008636e+00 2.53794342e-01 3.84559840e-01 3.98876905e-01
-4.44563329e-01 3.47800910e-01 -1.01353228e+00 -7.90902317e-01
6.10094443e-02 -6.31970406e-01 -8.86101067e-01 -3.80102813e-01
2.40693942e-01 2.63525933e-01 2.46386856e-01 1.00758958e+00
4.64999110e-01 3.46939743e-01 7.50835001e-01 -3.93770665e-01
-3.03663999e-01 1.40912712e+00 4.54234749e-01 9.43377987e-02
1.15382290e+00 -2.97397703e-01 8.87462318e-01 -1.03426802e+00
1.13500834e+00 1.45764041e+00 5.88428080e-01 6.53958678e-01
-1.17339706e+00 -1.57902732e-01 -3.05250064e-02 2.88004249e-01
-1.45266724e+00 -5.91141045e-01 2.92282224e-01 -3.28323662e-01
1.33812559e+00 6.49641216e-01 9.03802097e-01 9.43101585e-01
-3.65877375e-02 6.43484473e-01 1.19112253e+00 -1.06113362e+00
-7.17119500e-02 6.18535340e-01 2.37319112e-01 4.15996581e-01
1.43401444e-01 -9.24268737e-02 -3.72298658e-01 -1.51476070e-01
1.05447121e-01 -5.82143605e-01 -3.89477730e-01 1.10086381e-01
-1.01581776e+00 6.45747364e-01 -7.83791915e-02 7.60963380e-01
-4.57197398e-01 -3.66108477e-01 5.80764532e-01 5.76036394e-01
3.98635685e-01 8.84175301e-01 -7.06758082e-01 -1.27164215e-01
-1.11299241e+00 7.07036078e-01 1.18447530e+00 1.18711042e+00
5.64438462e-01 -8.74748453e-02 -3.91713232e-01 7.12390482e-01
3.37741256e-01 3.16862136e-01 6.99313104e-01 -3.75790387e-01
3.60412508e-01 7.25423694e-01 2.10876644e-01 -5.75705290e-01
-4.88260359e-01 -1.97840288e-01 -1.40398413e-01 -2.86147326e-01
1.23973228e-01 -1.55129686e-01 -6.24795437e-01 1.53839135e+00
2.14957133e-01 -3.56626362e-01 1.70115709e-01 4.34041768e-01
1.21111619e+00 5.42189181e-01 3.72532569e-02 -6.67119861e-01
1.15705562e+00 -7.96876252e-01 -1.00300646e+00 4.06009108e-01
8.09774935e-01 -1.36090171e+00 1.23669732e+00 7.18869448e-01
-1.40835440e+00 -6.36322379e-01 -8.72496665e-01 -1.81971014e-01
-8.64690900e-01 4.09509867e-01 2.79342413e-01 1.07916188e+00
-8.37578773e-01 8.65723550e-01 -2.25640669e-01 -6.52275383e-01
-4.84885484e-01 3.10180724e-01 -3.83025497e-01 9.92044434e-02
-1.39257789e+00 1.22248352e+00 7.19567180e-01 -2.17301637e-01
-2.67881304e-01 -5.15291631e-01 -8.47674012e-01 -4.60342988e-02
3.32276493e-01 -7.34309971e-01 1.22099566e+00 -1.12387681e+00
-1.81525242e+00 8.52090836e-01 -1.99689165e-01 -6.38060629e-01
5.81827402e-01 -3.77437115e-01 -7.09485292e-01 -2.66302407e-01
1.16749182e-01 3.39241236e-01 6.29915237e-01 -8.75612557e-01
-6.91602588e-01 6.70554787e-02 2.39054739e-01 1.07742235e-01
-1.53644560e-02 4.61771369e-01 -1.07140087e-01 -9.18147266e-01
-3.20626974e-01 -7.80754328e-01 -1.87489763e-02 -1.12384105e+00
-4.01306033e-01 -4.84100401e-01 4.11781594e-02 -8.55391741e-01
1.92815638e+00 -1.73976421e+00 6.33265615e-01 3.35085243e-01
-2.49501079e-01 7.37744987e-01 -1.21539153e-01 9.57600534e-01
-2.01116264e-01 2.26379320e-01 -1.49946690e-01 -1.49777725e-01
2.23149583e-01 1.76518232e-01 -1.70216247e-01 2.25882884e-02
6.32612333e-02 7.79302299e-01 -1.00949883e+00 -4.30840522e-01
3.82283419e-01 3.89219761e-01 -6.56328321e-01 -2.73460269e-01
-4.08789068e-01 3.34061503e-01 -6.50086626e-02 5.10513067e-01
5.57043910e-01 8.45417082e-01 2.65774697e-01 -2.28265554e-01
-6.18968904e-01 8.38669837e-01 -1.33233094e+00 1.68741047e+00
-6.98607206e-01 -2.02290062e-02 -3.94273221e-01 -4.13873374e-01
1.05082154e+00 5.56303322e-01 -6.22142630e-04 -4.51980829e-01
2.68960536e-01 8.30223620e-01 -1.10746458e-01 -3.14235479e-01
9.28934634e-01 -9.18453336e-02 -2.45093480e-01 2.05685630e-01
4.28682536e-01 -4.38665181e-01 1.17985642e+00 -7.25182295e-02
9.25908625e-01 6.63153350e-01 8.96320105e-01 -5.63790560e-01
1.33329940e+00 1.08711272e-01 3.90026003e-01 5.09495437e-01
2.00658888e-01 3.30074579e-01 3.51442724e-01 -5.21771431e-01
-8.01680088e-01 -8.09576511e-01 -1.26786381e-01 8.15921485e-01
-4.11329180e-01 -1.21940577e+00 -1.14165938e+00 -1.07660007e+00
-1.11097150e-01 1.35790205e+00 -2.77098209e-01 -1.21518737e-02
-8.70720148e-01 -3.57684582e-01 5.09287059e-01 -3.11633408e-01
2.47833505e-02 -1.47337282e+00 -4.58649516e-01 5.22684991e-01
-3.33926678e-01 -8.49160433e-01 -1.17384277e-01 -1.01758957e-01
-5.62966883e-01 -8.36079657e-01 -2.65831351e-01 -4.55096364e-01
1.50944665e-01 -2.03164473e-01 1.85946715e+00 8.06892812e-02
-1.16494745e-01 3.77221219e-02 -9.15906668e-01 -6.38320327e-01
-1.09842002e+00 5.33723056e-01 4.32279408e-02 -3.82704914e-01
6.68784976e-01 -2.92772502e-01 9.42342430e-02 -1.17421579e-02
-9.19769764e-01 -4.26641583e-01 5.13325453e-01 6.77869618e-01
6.22286439e-01 -3.39437664e-01 5.41099846e-01 -1.56085467e+00
1.06361890e+00 -1.62302807e-01 -4.90678996e-01 3.64248067e-01
-5.28136492e-01 5.57946712e-02 8.00357878e-01 5.91391046e-03
-1.05527389e+00 2.72608638e-01 -8.46184194e-01 2.10153669e-01
-3.76993865e-01 6.46914244e-01 -4.36525702e-01 -7.08011985e-02
9.91867959e-01 -2.01337449e-02 -5.80123007e-01 -8.45062196e-01
7.44755507e-01 5.16314924e-01 8.11890885e-02 -4.87921566e-01
3.59320998e-01 -2.27312863e-01 -2.90913045e-01 -9.42222476e-01
-4.33681160e-01 -3.56800675e-01 -8.82904708e-01 -2.42550775e-01
3.91335040e-01 -5.73605955e-01 -2.99696643e-02 -1.52966812e-01
-1.54843938e+00 1.31645322e-01 -9.24748778e-01 6.14712775e-01
-6.03565514e-01 2.68625349e-01 -4.52040583e-01 -5.88622153e-01
-3.40882599e-01 -1.01413977e+00 9.86667156e-01 -1.16295964e-01
-8.70689452e-01 -7.58984327e-01 4.08856660e-01 -9.02288258e-02
1.53041288e-01 3.36034670e-02 9.56478536e-01 -7.58430421e-01
-1.68705463e-01 -2.74711132e-01 3.41101736e-01 4.86950696e-01
6.60381243e-02 2.75254339e-01 -5.87581754e-01 -1.00426069e-02
-1.10715955e-01 5.33038117e-02 7.71777153e-01 7.97450915e-02
2.42544100e-01 -1.89913288e-01 -1.22077048e-01 4.56493109e-01
1.51596344e+00 1.23685211e-01 7.42321312e-01 3.58651638e-01
2.35644192e-01 7.41047025e-01 1.09717596e+00 3.75786513e-01
9.04942602e-02 8.33689392e-01 5.99969737e-02 2.91217476e-01
-2.86657780e-01 -4.09991033e-02 5.63560426e-01 1.32898736e+00
-2.25951567e-01 -5.04669905e-01 -7.28098452e-01 4.29280102e-01
-1.68906009e+00 -7.66424894e-01 -3.77458006e-01 2.20587540e+00
7.58827686e-01 2.14329138e-01 1.82101145e-01 1.97308332e-01
5.57665825e-01 -1.67186826e-01 4.15757984e-01 -1.06138587e+00
-5.06320536e-01 8.10338199e-01 1.17756337e-01 9.86287653e-01
-8.92067373e-01 1.55321980e+00 6.58411884e+00 9.86809075e-01
-6.94038630e-01 2.66631603e-01 -1.54892609e-01 -8.85965452e-02
-4.96922255e-01 1.54421022e-02 -1.09312308e+00 3.33257407e-01
1.29268229e+00 -4.31925446e-01 5.05330801e-01 4.96266991e-01
3.51621687e-01 1.00265518e-01 -9.29262280e-01 5.90962172e-01
3.72060686e-01 -1.22156608e+00 5.55122197e-01 -4.30776656e-01
5.79591930e-01 -1.08569317e-01 -4.98908430e-01 5.22084594e-01
1.26357406e-01 -6.73932970e-01 1.03456867e+00 9.26863313e-01
5.49593806e-01 -1.07899773e+00 9.90882218e-01 1.47466868e-01
-9.59769130e-01 1.30513713e-01 -4.93607491e-01 3.51366736e-02
4.23051417e-01 6.08212471e-01 -5.52732527e-01 1.09907520e+00
2.36798733e-01 6.34307146e-01 -7.42912829e-01 9.73342299e-01
-5.65461576e-01 4.79375750e-01 -3.15302461e-01 -2.88074285e-01
3.22234333e-02 -5.83648086e-01 1.02415895e+00 1.81873524e+00
5.40665567e-01 -3.22555274e-01 -4.11462225e-02 6.97606504e-01
2.26146951e-01 1.27653885e+00 -6.61547422e-01 3.89858335e-02
4.03843492e-01 1.09349477e+00 -6.48222864e-01 -4.94813591e-01
-3.15619409e-01 1.00551784e+00 1.97620839e-01 -6.94326982e-02
-6.02196813e-01 -6.06313467e-01 2.68295377e-01 2.73253232e-01
1.25828058e-01 -6.38275370e-02 6.28905594e-02 -1.03061044e+00
8.21298286e-02 -1.13525367e+00 3.09963226e-01 -4.58163291e-01
-9.32165742e-01 1.18728316e+00 1.97102234e-01 -1.10679865e+00
-6.83425367e-01 -5.66252172e-01 -1.86320424e-01 1.12553167e+00
-1.18518472e+00 -9.91846681e-01 1.89568222e-01 5.04937470e-01
6.97430372e-01 -4.06584442e-01 1.21617770e+00 5.46267033e-01
-3.03815633e-01 3.56077492e-01 -6.13699900e-03 -6.59383714e-01
9.47226346e-01 -1.54707003e+00 5.54844677e-01 8.70160401e-01
3.05059165e-01 7.18154728e-01 1.00020647e+00 -7.44057119e-01
-8.42102289e-01 -8.43968451e-01 1.97606146e+00 -4.04529095e-01
5.83444715e-01 -2.91614503e-01 -6.27260804e-01 5.14182866e-01
4.39376861e-01 -7.49924541e-01 5.00323296e-01 -8.67839828e-02
2.02449188e-02 -5.97671606e-02 -1.16523826e+00 6.79495454e-01
9.28415239e-01 -2.25608855e-01 -8.72570157e-01 5.51191986e-01
6.91877306e-01 -3.91725123e-01 -8.97047460e-01 3.85030419e-01
2.01722652e-01 -1.25756407e+00 6.40632331e-01 -5.05063057e-01
2.15803571e-02 -3.99875104e-01 -7.75177628e-02 -1.81830955e+00
-2.98612446e-01 -1.09423482e+00 1.54126331e-01 1.47899818e+00
7.85172820e-01 -5.50548255e-01 1.46598354e-01 -1.02677092e-01
-4.36370164e-01 -2.29099244e-01 -1.07243705e+00 -5.29693604e-01
2.80709267e-02 -3.68409574e-01 9.12694812e-01 6.33948445e-01
-1.10048555e-01 6.72493696e-01 2.50915121e-02 -3.52706432e-01
-2.76899695e-01 -2.79262334e-01 6.58270240e-01 -1.38521683e+00
-2.36376524e-01 -6.32972836e-01 -4.68535691e-01 -4.93388474e-01
4.01069522e-01 -1.09994376e+00 -2.33834296e-01 -1.42037225e+00
-6.55635715e-01 -5.09756282e-02 -9.54498500e-02 -7.06964582e-02
-1.99502632e-02 2.15789765e-01 4.10021663e-01 -2.24608883e-01
-4.61777151e-01 3.59421760e-01 7.53015101e-01 2.17758030e-01
-3.96983743e-01 2.79305149e-02 -4.69924212e-01 8.38995636e-01
7.18498766e-01 -5.67113400e-01 -1.50626615e-01 -2.56831110e-01
7.67827868e-01 -4.06444818e-01 -2.92464525e-01 -1.03968561e+00
-2.67735034e-01 2.79024482e-01 1.22635653e-02 -6.66259944e-01
1.39736161e-01 -6.77404463e-01 4.12045270e-01 5.23693979e-01
-5.25967889e-02 7.40116417e-01 3.20114106e-01 3.60813849e-02
-4.48952824e-01 -1.04478216e+00 7.30019271e-01 -5.04657924e-01
-5.38760185e-01 -3.54138434e-01 -5.36397040e-01 -7.38875568e-02
7.87467897e-01 7.46031106e-02 -2.07924396e-02 5.80879860e-02
-9.72631037e-01 -3.15558821e-01 4.96635884e-01 2.32637510e-01
3.88068736e-01 -1.22489071e+00 -1.21916199e+00 1.82853043e-01
2.29072541e-01 -6.78478062e-01 -3.23171280e-02 7.28308201e-01
-1.06145525e+00 6.22242033e-01 -2.18374744e-01 8.42163619e-03
-1.40077245e+00 7.34303057e-01 2.63193727e-01 -5.16404808e-01
-4.05878335e-01 6.48604870e-01 -5.61676085e-01 -7.87376463e-01
-2.61157215e-01 -3.76976967e-01 -8.21464717e-01 4.36075807e-01
4.32087243e-01 5.15781760e-01 7.68032014e-01 -9.87194300e-01
-2.52198964e-01 4.47420001e-01 3.83060873e-02 -3.36642146e-01
1.02235699e+00 -1.36288151e-01 -6.54505551e-01 4.98131424e-01
5.21188498e-01 8.63677263e-01 -9.25642103e-02 1.24406636e-01
4.97528613e-01 -2.51394451e-01 -2.18530133e-01 -9.43947315e-01
-4.00197029e-01 4.14205045e-01 3.30410838e-01 5.81694961e-01
1.06768870e+00 -3.04287553e-01 5.46776712e-01 5.15195489e-01
4.80174363e-01 -1.25590706e+00 -8.77331495e-01 9.33538556e-01
1.18104577e+00 -5.37399650e-01 -3.31335030e-02 -9.13773000e-01
-3.96752387e-01 1.39294112e+00 1.40879557e-01 -3.48427176e-01
6.78462386e-01 -6.20003901e-02 4.49236780e-02 3.56966117e-03
-7.48859823e-01 -6.36325896e-01 4.01551962e-01 4.86312598e-01
1.01909173e+00 3.41102719e-01 -1.71129823e+00 8.36684704e-01
-6.95407629e-01 7.15646520e-02 7.61577189e-01 6.99506283e-01
-2.42162213e-01 -1.92650056e+00 -3.03883076e-01 2.94667006e-01
-4.06456232e-01 -5.75969875e-01 -1.01835668e+00 1.05281651e+00
7.29048431e-01 9.48459148e-01 -4.35988039e-01 -3.14170390e-01
1.16804516e+00 3.69863927e-01 9.05158699e-01 -1.11435187e+00
-1.41390252e+00 2.36991063e-01 7.15321839e-01 -4.60450768e-01
-6.41713858e-01 -1.01655269e+00 -6.67811930e-01 -2.59128481e-01
-4.86690491e-01 4.45346594e-01 7.78908432e-01 8.19102883e-01
6.50403500e-02 6.65415466e-01 3.56188208e-01 -8.47044528e-01
-3.20329159e-01 -1.22542787e+00 -5.52456975e-01 3.68353754e-01
-3.56685847e-01 -5.52387297e-01 -1.41317278e-01 -1.08829692e-01] | [10.795594215393066, 10.367788314819336] |
e321f44d-f6f0-4597-9869-b0a1e89aa9d6 | foundations-and-modelling-of-dynamic-networks | 2005.07496 | null | https://arxiv.org/abs/2005.07496v2 | https://arxiv.org/pdf/2005.07496v2.pdf | Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey | Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminology | ['Bogdan Gabrys', 'Katarzyna Musial', 'Joakim Skarding'] | 2020-05-13 | null | null | null | null | ['dynamic-link-prediction'] | ['graphs'] | [ 1.08528554e-01 1.98004901e-01 -5.83483160e-01 -9.93032530e-02
8.07809591e-01 -6.25592172e-01 4.65888590e-01 3.15194935e-01
1.19418152e-01 4.01009321e-01 1.32536404e-02 -6.97477877e-01
-9.19971645e-01 -1.10699618e+00 -9.93601829e-02 -3.88042539e-01
-7.33090281e-01 2.12020054e-01 1.55890018e-01 -3.96788001e-01
-6.00700974e-02 6.35738671e-01 -1.14257252e+00 -3.13957423e-01
5.78790426e-01 6.08360767e-01 -3.28872472e-01 4.88704979e-01
-2.38904998e-01 8.90556455e-01 -4.68647212e-01 -6.97171330e-01
1.09802410e-01 -3.48407716e-01 -7.10036755e-01 -3.09122145e-01
1.29293099e-01 1.63435206e-01 -1.06037867e+00 1.02064478e+00
3.25585246e-01 2.32045636e-01 3.97177905e-01 -1.83199728e+00
-9.19556439e-01 8.51172209e-01 -2.73028284e-01 5.19673347e-01
1.87058032e-01 -2.06225216e-01 1.30804145e+00 -2.78866559e-01
8.47200692e-01 1.26290596e+00 1.08528566e+00 3.79335791e-01
-9.85518813e-01 -6.74567401e-01 6.42462373e-01 3.61228019e-01
-1.12647891e+00 -7.30481669e-02 1.06907749e+00 -4.03773576e-01
8.51921380e-01 2.00544193e-01 1.08481896e+00 1.08811331e+00
2.78233439e-01 5.21380842e-01 6.45509541e-01 -2.26793498e-01
-9.12710577e-02 -2.96902865e-01 5.78538120e-01 8.73277128e-01
4.65814352e-01 4.79908250e-02 -2.60799646e-01 -1.17529519e-01
7.83237636e-01 4.97173727e-01 -1.07590221e-01 -5.18904626e-01
-9.30878699e-01 1.06256413e+00 7.15561867e-01 7.52784252e-01
-2.93522894e-01 2.22865939e-01 5.00176609e-01 6.27243698e-01
6.15886569e-01 4.68511075e-01 -5.04242815e-02 -1.04259560e-02
-5.84909439e-01 -6.28762413e-03 1.13265896e+00 5.91471553e-01
4.26571548e-01 3.40934366e-01 2.51782477e-01 1.05938947e+00
3.36012065e-01 2.99558789e-01 2.39291728e-01 -6.21000886e-01
3.18958253e-01 9.32663977e-01 -7.09085643e-01 -1.91942656e+00
-7.55582690e-01 -5.89285254e-01 -1.48174334e+00 -2.62061983e-01
2.99319088e-01 -1.25137299e-01 -7.89908409e-01 1.95986521e+00
2.03000501e-01 2.00885430e-01 -3.08868647e-01 2.72863865e-01
1.08478045e+00 4.39820230e-01 -5.00992201e-02 -1.42790258e-01
8.08156192e-01 -9.76905644e-01 -7.13670492e-01 -1.24531994e-02
4.62840408e-01 -2.13486329e-01 3.32686454e-01 5.22017777e-02
-8.76783788e-01 -1.52241632e-01 -9.43545341e-01 2.67118096e-01
-8.92544150e-01 -8.90509963e-01 1.26949370e+00 7.28923678e-01
-1.64357471e+00 7.82629788e-01 -8.57405126e-01 -1.04805899e+00
3.37436199e-01 3.95023048e-01 -2.94129968e-01 -7.15339258e-02
-1.41227734e+00 8.07654440e-01 3.15386862e-01 2.63889611e-01
-2.51947075e-01 -6.03465736e-01 -9.58564699e-01 1.67949051e-01
5.58782101e-01 -8.79027903e-01 7.29352057e-01 -8.93946350e-01
-1.23392558e+00 3.79342675e-01 1.63725004e-01 -6.97432458e-01
2.73805022e-01 2.62907624e-01 -8.73944044e-01 3.12126372e-02
-1.85859755e-01 7.71313235e-02 4.19625878e-01 -8.03699374e-01
-2.72265524e-01 -3.08719426e-01 4.38696682e-01 1.07858561e-01
-7.16005683e-01 -2.36521438e-01 -5.91446161e-01 -6.27900124e-01
1.73181370e-01 -1.13835776e+00 -3.98919284e-01 -6.63637668e-02
-5.28326750e-01 -3.85473967e-01 9.97785389e-01 -6.63939267e-02
1.89259398e+00 -1.86093187e+00 2.12282464e-01 6.18314803e-01
1.05643249e+00 1.57493860e-01 -2.34851673e-01 8.56810510e-01
-2.64002830e-01 4.15978760e-01 1.36209317e-02 2.28376705e-02
-1.79927394e-01 3.54366452e-01 -4.29198667e-02 2.68109769e-01
-2.19282910e-01 1.29149330e+00 -1.04584885e+00 -1.90076262e-01
2.02615321e-01 5.68694293e-01 -2.98581392e-01 -2.86902428e-01
2.08601039e-02 -8.09183791e-02 -4.53604341e-01 7.53551066e-01
2.72246718e-01 -8.56135070e-01 6.56454146e-01 -1.48569718e-01
3.24198633e-01 -1.74918711e-01 -1.10268617e+00 1.11808836e+00
-6.28143027e-02 8.50025713e-01 1.53824270e-01 -1.38576293e+00
5.68087280e-01 2.55175292e-01 1.08682871e+00 -5.47010779e-01
-5.08287959e-02 -8.30891505e-02 4.97986376e-01 -3.49706411e-01
5.30571103e-01 1.06529012e-01 1.14402339e-01 6.95369661e-01
-1.24079727e-01 4.04788584e-01 4.92777288e-01 6.14756048e-01
1.50539947e+00 -5.26333451e-01 3.37675989e-01 -9.64617208e-02
3.42438251e-01 -1.95610195e-01 1.99659780e-01 6.90674663e-01
-3.08635145e-01 7.13300239e-03 6.68129086e-01 -5.75108230e-01
-6.51051223e-01 -1.02544820e+00 2.09019125e-01 1.14343500e+00
2.09728435e-01 -5.91739297e-01 -3.45063448e-01 -6.63557768e-01
3.15736055e-01 -1.05135456e-01 -8.97545338e-01 -2.61299789e-01
-5.91763973e-01 -8.61911535e-01 6.01329625e-01 2.98913211e-01
2.00244457e-01 -1.06654060e+00 1.53194949e-01 3.30568314e-01
8.51985514e-02 -8.48201871e-01 -2.86883235e-01 -9.55167264e-02
-1.15784943e+00 -1.63026702e+00 -4.49992716e-01 -7.99771190e-01
6.30328298e-01 8.74797702e-01 1.50043845e+00 7.08346248e-01
-2.03697961e-02 9.07890916e-01 -3.66706312e-01 -2.39158705e-01
-4.33221400e-01 5.99626899e-01 2.00981528e-01 -6.29970804e-02
1.26862258e-01 -1.07499969e+00 -4.55085218e-01 3.65331441e-01
-1.05115926e+00 -5.45807034e-02 4.81140882e-01 6.84944570e-01
1.26780838e-01 2.48788819e-01 8.06006253e-01 -1.32494712e+00
1.17242205e+00 -1.04880250e+00 -3.88638049e-01 4.50629294e-01
-1.27976859e+00 -2.63641685e-01 6.14226520e-01 -5.21262169e-01
-2.57370532e-01 -7.80931115e-01 2.42908746e-01 -2.31071129e-01
3.73207271e-01 1.21566820e+00 4.39617276e-01 -2.80011028e-01
5.19817829e-01 5.92723582e-03 4.20863658e-01 -1.47351354e-01
4.91598427e-01 2.55577087e-01 1.41817734e-01 -2.57795304e-01
9.85093355e-01 2.88077027e-01 3.41027439e-01 -8.53098094e-01
-5.80134511e-01 -3.84246469e-01 -5.86297750e-01 -5.58848858e-01
4.78951365e-01 -3.23812127e-01 -8.77380371e-01 5.59501350e-01
-7.34342754e-01 -2.78175592e-01 -3.19945738e-02 1.37977585e-01
-5.42786624e-03 4.72933352e-01 -7.29646623e-01 -5.92279255e-01
-4.77401257e-01 -7.48140931e-01 -6.66113049e-02 2.83926159e-01
-2.10176215e-01 -1.93510115e+00 1.35843918e-01 -6.70613050e-02
9.09851193e-01 6.17165089e-01 1.17669797e+00 -6.58899844e-01
-6.82678640e-01 -3.73347551e-01 -4.05677408e-01 -3.97228636e-02
3.61266494e-01 2.17577264e-01 -4.43932056e-01 -3.81464720e-01
-6.12875938e-01 1.85698926e-01 5.66735327e-01 5.53021312e-01
9.69136298e-01 -1.33402541e-01 -7.26449728e-01 6.29276335e-01
1.35512197e+00 3.11322927e-01 3.04156870e-01 2.58047879e-01
9.87902403e-01 5.65772057e-01 -2.50005990e-01 -8.00520107e-02
7.38257468e-01 4.09802645e-01 6.74684882e-01 -9.18156561e-03
-1.58571303e-01 -2.07848236e-01 -2.05886327e-02 1.34067070e+00
-2.23406538e-01 -6.18888915e-01 -1.02819192e+00 3.86607647e-01
-2.05650401e+00 -1.16816545e+00 -1.11774080e-01 1.77090442e+00
1.84582382e-01 2.18932286e-01 3.71752203e-01 1.23794965e-01
9.10859883e-01 6.42459214e-01 -6.88754201e-01 -2.47137442e-01
-1.34020105e-01 -1.32048324e-01 3.45599115e-01 3.87584269e-01
-8.26192439e-01 8.54582191e-01 7.25167465e+00 3.98175269e-01
-1.23545897e+00 -1.19460762e-01 4.16034460e-01 1.39402613e-01
-3.11884522e-01 -6.83924109e-02 -2.95829952e-01 3.68661344e-01
1.06905568e+00 -5.66787779e-01 7.42653430e-01 6.85020506e-01
5.45564070e-02 3.49484116e-01 -1.13490558e+00 1.02199459e+00
2.12211832e-02 -1.55122650e+00 1.69039011e-01 3.03484887e-01
6.26380444e-01 3.21855903e-01 2.00239420e-01 5.19109309e-01
6.48611486e-01 -1.30831909e+00 6.15211017e-02 5.08895457e-01
6.80793285e-01 -4.79630888e-01 4.43722457e-01 2.26421673e-02
-1.58772671e+00 -1.80957198e-01 1.50931887e-02 -3.72567326e-01
1.83244944e-01 7.21634030e-01 -5.87890387e-01 8.31021428e-01
5.38109601e-01 1.36649108e+00 -4.98163939e-01 1.16214454e+00
7.47634619e-02 6.55235350e-01 -2.60102183e-01 -3.38712484e-01
2.11275801e-01 -4.71050203e-01 4.08914804e-01 9.77718890e-01
1.29425406e-01 -1.89028442e-01 3.42352509e-01 4.91088808e-01
-2.98140287e-01 1.41230458e-02 -1.09935319e+00 -5.96303225e-01
6.74048901e-01 1.29686773e+00 -9.69443679e-01 -6.10325523e-02
-5.60396373e-01 3.54481071e-01 4.49112803e-01 6.17804706e-01
-5.08088708e-01 -5.00561118e-01 6.57666683e-01 2.50195980e-01
-3.23340535e-01 -5.27022123e-01 -1.67569622e-01 -9.76934314e-01
-2.12247998e-01 -7.31714904e-01 7.39867449e-01 -4.27304417e-01
-1.53564477e+00 6.33245885e-01 1.12548836e-01 -9.33923066e-01
-2.89170146e-01 -6.18270218e-01 -5.81819892e-01 5.68777978e-01
-1.31616068e+00 -1.11514091e+00 -3.83829981e-01 5.08433580e-01
6.60421848e-02 -1.61308140e-01 7.17636168e-01 5.53180695e-01
-7.71942496e-01 4.70803052e-01 2.02433795e-01 4.76940542e-01
3.07737976e-01 -1.17948723e+00 6.97884798e-01 7.57623017e-01
2.26128802e-01 9.37088072e-01 3.26239944e-01 -7.73310065e-01
-1.47040594e+00 -1.00490558e+00 6.93537772e-01 -4.92824703e-01
1.16337681e+00 -2.51446962e-01 -8.89917374e-01 8.69829655e-01
4.54065837e-02 1.00008897e-01 6.55370891e-01 6.25859499e-01
-3.80995780e-01 -1.90426245e-01 -8.22503746e-01 8.65781307e-01
1.49382222e+00 -6.27170920e-01 -2.29418231e-03 4.46267635e-01
5.77641368e-01 -1.89224601e-01 -1.13479280e+00 3.25678498e-01
6.77815735e-01 -7.64272034e-01 1.05842590e+00 -6.97714031e-01
1.28835887e-01 9.19743776e-02 2.91515678e-01 -1.32189095e+00
-7.14815855e-01 -8.45139265e-01 -7.49017119e-01 8.90204430e-01
3.50203037e-01 -1.09247613e+00 1.03664231e+00 3.84735823e-01
1.26646414e-01 -1.11520004e+00 -7.37509549e-01 -7.39603043e-01
-9.38443989e-02 -3.67152959e-01 5.99912047e-01 1.31640542e+00
5.19216657e-02 6.32338524e-01 -4.11510259e-01 -1.84624344e-01
3.68622899e-01 -4.32797223e-02 6.59984589e-01 -1.98302424e+00
3.87698156e-03 -1.09840262e+00 -6.53538823e-01 -9.81339097e-01
1.07770391e-01 -1.19930458e+00 -6.87061012e-01 -1.97654307e+00
8.68555605e-02 -6.79118097e-01 -5.59482753e-01 3.68799090e-01
2.03921404e-02 1.40541449e-01 2.04796344e-01 2.53773183e-01
-8.53716791e-01 6.56507909e-02 1.19434106e+00 -2.23446265e-01
-3.64205062e-01 2.39730686e-01 -9.76945817e-01 5.45334876e-01
6.59037411e-01 -2.95675933e-01 -9.63810861e-01 -2.77951151e-01
8.08854997e-01 1.93731368e-01 7.06998855e-02 -8.01039159e-01
3.76256436e-01 -1.50932521e-01 -1.38696367e-02 -2.21388727e-01
6.15218170e-02 -8.38949740e-01 4.12598521e-01 6.51581824e-01
-1.87086478e-01 7.17481971e-01 -1.35808259e-01 1.12052786e+00
-9.33147296e-02 2.01757282e-01 4.02137727e-01 -1.33688629e-01
-6.30205035e-01 9.80447829e-01 -2.26874322e-01 1.28549874e-01
8.98837209e-01 -4.94918406e-01 -5.94308317e-01 -7.79725850e-01
-8.08811963e-01 4.46154177e-01 3.49262148e-01 9.14393365e-01
3.38888466e-01 -1.18985939e+00 -1.63642347e-01 -7.85276368e-02
-1.00885436e-01 -2.36926854e-01 3.05623442e-01 9.43566859e-01
-4.13561225e-01 4.33984965e-01 -6.23140372e-02 -4.16836739e-01
-1.12264454e+00 6.78424239e-01 4.64906633e-01 -7.23912477e-01
-7.69071639e-01 4.10819948e-01 -2.07406089e-01 -5.40050328e-01
3.87708336e-01 -1.39212728e-01 -5.01466572e-01 2.32412204e-01
6.26754686e-02 5.47436416e-01 -1.04579255e-01 -4.66951311e-01
-3.06526184e-01 3.93378794e-01 -1.20481342e-01 4.28531855e-01
1.47741294e+00 -1.92680612e-01 -3.94459695e-01 6.10105276e-01
9.42286432e-01 -2.20747009e-01 -5.03884017e-01 -4.60031509e-01
2.66833842e-01 5.93406335e-02 -2.82075167e-01 -7.26285696e-01
-1.28990185e+00 5.82227111e-01 2.76251733e-01 1.21798730e+00
8.67995143e-01 -1.98314860e-01 8.47699463e-01 5.81579268e-01
2.90869176e-01 -9.12284195e-01 2.70649254e-01 9.48961258e-01
4.65065360e-01 -9.87196803e-01 2.02968791e-01 -5.58465362e-01
3.16900499e-02 1.29076719e+00 4.39989328e-01 -5.24916612e-02
1.32661998e+00 -8.52996781e-02 -9.74994302e-02 -6.20408475e-01
-5.31798482e-01 -2.42396612e-02 2.92310894e-01 8.41665328e-01
4.84148264e-01 -6.85456023e-02 -9.71820354e-02 1.02280900e-01
-2.34515518e-01 -1.53856933e-01 4.87896472e-01 7.01891840e-01
-2.11199746e-01 -1.20579195e+00 2.92303771e-01 1.00706255e+00
-4.48124051e-01 -8.68962035e-02 -4.61746961e-01 1.06271839e+00
-4.74899590e-01 9.51794863e-01 -1.13809690e-01 -6.81178153e-01
1.56229958e-01 -2.99079884e-02 2.24856734e-01 -6.51466072e-01
-5.53479493e-01 -6.68834865e-01 8.04093257e-02 -3.98603022e-01
-6.71128511e-01 -1.57373592e-01 -7.41373003e-01 -8.74267876e-01
-2.53543913e-01 1.16255410e-01 5.96190393e-01 8.99786711e-01
4.52150226e-01 8.67912769e-01 5.20389736e-01 -4.62058425e-01
-1.30007908e-01 -8.71541798e-01 -7.17698514e-01 4.02719408e-01
2.35021427e-01 -8.39110553e-01 -3.20247680e-01 -5.21466255e-01] | [7.105871200561523, 6.032923221588135] |
3bf4f837-45ba-4b0b-ba90-185755ac9dca | temporal-view-synthesis-of-dynamic-scenes | 2208.09463 | null | https://arxiv.org/abs/2208.09463v1 | https://arxiv.org/pdf/2208.09463v1.pdf | Temporal View Synthesis of Dynamic Scenes through 3D Object Motion Estimation with Multi-Plane Images | The challenge of graphically rendering high frame-rate videos on low compute devices can be addressed through periodic prediction of future frames to enhance the user experience in virtual reality applications. This is studied through the problem of temporal view synthesis (TVS), where the goal is to predict the next frames of a video given the previous frames and the head poses of the previous and the next frames. In this work, we consider the TVS of dynamic scenes in which both the user and objects are moving. We design a framework that decouples the motion into user and object motion to effectively use the available user motion while predicting the next frames. We predict the motion of objects by isolating and estimating the 3D object motion in the past frames and then extrapolating it. We employ multi-plane images (MPI) as a 3D representation of the scenes and model the object motion as the 3D displacement between the corresponding points in the MPI representation. In order to handle the sparsity in MPIs while estimating the motion, we incorporate partial convolutions and masked correlation layers to estimate corresponding points. The predicted object motion is then integrated with the given user or camera motion to generate the next frame. Using a disocclusion infilling module, we synthesize the regions uncovered due to the camera and object motion. We develop a new synthetic dataset for TVS of dynamic scenes consisting of 800 videos at full HD resolution. We show through experiments on our dataset and the MPI Sintel dataset that our model outperforms all the competing methods in the literature. | ['Rajiv Soundararajan', 'Pranali Sancheti', 'Nagabhushan Somraj'] | 2022-08-19 | null | null | null | null | ['video-prediction'] | ['computer-vision'] | [ 3.00022304e-01 -5.12401573e-02 2.44791895e-01 -1.47287220e-01
-3.45306188e-01 -3.70756656e-01 6.39957726e-01 -6.73145056e-01
-8.33088458e-02 5.57761550e-01 3.92754763e-01 1.13220491e-01
2.38913864e-01 -6.92513764e-01 -9.29061353e-01 -6.83078945e-01
-6.55109212e-02 1.68702692e-01 6.42891884e-01 -3.93019430e-02
7.90076852e-02 6.75252676e-01 -1.85712826e+00 8.57576966e-01
3.32228303e-01 9.78111565e-01 5.87971389e-01 1.20445788e+00
1.62149742e-01 9.75962579e-01 -3.69311929e-01 -9.48289875e-03
4.63256925e-01 -3.76588285e-01 -6.82341516e-01 5.32706320e-01
6.46326721e-01 -9.71713722e-01 -6.35531545e-01 5.02888262e-01
3.62295926e-01 2.22156361e-01 1.49327293e-01 -1.04110563e+00
1.28134623e-01 -9.14015248e-02 -6.71483278e-01 2.64999121e-01
7.77737856e-01 2.42435545e-01 4.88465965e-01 -1.28088999e+00
1.32159865e+00 1.33102381e+00 4.24749255e-01 5.89655161e-01
-1.26300824e+00 -4.13825303e-01 3.09314966e-01 2.17503533e-01
-1.25571525e+00 -6.92052960e-01 9.02065098e-01 -6.31585121e-01
8.01740885e-01 4.64043528e-01 8.09577227e-01 1.01953483e+00
2.98452616e-01 6.72696829e-01 5.53748131e-01 -2.42428288e-01
1.53517947e-01 -1.62347063e-01 -3.41365069e-01 5.38009882e-01
-4.67628896e-01 2.52037525e-01 -8.21699023e-01 -1.53165624e-01
1.20243561e+00 6.50417730e-02 -6.99958980e-01 -3.68566781e-01
-1.61123860e+00 4.27956492e-01 7.60128675e-03 -9.53000039e-02
-5.93188047e-01 1.66097820e-01 1.03654295e-01 -9.72207710e-02
6.34245217e-01 -1.22127861e-01 -5.13709188e-01 5.84413745e-02
-1.14489591e+00 5.04042625e-01 6.45597160e-01 8.88051689e-01
5.18678248e-01 2.96691358e-01 -1.57623246e-01 4.89971727e-01
1.15085855e-01 3.33564430e-01 5.72641604e-02 -1.68530190e+00
4.12409544e-01 1.50860501e-02 4.97810036e-01 -9.79758263e-01
-2.19853580e-01 -4.76441532e-02 -7.14250445e-01 4.31808978e-01
3.91874880e-01 -1.99195534e-01 -8.67441833e-01 1.53007114e+00
7.13411033e-01 1.01566160e+00 -1.67257860e-02 1.01053083e+00
1.03392148e+00 1.19295406e+00 -3.08358520e-01 -6.71247065e-01
1.08080089e+00 -8.86406779e-01 -7.86399961e-01 -6.37023821e-02
3.56467962e-01 -9.40782905e-01 6.01798058e-01 4.12597448e-01
-1.56629586e+00 -8.89353693e-01 -1.00580370e+00 -1.65067151e-01
3.23282540e-01 -3.65025513e-02 2.09010348e-01 1.78517476e-02
-1.07292175e+00 8.14129114e-01 -1.10438764e+00 6.29060864e-02
1.07224122e-01 2.46289209e-01 -2.23919496e-01 -1.42487705e-01
-7.62699842e-01 4.70489651e-01 1.85554311e-01 1.67356297e-01
-9.58156705e-01 -9.87183213e-01 -8.61021876e-01 2.49422435e-02
4.61695701e-01 -1.05627096e+00 1.05474651e+00 -1.17052603e+00
-1.44696605e+00 6.01092815e-01 -5.20032525e-01 -2.71349669e-01
7.39332080e-01 -2.68934101e-01 -2.87640721e-01 2.77165353e-01
-1.19112737e-01 8.31328273e-01 9.11475003e-01 -1.41455424e+00
-7.38417089e-01 1.73982594e-03 2.72307377e-02 6.23225033e-01
3.32701683e-01 -1.67160735e-01 -9.26726580e-01 -6.33547246e-01
3.10813427e-01 -1.01980317e+00 -2.48008549e-01 2.64431477e-01
-2.87539870e-01 4.59272146e-01 1.28984714e+00 -9.27816927e-01
8.98150861e-01 -2.34518671e+00 4.92433637e-01 -7.26523995e-02
3.31308246e-01 4.36048031e-05 -2.18610372e-02 -2.32759081e-02
-1.74394861e-01 -4.30559248e-01 1.10448204e-01 -6.89717770e-01
-6.64792240e-01 3.57293904e-01 -5.49043655e-01 4.07207966e-01
-1.83300003e-02 5.97596824e-01 -8.26074243e-01 -3.52988690e-01
6.87869608e-01 8.67351592e-01 -9.59280670e-01 5.50065160e-01
-3.34047109e-01 1.07121825e+00 -1.74964547e-01 2.27960438e-01
9.41559553e-01 -3.43479425e-01 2.66828150e-01 -4.46860701e-01
-3.03995013e-01 1.75746337e-01 -1.58448994e+00 1.83642519e+00
-3.10189933e-01 7.44919181e-01 1.01405337e-01 -4.53182787e-01
4.65925515e-01 5.18580675e-01 8.80877972e-01 -4.70654309e-01
-1.34002358e-01 -1.09691344e-01 -2.38221943e-01 -6.91577196e-01
8.01181853e-01 1.21842669e-02 3.79870147e-01 7.30304569e-02
-1.00493863e-01 -1.80069864e-01 -5.35922833e-02 2.73739487e-01
8.74907553e-01 6.46819651e-01 -7.95047283e-02 1.61963701e-01
4.44903016e-01 -1.99968532e-01 5.83423972e-01 2.94824779e-01
3.25153530e-01 1.26104307e+00 3.72494757e-01 -7.40649939e-01
-1.33311558e+00 -1.11831820e+00 1.36196092e-01 6.29420400e-01
2.84712553e-01 -4.66533571e-01 -5.33756912e-01 -1.89493895e-01
-4.67858374e-01 6.06929302e-01 -4.34563518e-01 2.57415026e-01
-1.13727951e+00 -5.34088850e-01 -3.36534142e-01 3.78381610e-01
3.52009922e-01 -9.95821774e-01 -8.94169331e-01 4.08379167e-01
-6.65977657e-01 -1.57600033e+00 -5.31773031e-01 -2.96036392e-01
-8.63807380e-01 -8.31247211e-01 -7.54847288e-01 -5.10348320e-01
4.07075286e-01 4.20287549e-01 1.15892720e+00 1.96113344e-02
-1.23847425e-01 3.29330355e-01 8.07930082e-02 2.70594001e-01
-4.13737863e-01 -6.58498287e-01 4.10218276e-02 3.02974671e-01
-5.40771365e-01 -7.19745576e-01 -9.50729191e-01 3.45629871e-01
-8.78583372e-01 1.02228403e+00 -1.79852188e-01 6.91203654e-01
7.55471528e-01 -8.31358880e-02 -2.00099126e-01 -6.43462837e-01
-3.62481862e-01 -5.47929883e-01 -6.22692525e-01 -7.25279599e-02
2.56493241e-01 -1.86989054e-01 4.62611377e-01 -6.27270818e-01
-1.43650424e+00 4.86464113e-01 -1.12899803e-01 -9.24947381e-01
1.04393244e-01 6.32411521e-03 -5.31013757e-02 1.45626232e-01
2.80062377e-01 1.85330823e-01 -3.83910835e-01 -3.65558624e-01
2.28615180e-01 8.62745792e-02 8.38544309e-01 -4.25924033e-01
3.86211216e-01 9.19406474e-01 1.48832783e-01 -9.53170598e-01
-6.05612874e-01 -2.27109015e-01 -7.23182738e-01 -6.42801464e-01
1.18359876e+00 -1.14298999e+00 -7.60967612e-01 2.57802486e-01
-1.69976187e+00 -4.27561671e-01 -3.81067157e-01 6.13569677e-01
-8.27729762e-01 3.57639879e-01 -6.30039155e-01 -6.98875844e-01
4.08727974e-02 -1.45184386e+00 1.35717273e+00 7.01513290e-02
-2.64981627e-01 -7.81743765e-01 -1.76151376e-02 1.83077171e-01
-1.42813672e-03 4.95071858e-01 6.17663145e-01 3.11128318e-01
-1.27458251e+00 2.72338510e-01 2.24149581e-02 1.46495953e-01
-1.96767479e-01 2.21701771e-01 -1.05726361e+00 -8.87975618e-02
3.12425137e-01 3.39794427e-01 4.62590396e-01 9.29404259e-01
1.11407018e+00 -2.95562774e-01 -3.47631186e-01 1.13107109e+00
1.45349002e+00 4.57155615e-01 8.42164099e-01 -1.05860317e-02
1.05774832e+00 7.60200500e-01 6.60345197e-01 6.95008934e-01
2.75553077e-01 1.15471327e+00 4.81438607e-01 -1.36352824e-02
-4.44125354e-01 -2.13393807e-01 3.30504000e-01 7.35596299e-01
-5.11119723e-01 -5.00625968e-01 -7.05392480e-01 3.99703920e-01
-1.86826730e+00 -1.17257833e+00 -5.56915045e-01 2.26334739e+00
2.30738312e-01 -6.05402850e-02 -1.02408700e-01 -7.61061907e-02
5.82354128e-01 2.83708125e-01 -4.34677184e-01 -9.04007107e-02
-4.14203256e-02 9.96545702e-02 1.56619504e-01 8.23897719e-01
-7.67237723e-01 6.61630571e-01 6.07075262e+00 5.05801857e-01
-1.09733880e+00 5.75058907e-02 8.96800756e-01 -5.73655725e-01
-1.72615126e-01 6.72654286e-02 -7.07939982e-01 4.92462665e-01
9.55865681e-01 1.26714408e-01 4.73832428e-01 4.80800480e-01
6.37202024e-01 -3.17668617e-01 -1.29399753e+00 1.04437208e+00
-1.38738854e-02 -1.82453489e+00 2.49711554e-02 -1.67108346e-02
9.88867283e-01 -1.15105703e-01 9.87490192e-02 -1.94646284e-01
-7.35817924e-02 -8.02522898e-01 1.03385782e+00 8.82404447e-01
8.46578121e-01 -5.29358208e-01 2.85828501e-01 5.08841217e-01
-1.34164846e+00 1.86019018e-01 -1.50905112e-02 -2.02154741e-01
9.12995815e-01 4.06650394e-01 -5.73085070e-01 5.18730462e-01
7.89291203e-01 8.17797661e-01 -1.72140509e-01 6.85113847e-01
3.54362726e-01 1.60585091e-01 -3.29640359e-01 8.78746271e-01
-6.01692125e-02 -3.69571418e-01 7.44055569e-01 8.27184618e-01
6.50922120e-01 5.01753867e-01 1.39401346e-01 7.78102338e-01
2.22300246e-01 -3.13432127e-01 -4.90260839e-01 6.51562929e-01
4.64351103e-02 9.90000248e-01 -7.11905658e-01 -7.20929265e-01
-6.15288556e-01 1.41448390e+00 -7.14801997e-02 6.73236668e-01
-8.71498764e-01 4.56442714e-01 7.46604621e-01 5.54227114e-01
4.72770870e-01 -3.36626083e-01 -9.22778025e-02 -1.45171714e+00
1.91660076e-01 -5.60562313e-01 1.56416476e-01 -1.34351826e+00
-5.22685945e-01 7.07600176e-01 7.71896094e-02 -1.59765005e+00
-6.20336592e-01 -2.78180152e-01 -4.05683815e-01 9.15422499e-01
-9.91141796e-01 -7.87171841e-01 -4.68723774e-01 6.55298591e-01
1.03617299e+00 3.52311492e-01 6.29461348e-01 3.27172756e-01
-1.17948376e-01 -1.96161732e-01 -2.82025393e-02 -3.04625303e-01
4.03703004e-01 -6.44265771e-01 5.55670559e-01 8.82906377e-01
-2.25731526e-02 1.18382588e-01 8.88816357e-01 -8.84138644e-01
-1.27404618e+00 -9.08929646e-01 6.86280727e-01 -6.09641254e-01
1.44890100e-01 -4.07026350e-01 -9.57180560e-01 8.39755893e-01
-1.11702867e-01 6.69776142e-01 4.57338020e-02 -7.25806653e-01
1.88812345e-01 2.26085231e-01 -9.63266253e-01 6.52248621e-01
1.13882220e+00 -3.30461502e-01 -6.84105083e-02 1.37659445e-01
7.97431707e-01 -1.10272992e+00 -6.36448383e-01 3.60926837e-01
7.11155951e-01 -1.35254657e+00 1.48650265e+00 -2.37584919e-01
8.88205230e-01 -5.49642622e-01 -2.73078948e-01 -9.91790771e-01
-7.12972209e-02 -6.73523128e-01 -4.98356342e-01 8.51434529e-01
-1.90232843e-01 1.38646215e-01 1.02979982e+00 7.87917972e-01
-5.14542647e-02 -6.64949238e-01 -9.66404676e-01 -1.39703676e-01
-5.32846928e-01 -6.56251729e-01 3.06892306e-01 8.48406374e-01
-5.25002301e-01 1.68718264e-01 -9.48447287e-01 4.01419461e-01
5.54421961e-01 1.41820967e-01 9.48553443e-01 -7.70977318e-01
-6.65626645e-01 1.88749641e-01 -3.48578334e-01 -1.49766016e+00
-1.34595752e-01 -3.62523615e-01 -8.84323716e-02 -1.24793303e+00
1.01979956e-01 -7.75463432e-02 4.96249080e-01 -3.57868820e-01
-1.57591149e-01 3.63242120e-01 4.29575235e-01 2.21157938e-01
-3.07314426e-01 3.89550745e-01 1.56052184e+00 3.39915782e-01
-4.60844606e-01 2.99270470e-02 1.77597001e-01 1.07172549e+00
1.62431121e-01 -3.08703959e-01 -5.04125595e-01 -5.24686515e-01
1.65114328e-02 1.04614556e+00 6.25482917e-01 -9.90856528e-01
1.51192993e-01 -1.90943733e-01 8.16047490e-01 -1.04209626e+00
1.10685754e+00 -9.88109171e-01 1.02067506e+00 3.90219420e-01
-1.27090424e-01 1.67341843e-01 1.07301883e-01 5.86186171e-01
1.10603079e-01 1.90331161e-01 7.22880006e-01 -2.04103589e-01
-6.71784878e-01 5.54258764e-01 -3.77863824e-01 -2.86342055e-01
9.96373534e-01 -3.30051392e-01 6.64823577e-02 -5.76424599e-01
-1.22951818e+00 -4.25222255e-02 5.72138011e-01 3.40667427e-01
9.67670858e-01 -1.38328016e+00 -6.31592870e-01 5.39804935e-01
-3.05703402e-01 3.51369023e-01 8.47953200e-01 6.94917023e-01
-8.29712212e-01 -2.29254309e-02 -1.10359989e-01 -9.46364880e-01
-1.50771260e+00 6.26094282e-01 2.91458040e-01 -1.45906135e-01
-1.06160772e+00 5.17983735e-01 9.11695957e-01 1.44372210e-01
1.45807415e-01 -4.23320025e-01 -2.23054036e-01 -2.48273388e-01
8.41391563e-01 4.91258979e-01 -1.71098098e-01 -1.00703871e+00
1.14433942e-02 6.16145253e-01 8.06060880e-02 -4.83730942e-01
1.43288231e+00 -4.52717423e-01 2.38363817e-01 5.11570036e-01
1.34127939e+00 7.67401382e-02 -1.97197664e+00 -1.08575493e-01
-4.78775561e-01 -9.33574557e-01 -8.15887675e-02 -2.24401653e-01
-1.17842853e+00 6.96959376e-01 5.50029576e-01 -9.90675464e-02
1.08373916e+00 -1.07049413e-01 8.67375195e-01 -3.19124728e-01
3.59374553e-01 -7.28267193e-01 1.11758001e-01 3.92112464e-01
8.21460068e-01 -8.24325800e-01 1.11569591e-01 -8.54463756e-01
-6.03897870e-01 1.28656471e+00 6.69501305e-01 -2.10983947e-01
5.76796770e-01 5.57013810e-01 -1.90744013e-01 -1.46477848e-01
-9.58339512e-01 2.53229797e-01 3.64406645e-01 5.13531506e-01
3.18730235e-01 -2.21822366e-01 7.85438120e-02 7.16820285e-02
-1.58834174e-01 1.71480820e-01 8.12733471e-01 8.46603334e-01
8.93586278e-02 -8.13429236e-01 -6.51932180e-01 1.72744215e-01
-4.20060545e-01 -3.69408391e-02 2.20413014e-01 4.48767394e-01
3.23503464e-01 6.14773333e-01 4.23975646e-01 -3.44575733e-01
2.88476348e-01 -1.87199965e-01 6.47340894e-01 -5.68119764e-01
-2.48962775e-01 5.38694203e-01 1.68888032e-01 -1.03269434e+00
-6.38084292e-01 -7.71613836e-01 -1.19756234e+00 -4.73513037e-01
5.38128093e-02 -4.07347143e-01 4.96284246e-01 7.13201106e-01
2.75780320e-01 8.10148418e-01 5.68389416e-01 -1.73228264e+00
2.80889392e-01 -4.53518182e-01 -4.39662337e-01 4.32854265e-01
6.40520155e-01 -5.30513108e-01 -2.83551216e-01 5.94272077e-01] | [9.75572681427002, -2.098076343536377] |
a438af81-5131-4e6c-9979-6ac8d5aaae4b | taking-a-step-back-with-kcal-multi-class | 2202.07679 | null | https://arxiv.org/abs/2202.07679v3 | https://arxiv.org/pdf/2202.07679v3.pdf | Taking a Step Back with KCal: Multi-Class Kernel-Based Calibration for Deep Neural Networks | Deep neural network (DNN) classifiers are often overconfident, producing miscalibrated class probabilities. In high-risk applications like healthcare, practitioners require $\textit{fully calibrated}$ probability predictions for decision-making. That is, conditioned on the prediction $\textit{vector}$, $\textit{every}$ class' probability should be close to the predicted value. Most existing calibration methods either lack theoretical guarantees for producing calibrated outputs, reduce classification accuracy in the process, or only calibrate the predicted class. This paper proposes a new Kernel-based calibration method called KCal. Unlike existing calibration procedures, KCal does not operate directly on the logits or softmax outputs of the DNN. Instead, KCal learns a metric space on the penultimate-layer latent embedding and generates predictions using kernel density estimates on a calibration set. We first analyze KCal theoretically, showing that it enjoys a provable $\textit{full}$ calibration guarantee. Then, through extensive experiments across a variety of datasets, we show that KCal consistently outperforms baselines as measured by the calibration error and by proper scoring rules like the Brier Score. | ['Jimeng Sun', 'Shubhendu Trivedi', 'Zhen Lin'] | 2022-02-15 | null | null | null | null | ['supervised-dimensionality-reduction', 'network-embedding'] | ['computer-vision', 'methodology'] | [ 4.16343473e-02 5.71115434e-01 -5.66412389e-01 -9.41910744e-01
-1.09948003e+00 -4.97950345e-01 8.33990946e-02 7.20715746e-02
-5.83702683e-01 9.75522757e-01 -1.87047720e-01 -7.53017545e-01
-3.02529991e-01 -8.32531393e-01 -1.11511576e+00 -7.52108932e-01
1.32295489e-02 7.79450595e-01 -3.02598774e-01 5.97861648e-01
-7.14160055e-02 1.34453237e-01 -8.03065240e-01 8.28253776e-02
7.12444723e-01 1.23817694e+00 -4.35270429e-01 6.66508496e-01
1.19539700e-01 7.32550323e-01 -4.13661599e-01 -1.14033532e+00
3.38298291e-01 -2.95208812e-01 -4.81937230e-01 -6.51875436e-01
5.84542274e-01 -7.05674887e-01 -3.37417066e-01 1.34255636e+00
1.70550331e-01 -2.15820059e-01 1.19939828e+00 -1.44473767e+00
-7.57183194e-01 9.42719638e-01 -3.10795158e-01 -1.35555416e-01
-3.86015475e-01 -3.63457836e-02 1.22361612e+00 -6.24707103e-01
1.81830466e-01 1.05866396e+00 1.02153635e+00 6.98574901e-01
-1.47390199e+00 -1.16008198e+00 1.87314749e-02 -2.91830212e-01
-1.36679947e+00 -8.46724585e-02 4.45499837e-01 -6.78030908e-01
4.13267702e-01 -8.82558234e-04 1.73115402e-01 1.49874675e+00
3.41458440e-01 6.23621285e-01 8.47347975e-01 -2.29943797e-01
5.39004922e-01 5.42118073e-01 3.97160739e-01 6.68233812e-01
6.38820767e-01 3.32491308e-01 -3.60535502e-01 -4.19638783e-01
9.44236040e-01 2.24927649e-01 -1.17803790e-01 -4.50539738e-01
-9.39634383e-01 1.07934856e+00 3.19332242e-01 -2.25402758e-01
-1.02864191e-01 6.20514810e-01 1.25339314e-01 -5.08736074e-02
3.41209292e-01 3.32043357e-02 -7.48866916e-01 1.08806398e-02
-8.16990674e-01 1.05803668e-01 8.88138473e-01 9.67785835e-01
7.04414666e-01 -2.01193869e-01 -1.72445133e-01 5.23396075e-01
1.86787277e-01 6.27923250e-01 1.45442441e-01 -1.14042437e+00
5.81729114e-01 2.68411547e-01 2.80363619e-01 -6.88709617e-01
-2.06390992e-01 -5.90253294e-01 -1.16803765e+00 1.56125724e-01
5.22560358e-01 -4.98809040e-01 -8.04039598e-01 2.20863938e+00
1.86849535e-02 3.02769303e-01 5.79705574e-02 4.42471415e-01
1.12605982e-01 5.09132266e-01 3.78426969e-01 1.55428395e-01
8.82031679e-01 -4.27447110e-01 -3.62472564e-01 -1.76068008e-01
7.34761178e-01 -4.24846888e-01 1.11322713e+00 4.52125877e-01
-7.74682939e-01 -3.92191648e-01 -1.13884807e+00 1.11309797e-01
-1.43274799e-01 2.31208771e-01 6.42319322e-01 1.04331076e+00
-8.54060531e-01 6.39750242e-01 -9.25411761e-01 2.80960858e-01
7.77705729e-01 5.86842239e-01 -3.57402176e-01 -1.28235444e-01
-1.05544436e+00 7.24042594e-01 4.24482971e-01 -1.46091670e-01
-7.92816281e-01 -1.05474389e+00 -8.24116588e-01 2.17130274e-01
-1.94038033e-01 -8.03915203e-01 1.33876967e+00 -8.05626273e-01
-1.21692860e+00 6.25084579e-01 2.14849725e-01 -7.61744678e-01
9.01345372e-01 -3.21663946e-01 -1.38261735e-01 -1.29396722e-01
-1.30092099e-01 8.21081936e-01 5.46013951e-01 -9.36135769e-01
-6.52391255e-01 -1.54420450e-01 -2.33773105e-02 -2.28523657e-01
-4.22357738e-01 -4.76687878e-01 -9.94290635e-02 -5.54239333e-01
-1.05418645e-01 -7.93533087e-01 -1.84042066e-01 2.68631309e-01
-6.74283981e-01 -1.77606061e-01 1.24738969e-01 -4.38718915e-01
1.22066641e+00 -2.26640034e+00 -4.06056941e-01 4.56860363e-01
3.80959779e-01 1.00600041e-01 1.72545344e-01 -6.05935678e-02
-1.40889242e-01 2.27794409e-01 -3.82706523e-01 -4.42702860e-01
3.95054698e-01 2.98737526e-01 -5.19674361e-01 6.65813625e-01
-1.03851762e-02 7.44831264e-01 -7.38510191e-01 -4.26735729e-01
1.93812504e-01 7.21242666e-01 -7.04825342e-01 1.45011678e-01
-5.58093488e-02 -1.39570862e-01 -6.99167550e-02 2.32226059e-01
6.82507873e-01 -5.67732692e-01 5.68296425e-02 -7.02798292e-02
6.62763119e-01 1.21883824e-01 -8.89445305e-01 1.20489430e+00
-3.19857895e-01 4.28765059e-01 -3.75225157e-01 -1.22253084e+00
9.28656220e-01 1.35290205e-01 3.53805751e-01 -1.51196737e-02
2.66089082e-01 2.42920339e-01 -2.88243473e-01 1.15803145e-01
-1.10959560e-01 -4.73254621e-01 -2.97246069e-01 3.86849105e-01
2.64052659e-01 3.25765729e-01 -5.63363969e-01 1.14829041e-01
1.04967952e+00 -7.40177333e-02 4.30849791e-02 -2.50162512e-01
-1.25814676e-01 -2.29243636e-01 6.66458964e-01 1.07904601e+00
-2.29270890e-01 5.49663603e-01 9.59459841e-01 -4.23863232e-01
-1.31230295e+00 -1.67482543e+00 -5.05559862e-01 7.08411813e-01
-2.34204978e-01 8.54370929e-03 -1.06688344e+00 -8.83237123e-01
2.67425835e-01 1.05361235e+00 -1.06246471e+00 -4.17068928e-01
-1.50297344e-01 -9.93176281e-01 8.18653584e-01 9.05895531e-01
2.17582867e-01 -4.91315961e-01 -4.20394510e-01 1.13381647e-01
6.90210760e-02 -9.09067690e-01 -5.93023956e-01 5.06881058e-01
-8.08565676e-01 -1.08114326e+00 -6.80387974e-01 -6.21114194e-01
8.28024387e-01 -4.85757083e-01 1.01945758e+00 -4.34987932e-01
-1.38533741e-01 2.51099914e-01 1.51665494e-01 -5.89621067e-01
-4.31743711e-01 -2.96042226e-02 2.57865399e-01 -1.10423058e-01
8.23472023e-01 -5.34957945e-01 -8.08474898e-01 1.28262043e-01
-7.08568752e-01 5.74034601e-02 7.41434395e-01 9.50869143e-01
6.72844648e-01 -1.46453395e-01 5.41104853e-01 -1.25303209e+00
4.06494021e-01 -5.04507363e-01 -8.65147829e-01 5.50053418e-01
-9.57300782e-01 2.51730829e-01 6.19403303e-01 -7.30126262e-01
-6.08865440e-01 7.29764178e-02 -4.06273045e-02 -7.76089251e-01
5.66855930e-02 1.87996998e-01 -5.33915721e-02 4.57152784e-01
9.57676470e-01 -1.11420348e-01 -2.08480611e-01 -3.10692757e-01
1.85609385e-01 6.61729217e-01 8.57053697e-01 -6.82499826e-01
7.59385884e-01 2.62524635e-01 -4.66976501e-02 -4.55196425e-02
-1.20958149e+00 5.40613793e-02 -4.67850178e-01 1.76472738e-01
8.48178744e-01 -9.59694207e-01 -1.06821454e+00 1.74495980e-01
-9.02925670e-01 -6.81290865e-01 -3.26985061e-01 8.73921812e-01
-5.88656783e-01 -7.63336495e-02 -6.72109604e-01 -9.56093550e-01
-3.19711983e-01 -9.19151545e-01 8.29432428e-01 7.07325414e-02
-3.90926659e-01 -1.10985112e+00 -7.05862939e-02 5.93746714e-02
3.06768268e-01 2.95953184e-01 1.27457643e+00 -8.81750464e-01
-4.09256935e-01 -6.36538863e-01 -3.92629296e-01 8.34598958e-01
-3.69736254e-02 -1.10533768e-02 -1.14485538e+00 -4.08754237e-02
-1.78314716e-01 -2.94884950e-01 8.92894983e-01 6.54778123e-01
1.60984671e+00 -6.29860997e-01 -2.18557388e-01 7.77192295e-01
1.26248252e+00 3.73347243e-03 5.15075803e-01 -6.00306019e-02
3.52028221e-01 3.04839373e-01 6.29376546e-02 4.24848408e-01
3.55706751e-01 5.88301606e-02 2.65828282e-01 4.85260189e-02
3.00545782e-01 -7.22063780e-01 3.62606794e-01 3.41633230e-01
4.90198225e-01 -1.13909461e-01 -8.66185904e-01 2.93982029e-01
-1.73219371e+00 -7.13418603e-01 3.88990074e-01 2.50550652e+00
1.14765882e+00 5.00301301e-01 -1.15455940e-01 7.46877212e-03
7.10546374e-01 -5.90291679e-01 -8.70474935e-01 -3.00877333e-01
-7.33207464e-02 5.32598317e-01 9.40611243e-01 7.36967206e-01
-1.07286930e+00 5.94311178e-01 6.63355064e+00 8.12876821e-01
-8.85747194e-01 1.68382242e-01 1.48344719e+00 -1.51649550e-01
-4.16504532e-01 -2.20628470e-01 -1.05536997e+00 5.43922365e-01
1.18836844e+00 -1.69634279e-02 1.91472009e-01 1.25058413e+00
-4.40460145e-01 6.31293729e-02 -1.61978173e+00 1.11470759e+00
-2.28808329e-01 -1.50777423e+00 -9.79304090e-02 2.32417420e-01
6.60320997e-01 -5.53966500e-02 6.00844562e-01 5.15180588e-01
1.03959465e+00 -1.33878279e+00 6.35038972e-01 5.40937781e-01
1.34154308e+00 -9.54304576e-01 9.23758924e-01 3.99789274e-01
-4.03607219e-01 -3.35416757e-02 -5.89093626e-01 3.04432154e-01
-2.36111373e-01 9.56613481e-01 -1.05646443e+00 -1.02930702e-01
6.25745475e-01 1.59757853e-01 -9.29663479e-02 7.98251212e-01
-1.92398563e-01 9.51250911e-01 -5.24900496e-01 -4.67279255e-02
7.92156681e-02 -1.41047211e-02 -2.78525472e-01 1.26102078e+00
4.64791179e-01 1.79463729e-01 -1.29533738e-01 1.05871904e+00
-4.70552981e-01 -2.37256274e-01 -2.97916681e-01 7.72706643e-02
6.50677145e-01 7.20565856e-01 -3.72172832e-01 -4.77248549e-01
-6.61174953e-02 7.53717542e-01 4.45800006e-01 4.59447771e-01
-1.11170733e+00 -4.35296148e-01 7.65270412e-01 -1.96572900e-01
1.84705764e-01 -2.44484097e-03 -6.99319959e-01 -1.06043959e+00
-8.24838132e-02 -2.65905291e-01 4.78681952e-01 -6.24645293e-01
-1.67823672e+00 4.48448151e-01 1.13012850e-01 -8.49666953e-01
-1.79030895e-01 -1.09880364e+00 -2.36471504e-01 1.05753744e+00
-1.21775806e+00 -6.81859136e-01 9.72755700e-02 5.91295242e-01
-1.73297927e-01 -5.67516237e-02 1.09078574e+00 2.57439196e-01
-6.87193036e-01 1.35056448e+00 3.07085305e-01 6.16133034e-01
8.83094013e-01 -1.33093393e+00 2.31393859e-01 4.23446029e-01
-3.06836423e-02 6.84864938e-01 6.78448558e-01 -5.09938002e-01
-8.32734406e-01 -1.22970736e+00 8.70711923e-01 -7.57787228e-01
5.73189616e-01 -4.53364938e-01 -7.55115688e-01 1.04015505e+00
-4.42779809e-01 2.18853325e-01 1.19190609e+00 2.34520435e-01
-9.41062629e-01 -4.49374765e-01 -1.41517162e+00 4.14618134e-01
7.45213091e-01 -5.69788814e-01 -4.01876032e-01 3.45078588e-01
7.68975079e-01 -3.67324501e-01 -9.68346119e-01 5.33961833e-01
7.93089986e-01 -9.39718843e-01 9.57553923e-01 -8.40062499e-01
4.97320086e-01 2.17597514e-01 -5.62141716e-01 -8.87321413e-01
-1.83845237e-01 -3.15273255e-01 -2.60289550e-01 9.20658231e-01
8.20724070e-01 -6.99799478e-01 1.07597911e+00 1.28393912e+00
1.79607093e-01 -8.80927622e-01 -1.12711418e+00 -6.65315807e-01
6.80063307e-01 -7.51610577e-01 6.14763081e-01 8.91677856e-01
-1.15603827e-01 -9.87193808e-02 -3.50889295e-01 3.59609514e-01
1.00677693e+00 -3.74085546e-01 5.33156693e-01 -1.27599204e+00
-5.49991071e-01 -4.96904790e-01 -3.97013396e-01 -7.96648979e-01
1.07992545e-01 -7.25183070e-01 1.67905800e-02 -1.16078019e+00
4.17431980e-01 -8.97907436e-01 -7.41719544e-01 6.62609637e-01
-1.53441578e-01 8.79852474e-02 -2.27237329e-01 -5.77016287e-02
-3.99727523e-01 1.64057076e-01 5.32760978e-01 -1.34057775e-02
1.39582485e-01 2.00462028e-01 -9.83193099e-01 7.06951439e-01
9.67741966e-01 -6.18286312e-01 -3.84920120e-01 -3.47856224e-01
4.38524604e-01 1.35176137e-01 5.62420785e-01 -9.07051742e-01
1.58063382e-01 -2.41911665e-01 6.84311748e-01 -3.81429046e-01
3.30534369e-01 -7.03551888e-01 2.12453231e-01 4.93582726e-01
-7.16503024e-01 -1.98905632e-01 -2.49000099e-02 6.66846871e-01
3.11182767e-01 -1.09104954e-01 1.06512952e+00 2.38850519e-01
2.03896210e-01 5.02435088e-01 -2.71489541e-03 1.55661672e-01
9.43832219e-01 8.42469558e-02 -2.57546335e-01 -3.00637096e-01
-5.75611770e-01 1.17731981e-01 3.29560220e-01 -3.16050164e-02
5.42147994e-01 -1.26024318e+00 -5.24424613e-01 1.31119683e-01
7.96673968e-02 2.56781578e-01 5.28689735e-02 4.32624459e-01
-4.07886356e-01 3.61871868e-01 1.80320650e-01 -5.73010325e-01
-5.60929656e-01 5.03656745e-01 5.70821047e-01 -1.47853568e-01
-3.96247745e-01 1.29902351e+00 5.20603001e-01 -5.48144996e-01
7.31463969e-01 -5.82922161e-01 5.59872448e-01 -4.31646317e-01
5.82818449e-01 7.45681822e-02 -1.90478086e-01 -6.31351769e-02
-2.37217750e-02 2.60723025e-01 -6.51180819e-02 -3.18323046e-01
1.20603693e+00 3.17573071e-01 3.54737937e-01 5.11400342e-01
1.45209265e+00 -3.78781319e-01 -1.62233782e+00 -4.21683043e-01
-1.24656931e-01 -3.13093692e-01 -2.22210109e-01 -1.04790676e+00
-9.10342813e-01 1.28073525e+00 6.95603609e-01 -3.46978903e-01
7.11726606e-01 -2.04959549e-02 6.38959646e-01 5.73899269e-01
2.81814694e-01 -8.70057404e-01 -1.19106285e-01 6.54902905e-02
3.56200099e-01 -1.16860008e+00 -2.74785101e-01 7.74585903e-02
-5.93132555e-01 9.26484287e-01 4.97295976e-01 -2.31064811e-01
1.06200790e+00 3.71708274e-01 5.47893867e-02 2.93296158e-01
-6.44039869e-01 7.00080156e-01 1.19838730e-01 5.47300577e-01
2.05015212e-01 4.47504908e-01 3.37376237e-01 1.12539196e+00
-6.17542088e-01 4.11633104e-02 2.00855106e-01 2.91104972e-01
-5.02000570e-01 -9.80562449e-01 -1.79439083e-01 8.63086402e-01
-6.28318846e-01 -1.84328318e-01 9.74361300e-02 5.83580673e-01
1.36569783e-01 5.27084112e-01 1.58833042e-01 -4.84660894e-01
8.34601931e-03 2.47734293e-01 3.21966082e-01 -2.90137142e-01
-1.42936511e-02 -3.24175417e-01 -3.49570572e-01 -2.65172422e-01
1.55878156e-01 -6.39417052e-01 -1.17138100e+00 -6.83592677e-01
-9.27551761e-02 2.29333013e-01 6.73738718e-01 7.07794428e-01
1.79633170e-01 8.17540437e-02 4.66027617e-01 -2.78116316e-01
-1.20249271e+00 -7.85752833e-01 -5.30620635e-01 2.25896925e-01
4.17706579e-01 -4.26233679e-01 -5.34338832e-01 4.46447954e-02] | [8.010332107543945, 4.049944877624512] |
3faf3609-7576-4b69-a7c0-a68305680a5d | a-tale-of-color-variants-representation-and | 2112.0291 | null | https://arxiv.org/abs/2112.02910v1 | https://arxiv.org/pdf/2112.02910v1.pdf | A Tale of Color Variants: Representation and Self-Supervised Learning in Fashion E-Commerce | In this paper, we address a crucial problem in fashion e-commerce (with respect to customer experience, as well as revenue): color variants identification, i.e., identifying fashion products that match exactly in their design (or style), but only to differ in their color. We propose a generic framework, that leverages deep visual Representation Learning at its heart, to address this problem for our fashion e-commerce platform. Our framework could be trained with supervisory signals in the form of triplets, that are obtained manually. However, it is infeasible to obtain manual annotations for the entire huge collection of data usually present in fashion e-commerce platforms, such as ours, while capturing all the difficult corner cases. But, to our rescue, interestingly we observed that this crucial problem in fashion e-commerce could also be solved by simple color jitter based image augmentation, that recently became widely popular in the contrastive Self-Supervised Learning (SSL) literature, that seeks to learn visual representations without using manual labels. This naturally led to a question in our mind: Could we leverage SSL in our use-case, and still obtain comparable performance to our supervised framework? The answer is, Yes! because, color variant fashion objects are nothing but manifestations of a style, in different colors, and a model trained to be invariant to the color (with, or without supervision), should be able to recognize this! This is what the paper further demonstrates, both qualitatively, and quantitatively, while evaluating a couple of state-of-the-art SSL techniques, and also proposing a novel method. | ['Abhinav Ravi', 'Maulik Parmar', 'Sandeep Repakula', 'Ujjal Kr Dutta'] | 2021-12-06 | null | null | null | null | ['image-augmentation'] | ['computer-vision'] | [ 2.81552106e-01 -7.57349581e-02 -1.13788523e-01 -2.87064046e-01
-3.34723443e-01 -1.27863157e+00 3.88257295e-01 1.12924978e-01
-4.12742943e-02 2.76435643e-01 -1.44365519e-01 -3.91705066e-01
-1.25262573e-01 -5.84694386e-01 -8.82310748e-01 -5.73658168e-01
1.18710473e-01 4.01542932e-01 -3.51961851e-01 -5.48211038e-01
1.74382806e-01 3.35751235e-01 -1.51076293e+00 2.82687068e-01
4.72019523e-01 1.32141280e+00 -2.79522777e-01 5.64929187e-01
-7.82275870e-02 7.19204903e-01 -4.66045141e-01 -9.77953494e-01
6.61033630e-01 -4.79829401e-01 -7.66228437e-01 7.52470016e-01
8.27235103e-01 -8.64594430e-02 5.45723774e-02 1.14186466e+00
-7.38004372e-02 -1.18778691e-01 5.82141280e-01 -1.40390635e+00
-1.35696435e+00 2.81770438e-01 -5.93680799e-01 -1.87853992e-01
2.91846097e-01 3.12498093e-01 1.10452628e+00 -4.77946609e-01
6.83941245e-01 9.50607598e-01 7.66231894e-01 4.96901810e-01
-1.74930227e+00 -3.38276178e-01 4.37485129e-01 -1.15712956e-01
-1.09610271e+00 -3.19831580e-01 1.10748494e+00 -4.81016219e-01
2.61048615e-01 5.40597916e-01 8.40871930e-01 1.39878309e+00
-2.44420528e-01 1.09263551e+00 1.52613628e+00 -5.82133532e-01
3.12444866e-01 6.26911402e-01 1.62654668e-01 7.37146854e-01
2.09418207e-01 1.83810741e-01 -2.70353556e-01 1.35109976e-01
9.81321752e-01 4.44519445e-02 -2.99033639e-03 -7.59860396e-01
-1.12560201e+00 8.03475440e-01 3.82767200e-01 2.80313909e-01
-1.41374677e-01 1.66745596e-02 3.67611974e-01 7.80820966e-01
4.52823073e-01 7.59515464e-01 -6.68285131e-01 2.79768929e-02
-8.41640711e-01 2.67580822e-02 9.83378470e-01 1.13792610e+00
6.96727037e-01 1.05551355e-01 1.08622424e-01 4.65452254e-01
2.85440087e-01 2.94159830e-01 1.49212196e-01 -7.57859409e-01
5.91298342e-02 6.86252117e-01 2.01566383e-01 -9.64314222e-01
-2.44039789e-01 -4.61236000e-01 -7.49685049e-01 4.38750178e-01
8.10803235e-01 -5.70380054e-02 -9.14405704e-01 1.83428848e+00
8.48539993e-02 -7.92194977e-02 -1.22280143e-01 1.27560544e+00
5.69481552e-01 9.45285261e-02 4.89911921e-02 2.11231876e-02
1.56684017e+00 -8.39717925e-01 -4.89992768e-01 -1.65922254e-01
2.55875558e-01 -9.92453516e-01 1.32529330e+00 5.75503707e-01
-8.65674078e-01 -7.37748623e-01 -1.26721573e+00 4.62139286e-02
-7.11248875e-01 3.71746004e-01 1.14236021e+00 1.11569917e+00
-1.03522503e+00 5.12280703e-01 -4.00337130e-01 -7.74435520e-01
1.20118327e-01 4.03674930e-01 -4.02220160e-01 7.07345083e-02
-9.35332596e-01 6.44870460e-01 -2.46216431e-01 3.70761901e-01
-4.71590757e-01 -5.49853206e-01 -8.08511794e-01 -1.01248212e-01
5.58378220e-01 -6.89481914e-01 1.06554556e+00 -2.00078750e+00
-1.54850864e+00 1.30632830e+00 1.44939706e-01 -2.74264991e-01
6.28455579e-01 -1.46706551e-01 -5.68261862e-01 -1.37384027e-01
-2.96400804e-02 5.74003458e-01 1.05772078e+00 -1.86619401e+00
-2.75781125e-01 -6.91496372e-01 5.01572013e-01 -3.53528500e-01
-1.67607725e-01 -4.20285091e-02 -4.70091552e-01 -7.02745318e-01
7.29538947e-02 -1.27124190e+00 -1.86511621e-01 9.03157964e-02
-4.95764554e-01 1.44755706e-01 5.88447928e-01 -6.16742551e-01
6.15649581e-01 -2.39369607e+00 5.19379526e-02 4.79713023e-01
4.89307344e-02 1.62720874e-01 -2.98145384e-01 2.10584238e-01
-1.67771310e-01 2.04689428e-01 -7.48560354e-02 -2.45628491e-01
3.44198108e-01 3.30658183e-02 -3.03256720e-01 4.40801740e-01
4.98628974e-01 1.14807570e+00 -7.57062078e-01 -1.86978608e-01
2.03195900e-01 3.26926142e-01 -3.66421759e-01 1.02222145e-01
-4.06692117e-01 5.08775830e-01 -2.96794325e-01 9.65123594e-01
7.63584673e-01 -3.57813150e-01 6.24033034e-01 -5.72349370e-01
-7.51616657e-02 -4.46457744e-01 -1.33209372e+00 1.70991087e+00
-5.24782538e-01 5.46058357e-01 3.51925939e-01 -1.09189355e+00
9.32020783e-01 2.58165486e-02 5.60678661e-01 -8.49384546e-01
2.49569312e-01 4.18250114e-02 -1.94060087e-01 -3.65586877e-01
7.79153168e-01 -6.40622973e-02 -2.19335064e-01 3.34498525e-01
1.33257553e-01 1.40319124e-01 1.53956041e-01 -3.09179686e-02
8.25157821e-01 4.13868785e-01 -9.26869214e-02 -7.90289193e-02
2.00093418e-01 2.28757814e-01 3.24892998e-01 7.04036593e-01
-2.38218427e-01 6.55676365e-01 6.15940571e-01 -5.23277402e-01
-1.05246174e+00 -1.22893631e+00 1.16531111e-01 1.09947729e+00
3.75769287e-01 -1.25280738e-01 -5.72153986e-01 -9.35784638e-01
1.52011216e-01 2.79512674e-01 -7.99013197e-01 -1.18111797e-01
-4.51226592e-01 -5.42894959e-01 1.25984684e-01 4.54486936e-01
3.49947989e-01 -9.72971022e-01 -4.67675775e-01 9.62991789e-02
3.86408120e-01 -1.16754544e+00 -3.89106244e-01 4.32455271e-01
-6.48169994e-01 -1.19719815e+00 -7.45468974e-01 -9.82891619e-01
6.69577658e-01 2.75292993e-01 1.45131242e+00 3.62671055e-02
-3.69154811e-01 8.46791029e-01 -4.91917312e-01 -2.89340198e-01
-3.62745166e-01 -1.31913662e-01 -3.10362071e-01 5.67000568e-01
5.30257881e-01 -4.31877792e-01 -7.41026223e-01 3.90825212e-01
-9.63499010e-01 -2.30502188e-01 7.75520802e-01 7.86794126e-01
4.22221154e-01 -9.86570939e-02 3.50600928e-01 -1.11108172e+00
4.43673790e-01 -2.52962232e-01 -5.76574862e-01 5.72534263e-01
-5.57498217e-01 -4.38736565e-02 7.55699039e-01 -4.31618154e-01
-7.09630728e-01 2.93853581e-01 5.08931354e-02 -5.49482763e-01
-5.31641006e-01 2.46572807e-01 -2.15136677e-01 -8.34733322e-02
2.88809597e-01 5.80981001e-02 -1.52502293e-02 -6.74204230e-01
8.17471147e-01 5.74859202e-01 5.12964249e-01 -5.34149349e-01
9.37590420e-01 5.98575294e-01 -3.95892188e-02 -4.78975028e-01
-7.62802124e-01 -4.05588686e-01 -8.70461345e-01 -1.74217090e-01
8.18915069e-01 -7.51914620e-01 -1.00400090e+00 1.88572064e-01
-7.53033698e-01 -1.41644165e-01 -5.46359897e-01 1.68166965e-01
-5.55024981e-01 3.05123210e-01 -6.36429667e-01 -9.00844455e-01
7.27041364e-02 -9.56518471e-01 1.03242314e+00 8.38968158e-02
-2.22473383e-01 -1.02307880e+00 -3.08348089e-01 4.86379802e-01
5.35813391e-01 3.99359047e-01 1.13232100e+00 -5.36844432e-01
-5.23261189e-01 -1.69579223e-01 -3.52768809e-01 4.38781738e-01
3.80915195e-01 -8.16646405e-03 -1.00079155e+00 -2.16323197e-01
1.27289100e-02 -3.03233385e-01 8.41801047e-01 1.80700347e-01
9.69326615e-01 -2.22199917e-01 1.81355834e-01 4.56947088e-01
1.58766305e+00 7.52577111e-02 3.15422028e-01 4.46821570e-01
7.41883934e-01 8.36853325e-01 5.76231658e-01 1.81359559e-01
3.15398335e-01 9.16801572e-01 4.60597008e-01 -7.44915366e-01
-2.69158542e-01 -3.50610763e-01 2.50764638e-01 3.94197911e-01
-1.30716935e-01 1.21983908e-01 -2.85678595e-01 3.70391905e-01
-1.89900243e+00 -8.34700048e-01 -1.16280735e-01 2.10618281e+00
6.86399460e-01 4.86418642e-02 5.74700713e-01 2.15541556e-01
5.83483219e-01 -1.09152300e-02 -6.67758942e-01 -6.75688207e-01
-1.88877106e-01 2.41594180e-01 6.34339809e-01 -1.37269333e-01
-1.42718935e+00 6.91405237e-01 6.43876886e+00 4.48045701e-01
-1.41642332e+00 -9.57730226e-03 9.60600138e-01 1.03562146e-01
-3.94882858e-01 1.73218846e-02 -1.59884214e-01 3.99226993e-01
6.06905103e-01 4.82010961e-01 8.34786713e-01 9.02896285e-01
-2.70670261e-02 1.38650820e-01 -1.49503076e+00 1.16124749e+00
4.13628250e-01 -1.19391465e+00 -1.47994965e-01 -1.50472075e-02
7.39196658e-01 -6.65012896e-01 5.74008822e-01 3.26450408e-01
3.94248545e-01 -8.65231335e-01 1.00407898e+00 2.49693736e-01
6.68114185e-01 -4.92608577e-01 5.80245852e-01 -2.48077109e-01
-1.08708215e+00 -6.32108077e-02 3.36811580e-02 5.96762896e-02
-6.79943562e-02 4.15923238e-01 -2.94868410e-01 7.00584769e-01
5.70618629e-01 6.24395132e-01 -8.15093994e-01 7.54722238e-01
5.82749676e-03 3.67233217e-01 1.35259748e-01 1.08930670e-01
2.14012146e-01 -4.36944097e-01 1.36239022e-01 1.13372910e+00
9.49160606e-02 -4.96377826e-01 3.12580913e-01 1.07314050e+00
-1.14709146e-01 1.05727687e-01 -4.51167345e-01 -9.10556465e-02
-1.14928067e-01 1.47100604e+00 -9.81048584e-01 -9.22489166e-02
-6.26706243e-01 1.31270599e+00 6.97096288e-02 5.13007700e-01
-7.62341976e-01 -1.19517008e-02 5.87840676e-01 1.45222023e-01
5.52608252e-01 -2.07535356e-01 -3.07478160e-01 -1.20133030e+00
2.73987949e-01 -1.07940269e+00 2.07426801e-01 -5.80302000e-01
-1.86830270e+00 4.75375384e-01 -4.55390126e-01 -1.58527362e+00
2.15614401e-02 -1.01882327e+00 -3.71503770e-01 3.31595063e-01
-1.62972307e+00 -1.73950386e+00 -1.26215920e-01 6.57342434e-01
3.59233588e-01 -7.31374249e-02 8.00263762e-01 3.93467724e-01
-4.63012457e-01 8.67550671e-01 9.11217704e-02 2.85638273e-01
6.91884100e-01 -1.48869884e+00 1.86832562e-01 5.46420515e-01
6.63566768e-01 8.26727033e-01 7.02599049e-01 -1.23240367e-01
-2.12572646e+00 -9.00011718e-01 4.30775642e-01 -5.19174337e-01
8.16777706e-01 -5.96200705e-01 -4.68594998e-01 7.15047598e-01
2.59811550e-01 -2.10446455e-02 8.03137958e-01 4.88201082e-01
-7.33095825e-01 -1.91860482e-01 -1.23797286e+00 5.72909892e-01
1.04204810e+00 -6.98193073e-01 -3.68456990e-01 3.61522973e-01
4.94843662e-01 -1.27206475e-01 -8.65153253e-01 6.23737089e-02
7.86253452e-01 -9.52077806e-01 9.78128314e-01 -7.91405380e-01
3.98402095e-01 -3.46804380e-01 -3.46340656e-01 -1.23468935e+00
-2.80393779e-01 -5.52015424e-01 9.59862620e-02 1.60658741e+00
4.72728461e-01 -2.83715665e-01 9.97777700e-01 7.43659139e-01
7.43312016e-02 -6.18268073e-01 -7.36236870e-01 -9.75571632e-01
-1.44688055e-01 -2.96761721e-01 6.92077577e-01 1.04631388e+00
-2.02856705e-01 3.57643008e-01 -6.18505657e-01 8.89787748e-02
5.30217469e-01 7.37117410e-01 8.44478071e-01 -1.20320261e+00
-5.94138920e-01 -3.85264963e-01 -5.92231870e-01 -9.02011454e-01
1.57928690e-01 -7.95924246e-01 -1.93535998e-01 -1.25574458e+00
1.74543649e-01 -5.60236871e-01 -5.69726825e-01 2.85251319e-01
1.58598587e-01 7.36339509e-01 5.86420059e-01 1.00441188e-01
-7.98001885e-01 8.50282982e-02 1.22548294e+00 -6.22096956e-01
-1.44249663e-01 -7.30694970e-03 -1.26451588e+00 6.72147095e-01
5.14033020e-01 1.11576948e-04 -1.39916644e-01 -2.87451804e-01
3.79603446e-01 -2.32700184e-01 8.17237496e-01 -5.69441438e-01
-1.04013644e-01 -5.18145263e-02 6.93890214e-01 -8.27505887e-02
3.61976832e-01 -1.22406518e+00 5.10357283e-02 1.66712403e-01
-3.99519414e-01 2.37899780e-01 -8.38975143e-03 4.93605614e-01
-2.28825435e-01 -1.16695419e-01 3.16229880e-01 -4.58780468e-01
-1.04552734e+00 -2.33534980e-03 -8.80915225e-02 -3.06817740e-01
9.31350350e-01 -4.30133194e-01 -3.11625361e-01 -2.75499016e-01
-9.38305914e-01 -1.92582667e-01 7.18331456e-01 6.26354098e-01
2.00496063e-01 -1.43018186e+00 -4.38010335e-01 4.87053663e-01
4.46669221e-01 -5.97636580e-01 5.90620637e-02 7.01828837e-01
-7.68073052e-02 1.66303799e-01 -3.00085038e-01 -5.76798022e-01
-1.02058792e+00 9.60506082e-01 -9.45206452e-03 -2.14370251e-01
-2.75515497e-01 4.91487294e-01 5.85743710e-02 -3.64874810e-01
1.60199806e-01 -5.16879737e-01 -1.31697565e-01 2.70540535e-01
1.29350021e-01 -1.83486521e-01 2.25044444e-01 -5.83321095e-01
-2.64205515e-01 9.02813375e-01 7.20208138e-02 9.85460430e-02
1.25784624e+00 -2.81290412e-01 1.77971199e-01 4.73693758e-01
1.25092423e+00 1.62645862e-01 -1.19682539e+00 -6.77240863e-02
1.60732478e-01 -6.47703230e-01 -1.95000514e-01 -1.15522110e+00
-1.37938714e+00 5.35802603e-01 1.00188529e+00 6.58774674e-01
1.22458756e+00 9.94569734e-02 7.21112549e-01 1.06085554e-01
5.20490885e-01 -9.78094757e-01 1.64825529e-01 3.16211805e-02
6.58166945e-01 -1.65329731e+00 -2.13113010e-01 -4.65993255e-01
-8.78148139e-01 1.03364646e+00 4.46182102e-01 -3.44112128e-01
4.24775302e-01 6.65579438e-02 4.40150887e-01 -3.31368208e-01
-3.11701179e-01 -3.93777400e-01 2.38993108e-01 7.57859230e-01
5.46852648e-01 1.39862463e-01 -9.22973901e-02 6.38563156e-01
-1.63587436e-01 -6.96273819e-02 2.89270610e-01 8.96351397e-01
1.94515824e-01 -1.28216696e+00 -4.40666944e-01 2.54134476e-01
-2.62552708e-01 5.88243231e-02 -7.09166050e-01 8.37475240e-01
4.73171949e-01 1.26700544e+00 1.58712834e-01 -5.00604510e-01
5.70485592e-01 -9.25711617e-02 7.51262307e-01 -2.43553534e-01
-1.00348520e+00 4.18700762e-02 2.39633452e-02 -4.45551753e-01
-7.14963198e-01 -4.59830284e-01 -5.44168234e-01 -2.04310060e-01
-2.08997130e-01 -7.13765100e-02 7.99244642e-01 6.73245132e-01
1.62679136e-01 4.32054132e-01 9.76740718e-01 -7.60826111e-01
-4.54111934e-01 -4.65501845e-01 -9.67407584e-01 1.09756327e+00
4.31764960e-01 -5.38719952e-01 -2.92733192e-01 2.33879656e-01] | [11.058286666870117, 0.1167890876531601] |
4ddf2d6a-0dd4-42ec-ba6f-b2622d4b5c3c | weakly-supervised-video-summarization-using | null | null | http://openaccess.thecvf.com/content_ECCV_2018/html/Sijia_Cai_Weakly-supervised_Video_Summarization_ECCV_2018_paper.html | http://openaccess.thecvf.com/content_ECCV_2018/papers/Sijia_Cai_Weakly-supervised_Video_Summarization_ECCV_2018_paper.pdf | Weakly-supervised Video Summarization using Variational Encoder-Decoder and Web Prior | Video summarization is a challenging under-constrained problem because the underlying summary of a single video strongly depends on users' subjective understandings. Data-driven approaches, such as deep neural networks, can deal with the ambiguity inherent in this task to some extent, but it is extremely expensive to acquire the temporal annotations of a large-scale video dataset. To leverage the plentiful web-crawled videos to improve the performance of video summarization, we present a generative modelling framework to learn the latent semantic video representations to bridge the benchmark data and web data. Specifically, our framework couples two important components: a variational autoencoder for learning the latent semantics from web videos, and an encoder-attention-decoder for saliency estimation of raw video and summary generation. A loss term to learn the semantic matching between the generated summaries and web videos is presented, and the overall framework is further formulated into a unified conditional variational encoder-decoder, called variational encoder-summarizer-decoder (VESD). Experiments conducted on the challenging datasets CoSum and TVSum demonstrate the superior performance of the proposed VESD to existing state-of-the-art methods. The source code of this work can be found at https://github.com/cssjcai/vesd. | ['WangMeng Zuo', 'Sijia Cai', 'Lei Zhang', 'Larry S. Davis'] | 2018-09-01 | null | null | null | eccv-2018-9 | ['supervised-video-summarization'] | ['computer-vision'] | [ 2.86488622e-01 6.83792401e-03 -2.43233845e-01 -4.21864986e-01
-1.21081209e+00 -3.08284104e-01 5.15020072e-01 -1.21880680e-01
-8.73413533e-02 5.47912538e-01 7.46257305e-01 1.88056916e-01
2.93206125e-01 -3.00684154e-01 -9.94992733e-01 -6.75257862e-01
3.53094369e-01 -4.84824292e-02 3.00930351e-01 9.68787149e-02
2.32967600e-01 -4.07137036e-01 -1.59495282e+00 5.79282224e-01
1.09150219e+00 1.09204483e+00 7.71276295e-01 5.81351519e-01
2.16183718e-02 1.03312087e+00 -4.04719025e-01 -3.42496812e-01
-1.63419604e-01 -6.77385330e-01 -4.72558171e-01 4.29041505e-01
3.93839538e-01 -7.36100912e-01 -7.61624694e-01 1.15974379e+00
4.88619715e-01 2.87306309e-01 6.45976901e-01 -1.29888892e+00
-8.64943743e-01 5.67183673e-01 -5.09664178e-01 2.52696633e-01
4.10787642e-01 1.09168673e-02 1.20207906e+00 -1.12004936e+00
6.32061243e-01 1.06447256e+00 1.42040610e-01 3.75411272e-01
-8.56524706e-01 -3.81708086e-01 3.54132384e-01 5.29628932e-01
-1.31130803e+00 -6.64862216e-01 9.33858991e-01 -4.95570242e-01
5.94990015e-01 1.42439246e-01 5.96268415e-01 1.52942121e+00
-1.21132927e-02 1.35169244e+00 3.97091210e-01 1.36005506e-01
2.33573437e-01 -9.75715462e-03 -1.19620383e-01 6.34999514e-01
1.25000596e-01 -3.99616092e-01 -8.18028390e-01 7.43528977e-02
7.15973675e-01 3.55366409e-01 -5.05750597e-01 -3.88123900e-01
-1.10230768e+00 8.57700169e-01 2.85689592e-01 -4.39346433e-02
-6.54796481e-01 1.87073544e-01 5.84523916e-01 -9.42728966e-02
7.72967815e-01 -2.04819143e-01 -2.01555580e-01 -2.53834695e-01
-1.24332774e+00 3.05461109e-01 5.07894337e-01 1.08182228e+00
5.40487111e-01 2.00132564e-01 -4.36557502e-01 7.84020483e-01
4.07449365e-01 4.88894075e-01 5.22852004e-01 -1.14177155e+00
7.41900146e-01 3.50683957e-01 1.03947967e-01 -9.70093906e-01
2.25061804e-01 -2.95276642e-01 -6.80069506e-01 -4.69836950e-01
-2.18997881e-01 -1.68514594e-01 -7.71864355e-01 1.71063089e+00
2.08543986e-01 5.21297872e-01 1.24700218e-01 1.15649736e+00
1.15458024e+00 1.18258905e+00 -7.08050355e-02 -4.24087912e-01
1.14180291e+00 -1.38108552e+00 -9.73008454e-01 -3.93267483e-01
1.13470733e-01 -5.37800193e-01 9.35876071e-01 7.16189519e-02
-1.32090735e+00 -5.13174593e-01 -1.07751977e+00 -3.47216487e-01
1.58205613e-01 2.64428228e-01 2.18437076e-01 -2.18500331e-01
-9.50806618e-01 3.05132568e-01 -1.05675268e+00 -2.64559597e-01
6.48073077e-01 -3.31591293e-02 -1.14029005e-01 -1.29632846e-01
-1.18160856e+00 3.38167876e-01 5.28811991e-01 1.27731770e-01
-1.33190560e+00 -5.70274115e-01 -1.24359930e+00 2.84468025e-01
7.97211707e-01 -8.25743794e-01 1.55066907e+00 -1.15118504e+00
-1.31887662e+00 5.22766232e-01 -5.03957510e-01 -3.93943220e-01
4.75285232e-01 -5.25324881e-01 -5.78811243e-02 5.24107039e-01
4.58080977e-01 5.89402020e-01 1.10913765e+00 -1.25784945e+00
-7.28546262e-01 -1.83487818e-01 -1.49594620e-01 4.44442689e-01
-4.12308753e-01 -1.85749471e-01 -9.47951436e-01 -9.33697641e-01
-2.14253336e-01 -7.32567608e-01 6.34699762e-02 -2.84134418e-01
-4.55509543e-01 -1.80437937e-01 9.40932691e-01 -1.26313972e+00
1.31265593e+00 -2.19251227e+00 6.13018155e-01 -5.41183829e-01
2.61934191e-01 2.64127612e-01 -1.64417610e-01 5.09493649e-01
5.46334162e-02 -2.60480881e-01 -3.69723707e-01 -5.47972918e-01
6.59904331e-02 3.11894473e-02 -5.59428275e-01 2.23997906e-01
1.44924015e-01 9.74658728e-01 -1.08234775e+00 -5.60371637e-01
1.16273701e-01 6.18853271e-01 -5.86646557e-01 5.92873871e-01
-5.38610160e-01 3.88003111e-01 -7.38658369e-01 6.59231663e-01
3.45019370e-01 -5.45402050e-01 1.02761425e-01 -3.00680697e-01
-7.03446046e-02 2.69990087e-01 -8.03822994e-01 2.27055216e+00
-1.70527607e-01 7.85426199e-01 -6.34319987e-03 -1.19310081e+00
5.05235732e-01 5.06803393e-01 5.07009029e-01 -5.58397949e-01
1.85589090e-01 1.60426289e-01 -6.48199022e-01 -8.57679904e-01
6.64688826e-01 1.95948035e-01 -1.52526096e-01 2.06508920e-01
3.79955977e-01 2.04452932e-01 3.72540325e-01 6.07895017e-01
9.04063463e-01 4.48942095e-01 2.00732097e-01 1.15721799e-01
3.75326276e-01 -1.46055326e-01 8.37441206e-01 4.18623954e-01
-1.54033646e-01 9.08810914e-01 6.99487805e-01 1.57969631e-02
-1.10053790e+00 -1.17998052e+00 3.77792358e-01 1.02668417e+00
3.89395297e-01 -6.47355020e-01 -9.96940255e-01 -6.32817745e-01
-2.56364793e-01 8.51141095e-01 -3.86995465e-01 -2.48734578e-01
-3.37491900e-01 -3.94845009e-01 -5.87018728e-02 5.77869833e-01
5.94700515e-01 -9.15165424e-01 -4.85167801e-01 8.16712379e-02
-9.30628479e-01 -1.35312819e+00 -9.01352942e-01 -4.07964826e-01
-7.57337987e-01 -8.43465447e-01 -1.00486565e+00 -8.20949018e-01
4.56217587e-01 6.32808089e-01 1.01992929e+00 -1.35571614e-01
-6.90507069e-02 4.24174309e-01 -5.30639589e-01 -2.28214979e-01
-2.29523197e-01 1.51305730e-02 -9.17874649e-02 2.48849958e-01
2.13539422e-01 -5.45086384e-01 -8.60595703e-01 1.36797037e-02
-1.14535058e+00 6.00223839e-01 6.45395696e-01 7.02041447e-01
8.28343689e-01 -4.58871648e-02 6.10198736e-01 -6.67367578e-01
3.77548575e-01 -8.91486108e-01 -2.54212409e-01 1.19340144e-01
-1.49031311e-01 1.87907405e-02 4.22134697e-01 -1.80937991e-01
-1.24925327e+00 -7.71443248e-02 -2.42286492e-02 -9.06498075e-01
1.16067022e-01 6.95811152e-01 -4.55795109e-01 7.38349974e-01
1.18286870e-01 6.82650626e-01 -8.34746286e-02 -4.49069351e-01
3.42944950e-01 6.96573377e-01 6.50183320e-01 -2.12633580e-01
5.18840075e-01 4.09484804e-01 -5.51262021e-01 -8.60725224e-01
-1.24239039e+00 -4.47222650e-01 -3.50223869e-01 -3.45238835e-01
1.06600285e+00 -1.45572042e+00 -1.81954280e-01 4.50658441e-01
-1.27502465e+00 -3.10646027e-01 -2.05172300e-01 3.67754549e-01
-7.72576988e-01 5.91029108e-01 -5.08527815e-01 -5.16798556e-01
-4.10021782e-01 -1.21206903e+00 1.27727592e+00 3.80136907e-01
5.44559509e-02 -8.82715881e-01 -9.30817500e-02 7.22934961e-01
1.25251383e-01 3.19755822e-01 5.27585447e-01 -5.92510998e-01
-9.14512694e-01 -1.13010317e-01 -3.00168246e-01 5.88907301e-01
1.18286885e-01 -4.27283049e-02 -7.71097243e-01 -2.82347649e-01
1.06867597e-01 -4.00527000e-01 1.20436859e+00 6.80480063e-01
1.26037478e+00 -6.66625559e-01 -1.32644653e-01 4.31505531e-01
1.34306681e+00 3.24598234e-03 5.09201646e-01 -2.16284581e-02
9.57098782e-01 4.41912472e-01 7.87000358e-01 6.93651140e-01
8.07155073e-01 6.11548007e-01 5.88235378e-01 3.38924944e-01
-1.32576138e-01 -6.32278025e-01 7.54700065e-01 1.26079381e+00
-4.27903496e-02 -5.62508225e-01 -5.66573262e-01 6.53657436e-01
-2.40060019e+00 -1.15426981e+00 1.17159724e-01 1.95731783e+00
6.79755509e-01 -8.00150633e-02 4.06326614e-02 -1.94975704e-01
9.15079951e-01 6.96155488e-01 -7.58227050e-01 1.18331902e-01
7.34352320e-02 -4.85927582e-01 7.38615319e-02 3.85731816e-01
-1.20973027e+00 9.41946208e-01 4.83677340e+00 9.05643761e-01
-1.00411975e+00 3.62657815e-01 5.27578413e-01 -4.30175871e-01
-4.00312871e-01 -1.22096874e-01 -4.81986135e-01 9.21862185e-01
1.01117945e+00 -3.47706497e-01 3.16122919e-01 9.42925274e-01
5.25930405e-01 -4.51170541e-02 -1.06390572e+00 1.16075706e+00
5.44409513e-01 -1.50872719e+00 3.74460340e-01 -1.32915661e-01
8.58673453e-01 1.01309888e-01 1.73300818e-01 2.96963364e-01
-1.15985811e-01 -5.25049508e-01 1.01318502e+00 6.73026562e-01
7.73941100e-01 -5.81730306e-01 6.68403924e-01 2.84521371e-01
-1.18570149e+00 -7.67205432e-02 -3.11358005e-01 1.28607884e-01
4.42516148e-01 5.47751427e-01 -3.63425583e-01 6.88562691e-01
6.55184627e-01 1.38320220e+00 -3.94771844e-01 8.36331666e-01
-4.26956773e-01 5.38945854e-01 2.61260986e-01 1.65953621e-01
2.69577265e-01 -2.89972246e-01 8.52174759e-01 1.03017259e+00
5.47419727e-01 1.51373997e-01 2.18790784e-01 9.03500795e-01
-2.65098989e-01 -4.38837195e-03 -3.63974065e-01 -4.76727098e-01
3.64088118e-01 1.14890373e+00 -3.44542027e-01 -5.74147344e-01
-6.18314266e-01 1.37991226e+00 1.67914927e-01 6.09710515e-01
-1.14833713e+00 -2.01060414e-01 5.59768140e-01 3.94440666e-02
6.43807292e-01 -1.02787890e-01 9.54790562e-02 -1.78176880e+00
2.52558827e-01 -7.76620269e-01 3.72611612e-01 -1.18798864e+00
-8.86166513e-01 4.89874721e-01 7.24403709e-02 -1.32209539e+00
-4.22722697e-01 -1.03481025e-01 -6.72491431e-01 5.68686306e-01
-1.44555354e+00 -1.11285830e+00 -6.14346743e-01 4.95919883e-01
1.26563632e+00 -1.71951801e-01 2.43967012e-01 2.93292671e-01
-7.75165498e-01 1.64732352e-01 2.90394604e-01 -1.98367052e-02
6.30031407e-01 -1.01695430e+00 1.89305872e-01 1.19978011e+00
9.68256444e-02 1.97361305e-01 8.89410436e-01 -7.33869255e-01
-1.47448599e+00 -1.36582851e+00 7.24755943e-01 -2.75454611e-01
6.15333378e-01 -3.11456323e-01 -9.59536791e-01 8.59232843e-01
4.86533999e-01 -2.58905768e-01 7.03918338e-01 -3.93313199e-01
-1.11651786e-01 8.38798583e-02 -5.14558792e-01 5.85892141e-01
9.85297501e-01 -5.72016716e-01 -7.00013280e-01 3.44102055e-01
1.15132356e+00 -4.21125323e-01 -5.40187001e-01 2.19074175e-01
3.81894946e-01 -9.48214531e-01 8.39735687e-01 -3.58957350e-01
1.21027577e+00 -2.57611006e-01 -3.42519820e-01 -1.33086026e+00
-2.00774208e-01 -5.94744444e-01 -6.34402812e-01 1.31273222e+00
4.12925817e-02 -4.07576561e-02 6.10554934e-01 4.04208302e-01
-4.43222046e-01 -7.67517984e-01 -6.17346644e-01 -4.00241196e-01
-4.99149173e-01 -2.29908586e-01 1.62442610e-01 6.42043412e-01
-1.12367220e-01 6.59718990e-01 -6.68166935e-01 2.63033658e-01
8.73626471e-01 2.54677564e-01 6.44248843e-01 -7.81539798e-01
-2.30305493e-01 -2.56515205e-01 -2.77774364e-01 -1.29136610e+00
2.79061228e-01 -8.98909748e-01 1.14954323e-01 -1.95482028e+00
6.47823513e-01 5.35322428e-01 -2.59526402e-01 1.67002648e-01
-5.41836143e-01 -4.87481840e-02 1.99984431e-01 3.94439161e-01
-1.26298809e+00 1.21626127e+00 1.18673348e+00 -1.24909416e-01
-2.00937148e-02 -2.08414555e-01 -8.45335543e-01 7.51489401e-01
5.15314877e-01 -4.25414950e-01 -7.48887897e-01 -6.90084696e-01
8.53033662e-02 4.54005539e-01 5.27820110e-01 -7.80502975e-01
2.02775374e-01 -1.49737552e-01 2.06896067e-01 -7.93250680e-01
3.97890598e-01 -4.80441481e-01 -2.79236324e-02 2.13438675e-01
-4.87118810e-01 -2.29226276e-01 -8.49485174e-02 9.87350106e-01
-5.98246515e-01 -4.32979763e-02 5.02251446e-01 -6.27821758e-02
-8.94207835e-01 7.31501997e-01 -1.70147136e-01 2.59677321e-01
9.03837562e-01 2.34398316e-03 -2.51694202e-01 -7.38336861e-01
-5.98804712e-01 4.76386338e-01 4.38348472e-01 6.69541299e-01
9.04264808e-01 -1.41843021e+00 -9.04449344e-01 -6.69222549e-02
8.39142948e-02 1.67681888e-01 8.16481471e-01 8.87447298e-01
-3.49882215e-01 4.03926402e-01 -8.77343863e-02 -5.51798761e-01
-1.12834322e+00 6.93924546e-01 -1.63314059e-01 8.74132290e-02
-7.25476682e-01 8.04492235e-01 7.48453498e-01 2.66385466e-01
2.45718479e-01 -7.62519389e-02 -2.05744565e-01 2.27258056e-01
7.26062179e-01 3.25852573e-01 -3.77898604e-01 -7.93700039e-01
-1.26198530e-01 1.48553029e-01 -1.57154858e-01 -6.87073097e-02
1.53982151e+00 -5.31455219e-01 9.97199267e-02 5.74340343e-01
1.38296211e+00 -4.09314513e-01 -1.84311867e+00 -4.54735070e-01
-3.27982277e-01 -4.98502046e-01 1.14400841e-01 -3.06765527e-01
-1.12203968e+00 9.33504164e-01 6.13860451e-02 2.44822856e-02
1.16431475e+00 1.78629488e-01 1.23102295e+00 1.08196177e-01
-1.05971470e-02 -1.16395569e+00 4.46161509e-01 2.07211301e-01
1.14299166e+00 -1.39969075e+00 -8.02384615e-02 -3.35819244e-01
-1.14796340e+00 8.46537113e-01 4.56436157e-01 -2.27126256e-01
3.29030216e-01 -2.41935790e-01 -3.07072073e-01 -1.02160312e-01
-1.08982134e+00 5.10868691e-02 4.43740308e-01 1.77903235e-01
2.71247327e-01 -1.47216290e-01 -1.21350601e-01 1.11687398e+00
1.71727151e-01 2.28080511e-01 5.91123462e-01 8.58262122e-01
-5.49641609e-01 -5.82374275e-01 3.88202593e-02 3.83933395e-01
-5.32280982e-01 -1.31084397e-01 -5.20581147e-03 2.73801088e-01
-2.31855243e-01 8.28082502e-01 1.09402761e-01 -2.83114403e-01
1.61523685e-01 -5.64832874e-02 1.53625011e-01 -6.10275686e-01
1.39294133e-01 4.29329425e-01 -1.26781151e-01 -6.90467238e-01
-6.40551507e-01 -8.84874761e-01 -1.10703671e+00 -9.35560986e-02
1.13333583e-01 1.82284847e-01 5.06513834e-01 8.97725880e-01
5.94491124e-01 8.16801786e-01 6.80113852e-01 -1.13706350e+00
-4.74962950e-01 -8.21957529e-01 -5.42430401e-01 4.66460854e-01
4.41166073e-01 -5.62992096e-01 -3.27955157e-01 6.21161342e-01] | [10.448873519897461, 0.5515821576118469] |
e3d567d8-53d9-46ba-857e-d5310c0bec92 | explaining-graph-neural-networks-via-non | 2301.0278 | null | https://arxiv.org/abs/2301.02780v1 | https://arxiv.org/pdf/2301.02780v1.pdf | Explaining Graph Neural Networks via Non-parametric Subgraph Matching | The great success in graph neural networks (GNNs) provokes the question about explainability: Which fraction of the input graph is the most determinant of the prediction? Particularly, parametric explainers prevail in existing approaches because of their stronger capability to decipher the black-box (i.e., the target GNN). In this paper, based on the observation that graphs typically share some joint motif patterns, we propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs. It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance. Moreover, we note that present graph sampling or node-dropping methods usually suffer from the false positive sampling problem. To ameliorate that issue, we design a new augmentation paradigm named MatchDrop. It takes advantage of MatchExplainer to fix the most informative portion of the graph and merely operates graph augmentations on the rest less informative part. We conduct extensive experiments on both synthetic and real-world datasets and show the effectiveness of our MatchExplainer by outperforming all parametric baselines with significant margins. Additional results also demonstrate that our MatchDrop is a general scheme to be equipped with GNNs for enhanced performance. | ['Stan Z. Li', 'Zhangming Niu', 'Xurui Jin', 'Yinghui Jiang', 'Dragomir Radev', 'Lirong Wu', 'Siyuan Li', 'Fang Wu'] | 2023-01-07 | null | null | null | null | ['graph-sampling'] | ['graphs'] | [ 3.36262286e-01 6.56601131e-01 -3.99591267e-01 -2.21473455e-01
-2.46012732e-01 -4.47748035e-01 4.59038109e-01 -1.31115392e-01
2.53578246e-01 8.09145033e-01 7.55523145e-02 -4.88214880e-01
-3.44645768e-01 -8.84896636e-01 -1.20365453e+00 -7.25166380e-01
-9.55558419e-02 5.73189139e-01 5.68338595e-02 -9.97258052e-02
-7.19814226e-02 2.60075331e-01 -1.07871103e+00 -3.13982628e-02
1.24244881e+00 6.23794675e-01 2.16110140e-01 4.79956865e-02
-9.61273238e-02 5.77700317e-01 -2.92718112e-01 -6.14542246e-01
3.20771962e-01 -5.12006104e-01 -5.40914893e-01 1.56868652e-01
3.89071047e-01 1.72077529e-02 -7.50954390e-01 1.11783624e+00
1.82078674e-01 1.29763000e-02 5.14355898e-01 -1.66901708e+00
-7.90139794e-01 1.21602464e+00 -7.33479619e-01 1.72207713e-01
9.93796214e-02 1.85822785e-01 1.41636300e+00 -8.29684436e-01
5.60911298e-01 1.24252808e+00 8.01917136e-01 3.14976752e-01
-1.44168925e+00 -7.09893644e-01 5.24884760e-01 1.92809358e-01
-1.46678388e+00 -9.28160325e-02 1.17008400e+00 -4.73204888e-02
4.91960049e-01 3.42566073e-01 4.96881306e-01 1.24156797e+00
-1.37919439e-02 7.76735961e-01 8.19355130e-01 -2.02809572e-01
7.32083386e-03 -5.82154281e-02 3.19255650e-01 1.01120806e+00
6.27406836e-01 1.09048471e-01 -3.05434883e-01 -1.95911422e-01
7.77872682e-01 6.93518892e-02 -6.52708113e-01 -7.30418921e-01
-1.01340365e+00 8.38906944e-01 8.76332760e-01 1.40842214e-01
-2.89368391e-01 2.19052032e-01 7.49354139e-02 9.94918197e-02
3.20857584e-01 5.91988206e-01 -3.58878255e-01 3.98475796e-01
-6.17838860e-01 7.77663663e-02 8.31177950e-01 1.08086288e+00
1.19277608e+00 1.76224858e-01 -1.07457995e-01 6.37279689e-01
7.58522525e-02 -4.57509682e-02 1.47595286e-01 -2.64269739e-01
4.88952696e-01 1.17451596e+00 -5.00772476e-01 -1.30745387e+00
-3.15559328e-01 -9.92098212e-01 -1.13947833e+00 -4.94180709e-01
1.92447260e-01 -1.42938927e-01 -1.12156367e+00 2.03075528e+00
4.04226601e-01 5.48026741e-01 -3.36327046e-01 8.90446365e-01
8.21123779e-01 4.59435791e-01 9.90565419e-02 8.93763378e-02
1.03262246e+00 -1.09910369e+00 -3.71132225e-01 -5.21646559e-01
4.75722075e-01 -6.95196241e-02 1.03341246e+00 -2.93443184e-02
-5.35195589e-01 -4.78957355e-01 -1.17865729e+00 1.42649233e-01
-2.48847812e-01 -1.08038355e-02 1.01249731e+00 4.86243486e-01
-9.27962363e-01 8.80811155e-01 -6.56542003e-01 -1.79415867e-01
4.00971025e-01 3.76518995e-01 -4.82124448e-01 -1.94691345e-01
-1.16784060e+00 3.96139622e-01 6.49371922e-01 2.99843639e-01
-7.84766138e-01 -8.18268299e-01 -1.01221216e+00 3.52952242e-01
8.97264242e-01 -8.97166610e-01 6.10156357e-01 -1.13002491e+00
-8.20879579e-01 4.65023875e-01 -9.97977704e-02 -5.30582368e-01
3.18884790e-01 8.69131759e-02 -3.75282854e-01 -3.20011005e-02
1.03354834e-01 4.18464035e-01 8.04788589e-01 -1.44261599e+00
-1.74241945e-01 -3.22806448e-01 6.92487210e-02 -1.62250757e-01
-1.94992393e-01 -6.14720047e-01 -7.03055382e-01 -7.82236338e-01
4.57677633e-01 -1.05780315e+00 -3.01934004e-01 -3.06247652e-01
-1.23864877e+00 -2.13178948e-01 7.13730037e-01 -3.69029373e-01
1.29895496e+00 -1.96081662e+00 1.15332849e-01 5.59254527e-01
9.35092211e-01 2.19358385e-01 -3.28257263e-01 6.02012694e-01
-5.57713091e-01 3.70894045e-01 -3.67526442e-01 -2.17484549e-01
6.42194375e-02 3.21756601e-01 -3.37266892e-01 5.16765475e-01
3.96165490e-01 1.15529740e+00 -7.07357287e-01 -3.57312232e-01
-9.12867486e-02 3.42353553e-01 -5.60999334e-01 1.52817711e-01
-3.38916034e-01 3.89209986e-01 -6.45762265e-01 6.17972374e-01
8.17616284e-01 -7.50391901e-01 4.69719350e-01 -2.83315718e-01
3.48839611e-01 2.75707811e-01 -1.02800024e+00 1.30645561e+00
4.04152684e-02 4.20002162e-01 -9.92747620e-02 -1.24032140e+00
1.15249014e+00 -1.29511461e-01 1.44073486e-01 -3.30339015e-01
1.14799931e-03 6.01645783e-02 2.74501443e-01 -2.30098218e-01
2.67197311e-01 1.16519645e-01 8.64216536e-02 3.52201194e-01
-3.54027227e-02 4.97344077e-01 1.39698833e-01 5.50792813e-01
1.34929490e+00 1.59719005e-01 5.83221555e-01 -4.42880988e-01
3.69363606e-01 -1.63632721e-01 8.03620636e-01 8.93123627e-01
-4.54628468e-02 6.37081027e-01 1.10575414e+00 -5.17973185e-01
-9.50428963e-01 -9.28530633e-01 2.01986536e-01 9.07458603e-01
3.42587352e-01 -4.57247704e-01 -7.73516119e-01 -1.07537675e+00
2.28309453e-01 5.58431625e-01 -9.84747827e-01 -4.41105247e-01
-5.96297741e-01 -6.87061310e-01 2.67798692e-01 5.32522917e-01
3.53122056e-01 -9.10274327e-01 2.82292128e-01 -8.51054909e-04
-1.87095672e-01 -1.11892128e+00 -6.57151580e-01 1.80188566e-01
-8.56554985e-01 -1.33486712e+00 -2.53143430e-01 -7.38932312e-01
9.94293571e-01 4.15068120e-01 1.30689418e+00 5.26149988e-01
4.98904288e-02 -4.23771441e-02 -3.35037887e-01 -8.00397024e-02
-3.05024385e-01 5.11643708e-01 -2.20899940e-01 1.95994526e-01
2.08865479e-01 -1.12374818e+00 -5.09127438e-01 3.46487582e-01
-7.45181799e-01 3.70991051e-01 8.95747125e-01 7.47021735e-01
6.89662874e-01 3.72770679e-04 6.08183742e-01 -1.47329795e+00
4.62681532e-01 -7.06076503e-01 -3.76145363e-01 3.35311830e-01
-7.78181493e-01 5.23881674e-01 8.81357729e-01 -3.58643413e-01
-4.51657742e-01 5.66309951e-02 1.95116714e-01 -6.40160561e-01
1.13034219e-01 7.96832681e-01 -6.10114217e-01 -5.16851842e-02
3.50113004e-01 3.96966755e-01 1.30699307e-01 -5.01843512e-01
2.02558041e-01 -3.30602080e-02 6.75924540e-01 -4.25222605e-01
1.45012021e+00 2.88066953e-01 2.94935226e-01 -5.62009096e-01
-7.96244562e-01 -2.04210579e-01 -4.75522667e-01 -5.67626394e-02
2.81484872e-01 -7.63992846e-01 -7.56812394e-01 -5.61471097e-02
-1.04748988e+00 7.78890215e-03 -1.78168491e-02 1.29089206e-01
-9.48459953e-02 5.61244428e-01 -1.77905262e-01 -6.20452404e-01
-4.27910417e-01 -1.01866734e+00 8.31555486e-01 1.70213729e-01
-1.49059355e-01 -9.42245841e-01 -2.97227148e-02 8.51873457e-02
1.25359401e-01 6.60290539e-01 1.36100364e+00 -1.20220494e+00
-1.03290868e+00 -2.06214681e-01 -5.16537368e-01 -8.71076807e-02
6.31413013e-02 -4.20602560e-02 -7.42971957e-01 -2.38939971e-01
-4.67664689e-01 7.08632693e-02 1.12385213e+00 2.03352019e-01
1.41626775e+00 -5.66548705e-01 -7.43419349e-01 8.35375369e-01
1.45282400e+00 -2.51593888e-01 5.82695782e-01 1.25099257e-01
1.15535939e+00 5.27306616e-01 2.29276478e-01 1.36837408e-01
5.31650722e-01 5.08942425e-01 9.23960626e-01 -2.82876611e-01
-1.07388049e-01 -9.09074724e-01 5.37136756e-02 7.08677709e-01
3.64787057e-02 -5.32323658e-01 -7.10950792e-01 4.30139601e-01
-1.93868041e+00 -5.16366124e-01 -2.91369706e-01 2.05741501e+00
5.01224041e-01 1.36527762e-01 1.50465384e-01 -1.84508413e-02
1.07918596e+00 3.72921288e-01 -7.42904246e-01 1.51140049e-01
-1.91058919e-01 1.22572616e-01 3.44430238e-01 3.13534349e-01
-1.04469776e+00 8.29447269e-01 5.32102966e+00 8.09365988e-01
-7.98454881e-01 -3.22169155e-01 7.47387409e-01 4.22178924e-01
-7.49746263e-01 2.91500688e-01 -5.86478233e-01 5.54676294e-01
5.97620487e-01 -2.50636339e-01 5.30026138e-01 1.02146840e+00
6.09768219e-02 3.96191984e-01 -1.18528438e+00 6.81622803e-01
-2.82263476e-02 -1.33807588e+00 3.92039716e-01 2.05781788e-01
6.30771697e-01 -1.51545614e-01 -1.26590475e-01 5.04574895e-01
2.87244529e-01 -1.19574487e+00 3.78799081e-01 5.34176588e-01
5.56237221e-01 -9.05031204e-01 6.02512956e-01 3.41816932e-01
-1.44738209e+00 1.23326935e-01 -4.64243889e-01 1.20838851e-01
-1.38587311e-01 7.09286273e-01 -1.10319674e+00 9.28604722e-01
2.35132396e-01 8.32711935e-01 -7.37956762e-01 1.04275382e+00
-5.06852448e-01 7.61981070e-01 -1.65362611e-01 -6.81804344e-02
2.93361783e-01 -3.92761171e-01 8.38309646e-01 7.50216544e-01
2.06310585e-01 -5.57869188e-02 2.57144392e-01 1.42699909e+00
-5.20650625e-01 -4.79165800e-02 -7.26095617e-01 -2.34817445e-01
6.54503047e-01 1.34156704e+00 -6.98050499e-01 -3.56880240e-02
-1.49133593e-01 8.35425735e-01 6.94521189e-01 4.65940326e-01
-1.02535498e+00 -3.33360523e-01 5.32354891e-01 2.24189609e-01
5.10203838e-01 4.05913293e-02 -1.27897635e-01 -9.96291101e-01
7.76039660e-02 -9.85751092e-01 4.20982212e-01 -5.85042179e-01
-1.33241999e+00 7.52399802e-01 -2.40448117e-01 -9.92576659e-01
-7.75175095e-02 -4.51627851e-01 -9.49777722e-01 7.00983882e-01
-1.33045197e+00 -1.27278137e+00 -5.22836387e-01 4.47694719e-01
1.51591882e-01 1.65899232e-01 4.48091358e-01 1.43860146e-01
-9.48674977e-01 8.51224303e-01 -9.89960060e-02 1.29155427e-01
2.61423618e-01 -1.35237575e+00 7.87325263e-01 8.90004396e-01
3.88977528e-01 8.27840745e-01 8.54190290e-01 -8.04903507e-01
-1.58890820e+00 -1.34967268e+00 6.21465862e-01 -2.81802028e-01
6.66387022e-01 -5.11373878e-01 -1.23456252e+00 9.10419405e-01
-7.61351436e-02 2.64292583e-02 3.17946851e-01 3.47611368e-01
-4.60521787e-01 -1.74772575e-01 -7.78121173e-01 7.60342777e-01
1.42246044e+00 -3.21785122e-01 -2.98688978e-01 2.48956129e-01
1.14645779e+00 -2.04245046e-01 -4.82081562e-01 7.03089774e-01
3.45190406e-01 -9.95003343e-01 8.74201834e-01 -7.67299891e-01
6.13527417e-01 -1.22526273e-01 2.37269282e-01 -1.34496713e+00
-3.51484954e-01 -8.49027634e-01 -2.95849055e-01 1.31853163e+00
6.60929680e-01 -8.03411841e-01 1.28469336e+00 3.94113123e-01
-2.15000361e-01 -1.03889275e+00 -8.73887062e-01 -7.25530863e-01
-3.09682935e-01 -2.25272775e-01 8.90485942e-01 1.06475496e+00
-1.60642579e-01 4.95469034e-01 -6.66854799e-01 4.74516004e-01
7.64106572e-01 5.05787909e-01 1.00825059e+00 -1.30537438e+00
-4.83224183e-01 -3.55897516e-01 -4.02520120e-01 -1.09388828e+00
3.61933708e-01 -1.18606508e+00 -3.15090604e-02 -1.41815710e+00
4.51555580e-01 -1.71215981e-01 -2.81567156e-01 4.85733688e-01
-6.82752550e-01 -1.60153545e-02 -1.26498863e-01 1.78333938e-01
-5.08500576e-01 7.73579240e-01 1.25701749e+00 -7.24619627e-02
-1.05403364e-01 8.23191479e-02 -1.04689145e+00 5.92350960e-01
6.44277871e-01 -5.61604500e-01 -5.04179358e-01 -1.78520620e-01
1.59632102e-01 -3.99946012e-02 4.84795123e-01 -7.79439092e-01
7.04157948e-02 2.44178362e-02 7.43997991e-02 -5.00695407e-01
-1.59709584e-02 -7.93620765e-01 4.64725912e-01 4.01697457e-01
-2.88377374e-01 1.93125367e-01 5.61916456e-02 1.07937682e+00
-1.18725765e-02 -4.15086523e-02 5.48660457e-01 7.94713050e-02
-6.03514671e-01 7.18560517e-01 2.32234553e-01 7.26348311e-02
8.31570208e-01 -3.30445051e-01 -5.26800334e-01 -5.02778053e-01
-4.92194563e-01 3.12117040e-01 3.25427622e-01 2.70942926e-01
5.64359367e-01 -1.29343700e+00 -5.90083897e-01 2.13622928e-01
1.52662292e-01 -1.26481399e-01 1.68429017e-01 8.65622401e-01
-1.98305726e-01 3.53249520e-01 2.21367225e-01 -3.85406315e-01
-9.51455951e-01 7.42433429e-01 3.24184060e-01 -4.57437485e-01
-8.47915769e-01 8.52513850e-01 6.65400028e-01 -5.11166751e-01
3.08532789e-02 -1.39774472e-01 -2.48258263e-02 -4.01483744e-01
5.55192791e-02 2.16895953e-01 -2.31946945e-01 -4.21955526e-01
-3.20554465e-01 1.17971741e-01 -2.16527998e-01 6.47737682e-01
1.40920937e+00 -3.82732637e-02 -1.64728001e-01 5.53924255e-02
9.87362325e-01 2.54088291e-03 -1.22192347e+00 -4.68014151e-01
2.94686425e-02 -3.91672134e-01 -2.08523840e-01 -5.70951343e-01
-1.34759307e+00 5.59440017e-01 -1.31328985e-01 4.73443866e-01
9.85107124e-01 1.75860047e-01 6.20916784e-01 2.78049320e-01
1.54222265e-01 -4.58010614e-01 -1.54171988e-01 1.29930124e-01
9.06112194e-01 -1.14841866e+00 1.71161257e-02 -9.36443210e-01
-4.10427272e-01 9.10495937e-01 8.47556412e-01 -3.46976042e-01
4.59480911e-01 -1.33049831e-01 -4.86519337e-01 -4.49639052e-01
-7.16788173e-01 -2.05048367e-01 5.14865756e-01 5.18894732e-01
8.19037482e-02 8.18546787e-02 -1.22641325e-01 8.92024279e-01
-2.97433227e-01 -5.50175011e-01 3.64591032e-01 1.87909365e-01
-3.21184248e-01 -9.09972668e-01 -2.09914753e-03 6.03472829e-01
-1.94907635e-01 -3.39427978e-01 -8.06359947e-01 1.32535720e+00
-1.40037000e-01 6.06519163e-01 -1.57231629e-01 -6.60254180e-01
1.92790419e-01 -1.02025367e-01 6.05736375e-02 -4.37915772e-01
-3.57663751e-01 -8.03052410e-02 2.04442084e-01 -6.53396964e-01
8.40379447e-02 -2.28025898e-01 -1.05041170e+00 -5.74526668e-01
-4.44563419e-01 3.39514822e-01 2.35031471e-01 9.99764323e-01
5.71997106e-01 6.97808683e-01 6.69920325e-01 -4.87461746e-01
-6.48153067e-01 -9.93652105e-01 -6.95545316e-01 2.63285816e-01
3.83299708e-01 -7.22144186e-01 -5.88767767e-01 -5.08568704e-01] | [7.40493106842041, 6.234894752502441] |
aed09d74-8783-4aef-959c-096d97dde9a1 | deepsat-v2-feature-augmented-convolutional | 1911.07747 | null | https://arxiv.org/abs/1911.07747v1 | https://arxiv.org/pdf/1911.07747v1.pdf | DeepSat V2: Feature Augmented Convolutional Neural Nets for Satellite Image Classification | Satellite image classification is a challenging problem that lies at the crossroads of remote sensing, computer vision, and machine learning. Due to the high variability inherent in satellite data, most of the current object classification approaches are not suitable for handling satellite datasets. The progress of satellite image analytics has also been inhibited by the lack of a single labeled high-resolution dataset with multiple class labels. In a preliminary version of this work, we introduced two new high resolution satellite imagery datasets (SAT-4 and SAT-6) and proposed DeepSat framework for classification based on "handcrafted" features and a deep belief network (DBN). The present paper is an extended version, we present an end-to-end framework leveraging an improved architecture that augments a convolutional neural network (CNN) with handcrafted features (instead of using DBN-based architecture) for classification. Our framework, having access to fused spatial information obtained from handcrafted features as well as CNN feature maps, have achieved accuracies of 99.90% and 99.84% respectively, on SAT-4 and SAT-6, surpassing all the other state-of-the-art results. A statistical analysis based on Distribution Separability Criterion substantiates the robustness of our approach in learning better representations for satellite imagery. | ['Manohar Karki', 'Robert DiBiano', 'Supratik Mukhopadhyay', 'Qun Liu', 'Sangram Ganguly', 'Saikat Basu', 'Ramakrishna Nemani'] | 2019-11-15 | null | null | null | null | ['satellite-image-classification'] | ['computer-vision'] | [ 1.31073162e-01 -1.74505889e-01 -8.05171859e-03 -5.49042106e-01
-7.72969902e-01 -5.44287145e-01 8.22335720e-01 4.04726267e-02
-5.34625173e-01 1.01220059e+00 -6.09050430e-02 -3.24550897e-01
-6.52792752e-01 -1.13461030e+00 -5.01844823e-01 -8.98020566e-01
-6.29168749e-01 4.39238638e-01 1.04650311e-01 -5.20108581e-01
-4.33739927e-03 8.57231557e-01 -1.78689897e+00 2.95977771e-01
7.93769419e-01 1.33669460e+00 1.23189956e-01 6.20615244e-01
1.33397937e-01 6.17950559e-01 -4.66704518e-02 2.52484530e-01
5.47408760e-01 -3.23215611e-02 -9.11716282e-01 1.44818187e-01
7.60152519e-01 -2.54345000e-01 -3.80603373e-01 9.39753711e-01
3.32129806e-01 2.40544200e-01 6.25754535e-01 -9.30215001e-01
-6.37569785e-01 3.72047752e-01 -4.21530157e-01 6.58540547e-01
-3.09041440e-01 3.67362350e-02 1.06385779e+00 -4.51621622e-01
1.83048457e-01 9.68865454e-01 9.49927747e-01 -3.95548083e-02
-1.12225592e+00 -4.72055018e-01 -1.75633822e-02 1.68772638e-01
-1.66316199e+00 -1.50156572e-01 3.75113398e-01 -7.27664351e-01
1.00036120e+00 2.91663557e-01 6.16783977e-01 4.45231706e-01
2.77395081e-02 3.36344481e-01 1.51466048e+00 -2.49341503e-01
1.73935592e-01 1.58892661e-01 3.38800192e-01 4.06419247e-01
1.27698049e-01 4.26330745e-01 5.19407652e-02 1.41022801e-01
6.58378720e-01 1.55540168e-01 -2.77882338e-01 -1.28171578e-01
-9.42237496e-01 1.17211998e+00 1.08795846e+00 6.73487127e-01
-6.99526370e-01 -2.44121090e-01 2.48187274e-01 3.56721014e-01
6.66755855e-01 9.34894681e-02 -5.53941905e-01 3.42444301e-01
-1.37729633e+00 2.92883664e-01 5.04371822e-01 3.33628327e-01
1.11028147e+00 3.69750917e-01 2.83574294e-02 6.80403471e-01
2.71726787e-01 6.64427757e-01 6.30138397e-01 -2.11128473e-01
2.47987986e-01 8.07728171e-01 9.06509981e-02 -1.13870013e+00
-6.88595951e-01 -1.06085527e+00 -1.00624549e+00 3.98244172e-01
-1.08515814e-01 -8.04723650e-02 -1.24912214e+00 1.14986694e+00
3.64814140e-02 1.46453679e-01 2.72765934e-01 1.06896806e+00
8.43119919e-01 7.87701130e-01 -1.55864181e-02 4.68493462e-01
1.08179796e+00 -6.92560911e-01 -2.53688335e-01 -1.60591245e-01
3.91571879e-01 -2.81346589e-01 7.42138922e-01 4.38669145e-01
-2.14886799e-01 -6.78562403e-01 -1.15797198e+00 2.60146856e-01
-8.40996861e-01 4.44084048e-01 7.63961315e-01 6.97891355e-01
-1.25441730e+00 7.01213658e-01 -7.83809066e-01 -7.33192384e-01
6.67408943e-01 4.79532540e-01 -7.18259215e-01 3.86254367e-04
-1.03685439e+00 1.10811269e+00 9.11260545e-01 4.50905323e-01
-9.34718490e-01 -4.30692703e-01 -6.77989542e-01 8.92445073e-02
-9.31429341e-02 -1.62634566e-01 8.00388396e-01 -1.29416597e+00
-1.25028074e+00 8.12140882e-01 6.93488598e-01 -7.94501901e-01
1.90562859e-01 -1.00892134e-01 -6.41357064e-01 5.30675836e-02
2.51001157e-02 5.83607852e-01 4.61336136e-01 -1.11485362e+00
-1.04692757e+00 -6.01723015e-01 4.76598516e-02 4.41182293e-02
-2.89131463e-01 -2.44440690e-01 3.98100704e-01 -3.34671229e-01
3.53892058e-01 -8.64059865e-01 -1.77012533e-01 -1.32167071e-01
-4.04001065e-02 9.62162316e-02 1.02429283e+00 -7.47567058e-01
7.11272001e-01 -2.08965993e+00 -3.05440202e-02 3.24947417e-01
-3.66237849e-01 6.07712507e-01 -2.07640007e-01 4.09532964e-01
-3.61034781e-01 1.90679684e-01 -5.28255820e-01 2.39302948e-01
-3.55823375e-02 4.55477744e-01 -4.53288913e-01 7.62924790e-01
3.94007474e-01 4.79368180e-01 -6.64429843e-01 -1.79110169e-01
5.46246529e-01 4.88961548e-01 -1.22045889e-01 6.60419762e-02
-1.83329791e-01 4.28665042e-01 -3.50071430e-01 8.35989177e-01
1.09832883e+00 1.19032167e-01 -5.22068329e-02 -3.54360580e-01
-5.47759473e-01 -6.38664588e-02 -1.15733993e+00 1.42604136e+00
-3.53617072e-01 6.47156358e-01 -2.94008441e-02 -1.44714594e+00
1.10026050e+00 2.31025964e-01 2.51422018e-01 -6.93514109e-01
-2.67621260e-02 2.70766795e-01 -7.89288059e-02 -6.46471500e-01
4.07304198e-01 -4.94226515e-01 1.48659021e-01 3.40102501e-02
3.91306370e-01 -7.40686059e-02 -4.18787599e-02 -4.21492249e-01
5.20308197e-01 2.10721135e-01 3.16614151e-01 -5.22227407e-01
5.72338402e-01 4.63825583e-01 1.68844670e-01 6.18400514e-01
-1.70299321e-01 5.74558854e-01 1.05193973e-01 -9.68790591e-01
-1.03035021e+00 -6.35668099e-01 -6.78120136e-01 9.53127801e-01
-3.44767362e-01 2.74586320e-01 -3.09528351e-01 -4.64019269e-01
1.80505767e-01 5.19247472e-01 -8.26467931e-01 3.23310167e-01
-1.02364337e-02 -1.36636353e+00 9.52983439e-01 3.27380508e-01
9.51198101e-01 -6.74585700e-01 -5.00802219e-01 2.14282125e-01
5.21624498e-02 -8.96825016e-01 7.76470482e-01 4.28847224e-01
-1.32933581e+00 -9.93570149e-01 -3.90654176e-01 -4.19060618e-01
1.37725875e-01 3.39860886e-01 9.39144969e-01 -7.26227313e-02
-2.44573534e-01 -1.64504752e-01 -6.49201155e-01 -1.43035397e-01
5.04101701e-02 4.29512143e-01 -2.70491064e-01 1.85922936e-01
3.73352617e-01 -8.37920189e-01 -4.04625446e-01 2.57209968e-02
-1.37109005e+00 -2.97390997e-01 9.52593386e-01 8.29291224e-01
3.31878513e-01 4.74929571e-01 1.85384020e-01 -4.66520131e-01
-9.87813994e-02 -9.31930602e-01 -5.82707226e-01 -7.70691782e-02
-2.93673635e-01 -3.40987626e-03 3.32825184e-01 2.43885130e-01
-8.35882723e-01 3.20607156e-01 -2.93957978e-01 -3.65279801e-02
-6.85688496e-01 1.15995777e+00 1.41318992e-01 -3.22510898e-01
8.93140376e-01 5.20351291e-01 6.57538744e-03 -7.42875397e-01
1.03877522e-01 1.19213200e+00 5.10417342e-01 -2.29613870e-01
8.49303246e-01 6.93132222e-01 -1.66029818e-02 -1.02720690e+00
-9.94973600e-01 -5.29308736e-01 -1.00658715e+00 3.60445604e-02
7.92528808e-01 -1.39608967e+00 -1.83108583e-01 5.29791653e-01
-5.20194113e-01 -2.18897104e-01 8.75100195e-02 6.25372112e-01
-2.57087439e-01 2.13686824e-01 -1.01366460e-01 -8.33955824e-01
-2.87413716e-01 -6.95787132e-01 9.80092108e-01 3.12442780e-01
5.30723929e-01 -9.32196677e-01 2.30276778e-01 2.96201944e-01
8.36545408e-01 6.74870074e-01 7.08978355e-01 -8.12381506e-01
-5.65930665e-01 -5.23156106e-01 -5.13907552e-01 6.76725328e-01
1.78185403e-01 1.48699582e-01 -1.12486327e+00 -4.06730264e-01
-2.79441953e-01 -5.72265387e-01 1.26068604e+00 3.76452982e-01
7.13820636e-01 -2.05747187e-01 3.77215892e-02 8.01375866e-01
2.15597844e+00 -9.75350961e-02 8.41432989e-01 9.45702434e-01
3.87504637e-01 3.42765003e-01 4.09720510e-01 5.31354368e-01
3.26263756e-01 5.27504086e-01 1.01443779e+00 -2.51798272e-01
1.85722038e-01 2.46062309e-01 5.64220659e-02 8.43960717e-02
-4.24815834e-01 -8.42822269e-02 -1.25643396e+00 7.14940071e-01
-1.78209805e+00 -9.97836113e-01 -3.74603212e-01 2.03108048e+00
4.36057538e-01 -1.64618671e-01 -5.04714213e-02 3.84741515e-01
4.50104415e-01 2.85770386e-01 -1.62572652e-01 2.52038762e-02
-3.79447460e-01 3.89326006e-01 9.45777059e-01 4.47938859e-01
-1.87430227e+00 1.04999113e+00 5.81155872e+00 5.51285386e-01
-1.63018250e+00 7.05553293e-02 2.67560959e-01 3.51496011e-01
1.79097056e-01 -1.66314572e-01 -7.50380099e-01 1.81842849e-01
1.11855066e+00 3.53605837e-01 1.82801455e-01 9.43489432e-01
1.26928881e-01 -3.04492801e-01 -5.19776225e-01 7.17961431e-01
4.05186974e-02 -1.25696242e+00 2.41961107e-01 1.22710578e-01
6.76298440e-01 7.34710038e-01 1.39920890e-01 4.74113047e-01
4.36672628e-01 -1.28194392e+00 5.01173973e-01 6.37558937e-01
4.82711315e-01 -6.92368269e-01 1.34015906e+00 4.51396435e-01
-1.01545727e+00 -2.36123070e-01 -5.81154466e-01 -3.80329102e-01
-4.11986381e-01 5.09802043e-01 -6.42509997e-01 1.05971396e+00
9.82772589e-01 9.40199196e-01 -7.08868921e-01 1.10012829e+00
2.90979296e-02 6.94222569e-01 -5.61580539e-01 3.89490604e-01
9.19684708e-01 -8.06301758e-02 2.37812981e-01 1.27549660e+00
5.28042018e-01 3.10513139e-01 3.29562068e-01 5.95211804e-01
4.54419613e-01 -4.79187490e-03 -6.38958693e-01 -1.59758165e-01
1.49397969e-01 1.51302361e+00 -5.02549231e-01 -2.85517961e-01
-2.38745570e-01 6.12704813e-01 7.95990601e-02 1.64666533e-01
-5.16121507e-01 -3.27188909e-01 5.19568086e-01 -7.35797063e-02
6.52745605e-01 -4.34086353e-01 -1.74416080e-01 -1.12908268e+00
-3.83646071e-01 -8.71920049e-01 4.51259136e-01 -8.30224931e-01
-1.20510852e+00 1.10879374e+00 5.68922535e-02 -1.51150882e+00
-1.12404197e-01 -9.46469903e-01 -3.95195872e-01 1.16549087e+00
-2.09013748e+00 -1.57451856e+00 -7.75434315e-01 6.17313504e-01
1.24711700e-01 -4.41271394e-01 1.07716560e+00 3.96751821e-01
-4.36532170e-01 -1.26519455e-02 5.31816065e-01 3.23707819e-01
1.64215609e-01 -1.10000563e+00 -1.52956486e-01 8.34393442e-01
2.59102732e-02 3.61336432e-02 5.66934288e-01 -1.82004616e-01
-1.24946928e+00 -1.39095163e+00 6.61335707e-01 6.59667095e-03
6.59671009e-01 1.94984585e-01 -8.81169200e-01 9.16001499e-01
1.78900406e-01 3.86113405e-01 8.07847619e-01 -1.77901685e-02
-2.92139143e-01 -6.00382149e-01 -1.34045947e+00 -1.68710947e-01
3.13321859e-01 -4.17182565e-01 -6.89794838e-01 4.18297559e-01
-2.80434475e-03 -1.36628151e-01 -9.11982358e-01 4.66076523e-01
4.22575176e-01 -1.18106639e+00 7.80018032e-01 -6.71074331e-01
4.41546947e-01 -5.78027189e-01 -8.76381874e-01 -1.37800968e+00
-6.39372826e-01 3.88169199e-01 5.01194179e-01 8.89611602e-01
2.65284240e-01 -5.05512774e-01 5.41462600e-01 7.52900988e-02
-3.20787251e-01 -9.13251117e-02 -9.79143441e-01 -9.26265895e-01
1.77662417e-01 -1.94528371e-01 6.42158389e-01 1.16464674e+00
-6.58268571e-01 1.05888687e-01 -2.62102991e-01 8.67474437e-01
5.92396140e-01 2.61368126e-01 6.81061506e-01 -1.71115279e+00
-8.83628204e-02 -3.10929328e-01 -9.04412925e-01 -4.24066305e-01
-7.87426233e-02 -8.42847168e-01 -2.20638625e-02 -1.58321846e+00
1.08842731e-01 -5.45991838e-01 -3.86746317e-01 9.44431543e-01
3.71526808e-01 6.78042769e-01 6.29198030e-02 3.05224150e-01
-6.30068257e-02 6.58492625e-01 5.91551900e-01 -2.62782365e-01
1.24693871e-01 -9.99436006e-02 -3.56176794e-01 5.94482362e-01
9.11775768e-01 -4.71696854e-01 6.09965622e-02 -6.44733727e-01
1.36006206e-01 -1.81302473e-01 7.01620042e-01 -1.61010349e+00
-1.70258135e-02 -5.30541465e-02 4.99969661e-01 -8.65859032e-01
8.54175314e-02 -1.03558445e+00 3.90523523e-01 4.02057648e-01
3.77230113e-03 -2.89498597e-01 3.70002061e-01 3.90149713e-01
-6.81772768e-01 -1.85867980e-01 1.02277994e+00 -3.20840359e-01
-1.18571961e+00 3.51433307e-01 -4.02737588e-01 -6.06910348e-01
9.32951391e-01 -3.22302341e-01 -1.91073626e-01 -4.21320088e-02
-8.70437741e-01 6.95971213e-03 4.95320000e-02 2.02196985e-01
2.36288831e-01 -1.09565020e+00 -1.12789178e+00 3.12522143e-01
1.40358239e-01 1.70121272e-03 3.73471528e-01 7.28084922e-01
-1.01865613e+00 7.28100538e-01 -8.48774791e-01 -8.21998239e-01
-9.86699164e-01 1.03134960e-01 7.61005938e-01 -2.26273134e-01
-3.29578817e-01 6.64859056e-01 -5.20593047e-01 -6.92927241e-01
-8.89693126e-02 -4.39486057e-01 -5.08528650e-01 3.37385744e-01
4.41082150e-01 1.51942775e-01 5.17958224e-01 -8.96866143e-01
-3.92070949e-01 4.91602451e-01 7.24109858e-02 -6.56957701e-02
2.00179267e+00 -5.62459789e-02 -2.11073995e-01 3.53938013e-01
9.72951233e-01 -6.89577043e-01 -1.08320379e+00 -4.39965397e-01
4.81976531e-02 -6.33199573e-01 8.91802609e-01 -1.13725841e+00
-1.32067096e+00 1.03515399e+00 1.20074737e+00 2.83848166e-01
1.16290724e+00 -3.67405444e-01 2.85745293e-01 7.20613837e-01
2.66334474e-01 -8.33475053e-01 -4.59619343e-01 8.34436357e-01
9.11372900e-01 -1.60806429e+00 1.34267405e-01 1.63424626e-01
-4.47598606e-01 1.33266461e+00 3.38809729e-01 -4.46349412e-01
9.23117936e-01 -1.11796997e-01 1.24588937e-01 -2.49308437e-01
-3.90498370e-01 -7.85662591e-01 2.75381684e-01 6.27688825e-01
4.80397582e-01 2.47848660e-01 -1.48410156e-01 4.87176031e-01
-9.40107554e-02 3.36803734e-01 3.09809893e-01 9.90721703e-01
-1.00273991e+00 -6.98268652e-01 -6.31395459e-01 3.75633150e-01
-3.22102785e-01 -3.18295509e-01 -1.77074060e-01 1.04049110e+00
5.29287755e-01 7.57993340e-01 2.69602299e-01 -4.57496166e-01
1.73133761e-01 -4.34215507e-03 1.12292841e-01 -4.88593191e-01
-6.47126555e-01 -4.28062260e-01 6.73075207e-03 -7.66869783e-02
-8.40927660e-01 -4.58824843e-01 -7.54365206e-01 -4.59889293e-01
-1.20076567e-01 9.86334160e-02 9.23856676e-01 1.06778562e+00
2.30081648e-01 1.70774892e-01 6.69291198e-01 -1.18337393e+00
-7.53758609e-01 -1.45326364e+00 -1.14925706e+00 8.42506140e-02
5.99381328e-01 -6.75571740e-01 -2.70403713e-01 5.23509225e-03] | [9.683403968811035, -1.5431785583496094] |
fb75761b-169b-468a-9b6f-f674661de96e | subjective-quality-assessment-for-images | 2206.05008 | null | https://arxiv.org/abs/2206.05008v1 | https://arxiv.org/pdf/2206.05008v1.pdf | Subjective Quality Assessment for Images Generated by Computer Graphics | With the development of rendering techniques, computer graphics generated images (CGIs) have been widely used in practical application scenarios such as architecture design, video games, simulators, movies, etc. Different from natural scene images (NSIs), the distortions of CGIs are usually caused by poor rending settings and limited computation resources. What's more, some CGIs may also suffer from compression distortions in transmission systems like cloud gaming and stream media. However, limited work has been put forward to tackle the problem of computer graphics generated images' quality assessment (CG-IQA). Therefore, in this paper, we establish a large-scale subjective CG-IQA database to deal with the challenge of CG-IQA tasks. We collect 25,454 in-the-wild CGIs through previous databases and personal collection. After data cleaning, we carefully select 1,200 CGIs to conduct the subjective experiment. Several popular no-reference image quality assessment (NR-IQA) methods are tested on our database. The experimental results show that the handcrafted-based methods achieve low correlation with subjective judgment and deep learning based methods obtain relatively better performance, which demonstrates that the current NR-IQA models are not suitable for CG-IQA tasks and more effective models are urgently needed. | ['Guangtao Zhai', 'Wei Lu', 'Xiongkuo Min', 'Wei Sun', 'ZiCheng Zhang', 'Tao Wang'] | 2022-06-10 | null | null | null | null | ['no-reference-image-quality-assessment'] | ['computer-vision'] | [ 0.01248805 -0.6255926 0.22868577 -0.48040935 -0.6074113 -0.03752552
0.33964354 -0.11814548 -0.46556956 0.49885872 0.15807751 -0.08786611
-0.15900053 -0.90852743 -0.37838525 -0.6490233 -0.09047694 0.04089455
0.40666977 -0.4345676 0.3477907 0.3068731 -1.5851626 0.27512947
0.9769487 1.2206628 0.3117516 0.70419323 -0.07226881 0.871982
-1.0669577 -0.7365008 0.3113603 -0.40348804 -0.38085496 -0.03661719
0.34932473 -0.7958959 -0.5047414 1.1998166 0.9154539 0.21298705
0.31973848 -1.4649475 -0.6379285 0.11817469 -0.5657923 0.5070463
0.2913654 0.34897763 0.7776631 -0.85248536 0.36966366 1.3350197
0.4814164 0.24264379 -0.57932997 -0.91732204 -0.19794512 0.69063544
-1.4278511 -0.40042114 0.5498908 -0.12624359 0.6079552 0.31578082
0.46662444 0.8143488 0.11558092 0.6835055 1.0660444 -0.1862531
0.23544468 -0.05767599 -0.37229636 0.58228344 0.01777841 0.17500134
-0.59927124 0.20583318 1.0156564 -0.21761167 -0.3647256 0.17623465
-1.186284 0.63040274 0.3928674 0.13467321 -0.11365099 -0.11628623
0.5260792 0.5636896 0.3831873 0.24670903 -0.18439722 -0.3995899
-0.97374326 0.3265099 0.5415974 0.97428006 0.5745125 0.24698903
-0.24008328 1.0751022 0.15564501 0.6706145 0.68193245 -1.0427213
0.65449864 0.25930783 0.07812607 -1.5821702 -0.28680235 -0.31597763
-1.3281538 0.323255 0.19055071 0.13343069 -0.5988554 1.2878531
-0.06143819 0.2575123 -0.22147779 1.2099274 1.1942322 1.0249648
-0.0488658 -0.27960813 1.0823593 -0.8161449 -0.73474455 0.11423207
0.15493073 -0.97759813 1.4580859 0.86240435 -1.19486 -1.0842451
-1.2924162 0.09030668 -0.08848342 0.04708098 0.5375804 0.8676615
-1.1472979 0.48173815 -0.42214832 -0.02741015 0.47860014 0.10433716
-0.2215172 -0.1919612 -1.2855887 0.5010563 0.2704819 0.0477534
-0.97544354 -0.53545195 -0.46736473 0.01042126 0.4792093 -0.3928298
1.1065145 -0.9045512 -1.6702622 0.7523418 0.20633434 -0.07864358
0.545418 -0.18829691 -1.0270369 0.26024285 -0.07955632 0.42144185
0.9369601 -1.1365219 -0.65327054 -0.22017692 0.25538707 0.23780228
-0.32011694 0.30040482 -1.0367274 -0.79589045 -0.02055713 -0.567443
-0.07734049 0.17427202 -0.38253742 0.12182032 0.60849786 -0.6336966
1.3372813 -2.2285788 -0.33622143 0.20667875 0.3514631 0.7682044
-0.33701494 0.30612582 0.07690766 0.1046719 0.12874521 -0.19227709
-0.10400411 0.03536759 -0.18024856 0.14374247 -0.04874465 0.6707574
-0.7238446 -0.73619825 0.43281618 0.14080378 -0.56308043 0.7047343
0.04352567 0.45558253 -0.46221924 0.5745904 1.0370104 -0.20666045
-0.30681056 -0.54862154 0.06440028 -0.08571512 -1.2331817 1.7186242
-0.58544815 0.75369763 -0.05258105 -0.7914505 0.90081245 -0.05768145
0.3440953 -1.3784374 0.18715976 0.03352236 0.05338823 -0.8363236
0.70904005 0.08401082 0.16231607 0.30609423 -0.07995327 -0.16801384
0.17211427 0.32782006 0.968146 -0.1291195 0.12124477 0.056199
0.5679269 -0.23258767 0.6772231 0.70515794 -0.3575097 1.0809147
0.15690342 -0.3566625 -1.1836766 -1.1684028 0.02272942 1.087007
0.52773875 -0.53291595 -0.8141567 -0.13158704 -0.56084484 0.35351923
-0.11952616 -0.2405148 -0.5577727 -0.876174 0.608039 0.27369168
1.276949 -1.2572052 -0.4947005 0.2382514 -0.26088202 -1.1817137
-0.4588884 -0.72890496 -0.5759922 -1.030183 -0.7955973 -0.37060976
0.19045512 0.67756796 1.5038489 0.29822212 -0.27076352 -0.0295285
-0.59483653 -0.35051796 -0.39094594 -0.23199221 -0.05478065 -0.04151146
0.21196851 -0.5146693 -0.96221054 0.7423174 -1.2012478 0.24983273
0.61709297 0.59746283 0.44124076 0.5300266 0.4771918 -0.6325295
0.846393 -0.29178455 -0.6510494 0.10463543 -0.53154796 -0.29557905
0.88586205 -0.30809745 -1.272757 -0.92486084 -0.51374876 -0.41974312
-0.10010555 0.54286397 -0.56617844 0.03509253 0.6124047 0.08796059
-0.16917297 -0.38708714 -0.02702757 0.8801194 0.7872243 -0.43998685
0.69664156 0.35376292 -0.19761486 -0.71007544 -0.6415026 -0.29198384
0.03168299 -0.38903683 0.6375785 -0.9558853 -0.7999244 0.9637172
-0.96434164 -0.21034734 0.04651278 0.5664001 -0.4484366 0.54239243
-0.659032 -0.5786134 -0.43716168 -1.469341 0.97330695 0.46713373
0.34728593 -0.45158345 0.02617352 0.42813802 0.6759951 -0.06107625
0.6893992 0.07702935 -0.6833658 -0.07283514 -0.7738238 0.62025654
-0.01606932 0.11848191 -0.981517 -0.2747417 0.12571459 -0.39295307
0.4160255 0.28973946 1.7831558 -0.18740128 0.33375004 1.026648
1.4674942 0.43809262 1.2204347 0.4439271 0.660891 0.36392608
1.0165403 0.75816244 0.3332046 0.8356785 0.60010517 -0.13994262
-0.08962642 -0.16077213 0.22724569 1.1934351 -0.3920953 -0.5915669
-0.67330354 0.15139222 -1.5675884 -0.88600236 -0.1437302 2.2152247
0.73337173 0.2047717 -0.05858484 0.32869482 0.6388623 0.3083433
-0.6676876 -0.2461811 -0.21027511 0.27407295 0.35330915 -0.10989743
-0.98797494 0.50179625 5.8456 1.4172217 -1.0958099 0.19599596
0.8985564 0.0070292 -0.08664829 -0.38902798 -0.37519217 0.9142
0.8589819 -0.18976165 0.5400459 0.7658877 0.51543725 -0.11667829
-0.65571034 1.751659 -0.02756662 -1.1022893 -0.01336103 -0.07979775
0.7377238 -0.03542148 0.345434 0.29075587 0.08413391 -1.1494775
0.6370837 0.494197 1.2611626 -0.7550282 1.0310023 0.24965735
-1.016104 0.13019101 -0.92510223 -0.06103962 0.13837357 0.79617506
-0.24900284 0.6917286 0.9759676 0.5664151 -0.7993262 1.2419964
0.02768651 0.62828994 -0.0605991 0.13527314 0.14140461 -0.42246574
0.18774435 0.8908038 0.6261283 0.31859824 -0.17061996 0.63990235
-0.09137262 0.298391 -0.23527509 0.22186193 0.29260895 1.1735498
-0.43620682 -0.48596215 -0.5281992 1.0334668 -0.2133552 0.3212655
-1.0530119 -0.32512462 0.67259264 0.08375534 -0.16934094 -0.23409095
0.05026608 -1.4167503 0.02354471 -1.3217472 0.20307973 -1.2181938
-1.3058327 0.79768646 -0.0919546 -1.6831962 -0.07649965 -0.45227557
-0.6593688 0.76980823 -1.4428846 -0.6613974 -1.0026948 0.83230484
0.6420585 -0.41562566 0.48529512 0.7553097 -0.5040124 0.7509048
0.28336018 0.09243522 0.83371186 -0.8309185 0.5318173 0.8221967
0.05851623 0.310476 0.6523363 -0.3081937 -1.3626841 -1.0071073
0.08209855 0.11012496 0.2324077 -0.06497468 -0.98158085 -0.08163052
0.21278244 0.12938185 0.47567534 -0.3363938 -0.1729607 -0.43782085
-1.2320408 0.49802673 1.1774465 -0.49300608 -0.08249816 0.10953692
0.6584886 -0.42692485 -0.7156459 0.38785067 0.39358845 -1.6061597
1.17516 -0.18282625 0.5967644 -0.4020547 -0.18926288 -1.3540323
-0.21387893 -0.3274184 0.17562458 1.3188407 -0.19646631 -0.32925722
0.8352596 0.41336772 -0.11436744 -0.4211265 -0.61513096 -0.696001
-0.30667302 -0.66886175 1.0667666 0.7361393 -0.5980272 0.06341814
-0.6517113 -0.0191553 0.5803607 -0.00840038 1.0479437 -0.8678379
-0.6160805 -0.39541167 -0.6806544 -0.9884483 -0.43268594 -0.17329723
-0.08351848 -1.235757 0.12925519 -0.666763 -0.32325295 -0.16665591
-0.36994663 0.50763726 0.3353484 0.39474174 -0.8786772 0.7674693
1.5286309 -0.20339231 0.04374528 -0.03725671 -0.4966774 0.7017705
0.80048245 -0.03461752 -0.67656034 -0.6235362 0.52507246 0.28137815
0.2188567 -1.3217425 0.10525941 -0.30386114 0.3377192 -0.5535394
0.23827483 -0.68442726 0.27854386 0.04444602 -0.08616131 0.16905521
-0.118503 0.2917024 -0.63669986 -0.21018165 0.8004186 -0.19872178
-1.1763536 0.63487005 -0.16976427 0.21037374 0.59964925 -0.28318217
-0.42860904 -0.7748232 -0.3121265 -0.04849548 0.52841246 0.3526908
1.0360005 -1.3804286 -0.87231296 0.33103368 0.19554174 0.10852874
0.6333399 0.36364895 -1.0070797 0.02667332 -0.4998028 -0.44429508
-1.0906897 0.48217633 0.01853564 -0.24993366 -0.42694876 0.79080594
0.46654955 -0.0872023 0.08566683 -0.10688143 -0.24385007 -0.24487694
0.8820136 0.6281388 0.33365807 -0.7075308 0.02261459 0.3731356
0.02337051 -0.01638614 1.1631671 -0.38910943 0.05749611 0.13729243
1.4089261 -0.22836022 -1.0639057 -0.31687155 -0.40713453 -1.1087449
0.15048356 -0.6644673 -1.5199943 1.1108239 1.0047667 0.12256094
1.6442124 -0.48039746 1.0667747 0.15204641 0.8411054 -1.1857612
0.427177 0.16508159 0.86400706 -1.3783128 -0.02820019 -0.3769214
-0.7155058 0.8812015 0.66251594 0.00821364 0.47463933 0.13569151
0.28788358 -0.03024177 -0.4711049 -0.03122074 0.08394871 0.7520758
0.20974827 -0.02410669 -0.10246236 0.59702796 -0.3932556 0.2605591
0.6343902 0.49985543 -0.20515311 -0.9199512 -0.51708007 0.76989245
-0.5229562 -0.20279488 0.31746402 0.5094226 0.17224239 1.2495201
0.01873236 -0.6037277 0.35432005 -0.7202594 0.26015943 -0.2386437
-0.32527283 -0.10220093 -0.08679015 -0.9052158 -0.5869714 -0.19751032
-0.8248153 -0.83111644 -0.23756182 -0.12824501 0.63711953 0.65101105
0.1382996 0.59682256 0.78071344 -0.7676875 -0.20977587 -0.87086123
-0.7839432 0.7489694 -0.08049469 -0.5014927 -0.14648734 0.06909743] | [11.794408798217773, -1.8545010089874268] |
cbf34b46-9e8c-4b8c-a4ee-9ff8837b5b13 | introduction-to-protein-structure | 2307.02169 | null | https://arxiv.org/abs/2307.02169v2 | https://arxiv.org/pdf/2307.02169v2.pdf | Introduction to Protein Structure | While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Within the living cell, protein molecules perform specific functions, typically by interacting with other proteins, DNA, RNA or small molecules. They take on a specific three dimensional structure, encoded by its amino acid sequence, which allows them to function within the cell. Hence, the understanding of a protein's function is tightly coupled to its sequence and its three dimensional structure. Before going into protein structure analysis and prediction, and protein folding and dynamics, here, we give a short and concise introduction into the basics of protein structures. | ['Sanne Abeln', 'K. Anton Feenstra', 'Laura Hoekstra', 'Jose Gavaldá-Garciá', 'Olga Ivanova', 'Bas Stringer', 'Halima Mouhib', 'Erik van Dijk', 'Annika Jacobsen'] | 2023-07-05 | null | null | null | null | ['protein-structure-prediction', 'protein-folding'] | ['miscellaneous', 'natural-language-processing'] | [ 3.40722710e-01 -9.73070189e-02 -2.46383294e-01 -1.89455971e-01
-1.09504862e-02 -6.64771199e-01 1.92964301e-02 3.60015094e-01
-2.23519519e-01 1.23232865e+00 -1.42063290e-01 -5.79270661e-01
1.31502435e-01 -4.31641310e-01 -6.23378336e-01 -1.30053473e+00
-1.81336015e-01 5.26887596e-01 2.73586690e-01 -3.43329370e-01
1.84423923e-01 8.24603081e-01 -1.43856418e+00 1.52494898e-02
8.13808262e-01 4.09999996e-01 7.34229922e-01 8.64936948e-01
-2.20797345e-01 7.80837536e-01 -3.62908542e-01 -3.60423952e-01
-3.78504604e-01 -8.36584389e-01 -9.11849499e-01 -7.64391525e-03
-3.68825525e-01 2.24408329e-01 2.57199734e-01 4.98418689e-01
4.15828526e-01 -1.41011938e-01 7.63784885e-01 -4.65314716e-01
-6.18692815e-01 -2.11071491e-01 -6.51465952e-02 6.43028831e-03
7.09747791e-01 3.75614017e-01 6.72369480e-01 -7.88956642e-01
9.64700162e-01 9.46404994e-01 5.72637975e-01 7.62965858e-01
-1.57459521e+00 8.34411681e-02 -2.16222212e-01 1.36242151e-01
-9.67459798e-01 -3.33073258e-01 4.41595286e-01 -6.65783286e-01
1.49716222e+00 2.33948216e-01 8.48468542e-01 7.29101717e-01
8.46529841e-01 3.23633611e-01 1.06379735e+00 -4.74248737e-01
2.95416236e-01 -2.20422089e-01 4.05612916e-01 5.75124145e-01
1.56177565e-01 9.91934985e-02 -4.51676160e-01 -4.07298923e-01
1.26311705e-01 3.97862792e-02 -2.48178631e-01 -9.40067410e-01
-9.70281482e-01 5.95887482e-01 -1.98732138e-01 4.78662223e-01
-5.94591737e-01 -2.38116056e-01 4.06531274e-01 8.15785453e-02
-1.85845137e-01 1.44867644e-01 -9.24576998e-01 -3.97645175e-01
-5.84879220e-01 4.64382797e-01 9.37185287e-01 3.12154472e-01
6.55090630e-01 -4.21787322e-01 5.25013387e-01 6.85780108e-01
5.09217620e-01 3.86978805e-01 4.09716815e-01 -5.48008859e-01
-2.98179716e-01 5.15978813e-01 3.07328284e-01 -5.26197851e-01
-4.92313504e-01 3.82470965e-01 -6.44986987e-01 2.87902057e-01
5.89301527e-01 7.91617334e-02 -7.12371588e-01 1.62110794e+00
4.99402195e-01 -3.89951497e-01 3.21313024e-01 8.04342389e-01
7.76440799e-01 5.92722595e-01 4.76833612e-01 -9.24841344e-01
1.55791962e+00 -5.24127007e-01 -6.49287760e-01 1.81686565e-01
7.69820392e-01 -9.23906922e-01 5.13662517e-01 2.34916091e-01
-1.22211230e+00 -2.38582283e-01 -1.04680240e+00 -2.82245755e-01
-5.15848458e-01 -1.29577190e-01 5.24564266e-01 6.10691965e-01
-5.81923783e-01 8.34653020e-01 -1.18321311e+00 -8.11359465e-01
-1.81142882e-01 3.61374289e-01 -4.66674924e-01 2.86152840e-01
-1.20178902e+00 1.53835797e+00 4.79756117e-01 -1.83541030e-01
-3.67732853e-01 -4.90037441e-01 -5.09890318e-01 -2.99698979e-01
-1.54935732e-01 -7.85420060e-01 1.07386327e+00 -3.95280629e-01
-1.66749930e+00 1.37713444e+00 -8.40054989e-01 -3.88380438e-01
-2.64562339e-01 2.46116012e-01 -7.05256313e-02 1.43953368e-01
-3.93504649e-01 1.76270574e-01 3.00476290e-02 -1.01293325e+00
-2.98679739e-01 -6.36653364e-01 -1.99027032e-01 2.68082708e-01
6.61653399e-01 4.74421620e-01 1.98505804e-01 -3.01915407e-01
3.09466213e-01 -7.38862813e-01 -5.44240713e-01 -1.20589584e-01
-7.30540752e-02 -2.16403335e-01 6.30755603e-01 -5.28625727e-01
8.82532239e-01 -1.78702950e+00 7.31820822e-01 1.14410624e-01
4.08260614e-01 4.50492233e-01 4.91828203e-01 1.21676826e+00
-5.20414472e-01 -1.15247548e-01 -4.42861259e-01 5.32138169e-01
-2.47373462e-01 2.60742575e-01 -2.58995760e-02 6.72126651e-01
-1.19407021e-01 1.02860510e+00 -6.50744796e-01 -1.14643671e-01
4.75963771e-01 7.29940236e-01 -5.42122051e-02 1.55934691e-01
-1.47702977e-01 5.42894840e-01 -5.01216590e-01 6.27924323e-01
7.61811793e-01 -3.40134084e-01 8.88546526e-01 -1.19981661e-01
-2.99646586e-01 5.19032180e-01 -5.61609089e-01 1.01450527e+00
3.35549295e-01 6.84650391e-02 2.15050265e-01 -1.11332941e+00
1.03569508e+00 4.01249379e-01 7.91792214e-01 -4.28528905e-01
-1.61757410e-01 2.16558754e-01 3.32002789e-01 -4.07837331e-01
-1.76355958e-01 -4.80855972e-01 4.28731889e-01 4.13319111e-01
-3.51007938e-01 1.34177268e-01 3.83555412e-01 1.70075119e-01
9.10978019e-01 5.72174728e-01 8.65300894e-01 -4.46610391e-01
1.02506101e+00 3.16111982e-01 5.30504882e-01 9.41463839e-03
-4.70305204e-01 1.55849010e-01 6.67721868e-01 -8.62805426e-01
-1.38832402e+00 -9.04710650e-01 -3.99390280e-01 1.09548032e+00
1.45393014e-01 -6.81662381e-01 -1.21745443e+00 8.49305540e-02
-1.00580700e-01 1.08967058e-01 -3.04607987e-01 -1.52842477e-01
-7.31354415e-01 -1.34382915e+00 8.01949203e-02 -6.91083670e-02
-1.27784431e-01 -1.34011781e+00 -8.65184724e-01 5.67394674e-01
3.12164309e-03 -5.52273929e-01 -1.89617015e-02 7.57527769e-01
-1.01413763e+00 -1.55457115e+00 -5.15465081e-01 -8.06274652e-01
4.71780390e-01 1.86590761e-01 1.12879479e+00 4.17088181e-01
-4.49467629e-01 -2.59016268e-02 -2.22545415e-01 -3.92369598e-01
-6.39269650e-01 -1.07709080e-01 2.85807014e-01 -5.72285950e-01
1.01063943e+00 -9.73507285e-01 -6.47773325e-01 3.46980900e-01
-6.97858691e-01 1.80753618e-01 4.25655246e-01 8.41692746e-01
8.80302906e-01 -3.52467030e-01 1.11429945e-01 -8.10308814e-01
5.48233688e-01 -2.74025332e-02 -3.89296561e-01 5.24347425e-01
-6.77847922e-01 2.08400577e-01 5.29113472e-01 1.07310779e-01
-8.35297108e-01 6.05745137e-01 -5.91976523e-01 6.26610160e-01
-3.81965280e-01 3.36135924e-01 -5.55034459e-01 -1.95063412e-01
6.61913037e-01 8.28236878e-01 6.99173748e-01 -5.44011176e-01
-4.38539721e-02 3.14409137e-01 1.75246179e-01 -5.61651945e-01
3.44984978e-01 2.51945853e-01 1.67323455e-01 -9.46081519e-01
-3.29220951e-01 -4.23659414e-01 -1.17491007e+00 -6.49861097e-02
8.41851950e-01 -2.07946122e-01 -1.40371251e+00 5.69190741e-01
-9.58608091e-01 -1.71637282e-01 2.75405109e-01 3.85719150e-01
-1.03790247e+00 9.14341033e-01 -6.56958818e-01 -7.17430234e-01
-4.72100943e-01 -1.51146829e+00 9.90171790e-01 -1.03223631e-02
-3.02136153e-01 -1.06272829e+00 5.03698170e-01 3.28367889e-01
1.54207811e-01 4.29206848e-01 1.22967124e+00 -2.37739131e-01
-2.47634292e-01 2.68312186e-01 3.00941229e-01 -1.46000385e-01
2.20892221e-01 4.33362842e-01 -4.57532376e-01 -2.04698622e-01
8.08439180e-02 -2.69201428e-01 7.06710339e-01 4.72379297e-01
7.48772264e-01 -8.86445567e-02 -7.56023228e-01 4.97016221e-01
1.31597030e+00 5.93397617e-01 8.89227986e-01 4.69804913e-01
2.82320142e-01 9.20007646e-01 8.56471479e-01 5.62890321e-02
-2.09728777e-01 7.12959588e-01 3.07549953e-01 1.12981595e-01
1.83466375e-01 1.47717088e-01 3.51489842e-01 6.58752859e-01
-6.36799753e-01 1.90226138e-02 -9.68264103e-01 -1.12165689e-01
-1.68058288e+00 -1.03061473e+00 -4.78400528e-01 2.14911747e+00
1.31187713e+00 -9.02573690e-02 4.57093090e-01 6.91719875e-02
6.10250711e-01 -3.73183340e-01 -9.38151419e-01 -6.42745554e-01
-3.94409508e-01 2.45708153e-01 5.29723644e-01 5.78006387e-01
-7.70417690e-01 8.34807038e-01 8.37403297e+00 5.53813994e-01
-1.09389496e+00 -3.30621004e-01 3.72113854e-01 1.49542555e-01
-6.79727271e-03 2.56902307e-01 -8.37850809e-01 4.73082453e-01
1.34118116e+00 -1.46786585e-01 2.58712351e-01 7.19750285e-01
6.82877183e-01 -3.12874466e-01 -7.66275942e-01 6.77071214e-01
-6.00277245e-01 -1.54633546e+00 -3.05044293e-01 4.08919632e-01
1.72816053e-01 -2.40619346e-01 -4.01300967e-01 -2.69197166e-01
2.05437347e-01 -1.17914104e+00 8.71282890e-02 6.02142990e-01
3.12855959e-01 -7.32336819e-01 5.89480937e-01 6.42041624e-01
-9.42040026e-01 4.76855695e-01 -6.93617523e-01 -2.63880849e-01
4.65462595e-01 7.97856271e-01 -4.81326640e-01 1.77575603e-01
6.07730865e-01 5.85960984e-01 -1.01266362e-01 5.95649004e-01
-3.31285479e-03 3.28951150e-01 -9.73848403e-02 -4.27776098e-01
-8.79963338e-02 -7.82910943e-01 2.14366898e-01 9.66502309e-01
-3.36800635e-01 7.24851251e-01 2.84172352e-02 5.77907681e-01
4.00330245e-01 4.18968827e-01 -2.26316556e-01 -2.64356911e-01
3.41190659e-02 1.11030984e+00 -5.96653402e-01 -3.27942610e-01
-5.44566572e-01 8.06704283e-01 3.22015554e-01 2.77123928e-01
-6.19114161e-01 -3.65906209e-01 1.28071749e+00 3.36856574e-01
1.90025359e-01 -3.91763806e-01 1.07029453e-01 -7.06686199e-01
-1.70744181e-01 -8.92541707e-01 -7.24283829e-02 -5.51087499e-01
-1.03785193e+00 -1.63066760e-02 -3.91166806e-01 -3.10851753e-01
-2.60202009e-02 -1.04507899e+00 -1.48145854e-01 1.15849328e+00
-1.06780457e+00 -7.86217034e-01 2.59134203e-01 2.69125309e-02
1.01543784e-01 1.61857307e-01 1.08504927e+00 -1.23803541e-01
-5.86276352e-01 1.06302433e-01 9.58741426e-01 -3.64908099e-01
6.11256242e-01 -1.33766162e+00 5.29248357e-01 1.99521050e-01
-6.44719720e-01 1.15403593e+00 1.19748271e+00 -8.68838310e-01
-1.61570013e+00 -6.15833223e-01 1.18223274e+00 -5.92298210e-01
3.29751432e-01 -3.83087426e-01 -1.08406222e+00 4.64056462e-01
2.03801226e-02 -5.31068921e-01 1.15911317e+00 -6.81294799e-02
1.84937224e-01 4.20615494e-01 -1.27598906e+00 4.24991786e-01
8.69322956e-01 -2.99844772e-01 -6.83632493e-01 6.49602175e-01
3.80326390e-01 -4.93376493e-01 -1.36983240e+00 3.08881760e-01
9.90953028e-01 -1.34894383e+00 1.09574330e+00 -9.68453944e-01
9.37552899e-02 -5.15224516e-01 1.44745693e-01 -5.12566686e-01
-6.48127556e-01 -6.19208455e-01 -3.42735767e-01 4.62488055e-01
4.17361796e-01 -6.39099240e-01 1.06582510e+00 8.33526731e-01
-2.23931279e-02 -1.14321840e+00 -6.56866550e-01 -5.10426521e-01
3.46495718e-01 3.57214183e-01 4.65202749e-01 5.61794162e-01
5.58010161e-01 4.44090456e-01 -2.41743386e-01 -4.87629086e-01
5.57426631e-01 2.87420064e-01 6.94831491e-01 -1.10659552e+00
-7.07094744e-02 -1.78664505e-01 -6.34292841e-01 -1.16076910e+00
-9.52288285e-02 -5.35730720e-01 -2.78994799e-01 -1.50755191e+00
6.17245793e-01 2.23436534e-01 1.57662749e-01 1.59621894e-01
8.85496195e-03 -1.35989292e-02 -2.82121599e-01 3.75407279e-01
-3.20330113e-01 2.69847661e-01 1.25692761e+00 3.40833604e-01
-1.49192661e-01 -6.14753030e-02 -5.33842862e-01 3.77246588e-01
9.56148088e-01 -3.23470205e-01 -1.95735395e-01 5.02594411e-01
2.85349607e-01 -3.97070460e-02 -1.53831497e-01 -4.33402061e-01
-1.89478531e-01 -5.84652960e-01 3.61746997e-01 -9.67464983e-01
3.39207470e-01 -7.58186281e-01 5.47846556e-01 1.01699090e+00
1.42793432e-02 3.60727422e-02 -1.02513738e-01 3.97089154e-01
6.03071600e-03 -3.49849731e-01 1.27533376e+00 -4.66666222e-01
-3.87219012e-01 8.49307775e-02 -1.20709312e+00 -4.09086049e-01
1.49676251e+00 -8.81449282e-01 -6.71768785e-02 7.90745839e-02
-1.30931807e+00 7.60828778e-02 1.21013582e+00 -2.40404576e-01
3.39497685e-01 -8.97589445e-01 -1.66863739e-01 -4.47516795e-03
5.05918525e-02 -4.76679236e-01 2.54302442e-01 9.60116625e-01
-1.25808179e+00 1.11390519e+00 -3.01252902e-01 -6.66211247e-01
-1.75572395e+00 1.07977390e+00 7.79875278e-01 -8.78133923e-02
-3.35438967e-01 3.41134340e-01 2.77545869e-01 -6.45677507e-01
-1.93954855e-01 -1.35596748e-02 -3.88202190e-01 -5.62867701e-01
6.45793736e-01 1.55612215e-01 1.58497900e-01 -9.89755392e-01
-5.74960470e-01 8.21998179e-01 -1.36774287e-01 6.83564126e-01
1.32088518e+00 -4.72685665e-01 -7.99686015e-01 2.71378815e-01
8.87431979e-01 -3.07288557e-01 -8.30083609e-01 5.09554408e-02
1.82313576e-01 1.96139514e-02 -5.89911461e-01 -6.87940598e-01
-2.96734363e-01 6.93296134e-01 5.10653138e-01 8.53071362e-02
9.10083652e-01 2.43527308e-01 9.31794643e-01 5.97940087e-01
3.14082980e-01 -9.41477358e-01 -4.37770873e-01 6.03473604e-01
4.60446239e-01 -8.45830977e-01 1.05863005e-01 -5.76679409e-01
-3.07133555e-01 1.21448004e+00 3.09605509e-01 1.96356744e-01
6.68655217e-01 3.43943775e-01 8.90612155e-02 -4.18546528e-01
-1.11618161e+00 -5.40942214e-02 -1.61667332e-01 8.98791194e-01
1.29575408e+00 -3.79314870e-02 -9.83003139e-01 1.91074923e-01
-2.95309722e-01 -1.99835762e-01 1.99702486e-01 1.12751818e+00
-1.12209630e+00 -1.91678560e+00 -5.23038983e-01 1.27447903e-01
-7.52258182e-01 6.19980227e-03 -1.11128640e+00 3.84721428e-01
-1.36684150e-01 6.84064329e-01 -4.67102617e-01 1.83896005e-01
1.00195706e-01 5.85138857e-01 7.18231738e-01 -3.21172357e-01
-3.18902522e-01 -1.00397579e-01 5.36424015e-03 -4.99498427e-01
-9.09091294e-01 -8.07603836e-01 -1.74536443e+00 -8.47247064e-01
-2.64425218e-01 7.60640562e-01 7.50715971e-01 9.55234528e-01
4.92889196e-01 1.82112500e-01 1.52281851e-01 -5.26433051e-01
-1.47445738e-01 -6.16597056e-01 -8.48024011e-01 2.37846300e-01
1.90075263e-01 -6.64813757e-01 4.07947414e-02 3.48086059e-01] | [4.743171215057373, 5.304063320159912] |
af11b2fc-030b-4b04-9ee2-af9b01ab0419 | a-residual-encoder-decoder-network-for | 2201.05963 | null | https://arxiv.org/abs/2201.05963v1 | https://arxiv.org/pdf/2201.05963v1.pdf | A Residual Encoder-Decoder Network for Segmentation of Retinal Image-Based Exudates in Diabetic Retinopathy Screening | Diabetic retinopathy refers to the pathology of the retina induced by diabetes and is one of the leading causes of preventable blindness in the world. Early detection of diabetic retinopathy is critical to avoid vision problem through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time-consuming and requires intense effort due to the small size of lesion and low contrast of the images. Thus, computer-assisted diagnosis of diabetic retinopathy based on the detection of red lesions is actively being explored recently. In this paper, we present a convolutional neural network with residual skip connection for the segmentation of exudates in retinal images. To improve the performance of network architecture, a suitable image augmentation technique is used. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. Comparative performance analysis of three benchmark databases: HEI-MED, E-ophtha, and DiaretDB1 is presented. It is shown that the proposed method achieves accuracy (0.98, 0.99, 0.98) and sensitivity (0.97, 0.92, and 0.95) on E-ophtha, HEI-MED, and DiaReTDB1, respectively. | ['Syed S. Naqvi', 'Muhammad Arsalan', 'Ahsan Saadat', 'Tariq M. Khan', 'Malik A. Manan'] | 2022-01-16 | null | null | null | null | ['image-augmentation'] | ['computer-vision'] | [ 1.16404213e-01 -2.48240635e-01 1.67626649e-01 -1.84744924e-01
-7.98772499e-02 -1.62981823e-01 4.47546244e-02 -9.75891668e-03
-5.44507205e-01 6.69005692e-01 -8.01387355e-02 -5.19809663e-01
-1.20851561e-01 -6.89789653e-01 -2.49510482e-01 -7.92746186e-01
1.29608810e-01 -1.52890861e-01 3.94881487e-01 1.23689637e-01
3.36920291e-01 7.06332803e-01 -1.68039382e+00 1.86357260e-01
1.52240980e+00 1.11393428e+00 2.34516501e-01 7.49417305e-01
1.76815856e-02 7.04731941e-01 -2.96429455e-01 -2.78390288e-01
3.99168581e-01 -6.41335368e-01 -5.26758492e-01 4.59653586e-01
6.67064786e-01 -6.96416378e-01 -2.83370912e-01 1.25591636e+00
6.96435988e-01 -1.58752620e-01 5.55919945e-01 -5.09733319e-01
-5.32342017e-01 -3.18228364e-01 -8.29766572e-01 5.34862638e-01
-2.90760458e-01 2.82541245e-01 1.33175552e-01 -5.20473659e-01
2.20418781e-01 8.94064069e-01 3.30143929e-01 4.35146600e-01
-9.37988341e-01 -4.32580531e-01 -3.27400982e-01 4.65050608e-01
-1.08084214e+00 -4.38008279e-01 1.79222703e-01 -7.92358518e-01
4.00409043e-01 2.15317041e-01 8.07684183e-01 2.12929249e-01
1.81063205e-01 5.34312785e-01 1.54302323e+00 -4.80384797e-01
1.02462739e-01 -2.22390685e-02 4.08802271e-01 7.93090940e-01
7.00081885e-01 2.52360046e-01 2.27565467e-01 2.04312831e-01
1.07069075e+00 5.23983389e-02 -5.29202580e-01 4.39211950e-02
-7.38632262e-01 4.87770975e-01 6.14950299e-01 -1.31439060e-01
-3.54970157e-01 -3.81264389e-01 3.20102692e-01 5.63889444e-02
2.07396403e-01 1.86287105e-01 -1.18205816e-01 6.56793565e-02
-4.71069068e-01 -9.68582183e-02 1.40314624e-01 5.12523592e-01
3.37086558e-01 -1.04716852e-01 -3.14613700e-01 9.83724713e-01
3.09312075e-01 3.21970582e-01 3.60864371e-01 -8.71789694e-01
1.14731982e-01 9.98560607e-01 4.25587833e-01 -4.95597303e-01
-4.22208041e-01 -5.20718753e-01 -1.09125745e+00 8.57092738e-01
5.84893763e-01 -3.40475649e-01 -1.57124722e+00 8.23251188e-01
2.44981229e-01 2.68077552e-02 1.32471144e-01 1.28566730e+00
1.02305591e+00 4.15688068e-01 8.35361630e-02 -3.62119615e-01
1.38067162e+00 -8.46082330e-01 -6.56712115e-01 -2.19568700e-01
3.83194685e-01 -9.94169950e-01 8.03692460e-01 3.53667557e-01
-9.40884709e-01 -4.74443555e-01 -7.75685012e-01 -2.09590614e-01
1.55312970e-01 9.49055374e-01 6.30086124e-01 4.99549508e-01
-8.07877362e-01 2.62459628e-02 -6.82648420e-01 -5.73539197e-01
8.57016146e-01 2.94760734e-01 -2.45383665e-01 -5.21747410e-01
-5.17476261e-01 8.81074905e-01 2.61807293e-01 4.05927658e-01
-2.58975714e-01 -3.34778875e-01 -4.16842967e-01 -2.80798346e-01
-6.31804392e-02 -7.07780957e-01 9.87123668e-01 -7.35453665e-01
-1.39874911e+00 1.06783700e+00 -3.51765335e-01 -4.48431402e-01
5.56002676e-01 -3.18922669e-01 -5.17348289e-01 3.92216384e-01
-1.19781189e-01 3.34627420e-01 3.54374647e-01 -9.87394035e-01
-1.11034775e+00 -5.67664921e-01 4.75589931e-02 6.87642917e-02
1.68620169e-01 4.95466799e-01 -5.81757426e-01 -1.79504320e-01
2.40754962e-01 -7.62581110e-01 -3.19120705e-01 3.59729111e-01
-4.89485681e-01 -1.28938735e-01 5.17377555e-01 -9.13970351e-01
9.95536804e-01 -2.22842216e+00 -5.58156848e-01 3.17166373e-02
4.24379796e-01 1.14451361e+00 1.01434318e-02 -3.45115721e-01
6.98384866e-02 -4.52178791e-02 -3.80623080e-02 3.60329568e-01
-7.52018511e-01 -1.95867922e-02 2.76562333e-01 4.79743659e-01
2.87393004e-01 5.67454278e-01 -5.45161545e-01 -4.07631069e-01
3.95704538e-01 5.70123076e-01 -1.75477028e-01 2.50592172e-01
5.78953885e-02 4.87353653e-01 -3.97659332e-01 7.85808325e-01
7.72996724e-01 -3.51472586e-01 -1.84798807e-01 -3.80099505e-01
-5.13076305e-01 -2.40626141e-01 -1.04227269e+00 7.61495948e-01
5.15236743e-02 8.03712904e-01 -1.28336400e-01 -7.37100661e-01
1.00497901e+00 2.06676096e-01 7.03307092e-02 -7.35536993e-01
3.42417866e-01 4.38026130e-01 4.91646767e-01 -1.12454247e+00
-1.48474038e-01 8.68121311e-02 9.76979375e-01 -1.62038356e-01
-5.99418759e-01 6.73902810e-01 6.36567652e-01 -3.44049007e-01
7.03559041e-01 -1.98638678e-01 3.90115976e-01 2.06420541e-01
6.25464618e-01 -1.98677331e-02 7.31173337e-01 2.70971209e-01
-3.95797282e-01 6.51744306e-01 4.49523687e-01 -6.50364220e-01
-9.23957527e-01 -8.11969161e-01 -6.07171416e-01 -2.69247498e-02
2.50901788e-01 2.37419620e-01 -5.65317214e-01 -2.80585438e-01
1.89985409e-02 1.37685016e-01 -5.23855329e-01 5.28963953e-02
-3.69002283e-01 -1.15866649e+00 1.57530680e-01 4.09198523e-01
1.10579813e+00 -7.52439976e-01 -6.28210187e-01 7.20553473e-02
-4.05339003e-02 -9.42697644e-01 -1.42025173e-01 -6.35097682e-01
-1.07928157e+00 -1.51815510e+00 -1.23526704e+00 -1.19271898e+00
9.60099876e-01 5.41730881e-01 5.73919892e-01 2.07082763e-01
-9.12057638e-01 -4.23523009e-01 -7.99696445e-02 -4.46137667e-01
-2.23363325e-01 -5.95428646e-01 -2.98310727e-01 4.88115251e-01
5.70349395e-01 -2.87740111e-01 -1.13051844e+00 3.56875390e-01
-5.62524319e-01 8.79343674e-02 1.24115431e+00 6.26071632e-01
7.13147938e-01 1.09310120e-01 3.23969156e-01 -7.92058527e-01
3.82696837e-01 4.84075919e-02 -1.03084505e+00 1.73612684e-01
-6.15121841e-01 -5.84807456e-01 2.22138301e-01 -2.83122331e-01
-1.12543738e+00 1.03931822e-01 3.00483644e-01 -2.14466169e-01
-4.58208144e-01 4.02992338e-01 -2.50209309e-02 -4.21801239e-01
8.23126674e-01 -2.20153108e-03 3.33294928e-01 -7.97869802e-01
-1.00228250e-01 1.14647186e+00 6.87774301e-01 2.12321326e-01
2.27165431e-01 5.03877938e-01 2.08947897e-01 -9.39946055e-01
-9.19370234e-01 -7.15940475e-01 -2.42847472e-01 -2.59846896e-01
9.63513076e-01 -9.79986370e-01 -7.97054946e-01 9.06742513e-01
-1.09815919e+00 -2.96765920e-02 1.97246104e-01 1.04505777e+00
3.99814174e-02 5.38672328e-01 -5.46774387e-01 -7.36656964e-01
-4.31295127e-01 -1.08749914e+00 3.36528659e-01 8.58657360e-01
3.70704353e-01 -5.43841541e-01 -2.48243660e-01 7.18359351e-01
3.79490137e-01 5.15493333e-01 1.10240126e+00 5.79503588e-02
-9.05594230e-01 -4.01301712e-01 -1.01632082e+00 7.70167649e-01
3.88828367e-01 3.92179519e-01 -8.14941645e-01 -1.06650248e-01
-3.06834519e-01 -1.01209059e-02 1.02895021e+00 9.03574884e-01
9.81033742e-01 -1.13239549e-01 -2.54383445e-01 7.07323432e-01
1.60908556e+00 6.82323575e-01 1.18563747e+00 4.86334175e-01
3.91119927e-01 6.19992912e-01 5.11221230e-01 1.99588940e-01
1.62589386e-01 2.08147451e-01 4.23332453e-01 -6.68060184e-01
-4.82755303e-01 5.21576405e-01 -1.23226441e-01 2.33251125e-01
-7.24019766e-01 -2.60998737e-02 -8.98038745e-01 7.82338798e-01
-1.59599388e+00 -7.99897909e-01 -8.29863191e-01 2.31711340e+00
9.33921695e-01 -7.97148198e-02 6.55279011e-02 4.60872501e-02
1.04610634e+00 -6.28266752e-01 -6.38001263e-01 -1.04877949e-01
-2.06756637e-01 2.47087657e-01 4.55782712e-01 2.21651375e-01
-1.10074437e+00 4.67699319e-01 5.42505836e+00 6.22667298e-02
-1.24303555e+00 -3.34361762e-01 7.05172718e-01 -3.04194894e-02
6.78207278e-01 -2.87715942e-01 -7.38509297e-01 6.59867823e-01
3.98018301e-01 9.77470055e-02 1.33781940e-01 2.44525269e-01
6.56902909e-01 -4.96031135e-01 -6.14031315e-01 9.96217906e-01
-2.09673598e-01 -1.28707862e+00 1.81604158e-02 1.52837709e-01
7.70689905e-01 -1.15508996e-02 2.17550341e-02 -3.63325238e-01
-9.37387198e-02 -1.12290883e+00 -3.92382890e-01 9.22424078e-01
1.04628432e+00 -7.47853875e-01 1.19808590e+00 -7.01442808e-02
-6.06256843e-01 -1.28143013e-01 -4.05515850e-01 2.81395279e-02
-3.80076170e-02 7.34372079e-01 -6.59561574e-01 9.00714248e-02
8.29930782e-01 7.50740528e-01 -7.03774452e-01 2.27897000e+00
-2.45552093e-01 6.96161151e-01 1.15777329e-02 2.56735981e-01
-1.08065235e-03 -4.97513652e-01 5.08243620e-01 7.98585057e-01
3.35148752e-01 3.44939739e-01 3.14317122e-02 7.06557214e-01
1.30377144e-01 1.34826481e-01 -9.55542848e-02 1.14360571e-01
6.08177632e-02 1.03442943e+00 -3.29582542e-01 -1.02392375e-01
-6.64615810e-01 5.00537813e-01 -2.09878072e-01 6.36302650e-01
-4.52944160e-01 -6.86714530e-01 5.46806991e-01 2.89826781e-01
1.95868202e-02 1.61048651e-01 -3.03733140e-01 -6.96792722e-01
2.21445784e-01 -7.49651253e-01 1.56899825e-01 -8.84424031e-01
-1.06559873e+00 5.22056222e-01 -6.51904166e-01 -1.39958298e+00
4.36933875e-01 -7.66918123e-01 -6.94180965e-01 1.35492480e+00
-1.93454766e+00 -8.77105296e-01 -8.79468322e-01 5.40779352e-01
1.73588037e-01 -3.77657264e-01 5.58051944e-01 4.82223749e-01
-1.06809771e+00 2.94578522e-01 2.35204518e-01 3.11835945e-01
8.03816199e-01 -1.06045699e+00 -4.84483652e-02 1.02325296e+00
-8.34690034e-01 4.31168735e-01 4.43926007e-01 -5.86345971e-01
-5.85250378e-01 -1.39389491e+00 8.41311514e-01 2.82624990e-01
2.12483868e-01 6.47006631e-01 -9.59968090e-01 2.32089207e-01
3.49826664e-02 3.20652783e-01 5.74769497e-01 -3.80034864e-01
7.84333199e-02 -3.54616493e-01 -1.08178544e+00 6.15100443e-01
5.29988706e-01 -2.47277990e-02 -2.66065985e-01 4.56410378e-01
2.32660681e-01 -5.00228047e-01 -7.58720040e-01 5.29694557e-01
4.77896690e-01 -1.07840300e+00 7.23806858e-01 -5.54752827e-01
3.95120293e-01 -6.14747405e-01 2.60871291e-01 -7.92976141e-01
-1.54351354e-01 -5.43655992e-01 6.24952018e-02 9.21768069e-01
1.55935794e-01 -8.74632835e-01 6.75455630e-01 4.32884037e-01
-1.48948818e-01 -7.23928452e-01 -4.40030396e-01 -5.27440012e-01
-2.33719140e-01 4.53762978e-01 4.02725153e-02 5.87845445e-01
-6.70036077e-01 1.58588082e-01 -4.54833023e-02 5.40717185e-01
7.92833090e-01 1.15513317e-01 6.69674158e-01 -1.66389549e+00
2.41373360e-01 -3.34215283e-01 -7.32558966e-01 -7.47451901e-01
-6.33594871e-01 -3.78723979e-01 -2.65313089e-01 -2.12657237e+00
1.08774453e-01 -2.68829584e-01 -2.98957884e-01 4.39596146e-01
-3.00209254e-01 3.80126864e-01 -3.14502716e-01 4.16536838e-01
2.11857446e-02 8.37980807e-02 1.77191925e+00 4.49973606e-02
-5.96762896e-01 4.66930598e-01 -7.61707366e-01 8.29739392e-01
1.23735249e+00 9.40180570e-02 -2.79861182e-01 -4.30275887e-01
-1.92079633e-01 -6.36378080e-02 6.99483335e-01 -1.02623379e+00
2.39603817e-01 -1.92081735e-01 4.27323490e-01 -4.81549710e-01
1.62709597e-02 -4.35240924e-01 -2.18570158e-01 4.87159997e-01
-5.30411005e-02 -5.90510368e-01 1.34558439e-01 5.16534805e-01
-3.78943443e-01 -5.76462559e-02 1.31770134e+00 -1.25066414e-01
-8.11928928e-01 3.50482196e-01 -3.94599319e-01 -1.13297552e-01
1.00175941e+00 -5.37636638e-01 -7.91991949e-01 1.67392343e-01
-6.61458075e-01 2.08000124e-01 2.95935065e-01 -2.07539555e-02
8.70853901e-01 -7.93820500e-01 -1.01675820e+00 2.65598595e-01
3.44526708e-01 2.69052416e-01 3.39482635e-01 1.43122637e+00
-9.90165114e-01 3.03721339e-01 -5.14863789e-01 -5.58036029e-01
-1.77283561e+00 7.65079334e-02 7.57076323e-01 4.15712297e-01
-8.74041200e-01 6.43909037e-01 1.24361038e-01 4.50657666e-01
5.25806904e-01 -4.90889728e-01 -6.42262638e-01 -2.67366856e-01
9.16127384e-01 7.16422915e-01 6.55150414e-02 -2.76078284e-01
8.50673690e-02 8.19403768e-01 -3.86587590e-01 6.56509042e-01
1.08746147e+00 -2.81033427e-01 -5.98662019e-01 -1.37933999e-01
6.07147217e-01 -1.48839980e-01 -1.08445227e+00 -2.59534776e-01
-2.37417176e-01 -6.92267537e-01 5.13293624e-01 -1.29601967e+00
-1.13728499e+00 9.98549461e-01 1.26070178e+00 -6.21494465e-03
1.39177084e+00 -4.18179840e-01 7.78866053e-01 2.83032864e-01
-2.75913849e-02 -7.44533479e-01 -3.52071851e-01 5.05574644e-02
7.33413279e-01 -1.36638319e+00 -1.46097066e-02 -7.71090925e-01
-4.57516372e-01 1.22602499e+00 6.77334487e-01 6.55843914e-02
3.51593137e-01 -3.59992623e-01 6.03045642e-01 -1.49608846e-03
-2.28038236e-01 -6.62574470e-01 5.43614089e-01 6.65693283e-01
4.89574730e-01 -8.53386596e-02 -6.23153925e-01 1.50592089e-01
4.07811552e-01 4.78494942e-01 8.54418337e-01 7.20104158e-01
-9.30972517e-01 -7.29646683e-01 -2.96068221e-01 8.49299967e-01
-6.67515934e-01 1.96394091e-03 -3.99577916e-01 8.11453700e-01
2.90108144e-01 1.20957828e+00 7.15273898e-03 2.82979220e-01
2.92832017e-01 -2.65644401e-01 3.73981953e-01 -4.58503187e-01
-5.75779378e-03 4.20704365e-01 2.91228473e-01 -2.49141484e-01
-7.82488704e-01 -2.53095597e-01 -1.20296156e+00 -1.49238631e-02
-2.02021047e-01 -1.90718964e-01 3.84983629e-01 6.27006173e-01
4.14349586e-01 4.05581355e-01 4.78760242e-01 -1.76244490e-02
-1.90965325e-01 -9.72681105e-01 -8.84200811e-01 1.16035812e-01
6.72996581e-01 -5.78014314e-01 -1.82977587e-01 3.37157696e-01] | [15.829453468322754, -3.9905219078063965] |
29db7105-d0bd-4d51-b327-e083bf0591b6 | dgcnn-disordered-graph-convolutional-neural | 1712.03563 | null | http://arxiv.org/abs/1712.03563v1 | http://arxiv.org/pdf/1712.03563v1.pdf | DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model | Convolutional neural networks (CNNs) can be applied to graph similarity
matching, in which case they are called graph CNNs. Graph CNNs are attracting
increasing attention due to their effectiveness and efficiency. However, the
existing convolution approaches focus only on regular data forms and require
the transfer of the graph or key node neighborhoods of the graph into the same
fixed form. During this transfer process, structural information of the graph
can be lost, and some redundant information can be incorporated. To overcome
this problem, we propose the disordered graph convolutional neural network
(DGCNN) based on the mixed Gaussian model, which extends the CNN by adding a
preprocessing layer called the disordered graph convolutional layer (DGCL). The
DGCL uses a mixed Gaussian function to realize the mapping between the
convolution kernel and the nodes in the neighborhood of the graph. The output
of the DGCL is the input of the CNN. We further implement a
backward-propagation optimization process of the convolutional layer by which
we incorporate the feature-learning model of the irregular node neighborhood
structure into the network. Thereafter, the optimization of the convolution
kernel becomes part of the neural network learning process. The DGCNN can
accept arbitrary scaled and disordered neighborhood graph structures as the
receptive fields of CNNs, which reduces information loss during graph
transformation. Finally, we perform experiments on multiple standard graph
datasets. The results show that the proposed method outperforms the
state-of-the-art methods in graph classification and retrieval. | ['Yang Liu', 'Lei Huang', 'Bo Wu', 'Bo Lang'] | 2017-12-10 | null | null | null | null | ['graph-similarity'] | ['graphs'] | [-1.10984351e-02 7.51842260e-02 4.31339592e-02 -2.51500040e-01
2.68629730e-01 -3.07377785e-01 4.27401572e-01 2.97956973e-01
-3.62647235e-01 7.36332983e-02 -1.32718161e-01 -3.41257423e-01
4.78290804e-02 -1.53347647e+00 -7.36310363e-01 -6.81834102e-01
2.83230871e-01 1.82942688e-01 4.09722567e-01 -1.01086564e-01
6.72528148e-02 7.50342786e-01 -1.14467800e+00 1.34419084e-01
9.47216451e-01 1.14571226e+00 2.09776103e-01 3.80587280e-01
-5.91887534e-01 5.43815792e-01 -4.05756801e-01 -3.49020272e-01
2.16763169e-01 -3.51131648e-01 -6.08401000e-01 -8.46309215e-02
3.06496531e-01 -1.10836253e-01 -9.66539443e-01 1.47811067e+00
5.81110716e-01 4.57441509e-01 4.00981247e-01 -1.29424047e+00
-1.18397176e+00 4.50640380e-01 -1.93395063e-01 -1.24113418e-01
1.52609035e-01 -4.40334007e-02 8.85965168e-01 -6.95985556e-01
4.32867020e-01 1.24147832e+00 7.47357130e-01 2.26790488e-01
-9.30420637e-01 -7.62491703e-01 1.26597509e-01 2.49410525e-01
-1.56459260e+00 4.88948375e-02 1.05512810e+00 -1.87269971e-01
9.56069350e-01 1.90126486e-02 9.88400817e-01 3.66873652e-01
2.85425037e-01 5.76826155e-01 3.34826559e-01 -2.67461509e-01
-8.99254233e-02 -2.12770388e-01 2.20842317e-01 1.08728004e+00
3.84208947e-01 -4.24145311e-02 1.38937712e-01 -9.54312156e-04
1.05622518e+00 5.10202408e-01 -2.72928894e-01 -3.28984171e-01
-9.13357139e-01 8.87254834e-01 1.37177253e+00 3.54716718e-01
-2.40960091e-01 3.03821862e-01 4.43252146e-01 3.74755144e-01
4.84183401e-01 1.83965310e-01 9.18702558e-02 5.23623168e-01
-5.05256951e-01 2.38846727e-02 7.23928034e-01 1.20690787e+00
1.08111846e+00 -2.97576841e-02 -3.25981647e-01 7.90608644e-01
4.22696054e-01 2.79006004e-01 4.09880608e-01 -2.40832582e-01
4.20085728e-01 1.36286676e+00 -5.74483931e-01 -1.38561571e+00
-4.53289747e-01 -5.30670226e-01 -1.34064829e+00 -2.08203286e-01
1.27276048e-01 1.14493154e-01 -1.08331168e+00 1.36535978e+00
2.44152889e-01 2.89922535e-01 1.99407246e-02 8.36416066e-01
1.53462899e+00 6.78362131e-01 -1.40613765e-01 2.83709824e-01
1.03404725e+00 -1.24373221e+00 -5.19738257e-01 -1.62069947e-01
6.84926450e-01 -7.23849177e-01 1.01037300e+00 -3.05015028e-01
-7.45600820e-01 -7.59235620e-01 -1.03685606e+00 -2.23053977e-01
-6.27640188e-01 1.13203749e-01 7.68325627e-01 1.50367588e-01
-1.21978962e+00 8.27704608e-01 -6.97714031e-01 -5.16281009e-01
4.10485119e-01 4.85365391e-01 -5.43070555e-01 -4.14126068e-01
-1.21633542e+00 4.31818724e-01 6.02942526e-01 4.50211465e-01
-2.78424084e-01 -3.38162541e-01 -1.21610749e+00 5.54653585e-01
9.82497782e-02 -6.48660064e-01 6.23076975e-01 -9.79425609e-01
-1.27231991e+00 7.37950921e-01 2.17020914e-01 -8.61832127e-02
1.08248197e-01 4.23685133e-01 -4.04974699e-01 9.54246987e-03
-1.02896467e-01 4.11577493e-01 8.16909134e-01 -6.34853065e-01
-1.35900646e-01 -1.10292912e-01 1.73346534e-01 8.72679949e-02
-5.20954490e-01 -1.42330676e-01 -8.67100954e-01 -8.50921512e-01
4.96654451e-01 -8.75244141e-01 -2.82178372e-01 7.37398341e-02
-4.54479426e-01 -3.59217465e-01 9.30670798e-01 -4.99885112e-01
1.40890324e+00 -2.34348536e+00 1.28339469e-01 5.62797844e-01
5.49517155e-01 4.53764409e-01 -4.16269302e-01 3.95007372e-01
-3.21807742e-01 -2.71297954e-02 -4.46056128e-02 -1.34795457e-01
-1.35868415e-01 2.04216510e-01 1.83162808e-01 4.64307338e-01
1.79797515e-01 1.26054811e+00 -8.58225286e-01 -4.34164315e-01
3.02712083e-01 4.49750543e-01 -6.32670522e-01 5.73010325e-01
-2.79408097e-02 7.62536228e-02 -5.26953638e-01 3.59720558e-01
1.03035355e+00 -5.17925560e-01 2.64066476e-02 -5.23003221e-01
1.31509766e-01 1.86344519e-01 -1.08846760e+00 1.57458711e+00
-1.12707093e-01 3.42204362e-01 -2.96440776e-02 -1.34124970e+00
1.30365217e+00 -1.02226228e-01 2.75210887e-01 -6.02862120e-01
3.48301083e-01 1.01412885e-01 1.69508234e-01 -2.54130840e-01
2.45910168e-01 1.37386873e-01 1.10383339e-01 3.35353613e-01
2.32937053e-01 -4.17897254e-02 3.88657488e-02 2.07915962e-01
1.15553808e+00 -3.91060650e-01 5.48905768e-02 -2.61802137e-01
7.79588103e-01 -2.66526461e-01 2.93396801e-01 5.33357620e-01
2.63560176e-01 5.86756647e-01 4.82742190e-01 -7.66037643e-01
-7.70840466e-01 -8.04186583e-01 2.41396457e-01 6.26128495e-01
4.01718140e-01 -5.26411176e-01 -8.08320165e-01 -7.14411616e-01
4.48978841e-02 -1.65683329e-02 -6.06148899e-01 -7.69552469e-01
-5.74573934e-01 -4.60049033e-01 4.14045990e-01 5.70054173e-01
9.90133286e-01 -1.42455614e+00 1.93151519e-01 2.79863894e-01
1.84908852e-01 -1.06304419e+00 -8.58485460e-01 1.86065398e-02
-7.40970075e-01 -1.20483410e+00 -5.71945250e-01 -1.33263528e+00
1.11329567e+00 3.98014039e-01 8.21990252e-01 7.76375771e-01
-1.40896648e-01 8.30553845e-02 -3.75473082e-01 5.14722429e-02
-3.07479531e-01 3.62666756e-01 -3.17826986e-01 2.23980755e-01
2.92604864e-01 -7.23823905e-01 -5.41173041e-01 1.98766053e-01
-1.04397976e+00 2.22292081e-01 5.44553041e-01 9.52384710e-01
6.17220104e-01 1.38273686e-01 1.46145001e-01 -9.49280500e-01
9.44491684e-01 -2.96006769e-01 -8.25216413e-01 2.70985037e-01
-6.11255467e-01 2.48042867e-01 9.77514505e-01 -6.21760309e-01
-4.99313027e-01 6.64856732e-02 -2.39823699e-01 -7.73632824e-01
2.61175960e-01 8.72870505e-01 -5.32912195e-01 -6.99634850e-01
2.75059342e-01 2.28578761e-01 1.81925803e-01 -4.05725449e-01
3.52625579e-01 5.30887544e-01 3.43744338e-01 -2.70863891e-01
9.73637819e-01 1.76290914e-01 1.63286522e-01 -6.73570633e-01
-3.50342631e-01 -3.69290262e-01 -5.26498795e-01 -1.09603852e-01
7.85997570e-01 -5.05993187e-01 -6.45613194e-01 8.54290664e-01
-1.34046757e+00 -3.76797497e-01 -1.11508161e-01 4.42213774e-01
-1.48659497e-01 5.09332359e-01 -8.65379930e-01 -1.00183196e-01
-6.17702246e-01 -1.16301513e+00 8.68229032e-01 5.58707535e-01
3.63457829e-01 -1.22702539e+00 -2.84769863e-01 -2.96736002e-01
6.41937971e-01 1.37574494e-01 1.34515762e+00 -7.86089897e-01
-6.68297529e-01 -6.45807624e-01 -7.30286956e-01 5.50832093e-01
1.33695424e-01 -5.16682081e-02 -5.91340303e-01 -4.73645300e-01
-3.61013532e-01 7.38892183e-02 9.36887681e-01 3.32782745e-01
1.29657686e+00 -2.67623425e-01 -3.97774756e-01 1.13049710e+00
1.48053646e+00 1.40541792e-01 8.48591328e-01 1.75589100e-01
1.11581051e+00 2.65422285e-01 1.68940529e-01 -4.33197021e-02
2.75888979e-01 3.80761176e-01 5.10991454e-01 -6.19323134e-01
-2.10034683e-01 -4.06617582e-01 -4.92497198e-02 1.11810040e+00
-8.90800208e-02 -3.36264104e-01 -7.43755639e-01 2.40143865e-01
-1.91570055e+00 -6.19843125e-01 -1.66474119e-01 2.02327609e+00
2.15981662e-01 1.40322194e-01 -3.61006111e-01 -2.90536676e-02
1.05666900e+00 3.59697163e-01 -4.25966918e-01 -3.73548210e-01
-1.00076944e-02 4.15298343e-01 5.37618339e-01 4.12557602e-01
-1.07294333e+00 1.08701289e+00 5.27037811e+00 8.32101643e-01
-1.35579276e+00 -2.65163749e-01 1.81093097e-01 5.91277361e-01
-3.22011054e-01 2.05332297e-03 -4.02702332e-01 2.45897695e-01
2.75737315e-01 -2.65700519e-01 8.33886385e-01 9.24202204e-01
-2.48857170e-01 5.00076890e-01 -9.42404211e-01 1.16127658e+00
9.03005973e-02 -1.34802985e+00 3.90043199e-01 -1.65700708e-02
4.83939052e-01 3.31274420e-02 -2.37460420e-01 4.18700337e-01
3.63760628e-02 -1.12402260e+00 3.27368408e-01 5.79632819e-01
8.87374699e-01 -6.45153463e-01 9.86350119e-01 1.46463290e-01
-1.81094432e+00 1.68237850e-01 -8.75752747e-01 3.31744179e-02
-3.05273265e-01 5.01992285e-01 -5.63161135e-01 7.12888241e-01
4.87092942e-01 9.66437399e-01 -7.48177648e-01 1.21259415e+00
-3.30594301e-01 1.99778929e-01 -2.34494075e-01 -2.76047528e-01
3.94916177e-01 -5.85233927e-01 2.83586204e-01 1.04457378e+00
3.34763050e-01 -1.48222700e-01 3.60352337e-01 1.12913084e+00
-6.19273186e-01 3.83875638e-01 -7.33187973e-01 -2.88742691e-01
2.79866904e-01 1.46100283e+00 -8.10840487e-01 -2.73833543e-01
-5.47842979e-01 1.13787818e+00 7.13640273e-01 5.27603745e-01
-6.34668648e-01 -1.00015140e+00 4.28619444e-01 6.66293651e-02
2.80190259e-01 -3.18145007e-02 9.99880359e-02 -1.06137908e+00
1.83922037e-01 -5.71619213e-01 4.84847695e-01 -7.45202243e-01
-1.37794220e+00 8.67931247e-01 -2.57191032e-01 -1.06762719e+00
2.28369117e-01 -7.49078751e-01 -1.07431424e+00 1.15379679e+00
-1.48743248e+00 -1.38175058e+00 -9.50177491e-01 8.30505431e-01
-1.34937227e-01 -1.58784315e-01 8.32059264e-01 5.63371718e-01
-4.54431683e-01 7.09319890e-01 -1.04619302e-01 6.81838334e-01
5.11420906e-01 -9.03549850e-01 7.44218349e-01 7.00351477e-01
-1.81026295e-01 7.71191180e-01 -5.10145947e-02 -6.80339396e-01
-1.40069902e+00 -1.56771803e+00 8.50984871e-01 3.74838144e-01
6.15232229e-01 -5.48555553e-01 -1.24350905e+00 6.82390869e-01
-9.99814346e-02 6.00189507e-01 2.31211707e-01 -1.43702552e-01
-3.13736588e-01 -1.75207108e-01 -9.81040955e-01 5.02332866e-01
1.12431300e+00 -7.66378343e-01 -2.33314678e-01 2.93372244e-01
1.10595620e+00 -5.44086754e-01 -9.01002645e-01 4.50474054e-01
4.47336733e-01 -5.54037571e-01 8.85810554e-01 -7.50540733e-01
1.10189721e-01 -4.19331461e-01 1.49144545e-01 -1.36759925e+00
-7.52517164e-01 -3.02994519e-01 2.07932115e-01 1.05819118e+00
2.48796552e-01 -8.87138784e-01 8.44293356e-01 3.63906801e-01
-4.26029116e-01 -8.07591856e-01 -6.89935982e-01 -5.94713807e-01
-1.70804441e-01 -1.70856178e-01 8.76888335e-01 9.86877143e-01
-1.98841125e-01 3.67008418e-01 7.82522485e-02 1.06722459e-01
2.65357852e-01 2.33281434e-01 7.68010795e-01 -1.25168324e+00
-1.02776863e-01 -5.68105578e-01 -8.35091412e-01 -1.21848404e+00
3.44096005e-01 -1.41223645e+00 -2.78321415e-01 -1.87538147e+00
1.78383924e-02 -5.22109866e-01 -3.43727916e-01 5.33373535e-01
-3.10448557e-01 -3.28389481e-02 5.64606339e-02 7.66015612e-03
-4.28032517e-01 7.56473243e-01 1.58137608e+00 -5.11944771e-01
-2.73988128e-01 1.15861386e-01 -4.16871786e-01 4.63615447e-01
7.42370844e-01 -2.89731383e-01 -3.65946561e-01 -4.91461068e-01
8.82131010e-02 -2.86326289e-01 3.91358346e-01 -8.87928784e-01
6.55721486e-01 1.76545918e-01 2.10079253e-01 -4.41751689e-01
-5.00802174e-02 -9.42392468e-01 2.87210733e-01 5.94779551e-01
-2.19518244e-02 1.94852144e-01 1.86762288e-01 5.14293075e-01
-3.35169047e-01 -1.74479321e-01 7.38316357e-01 -1.08779341e-01
-3.07357162e-01 9.59048688e-01 -7.84248784e-02 -2.02076599e-01
6.92956686e-01 -1.83919162e-01 -3.19468319e-01 -2.64534712e-01
-5.78565359e-01 2.04614833e-01 4.50465560e-01 3.96871775e-01
9.32586789e-01 -1.76842797e+00 -4.03296649e-01 6.55383646e-01
2.36864045e-01 3.29004228e-01 3.47269624e-02 6.67419970e-01
-8.17507029e-01 2.02301502e-01 -1.97215527e-01 -3.45196754e-01
-1.05219638e+00 8.53203654e-01 6.83952332e-01 -3.20838630e-01
-6.83370292e-01 6.77934051e-01 2.59576976e-01 -7.40088701e-01
2.69275099e-01 -5.38966000e-01 -3.04714650e-01 -3.47892046e-01
2.02998266e-01 6.53538182e-02 2.00466082e-01 -5.28990149e-01
-2.89560378e-01 5.80864966e-01 6.35216832e-02 6.87648773e-01
1.27679861e+00 3.11697215e-01 -7.43806958e-01 -2.31839582e-01
1.62535727e+00 -2.27477998e-01 -6.38829470e-01 -4.61076260e-01
-3.50417197e-01 -1.66649476e-01 7.69941360e-02 1.03878668e-02
-1.52893925e+00 9.24315870e-01 4.11635160e-01 3.24989706e-01
1.08180583e+00 -2.63485368e-02 9.71779108e-01 4.35978532e-01
2.04509236e-02 -6.72201753e-01 -1.17598884e-02 7.43535101e-01
8.27951312e-01 -8.95566523e-01 -1.75156787e-01 -7.02496946e-01
1.09405912e-01 1.38337040e+00 8.44034910e-01 -5.97449303e-01
1.03192174e+00 1.18913865e-02 -2.13901356e-01 -5.34589648e-01
-1.36220083e-01 -2.48757407e-01 6.10606492e-01 5.67522228e-01
2.48439595e-01 2.04641670e-02 -4.38737661e-01 7.69986153e-01
3.11797252e-03 -2.65293568e-01 -3.14288288e-02 7.01681614e-01
-2.73145735e-01 -1.10462117e+00 2.89679039e-02 7.08561122e-01
-6.27030618e-03 -5.13703227e-01 -4.98728812e-01 6.84645534e-01
1.20939679e-01 5.19472182e-01 1.82908520e-01 -8.36264431e-01
6.19699121e-01 -2.92262584e-01 2.76575416e-01 -7.70870864e-01
-7.05516219e-01 -9.01280791e-02 -3.16010684e-01 -6.21775031e-01
-1.67048171e-01 8.06626752e-02 -1.45300686e+00 -5.59720993e-01
-6.76151216e-01 3.45246553e-01 2.74280995e-01 7.41645753e-01
3.06548387e-01 7.67944992e-01 5.67745745e-01 -6.51947320e-01
-9.72529426e-02 -1.01944935e+00 -6.59657121e-01 5.19571424e-01
4.12836224e-02 -4.27185535e-01 -2.34095097e-01 -3.50363463e-01] | [7.20604133605957, 6.2462053298950195] |
89817829-e129-488d-b203-4272fd236d20 | learning-segmentation-masks-with-the | 1811.04682 | null | http://arxiv.org/abs/1811.04682v2 | http://arxiv.org/pdf/1811.04682v2.pdf | Learning Segmentation Masks with the Independence Prior | An instance with a bad mask might make a composite image that uses it look
fake. This encourages us to learn segmentation by generating realistic
composite images. To achieve this, we propose a novel framework that exploits a
new proposed prior called the independence prior based on Generative
Adversarial Networks (GANs). The generator produces an image with multiple
category-specific instance providers, a layout module and a composition module.
Firstly, each provider independently outputs a category-specific instance image
with a soft mask. Then the provided instances' poses are corrected by the
layout module. Lastly, the composition module combines these instances into a
final image. Training with adversarial loss and penalty for mask area, each
provider learns a mask that is as small as possible but enough to cover a
complete category-specific instance. Weakly supervised semantic segmentation
methods widely use grouping cues modeling the association between image parts,
which are either artificially designed or learned with costly segmentation
labels or only modeled on local pairs. Unlike them, our method automatically
models the dependence between any parts and learns instance segmentation. We
apply our framework in two cases: (1) Foreground segmentation on
category-specific images with box-level annotation. (2) Unsupervised learning
of instance appearances and masks with only one image of homogeneous object
cluster (HOC). We get appealing results in both tasks, which shows the
independence prior is useful for instance segmentation and it is possible to
unsupervisedly learn instance masks with only one image. | ['Xiaoqiang Li', 'Weiqin Tong', 'Pin Wu', 'Yimin Chen', 'Songmin Dai', 'Lu Wang'] | 2018-11-12 | null | null | null | null | ['foreground-segmentation'] | ['computer-vision'] | [ 9.10300434e-01 1.02875519e+00 -1.02098778e-01 -3.90805751e-01
-9.56474364e-01 -8.11047256e-01 6.14140153e-01 -2.97250807e-01
-1.27633318e-01 6.54667377e-01 -4.01685297e-01 6.80722529e-03
3.64592820e-01 -9.76409495e-01 -1.30943251e+00 -9.05392468e-01
3.50470036e-01 8.93534243e-01 5.33905685e-01 1.40392616e-01
-7.70510808e-02 3.51110101e-01 -1.50010478e+00 5.84475935e-01
1.08685267e+00 8.73624086e-01 3.04445744e-01 5.41270614e-01
-2.93481797e-01 6.17173076e-01 -9.10443425e-01 -6.52909696e-01
8.29282880e-01 -5.88326514e-01 -8.34218085e-01 8.32253158e-01
5.49695015e-01 -1.86942443e-01 2.07687348e-01 1.20809102e+00
-1.05633371e-01 -1.50793016e-01 8.52618635e-01 -1.50578439e+00
-5.89005947e-01 8.31521630e-01 -7.58006155e-01 -5.45749843e-01
-9.52230468e-02 5.51766336e-01 7.89510787e-01 -4.79469448e-01
6.82553291e-01 1.10719013e+00 5.65354288e-01 7.69904256e-01
-1.51097083e+00 -4.72283870e-01 3.29413205e-01 -3.14368784e-01
-1.23258579e+00 -7.18040988e-02 8.82059634e-01 -4.58134830e-01
2.43937820e-01 4.02323186e-01 5.46573699e-01 1.13141119e+00
-3.41135591e-01 8.39960635e-01 1.35872197e+00 -4.38108295e-01
3.44641685e-01 6.09633863e-01 -1.69223577e-01 5.00592411e-01
2.13056937e-01 -9.02922824e-03 9.85149741e-02 1.42669514e-01
9.53380585e-01 9.23429132e-02 -5.16397273e-03 -4.84109819e-01
-1.06896842e+00 6.82628274e-01 6.89893246e-01 2.87258536e-01
-2.14566231e-01 2.98702449e-01 -7.65336752e-02 4.74890694e-02
4.11036640e-01 5.18500507e-01 -4.20360237e-01 6.04496062e-01
-1.30610812e+00 8.70919079e-02 6.13174379e-01 1.19904530e+00
1.17599738e+00 6.11606017e-02 -2.08182320e-01 7.60417461e-01
1.73093453e-02 3.74993980e-01 1.24500014e-01 -1.07782006e+00
2.33040363e-01 6.96500659e-01 1.30629167e-01 -6.56184673e-01
9.83619019e-02 -5.32097638e-01 -7.99294531e-01 5.44729471e-01
6.60063863e-01 -1.17783122e-01 -1.49139845e+00 1.87141490e+00
4.32621509e-01 3.30173165e-01 -3.00437436e-02 8.33860874e-01
6.02355838e-01 4.27040368e-01 9.92549881e-02 -1.79704074e-02
1.26472187e+00 -1.31906080e+00 -6.43290877e-01 -5.88136971e-01
2.55465806e-01 -6.98241591e-01 1.13316131e+00 4.90372449e-01
-1.31444514e+00 -6.69054687e-01 -9.85193074e-01 1.33442760e-01
-6.73869371e-01 2.31243685e-01 6.48124218e-01 9.09117162e-01
-1.08500707e+00 5.16961277e-01 -5.99123418e-01 -3.07902098e-02
7.56054878e-01 3.32753450e-01 -2.67977417e-01 -9.49656814e-02
-7.63435602e-01 5.71871161e-01 5.49255669e-01 -1.85081080e-01
-1.30600822e+00 -5.10686100e-01 -7.91510999e-01 -1.13377132e-01
5.51921964e-01 -7.55206704e-01 8.05044234e-01 -1.97079194e+00
-1.35686588e+00 1.20116627e+00 9.78359804e-02 -4.43012685e-01
8.73634934e-01 1.97259679e-01 4.33920994e-02 1.53403014e-01
3.89234096e-01 1.11811161e+00 1.46920657e+00 -2.27283931e+00
-5.25819421e-01 -1.74748883e-01 2.06896797e-01 -8.47716630e-02
2.16058403e-01 -2.92475045e-01 -5.56145608e-01 -8.43533993e-01
2.30054021e-01 -7.98664808e-01 -4.26964849e-01 -1.26936495e-01
-1.02013052e+00 2.27206528e-01 8.54675770e-01 -7.09233582e-01
6.04285657e-01 -2.16128945e+00 1.48870081e-01 4.34555382e-01
1.72215298e-01 2.14352813e-02 -2.39667058e-01 -7.45298341e-02
-1.24655575e-01 4.76237118e-01 -9.76877987e-01 -6.76153541e-01
4.70660627e-02 5.85326076e-01 -2.25637600e-01 2.36470029e-01
5.72647750e-01 1.05627871e+00 -8.53655279e-01 -4.71044600e-01
2.39037350e-01 3.28415871e-01 -7.42259383e-01 4.99697626e-01
-5.57139874e-01 8.10382128e-01 -8.15574154e-02 6.61812663e-01
1.05777776e+00 -2.07249641e-01 1.99379802e-01 -1.89633578e-01
3.53371412e-01 -1.76943570e-01 -1.31298518e+00 1.53993428e+00
-1.75672129e-01 1.13520615e-01 2.85512775e-01 -1.22685397e+00
6.46955371e-01 1.34459466e-01 2.15927303e-01 -1.58531129e-01
2.67996266e-02 1.74804181e-01 -2.16582194e-01 -3.02170217e-01
1.17532350e-01 -2.11306944e-01 -1.25889242e-01 4.30825949e-01
3.12346786e-01 -7.26602137e-01 4.40404862e-02 3.37298393e-01
9.32578385e-01 3.85798126e-01 -1.01234645e-01 -6.16365224e-02
2.38067389e-01 -7.11171031e-02 6.27877295e-01 9.04135048e-01
4.20683399e-02 1.25912535e+00 6.42600119e-01 -9.89187211e-02
-1.21109807e+00 -1.21040511e+00 -1.47471922e-02 7.32115030e-01
4.74550337e-01 1.36825249e-01 -1.37356865e+00 -1.20099127e+00
-1.79312885e-01 7.26788819e-01 -8.59428704e-01 -1.09255721e-03
-4.97465044e-01 -5.52902639e-01 4.95984524e-01 4.05454665e-01
6.96849823e-01 -1.26852012e+00 -1.76859260e-01 -9.32480097e-02
-1.18689463e-01 -1.19515502e+00 -4.97292876e-01 4.74813730e-01
-6.55677795e-01 -1.19148743e+00 -6.78832650e-01 -8.58326674e-01
1.33319306e+00 -1.25142395e-01 1.26473796e+00 3.21354210e-01
-2.47490034e-01 2.24593729e-01 -2.92778909e-01 -2.09580868e-01
-6.08963728e-01 -1.13391913e-01 -3.13018590e-01 4.98000085e-01
-1.46084249e-01 -6.08312488e-01 -4.65771794e-01 3.15750003e-01
-1.32580256e+00 2.64074653e-01 8.45082223e-01 8.49977255e-01
8.86388123e-01 2.09547475e-01 3.07269931e-01 -1.55783296e+00
-5.10557964e-02 -4.39845592e-01 -5.21277249e-01 3.35597605e-01
-3.11072975e-01 -1.43186525e-01 5.47888160e-01 -5.94211340e-01
-1.21368384e+00 3.70018750e-01 1.49712563e-01 -6.02618515e-01
-7.56949723e-01 -1.82216272e-01 -7.57515252e-01 6.07147403e-02
6.83083355e-01 1.99446976e-01 -4.24572788e-02 -3.07714611e-01
7.36759365e-01 3.37358564e-01 7.72319734e-01 -7.20714808e-01
1.24907982e+00 6.03345871e-01 -3.51315111e-01 -4.52736169e-01
-7.82485306e-01 -1.85636014e-01 -8.83422852e-01 -1.19370602e-01
1.21877503e+00 -6.98509634e-01 4.43849415e-02 3.35854024e-01
-1.13324106e+00 -8.89187932e-01 -7.33902693e-01 -8.37517157e-02
-7.46624172e-01 2.34042779e-01 -4.54439670e-01 -6.87948942e-01
2.72756964e-01 -1.20984900e+00 1.27406156e+00 1.96131036e-01
8.06807578e-02 -8.69368672e-01 -5.52321255e-01 6.65669024e-01
1.50214314e-01 5.49923837e-01 6.21427715e-01 -6.79917634e-01
-1.11878908e+00 -1.00127332e-01 -3.45690012e-01 7.94153154e-01
1.29048839e-01 1.35268956e-01 -1.17902124e+00 5.00302529e-03
-3.39135621e-03 -2.09656134e-01 8.65179777e-01 3.96537691e-01
1.63572681e+00 -5.90284407e-01 -4.08267200e-01 6.22561634e-01
1.46566260e+00 1.22860387e-01 1.01310861e+00 -2.53623296e-02
1.05432343e+00 8.72699797e-01 4.56035286e-01 -1.80567861e-01
1.72816515e-02 5.51114321e-01 7.08700716e-01 -6.70999229e-01
-4.79263186e-01 -3.82335097e-01 2.05807135e-01 1.80978835e-01
-7.76237771e-02 -2.81139791e-01 -5.79941034e-01 6.17688775e-01
-1.72288692e+00 -8.20342958e-01 -1.31392702e-01 2.15466356e+00
9.88284171e-01 2.07722843e-01 1.05901785e-01 3.04402653e-02
9.23039913e-01 -1.74744815e-01 -4.38008338e-01 -2.57154226e-01
-2.11445779e-01 4.02857065e-01 7.07235694e-01 5.65083444e-01
-1.17270041e+00 1.28841686e+00 5.94385099e+00 1.16044211e+00
-7.39685476e-01 3.81920636e-01 1.22913086e+00 2.79206365e-01
-6.83266401e-01 3.29293072e-01 -4.32383269e-01 7.10190535e-01
2.53243953e-01 5.73871672e-01 4.97854829e-01 8.56162012e-01
-9.21263173e-02 -1.05848484e-01 -1.06642413e+00 6.67129517e-01
-6.54021427e-02 -1.18720007e+00 2.48340532e-01 1.67325199e-01
1.24170363e+00 -6.06582403e-01 1.76226169e-01 8.35888907e-02
4.67448384e-01 -1.23421967e+00 9.27954495e-01 5.22706628e-01
9.73755538e-01 -6.62428677e-01 7.03338802e-01 4.97214109e-01
-7.95498610e-01 1.45317048e-01 -2.01054931e-01 1.72271863e-01
1.29608899e-01 6.67797863e-01 -8.28254223e-01 5.07749557e-01
5.06649137e-01 2.87075460e-01 -5.84633350e-01 7.63460338e-01
-6.64866567e-01 6.88666940e-01 -3.63089830e-01 7.11880207e-01
2.50377715e-01 -5.05154192e-01 4.22248065e-01 1.08101034e+00
-9.03660152e-03 -1.02229372e-01 4.13933128e-01 1.50327301e+00
-1.61529958e-01 -2.44145259e-01 -7.12249875e-01 1.77649081e-01
2.99748421e-01 1.36244571e+00 -1.28456473e+00 -5.88095009e-01
-1.54508635e-01 1.38518035e+00 1.05309770e-01 5.56018889e-01
-9.95272815e-01 -1.43066607e-02 3.34990442e-01 3.16121459e-01
3.87718618e-01 3.35802674e-01 -8.01298499e-01 -1.00722957e+00
-6.59024864e-02 -8.62332284e-01 1.22233637e-01 -8.24952602e-01
-1.52100646e+00 5.05603373e-01 -4.47001774e-03 -1.17975640e+00
-1.05230466e-01 -3.99361908e-01 -7.36304045e-01 6.80898011e-01
-1.31222475e+00 -1.67370915e+00 -3.93875957e-01 4.53466594e-01
5.77992260e-01 1.26411598e-02 6.59721136e-01 1.16431214e-01
-5.38548291e-01 7.72417665e-01 -3.90582740e-01 2.01419741e-01
6.14605427e-01 -1.62544096e+00 1.58993766e-01 1.01070154e+00
2.81565726e-01 5.03255129e-01 6.60899997e-01 -6.68346345e-01
-5.04441977e-01 -1.31883276e+00 3.75786245e-01 -8.88992429e-01
1.28585815e-01 -5.64187706e-01 -8.92405987e-01 8.60407948e-01
2.61089355e-01 1.48082107e-01 2.63537258e-01 -4.57815021e-01
-3.75888795e-01 3.48567329e-02 -1.67389309e+00 4.90045637e-01
1.04332435e+00 -2.64685422e-01 -4.00915265e-01 5.62858522e-01
8.79303992e-01 -3.86681169e-01 -5.22269189e-01 5.20084143e-01
2.10710019e-02 -1.21739888e+00 9.77763295e-01 -2.51290143e-01
6.06076062e-01 -6.67124212e-01 1.26184896e-01 -1.19822705e+00
8.85016844e-02 -4.73999500e-01 1.84985906e-01 1.43746197e+00
5.93066692e-01 -5.93113720e-01 8.42718720e-01 8.96953106e-01
-3.80013317e-01 -4.72692460e-01 -6.40820622e-01 -7.84722924e-01
1.50408223e-01 -3.73057663e-01 7.66286194e-01 1.16325009e+00
-6.55477762e-01 -3.71305645e-02 -2.66302407e-01 2.88892806e-01
8.78467739e-01 1.00814889e-03 1.06472731e+00 -8.91310096e-01
-6.61901832e-01 -4.22377855e-01 -1.70123428e-01 -8.71502817e-01
1.63605422e-01 -7.46056080e-01 2.55637884e-01 -1.32558084e+00
3.18257302e-01 -8.22619200e-01 7.25391060e-02 6.88078642e-01
-2.64494002e-01 7.47440934e-01 6.30874559e-02 1.39504686e-01
-4.46862310e-01 4.35608774e-02 1.48993444e+00 -4.22901958e-01
-4.32479382e-02 7.77027905e-02 -7.47772336e-01 8.32212567e-01
7.45358586e-01 -5.50212681e-01 -3.29863667e-01 -1.98586419e-01
-2.03062654e-01 -3.27908367e-01 7.65989482e-01 -8.17148387e-01
-2.54527926e-01 -1.53001666e-01 5.47220051e-01 -2.97946632e-01
2.24529639e-01 -1.05982041e+00 5.43241203e-01 2.15545475e-01
-2.33369187e-01 -7.87012994e-01 -5.56895882e-02 5.81237137e-01
-1.96968153e-01 -3.90609682e-01 9.96667683e-01 -6.29190743e-01
-5.98686397e-01 2.37626746e-01 5.51752150e-02 -6.44989088e-02
1.21043718e+00 -6.07506692e-01 -9.80199352e-02 -2.83548355e-01
-9.72660661e-01 -1.82293225e-02 9.43812490e-01 1.10234767e-01
3.06307882e-01 -1.13700426e+00 -4.60469007e-01 3.89563709e-01
-3.86081636e-02 7.39078999e-01 1.95377067e-01 6.31102562e-01
-4.05424386e-01 -2.18219236e-01 -8.44732076e-02 -8.18463266e-01
-9.47139680e-01 7.68088281e-01 3.37723911e-01 -2.13470295e-01
-4.09889787e-01 1.06102502e+00 9.61358428e-01 -6.81040168e-01
6.31582886e-02 -1.89519316e-01 1.17218517e-01 -1.22638673e-01
2.13634416e-01 -1.76034436e-01 -1.83480129e-01 -6.43710434e-01
-4.37828526e-02 4.48879004e-01 1.84575781e-01 -1.10749289e-01
9.98094857e-01 -1.64090544e-02 -3.23095113e-01 1.67052850e-01
9.64422524e-01 9.82042477e-02 -1.75808322e+00 5.08625694e-02
-1.86229125e-01 -5.41229010e-01 -3.45468163e-01 -1.03243935e+00
-1.38625932e+00 6.93292737e-01 4.26770478e-01 4.11606580e-01
1.17471719e+00 2.57319152e-01 6.23620510e-01 -2.91801304e-01
4.59145963e-01 -9.87934828e-01 3.69288474e-01 1.06815040e-01
7.03653038e-01 -1.29888213e+00 -3.83145601e-01 -8.80982399e-01
-8.17688286e-01 6.36962056e-01 8.35585296e-01 -3.06382895e-01
2.94335663e-01 3.59305650e-01 2.57564873e-01 -1.65615544e-01
-1.73835695e-01 -5.27627587e-01 4.05245125e-01 1.09648061e+00
-5.15770949e-02 3.08254421e-01 -1.01818100e-01 7.00582802e-01
-1.32926241e-01 -4.73533064e-01 4.26983893e-01 5.85924208e-01
-1.99835941e-01 -1.40019584e+00 -5.34901559e-01 4.29708600e-01
-4.67325449e-01 5.13833808e-03 -6.97715104e-01 7.51569092e-01
7.20932007e-01 8.20225000e-01 1.55932352e-01 -2.45391086e-01
3.79209104e-03 1.52602464e-01 5.09306788e-01 -1.02435458e+00
-6.73462331e-01 2.26261765e-01 -2.08994374e-01 -6.21266425e-01
-5.72821915e-01 -3.21358979e-01 -1.23253584e+00 1.40574902e-01
-3.49237293e-01 -3.47184613e-02 5.34808218e-01 1.00478959e+00
1.07085533e-01 7.19053209e-01 5.64848065e-01 -1.10841012e+00
1.67793892e-02 -8.58304679e-01 -7.58163214e-01 9.39958036e-01
1.52501777e-01 -5.76526642e-01 -7.13076353e-01 6.26247406e-01] | [10.959456443786621, -0.2004670947790146] |
20ae0dc5-9d6d-449e-99d5-5eb868a7c3c5 | unsupervised-image-classification-through | 2009.08309 | null | http://arxiv.org/abs/2009.08309v1 | http://arxiv.org/pdf/2009.08309v1.pdf | Unsupervised Image Classification Through Time-Multiplexed Photonic Multi-Layer Spiking Convolutional Neural Network | We present results of a deep photonic spiking convolutional neural network,
based on two-section VCSELs, targeting image classification. Training is based
on unsupervised spike-timing dependent plasticity, whereas neuron
time-multiplexing and ultra-fast response are exploited towards a a reduction
of the physical neuron count by 90% | [] | 2020-09-16 | null | null | null | null | ['unsupervised-image-classification'] | ['computer-vision'] | [ 4.22659963e-01 1.55676026e-02 5.20038068e-01 1.89268161e-02
9.02883634e-02 -5.71935356e-01 1.60111517e-01 -1.19964212e-01
-1.12588549e+00 1.19498014e+00 -6.27046645e-01 -3.14464658e-01
-1.71467602e-01 -7.51691639e-01 -7.78622270e-01 -1.35382020e+00
6.09843107e-03 1.77811645e-02 7.45070159e-01 -2.58199722e-02
5.90262890e-01 5.05061984e-01 -2.06157112e+00 4.28482831e-01
2.98037797e-01 1.85434616e+00 5.40202975e-01 3.07554513e-01
-1.18488453e-01 2.47148633e-01 -6.23438239e-01 3.02992612e-02
2.13437483e-01 -2.94549316e-01 -9.68039110e-02 -7.47782826e-01
-1.06230244e-01 5.13831615e-01 -6.66164339e-01 9.83504355e-01
5.19840360e-01 -3.25212777e-01 6.92722917e-01 -8.39453638e-01
-4.70535338e-01 1.11405885e+00 4.52305555e-01 5.88834226e-01
-4.78228837e-01 8.78105521e-01 3.16274405e-01 -4.59571689e-01
8.05830181e-01 4.54530895e-01 6.50325477e-01 8.55496109e-01
-1.96049714e+00 -9.75697100e-01 -8.84923995e-01 -3.25576246e-01
-9.17668879e-01 -3.65799129e-01 3.25193852e-01 -4.12911624e-01
1.58044004e+00 -3.63720924e-01 1.05548728e+00 1.42872083e+00
1.02839375e+00 -2.29292437e-01 1.79238534e+00 5.09451255e-02
5.74747622e-01 2.45568186e-01 3.31565768e-01 4.19660002e-01
6.75534487e-01 7.71396935e-01 -9.45218146e-01 5.40198028e-01
1.19531941e+00 -3.63012671e-01 -2.85834707e-02 1.24901988e-01
-1.02410281e+00 4.51306522e-01 7.65310347e-01 8.36326241e-01
-2.61134595e-01 8.16599190e-01 2.72177994e-01 5.88491976e-01
-3.74837458e-01 1.19567049e+00 -3.22003007e-01 -1.10340849e-01
-9.32256401e-01 2.34597817e-01 5.55904567e-01 6.77794814e-01
8.54089737e-01 7.35392928e-01 -6.84780121e-01 -2.01795325e-02
-1.99913949e-01 9.69479680e-01 6.69283390e-01 -1.01908493e+00
-2.62118667e-01 1.03320169e+00 -2.11477220e-01 -5.53463176e-02
-8.43662500e-01 -5.86397231e-01 -7.49165058e-01 9.17070806e-01
2.92654902e-01 -4.32368547e-01 -1.48226285e+00 1.34280300e+00
-7.53812432e-01 -1.06740177e-01 4.36034501e-01 4.96151716e-01
1.15471697e+00 3.69276911e-01 -1.39260635e-01 -2.45377883e-01
1.28913820e+00 -3.06000620e-01 -8.24449956e-01 7.50597492e-02
2.69315153e-01 -1.37378812e-01 3.52457315e-01 1.91196486e-01
-1.33887398e+00 -5.67947686e-01 -1.54340863e+00 1.22107796e-01
-9.70686316e-01 -1.34496838e-01 8.93772006e-01 1.00705671e+00
-1.48295474e+00 9.33505654e-01 -6.33256614e-01 -2.04690531e-01
8.66195440e-01 1.04345858e+00 -4.25467461e-01 6.75261617e-01
-5.16162753e-01 4.84370053e-01 8.51410270e-01 -3.69522214e-01
-5.19958317e-01 -1.05214489e+00 5.78683354e-02 3.55027288e-01
-5.85796535e-01 -4.31425780e-01 6.19345129e-01 -3.49199235e-01
-2.24859524e+00 1.27139044e+00 1.80158824e-01 -1.22262275e+00
2.49715358e-01 7.71884441e-01 -3.25964570e-01 3.83909911e-01
-3.69617671e-01 8.87784660e-01 8.67388368e-01 -8.37392569e-01
-3.03247660e-01 -2.48792768e-01 -4.59550917e-01 -1.23933423e+00
-4.42288071e-01 -1.40269116e-01 3.43568385e-01 -9.71072838e-02
3.40347230e-01 -6.02422416e-01 -4.76116091e-02 7.61653557e-02
-2.53102422e-01 4.41983759e-01 9.61307585e-01 1.79825157e-01
4.68149245e-01 -2.46420431e+00 -8.92302990e-02 5.24692498e-02
3.28393877e-01 3.50001335e-01 -2.40988165e-01 3.85187566e-01
1.18625030e-01 -1.73326626e-01 -6.60202622e-01 -4.73427251e-02
-3.66895229e-01 1.65309533e-01 -4.41110730e-01 1.28259122e-01
6.34306967e-01 1.27915514e+00 -3.21677119e-01 1.82149202e-01
-4.56082821e-02 3.95665705e-01 -2.72980362e-01 7.28347972e-02
-7.03666359e-02 7.26494670e-01 1.14011183e-01 8.87991667e-01
6.71117723e-01 -2.95944542e-01 -3.52396518e-01 -2.32515469e-01
-1.34518564e+00 1.60915330e-01 -5.09769857e-01 1.70862806e+00
1.03873931e-01 1.04713643e+00 -2.01193973e-01 -1.05040693e+00
1.39333248e+00 2.36405954e-01 6.08528495e-01 -1.63375890e+00
8.80220652e-01 8.24088454e-01 1.44010648e-01 -1.25246391e-01
-2.87392259e-01 -1.87185004e-01 2.17134029e-01 2.66709328e-01
8.41305494e-01 -8.15292820e-02 5.27826846e-01 -3.10095847e-01
1.51337552e+00 1.10280849e-01 -4.22423631e-01 -1.13118851e+00
1.76789731e-01 7.00331526e-04 1.26948208e-01 9.16639626e-01
-1.89803764e-01 3.68348092e-01 7.89161623e-01 -4.40344900e-01
-9.32022274e-01 -1.50204074e+00 -9.31863606e-01 2.77044326e-01
1.98669627e-01 4.98056531e-01 -7.17120588e-01 3.70232314e-01
-3.10338233e-02 1.80430502e-01 -7.69660950e-01 -1.56730160e-01
-6.38298213e-01 -8.79361808e-01 1.12487769e+00 3.82351577e-01
9.12102163e-01 -1.82640910e+00 -1.42956376e+00 8.20873201e-01
7.05976903e-01 -1.58983171e+00 1.07771456e+00 1.47317517e+00
-1.17366421e+00 -9.28656042e-01 -7.80779064e-01 -1.06130815e+00
4.81396496e-01 -4.94168192e-01 7.25457847e-01 -3.75408232e-01
-9.77642357e-01 4.82622162e-02 1.26093715e-01 -5.86013317e-01
6.32415712e-02 2.10669219e-01 3.53535384e-01 -2.59573102e-01
6.11929238e-01 -1.52487719e+00 -7.20887840e-01 -6.53581470e-02
-4.12993252e-01 3.54325632e-03 1.12418401e+00 7.16918349e-01
7.73840785e-01 -4.25932735e-01 4.64209527e-01 -5.19967556e-01
8.14279243e-02 2.14389428e-01 -1.06432688e+00 -8.65412503e-02
-5.80617130e-01 4.78832632e-01 5.68907499e-01 -6.67570651e-01
-4.44157392e-01 -8.67980644e-02 -1.75487529e-02 -1.85274035e-02
-4.05158132e-01 -4.96154055e-02 9.67126310e-01 -1.14928186e+00
8.89243424e-01 7.58378386e-01 8.04218128e-02 2.61369646e-01
-3.45065445e-01 1.02086268e-01 6.53940678e-01 -1.57747328e-01
8.89876187e-01 5.68814397e-01 6.27958953e-01 -9.23564374e-01
1.42435953e-01 -5.58313765e-02 -5.41524529e-01 -3.09739292e-01
1.08073378e+00 -7.90558517e-01 -1.38565111e+00 8.59964609e-01
-1.32798564e+00 -7.53819346e-01 -5.42923152e-01 5.41199148e-01
-7.80241013e-01 -8.57392490e-01 -7.92424977e-01 -8.95757973e-01
-6.72652006e-01 -7.40909040e-01 3.68555099e-01 7.51970112e-01
5.30136645e-01 -4.10071909e-01 1.32565677e-01 -5.30482531e-01
1.01418793e+00 4.33786154e-01 1.34153950e+00 -2.11350486e-01
-1.27545464e+00 1.44321024e-01 -7.02224731e-01 5.96672297e-02
-3.76038104e-01 7.78339356e-02 -1.55229223e+00 -1.41816791e-02
-8.77479613e-02 -6.44855082e-01 1.42858291e+00 7.59266794e-01
8.95975173e-01 5.34965813e-01 -5.34168005e-01 8.36763561e-01
2.09973860e+00 1.38055325e-01 7.80276000e-01 1.33880332e-01
-8.38975087e-02 1.40269637e-01 -6.95433080e-01 2.00643718e-01
-6.78819478e-01 3.75331014e-01 7.69379199e-01 1.20684288e-01
-4.49527174e-01 4.29084957e-01 1.92883804e-01 7.28712678e-01
-5.49751997e-01 -1.24177918e-01 -6.10736966e-01 3.54739577e-01
-1.32573974e+00 -7.86308587e-01 -5.56363523e-01 2.13884234e+00
1.93620861e-01 6.35344088e-01 -2.58017238e-02 1.92729145e-01
4.81300801e-01 -2.75471270e-01 -6.48650408e-01 -5.14135540e-01
-9.20168817e-01 1.35473490e+00 1.01235485e+00 -4.54182953e-01
-5.32462537e-01 1.08904922e+00 7.23304033e+00 2.69109011e-01
-1.93090582e+00 -7.56600797e-02 -2.91964471e-01 -2.41539925e-01
-1.43385127e-01 -4.98323530e-01 -9.16722059e-01 7.39257336e-01
1.47520816e+00 2.74523884e-01 7.03583896e-01 2.28538774e-02
-3.80262315e-01 -2.58763671e-01 -1.01586413e+00 1.38944983e+00
-7.58714974e-01 -2.28855753e+00 1.64187998e-01 3.62734586e-01
6.74657166e-01 6.12089217e-01 5.75014293e-01 4.82334316e-01
-4.46446180e-01 -9.10188973e-01 7.06799746e-01 6.91606104e-01
1.08691609e+00 -6.51421428e-01 7.28828073e-01 -1.41890094e-01
-9.94933009e-01 -6.93859577e-01 -5.35902858e-01 -9.06527266e-02
-3.39232981e-01 9.06898797e-01 2.15014488e-01 6.39792383e-02
1.09666848e+00 3.99631560e-01 -6.23517096e-01 1.29075789e+00
1.95360214e-01 4.80258137e-01 -4.33259219e-01 -7.86791205e-01
3.33270103e-01 -1.31469086e-01 3.36891890e-01 1.30467665e+00
7.98162699e-01 5.00538088e-02 -7.43167877e-01 1.90065944e+00
-3.15792352e-01 -3.81271303e-01 -7.55938649e-01 -9.23971891e-01
2.03352556e-01 1.19923425e+00 -1.24446070e+00 4.17198837e-01
1.06048398e-01 7.85719693e-01 1.08852178e-01 4.31915343e-01
-3.42491955e-01 -8.20325851e-01 7.10332990e-01 2.59401407e-02
7.87906528e-01 -4.90029216e-01 -8.66378486e-01 -6.39156401e-01
-3.03019792e-01 4.26483780e-01 -6.81939006e-01 -6.12299383e-01
-7.82051682e-01 7.71034122e-01 -1.25312984e+00 -9.75735188e-01
2.10561097e-01 -1.68188214e+00 -7.23122358e-01 8.71873736e-01
-1.66042101e+00 -6.96540177e-01 -1.21398285e-01 8.58807027e-01
-4.18381631e-01 -5.49866080e-01 1.48296082e+00 -2.73562130e-02
-1.12800024e-01 4.91610318e-01 2.88228869e-01 1.00217797e-01
1.54293463e-01 -1.07691514e+00 3.92665893e-01 4.55828935e-01
-1.25601575e-01 2.27685526e-01 3.81719649e-01 -1.23816147e-03
-1.42391419e+00 -7.75208831e-01 5.74341536e-01 -4.49778326e-02
5.77153087e-01 -8.13150525e-01 -6.95697486e-01 4.37554903e-03
5.12896895e-01 1.84052423e-01 4.31739300e-01 -6.22235358e-01
-6.02530062e-01 -4.99814689e-01 -1.54331350e+00 6.81563020e-01
1.15175939e+00 -7.20199227e-01 -1.96886584e-01 3.05184014e-02
5.26300848e-01 1.15139671e-01 -5.30512571e-01 6.27875268e-01
8.73299181e-01 -1.14020693e+00 4.61092025e-01 -2.45529816e-01
3.58907729e-01 1.17979916e-02 2.03532845e-01 -9.37523127e-01
-3.28330636e-01 -9.50097263e-01 -1.30740792e-01 6.11669838e-01
5.85378051e-01 -1.24160719e+00 8.56864214e-01 -2.05659375e-01
-5.81299841e-01 -3.88059646e-01 -1.67855835e+00 -1.47947371e+00
4.82777730e-02 5.40095828e-02 -1.18586853e-01 -1.09708332e-01
-1.10183977e-01 -9.28450301e-02 6.99869633e-01 9.98990461e-02
7.26271570e-01 -1.54716387e-01 2.35547096e-01 -1.46692824e+00
1.70203328e-01 -1.22554064e+00 -1.23061287e+00 -4.35080916e-01
6.77055866e-02 -5.86771250e-01 4.04178709e-01 -8.75945568e-01
-3.57629538e-01 -1.30809516e-01 -1.01791322e+00 1.47030517e-01
7.76749909e-01 9.72661197e-01 -2.32108310e-01 7.12744445e-02
9.52033922e-02 1.17198579e-01 9.05336082e-01 -3.85433547e-02
-1.88389987e-01 -2.80652922e-02 1.44611657e-01 -1.57610774e-01
7.31737256e-01 -7.17981994e-01 9.29837152e-02 -3.46134186e-01
3.88247281e-01 -1.17056876e-01 4.95189160e-01 -2.58315992e+00
7.36811578e-01 5.50945520e-01 2.88629234e-01 -1.32816717e-01
5.75330496e-01 -5.47547817e-01 -2.08817929e-01 1.17248201e+00
-2.35595033e-01 -5.30530930e-01 6.20525479e-01 4.63578612e-01
-2.75204211e-01 -9.64692608e-02 1.19950724e+00 -1.86610311e-01
-6.49334788e-01 2.97849953e-01 -1.14153671e+00 -2.01069921e-01
8.98523211e-01 -8.17347825e-01 -7.70076036e-01 7.19106793e-01
-5.32700062e-01 -6.21870458e-01 -3.80147956e-02 -2.41594717e-01
6.51272595e-01 -1.14660597e+00 -3.31518620e-01 7.97680020e-01
4.47218537e-01 -7.90296853e-01 3.11208010e-01 8.47997129e-01
-6.92160189e-01 9.60163116e-01 -1.45534921e+00 -6.70403659e-01
-6.05107665e-01 3.83010298e-01 5.29278219e-01 2.25946084e-01
-7.77997136e-01 1.37469614e+00 -3.14675868e-01 1.49231926e-01
2.58637279e-01 -5.80059648e-01 -4.44095433e-01 -2.75700539e-01
6.87266290e-01 -2.52088215e-02 3.91336858e-01 8.85649472e-02
-1.93215489e-01 6.92557812e-01 1.47605374e-01 -3.58336717e-01
1.50162625e+00 6.11982882e-01 -3.89716387e-01 9.47189569e-01
7.00643361e-01 -6.85703397e-01 -1.56390774e+00 2.90343106e-01
8.26662406e-02 4.33331281e-01 9.89719257e-02 -1.19737399e+00
-9.25656557e-01 1.20886528e+00 1.20090806e+00 4.62356806e-01
1.06951046e+00 -5.17571628e-01 7.45072126e-01 1.25030446e+00
7.87887335e-01 -1.16545475e+00 2.34091729e-01 1.01301694e+00
6.34185433e-01 -1.04580593e+00 -8.27408254e-01 -2.36426964e-01
2.46029496e-01 1.80905318e+00 7.45675325e-01 -6.83635175e-01
9.21625316e-01 7.01528728e-01 -2.25694198e-02 -4.89471793e-01
-5.30958652e-01 -5.96466660e-01 -3.20140153e-01 1.01279187e+00
-1.11795865e-01 -5.21526113e-02 -2.03166753e-01 5.96347332e-01
3.69976200e-02 3.64538431e-01 6.04629755e-01 5.77840865e-01
-7.26426184e-01 -8.50587964e-01 4.23425466e-01 3.10744494e-01
-2.52235025e-01 -3.70507360e-01 -4.48253304e-02 5.36744952e-01
3.61544400e-01 4.65425551e-01 5.75451732e-01 -6.09732926e-01
1.85400963e-01 3.68606538e-01 9.12802160e-01 -5.37699342e-01
-1.00351977e+00 -3.17145318e-01 -6.84038639e-01 -6.10176682e-01
-3.32385719e-01 1.44458801e-01 -1.64968038e+00 -1.88308820e-01
1.88071281e-01 -3.27420443e-01 1.28341424e+00 1.28542459e+00
1.36336610e-01 9.09865737e-01 4.71905857e-01 -7.92330384e-01
1.90266699e-01 -4.68283117e-01 -1.18194985e+00 -2.56197184e-01
4.10340697e-01 -5.71481109e-01 -5.32606363e-01 -3.20836216e-01] | [8.217429161071777, 2.4768898487091064] |
06fe55d1-97b4-42e5-ae71-569671ff3393 | an-adaptive-artificial-neural-network-based | 2101.1241 | null | https://arxiv.org/abs/2101.12410v1 | https://arxiv.org/pdf/2101.12410v1.pdf | An adaptive artificial neural network-based generative design method for layout designs | Layout designs are encountered in a variety of fields. For problems with many design degrees of freedom, efficiency of design methods becomes a major concern. In recent years, machine learning methods such as artificial neural networks have been used increasingly to speed up the design process. A main issue of many such approaches is the need for a large corpus of training data that are generated using high-dimensional simulations. The high computational cost associated with training data generation largely diminishes the efficiency gained by using machine learning methods. In this work, an adaptive artificial neural network-based generative design approach is proposed and developed. This method uses a generative adversarial network to generate design candidates and thus the number of design variables is greatly reduced. To speed up the evaluation of the objective function, a convolutional neural network is constructed as the surrogate model for function evaluation. The inverse design is carried out using the genetic algorithm in conjunction with two neural networks. A novel adaptive learning and optimization strategy is proposed, which allows the design space to be effectively explored for the search for optimal solutions. As such the number of training data needed is greatly reduced. The performance of the proposed design method is demonstrated on two heat source layout design problems. In both problems, optimal designs have been obtained. Compared with several existing approaches, the proposed approach has the best performance in terms of accuracy and efficiency. | ['Wenjing Ye', 'Renkai Tan', 'Chao Qian'] | 2021-01-29 | null | null | null | null | ['layout-design'] | ['computer-vision'] | [ 2.21089348e-01 -9.73978862e-02 1.26033351e-01 5.10827219e-03
-4.00673032e-01 -2.97312498e-01 3.83224875e-01 -7.13709742e-02
-1.74326092e-01 9.77693141e-01 -2.47535452e-01 -1.84289739e-01
-3.31390172e-01 -1.06140363e+00 -3.80837917e-01 -8.19153488e-01
2.69508749e-01 2.76356816e-01 -2.24203259e-01 -1.65569872e-01
4.99663502e-01 6.87599421e-01 -1.42111206e+00 -2.44460210e-01
1.10713899e+00 1.00531638e+00 2.22743839e-01 3.64722729e-01
-9.01568979e-02 3.07824671e-01 -8.20982158e-01 -1.02790155e-01
2.60341763e-01 -6.86714709e-01 -4.10417587e-01 -1.34069249e-01
-3.00784051e-01 -1.54206650e-02 -6.93361387e-02 7.93006897e-01
9.86714482e-01 5.17607987e-01 8.40116084e-01 -9.54368114e-01
-3.93194288e-01 2.94284582e-01 -3.80618721e-01 -3.21805537e-01
2.47931536e-02 1.44915193e-01 6.20988369e-01 -9.23164606e-01
2.67758548e-01 1.05155337e+00 6.12076938e-01 3.13945472e-01
-1.44951427e+00 -6.28466845e-01 -5.91584384e-01 -7.71632865e-02
-1.56615698e+00 -8.85629654e-02 1.44329679e+00 -3.45712841e-01
6.77005589e-01 2.02779368e-01 6.57549977e-01 6.34037256e-01
3.84879351e-01 5.17545640e-01 9.94725704e-01 -6.90518141e-01
8.39811146e-01 1.73629612e-01 -4.91139024e-01 5.85278094e-01
3.28073412e-01 4.04882342e-01 1.64767712e-01 -5.91952205e-02
7.84449935e-01 -1.49095461e-01 -6.78187003e-03 -4.79864031e-01
-4.36482519e-01 1.05759561e+00 7.26817250e-01 5.52690148e-01
-3.79735291e-01 2.40454435e-01 3.75351667e-01 -8.07149261e-02
1.79592818e-01 1.25779450e+00 -1.88120175e-02 8.82326514e-02
-1.15836930e+00 5.14436662e-01 6.23471618e-01 6.12044513e-01
5.20677805e-01 6.29566729e-01 1.32969290e-01 1.05003452e+00
3.47023726e-01 4.74635422e-01 4.31163698e-01 -6.58651888e-01
3.07689369e-01 9.21953142e-01 1.61987599e-02 -1.41555905e+00
-4.37615484e-01 -7.28286266e-01 -1.04209113e+00 6.25442028e-01
1.12610534e-01 -4.77114201e-01 -1.12526429e+00 1.44543719e+00
3.95696521e-01 -2.98681676e-01 2.31196240e-01 6.59594774e-01
4.38481003e-01 9.46135700e-01 -5.77158630e-02 -4.52599376e-02
8.17573845e-01 -6.78793430e-01 -6.09138608e-01 -1.48680359e-01
3.43574822e-01 -9.16340590e-01 7.00469613e-01 2.32129872e-01
-9.05490458e-01 -7.40753829e-01 -1.41013920e+00 4.80195731e-01
-5.07379353e-01 2.68831730e-01 5.66703677e-01 8.43101263e-01
-6.10371470e-01 6.66805446e-01 -5.63950241e-01 -9.51251760e-02
4.84627455e-01 6.93845630e-01 1.60227984e-01 9.38432477e-03
-1.10222089e+00 8.72454762e-01 7.58244991e-01 4.67447281e-01
-5.70452690e-01 -6.02920353e-01 -7.40858078e-01 1.21874437e-01
9.51159000e-02 -6.30089045e-01 9.05820251e-01 -9.15031135e-01
-1.61485839e+00 -9.95329842e-02 3.91038507e-01 -5.75234219e-02
3.68491799e-01 1.33017614e-01 -4.48437363e-01 -3.63696590e-02
-1.12431593e-01 4.62052763e-01 8.73066485e-01 -1.46447599e+00
-2.69708842e-01 -4.56810929e-02 -1.96961239e-01 4.69687209e-02
-2.86832243e-01 -4.10287023e-01 2.91922726e-02 -8.78098965e-01
6.04122085e-03 -1.02175522e+00 -4.71132606e-01 -2.47666597e-01
-3.30444336e-01 1.60422683e-01 1.01832283e+00 -5.57612300e-01
1.39547658e+00 -1.82867265e+00 2.46185869e-01 7.64092267e-01
-2.44078740e-01 6.20658755e-01 1.31578013e-01 6.47326112e-01
-6.50293678e-02 -5.79878949e-02 -4.63146836e-01 5.48927188e-02
-1.26759574e-01 1.79648921e-01 1.63981453e-01 2.21826136e-01
4.22493547e-01 9.61654007e-01 -6.22747123e-01 -1.68252155e-01
4.93964702e-01 5.46602190e-01 -7.29222059e-01 4.26741064e-01
-3.09613734e-01 5.35744309e-01 -7.72287965e-01 3.50100040e-01
6.01740479e-01 -1.04232021e-02 1.32875860e-01 -2.39720181e-01
-1.58119321e-01 -3.20633292e-01 -1.32392359e+00 1.54255331e+00
-8.17402840e-01 4.10719573e-01 -2.05150232e-01 -1.34125972e+00
1.51260781e+00 3.87463212e-01 3.21464121e-01 -8.15959215e-01
5.26034892e-01 3.45571786e-01 2.02950343e-01 -4.99249369e-01
4.06564742e-01 -2.52236664e-01 -3.55032176e-01 2.83411920e-01
-3.31378251e-01 -5.29317796e-01 5.09921201e-02 -4.68509912e-01
9.46830750e-01 2.25847170e-01 1.94712847e-01 -2.04803973e-01
7.93986440e-01 1.53392762e-01 5.78839123e-01 1.44522533e-01
5.08233011e-01 2.88756281e-01 2.44884372e-01 -4.15415883e-01
-1.46032000e+00 -6.54023468e-01 -6.93895575e-03 -2.09664064e-03
-2.58719586e-02 3.53481025e-02 -8.39636266e-01 -2.84626395e-01
-3.83968912e-02 9.32673454e-01 -5.32346308e-01 -5.25004566e-01
-8.14699948e-01 -6.36838198e-01 4.01761621e-01 4.48308170e-01
6.66808486e-01 -1.13310981e+00 -7.95326114e-01 3.80347699e-01
2.93364167e-01 -4.65327293e-01 7.61777982e-02 1.13694534e-01
-9.99427438e-01 -7.21838593e-01 -7.62834549e-01 -9.10085022e-01
1.15443325e+00 -3.17739129e-01 5.12153268e-01 1.07692845e-01
-8.00475478e-01 -1.53956890e-01 -2.81315416e-01 -2.84481913e-01
-7.43090987e-01 3.58981758e-01 -2.15118319e-01 -1.58576772e-01
-2.45069027e-01 -6.43986344e-01 -7.22633600e-01 3.09650421e-01
-9.69480157e-01 3.56324017e-02 1.04046226e+00 1.25137889e+00
3.65220487e-01 8.72495651e-01 1.18901658e+00 -6.17783785e-01
7.95896709e-01 -4.04144466e-01 -9.32147980e-01 5.93892261e-02
-7.70993471e-01 5.73465586e-01 1.25243509e+00 -3.84306014e-01
-1.26636779e+00 5.29769138e-02 -1.56236112e-01 -3.11434776e-01
-4.92780805e-02 6.25156939e-01 -4.01624024e-01 -3.30274999e-01
4.88920927e-01 -2.96309926e-02 2.32851595e-01 -4.38707411e-01
1.70124784e-01 6.00133002e-01 2.00258091e-01 -5.02890766e-01
1.12174857e+00 -3.52914125e-01 6.05574608e-01 -8.50535810e-01
-5.34236617e-02 8.99579898e-02 -3.64072472e-01 -4.41659033e-01
5.90190709e-01 -2.66885668e-01 -4.19915825e-01 4.11531836e-01
-8.73272598e-01 3.72194462e-02 -1.92883536e-01 3.31244498e-01
-4.60688859e-01 -3.70450653e-02 3.14094983e-02 -1.00584102e+00
-5.54407358e-01 -1.36229730e+00 4.07392591e-01 4.61892366e-01
-5.59943318e-01 -1.08378673e+00 -1.11590117e-01 8.94234553e-02
6.66358948e-01 8.48648846e-01 1.36965120e+00 -2.65906334e-01
-6.09965205e-01 -6.51848197e-01 1.25530407e-01 5.03606558e-01
3.46027970e-01 -9.02880207e-02 -5.72884321e-01 -2.66298681e-01
5.72292926e-03 -1.39404923e-01 9.13958251e-02 4.39345509e-01
1.05271304e+00 -3.07342410e-01 -3.79259706e-01 3.20734113e-01
1.92676556e+00 1.00780356e+00 7.97067463e-01 2.09793046e-01
5.61660230e-01 4.49840993e-01 6.17697418e-01 5.16287863e-01
-4.17971522e-01 5.54508805e-01 2.58745402e-01 -3.16495925e-01
6.39877543e-02 -3.74419212e-01 -2.36837015e-01 5.30410886e-01
6.87632486e-02 -3.45884532e-01 -8.85328829e-01 3.22690755e-01
-1.70202374e+00 -8.15697551e-01 2.91406095e-01 2.21752357e+00
5.06521642e-01 1.50205716e-01 -2.43581057e-01 6.13553822e-01
8.37127090e-01 -2.11102247e-01 -5.04611552e-01 -7.27079749e-01
3.47535193e-01 6.89501405e-01 3.15670133e-01 1.24893472e-01
-7.96410203e-01 5.10639727e-01 5.83392382e+00 9.82857108e-01
-1.28596973e+00 -4.88701552e-01 7.11438298e-01 7.47424737e-02
-2.79781669e-01 -3.96850370e-02 -3.59429896e-01 6.79569662e-01
7.78492510e-01 -1.01264328e-01 3.72564971e-01 9.40532625e-01
4.73297983e-01 -4.13972706e-01 -6.96555078e-01 8.95157337e-01
-5.68844862e-02 -1.32291055e+00 -2.37364590e-01 1.09657541e-01
1.14784956e+00 -1.04774702e+00 1.86217204e-01 3.86621691e-02
-1.28835142e-01 -1.13384640e+00 4.73178864e-01 4.17373687e-01
7.12110937e-01 -1.50444400e+00 7.59446979e-01 1.12309568e-01
-1.18997729e+00 -3.42682928e-01 -8.20029341e-03 2.08556019e-02
2.82835722e-01 5.76657414e-01 -1.01439762e+00 7.11566806e-01
2.09365964e-01 -4.93595842e-03 -3.22626442e-01 1.29082179e+00
-1.36958718e-01 4.15513903e-01 -4.11499470e-01 -5.71198583e-01
2.49394029e-01 -3.88477027e-01 4.68988806e-01 5.58567762e-01
6.66917384e-01 -8.25572833e-02 -1.36036603e-02 1.24279094e+00
1.83419548e-02 1.28389299e-01 -7.10666955e-01 -3.10878575e-01
4.52370107e-01 1.26153946e+00 -8.64246428e-01 9.33162421e-02
2.70019285e-02 6.06713295e-01 -3.86280678e-02 2.18130305e-01
-1.07909179e+00 -9.05658066e-01 9.47182924e-02 2.58436054e-01
4.13945228e-01 -3.08701247e-01 -4.53718245e-01 -2.52066046e-01
-1.42550677e-01 -6.83050156e-01 -1.29340157e-01 -5.11986911e-01
-8.79217863e-01 5.39162338e-01 4.13833559e-02 -1.30331933e+00
-6.16032660e-01 -5.03618598e-01 -7.80180156e-01 1.01598847e+00
-1.02183783e+00 -9.52032506e-01 -1.80878162e-01 2.90283542e-02
5.60851634e-01 -4.50084299e-01 7.73112535e-01 5.69549799e-01
-8.53452206e-01 6.45372510e-01 4.70493555e-01 -1.93672143e-02
1.74565479e-01 -9.60298896e-01 2.10011661e-01 8.95007789e-01
-6.32166505e-01 4.28349942e-01 7.73189723e-01 -8.11110020e-01
-1.49000168e+00 -1.07444465e+00 4.18890148e-01 3.98434937e-01
2.77130812e-01 -2.02950031e-01 -6.43328071e-01 -1.55144319e-01
1.12828366e-01 -4.06927347e-01 5.89553833e-01 -3.75575900e-01
5.03276646e-01 -2.07794860e-01 -1.37013006e+00 6.49770737e-01
4.03433591e-01 4.35394384e-02 -3.81531894e-01 -2.80601233e-01
2.59119183e-01 -1.66903481e-01 -9.23856974e-01 6.02474868e-01
5.20468712e-01 -5.11233628e-01 7.10571766e-01 -1.23605385e-01
5.96401751e-01 -5.14172614e-01 1.85901925e-01 -1.52887893e+00
-2.00655580e-01 -5.88391542e-01 -1.12603903e-01 1.45459390e+00
5.29400051e-01 -5.57640553e-01 1.04133809e+00 8.36347759e-01
-1.30613476e-01 -1.16084468e+00 -6.48649096e-01 -7.71022618e-01
-1.65443301e-01 8.43133330e-02 7.06900895e-01 4.88730520e-01
-3.99864197e-01 4.82593536e-01 -2.32191533e-01 -1.65584624e-01
4.98812765e-01 2.21202374e-01 6.88156247e-01 -1.05448759e+00
-3.27936232e-01 -2.40924895e-01 -4.61627811e-01 -5.22250235e-01
-2.81288475e-02 -7.31538773e-01 1.37297854e-01 -1.57036281e+00
-4.61614192e-01 -9.06365097e-01 5.24282753e-02 8.37465525e-02
-4.01726365e-02 -1.07475571e-01 -6.45231679e-02 -2.56868690e-01
3.66499543e-01 9.60215569e-01 1.36569893e+00 -7.36491382e-02
-4.56823379e-01 2.31036052e-01 -4.33159024e-01 4.03207630e-01
1.16057622e+00 -3.41143280e-01 -7.72218347e-01 -1.89120099e-02
1.15090169e-01 6.25509396e-02 3.89556959e-02 -1.41635764e+00
7.10310116e-02 8.84867832e-02 9.13360834e-01 -5.88736236e-01
3.43379289e-01 -1.06117475e+00 7.40736723e-01 7.24609494e-01
-1.23964012e-01 2.13678896e-01 4.29979265e-01 3.77060860e-01
-3.14076513e-01 -5.82004726e-01 1.05052841e+00 7.85005093e-02
-5.95273256e-01 2.82350089e-03 -3.27596933e-01 -3.39485407e-01
1.32755876e+00 -4.53924030e-01 2.72003293e-01 -1.30377645e-02
-3.80610764e-01 3.58736999e-02 2.75725454e-01 3.50253254e-01
7.46611059e-01 -1.65918553e+00 -1.49499640e-01 3.47428054e-01
-1.84974253e-01 9.20384303e-02 3.33619922e-01 3.07542711e-01
-8.35754871e-01 2.84413457e-01 -3.78665924e-01 -2.22069219e-01
-8.25854063e-01 5.60744226e-01 2.21293360e-01 -3.23565185e-01
-3.11593413e-01 3.64435911e-01 -3.59959215e-01 -1.30472511e-01
-1.34726316e-01 5.01591042e-02 -1.28722459e-01 -1.01598285e-01
1.69791877e-01 6.45153761e-01 -2.45552566e-02 -3.34480017e-01
-1.09533273e-01 6.47854686e-01 2.11037040e-01 -5.43307327e-02
1.43113279e+00 2.47567013e-01 -5.45854419e-02 -1.04297489e-01
1.49186707e+00 -2.45960712e-01 -9.30793047e-01 2.31783390e-01
-5.56793213e-02 -5.15325546e-01 3.74443024e-01 -7.71687269e-01
-1.26346552e+00 5.67666650e-01 7.89945722e-01 -4.19308525e-03
1.49631631e+00 -5.88809311e-01 8.38620901e-01 1.07368439e-01
1.87477231e-01 -1.42909145e+00 1.46071106e-01 9.29510519e-02
9.12291586e-01 -9.92789447e-01 7.90167302e-02 -1.59014255e-01
-2.09092304e-01 1.26916158e+00 6.37606263e-01 -3.11068535e-01
4.55733508e-01 4.62014556e-01 -3.53745639e-01 -5.22773936e-02
-5.15600964e-02 1.71766192e-01 3.63596618e-01 2.59460509e-01
2.30695307e-01 -1.67060196e-01 -5.26348531e-01 3.34860563e-01
-1.91081256e-01 -4.10651527e-02 6.45031035e-02 1.25940192e+00
-3.41377646e-01 -1.53081846e+00 -5.81335127e-01 4.32954192e-01
-2.27263138e-01 1.74043968e-01 -6.95341080e-02 7.97292948e-01
1.81601316e-01 8.91398549e-01 -1.76016584e-01 -3.43345940e-01
3.75243872e-01 -7.99678266e-02 4.08550769e-01 -3.41578364e-01
-5.78324854e-01 -8.16865787e-02 6.04777187e-02 -6.16105646e-02
-4.78541031e-02 -1.96643293e-01 -1.25442207e+00 -2.82873034e-01
-5.81991196e-01 3.57343376e-01 9.55345035e-01 6.42296433e-01
3.16328585e-01 8.54601741e-01 1.09382761e+00 -8.29388261e-01
-3.61844510e-01 -5.30908942e-01 -3.72803062e-01 9.20801312e-02
-1.58420101e-01 -1.02234018e+00 8.93385708e-03 -2.24382028e-01] | [5.92638635635376, 3.3302972316741943] |
0e1c7dc7-20c6-4e4b-b75f-3fc32826eb8b | revisiting-embodiedqa-a-simple-baseline-and | 1904.04166 | null | https://arxiv.org/abs/1904.04166v2 | https://arxiv.org/pdf/1904.04166v2.pdf | Revisiting EmbodiedQA: A Simple Baseline and Beyond | In Embodied Question Answering (EmbodiedQA), an agent interacts with an environment to gather necessary information for answering user questions. Existing works have laid a solid foundation towards solving this interesting problem. But the current performance, especially in navigation, suggests that EmbodiedQA might be too challenging for the contemporary approaches. In this paper, we empirically study this problem and introduce 1) a simple yet effective baseline that achieves promising performance; 2) an easier and practical setting for EmbodiedQA where an agent has a chance to adapt the trained model to a new environment before it actually answers users questions. In this new setting, we randomly place a few objects in new environments, and upgrade the agent policy by a distillation network to retain the generalization ability from the trained model. On the EmbodiedQA v1 benchmark, under the standard setting, our simple baseline achieves very competitive results to the-state-of-the-art; in the new setting, we found the introduced small change in settings yields a notable gain in navigation. | ['Yu Wu', 'Yi Yang', 'Lu Jiang'] | 2019-04-08 | null | null | null | null | ['embodied-question-answering'] | ['computer-vision'] | [ 3.62269282e-02 3.68966311e-01 4.05079663e-01 -4.73286659e-01
-1.06322527e+00 -8.24466825e-01 6.43044591e-01 -8.32434967e-02
-7.61578798e-01 6.37858272e-01 3.36002558e-01 -5.31661510e-01
-3.26131582e-02 -8.58242095e-01 -8.96660388e-01 -6.14187121e-01
-7.29412585e-02 7.46382475e-01 5.07219613e-01 -8.30850065e-01
1.88977972e-01 -3.00749373e-02 -1.47523427e+00 2.57031560e-01
1.09797394e+00 5.62485874e-01 6.07178569e-01 9.87071455e-01
-2.44174257e-01 1.18536294e+00 -4.94424224e-01 -5.85047066e-01
2.21863806e-01 -6.52711451e-01 -1.32822871e+00 -3.55507225e-01
5.42848051e-01 -7.34001398e-01 -4.08965617e-01 7.99970627e-01
6.50777578e-01 6.76636338e-01 3.26881021e-01 -1.11556065e+00
-9.64628756e-01 4.59691346e-01 -4.83389050e-02 2.05272809e-01
9.40305054e-01 3.89025718e-01 1.10889828e+00 -7.27752626e-01
6.74120247e-01 1.13970673e+00 5.10227740e-01 9.85272944e-01
-7.17106402e-01 -3.94596122e-02 7.38498807e-01 3.41561615e-01
-6.63771033e-01 -4.44653183e-01 4.34463888e-01 4.02242225e-03
1.00687778e+00 4.00030643e-01 3.04293901e-01 1.27220237e+00
-2.25562584e-02 1.00514948e+00 9.21552241e-01 -4.50890839e-01
5.75944066e-01 2.32291758e-01 3.07622999e-01 7.57757783e-01
-2.38957271e-01 6.44848347e-02 -2.73173809e-01 -1.37332901e-01
3.89052391e-01 -2.79172808e-01 -3.89697552e-01 -6.92740440e-01
-1.32338536e+00 7.65907645e-01 8.81337404e-01 3.31809253e-01
-4.24855947e-01 2.75125504e-01 1.81052342e-01 6.01203859e-01
6.44446909e-02 9.26949501e-01 -5.64343929e-01 -3.76809895e-01
-2.04602540e-01 6.44765496e-01 1.07008576e+00 8.33904564e-01
4.91194218e-01 -4.01549101e-01 -2.91294605e-01 5.30455410e-01
2.74087697e-01 4.12295163e-01 4.32706416e-01 -1.24218380e+00
6.28507614e-01 5.07899821e-01 4.69639212e-01 -7.48547614e-01
-5.79590797e-01 -3.43703121e-01 -3.30979884e-01 2.99974799e-01
7.42845833e-01 -2.65024811e-01 -8.74690890e-01 1.86040580e+00
6.02448463e-01 3.43814455e-02 4.02696729e-01 9.92450953e-01
9.81935918e-01 7.47731388e-01 6.17558137e-03 4.51532513e-01
1.32076561e+00 -1.85990345e+00 -6.03666723e-01 -6.13748074e-01
7.38394916e-01 -1.49121240e-01 1.80857754e+00 1.99115887e-01
-1.17400086e+00 -4.59396750e-01 -7.69574702e-01 -3.59576672e-01
-6.55578852e-01 -4.00379270e-01 8.04831922e-01 5.64373195e-01
-1.46096218e+00 2.12179556e-01 -5.93413353e-01 -7.03709781e-01
7.85881206e-02 2.97466755e-01 -3.36079866e-01 -2.31861815e-01
-1.18154287e+00 1.13003886e+00 3.53735499e-02 2.60126024e-01
-1.06390166e+00 -3.92106146e-01 -8.13204110e-01 -3.10558919e-02
9.26257372e-01 -1.23069310e+00 1.95895326e+00 -5.78282833e-01
-1.96586692e+00 5.28225839e-01 -2.29237899e-01 -4.40564156e-01
5.75061977e-01 -5.88374794e-01 -5.39863482e-02 9.40307081e-02
1.45712748e-01 8.57128859e-01 4.30838674e-01 -1.36794639e+00
-6.31004751e-01 -2.72069484e-01 1.03943598e+00 5.76191127e-01
1.38167739e-02 -3.58613700e-01 -5.11825323e-01 -1.69747144e-01
-2.30030175e-02 -9.66076910e-01 -6.72377408e-01 -8.81545916e-02
2.46530268e-02 -3.46958429e-01 4.01511252e-01 -5.59008360e-01
7.99473345e-01 -1.88969338e+00 3.18361342e-01 -1.33344114e-01
2.20700100e-01 2.01470479e-01 -5.84825158e-01 6.07649565e-01
2.72151649e-01 -1.02222741e-01 -2.08570465e-01 -4.73340780e-01
2.68191963e-01 2.48497128e-01 -3.27687860e-01 -9.10391584e-02
-1.61680907e-01 1.38070393e+00 -1.33785510e+00 -5.69335595e-02
6.69581965e-02 2.37420946e-01 -9.86141920e-01 5.06999075e-01
-6.32127285e-01 6.04879916e-01 -6.44272387e-01 3.71605158e-01
3.67404103e-01 -3.65490854e-01 -1.95561826e-01 3.90516996e-01
1.43470556e-01 4.57629472e-01 -9.25227106e-01 2.32176280e+00
-6.75428569e-01 4.96920288e-01 2.96717584e-02 -6.11474276e-01
5.02567947e-01 2.38020763e-01 -2.44229939e-02 -1.07648277e+00
7.27289990e-02 -1.12057766e-02 1.41965955e-01 -1.03943634e+00
7.28889942e-01 2.46084586e-01 -3.98722813e-02 5.26106238e-01
-6.17613122e-02 -2.08888501e-01 -9.59326997e-02 3.22266787e-01
1.43892467e+00 3.04258198e-01 3.16858329e-02 -6.33188412e-02
4.58595306e-01 1.47545692e-02 -1.97512567e-01 1.37952018e+00
-4.66224819e-01 5.53678036e-01 1.86123699e-01 -4.17131543e-01
-6.93685234e-01 -1.11484563e+00 5.90070963e-01 1.74572885e+00
4.46282685e-01 -1.36025563e-01 -9.91275191e-01 -1.06657898e+00
-3.09432685e-01 9.82743382e-01 -8.31988692e-01 -1.51275590e-01
-6.93961740e-01 -3.44283164e-01 3.81015271e-01 6.40999198e-01
1.01161623e+00 -1.46511662e+00 -9.60512877e-01 2.80309319e-01
-4.75714177e-01 -9.31051910e-01 -2.47010648e-01 8.32131654e-02
-6.73526943e-01 -8.67195010e-01 -7.51157701e-01 -1.00754988e+00
5.62888920e-01 4.32621658e-01 1.38811839e+00 2.53417552e-01
4.50626612e-01 7.28675663e-01 -7.08560407e-01 -3.30593795e-01
-4.19807658e-02 5.44038177e-01 -4.03004885e-01 -4.06087577e-01
2.20595941e-01 -2.22676113e-01 -7.92244077e-01 2.58859545e-01
-8.33980441e-01 -3.42638567e-02 4.59037751e-01 7.37035215e-01
-5.80307283e-02 -2.02120066e-01 7.91671932e-01 -8.09895337e-01
9.82062399e-01 -4.74164248e-01 -3.22418451e-01 2.88982064e-01
-2.27921993e-01 1.68196768e-01 5.52825928e-01 -2.41358489e-01
-1.30304492e+00 -2.21877754e-01 -7.02578247e-01 4.33694214e-01
-2.44002044e-01 5.16154468e-01 -3.44945669e-01 -3.69301625e-02
8.79861891e-01 9.20365602e-02 -2.31995419e-01 -5.44549346e-01
7.95978427e-01 5.03417909e-01 8.12492132e-01 -8.09505820e-01
7.12572873e-01 4.50251937e-01 -5.95958710e-01 -3.74229401e-01
-9.30531144e-01 -3.82845193e-01 -4.84444916e-01 1.05186038e-01
9.11435008e-01 -5.99892080e-01 -9.70493257e-01 2.86387295e-01
-1.16329277e+00 -8.67674112e-01 -4.10467297e-01 1.43124297e-01
-6.18059814e-01 7.32097551e-02 -4.15962100e-01 -7.25788116e-01
-1.63365871e-01 -1.23864365e+00 1.02773690e+00 4.46531951e-01
-2.26346806e-01 -1.09382606e+00 4.84930038e-01 6.62297189e-01
8.08255792e-01 4.32965942e-02 8.68565023e-01 -8.63896132e-01
-7.42815375e-01 3.05550862e-02 -5.29930145e-02 -3.44461314e-02
-6.02127276e-02 -5.51626623e-01 -9.61442590e-01 -2.65090168e-01
1.12831183e-01 -5.00182211e-01 8.55763257e-01 -1.11587346e-01
9.86489534e-01 -1.56505480e-01 -2.60419011e-01 2.55549908e-01
9.91182208e-01 5.08263409e-01 8.34953427e-01 8.69073510e-01
2.91507334e-01 5.69647670e-01 4.92036521e-01 -9.93412063e-02
1.03487337e+00 6.12396181e-01 6.77532017e-01 -7.43931457e-02
9.53684077e-02 -2.80015141e-01 3.53312314e-01 4.67783630e-01
6.78356178e-03 -6.86089516e-01 -8.52640390e-01 6.15130723e-01
-2.13037348e+00 -7.99802184e-01 2.11394474e-01 1.84727967e+00
4.89378452e-01 -2.71969177e-02 3.52244936e-02 -3.41575891e-01
1.76759988e-01 3.33309978e-01 -7.73621202e-01 -3.27068865e-01
2.06768662e-01 1.42865792e-01 -3.06092829e-01 6.76960766e-01
-9.37892139e-01 1.06994641e+00 6.91937113e+00 1.06815040e-01
-6.20613873e-01 3.25551599e-01 2.68385202e-01 5.96342608e-02
-3.76919538e-01 -1.60539448e-01 -4.58409339e-01 2.30966657e-01
1.00991464e+00 1.47922352e-01 4.59189951e-01 7.80455709e-01
-2.37912655e-01 -2.95341730e-01 -1.39338005e+00 6.41637504e-01
1.88646615e-01 -1.00622129e+00 -9.29761492e-03 -1.65275306e-01
6.35441303e-01 8.98453817e-02 3.93040836e-01 8.99840415e-01
5.45539916e-01 -1.03819346e+00 5.67089796e-01 6.08198166e-01
3.90402749e-02 -4.74941880e-01 1.01658416e+00 6.03700340e-01
-7.55363941e-01 -2.50389099e-01 -3.39561194e-01 -3.48891020e-01
2.88125128e-01 -2.99527705e-01 -7.45221794e-01 4.96779799e-01
8.91289294e-01 1.34885401e-01 -7.73690462e-01 1.10935760e+00
-3.49414021e-01 3.30019355e-01 -1.31991565e-01 -2.44830027e-01
6.33291245e-01 -2.84419041e-02 3.68389785e-01 6.38887763e-01
2.10919276e-01 4.29750264e-01 -2.49768049e-02 5.18111169e-01
-1.16474956e-01 1.06932804e-01 -5.33463895e-01 1.37182534e-01
1.26501217e-01 1.05180836e+00 -5.01564384e-01 -2.84357995e-01
-5.19167721e-01 1.30044723e+00 7.06383646e-01 6.10330284e-01
-9.89280522e-01 -2.81234622e-01 4.73841310e-01 -1.50822222e-01
3.64944160e-01 -2.46724740e-01 8.50652680e-02 -1.21599507e+00
1.21020429e-01 -1.34476268e+00 4.29651707e-01 -1.15987349e+00
-1.02823162e+00 9.64754283e-01 -1.89783558e-01 -5.57372093e-01
-4.56514508e-01 -6.87911928e-01 -5.46625853e-01 6.49688542e-01
-1.44562304e+00 -1.03634512e+00 -6.77176952e-01 4.46949333e-01
7.73414671e-01 -9.83149931e-02 1.01079035e+00 1.56457424e-01
-3.68214458e-01 5.50378144e-01 2.01707572e-01 1.51471859e-02
6.94218814e-01 -1.50437200e+00 9.10906792e-01 6.67195201e-01
3.03777158e-01 7.90163100e-01 8.93087626e-01 -3.43165606e-01
-1.34396958e+00 -6.29624486e-01 7.00972855e-01 -1.29934347e+00
5.29114366e-01 -6.02640331e-01 -1.02689528e+00 1.13938260e+00
6.27011061e-01 -2.50393391e-01 5.78706861e-01 1.91424623e-01
-2.76530325e-01 3.05929333e-01 -1.22842860e+00 9.99258876e-01
1.30806673e+00 -5.07344961e-01 -1.10344803e+00 3.50713730e-01
1.14217305e+00 -7.54511058e-01 -3.17599058e-01 1.98223174e-01
6.37166083e-01 -1.17559004e+00 1.03510439e+00 -8.89432430e-01
2.04973459e-01 -3.12307537e-01 -2.73352712e-01 -1.61429751e+00
-3.66199374e-01 -6.94832206e-01 -2.28369057e-01 9.10642743e-01
5.50515890e-01 -9.27832484e-01 9.01776254e-01 9.31966603e-01
-1.77537590e-01 -9.96969342e-01 -7.06820905e-01 -4.67119515e-01
2.54622251e-01 -3.12138319e-01 1.02197802e+00 4.60526347e-01
-5.60434312e-02 5.91569662e-01 -1.13639191e-01 3.70493859e-01
3.37304473e-02 -7.22747669e-02 1.11860240e+00 -8.66785407e-01
-4.57315534e-01 -3.09682071e-01 1.62513722e-02 -1.89927173e+00
1.14277728e-01 -5.42007923e-01 3.07344615e-01 -2.06107545e+00
3.73941958e-02 -3.47320020e-01 -2.69607991e-01 2.92682707e-01
-4.98431325e-01 -7.32023567e-02 4.30918336e-01 -1.13054551e-01
-1.18837237e+00 7.20638931e-01 1.44368052e+00 -1.30194336e-01
-3.85366470e-01 5.64399771e-02 -1.14537203e+00 6.86923325e-01
7.12777853e-01 -7.69870281e-02 -8.19471359e-01 -1.09053421e+00
5.57241261e-01 -1.51815712e-01 5.13435423e-01 -9.92803395e-01
5.51898301e-01 1.45424008e-01 6.04135208e-02 -5.28450072e-01
5.48543453e-01 -9.41532314e-01 -3.44041556e-01 2.61564314e-01
-6.14138126e-01 3.68093133e-01 2.90150464e-01 5.60377896e-01
1.70108732e-02 -5.51829457e-01 1.47163153e-01 -1.99271441e-01
-1.09674060e+00 3.72023545e-02 -4.09470797e-01 2.52106100e-01
9.52271104e-01 -1.87720090e-01 -7.09941924e-01 -9.37900782e-01
-7.25149095e-01 8.39178979e-01 3.84958535e-01 6.02183819e-01
5.29675663e-01 -9.93846714e-01 -4.93774235e-01 -1.31697506e-01
1.95129663e-01 1.94440275e-01 3.26999038e-01 4.86886382e-01
-5.59825718e-01 4.46947455e-01 -1.60784721e-02 -3.61653596e-01
-9.03012872e-01 6.87650919e-01 7.57275641e-01 -2.71841258e-01
-5.42363226e-01 1.18800557e+00 3.90295982e-01 -1.21286345e+00
4.22485441e-01 -5.77053607e-01 -4.46062148e-01 -1.39855608e-01
6.27507269e-01 3.17763686e-01 1.91906728e-02 -3.20306718e-01
-2.87290782e-01 2.84657985e-01 -3.26685727e-01 -3.42130065e-01
1.22733974e+00 -4.23745751e-01 2.27659285e-01 4.27903473e-01
9.63798046e-01 -8.24575350e-02 -1.31822765e+00 -2.75430411e-01
-7.73600042e-02 -4.20075744e-01 -2.79847175e-01 -1.22936845e+00
-6.09249651e-01 7.78804660e-01 4.84419048e-01 3.59073967e-01
8.81708086e-01 1.87763050e-01 8.92119169e-01 1.21694386e+00
6.29225612e-01 -7.09114730e-01 5.06848276e-01 8.78681183e-01
1.04026413e+00 -1.47321582e+00 -4.34620261e-01 1.94372446e-03
-7.08795905e-01 6.52424097e-01 9.74703193e-01 1.87620018e-02
3.73504221e-01 -1.50827065e-01 5.07711232e-01 -4.25905496e-01
-7.98017859e-01 -2.96858191e-01 7.49262795e-02 8.47568929e-01
1.47083879e-01 -3.03554863e-01 3.13985974e-01 5.37043273e-01
-5.94645083e-01 -2.68366814e-01 4.56974357e-01 1.07090974e+00
-5.82535982e-01 -8.94323766e-01 -1.48479477e-01 1.26963273e-01
-6.39912393e-03 2.63981987e-02 -5.81210971e-01 1.06859791e+00
-6.30095452e-02 1.23378813e+00 -5.94447553e-02 -1.47801831e-01
8.52052748e-01 1.75657451e-01 5.19526064e-01 -6.43571913e-01
-8.24622571e-01 -5.57517767e-01 3.69215831e-02 -9.03346896e-01
-4.07176048e-01 -3.06116551e-01 -1.45430768e+00 5.10259671e-03
-3.67020935e-01 4.30533528e-01 5.17324388e-01 1.15387297e+00
4.40293401e-01 6.68088734e-01 1.57991499e-01 -7.23700941e-01
-6.74751163e-01 -8.08673561e-01 -1.41378110e-02 2.71122336e-01
6.82066381e-01 -5.40911913e-01 -3.92401785e-01 -3.13877344e-01] | [4.417631149291992, 0.6066211462020874] |
4ad00b37-a4da-4a0f-b001-59220bc9cd98 | local2global-scaling-global-representation | 2107.12224 | null | https://arxiv.org/abs/2107.12224v1 | https://arxiv.org/pdf/2107.12224v1.pdf | Local2Global: Scaling global representation learning on graphs via local training | We propose a decentralised "local2global" approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or "patches") and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronisation during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. Preliminary results on medium-scale data sets (up to $\sim$7K nodes and $\sim$200K edges) are promising, with a graph reconstruction performance for local2global that is comparable to that of globally trained embeddings. A thorough evaluation of local2global on large scale data and applications to downstream tasks, such as node classification and link prediction, constitutes ongoing work. | ['Mihai Cucuringu', 'Marya Bazzi', 'Xiaowen Dong', 'Giovanni Colavizza', 'Lucas G. S. Jeub'] | 2021-07-26 | null | null | null | null | ['graph-reconstruction'] | ['graphs'] | [-2.65230536e-01 5.80196798e-01 -5.31603634e-01 -8.50137174e-02
-5.65646589e-01 -5.51637113e-01 4.40041393e-01 6.95595503e-01
1.93538338e-01 4.20406580e-01 1.12041287e-01 -3.50199699e-01
-2.41758585e-01 -1.03046978e+00 -6.91264749e-01 -7.81363785e-01
-4.81753260e-01 6.68500841e-01 3.69477868e-01 -1.00134172e-01
4.43621837e-02 7.81201124e-01 -9.87206757e-01 -7.37083033e-02
5.21772876e-02 7.12044775e-01 2.85468847e-01 7.45660722e-01
1.52688384e-01 4.69930977e-01 -3.89263034e-01 8.12991336e-02
2.97364801e-01 -2.98837900e-01 -1.04382384e+00 1.61061272e-01
5.16994596e-01 4.40504178e-02 -4.35290754e-01 6.64826989e-01
3.64554405e-01 3.44055235e-01 4.62393939e-01 -8.42845380e-01
-4.62560207e-01 3.33721071e-01 -5.12393296e-01 2.40026966e-01
2.31532633e-01 -9.54500958e-02 1.15706170e+00 -7.18936145e-01
1.02733016e+00 1.14641607e+00 9.46974635e-01 3.74347456e-02
-1.74063110e+00 -3.22539330e-01 4.93150234e-01 -2.16662019e-01
-1.68613267e+00 -3.50056648e-01 7.91560769e-01 -4.06619668e-01
1.47024727e+00 -1.01179015e-02 4.61064488e-01 5.30250728e-01
6.29110336e-01 -2.12958846e-02 4.35386181e-01 -3.48767757e-01
2.19800815e-01 -9.36800465e-02 1.11219473e-01 1.11619306e+00
2.87680268e-01 -1.52672246e-01 -5.90333521e-01 -3.83152336e-01
1.14077389e+00 -1.61906525e-01 -4.34910730e-02 -8.19919646e-01
-1.26409745e+00 1.04707146e+00 1.03523326e+00 4.23375458e-01
-2.56332368e-01 7.39100993e-01 5.83430588e-01 7.69814849e-01
6.89909518e-01 4.43636566e-01 -4.27545786e-01 4.77857403e-02
-7.52065420e-01 2.11979728e-02 8.66492152e-01 1.21912658e+00
1.35334837e+00 2.16779843e-01 6.52717650e-01 7.32660115e-01
4.14131641e-01 -1.71701312e-01 5.01009285e-01 -8.27019334e-01
5.84667861e-01 6.84487462e-01 -4.44422692e-01 -1.60283947e+00
-3.80952746e-01 -1.98326707e-01 -9.21705484e-01 7.31796846e-02
5.82563095e-02 -8.56684223e-02 -5.46587527e-01 1.60304141e+00
4.49602336e-01 2.62448639e-01 -2.94304609e-01 4.21641916e-01
5.65622449e-01 7.47524738e-01 -1.04229562e-01 -3.31513584e-02
9.72409606e-01 -1.18180561e+00 -1.39164358e-01 -3.86758924e-01
1.16268075e+00 -7.60813653e-01 4.53204364e-01 2.32625287e-02
-9.47481513e-01 -8.20167959e-01 -1.10251617e+00 -1.10142291e-01
-5.26392102e-01 -1.00427873e-01 8.85002255e-01 3.32835406e-01
-1.63896954e+00 1.01924443e+00 -9.87972975e-01 -8.19375038e-01
-1.41977444e-02 6.56651616e-01 -8.30794036e-01 -6.22057766e-02
-6.89835131e-01 7.43472517e-01 4.02953714e-01 -7.33451694e-02
-7.93876588e-01 -4.19582993e-01 -1.14381814e+00 -1.16335303e-01
1.59267694e-01 -5.54757714e-01 6.69366181e-01 -5.35125852e-01
-1.23599374e+00 5.72195292e-01 -1.10607490e-01 -3.27286243e-01
-2.30284676e-01 1.43145531e-01 -2.21201658e-01 1.83405086e-01
1.63760036e-02 6.47514224e-01 7.93456614e-01 -9.94343460e-01
1.16268255e-01 -3.42094541e-01 -2.05037426e-02 1.54936478e-01
-3.29111457e-01 -2.30415851e-01 -6.41754091e-01 -8.19542885e-01
4.55423355e-01 -1.15000057e+00 -5.99771619e-01 1.46767676e-01
-2.59200275e-01 -4.16364849e-01 1.00398433e+00 -6.48108065e-01
1.07938588e+00 -2.07576180e+00 5.97474992e-01 6.19072676e-01
4.22739655e-01 -1.92990094e-01 -2.77187973e-01 1.02040029e+00
-3.80035222e-01 1.48467407e-01 1.66416168e-01 -3.39379609e-01
-2.60394871e-01 4.12664056e-01 -2.64933724e-02 7.33107984e-01
1.24495462e-01 8.29507709e-01 -7.89843142e-01 -5.14602482e-01
3.03834736e-01 3.45876753e-01 -5.63126683e-01 1.17725715e-01
-8.93743411e-02 1.47679269e-01 -5.94695568e-01 3.73090386e-01
4.04468030e-01 -6.06077969e-01 8.34554374e-01 -2.09917143e-01
2.65187263e-01 5.83924651e-01 -1.25056708e+00 2.04437518e+00
-5.95557749e-01 5.62524378e-01 3.61371398e-01 -1.43776321e+00
1.26998675e+00 2.99557209e-01 8.17947447e-01 -1.53246596e-01
-1.12859987e-01 -7.08186859e-03 -5.08177102e-01 1.44960448e-01
5.09186327e-01 1.62340999e-01 -2.11758003e-01 5.98866582e-01
4.07091677e-01 -3.63180786e-01 5.00519425e-02 4.33330029e-01
1.41819644e+00 2.12742254e-01 4.12896812e-01 -6.64452732e-01
5.23973703e-02 -3.00548263e-02 2.28514835e-01 1.98128134e-01
2.04817057e-01 6.23828948e-01 6.16911948e-01 -5.94280243e-01
-9.13760722e-01 -9.55634356e-01 2.41342634e-01 1.03513932e+00
1.40231818e-01 -1.13350964e+00 -4.09270793e-01 -8.88536751e-01
3.24636281e-01 4.10676152e-02 -3.97930443e-01 -2.12712079e-01
-6.88904226e-01 -2.64622003e-01 1.45414308e-01 8.31018150e-01
3.87199223e-03 -7.35854924e-01 -6.54159766e-03 5.83871007e-01
4.73438084e-01 -8.85777235e-01 -4.78239000e-01 6.56860411e-01
-1.37254214e+00 -1.03010261e+00 -3.41954619e-01 -1.16161251e+00
9.86175179e-01 4.96863604e-01 1.30928397e+00 2.70926327e-01
-4.67666775e-01 3.90130758e-01 -1.83706790e-01 5.63010335e-01
-1.99399024e-01 3.38058561e-01 -2.91687213e-02 -5.39962769e-01
-1.89795624e-02 -8.75606716e-01 -5.21619618e-01 2.57795870e-01
-4.65454340e-01 -2.07591310e-01 4.47814763e-01 6.97999656e-01
6.70417309e-01 1.00566544e-01 5.78384578e-01 -1.00873637e+00
4.97378021e-01 -7.13672519e-01 -4.55371946e-01 -2.03536879e-02
-7.99040318e-01 3.76691222e-02 7.00008690e-01 -2.65345961e-01
-3.25917482e-01 1.22253358e-01 2.14547336e-01 -5.19741774e-01
1.60594806e-01 8.55496168e-01 8.99155363e-02 -2.50141621e-01
6.58569992e-01 -1.30286753e-01 3.63488168e-01 -6.88934326e-01
6.68521106e-01 2.60335058e-01 9.57636610e-02 -7.17989683e-01
9.16043699e-01 1.19207175e-02 1.74730062e-01 -1.05621445e+00
8.48093107e-02 -5.52896738e-01 -9.04133618e-01 2.03762352e-01
6.37272775e-01 -1.07660151e+00 -4.28229719e-01 3.75006534e-03
-9.24520373e-01 -6.09242022e-01 -4.71956164e-01 3.29783678e-01
-5.61490655e-01 4.73612070e-01 -7.44003594e-01 -5.84312528e-02
-3.26110236e-02 -9.21336174e-01 1.14704049e+00 -2.55544394e-01
-5.56017876e-01 -1.51121950e+00 2.64284492e-01 3.44944671e-02
3.60960096e-01 3.45880598e-01 1.12327218e+00 -5.16583145e-01
-6.90717041e-01 -5.35171926e-01 -7.03411177e-02 2.82579094e-01
4.62517530e-01 -1.29241765e-01 -4.01981056e-01 -8.73378396e-01
-6.08309984e-01 -4.85342443e-01 5.96952796e-01 -1.88033767e-02
1.08294964e+00 -1.36506751e-01 -8.03287208e-01 3.29474390e-01
1.48877597e+00 -3.96271586e-01 4.54538763e-01 -7.87526220e-02
1.10103905e+00 4.34086740e-01 3.10432851e-01 1.21289529e-01
3.32762301e-01 8.47252011e-01 2.69193143e-01 -1.52591661e-01
-5.87804615e-01 -3.50746691e-01 5.33550918e-01 1.47171485e+00
-7.06949979e-02 -1.61172405e-01 -8.19397032e-01 7.16076910e-01
-1.87075233e+00 -6.00481510e-01 1.19834371e-01 2.18669128e+00
5.23540378e-01 6.64991587e-02 5.53029962e-02 -9.71383899e-02
7.35033453e-01 6.18865073e-01 -2.41971165e-01 -8.09828639e-01
4.48763877e-01 6.12078786e-01 7.09357798e-01 5.89000821e-01
-9.74876642e-01 1.04739010e+00 6.95193243e+00 7.22912073e-01
-1.03098726e+00 7.00562373e-02 5.85469544e-01 1.74990907e-01
-3.58746558e-01 5.15569448e-01 -6.05516613e-01 4.26160954e-02
1.30127287e+00 -8.31607878e-02 4.25554067e-01 1.05444026e+00
-3.69778387e-02 1.85742348e-01 -1.26674807e+00 6.86407626e-01
-3.36387120e-02 -1.51326442e+00 -7.53014581e-03 3.54616135e-01
7.46710956e-01 3.47314894e-01 -3.39956105e-01 1.09801352e-01
7.07029939e-01 -1.05434513e+00 1.13530658e-01 1.80306479e-01
7.54999220e-01 -7.37272024e-01 3.55448604e-01 1.22054696e-01
-1.98467016e+00 2.19272748e-01 -6.76923096e-01 -4.12594676e-02
-1.25058934e-01 6.41598463e-01 -1.05845416e+00 9.63836670e-01
5.03429770e-01 1.13567865e+00 -6.48275673e-01 4.42798465e-01
-7.61075243e-02 4.32808250e-01 -4.83484507e-01 1.20037019e-01
5.32557964e-02 -2.98300028e-01 2.18749300e-01 9.61082518e-01
3.45537066e-01 -3.73442858e-01 7.23122358e-01 4.71001387e-01
-2.22525597e-01 1.53686836e-01 -1.17005026e+00 -3.16083878e-01
5.00162363e-01 1.25445414e+00 -7.97518611e-01 -2.21482262e-01
-4.02502447e-01 9.61837232e-01 7.21429050e-01 2.11084008e-01
-3.50572109e-01 -4.48810965e-01 6.14782810e-01 2.88636327e-01
6.13788784e-01 -9.17393446e-01 7.78983757e-02 -1.01035726e+00
-1.29959986e-01 -6.94266379e-01 4.62713569e-01 -4.91255224e-01
-1.18207562e+00 4.98528928e-01 8.03021565e-02 -1.01030862e+00
-5.99522233e-01 -6.04618907e-01 -5.36518633e-01 8.29103947e-01
-1.02847660e+00 -1.38722062e+00 -2.45193750e-01 4.97782767e-01
2.79471755e-01 -8.27274695e-02 1.32070613e+00 3.92130353e-02
-4.55507100e-01 5.96817851e-01 1.20006986e-01 -8.89691785e-02
6.48528814e-01 -1.19839919e+00 6.69687271e-01 5.83288550e-01
4.29414183e-01 8.68059754e-01 3.82463813e-01 -7.51378119e-01
-1.66583562e+00 -1.17291951e+00 9.28001642e-01 -1.78849548e-01
9.26863194e-01 -5.34345269e-01 -7.87229180e-01 1.06711257e+00
2.84591109e-01 5.92724979e-01 4.25679922e-01 4.88523126e-01
-4.85300660e-01 -3.49594831e-01 -9.63781536e-01 2.31437743e-01
1.13415372e+00 -7.78076589e-01 -1.88196629e-01 5.92987955e-01
6.77798510e-01 -2.13584960e-01 -1.56788719e+00 5.32229505e-02
6.13106787e-02 -4.46265787e-01 1.00513411e+00 -4.78569239e-01
-1.61655841e-03 -1.52405292e-01 -2.32248187e-01 -1.32985055e+00
-6.19085312e-01 -9.60778832e-01 -1.60466835e-01 1.10035837e+00
3.35984647e-01 -9.15147066e-01 9.93593931e-01 1.81119695e-01
-2.10453540e-01 -6.70918405e-01 -1.01009226e+00 -7.11067259e-01
2.61736602e-01 1.75764710e-01 3.69354904e-01 9.91316676e-01
2.44121194e-01 3.92273456e-01 -3.14927623e-02 2.39475921e-01
2.53330618e-01 3.12496901e-01 1.09558606e+00 -1.17666292e+00
-5.91509402e-01 -8.79536197e-02 -9.62833881e-01 -1.33184564e+00
1.53773844e-01 -1.31658161e+00 -1.29597262e-01 -1.57415497e+00
-1.57457501e-01 -7.32926130e-01 -3.28323543e-01 8.59559953e-01
2.80507535e-01 2.74936259e-01 -9.31929573e-02 3.53153169e-01
-4.09363478e-01 4.22944933e-01 9.70861495e-01 -1.60386726e-01
-6.31576106e-02 -4.53162789e-01 -6.01782382e-01 3.30774188e-01
7.10207403e-01 -3.62583727e-01 -7.64363050e-01 -3.44716132e-01
2.51266081e-02 -3.00069749e-02 2.00202689e-01 -1.03249490e+00
1.70025036e-01 -1.49294222e-02 1.71200946e-01 -1.11739017e-01
4.52778757e-01 -7.55712390e-01 2.34781966e-01 3.79659891e-01
-5.26149049e-02 6.12350643e-01 1.43600076e-01 9.77667153e-01
-2.15848699e-01 -3.93084288e-02 5.33352256e-01 -1.48234934e-01
-6.66833222e-01 4.23256278e-01 -2.34064505e-01 -3.85315746e-01
1.30500770e+00 -2.28429854e-01 -2.24525288e-01 -3.69791448e-01
-9.38827336e-01 -5.51716536e-02 6.77775323e-01 3.40308368e-01
5.35286367e-01 -1.44803774e+00 -2.75054544e-01 3.49676371e-01
5.09070829e-02 2.04668745e-01 -2.35067561e-01 6.12506330e-01
-8.10062230e-01 2.84596145e-01 1.01235382e-01 -5.90804160e-01
-1.21828353e+00 5.69878399e-01 7.33910203e-02 -4.89754558e-01
-9.96501386e-01 8.71542215e-01 -1.48824021e-01 -5.15940547e-01
-2.30199203e-01 -3.34863991e-01 2.75499254e-01 -5.99796250e-02
-1.54001206e-01 3.30695331e-01 3.68519932e-01 -6.22684419e-01
-4.83737826e-01 7.81007111e-01 -1.59910217e-01 2.21396893e-01
1.54062688e+00 -8.44245963e-03 -3.31236571e-01 3.49520385e-01
1.61392772e+00 -3.55084948e-02 -1.02116919e+00 -4.71567325e-02
-1.04457662e-01 -2.82546550e-01 1.37362003e-01 7.71569908e-02
-1.37467325e+00 6.91396475e-01 3.43263030e-01 3.74636084e-01
5.67407548e-01 3.33434254e-01 5.87270260e-01 5.18332124e-01
6.40930176e-01 -9.88505185e-01 4.87463593e-01 2.30071619e-01
8.38779628e-01 -7.43218422e-01 5.82950234e-01 -6.10845447e-01
-1.77898198e-01 1.25646317e+00 3.82998616e-01 -8.05882812e-01
9.65931952e-01 2.08544567e-01 -1.93395495e-01 -5.35220802e-01
-8.24137628e-01 2.83070982e-01 1.29952580e-01 5.54766297e-01
6.00475192e-01 1.02547720e-01 -3.88898924e-02 -1.64122835e-01
1.26207788e-02 -5.33026576e-01 1.40170410e-01 1.28428233e+00
-3.65740538e-01 -1.68507087e+00 9.71848518e-02 3.65967572e-01
1.33687079e-01 1.71019822e-01 -4.16851908e-01 1.04089534e+00
-1.92269221e-01 8.48100841e-01 1.48241222e-01 -5.93951166e-01
-2.07357258e-02 7.74560147e-04 4.26225841e-01 -1.02653372e+00
-5.49765468e-01 1.96332395e-01 4.68126953e-01 -9.38374817e-01
-1.89429894e-01 -4.53180134e-01 -1.24739397e+00 -5.90007007e-01
-4.39776480e-01 1.68891832e-01 6.29731476e-01 4.91063952e-01
8.48573327e-01 5.49144149e-01 6.68798387e-01 -1.22622514e+00
-3.98848176e-01 -8.13053250e-01 -6.61670685e-01 3.32376182e-01
-7.03589106e-03 -5.47796190e-01 -3.01222593e-01 5.46299443e-02] | [7.101648807525635, 6.074704170227051] |
c2d06c66-0405-4d1c-a389-e0f43df4348e | low-frequency-image-deep-steganography | 2303.13713 | null | https://arxiv.org/abs/2303.13713v1 | https://arxiv.org/pdf/2303.13713v1.pdf | Low-frequency Image Deep Steganography: Manipulate the Frequency Distribution to Hide Secrets with Tenacious Robustness | Image deep steganography (IDS) is a technique that utilizes deep learning to embed a secret image invisibly into a cover image to generate a container image. However, the container images generated by convolutional neural networks (CNNs) are vulnerable to attacks that distort their high-frequency components. To address this problem, we propose a novel method called Low-frequency Image Deep Steganography (LIDS) that allows frequency distribution manipulation in the embedding process. LIDS extracts a feature map from the secret image and adds it to the cover image to yield the container image. The container image is not directly output by the CNNs, and thus, it does not contain high-frequency artifacts. The extracted feature map is regulated by a frequency loss to ensure that its frequency distribution mainly concentrates on the low-frequency domain. To further enhance robustness, an attack layer is inserted to damage the container image. The retrieval network then retrieves a recovered secret image from a damaged container image. Our experiments demonstrate that LIDS outperforms state-of-the-art methods in terms of robustness, while maintaining high fidelity and specificity. By avoiding high-frequency artifacts and manipulating the frequency distribution of the embedded feature map, LIDS achieves improved robustness against attacks that distort the high-frequency components of container images. | ['Wanlei Zhou', 'Xin Yu', 'Bo Liu', 'Yuan Zhao', 'Tianqing Zhu', 'Huajie Chen'] | 2023-03-23 | null | null | null | null | ['specificity'] | ['natural-language-processing'] | [ 4.69181269e-01 -4.77143936e-02 1.11144491e-01 3.10504258e-01
-4.12528127e-01 -4.99874890e-01 3.25136304e-01 -4.47808951e-01
-3.61937195e-01 1.99047536e-01 7.01769604e-04 -2.98300743e-01
2.46054724e-01 -1.24246073e+00 -8.76791120e-01 -1.29692614e+00
-9.41880643e-02 -8.40059280e-01 9.98800471e-02 -4.44249719e-01
2.42795631e-01 4.24802870e-01 -1.56499851e+00 4.13370192e-01
5.50474346e-01 1.11574388e+00 1.40005440e-01 5.00430167e-01
1.16039552e-01 4.74537760e-01 -1.09419417e+00 -1.11408025e-01
4.98551011e-01 -6.91104233e-01 -2.45294183e-01 -1.87317327e-01
-1.17366239e-01 -4.97890741e-01 -8.95074487e-01 1.39104199e+00
3.97020906e-01 -3.89652699e-01 5.01619101e-01 -1.23823380e+00
-1.05412304e+00 4.13108140e-01 -4.79828715e-01 9.12495777e-02
5.42124100e-02 4.21482295e-01 3.40253413e-01 -4.86503124e-01
5.16641259e-01 9.58299696e-01 4.56748307e-01 4.70367670e-01
-9.17485595e-01 -1.20109963e+00 -2.29152411e-01 9.15537998e-02
-1.41031945e+00 -1.34813219e-01 1.14464319e+00 1.28569618e-01
7.44224846e-01 4.08603013e-01 7.00178027e-01 9.79881585e-01
7.04673827e-01 4.29083616e-01 9.06314790e-01 -4.60013211e-01
-2.26935923e-01 1.54903844e-01 -5.34592390e-01 6.30979300e-01
4.14348871e-01 5.12527823e-01 -3.17894936e-01 4.51170132e-02
6.73354924e-01 1.07161894e-01 -7.40437388e-01 -3.06825414e-02
-1.25404716e+00 7.53032804e-01 8.36418509e-01 6.02303684e-01
-1.81722701e-01 2.88879216e-01 3.61485153e-01 7.58340657e-01
-7.53455684e-02 4.24691886e-01 1.53475627e-01 3.72551590e-01
-6.17641330e-01 -1.01981938e-01 7.47780859e-01 7.82519639e-01
5.89034796e-01 3.16639006e-01 1.41759560e-01 2.19216004e-01
4.32299793e-01 8.97692978e-01 6.88455343e-01 -3.52249146e-01
4.92337525e-01 4.47525442e-01 -2.48516396e-01 -1.69385862e+00
-1.51620910e-01 -3.91494572e-01 -1.19206774e+00 2.28583559e-01
3.38507816e-02 -5.48242452e-03 -8.76087666e-01 1.52825689e+00
9.40627009e-02 9.68208164e-02 5.11787713e-01 9.29682314e-01
9.68286633e-01 1.04387748e+00 -2.80288547e-01 9.23953485e-03
1.37667251e+00 -4.93286252e-01 -8.71280253e-01 -1.39613710e-02
2.55573839e-01 -8.80577505e-01 7.28694975e-01 1.23633176e-01
-7.07301319e-01 -6.77520275e-01 -1.75144458e+00 1.99570730e-01
-5.63950658e-01 3.17824259e-02 5.44827878e-02 8.31690431e-01
-7.93978035e-01 4.20125067e-01 -2.06595853e-01 2.61785954e-01
2.63268143e-01 4.45481032e-01 -4.90767837e-01 1.09961450e-01
-1.79846728e+00 6.41795278e-01 4.96898025e-01 1.11104108e-01
-5.40831268e-01 -3.89118224e-01 -1.16487038e+00 2.71128476e-01
-2.39609964e-02 -1.49704218e-01 5.94877362e-01 -1.10950077e+00
-1.50127447e+00 5.74507058e-01 4.93518621e-01 -3.07071716e-01
2.38931790e-01 4.52759475e-01 -9.18714821e-01 5.83654642e-01
-2.11050197e-01 2.93283343e-01 1.68527639e+00 -1.19899189e+00
-3.19369614e-01 1.57500431e-02 -1.99699104e-01 -2.18939275e-01
-5.11994243e-01 -2.73092479e-01 -2.26433501e-01 -9.53160226e-01
3.56731147e-01 -1.01176727e+00 2.51489192e-01 -2.81246364e-01
-5.30933022e-01 4.90738034e-01 1.27337432e+00 -3.52061957e-01
1.18271410e+00 -2.71132421e+00 -1.84282452e-01 4.84046578e-01
2.09312871e-01 7.34816909e-01 -4.07035708e-01 6.98395729e-01
-2.93466061e-01 2.72641778e-01 -2.06222564e-01 1.12828098e-01
-2.58192182e-01 -2.25469694e-01 -4.58970547e-01 8.88389170e-01
3.66801500e-01 8.91646326e-01 -7.65646279e-01 -1.25317216e-01
1.99129492e-01 1.02034175e+00 -2.99342722e-01 4.90119606e-02
2.30700284e-01 3.97781998e-01 -2.54939765e-01 4.38698113e-01
1.18814468e+00 -1.23600803e-01 1.86936140e-01 -4.51447755e-01
-1.26688583e-02 -2.19741948e-02 -8.31222296e-01 9.95821655e-01
-3.26331198e-01 8.10665488e-01 -1.89789250e-01 -7.96898782e-01
1.19829762e+00 3.27074170e-01 3.19946557e-01 -9.86686051e-01
4.89946276e-01 4.76463884e-01 9.37476829e-02 -8.01074326e-01
2.98828602e-01 2.22195815e-02 -2.86352038e-01 5.54402709e-01
-2.04076722e-01 6.12150207e-02 -4.63781267e-01 -8.49823803e-02
7.97801614e-01 -1.88384414e-01 -1.34692714e-01 -9.00885463e-02
7.51811504e-01 -3.55784088e-01 1.10315196e-01 6.06268942e-01
8.30885768e-02 5.53323746e-01 4.44088608e-01 -3.94931197e-01
-1.26223493e+00 -7.67998338e-01 -1.54706463e-01 3.96212101e-01
8.12210023e-01 -1.18061341e-01 -8.58440638e-01 -4.12426323e-01
2.56915241e-02 -1.45461727e-02 -5.27822256e-01 -1.00393844e+00
-6.89225972e-01 -4.02260691e-01 1.03035903e+00 4.67926711e-02
1.34904587e+00 -1.28423774e+00 -7.45344043e-01 3.23566973e-01
-2.33853117e-01 -1.04213727e+00 -7.35679090e-01 -1.28185123e-01
-2.92205483e-01 -1.29669487e+00 -8.73041272e-01 -1.13897264e+00
9.13639784e-01 6.40962541e-01 5.01329362e-01 5.67209423e-01
-3.69833529e-01 -2.69600123e-01 -3.96653026e-01 -2.20948935e-01
-7.41595685e-01 2.80542187e-02 -1.99689090e-01 3.27147692e-01
4.16163802e-01 -4.70343560e-01 -8.69704008e-01 2.25721270e-01
-1.56290793e+00 -1.40979007e-01 8.24087918e-01 9.83081818e-01
1.64022699e-01 6.74334288e-01 4.21856999e-01 -4.70852166e-01
4.99911636e-01 -3.04464132e-01 -7.28072643e-01 -1.17424838e-01
-3.36829543e-01 -5.04009984e-02 9.42784667e-01 -8.32756817e-01
-5.87041914e-01 -2.20076919e-01 1.47697348e-02 -2.68021137e-01
3.15949172e-01 4.23052758e-01 -2.21159488e-01 -5.60534298e-01
5.55068612e-01 8.03513944e-01 6.13750458e-01 -6.25704825e-02
-9.71914083e-02 8.77251506e-01 6.94120467e-01 2.60830164e-01
1.38902688e+00 6.03907049e-01 5.59473261e-02 -7.24093974e-01
-2.31274188e-01 -2.47345626e-04 -1.33673074e-02 -9.94325206e-02
5.67281365e-01 -9.26613331e-01 -1.00252426e+00 1.08050776e+00
-1.07623124e+00 8.43188167e-02 1.83452144e-01 4.26350504e-01
-2.17807978e-01 2.20210150e-01 -6.73274159e-01 -4.39527601e-01
-5.97478271e-01 -1.34410155e+00 8.89290094e-01 2.82238156e-01
2.99539000e-01 -5.60344577e-01 -4.55706835e-01 -2.21312359e-01
7.16803491e-01 6.35645807e-01 1.04804742e+00 -2.00123072e-01
-7.75755882e-01 -6.64521217e-01 -3.32028598e-01 5.26240408e-01
2.31100842e-01 -6.12493902e-02 -8.50340605e-01 -6.68077707e-01
3.93194109e-01 1.28928408e-01 1.02888751e+00 -2.08159909e-02
1.03946292e+00 -7.23729789e-01 -1.47407740e-01 1.11801064e+00
1.76320565e+00 4.29826915e-01 1.33975232e+00 8.25985849e-01
4.70486373e-01 3.73183340e-01 8.65065306e-02 1.20701313e-01
1.89662110e-02 3.44196171e-01 6.28693938e-01 -2.71517158e-01
-8.33202228e-02 -2.29254857e-01 4.96784836e-01 5.47217250e-01
3.98739845e-01 -4.75790024e-01 -3.76949638e-01 4.07340586e-01
-1.32112312e+00 -9.59617198e-01 1.21164680e-01 1.99033833e+00
8.01762879e-01 1.62441522e-01 -3.46482605e-01 4.90804255e-01
9.07075226e-01 4.32894856e-01 -5.44035792e-01 -3.13103765e-01
-2.20096156e-01 1.14332393e-01 7.78212309e-01 2.11424172e-01
-1.07188404e+00 5.84394872e-01 5.62490034e+00 6.82356179e-01
-1.74233854e+00 -3.93500656e-01 2.23497182e-01 1.92238957e-01
-3.64725292e-01 -3.21644753e-01 -5.37299693e-01 9.81943727e-01
6.68221116e-01 7.93810338e-02 3.42448860e-01 4.84437406e-01
-2.53969312e-01 1.11615464e-01 -3.78388137e-01 8.75235617e-01
2.36352772e-01 -1.43689871e+00 6.99606240e-02 4.46277291e-01
5.85039079e-01 -4.77687418e-01 7.62449741e-01 6.45218939e-02
-3.42773288e-01 -1.16777754e+00 5.03081799e-01 2.59851456e-01
1.23840785e+00 -1.13451505e+00 9.56312060e-01 6.69280067e-02
-1.10342085e+00 -1.68268010e-01 -4.45644528e-01 3.95660460e-01
-4.40234184e-01 4.49240088e-01 -4.69010621e-01 4.45286542e-01
6.49902582e-01 2.95531005e-01 -1.43224999e-01 6.68103814e-01
-3.39223713e-01 2.40382254e-01 -1.64087102e-01 3.73750366e-02
5.21989822e-01 6.32320419e-02 6.35796487e-01 1.06078660e+00
5.55520773e-01 -4.25426811e-02 -2.75697708e-01 8.27579200e-01
-3.34410548e-01 -2.46518433e-01 -9.61835802e-01 -3.53108835e-03
6.36617243e-01 8.53075266e-01 -5.92882693e-01 -1.67269960e-01
-1.46264717e-01 1.00901175e+00 -5.22262096e-01 4.01225269e-01
-9.65031505e-01 -1.24435985e+00 6.43671393e-01 -2.25039907e-02
6.99820220e-01 -2.88739484e-02 1.51122749e-01 -9.78227079e-01
1.36065602e-01 -1.17612112e+00 -1.11828540e-02 -5.33604145e-01
-8.04250181e-01 8.95445287e-01 -3.53640407e-01 -1.81389821e+00
-1.39866769e-01 -2.71435946e-01 -4.39636469e-01 9.72201407e-01
-2.10311675e+00 -1.20950985e+00 -5.19290507e-01 8.68109465e-01
-7.36887082e-02 -4.18959826e-01 8.52708101e-01 1.61719099e-01
-2.55461365e-01 8.11521828e-01 2.48006567e-01 4.89137620e-01
4.73210216e-01 -5.14017105e-01 5.14414787e-01 9.07999396e-01
-4.44430977e-01 6.48923218e-01 5.42573929e-01 -6.18677795e-01
-1.60520840e+00 -1.21951544e+00 5.22552729e-01 3.48847836e-01
2.02541620e-01 -4.65446323e-01 -9.40021455e-01 2.57377982e-01
2.28558689e-01 1.27827793e-01 5.88337421e-01 -1.20117497e+00
-7.83125222e-01 -1.07634917e-01 -1.57262325e+00 5.39896607e-01
5.60833156e-01 -7.48155057e-01 -1.53635308e-01 -8.96872431e-02
9.76510048e-01 -5.52136838e-01 -6.81903899e-01 3.35763425e-01
7.73713052e-01 -9.59616899e-01 9.98032093e-01 1.64505243e-02
5.89660287e-01 -5.07294118e-01 5.55253811e-02 -1.18790424e+00
-2.80302316e-01 -9.62983251e-01 -4.18143459e-02 7.26124883e-01
1.62383303e-01 -1.03413844e+00 4.02839482e-01 -1.95488274e-01
1.89175785e-01 -4.78325188e-01 -7.45013058e-01 -9.43728924e-01
-1.01866350e-01 1.98942751e-01 1.20483589e+00 8.24245274e-01
-2.99016312e-02 -4.64005351e-01 -4.95979190e-01 7.06473947e-01
7.00420380e-01 6.24466315e-02 5.32119453e-01 -7.31658936e-01
2.55881190e-01 -2.58737117e-01 -6.83148623e-01 -6.45534396e-01
2.26534382e-02 -6.38292491e-01 7.43101956e-03 -9.42685485e-01
-4.43069637e-01 -3.61527503e-01 -2.86854982e-01 2.89986193e-01
1.28941387e-01 9.74331677e-01 3.23560089e-01 5.19133687e-01
1.15149142e-02 4.31094080e-01 1.57882071e+00 -3.30585510e-01
-2.03934476e-01 -3.24192792e-01 -7.30153918e-01 3.38880450e-01
1.00019753e+00 -6.57202423e-01 -2.90861458e-01 -2.41721839e-01
1.24445096e-01 -7.21491277e-02 4.74257797e-01 -1.21021044e+00
2.19809785e-01 1.39551818e-01 6.80383921e-01 -3.87854457e-01
7.18994588e-02 -1.08890533e+00 3.97282809e-01 9.88797963e-01
-6.18151687e-02 -1.88417658e-01 2.73984849e-01 3.48978639e-01
-3.53587717e-01 -5.22505902e-02 1.00079226e+00 -1.16862744e-01
-4.71240073e-01 1.60898805e-01 -5.46367228e-01 -5.48950076e-01
1.13810897e+00 -4.99136060e-01 -4.80810761e-01 -3.81131738e-01
-1.16902865e-01 -2.28907719e-01 5.12511432e-01 5.16271651e-01
1.08299875e+00 -1.49519181e+00 -4.85083848e-01 1.15414715e+00
8.90490115e-02 -7.03714564e-02 4.29787338e-01 4.27125454e-01
-7.97901154e-01 2.97571808e-01 -2.81708241e-01 -4.65205193e-01
-1.13703585e+00 8.10203493e-01 4.96629089e-01 9.65354126e-03
-1.02319777e+00 5.71865916e-01 -7.19830021e-02 8.93252417e-02
2.01402828e-01 -7.49568120e-02 -3.03032547e-01 -9.65289101e-02
9.17476654e-01 -2.22388670e-01 3.13291838e-03 -7.69166350e-01
-2.66649961e-01 7.67314970e-01 -8.09161142e-02 1.86862037e-01
1.29172826e+00 -1.58328444e-01 -2.77211607e-01 -3.28400970e-01
2.00094199e+00 -8.68630037e-03 -1.08498633e+00 -2.18957245e-01
-5.67753673e-01 -6.63496435e-01 6.60271496e-02 -3.79928052e-01
-1.53386664e+00 4.28695321e-01 6.78134620e-01 6.28172159e-01
1.41299188e+00 -3.95190150e-01 1.43600798e+00 1.65959418e-01
2.14867368e-01 -8.20482969e-01 3.54718089e-01 2.58136839e-01
7.59496748e-01 -8.98692548e-01 -2.00444639e-01 -3.38385016e-01
-3.08048815e-01 1.35640800e+00 3.54665250e-01 -4.83011574e-01
8.13749969e-01 3.54975253e-01 2.68825024e-01 -3.50181341e-01
-1.04303174e-01 1.39105851e-02 6.41654506e-02 8.79401445e-01
-2.76147336e-01 -3.59226733e-01 9.45299268e-02 4.03300561e-02
-4.40303475e-01 -2.75186837e-01 7.05116212e-01 8.82844329e-01
-3.18970799e-01 -8.51038218e-01 -7.47509360e-01 -2.67326999e-02
-6.53958380e-01 -1.54279441e-01 2.86983028e-02 7.59612918e-01
2.55060762e-01 9.47490573e-01 1.41474798e-01 -8.01138282e-01
1.63743287e-01 -3.47465783e-01 2.13788882e-01 -1.27064854e-01
-6.17650390e-01 1.00663044e-01 -6.12127960e-01 -4.40837324e-01
-2.96008468e-01 1.59624577e-01 -1.31708348e+00 -7.10198641e-01
-5.29044390e-01 7.23831868e-03 9.27662492e-01 5.49883246e-01
4.10171628e-01 7.09720612e-01 1.36139560e+00 -6.39433086e-01
-4.41759229e-01 -5.26772261e-01 -5.97025394e-01 4.08578545e-01
1.17627668e+00 -1.87563896e-01 -7.77047634e-01 -9.86438468e-02] | [4.319727897644043, 8.047130584716797] |
42b9507a-746d-422d-8d4a-f83cf7c976a2 | generative-zero-shot-prompt-learning-for | 2307.0283 | null | https://arxiv.org/abs/2307.02830v1 | https://arxiv.org/pdf/2307.02830v1.pdf | Generative Zero-Shot Prompt Learning for Cross-Domain Slot Filling with Inverse Prompting | Zero-shot cross-domain slot filling aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Existing models either encode slot descriptions and examples or design handcrafted question templates using heuristic rules, suffering from poor generalization capability or robustness. In this paper, we propose a generative zero-shot prompt learning framework for cross-domain slot filling, both improving generalization and robustness than previous work. Besides, we introduce a novel inverse prompting strategy to distinguish different slot types to avoid the multiple prediction problem, and an efficient prompt-tuning strategy to boost higher performance by only training fewer prompt parameters. Experiments and analysis demonstrate the effectiveness of our proposed framework, especially huge improvements (+13.44% F1) on the unseen slots. | ['Weiran Xu', 'Jiachi Liu', 'Hao Lei', 'Jinzheng Zhao', 'Keqing He', 'Guanting Dong', 'LiWen Wang', 'Xuefeng Li'] | 2023-07-06 | null | null | null | null | ['slot-filling'] | ['natural-language-processing'] | [ 2.18586698e-01 5.15060246e-01 -6.05031312e-01 -4.93158102e-01
-1.04532504e+00 -3.98082495e-01 5.87099731e-01 -6.86792517e-03
-3.81838977e-01 9.32231545e-01 1.49373501e-03 -3.31498474e-01
-9.53712985e-02 -9.27159905e-01 -3.51174831e-01 -3.93585205e-01
4.53665435e-01 7.51556337e-01 6.23208046e-01 -3.59693825e-01
2.04805247e-02 -1.95657209e-01 -1.50488055e+00 1.27185285e-01
1.25980484e+00 1.02244616e+00 4.51485842e-01 1.64488703e-01
-7.52804577e-01 6.18815720e-01 -5.91019511e-01 -5.03696918e-01
2.26823408e-02 -4.80460048e-01 -7.39899337e-01 2.71225423e-01
-1.88765794e-01 -2.09866583e-01 -2.15457842e-01 7.30537593e-01
4.20489579e-01 4.08438027e-01 3.89909744e-01 -1.11929715e+00
-8.60490620e-01 5.43183982e-01 -3.12788099e-01 -4.83215079e-02
2.53229350e-01 -5.89445122e-02 9.40509140e-01 -8.93983543e-01
6.34384573e-01 1.09295118e+00 4.88506645e-01 1.03547335e+00
-1.05956435e+00 -7.84207880e-01 2.00038150e-01 2.70448804e-01
-1.18835664e+00 -4.31623906e-01 8.74067008e-01 -1.33040622e-01
7.28778124e-01 -1.97251109e-04 1.33002073e-01 1.26690245e+00
-6.58626020e-01 1.01654553e+00 1.03587329e+00 -6.11708760e-01
4.28286612e-01 5.16950071e-01 1.99394882e-01 5.39227188e-01
7.68856555e-02 1.09556817e-01 -3.60911995e-01 -2.58400351e-01
7.27985084e-01 7.24056677e-04 -2.62421425e-02 -5.05732834e-01
-7.33912945e-01 1.09934294e+00 6.80784732e-02 3.32196206e-01
-2.18463928e-01 -5.26653290e-01 5.33583105e-01 1.07111797e-01
5.09375453e-01 4.86172795e-01 -7.92606473e-01 -1.21570237e-01
-7.13798583e-01 2.84943551e-01 5.76128423e-01 1.24013257e+00
9.54675317e-01 3.14170159e-02 -5.91689825e-01 1.32123899e+00
1.99621543e-01 3.87007236e-01 9.93822217e-01 -5.46756685e-01
5.36596537e-01 7.54739940e-01 1.57126367e-01 -4.76394445e-01
-4.05485690e-01 -3.97691280e-01 -3.55930239e-01 -5.54805398e-01
1.80457264e-01 -1.75341025e-01 -1.29217148e+00 1.86325979e+00
5.89725494e-01 1.70321375e-01 3.23221177e-01 8.51888716e-01
1.04942679e+00 6.16323888e-01 6.99712574e-01 -2.37406999e-01
1.52152157e+00 -1.10079002e+00 -9.67678964e-01 -6.08907461e-01
7.49446332e-01 -5.85143387e-01 1.42336214e+00 -8.81134495e-02
-7.47828484e-01 -6.44676030e-01 -8.21677983e-01 -1.45969033e-01
-4.99675572e-01 1.38036713e-01 8.08485210e-01 6.72215819e-01
-3.68328065e-01 4.34485316e-01 -5.13579905e-01 -1.54052198e-01
5.49821556e-01 1.40806243e-01 -2.25792080e-01 -2.88360953e-01
-1.56488657e+00 6.35970056e-01 8.73853862e-01 -6.06295407e-01
-6.87073350e-01 -8.49621475e-01 -1.16870952e+00 2.04545304e-01
8.34282994e-01 -3.75718236e-01 1.42866552e+00 -5.41663289e-01
-1.58802104e+00 7.86970139e-01 -2.36592501e-01 -5.54845572e-01
2.10979670e-01 -1.30443007e-01 -5.86642504e-01 -7.57971406e-02
4.14526969e-01 8.08920860e-01 7.48637140e-01 -1.20703137e+00
-7.30685115e-01 -2.56440461e-01 2.35396028e-02 2.56949127e-01
-5.49505591e-01 -4.42370594e-01 -5.92985094e-01 -6.47743165e-01
3.54954332e-01 -6.51264727e-01 -4.28112805e-01 -4.41920608e-01
-1.47650063e-01 -6.03362799e-01 8.81407082e-01 -6.25253618e-01
1.20811749e+00 -2.11103249e+00 -3.33245903e-01 -2.88748473e-01
-6.06728345e-02 6.35411263e-01 -1.94032684e-01 1.84906691e-01
1.41426057e-01 -1.34877339e-01 -3.20141733e-01 -3.32362503e-01
2.64991105e-01 6.00218534e-01 -5.59104264e-01 -1.07924037e-01
2.82621294e-01 1.03717649e+00 -9.74909067e-01 -7.00757742e-01
2.68961579e-01 2.15671942e-01 -6.03007138e-01 4.61883336e-01
-5.31570137e-01 2.51118690e-01 -5.56104243e-01 7.88774431e-01
6.73609018e-01 -4.55952436e-01 4.09134835e-01 7.79201686e-02
3.93760890e-01 5.26269138e-01 -1.02396679e+00 1.88060713e+00
-6.10600352e-01 -5.17702550e-02 -3.75781476e-01 -1.17989397e+00
1.29948652e+00 4.21411991e-01 2.32269689e-01 -1.33790600e+00
2.10510179e-01 2.67179430e-01 -5.28533399e-01 -3.43237430e-01
7.35332668e-01 -5.81865013e-01 -3.74886036e-01 1.63637355e-01
4.65158075e-01 9.84183028e-02 8.79381672e-02 6.78942576e-02
6.92505956e-01 2.83734173e-01 5.20110905e-01 7.08151758e-02
3.53962302e-01 2.47281179e-01 9.16115046e-01 6.02442563e-01
-3.86002153e-01 3.84755641e-01 2.89273292e-01 -2.22562701e-01
-9.25974548e-01 -9.85013425e-01 -1.67359278e-01 1.41408896e+00
3.94684076e-01 -3.98681283e-01 -6.37558579e-01 -9.80613530e-01
-9.00795683e-02 9.23230827e-01 -5.69433630e-01 -3.52259129e-01
-4.38771635e-01 -5.35084724e-01 3.39747965e-01 5.58430374e-01
5.24622738e-01 -1.14698970e+00 -4.61984336e-01 3.90182137e-01
-4.46437925e-01 -1.39487135e+00 -1.62356466e-01 4.15781945e-01
-9.87898648e-01 -8.58544767e-01 -7.98964322e-01 -9.86040354e-01
4.46544528e-01 3.90884101e-01 1.21416450e+00 -1.20596930e-01
-2.03463048e-01 4.09167446e-02 -7.26785123e-01 -1.75656959e-01
-1.17930025e-01 1.81864053e-01 -8.91702771e-02 -3.86582583e-01
8.03115666e-01 -3.28415930e-01 -3.75829786e-01 5.06046295e-01
-8.71276021e-01 1.65820345e-02 5.85286796e-01 1.35251832e+00
7.87611008e-01 -7.51955807e-02 8.52979243e-01 -1.22485185e+00
6.07066154e-01 -7.87352204e-01 -4.63944554e-01 4.30551201e-01
-8.59459281e-01 2.56138623e-01 5.96817076e-01 -5.53433001e-01
-1.48401845e+00 1.31786363e-02 -6.11858256e-02 -4.71660376e-01
-4.28260446e-01 1.51854798e-01 -4.33833838e-01 2.74965137e-01
7.28453696e-01 4.00954783e-01 -3.55331093e-01 -6.78028107e-01
6.53232098e-01 5.95581412e-01 6.49872124e-01 -9.58511472e-01
6.55948997e-01 2.21093684e-01 -6.00342095e-01 -4.24658507e-01
-1.14970291e+00 -6.70937061e-01 -4.30247635e-01 3.34605604e-01
5.80739141e-01 -9.88365114e-01 -2.25266710e-01 -8.26081336e-02
-8.77486289e-01 -2.43059650e-01 -5.26812851e-01 1.40594691e-01
-6.51394725e-01 3.44990462e-01 -4.42464352e-01 -9.09015298e-01
-3.17083240e-01 -7.91334152e-01 1.20690417e+00 6.99770093e-01
-1.77321687e-01 -9.72284555e-01 1.25951976e-01 5.81575036e-01
3.66227746e-01 -2.70994693e-01 8.87113869e-01 -1.06384206e+00
-3.40934515e-01 2.20334791e-02 -4.60569829e-01 -7.75142014e-02
8.12833309e-02 -8.67107689e-01 -1.06978297e+00 -1.84184723e-02
-4.68709059e-02 -5.17631710e-01 7.80414879e-01 4.72547002e-02
1.14570153e+00 -1.11469775e-01 -4.79466259e-01 3.24417889e-01
1.30025685e+00 3.95048916e-01 5.63582659e-01 4.56629574e-01
3.25876743e-01 5.95848560e-01 1.29839969e+00 6.76776409e-01
4.34796959e-01 7.83260107e-01 9.58963409e-02 3.60310897e-02
-1.54503077e-01 -8.16693246e-01 -1.85938165e-01 4.25248504e-01
5.99490106e-01 -4.72044349e-02 -7.91600585e-01 1.01657271e+00
-1.89484572e+00 -6.14888906e-01 4.49685603e-01 2.01523566e+00
1.05416834e+00 2.62849301e-01 5.11803143e-02 1.10390767e-01
7.15689301e-01 8.21544304e-02 -7.02379942e-01 9.55716055e-03
-2.29849052e-02 5.82555711e-01 3.96455079e-01 4.71198797e-01
-1.15425920e+00 1.52052879e+00 5.86480856e+00 1.30159557e+00
-8.09020579e-01 2.52654850e-01 4.07162786e-01 2.08575115e-01
-4.75765795e-01 1.10466562e-01 -1.06526208e+00 4.44836736e-01
9.10053253e-01 -2.51468867e-01 -3.45270592e-03 1.32099330e+00
-2.96052575e-01 1.51090294e-01 -5.16670704e-01 9.28345144e-01
-5.63040785e-02 -1.19243479e+00 -3.61434668e-02 -2.02459380e-01
5.17433286e-01 -5.55815041e-01 -2.34460682e-02 1.17488933e+00
4.39208269e-01 -6.35834217e-01 3.32289606e-01 5.90635054e-02
8.22931886e-01 -6.56628311e-01 4.71010119e-01 4.03132319e-01
-1.01207685e+00 -1.18446372e-01 -6.78194344e-01 -8.01578686e-02
2.67096907e-01 4.75601614e-01 -1.22845542e+00 6.17135465e-01
3.87431562e-01 3.37990671e-01 -4.20786887e-01 8.48126769e-01
-2.65335023e-01 6.31996453e-01 4.15260030e-04 -4.87444848e-02
2.71164209e-01 1.11949593e-01 1.64008096e-01 9.41567123e-01
2.99361765e-01 4.28906918e-01 3.96198541e-01 7.80169070e-01
9.40741971e-02 3.13716114e-01 -3.22755426e-01 -2.69212633e-01
8.43970478e-01 1.19064915e+00 -6.94064915e-01 -6.07844889e-01
-3.94172192e-01 1.00865722e+00 4.14086431e-01 2.53519356e-01
-9.33038175e-01 -4.12129670e-01 7.26959944e-01 -6.29562512e-02
6.49711430e-01 9.95326713e-02 -4.98160720e-01 -1.21699691e+00
-5.95642254e-03 -5.23619115e-01 6.11559331e-01 -5.00339150e-01
-1.27498293e+00 5.20422459e-01 -9.74993780e-02 -1.23397541e+00
-3.89572918e-01 -4.63866740e-01 -3.96685332e-01 6.62638962e-01
-1.77271843e+00 -1.08112276e+00 -7.34610409e-02 5.58315754e-01
8.13702106e-01 -2.75630742e-01 1.05802476e+00 5.30499399e-01
-4.47942525e-01 8.63915026e-01 -1.54345676e-01 7.61263585e-03
7.13789999e-01 -1.08849561e+00 5.22271514e-01 4.93803054e-01
1.15533337e-01 5.88408172e-01 7.02407360e-01 -6.05221629e-01
-8.58888924e-01 -1.05487323e+00 1.01957870e+00 -9.09958705e-02
4.56459641e-01 -2.85822749e-01 -1.25957286e+00 4.26227748e-01
-2.49072954e-01 3.86196189e-02 9.25626814e-01 4.70340610e-01
-6.90397024e-01 2.46271729e-01 -1.28729475e+00 5.82135558e-01
9.83213723e-01 -5.99818826e-01 -1.05945599e+00 2.98748255e-01
1.23734283e+00 -5.21131575e-01 -6.17791176e-01 4.81940508e-01
2.48577654e-01 -8.12704504e-01 1.00936341e+00 -7.64895618e-01
2.28066117e-01 -9.70620215e-02 -2.69211233e-01 -1.07411420e+00
-2.96066195e-01 -2.48191178e-01 -3.82194906e-01 1.53135979e+00
4.55555797e-01 -4.02334362e-01 1.18156278e+00 6.26464963e-01
-2.30168626e-01 -6.91424012e-01 -8.91990840e-01 -9.22290146e-01
-1.73545983e-02 -4.21947062e-01 8.72418106e-01 1.08874702e+00
1.59354478e-01 6.38552547e-01 -6.51351333e-01 3.59938927e-02
4.07155484e-01 3.75957519e-01 6.28693223e-01 -1.22287107e+00
-3.47284645e-01 -9.60017368e-02 -4.44268659e-02 -1.28734016e+00
2.28286952e-01 -5.53516328e-01 1.61339968e-01 -1.31500685e+00
5.02182916e-02 -7.87039697e-01 -5.06742954e-01 7.34595001e-01
-6.20797157e-01 -1.18161030e-01 5.53447455e-02 -1.85338557e-02
-1.03347433e+00 8.35442841e-01 1.14718699e+00 8.28420520e-02
-3.05583537e-01 -1.29150018e-01 -9.49156404e-01 2.53057450e-01
8.53509486e-01 -5.05596042e-01 -7.21563160e-01 -3.20824742e-01
-3.92221659e-01 3.29521686e-01 1.40616566e-01 -9.17517960e-01
5.93800694e-02 -2.82542497e-01 1.62710726e-01 -5.18326163e-01
5.53789258e-01 -7.19238460e-01 -3.45908552e-01 2.06494391e-01
-3.27708870e-01 -6.55371845e-01 3.19078773e-01 7.87190497e-01
-2.82136083e-01 -3.04988623e-01 7.61779666e-01 -1.51481733e-01
-1.31958795e+00 2.70638913e-01 2.25928903e-01 3.74133617e-01
1.05153143e+00 -5.98917529e-02 -3.64737898e-01 -1.85960919e-01
-7.33364403e-01 3.63834202e-01 3.06655228e-01 8.20102930e-01
4.21076536e-01 -1.60123587e+00 -1.21865377e-01 4.44552332e-01
5.67079604e-01 -7.12887496e-02 7.37003684e-01 2.49236807e-01
2.70007879e-01 8.22606683e-01 -2.11031422e-01 -4.22018796e-01
-8.43697250e-01 7.55477309e-01 1.63003383e-03 -5.09053588e-01
-5.54989874e-01 1.01368141e+00 1.94217399e-01 -9.25783694e-01
1.58238992e-01 1.73813656e-01 -2.63162166e-01 8.77864137e-02
6.31128550e-01 2.54862700e-02 4.24558595e-02 -2.70216525e-01
-1.30039260e-01 2.06243560e-01 -2.99613029e-01 -8.20416585e-02
1.11701667e+00 -2.75991291e-01 5.90590298e-01 1.84351489e-01
9.75219727e-01 -3.86468560e-01 -1.30993867e+00 -9.23888147e-01
4.23853278e-01 -5.75617313e-01 -1.77095354e-01 -9.52434123e-01
-6.12258494e-01 7.76394963e-01 6.23754799e-01 2.33821899e-01
9.99034464e-01 1.93978205e-01 1.24661887e+00 2.05484256e-01
3.79005820e-01 -1.17580748e+00 3.76483947e-02 5.56179821e-01
2.79540956e-01 -1.53179121e+00 -4.55440193e-01 -4.84130949e-01
-9.31049764e-01 7.30983496e-01 1.00987196e+00 1.26711011e-01
3.84325147e-01 -1.24746840e-02 2.15649024e-01 -1.17417894e-01
-7.66361237e-01 -5.67344487e-01 1.32362649e-01 7.63233185e-01
4.78918463e-01 1.92609191e-01 -5.38842499e-01 1.27566743e+00
-8.29328224e-02 8.08236673e-02 -8.48093331e-02 9.38300610e-01
-8.85012984e-01 -1.55191469e+00 -1.55483931e-01 2.95752704e-01
-1.31533310e-01 -6.23031370e-02 -2.76228357e-02 7.63845801e-01
1.69284165e-01 9.02655005e-01 -7.41595104e-02 -3.42688560e-01
4.64941561e-01 5.90140820e-01 1.49384543e-01 -8.31302047e-01
5.60579225e-02 -1.19086327e-02 2.88871080e-02 -3.26811880e-01
-1.33185655e-01 -3.37720752e-01 -1.33769739e+00 2.82050729e-01
-4.65107858e-01 5.42507946e-01 4.99054164e-01 1.23388708e+00
4.88565147e-01 5.44459164e-01 4.77994204e-01 -2.18928412e-01
-6.03924096e-01 -1.00039995e+00 -5.99275589e-01 4.27850068e-01
4.01125550e-02 -1.21408081e+00 -4.53831702e-02 -3.32386404e-01] | [12.556131362915039, 7.340592384338379] |
17c95988-7c19-47c2-ba21-a0bb036967d9 | tiny-word-embeddings-using-globally-informed | null | null | https://aclanthology.org/2020.coling-main.103 | https://aclanthology.org/2020.coling-main.103.pdf | Tiny Word Embeddings Using Globally Informed Reconstruction | We reduce the model size of pre-trained word embeddings by a factor of 200 while preserving its quality. Previous studies in this direction created a smaller word embedding model by reconstructing pre-trained word representations from those of subwords, which allows to store only a smaller number of subword embeddings in the memory. However, previous studies that train the reconstruction models using only target words cannot reduce the model size extremely while preserving its quality. Inspired by the observation of words with similar meanings having similar embeddings, our reconstruction training learns the global relationships among words, which can be employed in various models for word embedding reconstruction. Experimental results on word similarity benchmarks show that the proposed method improves the performance of the all subword-based reconstruction models. | ['Yuki Arase', 'Tomoyuki Kajiwara', 'Mao Isogawa', 'Sora Ohashi'] | 2020-12-01 | null | null | null | coling-2020-8 | ['word-similarity'] | ['natural-language-processing'] | [-2.14281693e-01 -2.36850232e-02 -5.67180634e-01 -1.99561909e-01
-3.42889547e-01 -2.10049808e-01 5.97817540e-01 5.17713904e-01
-8.57250690e-01 1.68741211e-01 7.71756172e-01 -4.86435980e-01
1.71149790e-01 -1.11860812e+00 -5.45427203e-01 -5.10531366e-01
2.17865944e-01 1.83367953e-01 3.24163586e-01 -2.87840486e-01
4.60820198e-01 1.07411534e-01 -1.58290994e+00 1.96318477e-01
6.84615254e-01 5.51739633e-01 5.49034894e-01 2.71244824e-01
-8.12495589e-01 7.19578639e-02 -3.82564008e-01 -3.58664721e-01
1.64328128e-01 -2.91390836e-01 -5.31633615e-01 -1.75209820e-01
3.29014540e-01 -3.76885325e-01 -7.01518178e-01 1.05374587e+00
3.49613458e-01 4.43785369e-01 3.67096364e-01 -6.80846870e-01
-1.58716214e+00 8.54921460e-01 -2.54485518e-01 1.41411915e-01
3.09350252e-01 -1.59255534e-01 1.45148766e+00 -1.33364618e+00
3.32847089e-01 1.41820705e+00 5.86959958e-01 4.08565640e-01
-1.14596951e+00 -7.65691638e-01 2.71485001e-01 3.85289758e-01
-1.68990767e+00 -2.74084479e-01 5.77061474e-01 3.83023061e-02
1.85930192e+00 1.35809779e-01 8.26435745e-01 9.84520555e-01
4.10227597e-01 1.79639757e-01 5.64773619e-01 -6.85476303e-01
1.60925686e-02 2.08231390e-01 7.40292728e-01 7.20556974e-01
8.06484044e-01 -1.03914231e-01 -4.53935832e-01 -3.08052540e-01
6.20334268e-01 5.38758934e-01 -1.61767274e-01 -1.86152235e-01
-9.74435806e-01 1.18036628e+00 4.41130877e-01 6.70474112e-01
-1.86174139e-01 2.23334700e-01 4.58832890e-01 4.02078122e-01
5.27335584e-01 5.43794274e-01 -1.60560533e-01 2.44409610e-02
-4.01262343e-01 -2.01573566e-01 4.07674253e-01 8.50391388e-01
1.11523700e+00 1.11224115e-01 3.06182913e-02 9.85004246e-01
5.11090457e-01 4.03840095e-01 1.44989765e+00 -2.60945082e-01
2.51291245e-01 7.72603631e-01 -2.31053352e-01 -1.20620489e+00
-6.57523349e-02 -3.87313366e-01 -6.28988922e-01 -4.52483833e-01
-1.72709540e-01 5.67211926e-01 -1.03028429e+00 1.72162700e+00
-2.69206031e-03 5.44291556e-01 -6.74343333e-02 6.64393306e-01
6.19989812e-01 9.91412103e-01 2.85588410e-02 -6.02748133e-02
1.63192606e+00 -1.05288196e+00 -8.84366632e-01 -5.98383069e-01
1.00174320e+00 -7.41305530e-01 1.40906966e+00 -2.81561469e-03
-7.87831962e-01 -9.42128837e-01 -1.25503004e+00 -3.76053840e-01
-7.93515265e-01 -3.91634196e-01 6.00887299e-01 7.48073101e-01
-9.86577332e-01 4.45932806e-01 -7.77386963e-01 -5.00401676e-01
7.14919269e-02 1.34871632e-01 -5.34938157e-01 -3.96720976e-01
-1.40361714e+00 1.25059795e+00 7.48695314e-01 -3.67896885e-01
-3.92560124e-01 -8.63934875e-01 -1.15431523e+00 4.18096125e-01
-1.32603630e-01 -4.37367648e-01 4.94158745e-01 -4.34282333e-01
-1.12092102e+00 5.27046442e-01 -5.73218226e-01 -4.10675317e-01
-5.93098342e-01 -2.39753589e-01 -7.30667233e-01 -2.43685558e-01
-1.75063536e-01 5.35955906e-01 8.98787856e-01 -9.64444935e-01
-2.90466249e-01 -3.16671044e-01 1.62428975e-01 -1.02945909e-01
-1.45033216e+00 -3.46407473e-01 -5.25419891e-01 -9.37777281e-01
2.66671963e-02 -6.40287817e-01 -3.17308813e-01 1.43002212e-01
3.39190215e-01 -5.06781757e-01 6.97385073e-01 -4.23581362e-01
1.73706174e+00 -2.28020549e+00 1.08273573e-01 2.16615442e-02
2.95293748e-01 5.06860733e-01 -1.03772247e+00 7.93529987e-01
-2.64261037e-01 2.30708688e-01 -6.60188720e-02 -5.71327150e-01
9.29496884e-02 8.63445342e-01 -8.67355168e-01 3.43272418e-01
3.38531211e-02 1.08647561e+00 -9.50100005e-01 -3.51077825e-01
2.36342713e-01 6.57261312e-01 -8.05110514e-01 3.28341454e-01
1.44058198e-01 -7.38894522e-01 -2.74159789e-01 1.25518873e-01
7.23600328e-01 -1.31823733e-01 4.96282160e-01 -2.24071920e-01
3.44556391e-01 7.79768646e-01 -9.99974132e-01 1.96335423e+00
-1.15462184e+00 3.60767901e-01 -6.96767747e-01 -1.15667701e+00
1.23340237e+00 1.68005243e-01 1.96089461e-01 -8.51608694e-01
-1.83802899e-02 1.27086386e-01 -4.10019374e-03 -3.46217394e-01
1.02306390e+00 -4.61652160e-01 3.03082597e-02 9.24715221e-01
3.51021111e-01 2.14075282e-01 3.06597706e-02 1.76747590e-01
1.02885389e+00 -4.34066921e-01 5.36426127e-01 -9.00164992e-02
4.97821063e-01 -4.52108175e-01 2.63726622e-01 3.36299032e-01
1.33963525e-01 4.25343663e-01 -8.84670988e-02 -6.30817711e-01
-1.00676453e+00 -1.17286646e+00 -3.18001330e-01 1.27380896e+00
3.42314482e-01 -1.13071716e+00 -1.79693654e-01 -5.13320625e-01
1.63925618e-01 1.04624081e+00 -8.16161573e-01 -8.44957709e-01
-8.06646943e-01 -6.38540983e-01 5.26442170e-01 7.49770045e-01
-2.75443584e-01 -9.00453091e-01 -2.21478179e-01 3.94900322e-01
-8.60160813e-02 -9.41212535e-01 -6.75700486e-01 1.86682373e-01
-1.12313426e+00 -5.79169869e-01 -3.89747977e-01 -1.03160512e+00
9.02311146e-01 8.25624228e-01 1.15771592e+00 4.94751692e-01
-1.41548336e-01 2.13953584e-01 -8.47604573e-01 -1.08121835e-01
-3.08939606e-01 5.05884588e-02 2.76930988e-01 -1.91629037e-01
9.67603624e-01 -7.23164260e-01 -3.04565370e-01 -7.24298805e-02
-1.39474285e+00 -4.92251337e-01 5.85802913e-01 1.10916114e+00
5.71182132e-01 -2.27507874e-01 5.61050296e-01 -6.29938662e-01
9.01436865e-01 -6.27640784e-01 -8.24663043e-02 2.33459324e-01
-1.19618154e+00 6.65408492e-01 8.14837217e-01 -8.73679042e-01
-5.10344565e-01 -4.44576651e-01 -2.35775903e-01 -4.58078384e-01
3.23625773e-01 4.91807222e-01 1.19518511e-01 2.25550696e-01
4.12841111e-01 6.34750903e-01 6.95258230e-02 -7.87793338e-01
8.81569982e-01 4.96928841e-01 8.60921741e-02 -3.81296277e-01
9.31096315e-01 2.45408922e-01 -2.99239546e-01 -6.29655898e-01
-6.46444440e-01 -7.07392097e-01 -4.81377751e-01 4.88958746e-01
5.63719034e-01 -8.33023787e-01 9.31224525e-02 -3.16715956e-01
-1.44955969e+00 4.99728262e-01 -5.18986940e-01 5.30406177e-01
1.01577051e-01 7.21576393e-01 -3.94163340e-01 -2.83340335e-01
-3.00019562e-01 -8.52849424e-01 8.85142088e-01 -2.53785014e-01
-5.76932609e-01 -1.41516948e+00 6.11840010e-01 -1.99287072e-01
6.78225100e-01 -5.41711986e-01 1.37464607e+00 -7.84870446e-01
-1.00320719e-01 -5.53421974e-01 -5.29632568e-02 5.16716599e-01
4.61396396e-01 -6.05296671e-01 -7.17325091e-01 -5.47993898e-01
5.35037033e-02 -1.16417050e-01 1.25410700e+00 -2.40949824e-01
1.11761951e+00 -3.26170713e-01 -3.86533737e-01 5.22153378e-01
1.68220663e+00 -2.10117087e-01 8.41448247e-01 1.97142795e-01
6.66369975e-01 2.74976850e-01 4.40494835e-01 4.81804937e-01
2.23695979e-01 7.15549469e-01 4.70845431e-01 2.20368907e-01
-4.12026227e-01 -7.28325903e-01 6.34593427e-01 1.73136580e+00
2.30830297e-01 -2.75716960e-01 -4.70105737e-01 9.93962586e-01
-1.64712811e+00 -6.82649195e-01 1.03835218e-01 1.99236977e+00
8.81117523e-01 -4.06585112e-02 -5.15561581e-01 2.31197640e-01
4.13011163e-01 7.58198977e-01 -2.18304336e-01 -8.75313878e-01
1.34234011e-01 1.03539038e+00 4.08891171e-01 7.60470688e-01
-3.70414615e-01 1.05389607e+00 6.60765266e+00 1.01724255e+00
-9.20356810e-01 4.32254553e-01 -1.63440958e-01 -1.00553259e-01
-9.53246891e-01 1.80842221e-01 -8.22776616e-01 4.05560285e-01
1.26321507e+00 -5.51016033e-01 3.34764481e-01 8.30946445e-01
-1.73779339e-01 4.72019851e-01 -1.02058589e+00 9.53569174e-01
5.93580067e-01 -1.33249438e+00 1.03463173e+00 7.23242238e-02
4.73283947e-01 -2.33595148e-01 8.40091929e-02 5.38923383e-01
2.27343366e-02 -1.19861984e+00 2.71128386e-01 4.18140441e-01
6.35008156e-01 -8.72291386e-01 8.44500601e-01 1.84788704e-01
-1.41940832e+00 -6.30727336e-02 -1.35664046e+00 -3.76105636e-01
2.43503287e-01 6.41993701e-01 -5.28857648e-01 4.29398209e-01
2.98251867e-01 9.48209703e-01 -7.96501637e-01 3.72049928e-01
-1.76194564e-01 5.45211792e-01 -6.91291392e-02 -3.83583784e-01
3.51760149e-01 -2.96485841e-01 1.75298527e-01 1.31954026e+00
5.73744774e-01 2.17811465e-02 -3.39860804e-02 7.39432871e-01
-2.33151883e-01 3.13448548e-01 -6.81440294e-01 -2.53556699e-01
7.14156091e-01 1.12281680e+00 -1.72013372e-01 -3.62409115e-01
-7.14617074e-01 1.12812293e+00 6.11881793e-01 5.94649510e-03
-7.72078037e-01 -5.52844524e-01 1.22268009e+00 3.39210987e-01
5.25305271e-01 -6.43683374e-01 -2.76399434e-01 -1.05046582e+00
7.12504014e-02 -5.32465935e-01 1.45029753e-01 -4.12770420e-01
-1.33254480e+00 7.13405609e-01 -5.23041040e-02 -1.23388624e+00
-2.15929642e-01 -8.40755463e-01 -6.03335083e-01 8.90443861e-01
-1.58506393e+00 -1.05868804e+00 -7.57971406e-03 3.66083324e-01
7.01075971e-01 -2.21171081e-01 1.40525973e+00 3.50185096e-01
-4.10328865e-01 8.74290407e-01 1.38173208e-01 -2.99395416e-02
6.77775800e-01 -7.96645403e-01 6.94753706e-01 7.35024333e-01
8.56443644e-01 1.37778831e+00 3.48702639e-01 -3.27226698e-01
-1.79990351e+00 -1.20268166e+00 1.46459901e+00 -4.31684524e-01
9.80559468e-01 -4.12812799e-01 -1.37039208e+00 5.59973001e-01
4.75199372e-01 2.69178003e-01 9.92093682e-01 1.24068111e-01
-1.00483263e+00 -4.94606905e-02 -5.30505002e-01 5.86802363e-01
1.20056295e+00 -9.50421810e-01 -1.26350009e+00 3.85961980e-02
1.32614315e+00 4.12779838e-01 -9.25827146e-01 -1.02381133e-01
6.35095596e-01 -4.98790205e-01 1.30124342e+00 -9.49327767e-01
3.90141010e-01 -7.86664989e-03 -5.30946255e-01 -1.51482069e+00
-7.14497387e-01 8.44381154e-02 -4.95143771e-01 1.12534463e+00
2.67776638e-01 -1.03092515e+00 3.92657012e-01 1.83846891e-01
-3.15066241e-02 -7.20998526e-01 -1.04911566e+00 -1.11027479e+00
4.68642682e-01 -4.84985650e-01 8.68330896e-01 9.95233655e-01
1.96727708e-01 4.17214334e-01 -1.85639724e-01 -8.77312347e-02
2.04206318e-01 1.08204715e-01 2.81550109e-01 -8.83250415e-01
-3.05723339e-01 -2.97655642e-01 -6.04346037e-01 -1.45132053e+00
7.05780149e-01 -1.41289389e+00 -1.84838399e-01 -1.50102580e+00
1.71148971e-01 -2.05287173e-01 -9.48965907e-01 4.89537984e-01
-4.78952199e-01 4.08988804e-01 -1.83835719e-02 1.09374776e-01
-2.20242098e-01 9.94018972e-01 9.18296754e-01 -2.36358225e-01
2.49200061e-01 -8.13923597e-01 -8.13236475e-01 4.09240067e-01
6.25803828e-01 -7.43096948e-01 -7.37675905e-01 -1.04394865e+00
2.70646363e-01 -8.25201154e-01 4.44763862e-02 -6.02334142e-01
1.57841459e-01 -2.47228127e-02 2.95990016e-02 -2.16921642e-01
4.58552867e-01 -9.96488392e-01 -1.84082121e-01 6.32168412e-01
-2.92108625e-01 4.62315112e-01 2.19603032e-01 7.05607355e-01
-3.04971486e-01 -6.10370576e-01 5.41262150e-01 1.65069022e-03
-8.18108261e-01 1.42801523e-01 -3.38567048e-01 -1.40969366e-01
7.73251176e-01 -3.00392836e-01 -1.09502882e-01 -1.09277152e-01
-1.66964501e-01 -3.66231591e-01 3.53318661e-01 9.83451605e-01
1.10828495e+00 -1.85011840e+00 -5.00440955e-01 5.91580570e-01
4.93236870e-01 -5.64901650e-01 -1.11771852e-01 1.96083933e-01
-1.66414410e-01 6.10320508e-01 -2.37228364e-01 -6.30601421e-02
-1.07463026e+00 1.02549493e+00 -1.33086845e-01 -3.86463284e-01
-6.21932209e-01 6.23938978e-01 5.59519827e-02 -4.88003314e-01
-5.44578843e-02 -5.94228148e-01 -2.92581409e-01 1.27122015e-01
8.60535979e-01 2.63406664e-01 3.52595784e-02 -6.69169843e-01
-3.22477669e-01 8.59167993e-01 -2.67627627e-01 1.68008015e-01
1.58636773e+00 -1.73573166e-01 -3.77523661e-01 3.87824714e-01
1.79822230e+00 1.25458539e-01 -2.11045220e-01 -6.32031381e-01
-2.76611391e-02 -8.02931309e-01 2.16256618e-01 6.37064427e-02
-9.54792440e-01 1.02328205e+00 4.49172974e-01 -3.56489830e-02
9.94957030e-01 -1.49719715e-02 1.43926609e+00 5.28440475e-01
4.27566469e-01 -8.07811201e-01 3.40036392e-01 6.06059670e-01
7.54309118e-01 -8.48674536e-01 4.67750542e-02 -1.00910433e-01
-1.97798520e-01 1.28474975e+00 4.93051916e-01 -5.58658183e-01
1.00204718e+00 1.20938487e-01 -2.39474058e-01 1.37473926e-01
-1.00346673e+00 -1.39368743e-01 4.67362553e-01 6.43289447e-01
4.26836222e-01 2.58535147e-03 -8.39548111e-01 9.14418936e-01
2.41031200e-02 -4.48686212e-01 3.19721341e-01 7.05304384e-01
-7.73103416e-01 -1.77968717e+00 -1.37419194e-01 4.60837483e-01
9.17027444e-02 -6.21116757e-01 -1.82848379e-01 3.72596741e-01
1.27742112e-01 7.21811295e-01 5.05232096e-01 -7.00082004e-01
3.98373961e-01 3.76501381e-01 2.14071125e-01 -9.63418126e-01
-3.11745465e-01 -4.64573652e-01 -1.20037675e-01 -5.85623860e-01
-2.06191972e-01 1.06966300e-02 -1.34003305e+00 -4.24576402e-01
-4.15862620e-01 1.79705083e-01 4.31044877e-01 8.51042271e-01
5.10028958e-01 4.13411349e-01 6.13714099e-01 -5.17162561e-01
-8.80189657e-01 -1.21343148e+00 -5.33871531e-01 6.20128453e-01
1.61185563e-02 -5.97494960e-01 -4.12901849e-01 -1.42434508e-01] | [10.547735214233398, 8.668899536132812] |
9498c628-8166-46ea-b113-acbfec1c6ff0 | the-gh-exin-neural-network-for-hierarchical | null | null | https://www.sciencedirect.com/science/article/pii/S0893608019302060 | https://www.sciencedirect.com/science/article/pii/S0893608019302060 | The GH-EXIN neural network for hierarchical clustering | Hierarchical clustering is an important tool for extracting information from data in a multi-resolution way. It is more meaningful if driven by data, as in the case of divisive algorithms, which split data until no more division is allowed. However, they have the drawback of the splitting threshold setting. The neural networks can address this problem, because they basically depend on data. The growing hierarchical GH-EXIN neural network builds a hierarchical tree in an incremental (data-driven architecture) and self-organized way. It is a top-down technique which defines the horizontal growth by means of an anisotropic region of influence, based on the novel idea of neighborhood convex hull. It also reallocates data and detects outliers by using a novel approach on all the leaves, simultaneously. Its complexity is estimated and an analysis of its user-dependent parameters is given. The advantages of the proposed approach, with regard to the best existing networks, are shown and analyzed, qualitatively and quantitatively, both in benchmark synthetic problems and in a real application (image recognition from video), in order to test the performance in building hierarchical trees. Furthermore, an important and very promising application of GH-EXIN in two-way hierarchical clustering, for the analysis of gene expression data in the study of the colorectal cancer is described. | ['Gabriele Ciravegna', 'Vincenzo Randazzo', 'Pietro Barbiero', 'Giansalvo Cirrincione', 'Eros Pasero'] | 2020-01-01 | null | null | null | neural-networks-2020-1 | ['self-organized-clustering'] | ['miscellaneous'] | [ 1.46738410e-01 8.65511671e-02 5.61399423e-02 -3.90548825e-01
-1.75586089e-01 -1.55524388e-01 2.76953518e-01 6.48622096e-01
-8.01279485e-01 4.57989424e-01 1.00231305e-01 5.80661483e-02
-6.93284750e-01 -1.04669917e+00 -3.82442832e-01 -1.30147636e+00
-3.05283368e-01 8.84387553e-01 3.41604918e-01 -1.36644721e-01
2.96070606e-01 8.50856125e-01 -1.99640405e+00 2.73067534e-01
8.40374529e-01 5.54952264e-01 2.84170490e-02 3.67578417e-01
-2.40029067e-01 4.89358008e-01 -4.31576312e-01 3.28328758e-01
1.72004208e-01 -3.24364364e-01 -6.22786820e-01 4.30601895e-01
-1.24789722e-01 3.02943230e-01 5.18534482e-01 9.92439866e-01
3.50994885e-01 1.46120802e-01 1.01629126e+00 -9.08295453e-01
-1.18396608e-02 6.74554586e-01 -8.05877447e-01 5.27124330e-02
-9.92292389e-02 -3.71419489e-01 5.77784240e-01 -7.96753526e-01
8.74942899e-01 1.07101250e+00 5.34163475e-01 1.79477334e-01
-1.50446379e+00 -3.53712559e-01 -2.75981762e-02 2.04796359e-01
-1.63765645e+00 -1.18178755e-01 6.80916250e-01 -7.82537520e-01
5.36121309e-01 4.56048340e-01 7.30219126e-01 5.58283985e-01
-7.05227861e-03 3.75953078e-01 1.24514353e+00 -5.07830024e-01
5.39838135e-01 7.15162978e-02 5.50991952e-01 3.37931693e-01
3.66438180e-01 -1.23908937e-01 -1.28203034e-02 -9.75063741e-02
4.70221639e-01 -1.30537972e-01 -2.18525901e-01 -7.95411944e-01
-7.61982322e-01 8.58834028e-01 5.77644765e-01 1.14596081e+00
-4.57663506e-01 -3.17637175e-01 4.47888196e-01 4.93542142e-02
4.73178297e-01 3.12751234e-01 -2.25608855e-01 2.95643896e-01
-1.37147570e+00 -1.69745371e-01 6.89852774e-01 4.79980588e-01
7.61377215e-01 1.65092088e-02 1.59499660e-01 6.67075872e-01
1.56271592e-01 -2.77191103e-01 9.89467919e-01 -5.56846738e-01
-1.82927057e-01 1.11602616e+00 -4.58180815e-01 -1.25353158e+00
-1.10702157e+00 -6.90565944e-01 -1.44066489e+00 7.00934470e-01
4.51038837e-01 9.85459536e-02 -9.23724771e-01 1.41697466e+00
7.41379440e-01 -1.57394797e-01 3.80621590e-02 6.20288134e-01
8.74445438e-01 5.04416823e-01 -7.79714063e-02 -7.17682838e-01
1.20622170e+00 -5.26108146e-01 -7.25493431e-01 6.72845483e-01
6.78779900e-01 -4.49673116e-01 7.13505685e-01 8.57869029e-01
-8.76386106e-01 -6.44434988e-01 -9.11605597e-01 1.13152489e-01
-7.41114020e-01 2.62961388e-01 2.12270081e-01 6.06853306e-01
-1.22688854e+00 6.73755109e-01 -9.18591261e-01 -7.32003093e-01
1.07081205e-01 6.01267934e-01 -4.40393478e-01 4.69209433e-01
-8.69133592e-01 5.05730033e-01 9.01564002e-01 4.39949930e-01
-4.65512425e-01 -1.54923767e-01 -5.25613070e-01 3.75293374e-01
2.50258058e-01 -4.54431742e-01 3.25925231e-01 -1.18634915e+00
-1.29471481e+00 8.12210023e-01 1.45398393e-01 -5.90761483e-01
7.89245903e-01 3.15675765e-01 5.41362725e-02 6.27263710e-02
-1.37501031e-01 6.60172880e-01 7.23722577e-01 -1.44430017e+00
-6.27797067e-01 -8.74724627e-01 -5.21608114e-01 2.50563979e-01
-5.84231675e-01 -1.72374964e-01 -6.23274446e-01 -5.34365118e-01
4.89909619e-01 -7.70398915e-01 -4.91853982e-01 -5.26436925e-01
-5.20339370e-01 -2.92126119e-01 9.02182937e-01 -5.59312582e-01
1.36109948e+00 -2.29158783e+00 5.42131484e-01 8.49197507e-01
3.51055086e-01 -4.15457562e-02 4.86675054e-01 3.36633116e-01
-3.03354472e-01 1.53700083e-01 -7.22131014e-01 -1.28453970e-01
-4.91186708e-01 7.89132640e-02 5.27326822e-01 5.29093623e-01
-3.71707052e-01 -2.11754683e-02 -3.47031146e-01 -9.08269465e-01
2.34655470e-01 5.59138179e-01 -3.38862658e-01 -1.10364199e-01
1.10844553e-01 3.41852278e-01 -1.02734357e-01 3.11005741e-01
7.56420672e-01 5.15931472e-02 4.04805690e-01 -2.87624925e-01
-5.44106483e-01 -7.30837166e-01 -1.55500841e+00 1.28884101e+00
-6.83970973e-02 4.04405862e-01 2.89218485e-01 -1.39480448e+00
1.24308026e+00 3.66514117e-01 8.78320694e-01 -2.52703369e-01
4.18347120e-01 3.04519255e-02 1.76126629e-01 -5.19359648e-01
2.66173780e-01 8.21186006e-02 1.94239333e-01 1.20253310e-01
-1.53781369e-01 2.41985053e-01 7.09128082e-01 -8.08451325e-02
8.14134598e-01 -8.55967402e-03 5.35983622e-01 -6.78217292e-01
8.63411129e-01 8.24438110e-02 6.01463318e-01 3.59807819e-01
1.34670749e-01 6.68544412e-01 7.35551476e-01 -4.76853520e-01
-9.85692561e-01 -5.81026733e-01 -4.43345159e-01 7.72617638e-01
-6.77928105e-02 -2.95066796e-02 -1.30313468e+00 -4.60506737e-01
-2.95935929e-01 5.25091052e-01 -8.77348542e-01 1.18629493e-01
-5.70001245e-01 -1.32954681e+00 2.85945952e-01 9.85465758e-03
4.76785660e-01 -1.26889241e+00 -7.75060594e-01 3.02489161e-01
2.49738507e-02 -6.51026070e-01 3.65398824e-01 5.69537699e-01
-1.24824286e+00 -1.08179033e+00 -5.41951835e-01 -7.77611732e-01
8.48440647e-01 3.51368822e-02 9.14207458e-01 2.85622597e-01
-2.92352766e-01 -8.42213780e-02 -4.26727831e-01 -1.92734912e-01
-5.98646998e-01 4.32102799e-01 -9.77013111e-02 3.25319499e-01
4.55727756e-01 -8.62571239e-01 -1.74549341e-01 4.54232126e-01
-1.19332433e+00 -7.28463233e-02 8.03236246e-01 7.40645528e-01
7.18552172e-01 6.23512506e-01 3.00793797e-01 -1.19509244e+00
6.53926373e-01 -2.59687573e-01 -9.07377064e-01 -2.81884316e-02
-7.46315002e-01 -1.84747409e-02 8.07654858e-01 5.76759353e-02
-1.00093985e+00 5.27396083e-01 -2.01120332e-01 -1.78763479e-01
-6.60898209e-01 4.30299610e-01 -1.90561578e-01 1.26370326e-01
1.04389775e+00 1.14248939e-01 2.65863631e-02 -5.48160851e-01
1.72499582e-01 6.02183878e-01 3.64332289e-01 -1.41221166e-01
7.33243227e-01 6.64885759e-01 3.62779647e-01 -1.20709693e+00
-5.77428900e-02 -7.76025057e-01 -1.24266958e+00 -3.28813881e-01
1.20124197e+00 -3.27163428e-01 -8.00332546e-01 5.50302804e-01
-8.84970188e-01 1.48494363e-01 -3.52457047e-01 4.38829124e-01
-4.92980957e-01 4.61968035e-01 -5.05199790e-01 -6.85391843e-01
-2.65487075e-01 -1.14406836e+00 5.31801939e-01 1.41832739e-01
-6.52831420e-03 -7.53954351e-01 7.11943805e-02 1.55696288e-01
-2.65533272e-02 6.02766931e-01 1.02606010e+00 -8.09881568e-01
-2.99382240e-01 -4.08807993e-02 -4.95529808e-02 3.12268943e-01
3.61954533e-02 4.53977495e-01 -6.89431787e-01 -2.53675967e-01
1.63524881e-01 6.76976191e-03 1.00307786e+00 6.88428640e-01
1.18388510e+00 -1.02197587e-01 -3.46086890e-01 5.87845027e-01
1.66266763e+00 4.15506124e-01 5.57039261e-01 5.20244300e-01
6.18563473e-01 1.06866086e+00 4.91014868e-01 3.01599145e-01
-1.84767455e-01 6.70470715e-01 6.50801897e-01 -7.53293097e-01
2.66490430e-01 4.69479680e-01 -1.87197849e-01 8.10232937e-01
-4.12470877e-01 -9.65155363e-02 -8.99410427e-01 4.33654726e-01
-1.86209524e+00 -8.41130435e-01 -6.35273874e-01 2.38522339e+00
4.48579609e-01 3.31948102e-01 3.91538054e-01 7.96955049e-01
1.04570806e+00 -2.21823260e-01 -1.92269489e-01 -5.51446438e-01
-1.68756545e-01 -6.19481876e-02 3.59003395e-01 5.76723814e-01
-1.19145596e+00 4.63062495e-01 5.16807938e+00 8.50530803e-01
-9.79324996e-01 1.18708918e-02 7.80705988e-01 1.52638808e-01
1.72540605e-01 -3.60593766e-01 -6.20633423e-01 3.50706667e-01
6.65640473e-01 1.92772403e-01 7.81563018e-03 7.88280070e-01
5.60180426e-01 -4.10284549e-01 -6.49449050e-01 6.71093225e-01
4.03528698e-02 -1.00650275e+00 -2.88916249e-02 2.27920949e-01
5.07422745e-01 -1.56181365e-01 -2.37806737e-01 -1.67947844e-01
5.99378906e-02 -8.91507745e-01 3.49539995e-01 3.87607425e-01
1.68602601e-01 -1.08235216e+00 1.02312875e+00 5.35004556e-01
-1.10493076e+00 -2.99699455e-01 -3.01484734e-01 1.77223578e-01
-3.38815264e-02 9.18025792e-01 -9.48610306e-01 7.75532186e-01
8.87804866e-01 3.17605436e-01 -6.82892680e-01 1.24463379e+00
1.62327692e-01 5.57647824e-01 -5.30062437e-01 -3.61198075e-02
3.06918532e-01 -6.58269167e-01 5.91149569e-01 1.45835543e+00
3.21823180e-01 -1.39287680e-01 -1.57970503e-01 7.36196518e-01
3.22462112e-01 8.21945310e-01 -6.80499315e-01 5.52541494e-01
2.05166951e-01 1.54189622e+00 -1.52337182e+00 -2.85949230e-01
1.08574837e-01 5.39935410e-01 1.46830082e-01 2.08846331e-01
-4.96236593e-01 -4.59513962e-01 -1.80206582e-01 3.65427256e-01
1.70609102e-01 -1.44126058e-01 -2.87782401e-01 -5.35195351e-01
-6.68211505e-02 -6.96215630e-01 6.71512723e-01 -4.48665082e-01
-7.30903566e-01 8.81328285e-01 1.71653837e-01 -1.34095573e+00
-2.94833839e-01 -5.18475294e-01 -2.27990746e-01 4.44782406e-01
-7.86421835e-01 -8.20267320e-01 -6.40068173e-01 5.43460906e-01
4.89339203e-01 -9.72862542e-02 6.97737038e-01 4.01707798e-01
-6.85054779e-01 1.11675300e-01 5.60934782e-01 -4.09452915e-02
3.94816279e-01 -1.38160777e+00 -3.38442117e-01 7.68921971e-01
8.59387144e-02 4.05167997e-01 8.26673508e-01 -5.23406327e-01
-5.13696253e-01 -7.97293842e-01 5.65363407e-01 6.86763301e-02
1.39309779e-01 -4.55802649e-01 -1.20419121e+00 2.07922772e-01
1.88169420e-01 -3.85094792e-01 5.26203930e-01 1.97177961e-01
2.89397061e-01 -3.15706819e-01 -1.17910278e+00 2.65268654e-01
5.79100013e-01 4.10167694e-01 -3.92781824e-01 2.61859596e-01
3.17458302e-01 -3.41729000e-02 -9.73883867e-01 5.10213912e-01
3.87506455e-01 -1.77014923e+00 7.97594249e-01 -1.18564501e-01
1.94838569e-01 -6.66922987e-01 3.52944762e-01 -1.17101908e+00
-5.89257360e-01 -2.72000402e-01 4.89338905e-01 1.23213196e+00
4.73700941e-01 -3.33684593e-01 1.24040353e+00 -1.47263959e-01
5.04003093e-02 -8.08982909e-01 -1.13105416e+00 -6.46029472e-01
-1.93938240e-01 5.14733829e-02 1.77543402e-01 1.11171472e+00
-3.14333111e-01 3.51449460e-01 -1.13999568e-01 7.98246413e-02
7.02819586e-01 -1.97635025e-01 7.22522795e-01 -1.72360468e+00
-8.04349780e-02 -5.77717483e-01 -8.24000895e-01 -2.50553548e-01
-1.86356977e-01 -6.86932027e-01 2.00885721e-03 -1.54232252e+00
-3.82714992e-04 -4.00389552e-01 -3.39412928e-01 1.25664830e-01
1.38764203e-01 1.82721704e-01 2.62663327e-02 4.07100201e-01
-1.29405588e-01 1.46091104e-01 7.50707686e-01 5.04609682e-02
-6.52235627e-01 9.83051807e-02 -2.28073180e-01 1.01567745e+00
7.62847424e-01 -5.82654953e-01 -3.85439217e-01 1.55975401e-01
5.90648577e-02 -1.57881677e-01 -1.61626786e-01 -1.37886143e+00
4.34427559e-01 1.79433703e-01 4.83035177e-01 -9.21145022e-01
1.04696639e-01 -1.38165140e+00 4.24356967e-01 6.09281003e-01
-1.53256819e-01 1.57379672e-01 -7.95714855e-02 3.64700109e-01
-5.06900489e-01 -5.97355783e-01 1.03705394e+00 -2.78246433e-01
-3.91803861e-01 -1.28487825e-01 -7.34136999e-01 -5.28077602e-01
1.25157893e+00 -6.98717892e-01 2.92879343e-01 -1.75357938e-01
-1.19041467e+00 1.12092122e-01 3.86405647e-01 -2.05324665e-01
1.64936915e-01 -9.72507656e-01 -5.92670858e-01 1.59947261e-01
-9.02938396e-02 4.06964064e-01 4.68616247e-01 1.05864143e+00
-7.15036035e-01 1.07952058e-01 -4.38007355e-01 -9.53715026e-01
-1.64700675e+00 9.49668884e-01 3.79029959e-01 -4.93092179e-01
-4.99899000e-01 3.84506345e-01 2.99486190e-01 -4.11503315e-01
3.62529993e-01 -3.95928770e-01 -1.09775805e+00 6.12578034e-01
1.28821447e-01 5.90896785e-01 4.00387406e-01 -6.31110311e-01
4.37234715e-02 9.28869784e-01 2.71285176e-01 -9.39412341e-02
1.31515217e+00 1.74151384e-03 -6.58862531e-01 5.40696383e-01
1.01123106e+00 -6.64630905e-02 -5.48104703e-01 1.86273783e-01
3.83191258e-01 2.34219041e-02 -8.52949694e-02 -4.42181051e-01
-9.72622454e-01 7.03851521e-01 8.75558853e-01 8.40559006e-01
1.48712134e+00 -2.90400296e-01 2.06477605e-02 4.90931720e-01
-1.09345801e-01 -1.30270386e+00 -3.31253827e-01 1.52119160e-01
7.95463681e-01 -8.24791312e-01 1.28476918e-01 -6.91906393e-01
-1.68429330e-01 1.45489621e+00 5.73062837e-01 1.19304992e-01
6.99915648e-01 4.47996497e-01 7.92279541e-02 -3.44448239e-01
-3.58618528e-01 -1.89224273e-01 -6.17101826e-02 4.92948204e-01
4.96232033e-01 -1.04129001e-01 -9.36754525e-01 1.43923923e-01
-8.60347003e-02 1.18547939e-01 6.69621944e-01 7.40270972e-01
-7.27014184e-01 -9.08176005e-01 -8.85019302e-01 3.57259542e-01
-3.27657074e-01 1.84863225e-01 -4.67963189e-01 1.33209217e+00
6.24505639e-01 6.68985248e-01 1.35514274e-01 -1.71372339e-01
3.38259369e-01 -7.96854496e-02 -4.25527245e-03 -2.79682308e-01
-7.27052331e-01 5.21778524e-01 -9.41519961e-02 -2.41482571e-01
-7.48549819e-01 -7.17646897e-01 -1.40245473e+00 1.60614267e-01
-3.28215927e-01 6.11991644e-01 9.61160064e-01 5.35988271e-01
8.12092572e-02 6.11837387e-01 7.24854112e-01 -8.20662141e-01
-1.79289449e-02 -1.06029069e+00 -6.07448757e-01 4.70749229e-01
-7.67294690e-02 -5.86365819e-01 -5.69725752e-01 1.17699385e-01] | [7.658005237579346, 4.571566104888916] |
ac0936c4-adc0-4380-8686-bcae1527029c | unsupervised-domain-adaptation-for-semantic-5 | 2305.05789 | null | https://arxiv.org/abs/2305.05789v2 | https://arxiv.org/pdf/2305.05789v2.pdf | Unsupervised Domain Adaptation for Medical Image Segmentation via Feature-space Density Matching | Semantic segmentation is a critical step in automated image interpretation and analysis where pixels are classified into one or more predefined semantically meaningful classes. Deep learning approaches for semantic segmentation rely on harnessing the power of annotated images to learn features indicative of these semantic classes. Nonetheless, they often fail to generalize when there is a significant domain (i.e., distributional) shift between the training (i.e., source) data and the dataset(s) encountered when deployed (i.e., target), necessitating manual annotations for the target data to achieve acceptable performance. This is especially important in medical imaging because different image modalities have significant intra- and inter-site variations due to protocol and vendor variability. Current techniques are sensitive to hyperparameter tuning and target dataset size. This paper presents an unsupervised domain adaptation approach for semantic segmentation that alleviates the need for annotating target data. Using kernel density estimation, we match the target data distribution to the source in the feature space, particularly when the number of target samples is limited (3% of the target dataset size). We demonstrate the efficacy of our proposed approach on 2 datasets, multisite prostate MRI and histopathology images. | ['Shireen Elhabian', 'Beatrice Knudsen', 'Tushar Kataria'] | 2023-05-09 | null | null | null | null | ['unsupervised-domain-adaptation'] | ['methodology'] | [ 7.13950813e-01 3.70648466e-02 -3.34323794e-01 -8.39939594e-01
-1.08247459e+00 -8.33265424e-01 2.76772708e-01 6.08868539e-01
-6.66157424e-01 6.04364336e-01 -7.96908811e-02 2.22621430e-02
-2.49264121e-01 -5.86859882e-01 -6.08535588e-01 -9.09496486e-01
1.32730260e-01 7.69852102e-01 2.38171741e-01 3.88212055e-01
3.22253406e-01 3.28900546e-01 -1.13235497e+00 2.17391938e-01
1.03268647e+00 9.95091140e-01 5.63750386e-01 5.68397760e-01
-3.59893590e-01 1.86821163e-01 -8.60519648e-01 5.43653360e-03
2.46135071e-01 -4.22677726e-01 -8.73264074e-01 3.20451200e-01
2.41795808e-01 1.26586661e-01 2.18364879e-01 1.49807453e+00
3.33286494e-01 3.47401132e-03 9.41200733e-01 -1.27213073e+00
-4.25225139e-01 3.89991105e-01 -6.04745686e-01 3.34374130e-01
-3.24644774e-01 8.46185982e-02 5.54861903e-01 -4.19977427e-01
6.48437321e-01 6.90937996e-01 6.60554409e-01 5.19682884e-01
-1.39221656e+00 -6.01757824e-01 -1.06941961e-01 -1.71426743e-01
-1.38340938e+00 -2.69077390e-01 6.64641500e-01 -6.92015409e-01
3.77435386e-01 1.14719048e-01 3.59599829e-01 1.02710330e+00
3.34553599e-01 5.08600593e-01 1.15312088e+00 -2.48545960e-01
7.94958293e-01 4.31157649e-01 7.42020682e-02 1.74969986e-01
3.36089849e-01 -3.41678530e-01 -2.47722432e-01 -3.21825534e-01
7.02820361e-01 -1.29567638e-01 -4.07950468e-02 -7.22303748e-01
-9.22255874e-01 8.71118069e-01 3.49036634e-01 3.81528199e-01
-4.57956821e-01 -3.20409723e-02 6.26891136e-01 -1.49025097e-01
1.54761523e-01 3.58438075e-01 -5.28340220e-01 1.38315838e-02
-1.14477420e+00 -9.05471072e-02 5.88514268e-01 1.03908062e+00
8.40945482e-01 -3.05730671e-01 -5.31850345e-02 9.50038731e-01
2.74874538e-01 2.39839196e-01 9.50289845e-01 -6.38075769e-01
1.85664877e-01 6.98081434e-01 -3.08565088e-02 -8.19757879e-01
-5.04377902e-01 -5.66357374e-01 -5.23519218e-01 -6.79947063e-02
6.49839699e-01 7.40583688e-02 -1.37559843e+00 1.74205792e+00
4.93708879e-01 6.39974698e-02 1.20148674e-01 1.02414691e+00
6.02932751e-01 8.23870450e-02 6.69071794e-01 -3.81209180e-02
1.32718158e+00 -3.82728517e-01 -3.53894472e-01 -5.60617566e-01
5.74562192e-01 -5.12157381e-01 1.21417701e+00 4.58110757e-02
-4.96329397e-01 -2.96428740e-01 -9.84420776e-01 2.64803469e-01
-3.96268815e-01 7.84915686e-02 5.60523510e-01 8.79037738e-01
-7.60250032e-01 2.63287097e-01 -8.68800342e-01 -6.54101908e-01
8.69797766e-01 6.21993005e-01 -3.89152527e-01 -9.76887122e-02
-8.70390117e-01 4.61911827e-01 7.42254913e-01 -6.25616685e-02
-9.01590586e-01 -8.55073333e-01 -5.77635169e-01 -1.91872552e-01
2.81498849e-01 -3.61303300e-01 1.11620939e+00 -1.40492404e+00
-9.75189686e-01 1.06834173e+00 1.54248834e-01 -4.48334426e-01
3.96756023e-01 1.97487622e-01 -2.24288717e-01 2.10851848e-01
3.60563695e-01 7.25730896e-01 8.81636798e-01 -1.33995211e+00
-6.19428873e-01 -6.36564493e-01 -3.33373219e-01 2.14306280e-01
-3.30310732e-01 -2.05589622e-01 -3.73863488e-01 -4.91684735e-01
2.07167640e-01 -9.20023680e-01 -3.26457590e-01 -2.09462553e-01
-4.22885090e-01 1.68056130e-01 7.75629878e-01 -4.46818411e-01
7.81779170e-01 -2.33468318e+00 -1.90210670e-01 5.88211179e-01
1.31839916e-01 6.92528710e-02 2.05967560e-01 1.92263257e-02
-1.66230015e-02 3.69075760e-02 -6.41869009e-01 9.99004915e-02
-1.58837080e-01 3.57265592e-01 2.08604664e-01 6.82485342e-01
9.76662412e-02 5.91569543e-01 -8.80353570e-01 -7.16900468e-01
1.62397832e-01 2.70460069e-01 -3.28039527e-01 6.46807402e-02
-1.73430711e-01 9.30786014e-01 -7.73201942e-01 7.29745328e-01
6.20172799e-01 -3.54075789e-01 1.80851728e-01 -4.20110852e-01
4.46013898e-01 -1.29346803e-01 -1.00731027e+00 1.85702252e+00
-3.17996651e-01 2.74976045e-01 6.57420233e-03 -1.28717041e+00
9.76680040e-01 5.06234989e-02 9.01678383e-01 -5.63355029e-01
2.62145191e-01 4.58795041e-01 1.71156228e-01 -4.29606646e-01
3.65480453e-01 -4.64072675e-01 -3.42776120e-01 1.91581324e-01
1.54871523e-01 -1.38415117e-02 -2.52274759e-02 -8.59372765e-02
1.05146694e+00 -2.05879256e-01 2.91954517e-01 -6.48324251e-01
2.27921858e-01 4.44829732e-01 8.16923678e-01 7.34562635e-01
-6.05282128e-01 8.03216040e-01 5.81350684e-01 -2.00512931e-01
-1.15758324e+00 -1.20642698e+00 -4.96446401e-01 7.64609277e-01
2.05818236e-01 1.66977480e-01 -1.07767427e+00 -9.52844977e-01
-5.25156781e-02 6.46403313e-01 -8.38380456e-01 -3.45821798e-01
-1.82745665e-01 -9.52899218e-01 5.67411900e-01 6.84639692e-01
3.60931337e-01 -9.42230821e-01 -9.98064995e-01 2.34738350e-01
5.83410263e-02 -1.14040315e+00 -4.27645862e-01 5.05531788e-01
-1.02304423e+00 -1.19807589e+00 -5.08386850e-01 -7.36833632e-01
1.12929142e+00 -1.43123224e-01 9.65264916e-01 -3.20214093e-01
-6.44341826e-01 6.07635736e-01 -2.12199003e-01 -4.66890633e-01
-5.00837445e-01 2.11053446e-01 -2.11754680e-01 1.06856167e-01
6.00321114e-01 -2.35178053e-01 -7.86928594e-01 2.78296292e-01
-1.24541020e+00 -1.76418245e-01 6.37812972e-01 8.70762169e-01
9.38265085e-01 3.18586111e-01 5.63213766e-01 -1.35750878e+00
5.43630183e-01 -6.23259187e-01 -3.87171209e-01 2.94629574e-01
-3.54528785e-01 1.85032785e-02 3.36100101e-01 -5.77283382e-01
-8.60899329e-01 4.44111556e-01 3.29865575e-01 -3.18141937e-01
-5.23723781e-01 6.26688838e-01 -2.70909578e-01 3.29725221e-02
9.05582249e-01 5.72044477e-02 1.21556669e-01 -2.23588720e-01
6.53477460e-02 8.26147318e-01 6.49856806e-01 -6.61494613e-01
5.55738747e-01 4.71970439e-01 -1.42087415e-01 -5.93551517e-01
-5.72563827e-01 -5.21454632e-01 -8.40917289e-01 -7.52125680e-02
9.85095978e-01 -6.08327448e-01 -1.55923039e-01 3.90298754e-01
-4.58798438e-01 -3.87036294e-01 -4.36294496e-01 5.26783824e-01
-6.82565749e-01 1.00099398e-02 -2.84192283e-02 -4.73799884e-01
-2.63077050e-01 -1.44754732e+00 1.08973408e+00 5.58644772e-01
-3.95688176e-01 -1.31006193e+00 -2.53081530e-01 3.49074721e-01
3.33423406e-01 4.86344784e-01 1.04558349e+00 -1.14656162e+00
-1.15432896e-01 -4.53483045e-01 -2.99489826e-01 2.94223517e-01
5.29584765e-01 -3.37105244e-01 -9.49920177e-01 -2.80081421e-01
1.73516631e-01 -2.57765502e-01 4.10922021e-01 8.05496335e-01
1.32176542e+00 9.87365693e-02 -3.47828746e-01 3.71651381e-01
1.49572575e+00 4.15787846e-01 3.61802012e-01 4.31168288e-01
5.10713756e-01 6.79006398e-01 8.10251772e-01 2.76002347e-01
2.10788339e-01 4.95776713e-01 3.15643251e-01 -1.97798952e-01
-1.87528655e-02 -6.59343600e-02 -1.60282433e-01 -3.22965980e-02
5.90218961e-01 3.65827866e-02 -1.38545465e+00 7.67578602e-01
-1.65129197e+00 -2.35037535e-01 1.21347800e-01 2.47671413e+00
9.53105092e-01 1.70734376e-01 1.23942539e-01 -2.23175436e-01
9.13898945e-01 -3.69837493e-01 -1.03178656e+00 -5.54630496e-02
2.31950864e-01 1.19614549e-01 9.47606444e-01 2.09789515e-01
-1.19810438e+00 8.34830582e-01 5.67014170e+00 9.48047340e-01
-1.40046048e+00 1.76240996e-01 9.03954327e-01 1.94130525e-01
-6.63241073e-02 -1.46321446e-01 -5.68980217e-01 5.93134940e-01
9.82379377e-01 -1.35081977e-01 5.51618040e-02 8.76622200e-01
8.20824355e-02 -4.87891227e-01 -1.20101774e+00 9.42269266e-01
-1.92415565e-02 -1.05080795e+00 -2.96529114e-01 1.98617160e-01
5.63921511e-01 -8.53088722e-02 2.00426027e-01 2.86675189e-02
4.07490171e-02 -1.25079167e+00 4.76525068e-01 1.15196094e-01
8.97423863e-01 -6.49593592e-01 9.52820599e-01 2.41939351e-01
-7.87869573e-01 3.55198458e-02 -2.83101231e-01 6.54255211e-01
-3.03406030e-01 5.69868207e-01 -1.30747414e+00 2.56785393e-01
6.69629633e-01 3.27592760e-01 -7.02839553e-01 1.09190631e+00
2.65839249e-01 4.75430310e-01 -3.30253482e-01 2.30609402e-01
3.06427598e-01 -5.66792600e-02 3.13120246e-01 1.04631913e+00
2.93432206e-01 -3.09077084e-01 3.39455247e-01 7.74903774e-01
2.17438303e-02 1.61497414e-01 -3.77812922e-01 -2.20335588e-01
5.17205119e-01 1.25320399e+00 -1.46804655e+00 -3.49766910e-02
-2.03815162e-01 8.59714687e-01 1.65981462e-03 3.25464517e-01
-7.31771410e-01 -1.38801247e-01 4.08035487e-01 9.29724053e-02
5.67635410e-02 -4.64231446e-02 -6.29909992e-01 -5.84323049e-01
-6.72681481e-02 -6.85302973e-01 7.38556862e-01 -3.01985204e-01
-1.41719365e+00 4.04053897e-01 2.86176741e-01 -1.18788481e+00
-5.29978946e-02 -5.87241352e-01 -2.76463211e-01 8.59393954e-01
-1.16338873e+00 -1.21254134e+00 -3.30470651e-01 5.26770055e-01
5.16323566e-01 -1.02539599e-01 8.97571325e-01 2.72758543e-01
-3.05929095e-01 6.49701774e-01 1.73300967e-01 1.36378944e-01
7.13742137e-01 -1.26154494e+00 -2.00092062e-01 4.75516587e-01
-9.14510638e-02 4.30157185e-01 7.72235811e-01 -6.49415553e-01
-1.15613115e+00 -1.23505437e+00 1.77534103e-01 -2.57245839e-01
5.54198205e-01 -4.46743369e-01 -9.77223754e-01 6.38733327e-01
-4.23627764e-01 3.07785928e-01 1.23463845e+00 -1.72976274e-02
4.96385107e-03 -1.15840539e-01 -1.79666173e+00 3.45604211e-01
5.06655395e-01 -3.95863622e-01 -2.55066246e-01 3.05244386e-01
1.10775173e-01 -7.31969357e-01 -1.05653334e+00 3.49416524e-01
3.33424658e-01 -6.45393848e-01 6.55499756e-01 -5.39615810e-01
1.99433908e-01 -3.13405126e-01 -3.13359320e-01 -1.29634798e+00
3.73214632e-02 4.92924079e-02 3.28279227e-01 1.20099247e+00
4.29866523e-01 -4.32843029e-01 1.16428006e+00 1.14207315e+00
-1.32501870e-01 -6.20354772e-01 -1.04282033e+00 -6.03884578e-01
2.05211744e-01 -4.12254483e-01 4.85605896e-01 9.94839132e-01
-3.23769450e-01 -1.36079922e-01 2.42043763e-01 2.85247445e-01
6.94437981e-01 6.33711321e-03 5.15174329e-01 -1.08844316e+00
-1.04786031e-01 -2.65693307e-01 -7.90265441e-01 -3.05027902e-01
-3.31046619e-02 -9.80331242e-01 3.15789491e-01 -1.41447473e+00
4.88310516e-01 -1.00894487e+00 -5.98374903e-01 3.98434699e-01
-8.71896893e-02 3.12504023e-01 -1.47456184e-01 3.07087928e-01
-3.39014739e-01 6.58612847e-02 1.02240014e+00 -5.56965061e-02
-3.92968476e-01 3.03392410e-02 -7.84555078e-01 6.94564819e-01
1.07395971e+00 -7.20135331e-01 -6.74818695e-01 -2.25624427e-01
-2.49074340e-01 -2.52736062e-01 3.43510270e-01 -9.76660073e-01
1.60108626e-01 -3.62419724e-01 6.40070915e-01 -1.45846382e-01
-7.94827864e-02 -1.08571279e+00 3.28177005e-01 3.73658925e-01
-5.48789978e-01 -4.42238241e-01 3.09037685e-01 7.58385718e-01
-5.30031174e-02 -5.79052091e-01 1.10132813e+00 -1.07855715e-01
-7.97117472e-01 2.61174649e-01 -1.15693338e-01 3.29005033e-01
1.29412842e+00 -5.66641450e-01 -1.91099495e-01 -2.78320517e-02
-8.93464565e-01 1.58125818e-01 6.35300696e-01 4.00647491e-01
3.99172872e-01 -1.05536568e+00 -4.06741202e-01 2.03561619e-01
4.82641309e-01 3.97066355e-01 4.07928586e-01 9.17724609e-01
-4.72141862e-01 1.05437621e-01 -2.66995519e-01 -1.08162284e+00
-1.05999017e+00 2.15361416e-01 4.63592589e-01 -2.32644379e-01
-6.03156388e-01 7.60537982e-01 4.68420714e-01 -4.02142465e-01
1.05654895e-01 -2.44530722e-01 2.19936203e-02 -3.20673250e-02
1.56099215e-01 -1.11132056e-01 1.28341556e-01 -5.67240953e-01
-4.98509884e-01 3.68087649e-01 -3.33969176e-01 1.35850117e-01
1.10870802e+00 -6.59055496e-03 2.08271608e-01 5.05633593e-01
1.16879439e+00 -3.83514792e-01 -1.41885889e+00 -1.79057434e-01
3.74402404e-01 -5.27284563e-01 2.13510618e-01 -8.80967855e-01
-9.70660567e-01 6.48898900e-01 1.13367832e+00 -9.64852143e-03
1.12248850e+00 3.26170057e-01 5.85538328e-01 -1.58614427e-01
4.06276315e-01 -1.42064679e+00 -1.43004820e-01 -7.35695213e-02
4.38281089e-01 -1.50433111e+00 -1.30036861e-01 -4.05271947e-01
-8.75257194e-01 9.49023664e-01 4.76799011e-01 4.32524923e-03
5.87132871e-01 2.16284871e-01 3.11721653e-01 -3.25752646e-01
2.66611204e-02 9.66380760e-02 1.69610530e-01 1.02939510e+00
3.06928486e-01 2.98270762e-01 -1.27413675e-01 6.89201176e-01
-1.45599201e-01 -1.16924666e-01 3.26418459e-01 1.08508015e+00
-3.21704417e-01 -1.04586577e+00 -5.07097661e-01 7.27781355e-01
-5.66957593e-01 1.75655037e-01 -2.71068633e-01 8.54759336e-01
5.05881198e-02 6.84932172e-01 2.40133151e-01 1.15120746e-02
1.42340764e-01 3.24026644e-02 4.11994666e-01 -9.01477098e-01
-4.07173157e-01 6.99959695e-02 -2.79532671e-01 -2.68175185e-01
-4.08767194e-01 -6.93571210e-01 -1.79031956e+00 3.06348562e-01
-1.01499021e-01 6.57794178e-02 9.02569592e-01 9.10217524e-01
2.93682992e-01 5.14336824e-01 3.83369178e-01 -4.77989137e-01
-4.86531198e-01 -7.55122840e-01 -7.83779085e-01 7.00966537e-01
8.87651220e-02 -7.52313375e-01 -1.82003453e-02 3.43104273e-01] | [14.615788459777832, -2.0215003490448] |
4ab363d2-9b31-443a-9b7a-31f994261616 | knowledge-restore-and-transfer-for-multi | 2302.13334 | null | https://arxiv.org/abs/2302.13334v2 | https://arxiv.org/pdf/2302.13334v2.pdf | Knowledge Restore and Transfer for Multi-label Class-Incremental Learning | Current class-incremental learning research mainly focuses on single-label classification tasks while multi-label class-incremental learning (MLCIL) with more practical application scenarios is rarely studied. Although there have been many anti-forgetting methods to solve the problem of catastrophic forgetting in class-incremental learning, these methods have difficulty in solving the MLCIL problem due to label absence and information dilution. In this paper, we propose a knowledge restore and transfer (KRT) framework for MLCIL, which includes a dynamic pseudo-label (DPL) module to restore the old class knowledge and an incremental cross-attention(ICA) module to save session-specific knowledge and transfer old class knowledge to the new model sufficiently. Besides, we propose a token loss to jointly optimize the incremental cross-attention module. Experimental results on MS-COCO and PASCAL VOC datasets demonstrate the effectiveness of our method for improving recognition performance and mitigating forgetting on multi-label class-incremental learning tasks. | ['Yihong Gong', 'Xing Wei', 'Yuhang He', 'Haoyu Luo', 'Songlin Dong'] | 2023-02-26 | null | null | null | null | ['class-incremental-learning'] | ['computer-vision'] | [ 6.64414883e-01 -2.75629293e-02 -3.78618926e-01 -5.60137391e-01
-6.97011173e-01 -2.48087451e-01 2.73679018e-01 2.14047253e-01
-4.86338705e-01 9.41483200e-01 -1.48701683e-01 -2.08516255e-01
-3.82305384e-02 -2.48886198e-01 -7.00595200e-01 -7.53553569e-01
5.21789908e-01 3.57639432e-01 2.86203712e-01 3.31241310e-01
1.18518900e-02 2.47619063e-01 -1.63491833e+00 5.70228219e-01
1.08438182e+00 7.97457814e-01 3.12544554e-01 5.03767908e-01
-3.01348865e-01 1.22570002e+00 -5.94118118e-01 -4.83056188e-01
-8.95364657e-02 -4.64447528e-01 -9.75817800e-01 7.79093057e-02
8.18638444e-01 -2.11925104e-01 -2.35112324e-01 1.00240648e+00
7.46650636e-01 1.98525175e-01 4.94496822e-01 -1.38701761e+00
-8.99508059e-01 6.08259201e-01 -7.49544680e-01 7.28028715e-02
-1.03351898e-01 -4.31949040e-03 4.93106753e-01 -1.08391142e+00
4.89460647e-01 1.30770278e+00 1.07343423e+00 1.03446639e+00
-1.12580252e+00 -9.51066494e-01 6.64137959e-01 6.23338699e-01
-1.29529238e+00 -2.48151869e-01 5.27478456e-01 -1.00401312e-01
7.95869410e-01 1.46788657e-02 3.93256634e-01 1.03468812e+00
1.20693140e-01 1.30030060e+00 1.21945453e+00 -5.95349967e-01
-6.57433644e-03 2.74345577e-01 5.19580543e-01 6.99135423e-01
8.61461237e-02 -3.51378545e-02 -6.77981257e-01 1.31885722e-01
1.39601976e-01 5.42375743e-01 -1.87543303e-01 -4.01057154e-01
-9.28779840e-01 3.66554916e-01 3.53418380e-01 1.16966002e-01
-1.97309226e-01 4.92785238e-02 6.20010436e-01 5.60744524e-01
8.20804298e-01 -2.57019922e-02 -8.79834056e-01 1.87717453e-01
-8.25372338e-01 -1.09677307e-01 3.79990548e-01 1.09588063e+00
8.11595380e-01 3.34315561e-02 -7.24470139e-01 1.29829729e+00
-2.64585353e-02 4.39993799e-01 7.90985465e-01 -6.36657476e-01
2.37108588e-01 8.02398980e-01 -1.13989390e-01 -3.72199684e-01
-4.99468625e-01 -8.49448264e-01 -6.98129594e-01 1.05745032e-01
1.23002948e-02 1.32773772e-01 -1.16624081e+00 1.90318108e+00
4.63321626e-01 5.75132012e-01 7.21058547e-02 4.12934482e-01
7.03095019e-01 4.41369444e-01 6.49021685e-01 -7.55759954e-01
1.03610086e+00 -1.57024384e+00 -8.83200526e-01 -3.22286665e-01
8.86103153e-01 -4.54495490e-01 1.19040596e+00 2.57493556e-01
-7.41191328e-01 -7.35276401e-01 -1.06471288e+00 -3.14634085e-01
-4.74045396e-01 1.11033849e-01 5.55743098e-01 3.88937116e-01
-7.34576046e-01 5.08463740e-01 -5.32246888e-01 -1.92008063e-01
7.34979272e-01 2.97859281e-01 -2.65062064e-01 -5.41009724e-01
-1.16381538e+00 8.64727855e-01 7.29875684e-01 3.36553454e-02
-1.10219574e+00 -1.18958640e+00 -5.32552600e-01 7.07408339e-02
5.68837166e-01 -5.18316209e-01 1.47955954e+00 -1.26969540e+00
-1.34185004e+00 9.62488353e-01 -1.71258956e-01 -4.50029910e-01
4.56330717e-01 -3.27001989e-01 -5.71776807e-01 -2.76259542e-01
1.59427583e-01 8.99473369e-01 8.77955139e-01 -1.25980771e+00
-1.05272257e+00 -3.57348889e-01 -8.80611837e-02 5.92965484e-01
-5.23820579e-01 -6.09008193e-01 -3.62018198e-01 -7.18879342e-01
4.61087376e-02 -9.78050888e-01 2.68348932e-01 -2.74376959e-01
-8.25515985e-02 -5.97760022e-01 1.10431635e+00 -6.90983236e-01
1.44355226e+00 -2.09674168e+00 2.96589825e-02 -6.01680219e-01
9.79371890e-02 8.07976723e-01 -4.28747863e-01 -5.97322285e-02
-4.18945700e-01 -2.43592158e-01 -3.35611254e-01 -6.67282283e-01
-3.58726919e-01 2.08527923e-01 -3.24282825e-01 1.77028075e-01
1.19987585e-01 1.15515530e+00 -1.22959328e+00 -3.62443507e-01
2.31636651e-02 4.70399797e-01 -3.54000419e-01 1.87602490e-01
-4.62617248e-01 4.14362133e-01 1.63355038e-01 9.42091763e-01
8.46581161e-01 -1.68225005e-01 1.20216824e-01 -1.97888538e-01
1.97094470e-01 -2.79076964e-01 -6.65054142e-01 2.02642083e+00
-5.67418218e-01 1.03982277e-01 -2.53643215e-01 -7.60799885e-01
4.13340747e-01 2.93936342e-01 2.81021625e-01 -8.73489916e-01
-4.08301726e-02 1.93395820e-02 -3.37621748e-01 -3.86032939e-01
3.71863723e-01 -4.37021434e-01 1.69473827e-01 6.03183270e-01
4.53204662e-01 4.49113369e-01 4.09260616e-02 3.09627354e-01
1.01607180e+00 2.41991416e-01 1.50619969e-01 1.13003086e-02
5.85627079e-01 -2.68242687e-01 1.02396965e+00 8.26467156e-01
-6.35436833e-01 3.31675202e-01 -4.98702936e-02 -5.01763463e-01
-5.70200980e-01 -8.56515586e-01 -2.90735569e-02 1.57323992e+00
8.93828943e-02 -1.29885167e-01 -7.48611152e-01 -1.46492922e+00
2.40831748e-01 1.09495831e+00 -7.55538881e-01 -9.24342513e-01
-2.74603099e-01 -9.32721198e-01 3.12294692e-01 5.05203664e-01
6.43586576e-01 -1.14027119e+00 -1.55680835e-01 4.40780312e-01
-2.77303964e-01 -7.24016964e-01 -8.35539639e-01 4.48348612e-01
-1.00484979e+00 -1.30042505e+00 -6.47487938e-01 -9.20804441e-01
8.26811850e-01 7.26232290e-01 9.73342240e-01 2.74983924e-02
-5.67473471e-01 5.69888949e-01 -3.66049439e-01 -5.24455369e-01
-3.20113689e-01 4.07023489e-01 8.84308144e-02 2.39628851e-01
5.62175870e-01 -3.39546859e-01 -4.32646751e-01 1.51153475e-01
-8.85238945e-01 2.47798458e-01 7.23357558e-01 1.22098923e+00
8.28628004e-01 1.54262930e-01 1.10161448e+00 -1.55926061e+00
3.76334816e-01 -4.82101589e-01 -1.12721644e-01 8.76377165e-01
-1.31401861e+00 3.84069085e-02 5.09853363e-01 -8.70999336e-01
-1.58882296e+00 1.39407754e-01 8.23385119e-02 -6.78677082e-01
9.22068581e-02 2.19370976e-01 -3.85342270e-01 -2.40926035e-02
3.43661785e-01 3.60132575e-01 -3.17864835e-01 -7.26246715e-01
5.94699860e-01 6.41420126e-01 6.55583799e-01 -4.44234073e-01
3.54396790e-01 2.89372951e-01 -3.49251747e-01 -2.07395807e-01
-1.84135866e+00 -4.22155052e-01 -8.46895576e-01 -2.70235091e-01
5.45980752e-01 -1.13174105e+00 -5.20028651e-01 1.10854983e+00
-9.56512749e-01 -5.03950834e-01 -6.34066164e-01 2.16255516e-01
-3.01431924e-01 2.52076536e-01 -6.72857940e-01 -6.96653426e-01
-5.69644630e-01 -8.67309272e-01 7.98125207e-01 5.24746776e-01
3.75151455e-01 -8.89595151e-01 1.76120207e-01 5.21060705e-01
4.83677387e-01 -2.45786563e-01 1.12136662e+00 -4.81127411e-01
-3.22499216e-01 -1.43270954e-01 -3.75674963e-01 5.95159590e-01
2.56623954e-01 -8.13391566e-01 -1.35141838e+00 -8.48474324e-01
-6.45262450e-02 -8.59416604e-01 1.30583894e+00 7.46376114e-03
1.27574074e+00 -1.61797836e-01 -5.52057624e-01 5.79380155e-01
1.33630645e+00 3.52339447e-01 4.64708924e-01 6.09111786e-02
1.04886484e+00 3.59181821e-01 8.42623889e-01 7.21499920e-02
5.77621579e-01 4.58787352e-01 2.57460117e-01 8.45568180e-02
-1.00671363e+00 -4.82388407e-01 2.23861992e-01 1.22631824e+00
4.66681421e-01 3.06604207e-02 -6.03715658e-01 5.59548855e-01
-1.99575317e+00 -8.10860276e-01 2.24888250e-01 2.27143097e+00
1.33754385e+00 -2.62757670e-02 -4.73770469e-01 -2.16003936e-02
8.75360489e-01 -2.25768581e-01 -1.30455089e+00 -6.97675645e-02
-2.20679969e-01 1.86892890e-03 4.16034997e-01 6.29674196e-01
-1.25143921e+00 1.18868530e+00 5.76870537e+00 1.16530633e+00
-1.00097096e+00 7.62393177e-01 7.89290011e-01 -3.08469504e-01
3.06184832e-02 -7.70930126e-02 -1.24545240e+00 4.55901831e-01
9.57452178e-01 2.97680330e-02 3.80116671e-01 1.00430512e+00
-4.95732278e-01 -1.62763953e-01 -1.02094543e+00 1.16003573e+00
4.30422366e-01 -7.47519851e-01 2.34541610e-01 -4.65280265e-01
1.01234448e+00 -1.18629910e-01 1.37305602e-01 1.07007539e+00
2.13751107e-01 -5.02485871e-01 5.87863624e-01 7.60578871e-01
1.15486062e+00 -8.77072692e-01 6.07092023e-01 3.67411852e-01
-9.71530616e-01 -4.61044222e-01 -4.74849641e-01 1.61948204e-01
-9.73663926e-02 7.91806340e-01 -7.61452377e-01 4.63387549e-01
5.89482069e-01 7.68469810e-01 -1.12561393e+00 1.08914304e+00
-2.70675004e-01 6.54838741e-01 1.60309106e-01 4.07097965e-01
-1.68766156e-01 1.92070678e-01 1.26188308e-01 1.19466722e+00
-5.11282347e-02 1.07274782e-02 1.02149449e-01 1.76052764e-01
-5.14377534e-01 6.22853041e-02 -2.83911973e-01 1.66833907e-01
6.09631896e-01 1.07959187e+00 -5.74526489e-01 -4.10766363e-01
-4.65068847e-01 1.58963788e+00 9.35488522e-01 3.75934273e-01
-8.31740558e-01 -3.55189353e-01 3.70343477e-01 -1.52061000e-01
1.46945611e-01 2.88430154e-01 -8.95040035e-02 -1.34399867e+00
-7.52408803e-02 -6.35162711e-01 6.47522032e-01 -7.28523970e-01
-1.34850359e+00 3.52369696e-01 -3.01733434e-01 -8.63469243e-01
3.53678346e-01 -1.69782311e-01 -2.52880812e-01 5.45666218e-01
-1.83621001e+00 -1.50168061e+00 -3.01660568e-01 5.41920960e-01
9.14842129e-01 -2.80293882e-01 8.56299877e-01 8.10281932e-01
-8.29209030e-01 1.20700693e+00 3.22980613e-01 -4.57661629e-01
1.15406656e+00 -1.14730680e+00 -6.56429213e-04 6.37865365e-01
-7.22700730e-02 3.83111119e-01 1.72844306e-01 -8.69741857e-01
-1.11689448e+00 -1.71530056e+00 9.65188086e-01 -5.28448939e-01
9.05146971e-02 -3.32566857e-01 -1.21226311e+00 8.83131027e-01
5.44151105e-02 3.01538017e-02 7.67065406e-01 2.29543447e-01
-7.89794743e-01 -3.94589245e-01 -1.13414180e+00 3.62048775e-01
1.33245778e+00 -6.06373668e-01 -4.19637799e-01 5.11547029e-01
1.10723901e+00 -1.96031809e-01 -5.36686778e-01 6.27501130e-01
4.43929106e-01 -4.84004736e-01 8.26027811e-01 -6.33661628e-01
-2.56820023e-01 -4.28701073e-01 2.45241076e-01 -1.39578295e+00
-6.06953323e-01 -8.40425957e-03 -4.64366168e-01 1.58309662e+00
2.43910193e-01 -4.07345325e-01 7.30880737e-01 3.13470989e-01
-2.79787391e-01 -6.36344433e-01 -1.00029421e+00 -7.92003810e-01
6.82564229e-02 -2.47754157e-01 3.85164887e-01 1.30594409e+00
-3.88743192e-01 8.12496841e-01 -8.05187881e-01 -1.42633602e-01
7.36530900e-01 2.62218826e-02 3.06660891e-01 -1.25326502e+00
-1.17093518e-01 -8.12290460e-02 1.00692362e-01 -8.08539093e-01
3.83148342e-01 -1.28997684e+00 1.57781035e-01 -1.24927092e+00
6.80781901e-01 -7.01280892e-01 -9.94979918e-01 9.73838925e-01
-7.52567351e-01 1.19248480e-01 1.30888775e-01 3.34317118e-01
-1.34934759e+00 7.91425407e-01 1.08784723e+00 -4.51044649e-01
-1.14258632e-01 -1.97556719e-01 -7.90013015e-01 3.17236841e-01
5.53845167e-01 -9.01077569e-01 -7.18698740e-01 -4.52137887e-01
-1.01217166e-01 -3.15079480e-01 -1.19706817e-01 -1.14400363e+00
4.50703949e-01 6.91840425e-02 3.16719204e-01 -7.23691881e-01
5.09725958e-02 -7.71995306e-01 2.42568105e-02 5.96493125e-01
-4.90967333e-01 -2.98472852e-01 2.92179555e-01 1.01396549e+00
8.79708305e-02 -3.06686074e-01 1.12239361e+00 -1.05439261e-01
-9.04425800e-01 5.79578102e-01 -4.31724079e-03 1.79276988e-01
1.10268569e+00 2.01368138e-01 -4.92981941e-01 2.22610757e-01
-8.13446820e-01 5.66984892e-01 3.16999435e-01 7.87039518e-01
5.98676801e-01 -1.64698076e+00 -7.04797029e-01 1.76934376e-01
4.58816409e-01 -5.57165332e-02 8.54994833e-01 6.48900807e-01
-1.56500757e-01 4.33784157e-01 -9.10335109e-02 -3.26152682e-01
-1.31722760e+00 1.05962551e+00 3.02366942e-01 -5.88553488e-01
-4.40007061e-01 1.18714452e+00 3.51311296e-01 -7.63189614e-01
7.18816638e-01 2.18428820e-01 -4.83499793e-03 3.95408213e-01
9.36165869e-01 4.12743032e-01 3.18593413e-01 -2.50963360e-01
-2.96695530e-01 3.47099870e-01 -9.71914291e-01 4.46407378e-01
9.90849674e-01 -4.47935492e-01 -1.60778798e-02 8.13372731e-01
1.15886080e+00 -6.22477949e-01 -1.58204699e+00 -7.42860198e-01
1.81283981e-01 -6.29766583e-02 5.03413267e-02 -1.45163679e+00
-1.00481546e+00 9.53082800e-01 1.18245673e+00 -5.75617790e-01
1.20893931e+00 -3.59774321e-01 8.76888156e-01 4.76717114e-01
4.54736829e-01 -1.37601078e+00 3.26431781e-01 7.50292122e-01
6.44924641e-01 -1.36478949e+00 -1.12495296e-01 -1.60818368e-01
-6.19335830e-01 6.31762922e-01 9.78070915e-01 5.08909523e-01
7.18696415e-01 -1.12101108e-01 1.89734459e-01 1.72128439e-01
-1.04299045e+00 -1.30722970e-01 -7.63421878e-02 5.61092615e-01
2.60186791e-01 5.50078414e-02 -3.74096632e-01 7.85171270e-01
6.86795652e-01 3.33568186e-01 1.76504597e-01 1.13194501e+00
-5.93451679e-01 -1.21948135e+00 3.86821367e-02 4.13964957e-01
-2.54351586e-01 -3.12248856e-01 -2.15154499e-01 3.46904725e-01
5.92027128e-01 7.47033417e-01 -2.32627884e-01 -5.05128920e-01
4.35952216e-01 8.86640728e-01 6.03253722e-01 -8.75736237e-01
-6.58986688e-01 -2.77766019e-01 -3.56770635e-01 -2.11529061e-01
-3.53329927e-01 -5.46111822e-01 -1.02728963e+00 -2.09508021e-03
-5.22416651e-01 2.07586378e-01 4.46016341e-01 7.72939801e-01
5.05683243e-01 8.90543103e-01 4.60216731e-01 -3.01338643e-01
-4.31314498e-01 -1.19606376e+00 -7.25800216e-01 5.12685061e-01
1.55527562e-01 -8.37999940e-01 -2.10185677e-01 1.82528362e-01] | [9.823328018188477, 3.3397717475891113] |
336eac41-33fd-4926-8e94-844fef7d4f3d | unsupervised-writer-retrieval-using-netrvlad | 2305.05358 | null | https://arxiv.org/abs/2305.05358v2 | https://arxiv.org/pdf/2305.05358v2.pdf | Towards Writer Retrieval for Historical Datasets | This paper presents an unsupervised approach for writer retrieval based on clustering SIFT descriptors detected at keypoint locations resulting in pseudo-cluster labels. With those cluster labels, a residual network followed by our proposed NetRVLAD, an encoding layer with reduced complexity compared to NetVLAD, is trained on 32x32 patches at keypoint locations. Additionally, we suggest a graph-based reranking algorithm called SGR to exploit similarities of the page embeddings to boost the retrieval performance. Our approach is evaluated on two historical datasets (Historical-WI and HisIR19). We include an evaluation of different backbones and NetRVLAD. It competes with related work on historical datasets without using explicit encodings. We set a new State-of-the-art on both datasets by applying our reranking scheme and show that our approach achieves comparable performance on a modern dataset as well. | ['Robert Sablatnig', 'Florian Kleber', 'Marco Peer'] | 2023-05-09 | null | null | null | null | ['graph-similarity'] | ['graphs'] | [-1.95256725e-01 -4.61192966e-01 -5.26486039e-01 -1.37588054e-01
-9.98226762e-01 -6.72202110e-01 9.16876554e-01 7.47346342e-01
-5.23587465e-01 1.61863714e-01 4.52725559e-01 -1.43002167e-01
-7.38964081e-01 -6.97560310e-01 -5.90881109e-01 -2.95713216e-01
-7.44154632e-01 6.07955635e-01 5.49610436e-01 -2.25643754e-01
7.13724971e-01 8.55079293e-01 -1.57872570e+00 4.18602318e-01
2.10312828e-01 1.07147968e+00 -2.02077106e-02 8.11531425e-01
-7.74909854e-02 7.85537302e-01 -4.73496377e-01 -2.68571395e-02
7.40161479e-01 3.43616366e-01 -8.89682829e-01 -2.74604976e-01
1.24212015e+00 -4.99525040e-01 -1.00645435e+00 6.43170774e-01
6.54992819e-01 2.95440942e-01 7.31801867e-01 -1.11058319e+00
-8.29402685e-01 5.84407866e-01 -7.74408042e-01 2.79514641e-01
5.16161144e-01 -4.79694694e-01 1.73054338e+00 -1.03809845e+00
1.08914506e+00 1.07876122e+00 6.94638848e-01 -2.23772265e-02
-1.02773178e+00 -4.01911587e-01 -1.81699060e-02 5.44872284e-01
-1.91013205e+00 1.32754613e-02 7.35233366e-01 5.38901947e-02
1.08229315e+00 4.14771318e-01 4.33514953e-01 6.37426496e-01
1.35021433e-01 1.03246236e+00 7.18099356e-01 -4.75350857e-01
2.18201399e-01 -3.11631054e-01 6.75683320e-01 6.95511281e-01
3.07148188e-01 -7.94603005e-02 -8.28040838e-01 -6.32775724e-01
5.59549809e-01 4.27640796e-01 -7.69827068e-02 -8.30807149e-01
-1.31753671e+00 8.93205106e-01 7.79693961e-01 4.51410025e-01
-3.65568191e-01 5.99841416e-01 5.48026800e-01 6.19174421e-01
4.21524167e-01 4.88005787e-01 -2.88114399e-01 3.49703968e-01
-1.48061800e+00 3.86850089e-01 8.06678414e-01 1.02224278e+00
8.53092253e-01 -6.57585502e-01 -4.49382365e-01 7.60927141e-01
4.48769718e-01 4.05223578e-01 4.71425891e-01 -8.01799178e-01
3.81130546e-01 6.65449321e-01 5.42435795e-03 -1.56089592e+00
-3.66714358e-01 -3.43706697e-01 -4.52332139e-01 -9.61958319e-02
-1.20418228e-01 4.70872402e-01 -1.06661212e+00 9.78099287e-01
6.39068782e-02 4.26059455e-01 -8.50570574e-02 1.01168466e+00
7.01370478e-01 6.55807912e-01 -4.00402576e-01 2.70627975e-01
1.27907765e+00 -1.15864491e+00 -4.10500050e-01 3.93054843e-01
7.01586843e-01 -9.14674222e-01 8.71037543e-01 5.66033959e-01
-7.50473857e-01 -4.32244748e-01 -1.28050828e+00 -1.19943321e-01
-8.35231245e-01 2.75972992e-01 7.36225784e-01 4.11508262e-01
-1.91680801e+00 8.34899902e-01 -6.65563703e-01 -8.23920846e-01
5.83532080e-02 5.37734866e-01 -4.03104812e-01 -1.18550852e-01
-1.12846482e+00 3.76381516e-01 4.40752625e-01 -2.75089562e-01
-6.69836938e-01 -6.27649367e-01 -5.29674709e-01 7.47130513e-02
1.40195116e-01 -1.44756511e-01 8.53034973e-01 -3.29769164e-01
-1.06174111e+00 6.62777603e-01 2.56728917e-01 -8.00728440e-01
2.21288890e-01 -5.37035286e-01 -5.65822244e-01 8.10516357e-01
4.47441489e-02 7.18112528e-01 8.24984968e-01 -1.11255646e+00
-5.94082296e-01 -1.88963473e-01 -1.41619027e-01 2.30894491e-01
-8.82815659e-01 -1.13215171e-01 -1.04624701e+00 -8.51453125e-01
6.05572499e-02 -8.45561206e-01 -2.54714131e-01 9.16678924e-03
-5.33057809e-01 -4.80318487e-01 1.07990396e+00 -4.43834782e-01
1.48443234e+00 -2.18462038e+00 -1.64159313e-01 1.09320056e+00
6.10644639e-01 1.14023812e-01 -5.98128676e-01 1.10812294e+00
3.55553776e-02 6.50002882e-02 4.11663651e-01 -1.41389206e-01
3.36885482e-01 -3.92821804e-02 -6.32599533e-01 7.24557996e-01
-1.45042434e-01 8.76525939e-01 -9.13439691e-01 -5.76637208e-01
1.98966846e-01 5.23420274e-01 -5.13852537e-01 -5.85432583e-03
2.93390490e-02 -7.01522768e-01 -4.41553235e-01 6.09874904e-01
8.25012207e-01 -4.53067094e-01 3.40267152e-01 -3.69819224e-01
-1.17583200e-01 5.05664684e-02 -1.37588680e+00 1.96085322e+00
7.07024336e-02 8.09652567e-01 -3.47944766e-01 -7.53651619e-01
9.07753348e-01 -1.59367114e-01 7.34249711e-01 -8.92944992e-01
-3.47119272e-01 1.24516338e-01 -7.13945329e-01 4.52393740e-02
1.28904998e+00 1.05586672e+00 -1.33814365e-01 6.82142019e-01
1.04498394e-01 4.99345809e-01 2.85898179e-01 9.74899888e-01
1.80282724e+00 -1.44001663e-01 -3.02534014e-01 -6.11102641e-01
3.81227791e-01 2.73727238e-01 -1.92753345e-01 1.19656003e+00
3.27791095e-01 7.99262643e-01 1.73923284e-01 -6.40724182e-01
-1.06614959e+00 -1.21708131e+00 -1.06090764e-02 1.16305232e+00
5.12183070e-01 -1.29684496e+00 -4.17256504e-01 -8.19735825e-01
4.03782964e-01 1.03985056e-01 -6.10010326e-01 7.69345537e-02
-4.95673120e-01 -4.67282772e-01 6.21132672e-01 4.63166416e-01
2.48682022e-01 -6.75851941e-01 -3.32249910e-01 1.65548235e-01
4.63053048e-01 -7.29982495e-01 -6.76443994e-01 1.91340763e-02
-6.67214334e-01 -1.12653804e+00 -8.77035379e-01 -9.77499485e-01
5.72550774e-01 8.05399597e-01 1.23276401e+00 5.50134718e-01
-6.34900331e-01 9.58994031e-01 -7.99770594e-01 2.05074951e-01
3.23305607e-01 6.22368157e-01 1.14117578e-01 -1.68738231e-01
3.74555558e-01 -2.60436416e-01 -1.15791869e+00 2.20920011e-01
-1.24818218e+00 -5.58940649e-01 6.96674943e-01 7.28459954e-01
6.11148477e-01 -9.36809648e-03 1.99511908e-02 -8.72901559e-01
7.77306974e-01 -3.10080022e-01 -7.26450086e-01 3.46910208e-01
-1.15660560e+00 3.29282373e-01 2.62555778e-01 -2.69769400e-01
-3.22671294e-01 -7.10525587e-02 3.95757765e-01 -7.38192737e-01
3.19080561e-01 5.62235534e-01 5.75727046e-01 -4.31585342e-01
5.14768362e-01 1.83418896e-02 -2.67393500e-01 -8.35251391e-01
8.16909134e-01 8.94875228e-01 4.11396533e-01 -3.97282839e-01
1.17773247e+00 6.26491308e-01 -4.70950939e-02 -7.17641711e-01
-2.74962068e-01 -1.10375404e+00 -6.02302313e-01 1.18698567e-01
4.99332696e-01 -1.09594488e+00 -4.55502033e-01 1.70139924e-01
-8.51085603e-01 -1.18808798e-01 -2.24984214e-01 3.71097893e-01
-1.96037352e-01 6.27144217e-01 -8.77191842e-01 -1.83422387e-01
-5.95751166e-01 -6.02096498e-01 1.45083380e+00 -9.83363912e-02
1.90913193e-02 -8.47935796e-01 6.29525065e-01 -2.84298122e-01
5.12359798e-01 -6.39069527e-02 8.61205518e-01 -1.19619477e+00
-9.05917704e-01 -5.26998639e-01 -6.37728691e-01 -7.57683888e-02
-1.57102853e-01 -5.77948131e-02 -6.59678996e-01 -7.14717805e-01
-9.81311142e-01 -2.06118718e-01 1.19225073e+00 -7.28477985e-02
1.05714786e+00 -3.31888705e-01 -6.66333914e-01 4.06306207e-01
1.82670486e+00 -1.77973688e-01 6.84583664e-01 6.94897354e-01
7.81869531e-01 1.80405080e-01 6.99241757e-01 5.20820737e-01
3.58541012e-01 8.02958369e-01 3.13027024e-01 -2.76651651e-01
-3.24265033e-01 -2.32658789e-01 2.48987049e-01 8.84634972e-01
3.07378173e-01 -4.75192100e-01 -9.12420154e-01 8.16675484e-01
-1.98888314e+00 -6.42897666e-01 -1.83541641e-01 2.08140945e+00
4.63297725e-01 -1.43499464e-01 -3.61042880e-02 8.05876777e-02
5.77001810e-01 6.53818488e-01 -1.60243690e-01 -1.69005409e-01
-4.37078066e-02 6.23787165e-01 1.06787074e+00 3.08609098e-01
-1.34212780e+00 1.04710782e+00 6.90278244e+00 1.14470243e+00
-1.01574731e+00 1.65635571e-02 2.41005898e-01 -5.78884333e-02
-1.78767055e-01 7.67763844e-03 -8.22900057e-01 2.41315551e-02
8.42223167e-01 5.00673018e-02 3.25890958e-01 8.27904940e-01
-4.30903196e-01 1.56062916e-01 -9.58037138e-01 9.94593501e-01
4.46847796e-01 -1.62269068e+00 3.08059812e-01 5.03565930e-02
7.02308118e-01 4.44923669e-01 1.95482418e-01 7.92706311e-02
4.73696589e-01 -6.34094298e-01 3.33809733e-01 4.24736947e-01
7.55327463e-01 -8.39614451e-01 7.56395042e-01 -5.39654016e-01
-1.57415414e+00 2.41998419e-01 -5.54862618e-01 4.61128503e-01
-4.26283568e-01 3.92100364e-01 -9.33149695e-01 7.66548157e-01
9.17883992e-01 9.36840832e-01 -1.20292234e+00 1.21829379e+00
3.99631225e-02 3.44394654e-01 -3.53289187e-01 -2.09380209e-01
4.40749794e-01 2.50901967e-01 4.22937512e-01 1.46091914e+00
2.06378222e-01 -4.73711818e-01 3.22508633e-01 -2.84249522e-02
-2.37549514e-01 3.88419211e-01 -5.97720981e-01 2.77415905e-02
5.23425519e-01 1.50237024e+00 -9.30288792e-01 -5.68111360e-01
-2.23703787e-01 1.23392975e+00 3.48577976e-01 3.97744447e-01
-4.37542140e-01 -9.59910750e-01 3.42736751e-01 2.02373803e-01
6.88456833e-01 -2.54779726e-01 4.94391769e-01 -1.09191847e+00
-6.05438538e-02 -6.85845137e-01 7.40271270e-01 -6.33133352e-01
-1.54295099e+00 5.22727132e-01 7.68532157e-02 -1.38254786e+00
-2.22010598e-01 -6.65108383e-01 -2.37728879e-01 3.24512005e-01
-1.62196040e+00 -1.00588262e+00 -2.06898451e-01 7.20522225e-01
1.39103830e-01 -2.65016526e-01 8.09157729e-01 5.47315359e-01
-2.72212233e-02 8.46907914e-01 8.40773165e-01 2.89193630e-01
1.23540604e+00 -1.49840832e+00 6.76923037e-01 4.58430648e-01
7.89050639e-01 7.65966117e-01 2.39253998e-01 -6.05223954e-01
-2.01208949e+00 -1.18644905e+00 8.06738257e-01 -3.61548960e-01
1.04047346e+00 -5.69031417e-01 -7.47083366e-01 4.69179124e-01
5.26509881e-01 1.34988442e-01 4.97198075e-01 1.26770332e-01
-6.67846262e-01 -4.34886098e-01 -9.14870620e-01 5.35319746e-01
1.09903765e+00 -6.09981358e-01 -5.37811577e-01 5.99046409e-01
8.17058206e-01 -2.38949463e-01 -1.03307974e+00 1.90753385e-01
6.34834230e-01 -6.18933976e-01 1.26119256e+00 -3.64439905e-01
-4.29391265e-02 -4.97146696e-01 -2.40429267e-01 -8.76487136e-01
-5.29083550e-01 -7.47772455e-01 -2.18376368e-01 1.04805362e+00
2.13394418e-01 -4.14185971e-01 1.00207949e+00 1.72772072e-02
3.25005263e-01 -4.45797056e-01 -6.59332216e-01 -8.45382690e-01
-5.17889082e-01 -1.20537408e-01 5.44275939e-01 9.48447824e-01
-9.25025120e-02 -5.67760738e-03 -1.74701288e-01 2.75003254e-01
8.02979171e-01 3.03170025e-01 8.42184305e-01 -1.32033181e+00
-4.21922728e-02 -1.57430887e-01 -9.87444401e-01 -1.08535266e+00
-7.00725466e-02 -1.09322071e+00 -2.73683578e-01 -1.55005896e+00
2.01102018e-01 -4.05804664e-01 -9.47616994e-01 5.85635841e-01
3.24751109e-01 7.22202480e-01 1.83662578e-01 6.92070067e-01
-1.31122839e+00 1.31976068e-01 4.40109044e-01 -4.04326469e-01
-1.62150130e-01 -7.23787963e-01 -3.24180245e-01 2.04429209e-01
4.90520060e-01 -4.43994910e-01 -3.61298919e-01 -4.22038347e-01
3.81916970e-01 -3.04834902e-01 3.03279579e-01 -1.19296658e+00
7.10112453e-01 4.95820403e-01 5.24153173e-01 -1.27513433e+00
-1.88098848e-02 -8.19018722e-01 -5.60631081e-02 3.48562539e-01
-5.75646520e-01 6.83341026e-01 -1.98402014e-02 8.57888818e-01
-3.20285112e-01 -1.25867920e-03 -6.29512072e-02 2.68388271e-01
-1.20786834e+00 4.32466984e-01 -2.25016758e-01 -2.85063148e-01
7.75845349e-01 1.09840646e-01 -6.07732117e-01 -3.19121689e-01
-4.16288853e-01 4.35456246e-01 6.17885709e-01 6.08783126e-01
9.19204056e-01 -1.62291157e+00 -4.84305352e-01 1.48174465e-01
4.96451646e-01 -5.51047623e-01 -1.20768115e-01 4.06600416e-01
-1.05255687e+00 6.24720097e-01 7.92598501e-02 -5.98787665e-01
-1.27837157e+00 7.08932459e-01 -4.03783768e-01 -7.59787321e-01
-7.25456417e-01 4.36925352e-01 -3.60098571e-01 -1.51794270e-01
5.18520534e-01 -1.35426810e-02 -3.15579027e-01 2.94526994e-01
6.71637118e-01 3.86229187e-01 4.04541701e-01 -3.68139148e-01
-5.41639626e-01 7.30364799e-01 -7.22204566e-01 -1.54656500e-01
1.38926184e+00 -8.89341384e-02 -3.41378838e-01 3.99267394e-03
1.73621798e+00 1.91030160e-01 -6.45949483e-01 -3.96991611e-01
5.10929346e-01 -4.60797191e-01 3.01679015e-01 -4.20124948e-01
-1.12106812e+00 2.94806808e-01 1.17918062e+00 2.48038143e-01
9.63171482e-01 -4.15183157e-02 8.26741219e-01 9.62801337e-01
4.85659450e-01 -1.23337436e+00 4.00911838e-01 4.79261994e-01
5.38817048e-01 -8.06532204e-01 4.92846042e-01 -5.90406731e-02
-1.22428946e-01 1.08399522e+00 1.19169742e-01 -9.04405057e-01
7.59119391e-01 4.20108326e-02 1.04637973e-01 -7.04212427e-01
-6.75372899e-01 -2.34976128e-01 6.99157536e-01 3.22952092e-01
1.13374576e-01 -2.22678035e-01 -5.38183928e-01 -1.60255924e-01
1.01559296e-01 -2.39892319e-01 2.51487689e-03 1.38179135e+00
-3.52861166e-01 -1.36322665e+00 -2.74426520e-01 6.67894423e-01
-5.67856550e-01 -4.65502918e-01 -7.14179814e-01 1.03707850e+00
-4.28368896e-01 6.17431223e-01 3.04530561e-01 -8.28096867e-01
1.89663738e-01 -2.00401261e-01 1.84202150e-01 -5.13941884e-01
-7.52593219e-01 1.53345197e-01 -1.36287779e-01 -1.06591308e+00
-4.18686539e-01 -4.72129554e-01 -9.81974304e-01 -2.19491452e-01
-3.39296967e-01 4.87265617e-01 5.59516788e-01 2.02041641e-01
7.88287759e-01 1.75859511e-01 9.29016888e-01 -8.33621621e-01
-4.21853989e-01 -6.43636048e-01 -9.08502221e-01 4.34045970e-01
2.65734643e-01 -3.91815603e-01 -3.00822139e-01 -3.15535575e-01] | [10.7545804977417, 0.5406612753868103] |
36a93646-1698-431c-90f1-eedf663e7890 | motif-difference-field-a-simple-and-effective | 2001.07582 | null | https://arxiv.org/abs/2001.07582v1 | https://arxiv.org/pdf/2001.07582v1.pdf | Motif Difference Field: A Simple and Effective Image Representation of Time Series for Classification | Time series motifs play an important role in the time series analysis. The motif-based time series clustering is used for the discovery of higher-order patterns or structures in time series data. Inspired by the convolutional neural network (CNN) classifier based on the image representations of time series, motif difference field (MDF) is proposed. Compared to other image representations of time series, MDF is simple and easy to construct. With the Fully Convolution Network (FCN) as the classifier, MDF demonstrates the superior performance on the UCR time series dataset in benchmark with other time series classification methods. It is interesting to find that the triadic time series motifs give the best result in the test. Due to the motif clustering reflected in MDF, the significant motifs are detected with the help of the Gradient-weighted Class Activation Mapping (Grad-CAM). The areas in MDF with high weight in Grad-CAM have a high contribution from the significant motifs with the desired ordinal patterns associated with the signature patterns in time series. However, the signature patterns cannot be identified with the neural network classifiers directly based on the time series. | ['Xin Chen', 'Yadong Zhang'] | 2020-01-21 | null | null | null | null | ['time-series-clustering'] | ['time-series'] | [ 6.19270317e-02 -7.26100326e-01 1.68141574e-01 -2.34489694e-01
1.47977278e-01 -4.02755380e-01 5.24315298e-01 2.26410806e-01
-2.97311872e-01 3.30659717e-01 9.55514312e-02 -2.31307775e-01
-6.88497245e-01 -8.39205205e-01 -6.10412896e-01 -7.60379195e-01
-1.06321430e+00 -1.68850869e-01 1.40899308e-02 -2.98672587e-01
5.76263130e-01 6.32051170e-01 -2.08907390e+00 8.04644227e-01
6.49762690e-01 1.36963975e+00 1.69763759e-01 2.43528172e-01
-5.48009038e-01 4.28564399e-01 -6.03080153e-01 6.53170407e-01
1.90922141e-01 -4.29340780e-01 -3.60738099e-01 -2.17696980e-01
1.06770145e-02 1.07154019e-01 -3.53497624e-01 9.31914628e-01
6.69821277e-02 4.33061987e-01 5.77480614e-01 -1.40256095e+00
-3.70062232e-01 4.50840235e-01 -4.76688415e-01 7.17842460e-01
2.61391938e-01 -3.15746456e-01 9.11898017e-01 -8.65417123e-01
5.99129438e-01 9.22858894e-01 6.39616191e-01 -4.53098863e-02
-9.45859075e-01 -4.51615661e-01 9.75649133e-02 7.92490780e-01
-1.22783506e+00 3.46484810e-01 1.28169262e+00 -4.46092606e-01
1.26578307e+00 4.83664572e-01 9.18211401e-01 7.67521739e-01
2.43736014e-01 5.47414899e-01 9.56554413e-01 -2.89809942e-01
1.94198132e-01 -7.21407056e-01 3.37971061e-01 4.22974050e-01
-4.39103991e-01 1.74101815e-01 -4.05017555e-01 -2.04251930e-01
7.69023597e-01 7.09658742e-01 -1.68253958e-01 1.37877226e-01
-1.43372500e+00 7.44514108e-01 7.73353994e-01 1.07351553e+00
-5.99538207e-01 2.24067509e-01 7.56717741e-01 7.62317419e-01
3.17513406e-01 3.51318210e-01 -3.38543773e-01 -2.42382437e-01
-9.20269847e-01 8.30142722e-02 2.23836288e-01 2.62471467e-01
6.66964710e-01 1.33685395e-01 -2.14399904e-01 8.59706044e-01
-1.47271127e-01 -1.05827279e-01 9.13099647e-01 -5.71304798e-01
7.68086240e-02 1.15836954e+00 -3.01191151e-01 -1.47426522e+00
-5.01040876e-01 -4.28167731e-01 -1.04576445e+00 5.48936948e-02
3.43874693e-01 2.02866614e-01 -7.79700279e-01 1.43138945e+00
3.91702317e-02 5.44207990e-01 -2.12173253e-01 9.84105289e-01
7.58826971e-01 1.29061854e+00 -2.79302627e-01 -3.65577728e-01
1.23559463e+00 -3.91920507e-01 -5.08853734e-01 3.86615634e-01
3.63130063e-01 -5.75854897e-01 9.20507371e-01 2.19113410e-01
-3.36314797e-01 -8.44632328e-01 -1.09912336e+00 5.13728082e-01
-7.18587041e-01 1.43955246e-01 7.54044831e-01 -1.43400431e-01
-9.57242846e-01 1.08441329e+00 -6.93174899e-01 -5.50242007e-01
6.73272088e-02 2.33128697e-01 -4.15509790e-01 3.16029966e-01
-1.24451292e+00 3.41788530e-01 6.76136255e-01 4.24121052e-01
-4.79373485e-01 -6.22741163e-01 -5.39719522e-01 1.83852330e-01
-3.21385056e-01 2.83306003e-01 5.73135316e-01 -1.54952657e+00
-9.47950840e-01 5.94917715e-01 2.93463115e-02 -5.42724192e-01
2.33771652e-01 4.67019647e-01 -8.05929422e-01 2.49033958e-01
1.49123132e-01 5.24551749e-01 8.10186148e-01 -4.61425841e-01
-7.46596932e-01 -9.74928588e-02 -2.87039608e-01 -2.28143334e-01
-6.21742606e-01 1.73394326e-02 2.48702839e-01 -9.02493238e-01
4.79816109e-01 -6.29676759e-01 -2.40462627e-02 -1.64094999e-01
2.04201378e-02 -7.76350498e-01 1.44016933e+00 -3.92878383e-01
1.54970253e+00 -2.55416918e+00 -9.43813771e-02 6.61127567e-01
1.12336583e-01 -2.08356842e-01 -6.96942434e-02 8.52116466e-01
-7.36029208e-01 -2.50596732e-01 -2.10113689e-01 7.22501218e-01
-9.29507315e-02 3.14812183e-01 -3.96047503e-01 3.88253868e-01
3.43344271e-01 6.06074512e-01 -8.45405102e-01 -1.51093602e-01
3.09544891e-01 2.82536931e-02 -1.14336982e-01 -3.41736479e-03
-2.22725853e-01 4.29815114e-01 -3.14203709e-01 4.52705145e-01
5.35095513e-01 -4.11031842e-01 1.15134314e-01 -3.87011647e-01
-7.93373585e-01 -4.75741997e-02 -9.55169618e-01 1.43297410e+00
1.88041508e-01 8.47153008e-01 -5.09686589e-01 -1.55026412e+00
1.20265841e+00 3.41561943e-01 1.05190384e+00 -1.07149613e+00
-1.08684776e-02 4.94256824e-01 4.55162942e-01 -6.62323058e-01
2.23852620e-01 1.95040733e-01 -1.04443682e-02 5.17856061e-01
9.54031851e-03 8.04664195e-01 3.91613096e-01 -2.23095015e-01
1.14757764e+00 -2.03198344e-01 -1.20065555e-01 -5.11852741e-01
4.91943359e-01 1.58895195e-01 4.37606007e-01 2.41434708e-01
2.84478273e-02 2.87732035e-01 4.10336763e-01 -1.22947574e+00
-1.01803660e+00 -7.73119211e-01 -3.28015506e-01 1.08489990e+00
-1.92325428e-01 -1.85329318e-01 -1.88309863e-01 -1.10120952e-01
4.45764931e-03 2.60797469e-03 -8.72369528e-01 3.30251316e-03
-7.56416678e-01 -7.30704963e-01 3.45475107e-01 5.67588151e-01
4.88332272e-01 -1.56105447e+00 -7.59970665e-01 4.67339337e-01
-1.70012534e-01 -4.44965452e-01 -2.73290306e-01 5.09421647e-01
-1.09048951e+00 -9.95345175e-01 -8.26808035e-01 -1.28321874e+00
7.47764707e-01 1.87836111e-01 6.66363537e-01 5.05932383e-02
-3.46109748e-01 8.23826715e-02 -6.72696292e-01 -1.54003143e-01
9.22738612e-02 -2.12344259e-01 -1.78807274e-01 4.46110874e-01
5.83565414e-01 -1.05517447e+00 -7.87418127e-01 2.63801783e-01
-9.00407791e-01 -1.72212973e-01 1.33511633e-01 8.26525569e-01
6.76319659e-01 4.77789462e-01 4.85270619e-01 -1.11918561e-01
7.20510721e-01 -6.91330910e-01 -5.91605842e-01 -9.23294947e-02
-3.10048252e-01 -2.71638989e-01 9.21398818e-01 -7.69451857e-01
-1.30421206e-01 -1.74668685e-01 1.83227658e-01 -8.19701254e-01
-2.21239433e-01 1.00463653e+00 5.94699144e-01 1.51516452e-01
6.52629793e-01 7.05311239e-01 6.97790235e-02 -4.68063354e-01
-1.91693351e-01 3.65361214e-01 2.75458008e-01 -5.00384271e-01
3.15578759e-01 5.56267023e-01 -7.56953377e-03 -7.66695559e-01
3.68902907e-02 -4.88210738e-01 -4.45699722e-01 -7.27710128e-01
9.18649256e-01 -4.04751539e-01 -6.24153852e-01 4.94476765e-01
-9.97195423e-01 2.77389959e-02 -6.51722550e-02 5.81601858e-01
-2.22424954e-01 2.90865362e-01 -5.73183775e-01 -7.26053774e-01
-2.40396544e-01 -6.70027256e-01 6.33551955e-01 2.42676571e-01
-4.79095995e-01 -8.52916718e-01 -2.02384349e-02 -6.53409541e-01
3.08337092e-01 7.80840635e-01 1.41602159e+00 -6.02000773e-01
-3.10118556e-01 -2.47511134e-01 3.05463988e-02 2.75808387e-02
2.72216588e-01 4.26316798e-01 -6.69508100e-01 -2.64747560e-01
-3.78925689e-02 2.20607638e-01 7.06779182e-01 7.85670102e-01
1.59645224e+00 -2.42779642e-01 -2.26757079e-01 4.38108265e-01
1.43196082e+00 9.06145930e-01 6.52254224e-01 6.04607821e-01
4.31136131e-01 7.24437416e-01 4.60090607e-01 5.06493568e-01
-1.51321992e-01 3.93539220e-01 4.48507488e-01 7.91597180e-03
5.35745203e-01 -2.03063324e-01 4.03665125e-01 9.93998051e-01
-2.76936412e-01 3.31724226e-01 -1.08387244e+00 7.87142158e-01
-2.11758518e+00 -1.38465214e+00 -5.19469678e-01 1.84015346e+00
3.25538725e-01 1.18042476e-01 3.34264517e-01 6.41889334e-01
9.93991077e-01 2.92645901e-01 -4.02752042e-01 -4.59715039e-01
-2.47289255e-01 2.96806067e-01 -5.43373637e-02 -3.45902979e-01
-1.20381331e+00 1.29851982e-01 6.12707806e+00 8.69383037e-01
-1.59906459e+00 -2.21068695e-01 5.42798460e-01 -1.57553505e-03
-1.02343187e-01 -3.01984876e-01 4.90976460e-02 8.98054302e-01
8.90083730e-01 -9.60545316e-02 4.97982621e-01 7.63410389e-01
4.95209605e-01 2.52694428e-01 -9.85880315e-01 1.16630793e+00
-4.10403758e-01 -1.53606546e+00 1.47462144e-01 1.49903528e-03
6.57469153e-01 5.34157455e-02 7.87264705e-02 1.22347787e-01
-4.79546428e-01 -1.03296030e+00 7.05006540e-01 5.57484210e-01
5.13058007e-01 -8.94923568e-01 6.68042958e-01 1.48015141e-01
-1.75772715e+00 -5.92971623e-01 -5.34505725e-01 -4.23127860e-01
-2.63315976e-01 6.59064770e-01 -3.62833291e-01 5.73187172e-01
1.07842636e+00 1.17233717e+00 -2.47638777e-01 1.05850363e+00
4.05781686e-01 7.39177465e-01 -3.74397784e-01 -3.35200518e-01
7.40768611e-01 -5.07313848e-01 4.74848539e-01 1.06779385e+00
6.80922627e-01 -8.47989470e-02 2.62971997e-01 9.04004991e-01
3.79720271e-01 2.06422344e-01 -6.20317876e-01 -5.27610123e-01
3.12768102e-01 1.21675766e+00 -1.10478246e+00 -2.57094622e-01
-3.33631009e-01 6.34599209e-01 -6.70965910e-02 3.10067207e-01
-6.60862029e-01 -6.61423743e-01 4.86406833e-01 3.73917073e-02
4.38838810e-01 -2.79659092e-01 -1.00590643e-02 -7.04185963e-01
2.70460159e-01 -6.84658706e-01 7.62585998e-01 -7.60856032e-01
-1.69883323e+00 7.86743999e-01 -7.43150637e-02 -2.01823354e+00
-2.57611066e-01 -7.77209997e-01 -1.16499770e+00 7.95066416e-01
-1.06672716e+00 -5.92589498e-01 -2.88492143e-01 9.45853412e-01
3.84975791e-01 -2.95077473e-01 8.20007741e-01 5.61625481e-01
-3.07160795e-01 1.63812846e-01 2.78005034e-01 4.81491148e-01
-2.11969204e-02 -1.07816350e+00 1.16660655e-01 6.73202336e-01
1.89806968e-02 6.60292327e-01 3.11375618e-01 -5.14102399e-01
-1.24027884e+00 -1.06606400e+00 7.05248713e-01 2.51851141e-01
8.41422856e-01 -5.74500114e-02 -1.07853758e+00 9.09510255e-02
1.45183086e-01 -1.27036884e-01 8.43670428e-01 -4.22883481e-02
-3.43054295e-01 -2.96603978e-01 -7.78186560e-01 3.78754407e-01
9.69035208e-01 -6.36550009e-01 -6.42101943e-01 2.86909610e-01
4.23189610e-01 1.14021651e-01 -8.45854580e-01 3.88245165e-01
5.93012094e-01 -7.63910353e-01 7.28766501e-01 -6.04045093e-01
7.15743303e-01 -6.63345754e-01 -1.39909491e-01 -9.68462825e-01
-6.73151910e-01 -3.54166687e-01 1.48951590e-01 8.15086067e-01
2.11264074e-01 -6.05779886e-01 4.26810890e-01 -4.12692308e-01
-2.28207022e-01 -5.87777019e-01 -1.24612617e+00 -9.23050225e-01
-3.26370448e-01 -3.58567297e-01 7.87997186e-01 1.33072841e+00
2.59264141e-01 -2.24801898e-01 -3.23448889e-02 -1.55967504e-01
2.19877183e-01 8.00311923e-01 7.68187791e-02 -1.39668667e+00
1.28695086e-01 -8.06344032e-01 -8.13995361e-01 -5.61384141e-01
-2.50676703e-02 -1.19387162e+00 -1.40035421e-01 -1.20479488e+00
-2.52152592e-01 -1.33450419e-01 -9.76937354e-01 3.53458911e-01
3.04405630e-01 7.82683939e-02 -1.09432943e-01 5.08518755e-01
-2.55959511e-01 3.83210391e-01 1.07596421e+00 -3.39676440e-01
-1.61554441e-01 -1.02465399e-01 4.40435037e-02 4.41555947e-01
7.67686009e-01 -2.51619846e-01 -3.38351637e-01 -1.74732730e-01
1.79927036e-01 1.21990152e-01 4.08774227e-01 -1.09715664e+00
2.63465911e-01 6.60509570e-03 6.67962730e-01 -1.07135808e+00
-1.35296568e-01 -9.81624424e-01 5.84344983e-01 7.75610149e-01
-1.81916296e-01 7.89677382e-01 2.03647599e-01 4.22905028e-01
-7.87486851e-01 4.09055948e-02 3.49159420e-01 -2.50675827e-01
-1.23496568e+00 1.91023111e-01 -8.44122946e-01 -6.63893402e-01
8.02138388e-01 -7.78576255e-01 -1.66272908e-01 -1.52243286e-01
-8.24038863e-01 -3.19241174e-02 -1.36232108e-01 5.83289981e-01
7.94206798e-01 -2.00913501e+00 -4.24005240e-01 4.49011236e-01
3.33670855e-01 -4.69068497e-01 3.80720973e-01 9.39426363e-01
-6.26691401e-01 2.83289403e-01 -8.20716918e-01 -1.01168966e+00
-9.47456419e-01 4.74133998e-01 4.81450737e-01 -4.35952023e-02
-8.71945500e-01 3.32559437e-01 -2.23314852e-01 -1.44144639e-01
2.52243608e-01 -6.97642803e-01 -7.03068554e-01 4.07531798e-01
5.22371888e-01 3.39755893e-01 7.04508051e-02 -4.93558168e-01
-4.76949185e-01 6.37941480e-01 2.55509794e-01 1.87748373e-01
1.70597148e+00 4.92901504e-01 -7.97108710e-01 7.58818924e-01
1.49492443e+00 -5.48282683e-01 -8.64990413e-01 9.92266759e-02
4.48490530e-01 -2.25770608e-01 -3.26732576e-01 -3.87693763e-01
-9.61384654e-01 7.63390362e-01 9.15650487e-01 7.83768833e-01
1.37597263e+00 -3.72041732e-01 6.81340933e-01 2.64706701e-01
3.52586716e-01 -1.10677707e+00 2.91486889e-01 7.36955166e-01
1.03694141e+00 -7.45514274e-01 -6.23163044e-01 1.51218534e-01
-5.36721945e-02 1.67659295e+00 5.08427262e-01 -6.53615057e-01
9.17936087e-01 2.94115748e-02 -8.21576193e-02 -5.17645359e-01
-5.36695898e-01 -1.25367776e-01 5.84815264e-01 3.55208218e-01
4.55824792e-01 9.23499241e-02 -6.83209717e-01 3.63870233e-01
-1.98826253e-01 -1.54066309e-01 -9.54432786e-02 9.17037547e-01
-5.08166850e-01 -8.37988615e-01 -5.11254489e-01 7.21639872e-01
-1.95589006e-01 1.68114275e-01 -3.49727482e-01 5.34720004e-01
2.77010143e-01 6.95462942e-01 8.82295966e-01 -6.26430035e-01
2.03517660e-01 2.84415752e-01 1.77133605e-01 -1.26281023e-01
-8.12978208e-01 3.06245118e-01 -4.30397719e-01 -6.08102560e-01
-6.12483919e-01 -4.18803722e-01 -1.49490893e+00 -3.58275205e-01
1.26471251e-01 3.92793894e-01 3.84064674e-01 6.60446107e-01
4.10305411e-01 6.97236478e-01 9.66357589e-01 -7.23130703e-01
2.32397780e-01 -9.84534621e-01 -6.23346746e-01 6.74614966e-01
1.93190247e-01 -5.27498484e-01 -3.45848650e-01 -1.57073066e-01] | [7.164590358734131, 3.011826276779175] |
7d7bff70-15c2-4ddb-9fbe-6ae1fab182be | concept-representation-learning-with | 2112.05677 | null | https://arxiv.org/abs/2112.05677v2 | https://arxiv.org/pdf/2112.05677v2.pdf | Concept Representation Learning with Contrastive Self-Supervised Learning | Concept-oriented deep learning (CODL) is a general approach to meet the future challenges for deep learning: (1) learning with little or no external supervision, (2) coping with test examples that come from a different distribution than the training examples, and (3) integrating deep learning with symbolic AI. In CODL, as in human learning, concept representations are learned based on concept exemplars. Contrastive self-supervised learning (CSSL) provides a promising approach to do so, since it: (1) uses data-driven associations, to get away from semantic labels, (2) supports incremental and continual learning, to get away from (large) fixed datasets, and (3) accommodates emergent objectives, to get away from fixed objectives (tasks). We discuss major aspects of concept representation learning using CSSL. These include dual-level concept representations, CSSL for feature representations, exemplar similarity measures and self-supervised relational reasoning, incremental and continual CSSL, and contrastive self-supervised concept (class) incremental learning. The discussion leverages recent findings from cognitive neural science and CSSL. | ['Daniel T. Chang'] | 2021-12-10 | null | null | null | null | ['relational-reasoning'] | ['natural-language-processing'] | [ 4.40384716e-01 4.27177221e-01 -2.57349819e-01 -5.38607478e-01
-1.97179317e-01 -6.79547429e-01 9.35596228e-01 7.09869385e-01
-3.31760764e-01 7.90174484e-01 1.90912351e-01 -2.15195403e-01
-8.25380862e-01 -9.43986714e-01 -5.97207665e-01 -4.99008119e-01
-5.32144368e-01 9.42112386e-01 1.14583507e-01 -4.89204913e-01
5.29240131e-01 5.26749432e-01 -2.03694034e+00 4.33470726e-01
9.66527700e-01 1.11808038e+00 2.77442597e-02 3.44981194e-01
-4.92876798e-01 1.36517334e+00 -5.45124233e-01 5.00374846e-02
-7.58057535e-02 -6.00791454e-01 -1.09360635e+00 2.67694760e-02
3.73540342e-01 1.91841394e-01 3.25839758e-01 8.22004557e-01
7.37482160e-02 5.28203547e-01 9.46645975e-01 -1.55526257e+00
-1.18811810e+00 8.18098009e-01 -4.21678163e-02 1.64751947e-01
3.02566856e-01 3.79875414e-02 9.41882432e-01 -1.01414979e+00
6.32286131e-01 1.50838053e+00 7.36967444e-01 7.69473135e-01
-1.48386610e+00 -5.23492396e-01 3.65705013e-01 2.14731500e-01
-1.33791184e+00 -3.41745108e-01 7.31679618e-01 -5.45018911e-01
1.08750427e+00 -9.42735001e-02 1.14299703e+00 1.13850629e+00
-1.31800905e-01 7.50154674e-01 1.26138890e+00 -6.87945783e-01
9.27003860e-01 1.69559151e-01 3.25521976e-01 3.69866341e-01
2.34606132e-01 3.87122631e-01 -7.40339279e-01 -8.41266215e-02
4.83178705e-01 3.15157205e-01 1.96535796e-01 -6.25563204e-01
-1.16924489e+00 8.71535838e-01 6.41579926e-01 6.04173183e-01
-3.14043432e-01 3.67397219e-01 4.87864941e-01 7.09200680e-01
3.53463471e-01 9.74756777e-01 -5.88608563e-01 1.37632012e-01
-8.38581622e-01 3.26175451e-01 5.42179346e-01 1.20859218e+00
1.10774386e+00 4.19925988e-01 3.08079422e-02 7.65993893e-01
7.28265643e-02 3.72784823e-01 1.10722327e+00 -9.80644405e-01
-2.83502024e-02 7.40449429e-01 -3.65491599e-01 -6.04337394e-01
-5.52251637e-01 -5.71272492e-01 -4.87545937e-01 1.97207838e-01
-1.54269770e-01 1.03155434e-01 -8.29522192e-01 2.06673098e+00
-7.60964900e-02 -1.33699933e-02 5.43776512e-01 4.53900307e-01
8.14168513e-01 4.05612439e-01 2.48352811e-01 -2.92874247e-01
9.28085148e-01 -6.96979702e-01 -4.57205474e-01 -4.11351442e-01
8.52703512e-01 1.56137064e-01 1.21561301e+00 3.57428968e-01
-9.54937458e-01 -8.34469557e-01 -1.12884557e+00 -5.04622944e-02
-1.02224767e+00 -6.19784296e-01 8.44430685e-01 3.57667148e-01
-1.45965064e+00 6.02150202e-01 -4.55988377e-01 -4.61598665e-01
8.97740364e-01 2.37479985e-01 -2.19704539e-01 -1.80424079e-01
-1.13321400e+00 8.85505855e-01 1.00799227e+00 -4.54259008e-01
-9.45257187e-01 -8.05114985e-01 -9.79254544e-01 3.45597237e-01
6.04180634e-01 -4.69654351e-01 9.79114890e-01 -1.55288589e+00
-1.15424263e+00 1.03784740e+00 2.52274513e-01 -6.57595813e-01
-9.14414153e-02 -2.15049684e-01 -3.97773743e-01 2.94910997e-01
2.42858723e-01 1.04037762e+00 6.73207045e-01 -1.36072493e+00
-3.80391061e-01 -3.50482523e-01 -2.32876521e-02 4.64453280e-01
-4.97264683e-01 -4.70920593e-01 4.37219381e-01 -8.04706454e-01
2.89132088e-01 -7.16128170e-01 -7.21048638e-02 1.81433111e-01
-4.49812151e-02 -7.17990458e-01 7.52779245e-01 9.26673189e-02
7.46146739e-01 -2.11882091e+00 1.38876960e-01 2.35683605e-01
4.20937181e-01 1.24628700e-01 -2.19744608e-01 5.55298805e-01
-4.01689470e-01 5.39631732e-02 -4.22223002e-01 1.62300006e-01
-2.48041928e-01 3.15667421e-01 -4.70075995e-01 -3.04818332e-01
5.44391870e-01 1.23831046e+00 -1.49259472e+00 -3.94384772e-01
-1.28704265e-01 -4.73352941e-03 -6.09171152e-01 1.98862121e-01
-4.63948667e-01 1.52868897e-01 -4.94723618e-02 7.66827047e-01
1.11904345e-01 -2.36419052e-01 3.13714325e-01 7.18656480e-02
1.61241833e-02 2.81282246e-01 -1.04856348e+00 1.73004520e+00
-2.15147734e-01 6.85276687e-01 -7.18087792e-01 -1.45377004e+00
1.31332028e+00 1.42470554e-01 4.11238909e-01 -7.89785206e-01
-1.85777545e-01 2.46376365e-01 2.04500139e-01 -4.50707197e-01
9.72039923e-02 -4.78190333e-01 6.84387237e-02 9.11058068e-01
7.54999161e-01 -3.30470860e-01 1.90563530e-01 3.48361015e-01
9.71498549e-01 3.59254032e-01 6.59691215e-01 -7.50266790e-01
2.31336340e-01 1.11067198e-01 4.11609560e-01 8.88611495e-01
-4.90726940e-02 2.45213047e-01 4.26847905e-01 -7.24446774e-01
-6.23841345e-01 -1.44216788e+00 -4.06030230e-02 1.48148501e+00
-9.53985285e-03 -4.18402523e-01 -3.70992541e-01 -6.05968714e-01
2.43198484e-01 9.04043734e-01 -8.64821970e-01 -8.15081596e-01
-3.45040828e-01 -2.90629476e-01 2.82913208e-01 9.62021708e-01
3.62438291e-01 -1.62669909e+00 -8.11353087e-01 3.75130355e-01
3.10876071e-01 -4.86787081e-01 6.51881993e-02 8.68635356e-01
-1.14067888e+00 -1.21600211e+00 -1.72285423e-01 -9.80623126e-01
7.75429368e-01 3.92159641e-01 1.38970780e+00 2.77254969e-01
-3.66795480e-01 9.28138256e-01 -5.15487015e-01 -6.71594679e-01
-3.39702964e-01 -3.27685744e-01 4.67909098e-01 -2.70310402e-01
5.31040370e-01 -9.05427098e-01 -2.45861411e-01 -6.70735762e-02
-1.09862912e+00 -1.18357003e-01 5.04180193e-01 1.09927213e+00
6.10103130e-01 1.33778334e-01 1.37615132e+00 -1.13741028e+00
8.24924350e-01 -7.61268854e-01 -1.23656176e-01 4.47933793e-01
-1.12438381e+00 1.09168135e-01 6.53877616e-01 -7.72369742e-01
-9.36035931e-01 -3.77275050e-01 3.46854597e-01 -4.25364226e-01
-2.28620380e-01 7.61325538e-01 2.41442263e-01 2.18509659e-01
1.27637064e+00 5.26797056e-01 3.49048585e-01 -1.98393017e-01
7.13671863e-01 4.34517771e-01 5.19029260e-01 -1.13986790e+00
6.28965855e-01 3.21387112e-01 -9.63307396e-02 -7.27443635e-01
-1.14073467e+00 6.02871180e-02 -1.07931709e+00 -2.37836942e-01
5.42643011e-01 -7.83584356e-01 -5.60017586e-01 1.25482708e-01
-5.53351104e-01 -6.72016025e-01 -1.15908718e+00 1.89647913e-01
-9.65546072e-01 -2.75156707e-01 -3.85376900e-01 -9.62750852e-01
-2.71646321e-01 -4.82870549e-01 5.23237526e-01 3.20160896e-01
-5.08995116e-01 -1.22796392e+00 -9.24987495e-02 -1.28632456e-01
6.84863389e-01 3.76842856e-01 1.30939341e+00 -1.16297960e+00
-1.74623504e-01 1.61094174e-01 8.65410194e-02 3.53526294e-01
3.01508039e-01 -3.61457407e-01 -1.01485229e+00 -5.28620303e-01
7.86134601e-02 -1.31303430e+00 7.72223592e-01 -5.43002551e-03
1.32300544e+00 -3.44788551e-01 -8.22253376e-02 3.74929398e-01
1.22930515e+00 4.82264221e-01 2.19835564e-01 2.46519238e-01
4.37414140e-01 9.25387323e-01 6.44770205e-01 1.07984312e-01
4.62400228e-01 6.36468232e-02 2.14259312e-01 2.25327000e-01
-1.70303747e-01 -4.27560687e-01 1.12782620e-01 7.96987295e-01
-6.26964169e-03 3.51026088e-01 -1.14998567e+00 5.91189921e-01
-1.95438206e+00 -1.12522316e+00 4.40219641e-01 1.93611395e+00
1.09163129e+00 3.68104666e-01 2.21496120e-01 3.25353086e-01
4.91528720e-01 -2.28352264e-01 -1.20091724e+00 -4.40345764e-01
-2.66717076e-01 5.95492780e-01 -4.32676286e-01 9.58437845e-02
-8.42177331e-01 1.20387757e+00 6.77602005e+00 5.49152613e-01
-9.40863013e-01 7.60890618e-02 6.43823266e-01 -6.78783357e-02
-3.72052073e-01 1.44440919e-01 -2.95986950e-01 1.53246343e-01
8.35231602e-01 -3.93009245e-01 5.87890506e-01 1.13609624e+00
-6.40080631e-01 1.77850679e-01 -1.72476220e+00 8.81427288e-01
3.01294178e-01 -1.54258335e+00 3.81672531e-01 -1.61684096e-01
8.96313488e-01 -8.21528211e-02 -1.29727826e-01 8.92822921e-01
4.79159027e-01 -1.16596735e+00 8.78389060e-01 7.10586071e-01
8.27988267e-01 -7.78975666e-01 3.32593650e-01 2.42167294e-01
-1.06489444e+00 -7.01140940e-01 -4.00143772e-01 -1.32682011e-01
-4.65113878e-01 2.48458013e-01 -4.98878956e-01 1.15807690e-01
8.09562624e-01 1.17751253e+00 -7.51290202e-01 5.95718980e-01
-2.27251679e-01 4.75926131e-01 1.36134431e-01 -1.61928654e-01
9.59362835e-02 1.42209485e-01 2.32589543e-01 1.15126610e+00
1.02636211e-01 1.29286960e-01 3.46074045e-01 1.26171076e+00
1.49156362e-01 -1.09482273e-01 -8.23386014e-01 -2.48586640e-01
1.07700884e+00 7.32138157e-01 -8.48213673e-01 -4.85871881e-01
-4.87536676e-02 4.93977368e-01 7.32095718e-01 3.52214128e-01
-8.16637725e-02 -3.81161690e-01 5.17241001e-01 8.54370594e-02
1.07243612e-01 -2.01790929e-01 -6.18031695e-02 -9.26399946e-01
-4.02637601e-01 -7.59516597e-01 5.93257606e-01 -9.53129113e-01
-1.67227864e+00 5.05906641e-01 1.95362195e-01 -1.21456516e+00
-5.09063184e-01 -6.80780172e-01 -5.01691520e-01 4.65227664e-01
-1.51356816e+00 -9.61283982e-01 -2.59611368e-01 8.07588279e-01
5.86692095e-01 -7.50712037e-01 1.21479404e+00 -2.57721931e-01
3.62877473e-02 4.12987679e-01 -5.61865196e-02 -9.02121514e-02
4.25613612e-01 -1.48741066e+00 1.76005438e-01 1.88571826e-01
1.60772011e-01 1.00429046e+00 -8.76665115e-03 -5.62691510e-01
-1.19773877e+00 -9.96331632e-01 6.20539665e-01 -5.09934783e-01
5.52321434e-01 -4.67562735e-01 -1.26291311e+00 6.11571193e-01
-2.17262253e-01 1.25790194e-01 1.20222759e+00 3.27327609e-01
-6.70566142e-01 -3.56352329e-01 -1.20316994e+00 5.28899968e-01
1.41476071e+00 -6.40682697e-01 -1.09957337e+00 3.76613528e-01
1.05973089e+00 1.23410366e-01 -8.28456700e-01 1.74827710e-01
3.98852825e-01 -9.20153201e-01 1.09715664e+00 -1.10946035e+00
5.46433032e-01 -2.52074718e-01 -1.94446668e-01 -1.50102007e+00
-7.42427766e-01 -2.57256538e-01 -6.15764558e-01 1.12842405e+00
1.72246188e-01 -7.83812940e-01 3.97296220e-01 3.83053392e-01
-3.96565378e-01 -9.41981971e-01 -6.01973295e-01 -1.17807090e+00
2.44762272e-01 -3.60079557e-01 7.33681321e-01 1.45410001e+00
2.68818170e-01 3.23362738e-01 2.67800719e-01 -5.07167041e-01
5.69720447e-01 1.26821712e-01 2.08420679e-01 -1.91831350e+00
-2.58755624e-01 -6.18925154e-01 -5.29965818e-01 -5.24591446e-01
2.12762892e-01 -1.47956860e+00 -3.57446335e-02 -1.41652668e+00
2.60897666e-01 -7.52792895e-01 -7.33404279e-01 9.35063422e-01
-5.83156832e-02 -9.83458906e-02 2.58948952e-01 3.62240076e-01
-7.82226682e-01 6.67661905e-01 9.27824616e-01 -1.29913777e-01
-2.02341065e-01 -4.13930207e-01 -1.39713848e+00 6.19785726e-01
7.81182349e-01 -4.41919684e-01 -1.11961567e+00 -1.46120742e-01
5.46194851e-01 -3.19555074e-01 3.84982765e-01 -1.11939287e+00
2.56747961e-01 -4.78107423e-01 6.72818780e-01 -2.15650275e-01
1.53142914e-01 -6.79764032e-01 -4.06168848e-01 6.63553059e-01
-9.58829522e-01 3.75991985e-02 1.22671373e-01 5.93718648e-01
-8.43856111e-02 -4.33813959e-01 8.07576060e-01 -5.61981738e-01
-8.68976653e-01 -8.42472240e-02 -5.03674507e-01 6.21550739e-01
8.47994328e-01 -4.33451682e-01 -5.99675059e-01 -1.18069805e-01
-9.44416106e-01 3.63774210e-01 1.92838654e-01 6.45277262e-01
9.39738274e-01 -1.66746140e+00 -5.69278598e-01 3.24097008e-01
7.03041732e-01 2.75028229e-01 -1.28275394e-01 1.72338963e-01
-1.37872234e-01 3.02616984e-01 -4.41856116e-01 -5.81899345e-01
-4.82795388e-01 8.75860870e-01 2.04681009e-01 2.60653347e-01
-5.97869098e-01 9.42273736e-01 -8.18688143e-03 -7.45134175e-01
3.48799080e-01 4.79231179e-02 -4.32644397e-01 2.88809478e-01
6.65865004e-01 1.71318457e-01 -1.20098494e-01 -1.27976343e-01
-2.30796635e-01 3.56457919e-01 -1.89689502e-01 -3.85346748e-02
1.69687355e+00 2.11678177e-01 -1.74869567e-01 1.12238503e+00
9.96328652e-01 -7.12222397e-01 -1.22029471e+00 -6.60175860e-01
5.74371874e-01 1.30970143e-02 -2.27245137e-01 -1.01844752e+00
-6.74517810e-01 7.55541623e-01 5.38467467e-01 3.08272332e-01
9.79633152e-01 1.81876883e-01 1.27441719e-01 1.03927374e+00
5.01611173e-01 -1.42995191e+00 1.01439226e+00 6.64298415e-01
1.06349194e+00 -1.06995165e+00 2.49440093e-02 1.28085345e-01
-6.62448406e-01 1.37579501e+00 1.06527877e+00 -2.60972857e-01
8.88053477e-01 -3.76541391e-02 -2.82787234e-01 -5.11385322e-01
-1.08550096e+00 -3.29341650e-01 2.53177017e-01 1.12198210e+00
6.05535328e-01 9.26232431e-03 2.14534596e-01 5.80622256e-01
-3.21477175e-01 -9.63126272e-02 2.38751218e-01 1.38960075e+00
-6.45754993e-01 -8.52035701e-01 -7.18446299e-02 7.71030128e-01
4.99992400e-01 -3.68237168e-01 -4.47524637e-01 6.62743211e-01
4.53456044e-01 8.17878664e-01 3.33940923e-01 -1.90995008e-01
5.00553548e-02 4.84645814e-01 4.68287259e-01 -1.20377362e+00
-4.37880635e-01 -4.47273940e-01 -2.55740494e-01 -4.40685630e-01
-4.48244959e-01 -7.20639586e-01 -1.56476760e+00 2.29410529e-01
-6.38239086e-02 1.10253550e-01 4.51736242e-01 1.07977879e+00
4.20157760e-01 6.42299294e-01 5.44199228e-01 -8.27797413e-01
-3.85066688e-01 -8.28116417e-01 -5.18867433e-01 5.94663322e-01
3.11497688e-01 -1.00463378e+00 -4.47251022e-01 1.06663235e-01] | [10.14940357208252, 2.4974546432495117] |
3e0b9c75-5a6b-49a8-b0d9-d6b2ee8b8594 | when-did-it-happen-duration-informed-temporal | 2202.08138 | null | https://arxiv.org/abs/2202.08138v2 | https://arxiv.org/pdf/2202.08138v2.pdf | When Did It Happen? Duration-informed Temporal Localization of Narrated Actions in Vlogs | We consider the task of temporal human action localization in lifestyle vlogs. We introduce a novel dataset consisting of manual annotations of temporal localization for 13,000 narrated actions in 1,200 video clips. We present an extensive analysis of this data, which allows us to better understand how the language and visual modalities interact throughout the videos. We propose a simple yet effective method to localize the narrated actions based on their expected duration. Through several experiments and analyses, we show that our method brings complementary information with respect to previous methods, and leads to improvements over previous work for the task of temporal action localization. | ['Rada Mihalcea', 'Dandan Shan', 'Jiajun Bao', 'YuHang Zhou', 'Santiago Castro', 'Oana Ignat'] | 2022-02-16 | null | null | null | null | ['action-localization'] | ['computer-vision'] | [ 2.91390717e-01 -6.72567338e-02 -4.80557859e-01 -2.28730038e-01
-5.19095600e-01 -7.72865951e-01 8.46793473e-01 9.94543508e-02
-4.91271406e-01 6.14561081e-01 8.97400916e-01 2.35501006e-01
1.33332804e-01 -2.41295010e-01 -5.12146056e-01 -5.53941607e-01
-7.50480831e-01 -1.34148285e-01 6.10394657e-01 4.25149649e-02
2.76147830e-03 3.90271455e-01 -1.55796409e+00 8.17815125e-01
5.19181155e-02 9.18643653e-01 2.03811526e-02 7.74535835e-01
3.92391682e-01 1.93296528e+00 -5.39539874e-01 -2.64866918e-01
-1.09401040e-01 -8.39860916e-01 -1.28504288e+00 4.17689502e-01
3.85523856e-01 -4.22859818e-01 -8.61584306e-01 6.84401631e-01
2.12902188e-01 6.18130445e-01 4.06055123e-01 -1.38591075e+00
-3.96350831e-01 6.33919716e-01 -2.92600125e-01 7.02342868e-01
1.09634602e+00 7.92523921e-02 8.97109866e-01 -4.91145253e-01
1.27323079e+00 1.28292978e+00 7.27169633e-01 4.25072193e-01
-8.95395696e-01 -9.06874985e-02 1.95597887e-01 7.23329425e-01
-1.51020586e+00 -7.07323372e-01 7.05810845e-01 -5.58551073e-01
1.01724029e+00 8.75339955e-02 8.76368582e-01 1.43764007e+00
1.07347146e-01 1.19797313e+00 9.53045130e-01 -5.33012807e-01
1.10149167e-01 -5.51176704e-02 -1.56904519e-01 9.12898719e-01
-5.18071830e-01 -2.52093583e-01 -1.00572407e+00 6.30912557e-03
7.65299618e-01 -1.24212526e-01 -2.35734001e-01 -2.88746148e-01
-1.67098486e+00 5.32872915e-01 2.54172355e-01 7.46076286e-01
-4.68274117e-01 4.77843314e-01 7.73526669e-01 9.28795487e-02
4.41378444e-01 4.83969636e-02 -1.85898855e-01 -8.10737431e-01
-8.63661349e-01 1.95648506e-01 7.14271188e-01 8.90411735e-01
2.29317993e-01 -4.06688035e-01 -6.75413847e-01 4.54743862e-01
-1.47909015e-01 2.25993395e-01 2.04898179e-01 -1.48492861e+00
2.93539524e-01 3.68409753e-01 4.12834734e-01 -1.31878853e+00
-5.66871047e-01 5.49152792e-01 -3.79347146e-01 -2.85543382e-01
5.04165947e-01 4.23750840e-02 -4.16214108e-01 1.58421266e+00
2.66798377e-01 3.64492536e-01 -1.36754781e-01 8.53634298e-01
8.65993381e-01 5.21160185e-01 3.89409453e-01 -6.05400145e-01
1.56377637e+00 -1.18185532e+00 -1.32289433e+00 -3.93533818e-02
7.97531605e-01 -3.90897810e-01 9.78711188e-01 2.87902802e-01
-9.59789515e-01 -5.23662031e-01 -6.17816329e-01 -1.47532180e-01
-4.47341681e-01 4.33648467e-01 7.52176821e-01 2.85152704e-01
-9.06750083e-01 6.09573364e-01 -1.14832854e+00 -1.02751708e+00
5.23559749e-01 -1.08580977e-01 -5.17821431e-01 1.86468899e-01
-1.12751341e+00 8.28712702e-01 5.06788075e-01 -1.38888985e-01
-8.74397159e-01 -1.19421236e-01 -1.10489357e+00 -3.54400814e-01
6.51314020e-01 -1.34206980e-01 1.59846890e+00 -8.44637871e-01
-1.30612826e+00 1.08390534e+00 -4.09913689e-01 -6.79408014e-01
4.69106048e-01 -2.33251497e-01 -5.48808634e-01 9.07606542e-01
1.30252004e-01 7.20091581e-01 3.80412996e-01 -6.43916667e-01
-7.48757601e-01 7.98859298e-02 3.86374354e-01 1.91514164e-01
-4.23071951e-01 6.15469933e-01 -7.39852786e-01 -8.32385063e-01
-3.04462790e-01 -9.57361400e-01 -1.48204491e-01 1.29464090e-01
-1.29221708e-01 -3.72080207e-01 7.32945442e-01 -7.48551250e-01
1.47639072e+00 -2.25517869e+00 2.88557351e-01 -3.13899904e-01
2.10851967e-01 -3.04806173e-01 1.39244869e-01 7.09185481e-01
6.08432516e-02 -5.30123487e-02 7.91790783e-02 -4.82947648e-01
1.20037019e-01 2.38302067e-01 -2.92644411e-01 8.64099383e-01
-2.40189016e-01 1.10403824e+00 -1.28235412e+00 -1.09858263e+00
4.22874808e-01 4.00572360e-01 -5.38443699e-02 2.15611473e-01
-1.33306012e-01 7.80662179e-01 -5.51982462e-01 8.29433382e-01
-1.10478885e-01 -1.77479312e-01 3.19068164e-01 -3.00450414e-01
-2.47220665e-01 1.26972407e-01 -8.05386961e-01 1.88746440e+00
-1.87727660e-02 1.10525560e+00 -2.59302974e-01 -7.83903658e-01
1.31382614e-01 6.99668586e-01 9.47566271e-01 -6.22547090e-01
2.01217517e-01 -4.69691426e-01 -5.78174353e-01 -1.04557562e+00
4.54860032e-01 2.37366203e-02 -5.55292785e-01 5.84923446e-01
2.87995905e-01 3.48713130e-01 6.74807191e-01 3.22172016e-01
1.41822672e+00 5.64207137e-01 9.05215085e-01 1.16222084e-01
5.01989365e-01 1.64486647e-01 3.81362736e-01 8.13989282e-01
-8.26494932e-01 3.23506564e-01 8.26026082e-01 -7.87514567e-01
-6.19519055e-01 -9.02440131e-01 3.82652968e-01 1.43473291e+00
1.26299262e-01 -9.34347391e-01 -5.91324985e-01 -9.50604558e-01
-3.80548239e-01 3.28138947e-01 -9.91623282e-01 1.89380869e-01
-8.45575154e-01 -2.35752195e-01 6.80994928e-01 8.44015181e-01
6.67887270e-01 -1.69490600e+00 -9.61584866e-01 -1.30601168e-01
-6.74847901e-01 -1.78377676e+00 -5.63259065e-01 -1.07259043e-01
-5.33903241e-01 -1.11077845e+00 -5.19065917e-01 -5.71640253e-01
3.59013826e-01 2.04752207e-01 1.19913316e+00 -1.12599887e-01
-4.63147849e-01 1.02977669e+00 -7.33837247e-01 5.22472560e-02
-3.05490941e-01 -1.74544230e-01 8.44192579e-02 6.13877438e-02
4.39395010e-01 -3.54438514e-01 -4.08476710e-01 3.42875183e-01
-5.98200619e-01 -2.73454469e-03 7.62533918e-02 2.32255146e-01
3.85418892e-01 2.06745982e-01 -1.50166541e-01 -6.06449425e-01
2.22137973e-01 -4.51922059e-01 -3.41463476e-01 3.16881269e-01
1.84046656e-01 -2.53279537e-01 2.65339524e-01 -6.68204904e-01
-1.05542731e+00 6.15175307e-01 2.10913688e-01 -4.18524772e-01
-4.60321873e-01 2.40696847e-01 1.82397380e-01 -1.68572307e-01
5.18327951e-01 2.02214345e-01 -5.96774817e-01 -3.86179268e-01
5.14447510e-01 9.20500308e-02 7.29999006e-01 -1.77608311e-01
3.93593401e-01 8.61953378e-01 -6.07800856e-02 -9.96725559e-01
-9.92597759e-01 -5.97344279e-01 -1.27775311e+00 -8.38956416e-01
1.34362411e+00 -9.12419081e-01 -1.13405681e+00 4.08146709e-01
-1.07229173e+00 -6.00268245e-01 -2.98725963e-01 6.16344333e-01
-1.08390892e+00 6.90029204e-01 -8.16879749e-01 -9.60421801e-01
3.71425837e-01 -6.14321470e-01 1.16088736e+00 -5.90017587e-02
-7.57922411e-01 -1.17684615e+00 1.65853649e-01 3.18307310e-01
-5.98535165e-02 5.67104042e-01 1.79102823e-01 -2.49046028e-01
-3.52080375e-01 -1.09886967e-01 6.26653954e-02 -8.58196169e-02
2.36519724e-01 -1.39319271e-01 -6.56480312e-01 2.99886195e-03
-1.71724245e-01 -5.86956084e-01 9.47547793e-01 4.87222999e-01
1.05018330e+00 -3.55823368e-01 -6.00507200e-01 1.81493461e-01
9.10166025e-01 1.48152530e-01 6.42590702e-01 2.85893142e-01
5.94021797e-01 6.46012366e-01 1.04308259e+00 7.03465164e-01
3.57481211e-01 9.02976811e-01 9.26719531e-02 -3.95929962e-02
-3.45884822e-02 -3.73739898e-01 6.22221172e-01 2.63626963e-01
-5.10187447e-01 -4.82191503e-01 -7.48237789e-01 6.86061203e-01
-2.22265220e+00 -1.56255388e+00 1.03301957e-01 1.65452838e+00
5.65311551e-01 -9.54942331e-02 6.84112787e-01 4.79174964e-02
5.84517062e-01 7.34198213e-01 -1.31573141e-01 1.41202509e-01
-4.00798209e-02 -1.70111209e-01 5.10190666e-01 1.67484567e-01
-1.82470262e+00 1.08940411e+00 8.49837875e+00 5.67086637e-01
-4.61519897e-01 4.17966306e-01 1.44394621e-01 -3.66962880e-01
5.11188328e-01 -2.65704274e-01 -4.42930818e-01 2.26162732e-01
9.25241113e-01 -6.26758188e-02 4.57547575e-01 6.83730245e-01
6.58360898e-01 -4.88575011e-01 -1.19261944e+00 1.07085168e+00
4.58564639e-01 -1.19362211e+00 -4.47717190e-01 -3.15328330e-01
5.78860462e-01 -3.63301247e-01 -2.85953820e-01 1.41588748e-01
1.30871847e-01 -8.27211559e-01 1.06979144e+00 7.68861473e-01
5.00648797e-01 -4.66324478e-01 5.23003459e-01 2.41822183e-01
-1.67362857e+00 -2.88699895e-01 1.88085198e-01 -3.68279070e-01
6.49848223e-01 -6.64205058e-04 -5.37590206e-01 2.67263204e-01
1.00594318e+00 1.35643554e+00 -6.35706246e-01 6.14783168e-01
-5.07204235e-01 5.01525700e-01 9.62104797e-02 4.21585282e-03
2.03457788e-01 1.20847315e-01 3.83795500e-01 1.50872600e+00
1.95724264e-01 4.40742671e-01 4.89162356e-01 4.85893756e-01
1.25385121e-01 7.45903254e-02 -8.64222348e-01 -6.15137994e-01
9.13603082e-02 1.07870746e+00 -1.29334021e+00 -6.21063471e-01
-4.34965670e-01 1.44081283e+00 3.99419695e-01 2.89353311e-01
-1.23679078e+00 -1.75693631e-02 4.29629326e-01 1.00688607e-01
4.26797718e-01 -5.98071337e-01 5.99448204e-01 -1.21391726e+00
4.19722162e-02 -5.61335146e-01 8.69789064e-01 -9.85573947e-01
-8.79077196e-01 4.51417804e-01 4.27796900e-01 -1.32439339e+00
-4.80036676e-01 -3.27316284e-01 -2.04311311e-01 -3.69801335e-02
-6.95731640e-01 -1.14631617e+00 -3.48511934e-01 6.08108044e-01
7.13603616e-01 9.36649591e-02 7.46212244e-01 3.74096751e-01
-3.32984239e-01 2.20286306e-02 -5.06177843e-01 2.33160064e-01
8.12983871e-01 -1.08638418e+00 9.25548226e-02 8.67206037e-01
4.96038169e-01 1.75148830e-01 8.80311787e-01 -6.13993466e-01
-1.15962183e+00 -8.90335560e-01 1.14590764e+00 -8.81811559e-01
8.79471719e-01 -4.48698759e-01 -3.15337628e-01 1.23220885e+00
3.82100850e-01 7.09789097e-02 6.33418381e-01 -1.10587671e-01
3.53051759e-02 3.20898384e-01 -9.30297375e-01 6.19461536e-01
1.61364949e+00 -7.23921418e-01 -6.51949406e-01 7.66554236e-01
5.93948722e-01 -4.38710809e-01 -8.19574594e-01 1.60670146e-01
7.12519944e-01 -9.67202783e-01 1.01486433e+00 -6.98039353e-01
3.35344940e-01 -2.11971000e-01 -9.91669446e-02 -6.20384455e-01
-3.41170460e-01 -6.63311124e-01 -4.96583790e-01 1.01789582e+00
-1.88022479e-01 8.52020010e-02 5.31150162e-01 3.22301239e-01
1.06439047e-01 -1.82930887e-01 -1.01901197e+00 -8.08506668e-01
-8.00435543e-01 -5.54420888e-01 -7.37576038e-02 1.00063467e+00
5.30526996e-01 -3.71422134e-02 -9.82595801e-01 -8.40906277e-02
2.85976559e-01 3.25780967e-03 6.23157918e-01 -6.18880332e-01
-4.69228104e-02 -1.86327830e-01 -7.81161845e-01 -1.05941379e+00
4.90264744e-01 -4.10183847e-01 1.41647801e-01 -1.49528766e+00
4.45297182e-01 7.26292193e-01 -2.58617461e-01 9.43382859e-01
3.19926620e-01 8.07475746e-01 1.65313929e-01 3.79065201e-02
-1.57588172e+00 4.61992860e-01 9.90965784e-01 -8.31539482e-02
-1.99308753e-01 -1.58243507e-01 -9.70032997e-03 9.70872700e-01
3.32118779e-01 -4.38976139e-01 -3.45733017e-01 -3.16307507e-02
4.49228659e-02 2.52536267e-01 6.66390777e-01 -1.18144536e+00
2.86610335e-01 -3.92196715e-01 2.58353382e-01 -8.42679143e-01
5.36182165e-01 -7.18712389e-01 5.82534857e-02 5.48516810e-01
-5.96432507e-01 2.94617862e-02 6.33611232e-02 6.73272312e-01
-3.00710082e-01 1.13641612e-01 4.87296999e-01 -4.89739805e-01
-1.41412234e+00 -1.21758886e-01 -1.04604256e+00 -1.07448019e-01
1.50185919e+00 -6.93136528e-02 -3.59013416e-02 -8.36571991e-01
-1.38748658e+00 1.52992964e-01 3.71119976e-01 5.76347768e-01
3.88487518e-01 -1.61210823e+00 -3.53485256e-01 -2.93818712e-01
3.22029263e-01 -1.07930124e+00 4.45863068e-01 1.16511607e+00
-4.58678603e-01 4.37479645e-01 -3.12149704e-01 -4.85378414e-01
-1.73193753e+00 9.13611174e-01 1.38799444e-01 -1.82261452e-01
-9.01658177e-01 5.35697401e-01 -5.30644022e-02 2.79162675e-01
4.36292022e-01 -3.68413478e-01 -6.10611677e-01 3.78015995e-01
8.51963103e-01 6.39481485e-01 -5.92984974e-01 -1.08714366e+00
-7.43190229e-01 3.75013500e-01 4.70947951e-01 -2.70778239e-01
1.13257349e+00 -5.31895459e-01 -1.27878144e-01 1.08065403e+00
1.08420026e+00 -8.51350352e-02 -1.15305257e+00 -2.27767453e-01
8.70652720e-02 -5.78076303e-01 -3.43064517e-01 -4.73000586e-01
-8.18179131e-01 3.49760234e-01 4.89824951e-01 3.91924202e-01
1.29499769e+00 5.88101387e-01 6.37703598e-01 4.47741985e-01
4.25915629e-01 -1.20605898e+00 4.47270036e-01 4.99178141e-01
7.49366581e-01 -1.29393089e+00 2.75729418e-01 -4.59037274e-01
-9.48352098e-01 1.09094858e+00 3.17387342e-01 1.25616938e-01
4.59262997e-01 1.08464330e-01 -8.27241465e-02 -5.04050851e-01
-7.90473461e-01 -4.65376347e-01 3.07934403e-01 4.31485385e-01
4.84718770e-01 -9.02942196e-02 -4.24442768e-01 4.61099774e-01
1.37808725e-01 2.78797299e-01 4.05529499e-01 1.29649878e+00
-2.11913764e-01 -6.09691143e-01 -2.30859905e-01 -1.97999194e-01
-4.80633348e-01 3.15827727e-01 -7.02644587e-01 9.84620392e-01
2.37892777e-01 9.91144061e-01 8.43087062e-02 -2.13541463e-01
2.90411085e-01 2.53617078e-01 7.36821651e-01 -4.27486837e-01
-2.25844577e-01 -4.39937301e-02 5.14467120e-01 -1.25958943e+00
-1.29315400e+00 -9.96319950e-01 -1.16200173e+00 -1.12713046e-01
3.81819367e-01 -4.83923815e-02 -3.84581201e-02 1.05073333e+00
-2.21875738e-02 4.73403811e-01 3.53440672e-01 -1.06231368e+00
2.12325379e-01 -8.62064540e-01 -7.60060549e-01 6.79533899e-01
2.81974703e-01 -7.67464876e-01 -3.69461179e-01 8.60888600e-01] | [8.377942085266113, 0.5068516135215759] |
b435fba1-7b54-4f4d-b282-d1647c158fba | data-augmented-3d-semantic-scene-completion | 2111.13309 | null | https://arxiv.org/abs/2111.13309v1 | https://arxiv.org/pdf/2111.13309v1.pdf | Data Augmented 3D Semantic Scene Completion with 2D Segmentation Priors | Semantic scene completion (SSC) is a challenging Computer Vision task with many practical applications, from robotics to assistive computing. Its goal is to infer the 3D geometry in a field of view of a scene and the semantic labels of voxels, including occluded regions. In this work, we present SPAwN, a novel lightweight multimodal 3D deep CNN that seamlessly fuses structural data from the depth component of RGB-D images with semantic priors from a bimodal 2D segmentation network. A crucial difficulty in this field is the lack of fully labeled real-world 3D datasets which are large enough to train the current data-hungry deep 3D CNNs. In 2D computer vision tasks, many data augmentation strategies have been proposed to improve the generalization ability of CNNs. However those approaches cannot be directly applied to the RGB-D input and output volume of SSC solutions. In this paper, we introduce the use of a 3D data augmentation strategy that can be applied to multimodal SSC networks. We validate our contributions with a comprehensive and reproducible ablation study. Our solution consistently surpasses previous works with a similar level of complexity. | ['Teofilo de Campos', 'Frederico Guth', 'Aloisio Dourado'] | 2021-11-26 | null | null | null | null | ['3d-semantic-scene-completion'] | ['computer-vision'] | [ 4.84772503e-01 3.94365519e-01 2.39328116e-01 -4.83281910e-01
-5.35930395e-01 -5.78834116e-01 3.28801274e-01 5.27433194e-02
-5.31287372e-01 3.40741068e-01 -7.77418762e-02 -2.94796109e-01
8.28787684e-02 -4.39153671e-01 -7.06961811e-01 -4.24967140e-01
2.49842331e-01 6.22919917e-01 5.60144305e-01 -2.60537326e-01
1.15926474e-01 9.48727548e-01 -1.59877276e+00 2.00849697e-01
6.32064283e-01 1.22876823e+00 5.38684785e-01 4.10661131e-01
-3.84569496e-01 2.65473098e-01 -2.01718688e-01 1.32548258e-01
4.88005400e-01 -8.83754417e-02 -8.33407640e-01 2.85203487e-01
5.66180825e-01 -4.23213661e-01 -3.48360628e-01 8.31576705e-01
5.21956980e-01 1.01960078e-02 6.11340463e-01 -1.34197259e+00
-1.32344633e-01 -1.13345549e-01 -6.21478975e-01 -4.59069721e-02
2.57931679e-01 -4.20998782e-02 4.52829659e-01 -8.50147724e-01
6.35863304e-01 1.22382128e+00 6.65252030e-01 6.86311841e-01
-1.06367421e+00 -2.76817441e-01 1.95966855e-01 -1.96583182e-01
-1.10872543e+00 -7.07577020e-02 1.12485385e+00 -4.74346250e-01
1.01159716e+00 9.25280228e-02 7.43006587e-01 9.45286214e-01
-1.45232141e-01 8.25070679e-01 1.23122287e+00 -3.00006151e-01
5.78300357e-01 -1.84030011e-01 8.67942348e-03 7.07222402e-01
6.86827675e-02 -2.91620135e-01 -5.20391703e-01 7.58990943e-02
1.13122928e+00 2.41442367e-01 -1.42727062e-01 -8.36456418e-01
-1.08945775e+00 7.14712739e-01 7.62607396e-01 1.32882535e-01
-2.25998163e-01 2.77347088e-01 3.40686068e-02 -9.29665789e-02
6.63636327e-01 3.87553394e-01 -6.73820019e-01 2.09973335e-01
-7.17660010e-01 1.58056587e-01 4.72192407e-01 9.16456282e-01
8.69994700e-01 -1.48149639e-01 1.30294457e-01 6.47051215e-01
4.34571445e-01 5.83234668e-01 1.00348242e-01 -1.18826365e+00
3.39035362e-01 1.10292101e+00 -8.55593085e-02 -6.51657760e-01
-7.99554706e-01 -3.69944513e-01 -7.09678113e-01 5.73122501e-01
5.08841276e-01 2.13057667e-01 -1.32318342e+00 1.40741825e+00
6.07766330e-01 -2.70762295e-02 9.80040524e-04 1.23004341e+00
1.14232647e+00 6.80298805e-02 -9.56999660e-02 4.02452230e-01
1.11984503e+00 -7.40472734e-01 -2.32148826e-01 -5.80441594e-01
3.39544892e-01 -6.30734921e-01 1.10014784e+00 3.81750941e-01
-1.00746310e+00 -3.86302829e-01 -1.06262338e+00 -5.26415169e-01
-4.66647834e-01 4.41986285e-02 9.75602686e-01 5.60855746e-01
-1.06647789e+00 3.26229870e-01 -9.86342669e-01 -5.66763878e-01
9.46933568e-01 5.29756844e-01 -8.02769959e-01 -3.50273728e-01
-6.34491861e-01 8.63444149e-01 3.68879825e-01 2.26858556e-01
-1.05229521e+00 -5.56127727e-01 -1.05912745e+00 -2.49323606e-01
4.81724769e-01 -7.75895178e-01 1.19274604e+00 -5.43939173e-01
-1.29027522e+00 1.34126711e+00 -3.55847627e-02 -1.36214256e-01
4.78664875e-01 -2.14834854e-01 5.23226738e-01 2.77129918e-01
6.10011397e-03 1.00381720e+00 7.22483695e-01 -1.62362468e+00
-3.69925052e-01 -9.30016100e-01 2.07238212e-01 3.92714858e-01
-6.10935465e-02 -6.14200532e-01 -6.94983840e-01 -2.57326365e-01
8.65575552e-01 -8.56630206e-01 -6.52756929e-01 3.37516516e-01
-5.38546324e-01 5.45651000e-03 8.02502155e-01 -4.04397368e-01
2.15764955e-01 -2.13254023e+00 4.56714749e-01 7.44123012e-02
4.07145351e-01 4.36911322e-02 -1.55268818e-01 2.78211962e-02
1.73972517e-01 -6.88474923e-02 -7.16398358e-01 -8.02365780e-01
-1.61454193e-02 4.87812370e-01 -2.19860375e-01 6.48579121e-01
2.86301136e-01 9.49470520e-01 -7.62384295e-01 -3.97445202e-01
4.86243904e-01 6.34180725e-01 -5.54877102e-01 3.12357932e-01
-4.47484463e-01 7.75569797e-01 -5.52549541e-01 8.85405421e-01
9.71060097e-01 -1.54600471e-01 -1.62408888e-01 -1.70855001e-01
6.87612742e-02 7.29511157e-02 -9.34565783e-01 2.74002337e+00
-4.34677452e-01 4.37343806e-01 2.85027713e-01 -1.19231236e+00
9.06582773e-01 -4.02739830e-02 5.69530308e-01 -7.92097926e-01
1.72753841e-01 2.36796126e-01 -4.98366714e-01 -5.32925367e-01
3.86851668e-01 -1.48923174e-01 -7.69320279e-02 2.45744839e-01
2.03695267e-01 -9.62289512e-01 -2.74515986e-01 1.28567204e-01
1.00277781e+00 4.33785409e-01 -2.33119968e-02 -3.66909802e-02
2.95203149e-01 2.97687739e-01 3.16244900e-01 6.07526124e-01
3.35894525e-02 1.18353462e+00 6.00345135e-01 -4.28190172e-01
-1.03991902e+00 -1.33131361e+00 -1.20380387e-01 5.97426653e-01
3.24904650e-01 1.01016108e-02 -6.80644393e-01 -8.49103689e-01
5.91753423e-02 2.56906778e-01 -6.95090711e-01 7.42117092e-02
-3.10537338e-01 -5.87114036e-01 3.58873993e-01 5.54566085e-01
5.25583506e-01 -8.47605228e-01 -9.68566656e-01 -2.98487227e-02
-5.86654656e-02 -1.56972575e+00 1.17263615e-01 5.55385053e-01
-1.25353575e+00 -1.24976158e+00 -7.59377062e-01 -7.36336291e-01
9.26927984e-01 3.96798790e-01 9.47446048e-01 -3.43985148e-02
-5.26090145e-01 5.92991948e-01 -3.23336691e-01 -5.40973723e-01
-5.22852391e-02 2.61595041e-01 -9.32655409e-02 -2.70096809e-01
8.93976912e-02 -7.57086933e-01 -6.91273749e-01 2.44697303e-01
-1.13571358e+00 3.38085771e-01 6.86871827e-01 5.33781528e-01
8.29429686e-01 -2.87082911e-01 2.72019804e-01 -6.80985034e-01
1.78148299e-01 -1.98212802e-01 -4.00410354e-01 9.09414701e-03
-9.55643058e-02 1.65863540e-02 1.61891118e-01 -2.00541049e-01
-8.71606648e-01 7.40022600e-01 -4.24851924e-01 -7.68398762e-01
-6.55680716e-01 2.53891945e-01 -3.28687310e-01 -4.51250486e-02
5.23280144e-01 1.84752837e-01 3.23901206e-01 -7.85878241e-01
4.43279147e-01 5.12308061e-01 6.64452016e-01 -5.48575461e-01
5.94525278e-01 1.04458308e+00 4.31517780e-01 -8.38180721e-01
-9.61638331e-01 -5.49862027e-01 -1.16506612e+00 -1.76099285e-01
8.92416060e-01 -9.08123434e-01 -5.41793048e-01 5.78011632e-01
-1.30833840e+00 -6.36406302e-01 -3.96506935e-01 4.21671271e-01
-7.21603811e-01 4.56732154e-01 -3.17700058e-01 -6.11317039e-01
-1.29574344e-01 -1.36425698e+00 1.66484439e+00 1.85886249e-01
3.45569141e-02 -8.35084617e-01 -5.80548309e-02 6.51833773e-01
1.91653088e-01 5.50295591e-01 7.92304277e-01 -3.91270161e-01
-5.59689283e-01 -1.14675686e-01 -3.07855517e-01 3.80986303e-01
4.15496081e-02 -4.20903683e-01 -1.38731050e+00 1.98495314e-02
-1.82154179e-02 -5.30384898e-01 9.73033547e-01 5.02272367e-01
1.34899449e+00 4.21820581e-01 -2.94469386e-01 7.90476859e-01
1.32949483e+00 -1.17419109e-01 5.29204667e-01 1.39671624e-01
9.23063338e-01 8.44157517e-01 4.24586505e-01 2.15544537e-01
3.35972756e-01 4.89885151e-01 1.14250433e+00 -5.88681579e-01
-3.90511632e-01 -1.97566926e-01 -1.50539935e-01 3.46783221e-01
-5.75011782e-03 -9.05861109e-02 -1.12437034e+00 4.98953581e-01
-1.80448067e+00 -2.15159148e-01 -2.78211892e-01 2.04292655e+00
4.70217556e-01 1.26300856e-01 -2.67685950e-01 2.47227892e-01
3.23770016e-01 -1.48677930e-01 -8.02667856e-01 -1.20383866e-01
-1.70904934e-01 3.54602218e-01 3.71481270e-01 4.71503705e-01
-1.13751841e+00 8.99944246e-01 5.67107630e+00 5.67180634e-01
-1.05887377e+00 1.84702173e-01 5.52969217e-01 -9.14616659e-02
-3.99667919e-01 -1.95272848e-01 -4.83355403e-01 -4.28897962e-02
2.57561117e-01 6.97211325e-01 1.61121190e-01 8.98663461e-01
4.07734886e-02 -4.63345379e-01 -1.26791692e+00 1.23680639e+00
1.92338809e-01 -1.19537938e+00 -6.01282045e-02 1.88218102e-01
7.36915708e-01 3.40817809e-01 6.08917549e-02 -6.47536814e-02
5.48157096e-02 -1.30943108e+00 6.21736825e-01 4.11491603e-01
8.72895777e-01 -4.93114352e-01 7.02176392e-01 3.85383338e-01
-7.91371942e-01 1.22192398e-01 -2.98543900e-01 -1.11488774e-01
1.32620752e-01 7.33975530e-01 -8.14441502e-01 5.08743107e-01
9.16910768e-01 6.93670630e-01 -6.28176868e-01 9.99700963e-01
-2.94238597e-01 1.11537039e-01 -6.70397162e-01 1.71051025e-01
4.02803183e-01 -7.09345788e-02 3.23628247e-01 8.46094489e-01
3.14005822e-01 8.40400234e-02 1.03471555e-01 1.00417292e+00
-2.52624229e-02 -8.65649283e-02 -9.57860827e-01 2.68886209e-01
1.79316420e-02 1.32849371e+00 -1.12047982e+00 5.05374186e-02
-3.00594032e-01 1.13627470e+00 3.93835396e-01 3.95709425e-01
-4.09779519e-01 -3.53809185e-02 5.24684966e-01 1.98514566e-01
2.05691323e-01 -5.86264908e-01 -7.56717086e-01 -1.01432359e+00
2.78755613e-02 -2.37253562e-01 1.53053403e-01 -9.74721611e-01
-1.23227811e+00 5.95558047e-01 6.02933317e-02 -1.05377746e+00
1.20443255e-01 -9.26079273e-01 -3.60975087e-01 8.40578973e-01
-1.59689975e+00 -1.34713769e+00 -8.03549588e-01 7.80911565e-01
4.50374305e-01 4.44401205e-02 6.72103763e-01 6.34817928e-02
-2.76874304e-01 -3.18279937e-02 -3.38304222e-01 -3.22145149e-02
3.51685345e-01 -1.24481785e+00 2.86204636e-01 6.21237993e-01
-7.23615140e-02 2.12527990e-01 3.37238103e-01 -4.84859586e-01
-1.60126138e+00 -1.02250361e+00 4.07774419e-01 -5.77310443e-01
5.84095158e-02 -6.93812191e-01 -7.42652655e-01 5.00086606e-01
-1.18980877e-01 2.94898599e-01 4.73169237e-01 -4.26559858e-02
-1.92076638e-01 4.65050116e-02 -1.28614128e+00 4.33184594e-01
1.30546832e+00 -4.55864310e-01 -5.45434773e-01 2.47217342e-01
7.31996357e-01 -8.26308966e-01 -7.97073722e-01 5.98340631e-01
2.39382967e-01 -9.74867582e-01 1.20378757e+00 -5.00886798e-01
4.88473058e-01 -3.92490506e-01 -4.76479948e-01 -1.12624049e+00
3.91266674e-01 -7.70200863e-02 6.44302294e-02 6.96214736e-01
6.17622063e-02 -4.04348433e-01 1.08051872e+00 6.00132883e-01
-6.38621390e-01 -8.64839911e-01 -1.26550877e+00 -3.11927050e-01
1.65519774e-01 -8.29972506e-01 3.67836028e-01 7.61895239e-01
-4.37440932e-01 2.99312323e-01 1.50466084e-01 2.74214387e-01
8.41597557e-01 2.15115726e-01 8.87306273e-01 -1.43689191e+00
1.42753214e-01 -3.72530818e-01 -5.36029458e-01 -1.25689292e+00
1.00747675e-01 -1.11543167e+00 8.44875723e-02 -2.03581381e+00
6.29427880e-02 -5.64980745e-01 9.00455490e-02 6.82836771e-01
2.99406320e-01 5.88646591e-01 1.36060873e-02 -1.70985665e-02
-4.85508233e-01 8.22914124e-01 1.46993899e+00 -2.51105696e-01
-3.04365069e-01 -1.40527666e-01 -5.02097905e-01 8.13172340e-01
8.71821642e-01 -3.06682885e-01 -6.46326005e-01 -7.30297446e-01
2.22990394e-01 -1.38546556e-01 8.10141444e-01 -8.72518480e-01
2.72027314e-01 7.18926042e-02 5.19918084e-01 -9.02658045e-01
7.14633703e-01 -1.01359808e+00 -1.58793762e-01 3.11577439e-01
2.49586236e-02 -2.87226290e-01 4.18854594e-01 4.44848567e-01
-5.09250052e-02 -1.12802371e-01 5.55804253e-01 -4.79315370e-01
-8.39313626e-01 5.36488950e-01 -1.98303729e-01 1.34660769e-02
9.89910841e-01 -4.27780032e-01 -6.80615678e-02 -2.33923774e-02
-8.53219569e-01 2.08840176e-01 7.27840602e-01 3.98184747e-01
1.13100207e+00 -1.03284621e+00 -4.78006989e-01 4.05235231e-01
2.26598009e-01 1.05471754e+00 3.72053862e-01 7.55361855e-01
-8.02738607e-01 4.21701521e-01 -3.92861307e-01 -1.12150908e+00
-8.91062737e-01 3.03342581e-01 4.83993202e-01 1.26537234e-01
-8.34142327e-01 7.55659699e-01 3.53674203e-01 -9.04221356e-01
5.46957672e-01 -6.10916197e-01 -8.81256461e-02 -2.20158458e-01
8.78658816e-02 -1.39144689e-01 3.52316797e-01 -4.18619633e-01
-4.79911000e-01 8.03414464e-01 2.92798549e-01 -2.05572665e-01
1.65780246e+00 -1.10113345e-01 -1.80916145e-01 3.60826820e-01
1.26485586e+00 -5.97764134e-01 -1.68098962e+00 -1.94263518e-01
-3.22090089e-01 -4.17283922e-01 3.52460653e-01 -5.99899709e-01
-1.32677197e+00 1.21420145e+00 6.93893969e-01 -1.17485985e-01
1.11947989e+00 4.67203170e-01 6.67867482e-01 3.18333477e-01
5.14870703e-01 -8.76424670e-01 2.78048426e-01 3.77684534e-01
9.55763161e-01 -1.49391890e+00 -3.34001668e-02 -5.36456406e-01
-4.75296408e-01 1.00911427e+00 7.22898841e-01 3.25139239e-02
6.99934065e-01 1.74513862e-01 6.00296482e-02 -5.79546750e-01
-1.66776299e-01 -5.08614600e-01 3.60925108e-01 9.20990586e-01
6.90373927e-02 -3.26777875e-01 1.78384662e-01 4.93825674e-01
4.97606099e-02 -1.53245687e-01 3.65778208e-01 9.53238547e-01
-2.56504148e-01 -8.66533220e-01 -3.26413900e-01 1.26203582e-01
-6.36146143e-02 1.16067417e-01 -5.38857579e-01 7.97001541e-01
3.12084526e-01 7.38225460e-01 2.10829481e-01 -2.27462858e-01
4.51110512e-01 -8.27640817e-02 8.56399715e-01 -7.43484914e-01
-1.47399649e-01 7.89106339e-02 -2.79744208e-01 -7.31920600e-01
-6.75638020e-01 -5.65122902e-01 -1.52564275e+00 7.98199698e-02
2.73876220e-01 -4.44703072e-01 1.20583320e+00 9.20494974e-01
2.59357899e-01 4.38857853e-01 4.15579468e-01 -1.33406496e+00
6.98804036e-02 -7.75770366e-01 -6.23481393e-01 3.32412541e-01
3.85494888e-01 -9.01310444e-01 -1.57460794e-01 -4.17704619e-02] | [8.411423683166504, -2.8275582790374756] |
8893bb71-819b-4e5f-8921-614ddf8263b4 | mattica-smm4h22-leveraging-sentiment-for | null | null | https://aclanthology.org/2022.smm4h-1.22 | https://aclanthology.org/2022.smm4h-1.22.pdf | mattica@SMM4H’22: Leveraging sentiment for stance & premise joint learning | This paper describes our submissions to the Social Media Mining for Health Applications (SMM4H) shared task 2022. Our team (mattica) participated in detecting stances and premises in tweets about health mandates related to COVID-19 (Task 2). Our approach was based on using an in-domain Pretrained Language Model, which we fine-tuned by combining different strategies such as leveraging an additional stance detection dataset through two-stage fine-tuning, joint-learning Stance and Premise detection objectives; and ensembling the sentiment-polarity given by an off-the-shelf fine-tuned model. | ['Ljiljana Dolamic', 'Fabio Rinaldi', 'Joseph Cornelius', 'Oscar Lithgow-Serrano'] | null | null | null | null | smm4h-coling-2022-10 | ['stance-detection'] | ['natural-language-processing'] | [ 3.78714859e-01 8.10441077e-01 -4.41473335e-01 -6.11304879e-01
-1.06921244e+00 -5.15899658e-01 7.54949033e-01 8.66627634e-01
-6.82850778e-01 7.64359474e-01 6.78784251e-01 -4.99690026e-01
1.59787670e-01 -6.44275129e-01 -6.40226483e-01 -1.71172470e-01
-1.50033340e-01 7.12562442e-01 2.56130010e-01 -5.04383862e-01
2.17715368e-01 -2.54327804e-01 -9.16449130e-01 1.24084282e+00
5.99461854e-01 6.60483539e-01 -3.68136823e-01 7.17406750e-01
3.22836377e-02 1.10192871e+00 -5.19751728e-01 -4.97452587e-01
-1.62100017e-01 -1.87564373e-01 -1.08250701e+00 -3.49455386e-01
-1.36621967e-01 2.54918307e-01 5.73340654e-01 6.92588985e-01
4.91346776e-01 -4.93316323e-01 6.22514069e-01 -7.15128124e-01
-2.33333528e-01 1.22666991e+00 -5.92163801e-01 4.87256736e-01
6.18003190e-01 1.39869109e-01 1.25643098e+00 -6.30918980e-01
1.07546008e+00 1.12956667e+00 1.16825998e+00 5.14196038e-01
-1.15604913e+00 -7.02528715e-01 7.13397786e-02 3.59004326e-02
-9.33752060e-01 -3.85326654e-01 5.31052709e-01 -8.94568861e-01
1.44953656e+00 4.42082435e-01 4.98699844e-01 1.51538086e+00
4.92148489e-01 5.35650671e-01 1.60503399e+00 -1.59770414e-01
1.49003342e-01 4.70291793e-01 3.55061084e-01 4.18514997e-01
1.77842155e-01 -3.92611891e-01 -3.20544243e-01 -7.48827815e-01
-2.24478304e-01 -3.98835540e-01 1.94687009e-01 5.89561105e-01
-1.23546016e+00 1.20287693e+00 1.43699676e-01 2.57071912e-01
-9.03021276e-01 -5.36006451e-01 7.45477855e-01 4.59656835e-01
1.27509344e+00 7.05966532e-01 -9.48865592e-01 5.19364811e-02
-1.15575528e+00 4.35926974e-01 1.14632440e+00 2.39545912e-01
3.70959848e-01 -8.18701565e-01 -4.78843063e-01 7.29614735e-01
4.81606632e-01 3.96279275e-01 3.64536911e-01 -5.61849654e-01
6.14529967e-01 6.49243116e-01 1.63771175e-02 -9.09874499e-01
-9.83964920e-01 -2.49779433e-01 -3.79454315e-01 -4.21117336e-01
1.38981581e-01 -1.04354334e+00 -6.86495066e-01 1.56039572e+00
6.07941151e-01 -8.48527178e-02 6.51659817e-02 3.66282701e-01
1.34067309e+00 4.50783670e-01 5.20085454e-01 -4.67407793e-01
1.73537731e+00 -5.92656910e-01 -8.17753553e-01 -1.89522490e-01
7.92039931e-01 -1.11597764e+00 5.20920157e-01 5.06794274e-01
-1.23539281e+00 -1.06023759e-01 -1.12198472e+00 1.58614546e-01
-6.83338225e-01 -4.71324414e-01 -2.18945602e-03 4.71175432e-01
-9.40501988e-01 3.46481234e-01 -5.95789611e-01 -3.67735744e-01
3.36376935e-01 3.24390441e-01 -1.33499810e-02 5.06009698e-01
-1.78023374e+00 1.22202134e+00 3.08770359e-01 -2.95414060e-01
-6.12373352e-01 -1.03795671e+00 -8.66593480e-01 -6.91716850e-01
4.78127420e-01 -8.49656165e-01 1.32160449e+00 -7.29621708e-01
-1.25054562e+00 1.66210973e+00 -2.09472477e-01 -7.86860287e-01
7.28740394e-01 -1.22377753e-01 -6.44082367e-01 -4.61214930e-02
5.61449945e-01 2.87390321e-01 6.57685280e-01 -6.05355680e-01
-4.45310205e-01 -2.33021989e-01 1.05322532e-01 -2.95505106e-01
-1.85780928e-01 7.29694664e-01 1.45445094e-01 -5.40243804e-01
-7.04874814e-01 -7.62211382e-01 -4.96444046e-01 -9.92508411e-01
-7.88785458e-01 -5.68166971e-01 5.11689901e-01 -8.63743007e-01
1.52801347e+00 -1.46434116e+00 -3.33269387e-01 4.99014944e-01
4.30897176e-01 2.01044664e-01 -3.66651863e-02 6.47772670e-01
-3.37865889e-01 1.92834571e-01 1.28322631e-01 -3.24917972e-01
-1.19619489e-01 -3.57495621e-02 -2.39782259e-01 4.96417969e-01
5.70795059e-01 8.68132830e-01 -1.29217172e+00 -8.58608902e-01
-2.49958411e-01 3.72558981e-01 -8.72807205e-01 3.33736837e-02
-5.48146665e-01 3.48586053e-01 -4.22275573e-01 3.99558425e-01
3.25565845e-01 -5.11335552e-01 5.85932553e-01 -2.59346545e-01
-5.08690238e-01 9.20824409e-01 -6.27103806e-01 9.33241725e-01
-3.49717975e-01 1.66843817e-01 5.17756231e-02 -7.09241152e-01
6.04661942e-01 5.74082017e-01 8.55487406e-01 -5.83127797e-01
3.06683123e-01 2.36664951e-01 -1.16771713e-01 -1.07301211e+00
1.57381758e-01 -1.85920268e-01 -3.82516444e-01 6.59821391e-01
-2.51144141e-01 1.76984116e-01 1.74339861e-01 2.05941096e-01
1.10070086e+00 -1.49710223e-01 7.37869978e-01 -7.51713991e-01
7.22471833e-01 2.28955001e-01 4.23957288e-01 4.26101774e-01
-7.16618970e-02 2.28151351e-01 8.80102098e-01 -4.36180413e-01
-8.96631181e-01 -1.90991282e-01 -4.47633624e-01 1.32567275e+00
-9.43765223e-01 -7.75275648e-01 -8.38934720e-01 -9.60135937e-01
-3.79167981e-02 5.38860440e-01 -1.38437164e+00 5.28474808e-01
-7.20790923e-01 -1.35031569e+00 5.57176471e-01 7.14380145e-02
-1.33012040e-02 -9.92508888e-01 -6.09739304e-01 4.52238619e-01
-4.41401571e-01 -1.22607994e+00 -3.38894933e-01 4.50798094e-01
-1.24185257e-01 -1.30773950e+00 -3.75970304e-01 -4.75972027e-01
1.54832631e-01 -5.57963252e-01 1.35036075e+00 -2.97546506e-01
-9.19280350e-02 -1.58535585e-01 -2.17278406e-01 -1.06043220e+00
-7.79588103e-01 3.60249430e-01 -1.22106895e-01 -9.12087485e-02
8.02919984e-01 -1.82273269e-01 -5.08590817e-01 -9.83665437e-02
-7.97212899e-01 6.77888319e-02 1.95991158e-01 5.34990609e-01
3.40577155e-01 -6.38940573e-01 1.04091740e+00 -1.75922310e+00
1.03278458e+00 -1.24954438e+00 -2.67278522e-01 -3.42778154e-02
-6.55000269e-01 -2.17573315e-01 2.85278052e-01 9.67363268e-03
-6.96189582e-01 -3.48218948e-01 -7.65650332e-01 4.23608124e-01
2.08153814e-01 1.01726985e+00 2.77291954e-01 5.74052334e-01
9.99968648e-01 -4.89799380e-01 1.51295975e-01 -2.23341063e-01
2.65341103e-01 1.07955277e+00 4.90126871e-02 -1.29703432e-01
2.58944958e-01 4.46898550e-01 -4.64943856e-01 -6.49748206e-01
-1.74217212e+00 -7.78396964e-01 -3.27404171e-01 1.93911307e-02
1.28324807e+00 -1.11058795e+00 -6.06352270e-01 4.30760771e-01
-1.31233275e+00 -4.88402963e-01 8.65865126e-02 2.05976143e-01
2.11322159e-02 1.52317137e-01 -7.88756728e-01 -4.75431591e-01
-9.39137161e-01 -7.53174841e-01 9.11472261e-01 -3.62673283e-01
-1.12653506e+00 -1.22191894e+00 1.00919414e+00 7.18172431e-01
4.44461077e-01 8.51166427e-01 8.12393546e-01 -1.37896657e+00
6.91085815e-01 -5.04444093e-02 -1.51107535e-01 1.27287796e-02
2.09960133e-01 1.60187796e-01 -1.19406796e+00 -1.26310140e-01
2.34390609e-03 -5.83026111e-01 8.88678551e-01 5.68203330e-01
8.02031517e-01 -7.21361756e-01 -4.64451402e-01 2.33255759e-01
1.04215074e+00 -3.25543344e-01 8.31032619e-02 6.66008830e-01
3.02729815e-01 7.31285572e-01 5.40433049e-01 7.91653275e-01
9.25453782e-01 4.67373759e-01 2.11394727e-01 -2.88622051e-01
2.51791686e-01 2.06889898e-01 4.06806201e-01 5.11508226e-01
-2.75250524e-01 1.69856191e-01 -1.21526396e+00 6.61479533e-01
-1.88026512e+00 -8.09697032e-01 -3.71531934e-01 1.43611372e+00
1.71935642e+00 6.03706419e-01 6.53238297e-01 -4.48233541e-03
3.30948770e-01 3.56672943e-01 -1.89358756e-01 -8.96995544e-01
-1.16554156e-01 3.88297379e-01 4.33942974e-01 5.79231083e-01
-1.53397322e+00 6.03065372e-01 6.89721870e+00 5.17037809e-01
-1.21100354e+00 6.37898624e-01 6.28962219e-01 -2.24479467e-01
-3.95089328e-01 -4.84295875e-01 -1.05559480e+00 5.56354940e-01
1.54716122e+00 -4.61249463e-02 -2.37573728e-01 5.21816969e-01
7.41304696e-01 1.35492176e-01 -1.03583956e+00 1.77876070e-01
1.04348086e-01 -1.75188994e+00 -3.87437791e-01 5.62421978e-02
9.23830032e-01 8.89000118e-01 -5.07570170e-02 4.76358265e-01
5.66799879e-01 -7.53166258e-01 5.20871043e-01 2.34643161e-01
6.70813620e-01 -3.56640726e-01 1.11290586e+00 4.30709809e-01
-5.47102332e-01 4.18047868e-02 2.30979562e-01 -9.38525721e-02
7.78990164e-02 1.08747840e+00 -1.57501447e+00 3.76091689e-01
7.33480573e-01 9.48964834e-01 -3.69073838e-01 3.61133665e-01
-1.62357166e-01 9.01412487e-01 -1.68434724e-01 -1.37684286e-01
5.65127492e-01 5.25454044e-01 6.69379413e-01 2.06288648e+00
-5.39451122e-01 8.85872468e-02 1.41216367e-01 8.10406923e-01
-1.86581507e-01 3.43536794e-01 -4.19790715e-01 -1.14052914e-01
1.72723904e-01 1.43859124e+00 -3.34484339e-01 -6.33922100e-01
-3.24564904e-01 2.60483623e-01 1.02546811e-01 -1.87448755e-01
-9.01544631e-01 1.93334743e-02 4.55027193e-01 4.90112424e-01
2.60532707e-01 5.06918669e-01 -4.07119811e-01 -8.92531812e-01
-6.23996198e-01 -1.14455307e+00 8.98459256e-01 -1.33941099e-01
-1.47181511e+00 7.88804173e-01 6.30897433e-02 -6.92687631e-01
-6.40826941e-01 -4.51483548e-01 -6.89604998e-01 8.83907676e-01
-1.70598257e+00 -1.41393900e+00 2.21311003e-01 5.97458363e-01
3.91617984e-01 2.11206630e-01 9.46901977e-01 4.87768948e-01
-5.64817429e-01 5.17208040e-01 -5.95980406e-01 1.18077226e-01
1.17451704e+00 -1.25537860e+00 4.76804882e-01 2.12405637e-01
-8.52719128e-01 7.20358551e-01 1.00881851e+00 -9.16645229e-01
-7.35585630e-01 -1.51754892e+00 1.84065211e+00 -9.92191970e-01
1.23518920e+00 -4.36149955e-01 -6.41081810e-01 7.16285765e-01
7.68073976e-01 -7.50440717e-01 1.32762766e+00 4.40712929e-01
-3.26840162e-01 4.67726022e-01 -1.23841107e+00 2.23753795e-01
4.15650487e-01 -4.73908424e-01 -1.08511734e+00 8.27165484e-01
7.39255011e-01 -4.79923397e-01 -1.12036824e+00 5.20852149e-01
4.55579013e-01 -3.93676281e-01 8.12760949e-01 -1.22143972e+00
9.20214772e-01 7.63189346e-02 2.98257396e-02 -1.09948683e+00
-2.70304501e-01 -7.54567504e-01 -6.97245821e-02 8.25976193e-01
1.10871005e+00 -6.70622468e-01 3.76257539e-01 1.41873524e-01
5.32735251e-02 -1.20260727e+00 -3.51465166e-01 5.45186643e-03
1.62216723e-01 -5.54399133e-01 4.32763845e-01 1.25488555e+00
4.98219371e-01 7.80976176e-01 -1.82539210e-01 1.30225986e-01
4.47318375e-01 4.86568585e-02 3.62387002e-01 -1.19898605e+00
-4.23685491e-01 -3.83529991e-01 3.17607433e-01 -3.00496131e-01
5.09223528e-02 -7.80878365e-01 -9.97376963e-02 -1.39643073e+00
5.27273118e-01 -2.31149584e-01 -4.97495592e-01 8.24487865e-01
-2.62260973e-01 5.39064050e-01 -3.45446110e-01 1.35650396e-01
-8.98071289e-01 -3.68755788e-01 7.27156639e-01 -2.89184034e-01
-1.39030322e-01 2.50510395e-01 -1.09798789e+00 1.01324069e+00
6.74411178e-01 -6.82023048e-01 1.34146616e-01 -1.69100240e-01
1.12740982e+00 -2.29961038e-01 8.29697624e-02 -2.02888161e-01
4.50130133e-03 -1.06214926e-01 4.13090028e-02 -9.86908674e-01
-1.83434542e-02 -8.48758146e-02 -1.53263941e-01 8.12219083e-01
-6.43767476e-01 -2.94863246e-02 2.07635388e-01 2.63923198e-01
4.60470840e-02 3.82514484e-02 7.52046347e-01 -3.81348848e-01
-7.49815702e-02 -2.54705161e-01 -6.01922452e-01 4.80500549e-01
8.89640987e-01 2.06444576e-01 -6.38039172e-01 2.59088576e-02
-1.09357417e+00 4.98411596e-01 -3.90698723e-02 3.09732586e-01
1.11210354e-01 -5.05682468e-01 -1.42575252e+00 3.91845033e-02
1.47389814e-01 -3.55926573e-01 3.27793770e-02 1.48865068e+00
-2.44102001e-01 6.30295992e-01 1.84164718e-01 -5.75612128e-01
-1.44378102e+00 4.47517633e-01 7.72740021e-02 -1.10152209e+00
3.25972252e-02 1.01479745e+00 -2.63114691e-01 -7.74926603e-01
-1.23121083e-01 -4.94272828e-01 -7.56955862e-01 6.54549241e-01
7.33667731e-01 2.14176923e-01 4.63625222e-01 -3.46191794e-01
-8.01794887e-01 1.66343048e-01 -1.64965674e-01 8.08454826e-02
1.67055166e+00 1.03369877e-01 -4.61854786e-01 4.36038554e-01
1.18786716e+00 3.56519133e-01 -3.98695320e-01 -3.49017292e-01
3.81030709e-01 5.90918958e-01 9.75711718e-02 -1.24450421e+00
-4.34695214e-01 3.00614834e-01 -1.05962627e-01 4.97398317e-01
5.15936553e-01 1.41181797e-01 7.67096519e-01 2.10508078e-01
-1.96675941e-01 -1.28114784e+00 -2.83480491e-02 8.36049974e-01
7.98371792e-01 -1.46599543e+00 8.63772780e-02 -2.46069476e-01
-6.70528650e-01 7.63502479e-01 2.19710454e-01 -6.89333677e-02
1.13725555e+00 5.15571952e-01 4.32325065e-01 -7.82525003e-01
-1.23578024e+00 1.83344752e-01 4.43472683e-01 1.38596207e-01
9.28911269e-01 3.24409187e-01 -8.19791734e-01 9.82982218e-01
-3.74074399e-01 1.51610821e-01 4.01002645e-01 7.97520578e-01
-2.39293620e-01 -1.02915633e+00 -2.91977465e-01 5.91570020e-01
-1.30752742e+00 -5.37631691e-01 -7.33027637e-01 3.88593048e-01
6.22929990e-01 1.06271827e+00 -2.22621754e-01 -4.27834392e-01
3.81767631e-01 -2.75305677e-02 2.00216155e-02 -1.08717322e+00
-1.37235940e+00 2.22998649e-01 1.00401700e+00 -6.37894869e-01
-8.68695796e-01 -1.02268422e+00 -9.70886171e-01 -2.29020834e-01
5.66399172e-02 1.92452371e-01 4.79875088e-01 1.18879497e+00
3.09871495e-01 6.40957236e-01 5.70300102e-01 -3.40572149e-01
-5.06507933e-01 -1.25796056e+00 1.37017727e-01 2.29031116e-01
4.82051760e-01 -3.97171751e-02 -1.52514324e-01 1.12621412e-01] | [8.543702125549316, 9.313679695129395] |
f91d6fc0-d4fd-4259-81e6-9c8b7d8521ea | deception-detection-in-text-and-its-relation | 2105.1253 | null | https://arxiv.org/abs/2105.12530v1 | https://arxiv.org/pdf/2105.12530v1.pdf | Deception detection in text and its relation to the cultural dimension of individualism/collectivism | Deception detection is a task with many applications both in direct physical and in computer-mediated communication. Our focus is on automatic deception detection in text across cultures. We view culture through the prism of the individualism/collectivism dimension and we approximate culture by using country as a proxy. Having as a starting point recent conclusions drawn from the social psychology discipline, we explore if differences in the usage of specific linguistic features of deception across cultures can be confirmed and attributed to norms in respect to the individualism/collectivism divide. We also investigate if a universal feature set for cross-cultural text deception detection tasks exists. We evaluate the predictive power of different feature sets and approaches. We create culture/language-aware classifiers by experimenting with a wide range of n-gram features based on phonology, morphology and syntax, other linguistic cues like word and phoneme counts, pronouns use, etc., and token embeddings. We conducted our experiments over 11 datasets from 5 languages i.e., English, Dutch, Russian, Spanish and Romanian, from six countries (US, Belgium, India, Russia, Mexico and Romania), and we applied two classification methods i.e, logistic regression and fine-tuned BERT models. The results showed that our task is fairly complex and demanding. There are indications that some linguistic cues of deception have cultural origins, and are consistent in the context of diverse domains and dataset settings for the same language. This is more evident for the usage of pronouns and the expression of sentiment in deceptive language. The results of this work show that the automatic deception detection across cultures and languages cannot be handled in a unified manner, and that such approaches should be augmented with knowledge about cultural differences and the domains of interest. | ['Dimitris Plexousakis', 'Ion Androutsopoulos', 'Giorgos Flouris', 'Theodore Patkos', 'Panagiotis Papadakos', 'Katerina Papantoniou'] | 2021-05-26 | null | null | null | null | ['deception-detection'] | ['miscellaneous'] | [-2.41812661e-01 -6.08503759e-01 -1.15450449e-01 -3.96163911e-01
-2.15701416e-01 -8.19360077e-01 1.20811582e+00 2.49351338e-01
-7.90052772e-01 7.74460077e-01 6.67475760e-01 -2.35980824e-01
-9.59445164e-02 -3.74409378e-01 -1.80279747e-01 -5.76114595e-01
2.91401237e-01 1.57362342e-01 -4.29432988e-01 -3.91531229e-01
9.19282973e-01 5.97176731e-01 -1.29827273e+00 1.18257403e-01
1.19230020e+00 5.83100498e-01 -4.19103086e-01 4.94289041e-01
-8.66424888e-02 4.93900985e-01 -9.95032847e-01 -8.12863767e-01
-2.32190534e-01 -5.36154687e-01 -6.02409184e-01 1.77696511e-01
4.30843860e-01 -6.06872588e-02 -2.01973021e-01 1.13267517e+00
3.32253963e-01 -1.62709355e-01 9.61105108e-01 -9.88566935e-01
-1.20866537e+00 3.17968160e-01 -3.42455387e-01 2.50368923e-01
7.34077811e-01 4.77554724e-02 5.67579329e-01 -7.90300548e-01
6.74475610e-01 1.51859665e+00 5.09246349e-01 4.97583061e-01
-1.01943171e+00 -6.98422074e-01 5.11551015e-02 2.22078666e-01
-1.40899229e+00 -5.39840937e-01 6.79779530e-01 -7.84979939e-01
6.36780918e-01 3.60969603e-01 5.45057476e-01 1.94265854e+00
3.46215814e-01 2.15701669e-01 1.65531254e+00 -6.27446532e-01
1.84390709e-01 7.83674717e-01 2.71503538e-01 6.24023378e-01
5.87273657e-01 2.93226074e-02 -7.27247238e-01 -4.69300300e-01
1.66958109e-01 -2.29316995e-01 -5.54029047e-01 7.70414434e-03
-1.16107011e+00 1.07867646e+00 -1.68317795e-01 7.69019842e-01
3.23809013e-02 -2.97364771e-01 8.16674709e-01 6.02789879e-01
5.81966281e-01 4.96312976e-01 -3.23188841e-01 -4.60371852e-01
-7.35842705e-01 -1.79222934e-02 1.10211027e+00 4.58142370e-01
2.39585519e-01 1.43346354e-01 3.05442035e-01 1.13096344e+00
1.72624588e-01 4.43934888e-01 9.64628994e-01 -5.42350829e-01
2.20556766e-01 4.59065378e-01 2.37006143e-01 -1.37979615e+00
-2.79677868e-01 -7.16768950e-02 -5.99456429e-01 1.73337102e-01
5.45829594e-01 -2.06856623e-01 -5.28900802e-01 1.56981981e+00
-5.40369302e-02 -3.92864019e-01 1.12974636e-01 1.10846436e+00
4.86250430e-01 3.49530578e-01 1.07833646e-01 -2.78363675e-01
1.53072500e+00 -3.86685461e-01 -6.35850132e-01 -9.98687521e-02
8.09714973e-01 -7.60590732e-01 1.12333369e+00 7.95095026e-01
-6.35841787e-01 -2.04881147e-01 -9.27251816e-01 -1.06786914e-01
-9.00496542e-01 -1.22403940e-02 5.83891749e-01 1.34986818e+00
-6.50648355e-01 5.67861855e-01 -3.08969259e-01 -7.85959721e-01
3.71819139e-02 -1.14356205e-01 -5.44139206e-01 -2.69944500e-02
-1.00477457e+00 1.28076041e+00 3.00192475e-01 1.39790252e-01
-3.33628803e-01 -4.24051686e-04 -9.58024979e-01 -2.97542006e-01
-1.03869572e-01 -4.09064710e-01 3.85652721e-01 -1.66363084e+00
-1.50486720e+00 1.17981446e+00 -5.17848805e-02 9.41235945e-03
4.02158678e-01 -1.44114211e-01 -1.11845541e+00 -8.71120244e-02
-5.96449375e-02 -4.39908169e-02 8.79713058e-01 -1.31554925e+00
-3.10894459e-01 -7.97331333e-01 -2.46266827e-01 5.91951385e-02
-5.71313143e-01 7.26110101e-01 4.29804504e-01 -6.13771021e-01
-1.55299231e-01 -8.00075591e-01 5.87448180e-01 -3.40347707e-01
-1.99551895e-01 -1.65731207e-01 5.98617077e-01 -1.05432844e+00
1.25685656e+00 -2.25692987e+00 3.28446746e-01 3.15568686e-01
7.41677955e-02 1.35359809e-01 1.91635713e-01 5.84675968e-01
1.58708960e-01 5.10237932e-01 -2.37997577e-01 -2.51884997e-01
3.24614555e-01 4.00666386e-01 -2.46117674e-02 9.88566518e-01
-2.25751493e-02 4.14311230e-01 -7.88222134e-01 -3.09314698e-01
-6.92882612e-02 5.38643062e-01 -3.24089527e-01 -3.08564126e-01
4.81707335e-01 2.18006909e-01 -6.38628900e-02 8.61425817e-01
5.00144601e-01 5.75299799e-01 3.25076222e-01 3.17826539e-01
-4.15770799e-01 4.34970856e-01 -8.04208398e-01 1.26313019e+00
-3.73697728e-01 8.69867802e-01 2.14035124e-01 -8.25960040e-01
1.08565235e+00 1.16919965e-01 -3.24994266e-01 -6.15305126e-01
3.88590813e-01 7.03423619e-01 3.39292824e-01 -6.07319891e-01
7.30159342e-01 -3.70366186e-01 -4.62304682e-01 2.44179636e-01
1.24539942e-01 -1.28159285e-01 1.18920073e-01 -1.68625742e-01
5.88564754e-01 -6.24547452e-02 5.06491601e-01 -6.45569384e-01
8.28258455e-01 -1.34970576e-01 5.97436428e-01 4.27926064e-01
-5.01817942e-01 5.04926443e-01 7.68918514e-01 -2.77424902e-01
-7.76298344e-01 -8.50894153e-01 -4.50104028e-01 1.00713468e+00
-6.94668889e-02 -1.55493334e-01 -5.35889328e-01 -7.75410533e-01
1.16462700e-01 1.06245899e+00 -6.02505684e-01 -4.21356916e-01
-3.90660197e-01 -9.29064214e-01 8.53888988e-01 -9.14589390e-02
2.81900913e-01 -8.58053565e-01 -4.24219996e-01 -2.85597831e-01
2.73626596e-01 -1.05357397e+00 -3.10995698e-01 5.49837295e-03
-5.84766865e-01 -8.63089561e-01 -4.29836124e-01 -6.91645384e-01
2.47421518e-01 -1.17093846e-01 1.08019662e+00 1.86299995e-01
1.29555687e-01 4.16621298e-01 -6.40721202e-01 -4.97492373e-01
-7.01293468e-01 -1.04584418e-01 3.94677967e-01 3.30753587e-02
7.21230865e-01 -3.74641299e-01 -2.34683231e-01 1.50510490e-01
-8.49429846e-01 -7.13358819e-01 2.27322787e-01 7.32158542e-01
-4.64793772e-01 -3.90800953e-01 4.58099782e-01 -7.87974179e-01
1.08668149e+00 -7.62929678e-01 -1.33256212e-01 5.88402078e-02
-5.02180755e-01 -2.78930128e-01 6.18357599e-01 -3.80524963e-01
-9.31595743e-01 -7.50885963e-01 -1.27553875e-02 7.28989169e-02
-5.90009034e-01 5.22571504e-01 -2.17560858e-01 -1.19047925e-01
6.90246880e-01 3.52623522e-01 8.94579440e-02 -3.50178450e-01
-3.51211615e-02 1.16312754e+00 1.34496912e-01 -5.89196503e-01
5.43869853e-01 2.76294649e-01 -5.50510049e-01 -1.31540871e+00
-3.45018387e-01 -2.89732158e-01 -7.44505048e-01 -9.88631397e-02
6.60569072e-01 -6.30872548e-01 -5.77238858e-01 7.16743827e-01
-1.20814645e+00 1.51492789e-01 2.26114750e-01 7.62411237e-01
-7.90831372e-02 8.56576562e-01 -6.94846272e-01 -9.28628981e-01
-1.69219121e-01 -8.23324740e-01 7.26694286e-01 -1.38381988e-01
-6.60996437e-01 -1.48941147e+00 1.15421794e-01 5.25827050e-01
1.25457630e-01 4.01824176e-01 1.04361534e+00 -9.29748535e-01
3.22069943e-01 3.12350541e-02 -2.15893239e-02 7.13794947e-01
2.00735644e-01 2.10165083e-01 -8.00438941e-01 -1.68001071e-01
3.19388211e-01 -5.15741527e-01 7.73108244e-01 -1.85315043e-01
6.38815105e-01 -4.64523435e-01 1.68842688e-01 3.26670468e-01
1.46111262e+00 1.74815416e-01 6.12367928e-01 3.80107433e-01
6.33619726e-01 7.44365394e-01 1.71179518e-01 3.68163079e-01
3.58438402e-01 5.27842939e-01 6.77818358e-02 4.66192424e-01
3.22492898e-01 1.28231183e-01 1.00315690e+00 1.09401357e+00
-1.02528833e-01 -3.76208335e-01 -9.69467819e-01 6.40769720e-01
-1.23341429e+00 -9.17477012e-01 -3.65659416e-01 2.33966041e+00
6.35848165e-01 -3.59195061e-02 2.95423239e-01 2.14204192e-01
3.75578970e-01 1.79402113e-01 1.21839486e-01 -1.58846116e+00
-4.62358296e-01 -5.82666062e-02 2.61466980e-01 5.45211256e-01
-6.20332062e-01 8.31170619e-01 6.23594570e+00 5.23091972e-01
-1.26847124e+00 -5.46924882e-02 4.93715942e-01 -5.40120862e-02
-2.56047279e-01 -3.62228513e-01 -4.08422351e-01 6.69956028e-01
1.05842340e+00 5.18832766e-02 5.29728532e-01 3.43532085e-01
2.82498419e-01 -2.68502027e-01 -1.01506674e+00 8.93267035e-01
8.31483722e-01 -5.23226738e-01 -9.51781869e-02 2.38220423e-01
3.96430194e-01 -1.49719596e-01 1.14459217e-01 2.29357213e-01
3.95406000e-02 -1.12310958e+00 9.78281617e-01 4.34714645e-01
4.71417814e-01 -7.40544319e-01 8.94410908e-01 3.05969626e-01
-1.95355397e-02 -5.24314418e-02 -4.08962041e-01 -4.92509604e-01
-1.71947435e-01 3.89777124e-01 -5.55949092e-01 4.49252337e-01
4.25976753e-01 4.60423261e-01 -5.51106572e-01 3.82814109e-01
-1.05432525e-01 6.59901559e-01 -2.93685198e-02 -3.46131444e-01
3.30010474e-01 -6.50054991e-01 6.02032661e-01 1.64570451e+00
4.55145866e-01 -3.05474490e-01 -3.60094875e-01 8.75569522e-01
1.61983550e-01 3.95236611e-01 -7.22130716e-01 -2.48781040e-01
2.38277465e-01 1.16304886e+00 -3.65400910e-01 -7.84961805e-02
-6.70962930e-01 1.35759068e+00 2.67057598e-01 2.32714146e-01
-7.13357925e-01 -2.13214099e-01 1.00869823e+00 -5.31561896e-02
-1.49871595e-02 -5.62693655e-01 -4.17160600e-01 -1.47751558e+00
1.77831631e-02 -1.12693584e+00 2.97205925e-01 -4.87255126e-01
-1.59670031e+00 3.46675038e-01 -1.33525148e-01 -5.80759048e-01
-2.53262162e-01 -1.10946369e+00 -4.80961025e-01 9.50107932e-01
-1.34254479e+00 -1.00861788e+00 -4.71488722e-02 5.61178803e-01
2.43759155e-01 -3.22831631e-01 1.00395179e+00 7.13856593e-02
-7.10613728e-01 5.73367476e-01 3.18661779e-01 3.00136447e-01
8.44322801e-01 -1.11654639e+00 -6.78272620e-02 5.85924983e-01
1.76047042e-01 7.27187157e-01 6.78987861e-01 -4.98145729e-01
-1.21217978e+00 -3.39561999e-01 1.43869746e+00 -7.23375082e-01
1.03328526e+00 -7.31029630e-01 -8.71599197e-01 4.24514145e-01
5.29795885e-01 -4.31804359e-01 1.01137006e+00 5.15898526e-01
-7.59090841e-01 2.64282912e-01 -1.36778450e+00 5.58165371e-01
1.05884790e+00 -7.26899028e-01 -7.90181100e-01 2.32762992e-01
9.39541161e-02 1.78076923e-01 -1.05496156e+00 -2.99990654e-01
8.40159655e-01 -1.22494400e+00 4.54175442e-01 -6.89732015e-01
4.48390752e-01 1.75657630e-01 -2.30944231e-01 -1.74024010e+00
-4.03271168e-01 -3.30189496e-01 4.44859505e-01 1.47565210e+00
2.71922261e-01 -1.12395966e+00 2.42644653e-01 5.09331584e-01
-1.35001153e-01 -2.20042869e-01 -1.04775786e+00 -8.38469088e-01
8.07468235e-01 -1.92763939e-01 2.42263004e-01 1.49532115e+00
4.66804534e-01 3.45812976e-01 -2.95362175e-01 -1.04543343e-01
2.12608948e-01 -1.40784755e-01 5.60101509e-01 -1.29681420e+00
1.24697223e-01 -6.32337749e-01 -6.98811114e-01 -2.16960371e-01
7.15084672e-01 -7.58333921e-01 -5.83662629e-01 -9.47154105e-01
1.54350147e-01 -1.29521772e-01 6.64723665e-02 -1.37210518e-01
1.20187297e-01 2.00583205e-01 2.11406693e-01 1.11679398e-01
-1.20254859e-01 4.49039042e-01 9.27751064e-01 2.50257738e-02
-2.95085888e-02 -5.30620158e-01 -8.95672381e-01 9.28819597e-01
1.05508530e+00 -3.08341712e-01 1.80029511e-01 -3.98275644e-01
2.54898190e-01 -3.47383320e-01 4.69458967e-01 -6.75425053e-01
-5.46304025e-02 -3.15497994e-01 4.48935598e-01 4.03593451e-01
4.40629363e-01 -7.58661866e-01 -3.34089339e-01 3.59996647e-01
6.30743951e-02 2.61824369e-01 9.61621851e-02 2.62994617e-01
-2.20991299e-01 -5.11638999e-01 6.77683175e-01 -2.98170596e-01
-5.69712818e-01 -4.55967247e-01 -6.83390379e-01 6.90541416e-02
7.50002801e-01 -6.67007387e-01 -4.52249348e-01 -3.44477624e-01
-4.05746043e-01 -2.01912418e-01 9.46117342e-01 7.37181485e-01
3.80293310e-01 -1.12593436e+00 -1.00193512e+00 1.84552923e-01
2.24238962e-01 -1.25358760e+00 -2.15909705e-01 9.00745809e-01
-4.47522432e-01 4.01252687e-01 -4.76884007e-01 -1.46157369e-01
-1.36496699e+00 5.32119513e-01 3.37496310e-01 2.54559368e-01
1.01770744e-01 2.70899266e-01 -1.20445780e-01 -5.76537609e-01
-1.85257614e-01 -1.26300603e-01 -2.84723580e-01 4.39808279e-01
1.83362633e-01 6.44239068e-01 5.36042042e-02 -1.27622807e+00
-4.38024580e-01 4.06604439e-01 3.16640101e-02 -2.00745478e-01
1.02263284e+00 -3.19936872e-01 -4.35404390e-01 7.86023676e-01
1.32206261e+00 6.94295943e-01 -2.46812016e-01 2.84718543e-01
2.27636591e-01 -7.58726418e-01 -1.12251610e-01 -9.95753229e-01
-5.58588803e-01 5.54510355e-01 2.94309050e-01 3.69778097e-01
7.08230078e-01 -2.54450560e-01 3.03674102e-01 -3.77089530e-02
3.86694521e-01 -1.42041016e+00 -2.91950405e-01 6.67766929e-01
1.15227997e+00 -1.07189262e+00 3.40394638e-02 -2.65054613e-01
-8.24199796e-01 1.07719207e+00 3.20078671e-01 -1.54910967e-01
3.87189001e-01 -1.19112775e-01 1.10951051e-01 -9.83484238e-02
-3.96707177e-01 8.80866125e-02 2.89236009e-01 7.25787640e-01
8.34884286e-01 3.08711499e-01 -1.19535637e+00 5.27106404e-01
-6.25422120e-01 -3.93112302e-01 8.86364639e-01 5.95731556e-01
-2.63219684e-01 -1.15524721e+00 -7.57384717e-01 3.26896518e-01
-7.50133872e-01 -8.73020068e-02 -1.21394491e+00 1.27389991e+00
3.61106247e-01 1.11765528e+00 1.30032059e-02 -4.36679721e-01
1.25390723e-01 4.61943597e-01 5.97605646e-01 -4.43807393e-01
-1.03461611e+00 -3.49634141e-01 6.53666794e-01 -7.92229921e-02
-2.94204086e-01 -1.11664963e+00 -5.14959097e-01 -7.61925936e-01
-1.60435289e-01 2.97803394e-02 7.82631695e-01 8.89641285e-01
2.18130723e-01 -1.84166417e-01 3.94100338e-01 -5.01280189e-01
-5.89471102e-01 -1.19326472e+00 -9.07483816e-01 6.12096071e-01
2.25974545e-01 -4.58388954e-01 -8.61113846e-01 -2.56807357e-01] | [8.303926467895508, 10.43237590789795] |
71c4be01-5140-41dc-a35a-bd9a85fe5a9c | generalized-earley-parser-bridging-symbolic | 1806.03497 | null | http://arxiv.org/abs/1806.03497v1 | http://arxiv.org/pdf/1806.03497v1.pdf | Generalized Earley Parser: Bridging Symbolic Grammars and Sequence Data for Future Prediction | Future predictions on sequence data (e.g., videos or audios) require the
algorithms to capture non-Markovian and compositional properties of high-level
semantics. Context-free grammars are natural choices to capture such
properties, but traditional grammar parsers (e.g., Earley parser) only take
symbolic sentences as inputs. In this paper, we generalize the Earley parser to
parse sequence data which is neither segmented nor labeled. This generalized
Earley parser integrates a grammar parser with a classifier to find the optimal
segmentation and labels, and makes top-down future predictions. Experiments
show that our method significantly outperforms other approaches for future
human activity prediction. | ['Song-Chun Zhu', 'Siyuan Qi', 'Baoxiong Jia'] | 2018-06-09 | generalized-earley-parser-bridging-symbolic-1 | https://icml.cc/Conferences/2018/Schedule?showEvent=1920 | http://proceedings.mlr.press/v80/qi18a/qi18a.pdf | icml-2018-7 | ['activity-prediction', 'activity-prediction'] | ['computer-vision', 'time-series'] | [ 5.46561539e-01 4.78294045e-01 -5.18316448e-01 -6.72601342e-01
-4.30756629e-01 -6.55567706e-01 4.93914604e-01 1.69005960e-01
-1.11418463e-01 7.81716883e-01 2.73124397e-01 -4.43904132e-01
3.58062297e-01 -9.73638296e-01 -5.96744180e-01 -7.80209303e-02
-2.21324444e-01 2.47387215e-01 7.38348007e-01 -4.52002995e-02
2.35745072e-01 2.16771170e-01 -1.67581928e+00 5.14841020e-01
5.89942157e-01 6.88120484e-01 5.01555502e-01 1.11304867e+00
-4.89246547e-01 1.14377141e+00 -1.56613678e-01 -3.38342249e-01
-2.22310573e-01 -7.04732955e-01 -1.13846326e+00 1.23709366e-01
-3.49082910e-02 -2.11030453e-01 -9.90670770e-02 9.15616512e-01
-3.11572224e-01 2.34008893e-01 3.44614625e-01 -1.34403396e+00
-2.83781379e-01 8.38970602e-01 2.69380789e-02 2.32958406e-01
9.68145370e-01 1.83958057e-02 1.39512253e+00 -5.40352702e-01
9.44093347e-01 1.33281446e+00 5.02353370e-01 8.72801006e-01
-1.22622108e+00 -4.50779080e-01 6.51420951e-01 1.20521858e-01
-1.06660914e+00 -2.19597891e-01 6.44095123e-01 -4.36912209e-01
1.41491950e+00 3.14462245e-01 7.58778632e-01 1.40350473e+00
4.44580376e-01 1.14016354e+00 8.50354850e-01 -7.31770694e-01
3.22791755e-01 -4.45066869e-01 5.69087088e-01 7.99775422e-01
-1.88074514e-01 1.07424296e-01 -6.84740424e-01 -2.80677795e-01
5.04808128e-01 -1.61318332e-01 1.14563972e-01 -1.71410233e-01
-1.29937744e+00 7.02021718e-01 -4.29706275e-01 1.58175081e-01
-2.84448206e-01 3.87023568e-01 3.05980712e-01 8.44362751e-02
2.16427878e-01 2.41117850e-01 -6.92143083e-01 -5.96456945e-01
-7.42996991e-01 3.05033892e-01 1.12184238e+00 1.28219235e+00
8.40886593e-01 -2.71216631e-01 -5.86789437e-02 4.04973656e-01
3.70841026e-01 3.42918515e-01 4.92164493e-01 -1.19627476e+00
3.10299039e-01 3.37937832e-01 1.04040928e-01 -7.08196700e-01
-5.05984962e-01 1.91064999e-01 -1.69901207e-01 -4.59397256e-01
3.42385679e-01 -1.73761711e-01 -9.68357921e-01 1.89733839e+00
1.88740343e-01 4.81227994e-01 1.05311453e-01 4.94716525e-01
4.39676940e-01 8.02443802e-01 7.37563610e-01 -7.13315845e-01
1.20970440e+00 -8.44995201e-01 -6.36057675e-01 -5.55964172e-01
9.17689323e-01 -3.66954595e-01 1.05699289e+00 4.83863950e-01
-8.09968293e-01 -5.66412985e-01 -7.08845854e-01 4.41742428e-02
-6.06348552e-02 -2.15250269e-01 8.22166324e-01 5.93342602e-01
-8.88487041e-01 8.89217079e-01 -1.35733926e+00 -5.57598710e-01
-1.11069761e-01 2.72063524e-01 -1.35743916e-01 3.82891029e-01
-1.27113163e+00 5.27989864e-01 9.29253340e-01 -2.76881635e-01
-7.70345032e-01 6.41827136e-02 -9.33338702e-01 -2.64545232e-02
6.59607947e-01 -3.69139612e-01 1.93490481e+00 -1.25774872e+00
-1.65473258e+00 7.65696824e-01 -4.72026587e-01 -6.67327106e-01
6.54022619e-02 -1.08526669e-01 -5.18125594e-01 1.81926265e-01
1.72251433e-01 8.30630183e-01 5.43761075e-01 -7.21226931e-01
-1.13072360e+00 -1.36726230e-01 2.15989843e-01 1.27938524e-01
2.47101746e-02 3.70520115e-01 -2.70076722e-01 -7.25311399e-01
1.99885696e-01 -1.17622519e+00 -3.49948376e-01 -4.33446586e-01
-3.70332688e-01 -4.69503433e-01 6.66765511e-01 -6.60684168e-01
1.47742140e+00 -1.96867347e+00 -1.91637263e-01 1.83414236e-01
-1.24275461e-01 -3.47420484e-01 -1.00343436e-01 4.28682089e-01
-3.73214707e-02 2.44529292e-01 -1.15912281e-01 -4.06835750e-02
-9.09287632e-02 7.22075105e-01 -4.17642951e-01 2.23826710e-02
6.94175959e-02 7.88678646e-01 -1.20302069e+00 -8.82712901e-01
2.25376226e-02 -8.21118876e-02 -6.75099373e-01 3.59793663e-01
-8.97188783e-01 5.51657498e-01 -8.31891596e-01 5.28280020e-01
-1.57974705e-01 -3.69907022e-01 8.97727191e-01 5.67059457e-01
-1.68544576e-01 7.86315203e-01 -8.86587918e-01 1.79808021e+00
-2.25848988e-01 3.58403802e-01 -3.65977049e-01 -8.66552949e-01
9.61794257e-01 4.02322888e-01 3.80827636e-01 -3.34537238e-01
-8.01631361e-02 1.28534168e-01 -5.07847704e-02 -6.15674376e-01
4.39413399e-01 -3.22848618e-01 -6.66845381e-01 6.34704828e-01
9.39915106e-02 1.23018846e-01 5.06709516e-01 1.40773550e-01
1.23179364e+00 8.74794602e-01 7.71272480e-01 -4.01402125e-03
5.96786618e-01 2.78476238e-01 1.16847277e+00 8.46514702e-01
-3.26681376e-01 2.11527243e-01 6.83688879e-01 -5.76328874e-01
-8.63538623e-01 -7.72821009e-01 4.67797190e-01 1.86114180e+00
7.82377198e-02 -8.00975680e-01 -9.17752743e-01 -8.10547650e-01
-4.55694556e-01 1.00913858e+00 -1.92662463e-01 -4.29537706e-02
-1.01699698e+00 -2.89502054e-01 4.50461537e-01 7.72859752e-01
8.62808153e-02 -1.57328176e+00 -8.83263171e-01 7.03455865e-01
-5.35568774e-01 -1.51434839e+00 -3.70173693e-01 2.48690769e-01
-1.24859631e+00 -1.05488706e+00 2.21023396e-01 -8.60015273e-01
1.90016016e-01 -2.99161196e-01 1.19503498e+00 9.00769681e-02
1.52458981e-01 3.86756778e-01 -7.05112040e-01 -3.06100488e-01
-9.28750396e-01 1.72114551e-01 -3.09157968e-02 -2.02328101e-01
6.52799785e-01 -5.99734426e-01 -1.91440061e-01 9.16259810e-02
-3.06984246e-01 4.47929710e-01 4.16067719e-01 6.01767063e-01
8.13529730e-01 -2.29163244e-01 3.67739677e-01 -1.15305531e+00
4.56088781e-01 -2.43586555e-01 -4.93515074e-01 6.41778409e-01
-6.16854787e-01 2.54811823e-01 8.88876140e-01 -3.64964247e-01
-1.29055011e+00 5.65765858e-01 -2.63226748e-01 -1.27629964e-02
-7.70813406e-01 5.11775374e-01 -2.65560627e-01 5.08030474e-01
4.53402638e-01 4.59886134e-01 -4.47252929e-01 -5.41921020e-01
1.80384159e-01 4.52856094e-01 6.85149491e-01 -7.36904621e-01
7.04268590e-02 9.48276545e-04 -2.54146918e-03 -7.11035907e-01
-9.92253542e-01 -3.09942335e-01 -9.00301754e-01 -3.06204200e-01
1.04120243e+00 -5.62859833e-01 -7.47171760e-01 1.47122249e-01
-1.29046762e+00 -5.61214745e-01 -1.48701683e-01 5.11681199e-01
-1.19864762e+00 6.07181787e-01 -8.43932629e-01 -1.20805740e+00
-1.77828401e-01 -7.09575713e-01 9.86442685e-01 1.10446647e-01
-8.31160784e-01 -7.81353712e-01 1.19361654e-01 6.61399662e-02
-4.48228568e-01 2.34415248e-01 8.55190456e-01 -9.12362397e-01
-5.84366262e-01 5.05709052e-02 3.73650461e-01 3.49605270e-02
-1.39943898e-01 2.16568932e-01 -7.16169000e-01 7.90988430e-02
-3.18922728e-01 -8.03996250e-02 5.06974638e-01 2.23713711e-01
1.31921470e+00 -4.11009520e-01 -7.30019987e-01 2.89995104e-01
1.00718880e+00 7.15808153e-01 4.90367204e-01 1.39324471e-01
4.42498922e-01 6.96037233e-01 1.03648055e+00 4.12584811e-01
5.33017397e-01 4.05448973e-01 1.12071082e-01 6.90696001e-01
1.14328824e-01 -9.77886498e-01 6.15202367e-01 7.12905109e-01
-4.74604629e-02 -4.07121748e-01 -1.17693770e+00 3.84903699e-01
-1.99200594e+00 -1.07055140e+00 -1.29251733e-01 1.64116311e+00
8.45484614e-01 4.36820805e-01 1.96474895e-01 1.75668776e-01
8.75366867e-01 1.33023813e-01 -3.51709396e-01 -7.36794889e-01
2.08147317e-01 2.06373870e-01 3.46414894e-01 4.87135917e-01
-1.26780605e+00 1.36682975e+00 7.44826984e+00 4.77582395e-01
-5.68606138e-01 5.92629500e-02 2.39756659e-01 2.81146944e-01
-1.74846351e-01 5.85997701e-01 -9.96867597e-01 4.71413612e-01
1.43982959e+00 -7.38271326e-02 4.00685161e-01 1.01704752e+00
3.20610911e-01 -2.08584040e-01 -1.36150277e+00 7.11774707e-01
-2.19385564e-01 -1.14732766e+00 -3.50702479e-02 -1.31175846e-01
3.73645127e-01 -1.94533646e-01 -6.59103274e-01 4.58192676e-01
6.39769614e-01 -5.97501814e-01 1.04082310e+00 7.39954650e-01
4.17164892e-01 -6.33267403e-01 2.42390081e-01 9.25470352e-01
-1.27741325e+00 -4.45226878e-01 2.31531262e-02 -4.38272655e-01
6.03813410e-01 1.90892011e-01 -8.66578281e-01 4.94612753e-02
4.94148821e-01 7.16852665e-01 -4.12877887e-01 4.68834490e-01
-7.42950320e-01 8.24862599e-01 -2.08775029e-01 -3.18593949e-01
1.30428538e-01 -1.13543741e-01 4.95639235e-01 1.42637873e+00
3.13506573e-01 5.51578343e-01 7.75172770e-01 4.06718254e-01
1.64518952e-02 1.61257267e-01 -5.61502278e-01 -2.89060742e-01
4.64037538e-01 7.35627830e-01 -9.94983375e-01 -6.83119237e-01
-6.97497666e-01 9.28439796e-01 1.71922520e-01 1.59431949e-01
-7.22081542e-01 -5.55999018e-02 5.36794066e-01 2.36022115e-01
1.39609843e-01 -4.18080539e-01 -2.19464883e-01 -1.19956350e+00
-1.50583595e-01 -7.50119269e-01 8.70211720e-01 -9.21859741e-01
-7.89987564e-01 3.79355043e-01 2.44895279e-01 -9.63874340e-01
-8.77103567e-01 -5.34346998e-01 -4.98645604e-01 3.33601534e-01
-1.13728499e+00 -1.23525572e+00 1.45940781e-01 3.43516737e-01
8.24940264e-01 1.94338381e-01 1.01990759e+00 -3.42675000e-01
-3.50916803e-01 1.97662152e-02 -6.65082216e-01 2.80583143e-01
7.52431899e-02 -1.29712665e+00 7.72993088e-01 1.17902339e+00
4.45283413e-01 5.11429071e-01 8.32414448e-01 -1.10694444e+00
-1.02637351e+00 -9.07989025e-01 1.44272518e+00 -3.98665994e-01
8.01577330e-01 -3.70475948e-01 -8.83603096e-01 1.38098598e+00
-1.56737283e-01 -1.47745848e-01 7.28516638e-01 1.53380260e-01
-1.78756639e-01 3.98542076e-01 -6.48770928e-01 5.35752177e-01
1.43959677e+00 -5.87311566e-01 -1.06062198e+00 2.31297597e-01
8.54797959e-01 -4.02861983e-01 -7.13909805e-01 3.70744050e-01
8.34823489e-01 -8.62069726e-01 5.68559289e-01 -9.07651544e-01
1.22465804e-01 -1.07479677e-01 -2.13474154e-01 -6.83138788e-01
-2.60292113e-01 -8.56607795e-01 -5.08453727e-01 8.56078327e-01
6.03160918e-01 -3.14084768e-01 1.07970703e+00 8.29180658e-01
-2.20368132e-01 -4.06087846e-01 -6.29431605e-01 -1.04689038e+00
-2.83630878e-01 -1.07103264e+00 6.53541267e-01 6.44786179e-01
5.41198373e-01 3.90805304e-01 -4.44110185e-01 3.19442041e-02
5.13514757e-01 4.94464576e-01 4.31546628e-01 -1.39219820e+00
-3.74687344e-01 -2.31053412e-01 -3.02166253e-01 -1.32537842e+00
6.38418734e-01 -8.44670355e-01 4.77799952e-01 -1.33242595e+00
1.41165599e-01 -1.95909500e-01 8.03395435e-02 7.47583389e-01
1.88966561e-02 -2.64498353e-01 -2.54149325e-02 1.22692719e-01
-9.09919381e-01 2.53200263e-01 1.02575791e+00 1.57598183e-01
-4.32582766e-01 1.76690832e-01 -3.19335639e-01 1.10039115e+00
9.85119939e-01 -6.71942830e-01 -4.13417518e-01 -1.10856697e-01
4.35085475e-01 5.75411439e-01 1.53578416e-01 -8.29789221e-01
2.45308861e-01 -7.60411263e-01 -1.69915669e-02 -5.25592923e-01
1.94313340e-02 -3.88674736e-01 1.41182601e-01 3.78038347e-01
-6.66084409e-01 1.76029168e-02 -3.06289762e-01 8.79165769e-01
-1.72016144e-01 -4.11101490e-01 4.97612685e-01 -4.74582285e-01
-1.32875514e+00 2.12308794e-01 -8.41640472e-01 1.15311276e-02
1.04337966e+00 -3.75544101e-01 2.06576526e-01 -3.93109739e-01
-1.49886310e+00 1.62835374e-01 4.51765358e-01 5.74118316e-01
4.85259086e-01 -9.81202424e-01 -2.28451997e-01 2.30781287e-01
1.13707975e-01 -3.35143238e-01 -1.49036512e-01 5.58560729e-01
-4.23851758e-01 5.08259475e-01 -6.61733747e-02 -5.35805404e-01
-1.42142773e+00 6.93939805e-01 6.47869930e-02 -4.31687117e-01
-8.17653179e-01 5.96291125e-01 -2.59838905e-02 -3.27806592e-01
1.09444089e-01 -6.73499882e-01 -2.69560307e-01 -2.64003426e-01
4.41191345e-01 2.43798390e-01 -3.88790250e-01 -6.29508555e-01
-4.97719377e-01 1.80121914e-01 2.67677784e-01 -2.99766570e-01
1.11426079e+00 -3.50918889e-01 -6.17696643e-02 7.46099889e-01
6.08692110e-01 -4.01669949e-01 -1.21317101e+00 -9.34850052e-02
8.66441846e-01 -1.80901125e-01 -3.92811507e-01 -3.17146868e-01
-3.18042696e-01 7.46950150e-01 2.90925857e-02 4.08830673e-01
1.02490377e+00 2.28026256e-01 1.06314993e+00 5.69606423e-01
8.36392045e-01 -1.50952148e+00 -3.52201872e-02 8.74003172e-01
3.58493686e-01 -8.11592579e-01 -1.99844703e-01 -6.23896897e-01
-7.78662264e-01 1.27510393e+00 7.61215985e-01 8.28258693e-02
6.23061419e-01 3.67256284e-01 -3.01350951e-01 1.78857315e-02
-1.24900866e+00 -4.01225448e-01 -7.39590898e-02 6.67815030e-01
6.31330252e-01 4.60961312e-01 -5.76654613e-01 8.85408878e-01
-3.88220370e-01 2.08241910e-01 6.42469585e-01 1.36280441e+00
-8.28046679e-01 -1.40157449e+00 -2.25581229e-01 4.22571152e-01
-6.43896282e-01 8.17781612e-02 -4.23697859e-01 6.03865564e-01
1.96980372e-01 1.08001721e+00 2.03751326e-01 -4.09612983e-01
2.84588248e-01 6.79405808e-01 5.27515352e-01 -1.12307572e+00
-2.65558928e-01 1.70578286e-01 5.17314017e-01 -7.95669973e-01
-6.84113145e-01 -1.00328660e+00 -1.74629056e+00 5.49524389e-02
-9.84081104e-02 1.06992491e-01 1.88787252e-01 1.15155029e+00
3.06703802e-02 1.34085268e-01 3.90037388e-01 -2.88498253e-01
-2.72343397e-01 -6.94476426e-01 -5.25636435e-01 2.62913853e-01
-7.71836638e-02 -3.39543074e-01 4.65743653e-02 5.66119850e-01] | [10.377405166625977, 9.499640464782715] |
92400ad5-69c5-4d02-9236-f815c8b87df1 | imaginenet-target-speaker-extraction-with | 2211.00109 | null | https://arxiv.org/abs/2211.00109v2 | https://arxiv.org/pdf/2211.00109v2.pdf | ImagineNET: Target Speaker Extraction with Intermittent Visual Cue through Embedding Inpainting | The speaker extraction technique seeks to single out the voice of a target speaker from the interfering voices in a speech mixture. Typically an auxiliary reference of the target speaker is used to form voluntary attention. Either a pre-recorded utterance or a synchronized lip movement in a video clip can serve as the auxiliary reference. The use of visual cue is not only feasible, but also effective due to its noise robustness, and becoming popular. However, it is difficult to guarantee that such parallel visual cue is always available in real-world applications where visual occlusion or intermittent communication can occur. In this paper, we study the audio-visual speaker extraction algorithms with intermittent visual cue. We propose a joint speaker extraction and visual embedding inpainting framework to explore the mutual benefits. To encourage the interaction between the two tasks, they are performed alternately with an interlacing structure and optimized jointly. We also propose two types of visual inpainting losses and study our proposed method with two types of popularly used visual embeddings. The experimental results show that we outperform the baseline in terms of signal quality, perceptual quality, and intelligibility. | ['Haizhou Li', 'Marvin Borsdorf', 'Wupeng Wang', 'Zexu Pan'] | 2022-10-31 | null | null | null | null | ['target-speaker-extraction'] | ['audio'] | [ 1.39219016e-01 -1.29574180e-01 -1.63032725e-01 1.38142258e-02
-8.81460369e-01 -3.70163918e-01 4.56610441e-01 -1.20967574e-01
-2.26474196e-01 5.03927112e-01 4.34273064e-01 7.93436356e-03
8.98889601e-02 -9.57310200e-02 -5.43381274e-01 -9.17590618e-01
2.36343384e-01 -3.07357848e-01 1.15477696e-01 2.02929646e-01
1.65994227e-01 3.92137319e-01 -1.60246074e+00 2.61796918e-02
7.87127912e-01 9.73449826e-01 7.11848438e-01 6.02870941e-01
-2.78181225e-01 6.28519595e-01 -6.68994844e-01 -9.28565562e-02
3.18730772e-01 -5.10954440e-01 -1.82595804e-01 5.42874455e-01
1.73015043e-01 -2.97036976e-01 -3.92770112e-01 1.09265482e+00
8.76996398e-01 1.52143627e-01 3.52793604e-01 -1.44146931e+00
-5.40091693e-01 4.58177328e-01 -1.14027476e+00 1.74859732e-01
5.11815071e-01 2.98427939e-01 9.05903280e-01 -9.66848254e-01
3.53751421e-01 1.12953258e+00 2.44641230e-01 5.00087202e-01
-1.09581029e+00 -7.96141028e-01 3.19807589e-01 3.19228977e-01
-1.49171424e+00 -1.12815964e+00 1.37328327e+00 -1.93630606e-01
2.92783380e-01 4.27635789e-01 5.31091988e-01 1.03807402e+00
-1.15953572e-01 9.68780637e-01 8.65434229e-01 -5.34976006e-01
-6.49243593e-02 5.20839810e-01 -5.17600067e-02 3.59759420e-01
-2.07809612e-01 1.16340138e-01 -7.32719779e-01 -1.59925148e-01
5.44504642e-01 4.61974405e-02 -9.76505518e-01 -2.89893806e-01
-1.11462212e+00 5.67858040e-01 2.23598644e-01 3.73516679e-01
-3.63116950e-01 -7.62371868e-02 2.93734610e-01 2.54656821e-01
4.14086759e-01 5.40448427e-02 1.13253541e-01 -1.49215221e-01
-1.14448798e+00 -3.49000618e-02 3.71830344e-01 9.01874065e-01
3.07738811e-01 3.00866365e-01 -2.99148411e-01 1.16146636e+00
4.77604628e-01 2.92468905e-01 6.52168036e-01 -7.87062705e-01
5.40366769e-01 9.39124227e-02 2.70372957e-01 -1.01335251e+00
7.67747536e-02 -3.28069985e-01 -6.54922962e-01 3.03211242e-01
1.44553632e-01 7.86941219e-03 -4.83171344e-01 1.87569261e+00
4.86131281e-01 4.41671610e-01 -7.43635595e-02 1.23132789e+00
9.47014391e-01 9.32001650e-01 -1.76318318e-01 -9.56131399e-01
1.38203228e+00 -1.04507422e+00 -1.34814894e+00 -2.42163032e-01
-1.37855202e-01 -1.00113785e+00 1.20473444e+00 4.49177891e-01
-1.13718414e+00 -6.88861847e-01 -1.18027270e+00 -5.78554161e-02
2.62721121e-01 2.96936661e-01 4.01142761e-02 5.70491731e-01
-7.65415490e-01 8.72636363e-02 -6.86374664e-01 -1.73068140e-02
1.00777954e-01 6.22107014e-02 -3.49811912e-01 7.18791271e-03
-9.73234594e-01 4.19748098e-01 -1.55216873e-01 1.89258009e-01
-7.32836366e-01 -3.31691444e-01 -8.50535274e-01 2.41434164e-02
4.63638932e-01 -3.18296939e-01 1.18488455e+00 -1.20169866e+00
-1.62833226e+00 6.42467678e-01 -5.99316120e-01 -1.41351178e-01
5.92347980e-01 -2.17956886e-01 -5.18963754e-01 3.09725583e-01
-2.78104432e-02 5.07201254e-01 1.44849265e+00 -1.46276128e+00
-4.96162653e-01 -2.51000166e-01 -1.39141068e-01 4.70380425e-01
-5.86210966e-01 2.09726855e-01 -7.52012849e-01 -8.87611687e-01
1.33780017e-01 -5.87785840e-01 3.62244815e-01 2.46584550e-01
-5.60291529e-01 -1.32496610e-01 1.24661183e+00 -8.85066688e-01
1.36054957e+00 -2.67734122e+00 1.59725383e-01 -1.80638611e-01
2.22782806e-01 1.99251667e-01 -8.03279430e-02 2.71816909e-01
-1.07559443e-01 -6.47574589e-02 -2.24047258e-01 -7.65110731e-01
-1.65117592e-01 -9.69997346e-02 -3.84001017e-01 6.30044818e-01
1.08005166e-01 3.63551885e-01 -6.89907312e-01 -8.37410688e-01
1.36176214e-01 7.21895993e-01 -3.06273580e-01 5.98841429e-01
1.99806169e-01 4.55677539e-01 -2.57790595e-01 6.38108730e-01
7.55411744e-01 1.70796067e-01 2.57420652e-02 -3.22445244e-01
-1.27906024e-01 2.30773494e-01 -1.39988446e+00 1.68203461e+00
-4.43940789e-01 8.57361138e-01 7.49024928e-01 -7.41599798e-01
8.94922614e-01 6.85955346e-01 1.38816029e-01 -4.93265063e-01
-4.78003621e-02 -1.29074669e-02 7.18916357e-02 -7.50465751e-01
3.92495185e-01 -2.83763021e-01 3.65182638e-01 2.90307283e-01
-2.48476580e-01 -9.56400633e-02 -1.83453903e-01 7.39732832e-02
7.11593270e-01 -3.07897385e-02 3.60053271e-01 1.21369638e-01
5.47835350e-01 -7.74666846e-01 7.25414336e-01 2.94628322e-01
-6.29860282e-01 8.05860102e-01 3.33814502e-01 2.76355118e-01
-6.67950153e-01 -9.46333587e-01 -2.66256537e-02 9.33229804e-01
3.55907619e-01 -2.96476275e-01 -5.93368351e-01 -4.25441235e-01
-2.53325164e-01 5.98935723e-01 -2.92517990e-01 3.63201508e-03
-5.03689945e-01 -1.75085351e-01 2.81511515e-01 2.89445609e-01
3.82520050e-01 -1.11954606e+00 -5.40351212e-01 1.09901778e-01
-4.34723616e-01 -9.48893130e-01 -1.09973502e+00 -8.76612291e-02
-4.02530611e-01 -7.40263224e-01 -9.67215836e-01 -9.70875442e-01
3.96518737e-01 8.15233469e-01 4.76248354e-01 1.52266501e-02
8.31111372e-02 3.44817281e-01 -2.72413760e-01 -2.38722146e-01
-4.20665473e-01 -3.31355751e-01 1.44634858e-01 5.74277997e-01
-1.41868182e-02 -8.31640124e-01 -7.17437863e-01 2.25007594e-01
-9.87123311e-01 1.28175005e-01 4.64977562e-01 8.00850749e-01
3.75635266e-01 7.90662318e-02 6.25928402e-01 -1.86220020e-01
8.48899782e-01 -2.79423714e-01 -2.39659712e-01 -2.80932360e-03
-7.26737827e-02 -1.25061810e-01 6.17259145e-01 -8.12778890e-01
-1.01448071e+00 -5.02305068e-02 -1.35484515e-02 -9.76442635e-01
-1.34266019e-01 2.51832962e-01 -6.61042511e-01 2.52901942e-01
1.90548331e-01 3.52066427e-01 1.40074387e-01 -5.25814712e-01
3.33549052e-01 1.20735490e+00 4.33518142e-01 -1.81007981e-01
7.28873789e-01 3.20878029e-01 -4.82840598e-01 -1.35586345e+00
-1.99060664e-01 -4.63234037e-01 -8.41619894e-02 -2.39818677e-01
6.08062744e-01 -8.45251977e-01 -5.95254540e-01 3.42077225e-01
-1.34015322e+00 2.01469347e-01 -5.08317314e-02 5.89519203e-01
-2.95566976e-01 8.12107861e-01 -3.86931926e-01 -1.11491978e+00
-2.09121048e-01 -1.60570729e+00 9.83838677e-01 2.61339307e-01
-8.69991258e-02 -4.13534045e-01 -1.42602965e-01 2.53351867e-01
1.60834476e-01 -8.87673572e-02 4.42950249e-01 -3.66083592e-01
-4.55557525e-01 -3.86057682e-02 -1.54757828e-01 3.73336256e-01
6.38542891e-01 -1.04791275e-03 -1.40028000e+00 -4.31758583e-01
3.87186974e-01 -1.35882959e-01 7.40172088e-01 4.23982084e-01
1.02288747e+00 -4.43210483e-01 -3.40462506e-01 3.42477351e-01
9.78226662e-01 5.04152775e-01 5.09561181e-01 -1.28183201e-01
5.65180957e-01 9.18568552e-01 5.28778851e-01 3.60884249e-01
-2.64418907e-02 9.66612220e-01 3.71649832e-01 -4.33690809e-02
-3.01845878e-01 -2.34750554e-01 5.48889816e-01 1.21393991e+00
2.05903098e-01 -3.42440426e-01 -3.83165032e-01 6.90435290e-01
-1.58864880e+00 -9.82960820e-01 2.08724558e-01 2.42439604e+00
1.03426456e+00 8.99223536e-02 1.22589402e-01 4.78296965e-01
1.08829498e+00 4.77750510e-01 -5.00718534e-01 -1.56871364e-01
-5.07537872e-02 -1.99867606e-01 -1.35944724e-01 6.95628583e-01
-9.47400272e-01 3.23993832e-01 5.27614832e+00 1.11171913e+00
-1.42878401e+00 2.11187810e-01 4.34754431e-01 -4.89659667e-01
-2.22163618e-01 -2.02185661e-01 -4.36423182e-01 6.80323601e-01
5.70561528e-01 -5.92396520e-02 4.05221850e-01 4.99798238e-01
6.14158332e-01 -3.67325991e-02 -1.07436609e+00 1.47239530e+00
1.62433639e-01 -7.97440767e-01 -1.89699933e-01 1.25744432e-01
1.60702299e-02 -6.29224300e-01 1.63341403e-01 -1.26629351e-02
-4.78119224e-01 -8.52663934e-01 8.97240520e-01 3.33465099e-01
7.15886712e-01 -8.81290495e-01 1.89326331e-01 4.75883931e-01
-1.45320570e+00 3.36850323e-02 5.65338321e-02 2.33926386e-01
2.49571115e-01 3.80657852e-01 -4.71394569e-01 5.17078936e-01
5.62706828e-01 4.62648273e-01 -8.20659101e-02 1.07662022e+00
-2.85535932e-01 6.73518300e-01 -2.21794128e-01 1.16446942e-01
-2.08702594e-01 -9.47671384e-02 1.06335652e+00 9.90530491e-01
2.57628232e-01 -9.55777690e-02 1.66531086e-01 8.12521636e-01
-8.23816806e-02 3.19160283e-01 -7.78055370e-01 1.79753397e-02
7.84191072e-01 1.18148220e+00 -3.66555035e-01 2.82304958e-02
-5.26604712e-01 1.13600099e+00 1.29856551e-02 4.06959087e-01
-1.04066443e+00 -6.18705690e-01 7.49036312e-01 1.70291707e-01
3.37289453e-01 -5.49321100e-02 1.24779172e-01 -1.03013170e+00
4.52156603e-01 -1.03807795e+00 -6.23597726e-02 -8.76674891e-01
-1.10282958e+00 5.12380064e-01 -2.84548998e-01 -1.55502582e+00
-8.15860108e-02 -2.99058706e-02 -8.66960883e-01 1.03577316e+00
-1.55209959e+00 -9.00722921e-01 -1.49735287e-01 6.04667068e-01
9.11482334e-01 1.09290713e-02 4.51341093e-01 3.71529102e-01
-8.03413689e-01 8.59532654e-01 -1.92425512e-02 -8.45556185e-02
9.71264601e-01 -8.62692058e-01 -2.32333750e-01 9.14471090e-01
1.51015431e-01 5.00756860e-01 9.18054163e-01 -3.01781654e-01
-1.49225283e+00 -7.80226469e-01 6.91772878e-01 2.01535389e-01
3.02215725e-01 -4.88191932e-01 -1.10316443e+00 3.68680686e-01
6.47997797e-01 -9.07565802e-02 5.83306611e-01 -4.10962850e-01
-1.20322190e-01 -3.89025569e-01 -1.01358306e+00 6.78841174e-01
6.86980367e-01 -5.70188463e-01 -7.26837337e-01 -1.38498554e-02
1.10137832e+00 -1.87453464e-01 -2.87733614e-01 7.52750188e-02
5.43147862e-01 -9.61339653e-01 9.18424726e-01 -8.55689570e-02
2.73963571e-01 -5.35798371e-01 -1.01226792e-01 -1.24229646e+00
2.17021275e-02 -1.07172990e+00 -1.16396107e-01 1.88963854e+00
4.92039993e-02 -6.30131185e-01 4.08185065e-01 2.03801945e-01
-2.88461940e-03 -4.36981112e-01 -1.09187031e+00 -6.67888403e-01
-4.27307904e-01 -4.55192596e-01 3.72519046e-01 9.31887627e-01
8.05140212e-02 4.36777651e-01 -7.95383871e-01 3.59407037e-01
5.24598539e-01 2.16498852e-01 8.56782436e-01 -8.58000815e-01
-5.57264745e-01 -3.55940402e-01 -1.46463439e-01 -1.41219366e+00
1.05682097e-01 -4.44867224e-01 1.40753016e-01 -1.31949770e+00
-1.32983094e-02 6.51125982e-02 -3.61606896e-01 1.45192251e-01
-2.47916415e-01 -3.55829485e-02 2.45777607e-01 3.81085724e-01
-1.08763374e-01 9.51887310e-01 1.29684317e+00 -2.90205747e-01
-5.62506855e-01 4.48089689e-02 -7.43783474e-01 6.20716453e-01
5.55870175e-01 -2.46526927e-01 -5.86039782e-01 -2.66948968e-01
-3.88675332e-01 5.95357418e-01 2.55085200e-01 -7.19425499e-01
2.29397044e-01 -7.21855983e-02 1.54962450e-01 -6.08121336e-01
7.33431816e-01 -8.90963018e-01 -1.14263237e-01 4.06979434e-02
-2.52996802e-01 -1.14794910e-01 2.43988246e-01 7.88901746e-01
-4.78377104e-01 -2.14968801e-01 8.25852036e-01 1.57879025e-01
-2.08097056e-01 5.80818690e-02 -1.99765846e-01 -1.67548180e-01
9.67915237e-01 -4.32735562e-01 -2.86325812e-02 -8.34686577e-01
-5.68756282e-01 1.26252785e-01 3.16032588e-01 5.27618587e-01
8.42637837e-01 -1.43029320e+00 -6.08302236e-01 1.86971605e-01
-5.84985763e-02 -3.03947687e-01 2.89301872e-01 1.06292927e+00
2.37671714e-02 1.21488005e-01 6.67780340e-02 -5.92748940e-01
-1.58739221e+00 7.41529703e-01 1.94106176e-01 1.31894916e-01
-6.47936285e-01 7.25060165e-01 6.23913348e-01 2.52843887e-01
7.36512721e-01 -2.44029671e-01 -3.35833192e-01 8.00668523e-02
6.94056213e-01 2.92039603e-01 -1.88466147e-01 -6.95394933e-01
-3.09597909e-01 4.01551723e-01 3.77369002e-02 -3.62400383e-01
1.02827108e+00 -6.10065639e-01 5.29383495e-02 7.12856710e-01
1.26128447e+00 7.75522828e-01 -1.37334383e+00 -3.27362806e-01
-4.51246351e-01 -7.02108085e-01 2.14436650e-01 -2.43741259e-01
-1.16028440e+00 1.12997866e+00 7.15584099e-01 4.85592902e-01
1.36474419e+00 -1.04679585e-01 8.63286316e-01 -1.92328110e-01
-5.04648089e-02 -7.62857616e-01 2.92173386e-01 -2.12524176e-01
1.25210011e+00 -1.06706405e+00 -1.87406361e-01 -5.60066283e-01
-5.75909257e-01 9.03607547e-01 4.29164380e-01 2.19887361e-01
5.43331683e-01 2.46606633e-01 2.22871512e-01 2.31896296e-01
-6.03192270e-01 -1.53508589e-01 3.73377115e-01 6.40197635e-01
4.34485048e-01 -1.80686265e-01 -2.50870198e-01 7.59243011e-01
-1.01386443e-01 -4.72937167e-01 3.98341060e-01 8.25238049e-01
-4.59360361e-01 -1.04602540e+00 -8.12023818e-01 -5.63686565e-02
-5.69495082e-01 -7.14717582e-02 -3.78996491e-01 5.97526312e-01
-5.63203357e-02 1.32822680e+00 -1.12288423e-01 -1.86785430e-01
3.47693264e-01 2.21364871e-01 3.18088889e-01 -3.10677290e-01
-2.31211007e-01 7.93808043e-01 -2.00040296e-01 -2.38294110e-01
-4.44308102e-01 -5.52431107e-01 -9.04686868e-01 -5.39520057e-03
-6.09211624e-01 1.51135460e-01 4.75194216e-01 6.03789866e-01
2.82252848e-01 5.28427541e-01 9.50458467e-01 -9.74557042e-01
-3.67372841e-01 -1.15191042e+00 -7.38363624e-01 3.36745709e-01
8.07012320e-01 -7.46210217e-01 -7.41053700e-01 9.95042324e-02] | [14.5238618850708, 5.1998395919799805] |
1de20229-e86a-4bf2-866e-da4df136bd95 | computation-with-sequences-in-the-brain | 2306.03812 | null | https://arxiv.org/abs/2306.03812v1 | https://arxiv.org/pdf/2306.03812v1.pdf | Computation with Sequences in the Brain | Even as machine learning exceeds human-level performance on many applications, the generality, robustness, and rapidity of the brain's learning capabilities remain unmatched. How cognition arises from neural activity is a central open question in neuroscience, inextricable from the study of intelligence itself. A simple formal model of neural activity was proposed in Papadimitriou [2020] and has been subsequently shown, through both mathematical proofs and simulations, to be capable of implementing certain simple cognitive operations via the creation and manipulation of assemblies of neurons. However, many intelligent behaviors rely on the ability to recognize, store, and manipulate temporal sequences of stimuli (planning, language, navigation, to list a few). Here we show that, in the same model, time can be captured naturally as precedence through synaptic weights and plasticity, and, as a result, a range of computations on sequences of assemblies can be carried out. In particular, repeated presentation of a sequence of stimuli leads to the memorization of the sequence through corresponding neural assemblies: upon future presentation of any stimulus in the sequence, the corresponding assembly and its subsequent ones will be activated, one after the other, until the end of the sequence. Finally, we show that any finite state machine can be learned in a similar way, through the presentation of appropriate patterns of sequences. Through an extension of this mechanism, the model can be shown to be capable of universal computation. We support our analysis with a number of experiments to probe the limits of learning in this model in key ways. Taken together, these results provide a concrete hypothesis for the basis of the brain's remarkable abilities to compute and learn, with sequences playing a vital role. | ['Santosh S. Vempala', 'Christos H. Papadimitriou', 'Max Dabagia'] | 2023-06-06 | null | null | null | null | ['mathematical-proofs', 'memorization', 'open-question', 'temporal-sequences'] | ['miscellaneous', 'natural-language-processing', 'natural-language-processing', 'reasoning'] | [ 5.79262793e-01 -5.42303035e-03 1.80695757e-01 4.30493616e-02
2.78620750e-01 -9.19864476e-01 1.09941018e+00 3.42094570e-01
-5.40191293e-01 8.27582002e-01 -9.68314186e-02 -3.75986934e-01
-3.49315524e-01 -8.81309748e-01 -7.31576502e-01 -9.89131749e-01
-3.29602629e-01 2.05165818e-01 4.31850195e-01 -3.74594420e-01
5.95433056e-01 6.83240116e-01 -1.74434257e+00 1.55568361e-01
3.46231997e-01 8.40351701e-01 5.95979929e-01 7.54962623e-01
-1.82017814e-02 7.24847913e-01 -3.44026774e-01 -2.51572505e-02
1.68146983e-01 -6.34444058e-01 -8.11602712e-01 3.28837074e-02
-1.36699632e-01 1.71727315e-01 -1.99810773e-01 7.39062548e-01
1.05619170e-01 2.70739317e-01 5.56998610e-01 -8.00383627e-01
-5.19382834e-01 3.63192171e-01 2.07822070e-01 4.03721333e-01
3.81809115e-01 3.62219810e-01 6.91017032e-01 -5.65465331e-01
5.26031911e-01 7.92362571e-01 2.31347442e-01 6.23722672e-01
-1.31215560e+00 -3.44878525e-01 1.34285450e-01 -8.62790123e-02
-1.06094384e+00 -5.22195280e-01 3.72158498e-01 -3.74186188e-01
1.12126148e+00 1.93306684e-01 1.30987155e+00 6.94115520e-01
6.53666556e-01 3.12863469e-01 1.18486679e+00 -6.56949580e-01
4.87729371e-01 -2.35103488e-01 1.40846744e-01 9.32424128e-01
3.83480459e-01 3.26750457e-01 -8.79277170e-01 8.44745785e-02
9.07354414e-01 -2.69723441e-02 -3.49759459e-01 -2.70675331e-01
-1.21208429e+00 1.71743870e-01 2.14316234e-01 6.93924844e-01
-3.12445641e-01 2.45334670e-01 1.54941067e-01 4.28245634e-01
-2.45082825e-01 6.97116256e-01 -2.87833273e-01 1.81624275e-02
-6.96269393e-01 6.33287281e-02 7.49675572e-01 2.56777465e-01
6.01408720e-01 6.33590622e-03 1.64181024e-01 1.97769344e-01
6.76025003e-02 3.17963988e-01 7.43467629e-01 -9.45102692e-01
-8.06805119e-02 4.45025116e-01 -2.81623360e-02 -8.74563515e-01
-3.95162851e-01 -5.04685998e-01 -7.00440109e-01 4.57522452e-01
4.97392505e-01 1.33987650e-01 -5.14928579e-01 2.15362191e+00
-1.71809748e-01 1.16958231e-01 1.34860277e-01 5.68480611e-01
-1.82342157e-02 7.13838696e-01 1.17916480e-01 -5.27291059e-01
9.00800347e-01 -3.10268909e-01 -2.29726017e-01 -2.63560951e-01
4.67030257e-01 -1.12683065e-01 7.11272001e-01 4.98795062e-01
-1.37293005e+00 -4.63427305e-01 -1.21487784e+00 3.23273212e-01
-3.53505254e-01 -5.80707610e-01 1.07252526e+00 4.35859919e-01
-1.29893255e+00 8.75607073e-01 -9.51668441e-01 -4.76786882e-01
1.35865971e-01 4.88382459e-01 -3.22453797e-01 2.69713312e-01
-9.61039722e-01 1.07685649e+00 5.19068718e-01 2.48380989e-01
-9.87152636e-01 -1.99487850e-01 -3.78897905e-01 2.00109899e-01
-1.48036070e-02 -8.76767695e-01 1.08345830e+00 -1.17505527e+00
-1.27517903e+00 9.20752883e-01 -4.08379644e-01 -5.67848504e-01
-9.46548432e-02 3.05676043e-01 -2.64252871e-01 2.11199969e-01
-3.37709725e-01 4.79614615e-01 5.13141751e-01 -1.04626632e+00
-3.16846818e-01 -5.74494421e-01 1.37741625e-01 1.68729931e-01
-2.18289524e-01 -1.44877970e-01 1.08548058e-02 -2.82176375e-01
3.34619105e-01 -8.44767809e-01 -2.05250666e-01 -6.65462688e-02
3.03715110e-01 -1.21981762e-01 -9.00216773e-02 -7.95170292e-02
1.04551804e+00 -2.22395325e+00 3.63372535e-01 2.12073833e-01
1.89519152e-01 7.93884397e-02 -2.07099691e-01 6.24648035e-01
-1.28556535e-01 1.64975628e-01 -4.23538148e-01 1.66279271e-01
-1.57103390e-01 3.13920200e-01 -3.89604479e-01 3.72384191e-01
2.49796420e-01 1.10428619e+00 -9.47426677e-01 -7.94851407e-02
-1.18981853e-01 3.22481632e-01 -4.43291575e-01 -1.69174179e-01
-1.90688685e-01 4.24671501e-01 -3.50817561e-01 7.77296498e-02
-1.47291303e-01 -3.90348792e-01 5.27811289e-01 3.92607391e-01
-3.32931072e-01 5.04210055e-01 -8.59020591e-01 1.46036828e+00
-3.85443956e-01 6.98662937e-01 -5.93696572e-02 -1.19626725e+00
7.23390639e-01 5.86152554e-01 1.34697869e-01 -9.51073647e-01
2.58224487e-01 2.49236271e-01 7.16005385e-01 -3.59793097e-01
1.90658718e-02 -2.06457391e-01 -7.35893250e-02 1.02901065e+00
1.41171087e-02 -1.87101856e-01 5.49426198e-01 3.25086236e-01
1.27004170e+00 -8.05713087e-02 3.62161875e-01 -3.05084616e-01
4.58634138e-01 -2.89471149e-01 2.41145656e-01 8.98617446e-01
-9.69733149e-02 8.74331892e-02 2.66353011e-01 -4.95135516e-01
-1.08684480e+00 -1.44220829e+00 -7.17274696e-02 1.00836372e+00
1.04415648e-01 4.06337641e-02 -6.60146594e-01 2.27684364e-01
-3.18384945e-01 6.05590641e-01 -7.04470634e-01 -4.99126673e-01
-6.55490696e-01 -6.74937844e-01 3.28637600e-01 2.91578442e-01
4.05672014e-01 -1.65362585e+00 -1.30992448e+00 4.00258005e-01
3.38390768e-01 -6.16874993e-01 -1.26805110e-03 4.40963566e-01
-1.29421687e+00 -9.44583714e-01 -1.99402198e-01 -8.72725070e-01
8.11996818e-01 2.04146370e-01 9.52609062e-01 5.40681422e-01
-2.60434955e-01 4.62976038e-01 7.99457729e-02 -1.80504009e-01
-3.84205431e-01 -1.35459557e-01 2.22451821e-01 -1.45917594e-01
-1.30819812e-01 -1.14338648e+00 -4.58045900e-01 -9.52938721e-02
-1.17424989e+00 2.49965549e-01 5.87454259e-01 6.43693388e-01
3.47446382e-01 2.31898879e-03 6.93520248e-01 -4.87503916e-01
7.00002074e-01 -3.25132191e-01 -4.64870304e-01 2.37481922e-01
-3.58653128e-01 3.66936147e-01 6.37176871e-01 -4.69711721e-01
-8.20088387e-01 3.08603700e-02 1.83266729e-01 4.08536553e-01
-8.77161548e-02 5.43918073e-01 -2.23582182e-02 -6.95536658e-02
5.02964497e-01 1.01544666e+00 1.55662090e-01 2.41745356e-02
1.63517579e-01 3.15401889e-02 6.13444924e-01 -6.92272961e-01
4.71684486e-01 3.81006688e-01 2.66304642e-01 -6.85769498e-01
-4.34113055e-01 2.03364313e-01 -7.10104287e-01 -4.02375519e-01
5.67713380e-01 -3.97842914e-01 -9.80291963e-01 5.12592912e-01
-1.10081089e+00 -5.32757759e-01 -1.14378765e-01 3.00297499e-01
-7.44060874e-01 -2.28759181e-03 -6.89805508e-01 -9.21458423e-01
1.31856026e-02 -6.48926437e-01 2.27524847e-01 3.27821404e-01
-4.90093261e-01 -8.97338152e-01 1.34497404e-01 -2.58356780e-01
3.41805488e-01 -9.15311873e-02 1.30313134e+00 -5.61074257e-01
-8.49724054e-01 -8.23904350e-02 3.17921102e-01 5.21216961e-03
-1.04578078e-01 -9.90109518e-03 -5.73070526e-01 -9.80060771e-02
3.39290589e-01 -1.42875910e-01 8.43445361e-01 3.60517688e-02
1.02611113e+00 -2.78204471e-01 -4.20629323e-01 2.08478019e-01
1.45683336e+00 5.79346061e-01 6.70248508e-01 2.34279662e-01
-9.80390310e-02 5.39839506e-01 -2.59897441e-01 2.42464356e-02
7.48803318e-02 2.00740650e-01 4.26948875e-01 5.75809300e-01
1.57878906e-01 -3.24523239e-03 2.70302534e-01 1.14093482e+00
-4.29936349e-01 -9.31282900e-03 -8.06342483e-01 5.21426320e-01
-1.51107061e+00 -1.33495986e+00 2.73928553e-01 2.47430706e+00
9.53633964e-01 5.22871196e-01 -2.27661669e-01 4.74526346e-01
4.07407135e-01 -5.09234332e-02 -5.01759768e-01 -6.65053844e-01
-3.12151760e-01 5.92764020e-01 1.50337800e-01 4.84833896e-01
-2.98268169e-01 7.12828875e-01 7.47953606e+00 2.52666563e-01
-1.05299020e+00 -5.09811565e-02 3.74489427e-01 -2.54734129e-01
-3.31977785e-01 -7.29369968e-02 -3.65260392e-01 6.49935365e-01
1.19867599e+00 -4.18909818e-01 9.82950807e-01 5.89855425e-02
6.83977231e-02 -5.74983954e-01 -1.30923879e+00 4.87812251e-01
9.14171152e-03 -1.48325074e+00 1.29830018e-01 -6.08677231e-02
6.48673475e-01 -3.38922024e-01 1.00658961e-01 4.98005897e-02
2.32061505e-01 -1.13979208e+00 7.63211608e-01 7.07825065e-01
1.74157038e-01 -5.19743621e-01 2.80998759e-02 8.26689065e-01
-8.64084303e-01 -3.56680840e-01 -9.03583989e-02 -7.60530710e-01
1.01542272e-01 4.47220176e-01 -2.85691291e-01 -3.01390998e-02
3.24278101e-02 1.17451049e-01 -4.38306272e-01 1.00186038e+00
-3.03783387e-01 5.09936810e-01 -1.97303429e-01 -4.50559407e-01
5.60398214e-02 -1.17084876e-01 3.01786482e-01 8.92579019e-01
3.12251210e-01 7.03482985e-01 -3.43697280e-01 7.47264087e-01
9.64511633e-02 -2.56554812e-01 -7.41388559e-01 -1.38135195e-01
6.89033389e-01 9.06368971e-01 -9.87040162e-01 -3.96032155e-01
-1.24860197e-01 7.77831018e-01 4.95320886e-01 3.92674834e-01
-3.97966295e-01 -9.42285284e-02 3.82676899e-01 -3.64777353e-03
2.06565186e-01 -7.57009447e-01 -5.62538028e-01 -7.72641361e-01
-1.09219544e-01 -6.26115620e-01 -2.51533568e-01 -8.31637144e-01
-7.34621465e-01 4.56822336e-01 -4.33803141e-01 -4.54438806e-01
-3.87115330e-01 -5.89170754e-01 -6.80725634e-01 7.58768320e-01
-7.65820205e-01 -3.49890530e-01 1.83132112e-01 4.92822677e-01
3.27499241e-01 2.87073627e-02 9.88649368e-01 -1.52961329e-01
-3.72563094e-01 1.39982514e-02 -3.35407257e-02 2.60802247e-02
-6.41547516e-02 -8.97006869e-01 2.84767747e-01 7.69066989e-01
4.97546822e-01 1.00957727e+00 5.10241449e-01 -4.30840433e-01
-1.58586419e+00 -5.21506786e-01 1.11306298e+00 -4.66157258e-01
6.43348753e-01 -5.07051408e-01 -9.66217935e-01 6.08070672e-01
1.96411997e-01 -3.02028120e-01 4.70495999e-01 -8.07101876e-02
-3.07807863e-01 3.49578564e-03 -6.61249578e-01 7.97612369e-01
1.22012258e+00 -6.83972359e-01 -8.93985391e-01 3.10921352e-02
4.19956267e-01 1.26686588e-01 -2.87057787e-01 1.12689801e-01
9.69459116e-01 -1.06834638e+00 6.97884917e-01 -6.92188144e-01
4.59818095e-01 -3.68344605e-01 -3.41747180e-02 -1.19090569e+00
-5.08334935e-01 -4.50689375e-01 -7.43517578e-02 7.11957455e-01
4.42523897e-01 -8.94881189e-01 2.88506061e-01 5.15731573e-01
-7.26978108e-03 -7.04575419e-01 -8.64777863e-01 -8.15871835e-01
1.32253379e-01 -3.91390502e-01 2.93466330e-01 5.49750566e-01
5.19350469e-01 2.49598458e-01 2.87461400e-01 -7.59209096e-02
3.44674975e-01 1.50501430e-01 1.16548076e-01 -1.16469252e+00
-5.15120983e-01 -7.76500821e-01 -4.34956938e-01 -9.13738906e-01
9.00222734e-02 -1.07291353e+00 2.92363554e-01 -1.30425084e+00
2.01778442e-01 -3.66384476e-01 -5.29263437e-01 2.83431917e-01
9.97146070e-02 1.64154619e-01 5.10377765e-01 3.00301969e-01
-4.33441341e-01 9.77016799e-03 1.14793766e+00 2.23835245e-01
1.27045102e-02 -1.75917834e-01 -5.51791012e-01 6.76659822e-01
9.04886484e-01 -2.68552393e-01 -3.10483783e-01 -3.45421046e-01
7.55378962e-01 1.82842284e-01 4.27723140e-01 -1.29554212e+00
5.51251411e-01 -1.10474445e-01 5.04783392e-01 4.31619063e-02
3.36592734e-01 -5.58642983e-01 2.60948390e-01 9.63389635e-01
-6.75809681e-01 3.13170880e-01 7.60247186e-02 5.01057029e-01
2.73126870e-01 -3.91082525e-01 5.29505193e-01 -4.46064472e-01
-7.69306779e-01 1.82994213e-02 -1.18003798e+00 -9.49261114e-02
9.58421350e-01 -3.91581684e-01 -2.85376340e-01 -1.25008807e-01
-9.18498635e-01 -9.87695456e-02 5.24929881e-01 -4.14547734e-02
4.02558059e-01 -9.35104072e-01 -1.63643226e-01 3.01110804e-01
-3.59946519e-01 -4.41994220e-01 -1.06617518e-01 7.58661747e-01
-2.52368867e-01 7.30586946e-01 -6.31505907e-01 -2.59956300e-01
-7.58209348e-01 7.16826200e-01 3.10835391e-01 -6.09766543e-02
-1.18256144e-01 6.80238366e-01 2.84533352e-01 1.60136700e-01
-9.15133767e-03 -2.51907200e-01 -2.97728423e-02 -1.29987091e-01
7.59092808e-01 -1.31546363e-01 -8.61310363e-02 -1.96662650e-01
-2.94482708e-01 5.38396001e-01 2.49415517e-01 -5.58786809e-01
1.20401716e+00 -1.02099299e-01 -5.03344953e-01 8.31001937e-01
6.49347007e-01 -1.18393250e-01 -1.09879494e+00 1.09299950e-01
-2.61740256e-02 -3.39558162e-02 -5.47813833e-01 -8.40779305e-01
-6.59696341e-01 1.03260243e+00 1.28744796e-01 5.11477113e-01
1.18377161e+00 -1.08216498e-02 3.45867187e-01 6.35758817e-01
8.25160623e-01 -7.12962329e-01 2.64982224e-01 7.20195532e-01
6.44493043e-01 -4.70677525e-01 -4.10369337e-01 -6.03405647e-02
-1.08050361e-01 1.18199027e+00 2.64711112e-01 -4.11636025e-01
4.06233668e-01 3.81868839e-01 -5.33617437e-01 -2.37334948e-02
-1.39684296e+00 -1.01721987e-01 -1.93963364e-01 5.82638979e-01
5.10163903e-01 -8.98701325e-03 -4.97629791e-01 2.73610145e-01
-2.23108739e-01 1.75561368e-01 6.17756665e-01 9.16615844e-01
-1.08241808e+00 -9.23467875e-01 -1.67933747e-01 3.50668222e-01
-2.15296596e-01 -2.71809191e-01 -2.59857595e-01 5.51261246e-01
1.82573140e-01 6.38131976e-01 3.75645012e-01 -4.43504229e-02
-2.35986918e-01 4.63071704e-01 1.14147925e+00 -7.12602615e-01
-5.89538872e-01 -5.35170674e-01 -2.55209893e-01 -3.44477952e-01
-3.66601765e-01 -8.43984544e-01 -1.59795904e+00 -2.17228338e-01
1.93965703e-01 4.44090031e-02 5.40638506e-01 1.22842717e+00
1.21304937e-01 5.30629158e-01 3.04108888e-01 -6.84792519e-01
-3.58912319e-01 -4.52720702e-01 -5.52791595e-01 2.24406362e-01
2.54459709e-01 -4.03778136e-01 -3.15683484e-01 3.31709623e-01] | [8.143631935119629, 3.168800115585327] |
f07308f2-76d1-44e2-bafb-0e88302c1cd4 | aigciqa2023-a-large-scale-image-quality | 2307.00211 | null | https://arxiv.org/abs/2307.00211v1 | https://arxiv.org/pdf/2307.00211v1.pdf | AIGCIQA2023: A Large-scale Image Quality Assessment Database for AI Generated Images: from the Perspectives of Quality, Authenticity and Correspondence | In this paper, in order to get a better understanding of the human visual preferences for AIGIs, a large-scale IQA database for AIGC is established, which is named as AIGCIQA2023. We first generate over 2000 images based on 6 state-of-the-art text-to-image generation models using 100 prompts. Based on these images, a well-organized subjective experiment is conducted to assess the human visual preferences for each image from three perspectives including quality, authenticity and correspondence. Finally, based on this large-scale database, we conduct a benchmark experiment to evaluate the performance of several state-of-the-art IQA metrics on our constructed database. | ['Guangtao Zhai', 'Xiongkuo Min', 'Shi Chen', 'Jing Liu', 'Huiyu Duan', 'Jiarui Wang'] | 2023-07-01 | null | null | null | null | ['image-quality-assessment', 'image-generation'] | ['computer-vision', 'computer-vision'] | [-1.72180280e-01 -2.29719311e-01 1.58428669e-01 -3.43051523e-01
-8.65685821e-01 -5.93840301e-01 6.36135399e-01 -1.08861923e-01
-2.68688321e-01 4.59948987e-01 2.02960506e-01 -1.51372716e-01
1.59339681e-01 -8.92879486e-01 -4.88441527e-01 -3.15046400e-01
1.08316623e-01 3.53154123e-01 1.77212432e-01 -1.05153598e-01
4.22286540e-01 3.36576730e-01 -1.65217984e+00 5.07722974e-01
1.38433945e+00 1.28329408e+00 1.03130840e-01 3.63301575e-01
6.70342594e-02 5.32712936e-01 -9.10595000e-01 -6.62163556e-01
2.44793788e-01 -3.15597624e-01 -8.39022756e-01 4.33256835e-01
5.62197030e-01 -5.39440453e-01 -1.43216789e-01 1.10964692e+00
6.41709805e-01 -3.71212699e-02 7.88968265e-01 -1.38234377e+00
-1.16023970e+00 2.59412974e-01 -5.85158050e-01 -2.68828850e-02
6.82737589e-01 7.35652506e-01 1.16456759e+00 -1.03129089e+00
4.93751794e-01 1.20540273e+00 5.74496873e-02 -9.61993858e-02
-9.77556646e-01 -8.32205236e-01 6.16877228e-02 4.29270476e-01
-1.40897775e+00 -2.12442294e-01 7.00837672e-01 -5.00187337e-01
3.02191138e-01 2.84094870e-01 7.73809373e-01 1.00630486e+00
-6.93819970e-02 8.94276977e-01 1.40206635e+00 -5.60766995e-01
3.11667025e-01 2.38990977e-01 -1.87285408e-01 5.56231201e-01
2.08082423e-01 1.91484809e-01 -5.26897192e-01 6.47784472e-02
8.26582134e-01 -5.33841729e-01 -1.97332948e-01 -1.37765557e-01
-1.22544146e+00 9.61159229e-01 5.67200720e-01 1.09667622e-01
-3.09335202e-01 -4.05517966e-01 1.41374126e-01 -7.96437487e-02
4.35703307e-01 4.41843748e-01 1.83055744e-01 1.48146540e-01
-6.59672320e-01 1.26266047e-01 3.48609656e-01 1.20527840e+00
7.35558510e-01 6.64556995e-02 -5.66730440e-01 9.63377655e-01
4.50871825e-01 9.76434469e-01 3.75875771e-01 -8.61371756e-01
5.55279493e-01 7.06813276e-01 3.95786345e-01 -1.29133868e+00
9.65524744e-03 -3.78236264e-01 -7.45165944e-01 5.28972685e-01
1.03141740e-01 -1.01577714e-01 -1.04488301e+00 1.29010010e+00
-1.55651355e-02 -4.36724424e-01 3.81940827e-02 1.16327417e+00
1.11534679e+00 9.23813105e-01 9.52474847e-02 -7.98753351e-02
1.39780819e+00 -8.61881793e-01 -5.07901967e-01 -3.50916833e-01
1.39353201e-01 -8.68583500e-01 1.68100357e+00 5.08285284e-01
-1.06080508e+00 -8.66739452e-01 -1.12928629e+00 6.90883175e-02
-2.63041854e-01 6.38330936e-01 4.36663270e-01 5.96657276e-01
-1.07619810e+00 -3.14305395e-01 -4.77196760e-02 -5.15794754e-01
2.57843018e-01 -1.78809628e-01 -2.98798919e-01 -1.60950676e-01
-1.30966544e+00 8.54221284e-01 4.97330457e-01 -2.56816130e-02
-8.51009965e-01 -3.58416408e-01 -6.83520436e-01 -6.01540394e-02
3.10689449e-01 -5.28429449e-01 1.10289097e+00 -1.04216146e+00
-1.47563112e+00 1.20551217e+00 1.18688330e-01 4.06812206e-02
6.36435270e-01 -1.31868809e-01 -7.40249038e-01 3.31174612e-01
4.93388832e-01 1.04494989e+00 6.35352612e-01 -1.80737627e+00
-7.64412761e-01 -2.45220631e-01 1.57621026e-01 4.07381505e-01
-3.64782155e-01 1.18450135e-01 -8.77565384e-01 -9.48340774e-01
-3.86978984e-01 -8.97645533e-01 7.69710690e-02 7.13281110e-02
-4.19855565e-01 -2.38904878e-02 4.92180943e-01 -6.31482661e-01
1.23425889e+00 -2.34087420e+00 -2.92562783e-01 5.73888421e-01
2.56579891e-02 2.97529548e-01 -5.29624343e-01 3.56171250e-01
8.39146525e-02 1.24357969e-01 -2.38568708e-02 1.63528726e-01
-2.99751777e-02 -2.60445982e-01 -2.39954054e-01 -6.09728857e-04
2.60192212e-02 6.73352420e-01 -7.83700287e-01 -9.14529860e-01
3.07839930e-01 -9.75082517e-02 -3.39970946e-01 6.12751544e-01
-1.02986887e-01 1.88404396e-01 -5.65944135e-01 7.98305511e-01
9.00024652e-01 -3.41896683e-01 -1.08392872e-01 -4.73033130e-01
-1.16990298e-01 -5.46968341e-01 -1.05873060e+00 1.47207963e+00
-2.66877145e-01 5.54376125e-01 -4.49602038e-01 -3.26241165e-01
1.05673754e+00 4.37417030e-02 2.99900144e-01 -1.10177767e+00
1.70461640e-01 1.38105333e-01 -1.91248164e-01 -5.63205183e-01
6.17546320e-01 1.71742946e-01 -1.62258625e-01 3.79938394e-01
-1.08723663e-01 -2.79275268e-01 6.51722848e-01 4.02186960e-01
4.19262767e-01 -2.67488688e-01 2.46835247e-01 -3.43483359e-01
5.20927072e-01 2.64203936e-01 3.12630326e-01 5.55091262e-01
-2.25464955e-01 1.07900953e+00 3.03311378e-01 -3.49580467e-01
-8.62682521e-01 -1.29059291e+00 1.47181466e-01 7.60143340e-01
5.17441332e-01 -2.02622473e-01 -8.88210833e-01 -5.85362911e-01
-2.75226563e-01 8.57016504e-01 -6.07793629e-01 3.99927646e-02
1.24035172e-01 -6.49805605e-01 4.54238832e-01 4.95496750e-01
1.10845995e+00 -1.46041214e+00 -5.01106203e-01 -6.74806461e-02
-6.01347148e-01 -1.17926228e+00 -8.20672750e-01 -7.64158905e-01
-2.91703969e-01 -1.14810932e+00 -9.83723462e-01 -9.00318921e-01
8.32387626e-01 4.88549709e-01 1.34534979e+00 1.55660093e-01
-2.51940101e-01 2.29450658e-01 -7.00246215e-01 -5.41290283e-01
-2.09454522e-01 -1.20720468e-01 -2.44424090e-01 1.41842529e-01
1.02270581e-01 8.67863465e-03 -8.80122542e-01 7.22401857e-01
-1.21489072e+00 3.51574540e-01 1.01778901e+00 3.88572037e-01
5.13490260e-01 1.39119402e-01 2.45266408e-01 -4.52808410e-01
9.98181224e-01 -3.96877974e-02 -8.59631836e-01 7.15044796e-01
-5.55489361e-01 -2.73901284e-01 4.43865985e-01 -3.54449928e-01
-1.41893518e+00 -1.36978790e-01 2.69525707e-01 -5.79832718e-02
-2.20245078e-01 6.57293439e-01 -5.20918548e-01 -5.35342796e-03
6.49441719e-01 2.58972108e-01 -1.20266229e-01 1.01161279e-01
8.05215180e-01 9.89343584e-01 9.51767921e-01 -6.26045585e-01
9.61055100e-01 1.85979396e-01 -5.88673115e-01 -6.06924176e-01
-7.56806493e-01 -2.03577891e-01 -2.93348342e-01 -7.46998370e-01
9.55556512e-01 -1.02954423e+00 -5.54197311e-01 8.50881934e-01
-1.01360953e+00 -1.93370581e-01 1.64792910e-01 3.61587942e-01
-5.13857663e-01 3.28915775e-01 -3.30954641e-01 -5.82925200e-01
-4.33146030e-01 -1.31051564e+00 8.92331421e-01 5.66119969e-01
-7.89102241e-02 -5.10384083e-01 -6.36661053e-03 6.81879580e-01
3.65006506e-01 -1.05872758e-01 7.27546990e-01 -7.34507665e-02
-6.69918060e-01 -9.15750787e-02 -8.13183665e-01 2.38122880e-01
1.91348251e-02 3.45802575e-01 -7.13752925e-01 -1.66894704e-01
-4.25904572e-01 -5.25685370e-01 3.64605218e-01 3.47691953e-01
1.13785732e+00 -1.73377484e-01 -3.08973808e-02 3.56856406e-01
1.41872656e+00 5.51923215e-01 1.06402314e+00 6.22479081e-01
3.86038810e-01 5.44081032e-01 1.15195751e+00 6.49742901e-01
6.02829814e-01 5.83674312e-01 2.59509027e-01 -4.49525326e-01
-2.25687623e-02 -3.03459048e-01 6.06895909e-02 5.69712818e-01
-1.48571834e-01 -7.33474195e-01 -9.11824286e-01 5.20082295e-01
-1.60948682e+00 -7.26673186e-01 5.99179883e-03 1.92528546e+00
7.38065362e-01 -3.19773518e-02 2.19590306e-01 -2.27136493e-01
7.95321465e-01 2.96330690e-01 -2.48359472e-01 1.23966590e-01
-3.80557448e-01 -3.70010376e-01 3.33900690e-01 2.61153113e-02
-1.04828584e+00 1.03371084e+00 7.48462248e+00 1.01524687e+00
-1.11887467e+00 -4.69266504e-01 1.19894183e+00 2.87711143e-01
-5.01619339e-01 -5.75435394e-03 -3.73605490e-01 6.77354634e-01
2.91116387e-01 -3.42578113e-01 4.48736221e-01 7.28846610e-01
3.33619118e-01 -4.83574182e-01 -7.07892954e-01 1.15031528e+00
4.15664554e-01 -1.25948477e+00 5.24508715e-01 6.03820942e-02
8.54753196e-01 -3.55311304e-01 4.07934874e-01 -1.82100944e-02
5.64445555e-01 -9.53796148e-01 9.33642924e-01 5.46073437e-01
1.22387791e+00 -6.97629154e-01 8.63940179e-01 -5.74762970e-02
-1.09235549e+00 1.41888782e-01 -2.62090653e-01 4.04420376e-01
1.80595532e-01 5.59202313e-01 -4.11829859e-01 6.99943185e-01
9.14034843e-01 3.61342281e-01 -1.15113389e+00 1.15936565e+00
-3.37435424e-01 3.94755423e-01 1.38969691e-02 7.96923712e-02
2.10137621e-01 -4.29544181e-01 9.39639434e-02 8.90048146e-01
5.62192559e-01 4.70532238e-01 2.10678391e-02 1.05263877e+00
-5.44716083e-02 3.68568629e-01 -3.82229954e-01 -1.01019748e-01
6.21548653e-01 1.27631998e+00 -5.03892779e-01 -4.76460278e-01
-4.41024393e-01 9.05767679e-01 -3.96003798e-02 4.78009731e-01
-9.37299192e-01 -4.48189050e-01 1.20906375e-01 -5.25394008e-02
1.99416243e-02 4.86131199e-02 -3.58819723e-01 -1.04381692e+00
7.35566691e-02 -1.31846201e+00 4.87330407e-01 -1.63145363e+00
-1.35697174e+00 8.11528444e-01 3.18295300e-01 -1.65629470e+00
-1.02886163e-01 -4.39588368e-01 -9.54507053e-01 7.99125195e-01
-1.15585220e+00 -1.34397876e+00 -9.21553075e-01 4.63120252e-01
3.68798703e-01 -5.26627958e-01 5.01844406e-01 9.85323787e-02
-3.98578763e-01 7.18509257e-01 -3.12792212e-01 2.64534801e-01
1.00994468e+00 -9.01377618e-01 5.52517712e-01 9.66045976e-01
1.02255113e-01 3.03644449e-01 4.72614855e-01 -6.36845112e-01
-9.78587329e-01 -9.83019769e-01 4.24139380e-01 -1.83749452e-01
4.17727500e-01 8.27190429e-02 -6.88789189e-01 3.86574239e-01
6.39798224e-01 -2.26874501e-01 4.37259704e-01 -2.38805965e-01
-8.49347636e-02 -3.82993132e-01 -9.85305548e-01 7.31212258e-01
8.61819267e-01 -2.08950609e-01 -4.42496657e-01 6.11196384e-02
4.50470865e-01 -1.77062556e-01 -7.20908284e-01 3.89668137e-01
3.63930762e-01 -1.07222641e+00 9.73509669e-01 1.30545869e-01
5.87564111e-01 -5.69489181e-01 -1.81274246e-02 -1.69110465e+00
-4.25005198e-01 -2.09749207e-01 9.15378690e-01 1.45697939e+00
4.82018948e-01 -5.73260486e-01 5.80870509e-01 5.35998583e-01
9.47992653e-02 -1.96945488e-01 -3.40539187e-01 -6.68365896e-01
-2.93217242e-01 -1.31834984e-01 9.64525223e-01 6.52234793e-01
-6.27831668e-02 3.33645105e-01 -5.07819176e-01 1.00967526e-01
6.35435879e-01 3.06705981e-01 1.02257919e+00 -9.65811908e-01
1.40832633e-01 -3.68567556e-01 -3.04200590e-01 -7.55196691e-01
-1.76533028e-01 -3.09644043e-01 2.02829048e-01 -1.70887554e+00
5.63400269e-01 -1.12359203e-01 -1.36556581e-01 2.89527088e-01
-4.13135469e-01 4.72269177e-01 3.10906082e-01 3.09627175e-01
-8.31433117e-01 7.50879645e-01 1.44146883e+00 -3.54043067e-01
5.01051918e-02 -4.58037585e-01 -8.82886052e-01 4.28539455e-01
7.21452057e-01 6.65749237e-02 -4.82505411e-01 -5.89449584e-01
5.47604635e-02 1.67420775e-01 2.28708327e-01 -9.73449707e-01
4.11299728e-02 -6.35850251e-01 4.97989565e-01 -8.85064363e-01
1.16626672e-01 -4.95634973e-01 1.67785108e-01 5.20194545e-02
-3.09654444e-01 2.63633728e-01 3.56578082e-02 2.83978045e-01
-6.64574146e-01 1.11862332e-01 7.06040502e-01 -8.43895674e-02
-1.14587963e+00 3.38158876e-01 -2.99124718e-01 2.83364326e-01
1.14200342e+00 -2.28168681e-01 -6.02133274e-01 -7.96546996e-01
-1.76061437e-01 4.74459499e-01 7.79945314e-01 4.15097088e-01
8.67652953e-01 -1.71848965e+00 -1.02240765e+00 2.26802289e-01
9.22318339e-01 -2.84289598e-01 4.28427905e-01 2.40768641e-01
-8.43576014e-01 2.19191298e-01 -7.50166476e-01 -4.40690219e-01
-1.22816074e+00 4.71322328e-01 -4.33622040e-02 -1.14572175e-01
-1.98742360e-01 3.69674802e-01 5.75943410e-01 -1.77947968e-01
-9.51517280e-03 1.34307584e-02 -3.64185959e-01 -1.21987686e-01
5.02011836e-01 1.09693982e-01 -1.76245600e-01 -7.71367431e-01
-2.93684095e-01 5.95850170e-01 2.19708398e-01 -5.46262383e-01
8.78180444e-01 -2.08638057e-01 1.30410254e-01 -8.44173804e-02
7.32387841e-01 -8.78737792e-02 -1.20941973e+00 -1.07053690e-01
-4.19296056e-01 -9.91955400e-01 -1.26884043e-01 -1.12871146e+00
-1.33519590e+00 6.44083083e-01 7.13860154e-01 -3.68368886e-02
1.44055808e+00 -1.67324916e-01 6.57984674e-01 1.48316994e-02
4.26223516e-01 -1.37428164e+00 6.08440042e-01 1.99838892e-01
1.46576715e+00 -1.46474290e+00 2.12178603e-02 -4.74000186e-01
-1.41887486e+00 8.46581697e-01 9.30170536e-01 1.67828813e-01
1.50675654e-01 -2.32703462e-01 7.44662523e-01 -5.35724498e-02
-3.79892617e-01 -2.30109856e-01 5.65545976e-01 8.72840166e-01
1.78606898e-01 2.82219976e-01 -2.24964172e-01 3.84350806e-01
-3.81821364e-01 7.79301152e-02 6.00624025e-01 4.11113918e-01
-3.26011330e-01 -8.26316476e-01 -6.34450197e-01 2.52758473e-01
-1.57180168e-02 -3.79210375e-02 -6.03408515e-01 8.16578984e-01
-2.10895568e-01 1.37494636e+00 -4.04792875e-02 -5.40442586e-01
5.40225446e-01 -6.84637249e-01 1.40407503e-01 -4.14649010e-01
-1.18772626e-01 1.21328570e-01 2.58012176e-01 -4.17092413e-01
-4.93561000e-01 -3.86137366e-01 -9.06594455e-01 -2.84581125e-01
-2.26761073e-01 6.58737496e-02 3.57049495e-01 5.67020953e-01
2.52095401e-01 1.07374258e-01 7.22697854e-01 -6.88018382e-01
-2.12026134e-01 -1.07402992e+00 -7.06883490e-01 8.48195970e-01
-4.86308604e-01 -4.36973363e-01 -1.60410687e-01 2.08012566e-01] | [11.738749504089355, -1.4124592542648315] |
83069fc0-1430-4a6d-9a14-570ad4702720 | quiko-a-quantum-beat-generation-application | 2204.0437 | null | https://arxiv.org/abs/2204.04370v2 | https://arxiv.org/pdf/2204.04370v2.pdf | QuiKo: A Quantum Beat Generation Application | In this chapter a quantum music generation application called QuiKo will be discussed. It combines existing quantum algorithms with data encoding methods from quantum machine learning to build drum and audio sample patterns from a database of audio tracks. QuiKo leverages the physical properties and characteristics of quantum computers to generate what can be referred to as Soft Rules proposed by Alexis Kirke. These rules take advantage of the noise produced by quantum devices to develop flexible rules and grammars for quantum music generation. These properties include qubit decoherence and phase kickback due controlled quantum gates within the quantum circuit. QuiKo builds upon the concept of soft rules in quantum music generation and takes it a step further. It attempts to mimic and react to an external musical inputs, similar to the way that human musicians play and compose with one another. Audio signals are used as inputs into the system. Feature extraction is then performed on the signal to identify the harmonic and percussive elements. This information is then encoded onto the quantum circuit. Measurements of the quantum circuit are then taken providing results in the form of probability distributions for external music applications to use to build the new drum patterns. | ['Scott Oshiro'] | 2022-04-09 | null | null | null | null | ['music-generation', 'music-generation'] | ['audio', 'music'] | [ 3.79777521e-01 -1.25040904e-01 2.10188270e-01 1.56633973e-01
-8.57094109e-01 -1.03952670e+00 4.64763701e-01 -1.30395532e-01
8.11762959e-02 6.08951688e-01 1.43850118e-01 1.96636900e-01
-1.59190208e-01 -1.24936295e+00 -5.44905186e-01 -9.53786075e-01
3.59255299e-02 3.34065974e-01 4.31770496e-02 -5.10988235e-01
5.67587912e-01 -2.32977066e-02 -1.71568084e+00 6.10277057e-01
1.12776555e-01 5.55066288e-01 -2.36192614e-01 1.29085720e+00
3.44979554e-01 9.24702585e-01 -5.63630939e-01 -2.11560845e-01
4.86814171e-01 -1.07475626e+00 -6.24858260e-01 -5.38381994e-01
-1.44089341e-01 -1.87711731e-01 -7.98468113e-01 1.20155847e+00
7.53056228e-01 2.67402172e-01 6.48529887e-01 -6.92719698e-01
-5.26609361e-01 1.18622589e+00 4.15006608e-01 -1.55264467e-01
7.46003926e-01 3.69199723e-01 1.54216027e+00 -3.27785224e-01
7.74854660e-01 7.93991923e-01 6.32290661e-01 7.17260182e-01
-1.48324442e+00 -8.12244356e-01 -1.40183854e+00 3.47331434e-01
-1.56138694e+00 -5.65582454e-01 6.45954013e-01 -2.37465009e-01
9.99957085e-01 4.60976660e-01 9.66051161e-01 6.90103650e-01
3.92921537e-01 3.70809972e-01 1.05708385e+00 -9.50605929e-01
6.36735797e-01 -1.58576235e-01 -1.41421497e-01 6.49752915e-01
-1.18323445e-01 8.23068976e-01 -1.20657825e+00 -2.00239807e-01
5.38850367e-01 -6.84774280e-01 -3.83170731e-02 3.30056027e-02
-1.34353411e+00 7.27896929e-01 3.52591664e-01 2.76784629e-01
-3.06979597e-01 6.08513296e-01 2.18762219e-01 5.48034847e-01
-7.04241276e-01 1.06059361e+00 1.82952940e-01 -6.27184212e-01
-8.39088857e-01 5.11472225e-01 1.00785661e+00 6.69329464e-01
9.01760519e-01 -7.47305229e-02 -1.77599087e-01 1.54356822e-01
2.82205492e-01 9.57666159e-01 2.73584396e-01 -1.08921158e+00
-2.16095403e-01 -1.40738949e-01 -4.84074429e-02 -6.17996991e-01
-1.80391937e-01 3.09390668e-02 -3.18083584e-01 1.91442609e-01
3.41132432e-01 -1.02028839e-01 -5.96528828e-01 1.61819041e+00
7.93579891e-02 3.79216909e-01 2.66315013e-01 1.05250478e+00
5.63853502e-01 7.38633513e-01 -5.98185599e-01 2.69170944e-02
1.38477790e+00 -3.72485109e-02 -7.80358315e-01 4.50216383e-01
6.83743238e-01 -1.16803193e+00 7.11746812e-01 8.53532374e-01
-1.07286513e+00 -4.43586439e-01 -1.51836419e+00 8.53394121e-02
-4.22556847e-02 -5.21844447e-01 8.69726121e-01 1.13336587e+00
-7.19483674e-01 1.19237375e+00 -8.08228076e-01 1.10287219e-01
-4.17212807e-02 6.69539154e-01 7.55298659e-02 4.68292177e-01
-1.41204751e+00 5.56367397e-01 5.13075352e-01 -9.71803293e-02
-8.84625256e-01 -4.77051824e-01 -3.06885958e-01 -2.17853501e-01
-1.07200757e-01 -8.77714694e-01 1.66316640e+00 -4.47207689e-01
-2.49236870e+00 7.71802247e-01 2.55342066e-01 -4.64010656e-01
-3.05355847e-01 2.43269771e-01 -4.44254965e-01 2.44661137e-01
9.96063277e-02 1.79889128e-01 6.76049590e-01 -5.62693298e-01
-4.52774674e-01 2.13224776e-02 3.18480432e-02 -1.01078197e-01
4.21111733e-01 -2.09586918e-01 -1.15292370e-01 -2.75620788e-01
4.21906382e-01 -1.44992399e+00 2.07719490e-01 -1.01337779e+00
-8.58135462e-01 1.13578945e-01 1.94657326e-01 1.46107391e-01
1.21186996e+00 -2.09650898e+00 4.04234350e-01 8.20735097e-01
1.96069889e-02 -1.46900803e-01 -2.67162360e-03 1.02629876e+00
1.03390060e-01 -2.37808481e-01 1.29701585e-01 2.09532186e-01
4.73747015e-01 1.21047318e-01 -5.14034450e-01 3.40946943e-01
-8.60896409e-02 8.72533739e-01 -1.03411317e+00 -8.10311139e-02
3.95943373e-02 1.31391615e-01 -1.00618112e+00 -3.98931615e-02
-1.54804364e-01 6.87065661e-01 -6.17008507e-01 5.20182312e-01
1.99410602e-01 3.79410051e-02 2.56580830e-01 -1.14068992e-01
-2.57754117e-01 1.08410788e+00 -1.50449610e+00 1.91139448e+00
-8.68870467e-02 5.18543780e-01 -2.49660656e-01 -5.73392212e-01
7.85476565e-01 5.86617291e-01 8.46459940e-02 -6.43592894e-01
5.61185479e-01 5.53124905e-01 6.06201291e-01 -4.68053371e-01
6.63612664e-01 -8.61418903e-01 -6.05008066e-01 9.41243887e-01
3.54573637e-01 -1.11044776e+00 1.87406003e-01 2.36366078e-01
1.36562276e+00 4.55767751e-01 9.95511338e-02 6.42848611e-02
1.60202757e-01 1.55455843e-01 4.11889881e-01 1.04540205e+00
-6.99323714e-02 5.33072293e-01 6.60757497e-02 -2.33121008e-01
-1.25885880e+00 -1.41420889e+00 -6.47970140e-02 7.70994604e-01
2.16055617e-01 -1.12003410e+00 -7.96279192e-01 4.14810240e-01
-2.05853358e-01 5.56977689e-01 -3.56953859e-01 -5.06902456e-01
-2.47244328e-01 -4.85229880e-01 1.10189784e+00 -2.76330318e-02
3.90486307e-02 -1.33093786e+00 -6.41959429e-01 5.39880693e-01
2.20158808e-02 -8.55860710e-01 -1.38501719e-01 5.74709535e-01
-6.29058719e-01 -8.56295526e-01 1.71263412e-01 -2.04260990e-01
-2.81535029e-01 -3.69027913e-01 7.50276566e-01 -3.72228056e-01
-6.47527039e-01 3.36266905e-01 -5.89982867e-01 -6.49216354e-01
-1.05558455e+00 -1.39317274e-01 7.00277328e-01 2.42579486e-02
4.54320610e-01 -8.92087758e-01 -4.48295176e-01 -3.16402674e-01
-8.85138690e-01 -7.50334859e-02 4.22391295e-01 8.43646944e-01
6.70340240e-01 2.79846072e-01 1.03630878e-01 -5.09700418e-01
4.62651908e-01 1.24198208e-02 -4.58071470e-01 -1.66755766e-01
-8.18042308e-02 6.34230316e-01 5.36701143e-01 -3.49626362e-01
-3.10469151e-01 1.49429217e-01 4.05220361e-03 -3.83515768e-02
7.57721886e-02 3.66736799e-01 9.95286033e-02 -2.21447930e-01
1.07424927e+00 1.55582726e-01 -3.49654257e-01 7.31032416e-02
6.22069538e-01 9.41926897e-01 6.52001977e-01 -6.73548222e-01
9.81611311e-01 5.53704739e-01 3.86837453e-01 -9.68983948e-01
-6.93794727e-01 -4.83986214e-02 -6.53198302e-01 -1.49175569e-01
8.82859647e-01 -4.51234967e-01 -1.26192009e+00 4.94704992e-01
-8.18182647e-01 -2.52911925e-01 -7.93994844e-01 9.85029757e-01
-1.15568399e+00 1.58307895e-01 -8.65939856e-01 -1.10659230e+00
-2.83909529e-01 -9.49994922e-01 9.24340427e-01 3.48275572e-01
-4.88562495e-01 -4.12133873e-01 5.65542102e-01 1.87395230e-01
4.75323088e-02 4.03406611e-03 6.92794323e-01 2.73543634e-02
-1.05077553e+00 -4.99141216e-01 6.17132723e-01 9.20946449e-02
-1.93808481e-01 3.64702195e-02 -1.28659296e+00 6.00079671e-02
-1.17103398e-01 -5.07575333e-01 4.70723301e-01 7.91344345e-02
2.02428609e-01 2.90995747e-01 -1.08967079e-02 5.75942397e-01
1.27218342e+00 3.14153105e-01 8.70599210e-01 2.16853321e-01
4.53463137e-01 8.05813000e-02 2.22427696e-01 6.29700243e-01
4.08205343e-03 8.64690363e-01 9.26348791e-02 8.47366810e-01
-1.10034630e-01 -5.25542557e-01 7.19684899e-01 1.56146455e+00
-3.46790463e-01 3.45180154e-01 -5.51345468e-01 3.35906148e-02
-1.44840288e+00 -1.52632499e+00 -2.92260826e-01 2.36339164e+00
1.12778175e+00 1.66714177e-01 -5.56324162e-02 6.54157102e-01
5.18521786e-01 -3.58757704e-01 -5.64239062e-02 -7.51632512e-01
-2.04157248e-01 1.33492470e+00 5.45446873e-01 3.62303883e-01
-9.36920047e-01 1.10346997e+00 6.45513105e+00 6.92524552e-01
-1.08954155e+00 6.44421875e-02 -6.04604602e-01 -1.32230714e-01
-3.54938895e-01 6.43389642e-01 -3.75700176e-01 2.58969277e-01
1.34446490e+00 -1.63714796e-01 1.22886860e+00 -1.45034552e-01
8.31649080e-02 -8.64986852e-02 -1.24732006e+00 1.37980604e+00
-3.56637061e-01 -1.42164385e+00 -1.95243523e-01 5.75670265e-02
6.95608139e-01 9.13586617e-02 -7.72847980e-03 1.92058280e-01
3.37238759e-01 -9.80511129e-01 1.16992640e+00 8.66182387e-01
7.03019500e-01 -4.95158911e-01 4.00869787e-01 2.23667324e-01
-1.09206271e+00 -1.80724040e-01 -3.15920204e-01 -7.54445136e-01
3.01593453e-01 2.40062073e-01 -9.78791893e-01 5.62478364e-01
2.30707839e-01 2.83389181e-01 1.32368177e-01 1.01293540e+00
-5.64010084e-01 1.10384178e+00 -6.51866674e-01 -2.95442075e-01
1.56921685e-01 -6.13049150e-01 7.57513642e-01 6.75724387e-01
6.83729768e-01 5.13567030e-01 -2.76752979e-01 1.20845830e+00
3.03295776e-02 -1.65282879e-02 -7.32990265e-01 -5.83453357e-01
5.08759201e-01 1.09093761e+00 -5.69825172e-01 -3.20483029e-01
1.83342606e-01 1.00647032e+00 -4.58421856e-01 -5.81774041e-02
-4.86132205e-01 -7.22757399e-01 2.75350899e-01 -2.80087769e-01
3.44395399e-01 -4.06903744e-01 -1.81369632e-01 -1.20739353e+00
-5.38834810e-01 -9.36841547e-01 -2.42191255e-02 -9.71220791e-01
-8.93783510e-01 1.47009715e-01 -6.00460291e-01 -1.45481849e+00
-5.00812531e-01 -4.79617178e-01 -6.15673661e-01 8.39266539e-01
-5.43237507e-01 -6.75826669e-01 1.66595370e-01 4.66200143e-01
-3.85405958e-01 -1.31270975e-01 1.55887330e+00 2.71511152e-02
-8.11689049e-02 3.61247271e-01 3.74875754e-01 1.81138113e-01
6.66724861e-01 -1.33663213e+00 2.51857609e-01 4.97867256e-01
9.76336241e-01 7.49856174e-01 9.95087802e-01 -3.83255929e-01
-2.08356762e+00 -1.83699578e-01 6.53202593e-01 -5.87316334e-01
9.41958666e-01 -6.01618648e-01 -2.41458237e-01 2.07986936e-01
7.00438172e-02 -3.96393508e-01 1.15626872e+00 -1.81278214e-02
-6.09894454e-01 2.98925228e-02 -6.76443994e-01 5.22461116e-01
7.72082686e-01 -1.36021709e+00 -9.89401937e-01 2.31991470e-01
1.88894942e-01 -6.26576006e-01 -7.82780230e-01 -9.87435356e-02
1.27925086e+00 -9.96725023e-01 6.14423394e-01 -5.69995463e-01
9.90238264e-02 -6.56889558e-01 -5.28464437e-01 -1.08014274e+00
-3.34533483e-01 -1.69823396e+00 2.80130833e-01 6.49525881e-01
3.52409959e-01 -3.14094186e-01 7.06144035e-01 8.17341879e-02
-1.28081933e-01 2.46176690e-01 -1.05493271e+00 -6.52560532e-01
5.31401448e-02 -9.24098134e-01 6.47043407e-01 8.46720397e-01
7.66220450e-01 6.02095723e-01 -2.99538195e-01 1.70647547e-01
8.70384693e-01 4.89043504e-01 8.36780787e-01 -8.96063030e-01
-9.36371982e-01 -2.42324665e-01 -1.00676954e+00 -7.26435542e-01
-3.65092546e-01 -1.57068646e+00 1.62010238e-01 -8.03557336e-01
3.19808163e-02 -5.31202912e-01 -5.20009756e-01 8.38362277e-02
2.56546497e-01 9.54460502e-01 5.37073851e-01 3.92450124e-01
-5.14466047e-01 3.81560743e-01 1.01339972e+00 -5.75458445e-02
-5.33529818e-01 9.93076041e-02 -4.15304482e-01 4.34845567e-01
6.74279809e-01 -7.58294463e-01 1.00894697e-01 1.54501116e-02
1.01211488e+00 2.57195920e-01 2.79209942e-01 -1.51916778e+00
4.09428000e-01 2.47333542e-01 -1.57224476e-01 -2.96817929e-01
4.73775029e-01 -1.30677179e-01 5.21343529e-01 6.80694103e-01
-2.17454389e-01 -3.43234599e-01 -1.54469237e-01 3.28521848e-01
-1.78794041e-01 -4.06487018e-01 6.74126148e-01 1.33218607e-02
-4.08488452e-01 -2.41010383e-01 -6.36275887e-01 -1.62627473e-01
6.43464446e-01 -2.31352448e-01 1.95683986e-02 -5.92939019e-01
-1.09004521e+00 -3.85028899e-01 3.73578817e-01 6.61156401e-02
2.56681591e-01 -1.50658095e+00 -5.06539226e-01 4.41659808e-01
5.44748083e-02 -6.31731927e-01 3.11636060e-01 8.43400359e-01
-8.53595316e-01 5.88461995e-01 -2.59387791e-01 -6.08599782e-01
-8.53207767e-01 1.34754300e-01 4.42705899e-01 2.32637137e-01
-5.41585505e-01 9.41141605e-01 -2.72470772e-01 -3.74048799e-01
-4.83633935e-01 -3.27247918e-01 5.01253188e-01 -2.01847017e-01
5.97401261e-01 -2.04306524e-02 1.06805786e-02 -6.04086816e-01
-2.86118448e-01 6.89284265e-01 5.22274435e-01 -9.48349416e-01
1.13842320e+00 2.09212661e-01 -2.31454864e-01 9.67572391e-01
8.41604233e-01 5.51463068e-01 -4.15834635e-01 -7.48306215e-02
-1.53253362e-01 -1.85490623e-02 9.57594777e-04 -7.03933001e-01
-1.92024276e-01 9.71131980e-01 6.73465073e-01 5.47662556e-01
7.22512543e-01 -6.84190243e-02 1.09127128e+00 7.87371755e-01
9.65952814e-01 -1.46610570e+00 -5.67702241e-02 6.36268497e-01
6.80330992e-02 -3.79658550e-01 -1.67366534e-01 8.47633332e-02
-2.43619293e-01 1.38828778e+00 -5.38198173e-01 -5.76668322e-01
5.70942283e-01 3.95142108e-01 1.28413782e-01 -3.65825742e-01
-5.86986303e-01 -3.83228272e-01 1.18239462e-01 3.13319534e-01
4.16665465e-01 6.10199392e-01 -8.66733789e-02 7.04666078e-01
-1.09583235e+00 3.89492512e-01 9.28362668e-01 9.22160804e-01
-4.13946033e-01 -1.68899333e+00 -8.29798639e-01 1.30893677e-01
-5.03012955e-01 -3.11803311e-01 -4.80979502e-01 1.81835622e-01
5.22704363e-01 1.03435683e+00 -1.81522414e-01 -1.12591922e+00
3.40238333e-01 4.03594255e-01 1.21394563e+00 -9.13406432e-01
-7.14736223e-01 8.98468047e-02 1.12558320e-01 -6.33233786e-01
-5.54227650e-01 -7.93934286e-01 -1.78553438e+00 -4.40220863e-01
-6.26508951e-01 5.64378500e-01 7.07492948e-01 9.17578876e-01
3.51887763e-01 5.33950448e-01 5.98716021e-01 -8.24113667e-01
-7.84893215e-01 -8.20565939e-01 -1.13688552e+00 3.68693829e-01
1.64386272e-01 -3.85048002e-01 -3.69438529e-01 1.19413018e-01] | [5.585755825042725, 4.951233863830566] |
a1a2a3c8-2456-4fbe-83a5-d8dc1441cd29 | autolycus-exploiting-explainable-ai-xai-for | 2302.02162 | null | https://arxiv.org/abs/2302.02162v2 | https://arxiv.org/pdf/2302.02162v2.pdf | AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against White-Box Models | Explainable Artificial Intelligence (XAI) encompasses a range of techniques and procedures aimed at elucidating the decision-making processes of AI models. While XAI is valuable in understanding the reasoning behind AI models, the data used for such revelations poses potential security and privacy vulnerabilities. Existing literature has identified privacy risks targeting machine learning models, including membership inference, model inversion, and model extraction attacks. Depending on the settings and parties involved, such attacks may target either the model itself or the training data used to create the model. We have identified that tools providing XAI can particularly increase the vulnerability of model extraction attacks, which can be a significant issue when the owner of an AI model prefers to provide only black-box access rather than sharing the model parameters and architecture with other parties. To explore this privacy risk, we propose AUTOLYCUS, a model extraction attack that leverages the explanations provided by popular explainable AI tools. We particularly focus on white-box machine learning (ML) models such as decision trees and logistic regression models. We have evaluated the performance of AUTOLYCUS on 5 machine learning datasets, in terms of the surrogate model's accuracy and its similarity to the target model. We observe that the proposed attack is highly effective; it requires up to 60x fewer queries to the target model compared to the state-of-the-art attack, while providing comparable accuracy and similarity. We first validate the performance of the proposed algorithm on decision trees, and then show its performance on logistic regression models as an indicator that the proposed algorithm performs well on white-box ML models in general. Finally, we show that the existing countermeasures remain ineffective for the proposed attack. | ['Erman Ayday', 'Anisa Halimi', 'Abdullah Caglar Oksuz'] | 2023-02-04 | null | null | null | null | ['inference-attack', 'membership-inference-attack'] | ['adversarial', 'computer-vision'] | [ 4.39113647e-01 7.41196990e-01 -3.96026522e-01 -3.59127522e-01
-6.65929019e-01 -1.15585041e+00 7.64455974e-01 1.47939295e-01
8.64166543e-02 4.77742255e-01 -3.76435846e-01 -1.04749680e+00
-2.07204923e-01 -7.56063461e-01 -9.88452852e-01 -4.29794461e-01
-7.92094991e-02 5.26252389e-01 -3.90446275e-01 5.59403062e-01
2.02503055e-01 5.94826221e-01 -9.82290089e-01 2.53516942e-01
6.74215853e-01 1.12871993e+00 -9.35624719e-01 5.70363283e-01
2.19669357e-01 7.29573607e-01 -7.43220031e-01 -1.13686967e+00
7.48731136e-01 -4.12510373e-02 -7.47144043e-01 -5.35527825e-01
4.77565080e-01 -5.84568024e-01 -2.01440617e-01 1.27034056e+00
-2.70819753e-01 -6.63354576e-01 6.22655451e-01 -2.30403924e+00
-3.10950816e-01 1.07233751e+00 -4.21754986e-01 -3.62731427e-01
1.06127234e-02 4.37207252e-01 8.38881433e-01 -2.71641523e-01
3.98444653e-01 1.18111718e+00 4.94679064e-01 6.43542230e-01
-1.46598005e+00 -1.42229652e+00 -1.90086931e-01 8.45100731e-02
-1.36523902e+00 -6.23993754e-01 6.63030744e-01 -2.79950857e-01
6.01610959e-01 8.68086755e-01 1.53487101e-01 1.36530840e+00
4.46720630e-01 6.82360649e-01 1.15721846e+00 -3.99393678e-01
5.08849442e-01 6.80139303e-01 7.32148051e-01 6.88267171e-01
9.84688699e-01 5.17726421e-01 -5.73741198e-01 -1.17872930e+00
2.71984905e-01 -7.15885237e-02 -1.43735064e-02 -6.19188130e-01
-6.62389874e-01 9.20797408e-01 1.42156377e-01 -2.31483340e-01
-1.66905135e-01 5.04590034e-01 2.42869064e-01 3.90033603e-01
-3.85747440e-02 8.02712202e-01 -6.72587097e-01 1.19967639e-01
-6.72811270e-01 4.05919969e-01 1.13116467e+00 1.15162885e+00
6.66079819e-01 -1.86447397e-01 2.51256526e-01 -4.05497581e-01
6.14841878e-01 4.35856104e-01 -5.39115965e-02 -9.36546326e-01
6.59441829e-01 7.87470460e-01 1.49229154e-01 -1.15192223e+00
6.42403439e-02 -2.19042748e-01 -6.30455613e-01 5.35282731e-01
6.13533735e-01 -3.95506948e-01 -5.17547250e-01 1.84765446e+00
4.50555265e-01 6.53200969e-02 4.10658032e-01 4.89709646e-01
3.65359545e-01 3.89303654e-01 1.78614050e-01 5.09403460e-02
1.41283727e+00 -6.60196185e-01 -5.07741272e-01 -2.40066916e-01
7.84544528e-01 -1.70215949e-01 6.85057223e-01 3.68286550e-01
-9.45980310e-01 5.66642098e-02 -1.35516453e+00 2.27239132e-02
-3.80307704e-01 -2.01890722e-01 9.58884180e-01 1.30819607e+00
-4.10062343e-01 4.23673689e-01 -9.42637026e-01 -9.28060114e-02
8.83509278e-01 5.51023781e-01 -6.29588187e-01 2.23435894e-01
-9.06460285e-01 5.67129970e-01 6.00830838e-02 -1.25330389e-01
-1.04478228e+00 -1.12281799e+00 -7.41011560e-01 3.88965786e-01
6.38342977e-01 -6.85745716e-01 1.06006169e+00 -6.94483399e-01
-1.02867019e+00 7.08189309e-01 -1.35378391e-01 -1.23575377e+00
8.67617786e-01 -1.85388342e-01 -3.43886554e-01 -3.10142208e-02
-2.52267271e-01 3.72536689e-01 9.96912241e-01 -1.37103808e+00
-5.46906829e-01 -7.21599638e-01 3.73267621e-01 -4.31063145e-01
-2.16254115e-01 7.12808147e-02 1.91714525e-01 -3.18480462e-01
-1.35597527e-01 -1.19872093e+00 -1.20403886e-01 5.55583477e-01
-1.17494798e+00 3.31163287e-01 1.07813275e+00 -5.46901464e-01
1.28060424e+00 -2.13680553e+00 -5.01933217e-01 8.32940459e-01
4.49393034e-01 2.57900894e-01 2.41052672e-01 2.18152881e-01
-6.15184195e-02 9.80080545e-01 -3.31590325e-01 -2.68863529e-01
3.51289451e-01 -1.72253717e-02 -7.78440595e-01 4.78289992e-01
-2.48234114e-03 9.74512517e-01 6.04327722e-03 -2.49945983e-01
3.70226763e-02 1.81569874e-01 -4.44171995e-01 1.61091745e-01
-3.36126417e-01 2.32595935e-01 -5.58306158e-01 7.56764114e-01
9.18078780e-01 -2.74870038e-01 3.29123884e-01 -1.84702769e-01
3.12981904e-01 2.34151006e-01 -9.60854471e-01 8.99741590e-01
-1.82194747e-02 4.65799779e-01 7.10031763e-02 -4.35488939e-01
8.73880029e-01 3.25227380e-01 -2.43120957e-02 2.64811944e-02
1.18699156e-01 -9.44020748e-02 2.00664952e-01 2.05142684e-02
-1.33737385e-01 3.49030405e-01 -2.34285742e-01 9.25661862e-01
-5.83600223e-01 1.42503187e-01 -6.58733130e-01 9.15386677e-02
1.20285058e+00 -2.17184305e-01 7.36722410e-01 -2.47412831e-01
3.58627468e-01 1.61240429e-01 3.73858213e-01 1.14125335e+00
-2.10059807e-01 -5.87910339e-02 7.74214029e-01 -6.27499282e-01
-8.16062808e-01 -7.61761665e-01 -1.65110290e-01 4.13820714e-01
1.82635002e-02 -6.31034374e-01 -8.94726694e-01 -1.17727530e+00
4.07819808e-01 1.40988922e+00 -9.52497363e-01 -4.39071149e-01
-1.30855858e-01 -2.33920008e-01 1.06651604e+00 2.25268289e-01
5.28549850e-01 -6.45484447e-01 -9.23219562e-01 -2.30040535e-01
1.21233284e-01 -7.78195202e-01 -1.30761236e-01 1.79818422e-01
-7.96521962e-01 -1.44697344e+00 4.11939830e-01 5.36026359e-02
7.92114258e-01 1.28796333e-02 7.56227553e-01 3.17434341e-01
-2.13544101e-01 1.81950092e-01 1.92072645e-01 -9.53994989e-01
-8.91410470e-01 3.39047223e-01 -1.21131264e-01 2.34690178e-02
7.70630360e-01 -6.59516275e-01 -2.66830266e-01 3.98963958e-01
-9.34316278e-01 1.36077747e-01 2.37194702e-01 3.19701672e-01
1.67138785e-01 1.06972992e-01 1.24188170e-01 -1.52617240e+00
3.92623186e-01 -4.47815567e-01 -1.04904544e+00 6.29418433e-01
-1.09811163e+00 1.29627243e-01 6.43290401e-01 -3.95472974e-01
-7.88207650e-01 1.16135769e-01 5.14524281e-01 -4.87811774e-01
-3.69132280e-01 3.56139779e-01 -7.29081333e-01 -2.65360326e-01
6.63110733e-01 -2.75960714e-01 1.62210599e-01 -3.80658269e-01
3.66404206e-01 5.55453300e-01 4.04814422e-01 -5.26862562e-01
1.31795001e+00 4.72279519e-01 3.87145191e-01 -1.26952961e-01
-4.11676049e-01 5.47913432e-01 -3.10227752e-01 3.75677496e-01
5.53032994e-01 -4.10221159e-01 -1.29965520e+00 2.67459124e-01
-1.10735524e+00 4.39338982e-02 -1.78307353e-03 4.91568521e-02
-2.73491740e-01 1.68182895e-01 -2.99777895e-01 -1.04922628e+00
-6.78988874e-01 -1.20971000e+00 4.45215821e-01 8.43270421e-02
-7.13778079e-01 -8.24764490e-01 -3.77330899e-01 6.78809702e-01
2.79538214e-01 5.51646829e-01 1.61176205e+00 -1.41843522e+00
-8.94269466e-01 -6.74194515e-01 -1.52771652e-01 -1.40424043e-01
6.04933500e-03 2.14613646e-01 -1.29348803e+00 -1.81661099e-01
2.03444257e-01 -1.02345265e-01 4.99666557e-02 -8.97234771e-03
1.26278985e+00 -1.13281047e+00 -5.18911421e-01 7.33229995e-01
1.15766132e+00 3.41530263e-01 5.73431671e-01 4.33517873e-01
5.70360482e-01 5.31444550e-01 5.13189077e-01 3.77323270e-01
-2.67926473e-02 5.22652328e-01 6.20773256e-01 -1.43717974e-02
7.64325798e-01 -6.47918165e-01 4.87061962e-02 -4.70006675e-01
5.49932897e-01 3.13836429e-03 -8.52648199e-01 -2.67129242e-02
-1.77760410e+00 -7.26277053e-01 2.94583645e-02 2.42834949e+00
6.55397415e-01 2.24117309e-01 -1.36339471e-01 1.65480971e-02
3.68424088e-01 -2.53708631e-01 -1.11596549e+00 -8.06599736e-01
1.20569065e-01 2.43579760e-01 8.40541244e-01 4.71008390e-01
-1.06699014e+00 6.82546794e-01 6.18429470e+00 4.33330804e-01
-1.05588925e+00 -2.08700091e-01 8.94872248e-01 -1.23796754e-01
-5.32240808e-01 5.32838285e-01 -6.73404992e-01 2.44560555e-01
1.10833883e+00 -9.40454543e-01 5.82879722e-01 1.38129234e+00
-1.61170691e-01 3.11900318e-01 -1.93217826e+00 6.14378750e-01
-3.11728507e-01 -1.50913203e+00 1.61575586e-01 6.12032354e-01
1.09003976e-01 -6.77987635e-01 3.45044285e-01 9.87758562e-02
6.39005482e-01 -1.47061622e+00 6.77966118e-01 3.15676481e-01
6.40972197e-01 -1.04100919e+00 5.89635670e-01 4.52392817e-01
-5.76744318e-01 -2.34703317e-01 -2.73171753e-01 -2.06845477e-02
-4.46153492e-01 -1.06387742e-01 -1.18473780e+00 5.38082778e-01
5.33315182e-01 1.18812583e-01 -7.99134910e-01 4.28685069e-01
-2.42972061e-01 9.48442042e-01 -6.68812096e-01 1.50701940e-01
3.80046628e-02 -1.69486165e-01 4.99901861e-01 6.15335405e-01
1.26110584e-01 -6.80396482e-02 -3.46327722e-01 1.40217018e+00
-1.67815268e-01 -2.91380703e-01 -9.02657747e-01 -2.23632544e-01
9.38890874e-01 9.94676054e-01 6.16728934e-03 -1.43531352e-01
-1.86410397e-01 5.07073700e-01 8.15074518e-02 2.20070407e-01
-9.48170185e-01 7.03763291e-02 9.74619448e-01 8.65156725e-02
-4.20975797e-02 2.01258093e-01 -8.45291793e-01 -8.46318007e-01
1.35168031e-01 -1.47948158e+00 6.68058574e-01 -5.27949214e-01
-1.16020525e+00 5.25464416e-01 2.13988647e-01 -8.61981511e-01
-5.23651719e-01 -2.66461015e-01 -6.88852787e-01 9.22818780e-01
-1.05677807e+00 -1.45661306e+00 8.49243551e-02 5.24487019e-01
-1.91696838e-01 -3.92404079e-01 1.29308665e+00 -2.68256366e-01
-6.98767304e-01 1.38375342e+00 -7.92346969e-02 1.58843752e-02
3.46600026e-01 -7.56289482e-01 8.35479856e-01 1.01679313e+00
3.72567505e-01 1.26734340e+00 8.08038831e-01 -7.23564684e-01
-1.85102844e+00 -1.05176938e+00 7.11720586e-01 -7.57470667e-01
6.11938119e-01 -6.76132083e-01 -8.92875016e-01 1.34994984e+00
-1.42586708e-01 -2.77786016e-01 9.50306416e-01 -6.30637184e-02
-7.04826534e-01 -7.24784359e-02 -1.84846866e+00 8.00089240e-01
5.91438115e-01 -6.15504026e-01 -1.52695179e-01 8.12290460e-02
7.83921659e-01 1.30924713e-02 -7.19860196e-01 2.52021104e-01
8.21856678e-01 -9.00271177e-01 7.52211928e-01 -1.18902481e+00
2.52501130e-01 -2.08220422e-01 -3.44982654e-01 -6.10965014e-01
5.91826104e-02 -1.08629608e+00 -4.73817885e-01 1.48425722e+00
9.33310747e-01 -1.11318254e+00 1.14361882e+00 2.02001262e+00
8.70281935e-01 -3.72656494e-01 -1.03859997e+00 -4.32223529e-01
1.62054613e-01 -6.46762073e-01 1.32553518e+00 1.10085297e+00
-1.17989682e-01 -5.36169074e-02 -4.73214924e-01 9.16180551e-01
1.12854683e+00 1.76847130e-01 1.45552242e+00 -1.24321175e+00
-3.95868897e-01 -9.04324204e-02 -3.34323108e-01 -4.20547545e-01
3.02934766e-01 -7.36680627e-01 -7.98045278e-01 -5.61520040e-01
1.62659138e-01 -6.06561482e-01 -5.94478706e-03 9.06802356e-01
1.07731439e-01 -2.41859362e-01 5.23503840e-01 4.69104767e-01
2.50242174e-01 4.21616845e-02 3.66025090e-01 -2.96624005e-01
-3.23426500e-02 4.39996809e-01 -1.23757219e+00 7.47446716e-01
7.23437130e-01 -8.83385658e-01 -5.70132971e-01 -6.64395019e-02
-7.07979128e-03 6.57895654e-02 6.87984228e-01 -9.05734241e-01
4.15031284e-01 -2.03569308e-01 1.40374959e-01 -2.73941904e-01
2.03509346e-01 -1.52084863e+00 9.69189286e-01 5.99981964e-01
-7.69663572e-01 -1.20620027e-01 2.87487864e-01 4.52144057e-01
2.87141532e-01 -3.53932261e-01 4.86129522e-01 1.93265796e-01
1.40194416e-01 3.65059346e-01 -1.84343085e-01 -4.50001985e-01
1.37133718e+00 -2.17739314e-01 -6.40626550e-01 -4.91305768e-01
-4.90388095e-01 1.80642962e-01 8.97183120e-01 2.24015355e-01
3.01468253e-01 -7.87187696e-01 -3.97103965e-01 5.72667420e-01
2.51985580e-01 -1.29541799e-01 -3.03195238e-01 3.51872325e-01
-4.00909096e-01 3.52197081e-01 -2.07847551e-01 -2.46809289e-01
-1.85715199e+00 9.34176028e-01 3.28954697e-01 -3.17383945e-01
-5.09773374e-01 2.94318497e-01 5.68759441e-01 -4.83717173e-01
6.37015820e-01 -4.31709051e-01 4.27349001e-01 -6.85091674e-01
6.58875823e-01 2.44658798e-01 -3.06961060e-01 -3.94408107e-02
-5.45208216e-01 -1.02082416e-01 -4.21515375e-01 3.92816775e-03
1.03080261e+00 6.61610439e-02 -9.06358212e-02 2.65449584e-02
9.40668762e-01 6.06953315e-02 -9.82089162e-01 -1.73103809e-01
6.29825443e-02 -6.81299865e-01 -1.78167090e-01 -1.16427672e+00
-7.69348860e-01 9.07563508e-01 4.68196452e-01 3.64583999e-01
7.02455878e-01 -1.88811123e-01 5.46104670e-01 6.08793378e-01
5.74829578e-01 -2.26326108e-01 -7.59668112e-01 -3.79411280e-01
7.44240522e-01 -1.04697049e+00 3.16450000e-01 -7.16989160e-01
-7.13762462e-01 9.27366734e-01 5.78889012e-01 3.04549962e-01
7.70099759e-01 5.28465867e-01 3.64893287e-01 -9.15736780e-02
-9.08205092e-01 1.01541555e+00 1.89568792e-02 7.32662439e-01
-3.96543384e-01 2.56082982e-01 5.37215233e-01 1.20663106e+00
-4.82774049e-01 3.49997841e-02 4.25684482e-01 8.96023393e-01
2.79315710e-01 -1.10575724e+00 -5.44669449e-01 4.10850316e-01
-5.21309614e-01 -4.56384085e-02 -1.05382204e+00 1.07736647e+00
-4.68293637e-01 1.10828316e+00 -3.02279711e-01 -3.72770756e-01
8.20491388e-02 2.53327847e-01 -1.20459788e-01 -1.38126472e-02
-9.81772482e-01 -5.72746992e-01 3.50962788e-01 -7.02146709e-01
2.19801322e-01 -5.56393027e-01 -9.60175216e-01 -8.88256252e-01
-3.32884133e-01 1.04159512e-01 7.41766393e-01 7.44700491e-01
6.96996748e-01 -2.06455693e-01 7.17434943e-01 3.88484038e-02
-1.00576413e+00 -5.08884788e-01 -4.97589886e-01 4.02421802e-01
1.29975051e-01 -2.70934433e-01 -5.71161330e-01 -5.03933541e-02] | [5.9478278160095215, 7.187702655792236] |
17838e90-78e1-4721-840c-ddc282167fb8 | correcting-comma-errors-in-learner-essays-and | null | null | https://aclanthology.org/N12-1029 | https://aclanthology.org/N12-1029.pdf | Correcting Comma Errors in Learner Essays, and Restoring Commas in Newswire Text | null | ['Martin Chodorow', 'Joel Tetreault', 'Ross Israel'] | 2012-06-01 | null | null | null | naacl-2012-6 | ['grammatical-error-detection'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.184088230133057, 3.728224754333496] |
2bceab27-7f67-4c32-83f5-db2483bc8240 | a-privacy-preserving-content-based-image | 2011.0027 | null | https://arxiv.org/abs/2011.00270v1 | https://arxiv.org/pdf/2011.00270v1.pdf | A Privacy-Preserving Content-Based Image Retrieval Scheme Allowing Mixed Use Of Encrypted And Plain Images | In this paper, we propose a novel content based-image retrieval scheme allowing the mixed use of encrypted and plain images for the first time. In the proposed scheme, images are encrypted by a block-scrambling method developed for encryption-then-compression (EtC) systems. The encrypted images, referred to as EtC images, can be compressed with JPEG, as well as for plain images. Image descriptors used for the proposed retrieval is designed to avoid the effect of image encryption. As a result, the use of EtC images and the descriptors allows us to carry out retrieval of both encrypted images and plain ones. In an experiment, the proposed scheme is demonstrated to have the same performance as conventional retrieval methods with plain images, even under the mixed use of plain images and EtC ones. | ['Hitoshi Kiya', 'Kenta Iida'] | 2020-10-31 | null | null | null | null | ['content-based-image-retrieval'] | ['computer-vision'] | [ 6.28964484e-01 -5.25315225e-01 1.93051472e-02 -2.11965919e-01
-5.21633863e-01 -5.03022492e-01 8.34372222e-01 2.60336578e-01
-9.28994894e-01 5.38512290e-01 -1.27155632e-01 3.34941037e-02
-2.27309451e-01 -1.10003722e+00 -2.94012517e-01 -9.04617667e-01
1.95250273e-01 -2.06933007e-01 9.44491699e-02 -1.34485856e-01
5.16616523e-01 4.90272909e-01 -1.89598489e+00 3.74044061e-01
6.52981460e-01 1.06752110e+00 6.02230191e-01 6.19598567e-01
-2.10873827e-01 6.33899331e-01 -6.32156372e-01 -6.25578225e-01
5.90807199e-01 -1.49510726e-01 -4.37034607e-01 -1.35618160e-02
8.10347423e-02 -8.63995910e-01 -7.84841776e-01 1.25342894e+00
4.17819053e-01 -1.88270643e-01 6.93668485e-01 -1.12152219e+00
-4.57245409e-01 1.64410099e-01 -3.88930708e-01 -1.04087636e-01
4.13234144e-01 -1.67528465e-01 5.93964159e-01 -6.62694454e-01
7.42712379e-01 9.20079410e-01 1.52114704e-01 2.08249778e-01
-7.77178407e-01 -7.13224113e-01 -5.31374514e-01 6.28179073e-01
-1.73898852e+00 -3.04235697e-01 6.33066714e-01 1.76112987e-02
3.98103267e-01 4.92395043e-01 9.16908741e-01 3.39755386e-01
5.98519802e-01 6.45953417e-01 1.41783512e+00 -7.40904391e-01
-1.02195039e-01 5.68490148e-01 -3.13835368e-02 3.46848875e-01
5.38410664e-01 5.97775988e-02 -6.17310479e-02 -2.34542221e-01
2.96029210e-01 4.04297888e-01 -5.73398829e-01 -1.50831476e-01
-1.00471151e+00 6.55230284e-01 1.80425733e-01 4.94750977e-01
-3.60148549e-01 6.84690997e-02 5.50597548e-01 4.93777603e-01
1.84979215e-01 7.57953078e-02 2.39710078e-01 6.10701889e-02
-1.10454893e+00 2.27365375e-01 6.73811615e-01 1.06938744e+00
7.63718367e-01 -2.66638964e-01 7.93391466e-02 8.02449644e-01
2.30776921e-01 8.11154425e-01 7.93728054e-01 -5.55919528e-01
3.97703499e-01 2.22382456e-01 4.22370322e-02 -1.29001844e+00
3.97278309e-01 6.00223057e-02 -9.78779674e-01 1.67852536e-01
-1.39319405e-01 3.85903120e-01 -7.77210653e-01 1.27615786e+00
-5.32502271e-02 -1.80174366e-01 7.15341806e-01 4.30007011e-01
7.96716511e-01 1.16721082e+00 -9.64686945e-02 -4.03158724e-01
1.44062364e+00 -6.49032891e-01 -1.15223253e+00 3.51762205e-01
2.44761646e-01 -1.21021092e+00 4.31739032e-01 4.22761977e-01
-1.12246811e+00 -6.75280333e-01 -1.17369783e+00 1.56685002e-02
-7.33379602e-01 1.31882951e-01 1.42567605e-01 7.30516195e-01
-1.00916421e+00 4.35838252e-01 -2.14188755e-01 -2.94516802e-01
-2.98757069e-02 4.46414798e-01 -6.15846515e-01 -4.20680523e-01
-1.24760091e+00 6.89347744e-01 7.76856065e-01 -7.94435516e-02
-3.98650885e-01 -6.59193024e-02 -7.20448732e-01 3.71466726e-01
-3.28554176e-02 -3.07347894e-01 6.84385061e-01 -7.90883422e-01
-1.04952264e+00 8.48648727e-01 -8.14923272e-02 -5.02647042e-01
4.12752360e-01 -1.02717668e-01 -5.87150931e-01 8.95207465e-01
-1.06273025e-01 5.41878879e-01 1.15135837e+00 -1.23829317e+00
-6.29018009e-01 -1.54668719e-01 3.66572179e-02 2.55914927e-01
-5.65305948e-01 -1.39330193e-01 -6.90716922e-01 -7.28749990e-01
1.52993901e-02 -8.04432273e-01 2.45355487e-01 2.19452724e-01
-1.42189682e-01 3.21581930e-01 1.35371554e+00 -5.60525179e-01
1.21033669e+00 -2.59911442e+00 -2.91362166e-01 5.59866607e-01
-6.26728535e-02 6.56625092e-01 -1.47415385e-01 1.10739672e+00
-1.13315426e-01 1.01872936e-01 -1.56069338e-01 -2.69108266e-01
-3.50363374e-01 3.27819139e-01 -3.65968913e-01 4.68064696e-01
-1.15241766e-01 4.26770955e-01 -6.22016609e-01 -8.65309894e-01
6.02710128e-01 7.51544833e-01 -4.56488281e-02 2.59586006e-01
4.83312666e-01 -3.70014384e-02 -3.61709416e-01 4.14231449e-01
1.38246489e+00 2.98965216e-01 2.64530897e-01 -3.93362939e-01
-1.83484614e-01 -2.61401266e-01 -1.02158689e+00 9.67569470e-01
-5.47047555e-01 6.47602856e-01 4.84851561e-02 -6.08090281e-01
1.03910172e+00 6.47490561e-01 5.59924126e-01 -7.96827555e-01
2.16949657e-01 4.90652263e-01 -2.59338498e-01 -5.14202476e-01
7.37188697e-01 1.25121146e-01 2.74223268e-01 4.71648067e-01
-1.98657781e-01 -4.47241873e-01 3.18265855e-01 3.37311089e-01
6.72387838e-01 -2.61821926e-01 3.99507701e-01 -2.71276105e-02
1.00716329e+00 -2.16496959e-01 -5.76119833e-02 6.30326390e-01
2.66302705e-01 4.53613818e-01 -1.42112851e-01 -1.97396562e-01
-1.32888186e+00 -7.27207482e-01 -4.46418613e-01 1.11714108e-02
7.16571093e-01 -7.76506960e-01 -7.03577995e-01 -4.25863296e-01
-7.45300353e-02 1.69964835e-01 -7.22171664e-02 -2.06350058e-01
-2.86189586e-01 -3.46961796e-01 6.00510538e-01 -2.84172833e-01
1.23217893e+00 -9.38769281e-01 -5.50745130e-01 1.63960636e-01
-2.20500410e-01 -1.31030118e+00 -3.32325310e-01 -2.93897688e-01
-7.23015487e-01 -1.20348310e+00 -1.03896177e+00 -8.96277726e-01
7.89638221e-01 9.66330588e-01 3.82993639e-01 7.67740488e-01
-3.06631893e-01 5.77555478e-01 -7.43947446e-01 -2.33612567e-01
-6.22391343e-01 -2.44710371e-01 -2.14962050e-01 2.77222842e-01
1.31939813e-01 -3.99977297e-01 -8.39570522e-01 9.33603570e-02
-1.70527589e+00 -5.83260581e-02 6.84047341e-01 1.00179720e+00
4.22815055e-01 7.70045042e-01 -5.63260689e-02 -6.93196177e-01
7.59460568e-01 -8.89830738e-02 -7.52441525e-01 5.22552848e-01
-9.63088512e-01 -5.71401827e-02 8.39266896e-01 -1.63861156e-01
-8.21155429e-01 -2.13335454e-01 -2.76885748e-01 -2.92619884e-01
5.64504750e-02 4.31642473e-01 -9.71559715e-03 -6.00124478e-01
-1.63177103e-01 9.68322933e-01 2.40616351e-01 -3.86586666e-01
7.47681111e-02 1.27824843e+00 4.39619631e-01 2.61022132e-02
9.88292038e-01 5.57514131e-01 2.35311389e-01 -9.84725177e-01
2.74400264e-01 -6.16286457e-01 -3.58324885e-01 -9.43504572e-02
7.30646908e-01 -1.01071048e+00 -5.34649074e-01 9.49264348e-01
-1.08507204e+00 6.17422163e-01 2.82051507e-03 6.85192645e-01
-3.60825568e-01 1.05520904e+00 -6.10029757e-01 -9.64070737e-01
-6.98398054e-01 -1.45943832e+00 9.01857197e-01 9.28306952e-02
4.11421657e-01 -7.11189866e-01 -2.77528942e-01 3.92544195e-02
4.67878550e-01 -9.41373855e-02 9.52253878e-01 -4.04669464e-01
-7.67228901e-01 -7.37874091e-01 -4.34925467e-01 6.32076621e-01
3.46768647e-01 9.45191234e-02 -6.71679795e-01 -5.73560596e-01
2.91871846e-01 -2.09767550e-01 8.09800088e-01 -1.41570032e-01
1.22061777e+00 -3.91162753e-01 -2.36354485e-01 6.96555555e-01
2.00765276e+00 6.46364570e-01 1.34496903e+00 5.26770473e-01
-2.41729002e-02 4.19173628e-01 8.54965806e-01 5.02381027e-01
4.69012968e-02 5.94576597e-01 4.14639145e-01 -1.82874650e-01
1.64145648e-01 -1.39135391e-01 1.80431437e-02 1.11326301e+00
1.41835690e-01 -5.72847903e-01 -2.61355609e-01 3.65461022e-01
-1.36784351e+00 -1.18883228e+00 -1.16800644e-01 2.46003127e+00
6.57752931e-01 -1.94324121e-01 -5.85323632e-01 5.90165734e-01
7.86074817e-01 4.26127940e-01 2.26479903e-01 -5.91479957e-01
-1.06182463e-01 5.73339164e-01 7.06884682e-01 3.68100822e-01
-1.05820894e+00 5.28246641e-01 6.16091967e+00 1.28344190e+00
-1.38108528e+00 -1.47758573e-01 1.67428777e-01 5.69276810e-01
-3.01257938e-01 2.73085088e-01 -4.51990485e-01 7.28969038e-01
5.46713829e-01 -3.36613953e-01 2.73826897e-01 5.58231771e-01
-5.65478168e-02 -6.28080904e-01 -3.23409587e-01 1.25702894e+00
1.44128516e-01 -1.00690937e+00 5.61901510e-01 2.32932657e-01
3.47494453e-01 -6.57064021e-01 8.72979611e-02 -3.37100774e-01
-6.61073804e-01 -5.62284231e-01 5.23219049e-01 4.17601436e-01
9.85425532e-01 -7.18609393e-01 1.24895144e+00 2.52583683e-01
-1.29844308e+00 -3.11914403e-02 -5.86661756e-01 4.35226202e-01
1.65041275e-02 3.59340370e-01 -4.12816256e-01 1.02053130e+00
4.91295785e-01 6.37901127e-01 -4.18211818e-01 1.31717610e+00
1.40117586e-01 1.70036867e-01 -2.64086336e-01 -1.41021192e-01
3.76026928e-01 -4.63549644e-01 3.86627257e-01 1.19812977e+00
7.16763616e-01 3.08182836e-01 -2.86726445e-01 2.35449299e-01
3.87191474e-02 6.02910757e-01 -1.09784091e+00 -1.24025561e-01
4.48754430e-01 9.96625304e-01 -5.25991917e-01 -7.32379436e-01
-2.70432979e-01 1.36637247e+00 -5.32786429e-01 2.00556397e-01
-4.96942729e-01 -1.00048041e+00 8.13782960e-02 2.14560386e-02
4.35597956e-01 -3.38912576e-01 4.87157017e-01 -1.12315857e+00
-4.23123911e-02 -8.71202707e-01 2.68614404e-02 -9.61445987e-01
-9.22835231e-01 7.17214942e-01 5.12601137e-01 -1.75284469e+00
-8.06575269e-02 -3.07659298e-01 -3.55737627e-01 8.76436234e-01
-1.86013138e+00 -8.47025454e-01 -3.55588347e-01 9.57628250e-01
3.06447148e-01 -4.00735468e-01 8.65650594e-01 4.66558427e-01
4.29111198e-02 4.30848658e-01 8.24091077e-01 -5.13327979e-02
7.89139807e-01 -7.58485675e-01 -2.10992396e-01 5.98452866e-01
1.40393540e-01 6.92090452e-01 3.72589946e-01 -6.12304568e-01
-1.40182245e+00 -6.04312003e-01 8.54844868e-01 7.89990902e-01
-4.01324145e-02 -1.34308040e-01 -6.53745830e-01 1.05515577e-01
7.36247241e-01 -3.16328377e-01 5.06458402e-01 -1.06269372e+00
-3.61088008e-01 -5.02153456e-01 -1.58678448e+00 4.51606184e-01
1.92300290e-01 -8.80286694e-01 -3.43318701e-01 3.28117162e-01
3.20756257e-01 -6.56470805e-02 -8.83777559e-01 3.28272611e-01
9.35973942e-01 -9.61748540e-01 1.07215726e+00 4.11680877e-01
3.70561779e-01 -2.51995891e-01 -3.48825961e-01 -8.01843464e-01
-4.38446319e-03 -3.50784689e-01 4.23963219e-01 1.00685501e+00
-1.34356484e-01 -8.12627673e-01 3.01135778e-01 1.90505862e-01
5.31656981e-01 -3.94125938e-01 -7.64705122e-01 -7.66767204e-01
-4.96062756e-01 8.89708623e-02 7.81440735e-01 5.26931167e-01
-3.52120996e-01 -4.18527037e-01 -5.45347750e-01 3.95448618e-02
7.26800680e-01 3.60827195e-03 6.99562550e-01 -8.44745994e-01
-2.84108520e-02 -4.47017811e-02 -8.41731369e-01 -9.38886046e-01
-1.81720659e-01 -6.36005044e-01 -3.54012311e-01 -1.20154059e+00
3.72048527e-01 -4.61238950e-01 -2.01047644e-01 7.39343762e-02
4.14619371e-02 7.17674911e-01 6.79204702e-01 7.24829197e-01
7.24261329e-02 3.53352368e-01 1.18284404e+00 -3.39666843e-01
3.61936659e-01 -5.65011837e-02 -7.67245144e-02 7.36168101e-02
7.43055463e-01 -4.87081498e-01 -6.28601849e-01 -1.54169858e-01
-2.62120247e-01 7.68798590e-02 3.96911383e-01 -1.14916682e+00
1.48144245e-01 1.33820117e-01 1.41584098e-01 -9.06051934e-01
7.12179124e-01 -1.46973240e+00 5.27419388e-01 8.21285009e-01
-1.22712739e-01 4.37473059e-01 -4.96661570e-03 4.74221438e-01
-8.31421852e-01 -9.36113954e-01 6.48706257e-01 -2.47485965e-01
-6.87631369e-01 1.41195497e-02 -5.34107327e-01 -8.85252059e-01
1.20742023e+00 -6.36937976e-01 -3.18147928e-01 -9.00878251e-01
-4.15662259e-01 -1.24138691e-01 6.92539454e-01 -3.81863937e-02
1.15796888e+00 -1.17849803e+00 -4.18175906e-01 4.36158955e-01
1.71288148e-01 -6.91950560e-01 3.46576750e-01 3.96706104e-01
-1.22830546e+00 4.54517812e-01 -4.01910156e-01 -2.99128771e-01
-1.86955941e+00 7.01135457e-01 -6.15516603e-02 -3.90601963e-01
-5.97592413e-01 -1.23931110e-01 -1.00692615e-01 1.73341498e-01
-8.97115096e-03 1.75027788e-01 -2.39148974e-01 -1.15499474e-01
6.66411102e-01 2.10561361e-02 2.14572196e-04 -8.48692477e-01
6.08081929e-02 9.12775159e-01 -2.51705080e-01 -3.30336511e-01
1.02142596e+00 -3.40979487e-01 -5.02292573e-01 -1.12991288e-01
1.75031042e+00 3.58230531e-01 -1.87359467e-01 -5.43579878e-03
-4.76282626e-01 -1.13012660e+00 -8.01158976e-03 -3.14978093e-01
-1.17523742e+00 8.78479779e-01 1.04218769e+00 4.68707889e-01
1.45589423e+00 -8.65386367e-01 1.08417594e+00 4.99595940e-01
6.53824329e-01 -8.64212155e-01 -3.38391006e-01 -3.74688432e-02
6.03590846e-01 -1.05295587e+00 4.71742958e-01 -5.32190084e-01
-3.13263714e-01 1.48275840e+00 4.36933078e-02 -1.41393006e-01
7.56882370e-01 1.01925708e-01 -7.33905882e-02 -1.73969120e-02
-5.30536592e-01 -1.65320203e-01 -1.31349176e-01 5.71875274e-01
7.22273365e-02 -2.36665800e-01 -1.13002324e+00 -3.42409641e-01
1.04885846e-01 1.78981051e-01 6.08419120e-01 1.31847525e+00
-2.10903823e-01 -1.76162219e+00 -6.53549850e-01 3.28985155e-01
-7.46617436e-01 -3.57747078e-01 -5.27354442e-02 1.03207457e+00
1.70730233e-01 8.70827019e-01 -1.47555089e-02 -5.36133409e-01
1.56971831e-02 -5.46953715e-02 3.56724113e-01 -6.94928691e-02
-6.77317023e-01 -4.99700615e-03 -2.98741311e-01 -7.87856877e-02
-7.66697466e-01 -1.41826093e-01 -8.46400321e-01 -3.75570476e-01
-6.76495552e-01 5.02652884e-01 9.70005274e-01 5.95092595e-01
8.29715729e-02 -1.44057110e-01 1.22155261e+00 -5.33232570e-01
-3.59417766e-01 -5.28942347e-01 -9.29968536e-01 6.12079680e-01
2.51023561e-01 -2.40465522e-01 -3.05158049e-01 8.70446935e-02] | [10.714630126953125, -0.14587631821632385] |
3a80f81a-4a6e-49e1-ad07-afc96631bac5 | an-adaptive-gmm-approach-to-background | 1307.58 | null | http://arxiv.org/abs/1307.5800v1 | http://arxiv.org/pdf/1307.5800v1.pdf | An Adaptive GMM Approach to Background Subtraction for Application in Real Time Surveillance | Efficient security management has become an important parameter in todays
world. As the problem is growing, there is an urgent need for the introduction
of advanced technology and equipment to improve the state-of art of
surveillance. In this paper we propose a model for real time background
subtraction using AGMM. The proposed model is robust and adaptable to dynamic
background, fast illumination changes, repetitive motion. Also we have
incorporated a method for detecting shadows using the Horpresert color model.
The proposed model can be employed for monitoring areas where movement or entry
is highly restricted. So on detection of any unexpected events in the scene an
alarm can be triggered and hence we can achieve real time surveillance even in
the absence of constant human monitoring. | ['Subra Mukherjee', 'Karen Das'] | 2013-07-22 | null | null | null | null | ['detecting-shadows'] | ['computer-vision'] | [ 4.27714735e-01 -5.04221976e-01 3.78623337e-01 -1.03384189e-01
3.03776264e-01 -5.26488543e-01 6.06547177e-01 2.90042341e-01
-7.23233461e-01 7.39476264e-01 -3.28124672e-01 -3.51042241e-01
1.06600970e-01 -8.51155519e-01 -1.37282223e-01 -7.46836960e-01
1.30939439e-01 1.73310921e-01 1.03707409e+00 -3.36541027e-01
1.84984908e-01 9.73473966e-01 -1.50444913e+00 -1.52310520e-01
5.49610913e-01 7.00297594e-01 4.04389113e-01 1.09548819e+00
-4.91725691e-02 6.72981381e-01 -9.97606158e-01 1.51823297e-01
5.26365876e-01 -4.32381749e-01 -2.45245472e-01 4.07628089e-01
3.32941767e-03 -3.21686536e-01 1.06152251e-01 9.91251707e-01
3.75995159e-01 2.71575719e-01 3.41001064e-01 -8.92004788e-01
3.77308637e-01 -3.60559851e-01 -8.93041432e-01 6.12008929e-01
3.36279362e-01 1.23817891e-01 -2.07433835e-01 -2.30815887e-01
4.60376531e-01 8.71900082e-01 3.41454566e-01 3.73092115e-01
-8.28991830e-01 -4.06114757e-01 3.69070292e-01 3.99788231e-01
-1.18949938e+00 -2.27921650e-01 7.22800374e-01 -2.25385278e-01
5.82409918e-01 4.91546094e-01 6.45802200e-01 6.75753593e-01
4.42534775e-01 1.17435589e-01 1.19718003e+00 -7.51287341e-01
1.11404337e-01 4.67176110e-01 1.67560816e-01 7.13318110e-01
7.79927433e-01 -6.90806732e-02 4.31711227e-02 -1.20995976e-01
5.65248430e-01 4.29839909e-01 -3.93699855e-01 -1.42515674e-01
-8.71062696e-01 3.65907490e-01 -2.74536181e-02 6.27785802e-01
-5.78273296e-01 -3.46420139e-01 3.63249689e-01 1.54473782e-02
3.44144285e-01 3.39038409e-02 -2.54841805e-01 -8.38026777e-02
-9.22134817e-01 -2.63529234e-02 6.73326254e-01 3.89007658e-01
2.73941219e-01 1.79574549e-01 3.30690295e-01 3.08889896e-01
2.87905000e-02 8.46383631e-01 1.47678897e-01 -5.16511142e-01
8.83830562e-02 9.13845420e-01 4.80505019e-01 -1.12915874e+00
-5.31560898e-01 -2.76153833e-01 -7.73314297e-01 7.01062024e-01
2.64058322e-01 -2.86839724e-01 -9.13515091e-01 1.12625837e+00
6.96773350e-01 1.76645756e-01 -4.09382731e-02 4.64665353e-01
3.96700501e-01 9.34167504e-01 -2.21455302e-02 -6.67209744e-01
1.34197474e+00 -2.52913058e-01 -1.01246786e+00 -4.09715855e-03
-9.52845737e-02 -1.00494170e+00 3.60239774e-01 7.25484252e-01
-3.93505991e-01 -5.50321817e-01 -9.42712367e-01 7.19397545e-01
-5.76705337e-01 1.93286061e-01 2.07469970e-01 9.28704441e-01
-7.38925993e-01 3.89272459e-02 -8.56606245e-01 -8.99359703e-01
-3.33833456e-01 4.76485997e-01 -3.94238293e-01 9.63025838e-02
-6.34161353e-01 1.19583106e+00 5.17561316e-01 4.64079648e-01
-6.49143457e-01 3.45106423e-01 -4.79919434e-01 -3.00713211e-01
5.20669341e-01 -2.43919656e-01 7.94823945e-01 -1.00679815e+00
-1.32330239e+00 6.79252207e-01 -2.30898559e-01 -3.42666328e-01
6.68229759e-01 -1.77629411e-01 -7.66015470e-01 1.61048979e-01
-2.23858982e-01 -2.53483772e-01 8.33480418e-01 -1.16211116e+00
-8.68113697e-01 -4.22173023e-01 -1.01959787e-01 8.04644153e-02
-1.22705981e-01 4.89607722e-01 -1.89800546e-01 -3.29052240e-01
-1.42872766e-01 -8.71320009e-01 -3.15574437e-01 -9.41420570e-02
-3.31420489e-02 2.33184978e-01 1.49385989e+00 -8.13389301e-01
1.11410439e+00 -1.98073959e+00 -3.16021323e-01 2.82238215e-01
-2.67917305e-01 9.24329460e-01 3.23494732e-01 3.25866073e-01
2.60950118e-01 -4.65021998e-01 -2.99301684e-01 -3.95300146e-03
-5.49061894e-01 2.82188535e-01 5.77138998e-02 5.32462537e-01
-4.64957058e-02 -2.47935444e-01 -5.02777040e-01 -4.94989842e-01
5.75735867e-01 5.12427330e-01 9.85676870e-02 4.26762193e-01
6.89026266e-02 6.16434157e-01 -3.55584174e-01 7.29617715e-01
8.65638614e-01 3.04060102e-01 -7.40365013e-02 9.57243666e-02
-6.74464405e-01 -5.24187088e-01 -1.46245921e+00 6.85893118e-01
-1.99564248e-01 8.10471833e-01 4.77373570e-01 -8.88403773e-01
1.00492525e+00 5.45303762e-01 2.31946394e-01 -4.88085032e-01
4.19859588e-01 -1.03574648e-01 -1.02710962e-01 -6.72696352e-01
5.12834847e-01 9.79963467e-02 4.13392514e-01 9.55034271e-02
-6.24558568e-01 3.26394737e-01 2.30880797e-01 -5.65528870e-02
9.98199224e-01 8.99904072e-02 5.84022939e-01 -1.94814757e-01
9.05015945e-01 1.18203029e-01 5.26287675e-01 4.18165654e-01
-4.93255496e-01 -5.75519726e-02 1.67593136e-02 -6.78043604e-01
-4.32355195e-01 -7.07289994e-01 1.47094443e-01 7.68677890e-01
2.70195723e-01 2.75566131e-01 -6.33457720e-01 -4.03158009e-01
-4.79571939e-01 3.82339835e-01 -3.97950351e-01 1.82932481e-01
-8.42348099e-01 -1.20046127e+00 -3.91790755e-02 -9.47136655e-02
8.72319818e-01 -1.14699841e+00 -1.49204183e+00 3.42022300e-01
-1.44178048e-02 -1.19522071e+00 6.77874982e-02 -3.91543582e-02
-9.94910896e-01 -1.26017463e+00 -6.52096987e-01 -4.68372822e-01
8.07331145e-01 7.32328296e-01 7.93255925e-01 3.78508836e-01
-6.81154788e-01 6.89113021e-01 -5.88124812e-01 -8.69645953e-01
-5.76600373e-01 -4.11246687e-01 -1.40081540e-01 2.18653455e-01
3.05513352e-01 -1.14800647e-01 -6.54097497e-01 3.43469948e-01
-9.16434169e-01 -9.43984687e-02 3.21128786e-01 2.07318887e-01
1.18005320e-01 4.51424748e-01 2.69273520e-01 -7.45794833e-01
3.40920478e-01 -1.00299433e-01 -1.36065114e+00 3.65619183e-01
-1.42083839e-01 -2.97822297e-01 5.11492610e-01 -2.65795290e-01
-1.27805281e+00 9.83521193e-02 1.05260909e-01 2.41752893e-01
-5.84315777e-01 -1.53901920e-01 -2.81048864e-01 -3.96439791e-01
3.45096499e-01 1.79406390e-01 -1.76943138e-01 -4.46791768e-01
-2.93464929e-01 5.42897284e-01 4.75724846e-01 6.25404492e-02
8.68365586e-01 7.40990877e-01 3.81095260e-01 -1.42264771e+00
-2.14216232e-01 -7.71878421e-01 -4.25782442e-01 -6.07725084e-01
1.15520144e+00 -2.87982821e-01 -5.29028773e-01 7.01999605e-01
-1.33398831e+00 2.22295038e-02 4.14989978e-01 4.21810150e-01
1.63078949e-01 7.09597945e-01 -1.28028423e-01 -1.57816005e+00
-3.88598830e-01 -8.21479559e-01 4.86428469e-01 5.90213537e-01
3.07692170e-01 -9.87546086e-01 -3.10668554e-02 3.76651995e-02
5.86745799e-01 7.14168906e-01 1.79274365e-01 -1.96998596e-01
-7.04123378e-01 -6.81455433e-01 -1.12318732e-01 3.12107712e-01
6.12846613e-01 3.89113814e-01 -8.47645640e-01 -1.54946059e-01
4.15201217e-01 5.88482380e-01 5.73947191e-01 3.77374738e-01
5.65928638e-01 -1.20960534e-01 -3.99338990e-01 2.20101655e-01
1.58123565e+00 8.75572622e-01 6.51954353e-01 6.21845901e-01
2.52335757e-01 5.74248135e-01 9.93620753e-01 6.68673396e-01
-9.24422517e-02 6.56177402e-01 5.91246903e-01 -4.68555391e-01
2.04230338e-01 3.60682189e-01 3.73911470e-01 1.44073427e-01
-4.41548854e-01 -4.32213157e-01 -8.12405705e-01 3.32157493e-01
-1.56880319e+00 -1.24095237e+00 -3.93146574e-01 2.55849099e+00
1.83970019e-01 2.73189604e-01 7.83838853e-02 3.94492954e-01
9.73533332e-01 -1.48305446e-01 -1.43448291e-02 -3.73891294e-01
-5.52331842e-02 -9.97320041e-02 7.31518805e-01 6.55103624e-01
-1.18967950e+00 5.64536214e-01 6.21611023e+00 9.42854807e-02
-1.39310074e+00 3.22794355e-02 3.24513942e-01 2.62311637e-01
5.01815677e-01 -1.72193512e-01 -8.53305221e-01 5.98076999e-01
5.81058860e-01 2.76415795e-01 -3.37838791e-02 5.13066113e-01
6.54965103e-01 -9.71301675e-01 -4.69012670e-02 7.19866395e-01
1.48566827e-01 -5.85932672e-01 -2.47534350e-01 3.88478450e-02
4.02826011e-01 -4.16406959e-01 -2.52353460e-01 -2.28583664e-01
-4.51407656e-02 -3.70870471e-01 2.33174879e-02 4.94202822e-01
1.23157367e-01 -6.87621653e-01 1.08215690e+00 5.42647243e-01
-1.24147332e+00 6.96862787e-02 -2.65119582e-01 -9.07733366e-02
3.78966451e-01 3.30144703e-01 -9.57117558e-01 3.20111901e-01
5.97254217e-01 -5.03687188e-02 -5.45378983e-01 1.35030127e+00
-1.84378549e-02 3.98536056e-01 -5.79896092e-01 -1.71923086e-01
1.60706520e-01 -3.16984206e-01 6.35342121e-01 1.45314002e+00
3.89521569e-01 2.52129376e-01 2.11450905e-01 -4.79262210e-02
8.18329453e-01 8.19055215e-02 -8.67941439e-01 3.52996290e-01
-8.80191475e-02 1.14773941e+00 -1.27400684e+00 -5.07600844e-01
-4.18559492e-01 1.26192260e+00 -5.21106899e-01 2.18553334e-01
-7.62224793e-01 -4.50405896e-01 2.14562789e-01 3.70824307e-01
1.97259054e-01 -4.35437411e-01 1.91100523e-01 -9.30729806e-01
-1.31403103e-01 -7.18741238e-01 5.96243978e-01 -3.08299035e-01
-4.55909401e-01 7.13345647e-01 3.27577859e-01 -1.01828849e+00
2.73139775e-02 -7.15474725e-01 -9.92184579e-01 6.07794642e-01
-1.28321779e+00 -1.03053546e+00 -6.53601289e-01 7.90445149e-01
6.61072433e-01 -2.71595746e-01 7.72329628e-01 1.70084238e-01
-6.06574059e-01 -1.87949553e-01 -1.41132111e-02 -3.94349881e-02
6.25243306e-01 -8.90485764e-01 -1.71602279e-01 1.67546976e+00
-2.29202956e-01 3.73812079e-01 1.25644779e+00 -8.87216151e-01
-9.68311787e-01 -6.25000954e-01 5.51113605e-01 -1.68139011e-01
3.54781747e-01 -2.38586262e-01 -7.83522904e-01 2.49553442e-01
4.07588810e-01 -2.43924677e-01 5.61771750e-01 -3.66722375e-01
2.51306295e-01 -5.06525934e-01 -1.42349434e+00 3.02031368e-01
2.35600352e-01 9.23355594e-02 -3.89858365e-01 2.42593452e-01
1.46354645e-01 -3.46868671e-02 6.07707128e-02 2.89052755e-01
4.13505495e-01 -1.37203193e+00 4.06153947e-01 4.33160439e-02
-9.48623002e-01 -7.03221560e-01 7.38383755e-02 -6.54026389e-01
-3.53739858e-02 -8.26236129e-01 3.27474266e-01 9.99785960e-01
2.88524926e-02 -6.84024572e-01 6.41873896e-01 5.19398153e-01
3.63146067e-01 3.99252325e-02 -8.16397786e-01 -5.32095492e-01
-1.09225440e+00 1.06002048e-01 2.11061612e-02 5.85639894e-01
-4.22509402e-01 -2.21405298e-01 -6.17863297e-01 5.78503847e-01
6.68486714e-01 -8.34584981e-02 8.05306733e-01 -1.36506093e+00
-2.89608896e-01 -3.40256356e-02 -6.71471477e-01 -1.39766067e-01
-4.98066515e-01 3.71053815e-01 -1.39273321e-02 -1.62716043e+00
6.29599765e-02 9.68820006e-02 -4.03578520e-01 1.29157737e-01
-3.01997572e-01 2.55337864e-01 1.47874251e-01 -2.79083371e-01
-5.14874995e-01 5.41079827e-02 7.05081046e-01 2.97114611e-01
-3.21275979e-01 5.78883469e-01 3.27081084e-02 9.17354107e-01
1.08088315e+00 -3.83466840e-01 -3.28541517e-01 -1.49588719e-01
-1.93840340e-01 -5.48974276e-02 3.15272927e-01 -1.36817813e+00
2.57543802e-01 -4.48409081e-01 4.87161189e-01 -6.32699192e-01
3.52500737e-01 -1.53163183e+00 3.81984591e-01 9.51885998e-01
5.14723480e-01 6.29382670e-01 4.78020340e-01 6.21430457e-01
9.78511106e-03 -3.08980882e-01 9.80955541e-01 -2.79736519e-01
-8.59471381e-01 -3.68954390e-02 -7.73410320e-01 -6.45716727e-01
1.42869067e+00 -5.54162920e-01 -3.06335032e-01 -3.97437841e-01
-4.38327432e-01 -1.79777279e-01 6.26654923e-01 1.10306911e-01
4.44193274e-01 -4.22196984e-01 -4.07028317e-01 1.48538411e-01
-2.43675858e-01 -3.86382282e-01 2.82022148e-01 7.43975639e-01
-1.13815486e+00 2.22034484e-01 -6.30558431e-01 -2.25776777e-01
-2.11899567e+00 5.56267619e-01 1.11392006e-01 -1.33246258e-01
-4.44181561e-01 3.75418574e-01 -3.18055926e-03 5.91994584e-01
3.44400078e-01 -1.83196917e-01 -5.26989460e-01 -3.05772871e-01
9.69174504e-01 6.14204288e-01 -2.35296384e-01 -7.36616254e-01
-3.99066716e-01 7.26195574e-01 1.54198483e-01 -1.76664621e-01
1.04801416e+00 -1.36216655e-01 -3.71127337e-01 3.42533439e-01
3.89252692e-01 5.10269940e-01 -1.18315625e+00 3.19892853e-01
1.47484809e-01 -6.53721094e-01 -4.10875827e-02 -6.69501007e-01
-6.21275067e-01 6.70074999e-01 1.11462092e+00 4.13881660e-01
1.65887356e+00 -6.03368521e-01 3.12864810e-01 4.38167453e-01
3.41679662e-01 -1.04893684e+00 -3.06473762e-01 2.15171143e-01
5.61809182e-01 -1.34317851e+00 2.95453370e-01 -4.47487414e-01
-5.98943591e-01 1.15689278e+00 5.61612129e-01 1.68734454e-02
6.02366984e-01 4.99975324e-01 3.54444116e-01 1.02513265e-02
-4.57652479e-01 -5.33866465e-01 7.47967418e-03 9.96376336e-01
3.43109488e-01 -2.74630506e-02 -5.33855617e-01 -2.68517017e-01
5.72474241e-01 -1.26539707e-01 7.30581820e-01 1.31658685e+00
-1.11725831e+00 -1.10041213e+00 -1.12034988e+00 1.27552137e-01
-7.40096390e-01 5.61029792e-01 -4.07608151e-01 8.97775531e-01
4.10328269e-01 1.13393652e+00 -2.91376889e-01 1.15417615e-01
2.99212575e-01 -6.56651780e-02 4.82664853e-01 -2.28792816e-01
-4.48984444e-01 2.98769951e-01 3.61827947e-02 -1.96965635e-01
-6.25384390e-01 -5.23329735e-01 -8.76482904e-01 -5.53545542e-02
-4.26891565e-01 3.21041673e-01 1.24257159e+00 5.19583821e-01
-1.20462120e-01 2.59764045e-01 4.07947212e-01 -5.72346687e-01
6.20478652e-02 -8.61338317e-01 -4.66615558e-01 8.67471248e-02
4.25999224e-01 -6.86023533e-01 -1.88095048e-01 1.44004777e-01] | [8.908577919006348, -0.9914636611938477] |
1f335660-14b1-4c62-8535-f61cbf6f3936 | semi-supervised-classification-for-dynamic | 1704.05948 | null | http://arxiv.org/abs/1704.05948v1 | http://arxiv.org/pdf/1704.05948v1.pdf | Semi-supervised classification for dynamic Android malware detection | A growing number of threats to Android phones creates challenges for malware
detection. Manually labeling the samples into benign or different malicious
families requires tremendous human efforts, while it is comparably easy and
cheap to obtain a large amount of unlabeled APKs from various sources.
Moreover, the fast-paced evolution of Android malware continuously generates
derivative malware families. These families often contain new signatures, which
can escape detection when using static analysis. These practical challenges can
also cause traditional supervised machine learning algorithms to degrade in
performance.
In this paper, we propose a framework that uses model-based semi-supervised
(MBSS) classification scheme on the dynamic Android API call logs. The
semi-supervised approach efficiently uses the labeled and unlabeled APKs to
estimate a finite mixture model of Gaussian distributions via conditional
expectation-maximization and efficiently detects malwares during out-of-sample
testing. We compare MBSS with the popular malware detection classifiers such as
support vector machine (SVM), $k$-nearest neighbor (kNN) and linear
discriminant analysis (LDA). Under the ideal classification setting, MBSS has
competitive performance with 98\% accuracy and very low false positive rate for
in-sample classification. For out-of-sample testing, the out-of-sample test
data exhibit similar behavior of retrieving phone information and sending to
the network, compared with in-sample training set. When this similarity is
strong, MBSS and SVM with linear kernel maintain 90\% detection rate while
$k$NN and LDA suffer great performance degradation. When this similarity is
slightly weaker, all classifiers degrade in performance, but MBSS still
performs significantly better than other classifiers. | ['Chih-Yuan Yang', 'Ravi Sahita', 'Mingwei Zhang', 'Li Chen'] | 2017-04-19 | null | null | null | null | ['android-malware-detection'] | ['miscellaneous'] | [ 8.50041434e-02 -3.70217830e-01 -7.72036135e-01 -2.30263010e-01
-7.36254454e-01 -7.95440495e-01 4.96788353e-01 -1.34139001e-01
-5.18963560e-02 7.21465826e-01 -7.13182271e-01 -8.54614437e-01
1.72189310e-01 -6.85939252e-01 -5.54903507e-01 -6.35056496e-01
-1.87439889e-01 3.82062733e-01 6.80230379e-01 1.44894481e-01
1.77060768e-01 4.06970978e-01 -1.57102633e+00 2.37394631e-01
8.92205238e-01 1.11524880e+00 -1.27750114e-01 7.82585502e-01
-8.01442042e-02 5.20374477e-01 -7.74798632e-01 -5.74046552e-01
2.74532795e-01 -1.17835954e-01 -5.80522895e-01 -2.00253993e-01
-7.31608178e-03 -3.58840793e-01 1.62836909e-02 1.15630460e+00
8.15409422e-02 -3.55626106e-01 9.35486555e-01 -1.77714348e+00
-2.14207187e-01 1.73394814e-01 -7.61574745e-01 1.68102220e-01
4.40392017e-01 1.76262110e-01 4.98717189e-01 -6.09756589e-01
1.89837486e-01 9.25373256e-01 1.09276617e+00 5.15764415e-01
-1.10914505e+00 -9.28501964e-01 -2.53302097e-01 1.65247340e-02
-1.41445816e+00 -3.90455931e-01 7.40524769e-01 -5.64996660e-01
7.73379445e-01 5.09124517e-01 4.32307124e-01 1.40403259e+00
2.52205908e-01 6.81873202e-01 1.11038530e+00 8.51663351e-02
4.97030020e-01 8.02810371e-01 4.18597698e-01 6.85931146e-01
4.66907412e-01 3.33542228e-02 -1.25547811e-01 -1.06499970e+00
6.99950904e-02 5.26373506e-01 -6.63751140e-02 -1.54973209e-01
-5.35507739e-01 9.04334009e-01 -2.06266448e-01 1.69595584e-01
2.29113623e-02 -3.68978590e-01 6.13889575e-01 1.65990084e-01
4.18850034e-01 9.63524729e-03 -8.17404091e-01 -5.64507186e-01
-1.17363012e+00 -2.23247185e-01 1.00808156e+00 5.86320579e-01
7.33808637e-01 1.16252109e-01 4.28817391e-01 8.22936475e-01
3.47529620e-01 8.10670078e-01 9.32456315e-01 -5.97146273e-01
2.08003744e-01 7.87588656e-01 -1.44161150e-01 -1.13651168e+00
7.56479474e-03 -2.92647213e-01 -6.66095436e-01 2.35806499e-02
4.83868331e-01 -3.77544537e-02 -5.52868068e-01 1.45837200e+00
4.86162096e-01 3.94198149e-01 -5.54236099e-02 -3.58551964e-02
2.39030465e-01 7.39070535e-01 -1.65075168e-01 -6.89862967e-01
1.16526639e+00 -7.34313250e-01 -3.73026103e-01 -1.18437625e-01
8.20719719e-01 -6.03612304e-01 1.32391131e+00 5.72437108e-01
-4.59923893e-01 -3.04339111e-01 -1.01373196e+00 7.23456502e-01
-5.92999518e-01 -2.71902652e-03 4.00250643e-01 1.38137782e+00
-8.46784651e-01 3.51680577e-01 -9.97133970e-01 -2.12854758e-01
7.39593089e-01 6.54976845e-01 -2.62586176e-01 -2.83074547e-02
-5.56742251e-01 2.87575334e-01 7.66141489e-02 -4.18085515e-01
-1.01365006e+00 -4.47822481e-01 -7.16757774e-01 -1.94778353e-01
5.05540133e-01 1.88503057e-01 1.18923628e+00 -8.10192764e-01
-1.46592152e+00 6.43274844e-01 -4.27796513e-01 -3.43370795e-01
1.96755081e-01 1.54313207e-01 -7.27432549e-01 -1.28673419e-01
9.46857333e-02 4.51728143e-02 1.38547850e+00 -1.24901783e+00
-4.84064460e-01 -6.14733458e-01 -3.59703749e-01 -6.24285161e-01
-7.64390647e-01 9.93236303e-02 -2.30550677e-01 -3.32550615e-01
-2.52433985e-01 -1.15243804e+00 1.68097734e-01 -5.26853442e-01
-6.73698962e-01 -2.13794053e-01 1.79321885e+00 -7.66699553e-01
1.46535945e+00 -2.29122758e+00 -5.38099825e-01 3.62675846e-01
1.30293295e-01 8.08092237e-01 2.06618190e-01 1.39689729e-01
2.03614607e-02 2.27154702e-01 -4.99905735e-01 -2.62769550e-01
-2.94480383e-01 3.50207269e-01 -3.70121092e-01 3.75006944e-01
6.98350668e-02 6.49601817e-01 -8.15406621e-01 -4.25902009e-01
-1.57139421e-01 4.06687379e-01 -5.41126430e-01 1.73181176e-01
-1.04751915e-01 2.10472569e-01 -3.46078724e-01 1.18093169e+00
6.75343513e-01 -4.14962709e-01 2.40786150e-01 8.91138464e-02
4.42155570e-01 1.51501685e-01 -9.39181268e-01 6.31348491e-01
-2.40005895e-01 5.12629092e-01 6.86518475e-02 -1.18693078e+00
7.55986452e-01 -7.29449913e-02 2.27151260e-01 -1.34523839e-01
1.59601003e-01 4.88882005e-01 9.74703208e-02 -4.17101651e-01
7.26696327e-02 4.26896721e-01 -2.08417736e-02 6.51820302e-01
-1.41571790e-01 2.48938441e-01 -1.63048223e-01 1.44301653e-01
1.38607728e+00 -2.99531847e-01 4.67682362e-01 -1.28432050e-01
8.43909085e-01 5.95719181e-03 4.18128490e-01 5.02378404e-01
-4.00680274e-01 -1.44437656e-01 7.06121624e-01 -7.25965649e-02
-4.66434568e-01 -1.08362639e+00 -1.56418905e-01 1.07177269e+00
-8.49736631e-02 -5.95046818e-01 -1.16963756e+00 -1.46136796e+00
6.31121770e-02 3.54745507e-01 -2.74933219e-01 -3.49960238e-01
-3.37582827e-01 -1.00643349e+00 7.77359962e-01 1.90006748e-01
5.30959547e-01 -7.18529522e-01 -1.94967091e-01 -2.48209417e-01
7.87793547e-02 -9.17472005e-01 -2.83422947e-01 1.54092237e-01
-7.52859771e-01 -1.50687480e+00 -3.90535355e-01 -6.98011458e-01
7.19415247e-01 3.20754647e-01 5.66218793e-01 -4.61329594e-02
-3.84534240e-01 4.43637431e-01 -2.78767377e-01 -3.03195775e-01
-7.97340572e-01 1.28211692e-01 5.44103503e-01 2.07267731e-01
5.05331635e-01 -5.63574016e-01 -2.12024987e-01 7.38194644e-01
-6.93621635e-01 -9.38123584e-01 3.69426876e-01 7.77808845e-01
5.55624783e-01 6.05729520e-01 6.30515039e-01 -9.43140566e-01
6.46396339e-01 -9.19744551e-01 -5.21394670e-01 -1.61346812e-02
-8.05459917e-01 -3.80813450e-01 1.01490176e+00 -1.07268393e+00
-6.87487721e-01 -5.89502379e-02 -1.70248702e-01 -4.47556376e-01
-8.96558315e-02 7.03243837e-02 -4.01406139e-01 -2.67104834e-01
8.52636576e-01 5.11631548e-01 3.17317128e-01 -4.47736591e-01
-2.52661586e-01 1.34940898e+00 1.58276111e-01 -1.75244540e-01
9.41579521e-01 4.84322667e-01 -2.25778446e-01 -1.18141747e+00
-4.04101104e-01 -4.85659480e-01 -2.47083127e-01 -2.95846425e-02
4.14167643e-01 -5.47797501e-01 -7.79353440e-01 9.18639958e-01
-6.17520392e-01 -4.85253066e-01 2.38486826e-02 2.59542793e-01
-1.16147645e-01 8.10431302e-01 -6.10669553e-01 -1.19050038e+00
-2.06509188e-01 -1.52796495e+00 1.07348549e+00 8.14448893e-02
-3.11246037e-01 -8.74677360e-01 -1.42811507e-01 4.88903791e-01
3.06332856e-01 1.98116563e-02 8.29098105e-01 -1.39417529e+00
-2.90979650e-02 -7.30672061e-01 1.37088864e-04 7.73842275e-01
5.62852979e-01 3.10341448e-01 -1.13268924e+00 -4.83554244e-01
3.95374447e-01 -2.10079357e-01 4.35787946e-01 1.55199751e-01
1.46135008e+00 -6.45648241e-01 -6.54581904e-01 4.22377437e-01
9.91621315e-01 6.79642737e-01 4.06797469e-01 -1.29732803e-01
6.93305671e-01 4.63189811e-01 6.67716980e-01 2.49131918e-01
1.70334563e-01 5.31980753e-01 3.57717603e-01 2.53808916e-01
3.77115935e-01 -1.62474290e-01 9.64088440e-01 7.22338378e-01
4.40230489e-01 4.74935435e-02 -1.00279140e+00 -9.58528649e-03
-1.45095587e+00 -9.06990051e-01 -9.62710157e-02 2.66627979e+00
9.17830467e-01 3.73665392e-01 7.73996055e-01 6.48399472e-01
7.62922823e-01 -1.62282318e-01 -6.39329374e-01 -4.52022076e-01
2.88775384e-01 2.05683783e-01 5.40911794e-01 3.64647001e-01
-1.10215056e+00 6.20527148e-01 6.10671568e+00 1.61002791e+00
-1.35577130e+00 4.35493231e-01 1.01546240e+00 2.60061026e-01
2.42234766e-01 -1.37487158e-01 -1.12166381e+00 1.08610702e+00
1.40554917e+00 3.78909647e-01 5.42664587e-01 1.43054903e+00
-1.03372060e-01 -3.22052598e-01 -8.27404737e-01 1.33790374e+00
2.60872424e-01 -1.01131511e+00 -4.16061133e-01 6.29458427e-01
5.03986239e-01 3.56122181e-02 2.67312199e-01 5.09481668e-01
2.74768695e-02 -7.78849721e-01 9.60204285e-03 4.10106406e-02
9.83539402e-01 -7.53839254e-01 6.23018265e-01 7.66808271e-01
-1.00730872e+00 -5.11498153e-01 -9.49298814e-02 9.30671319e-02
-2.44223729e-01 7.15299726e-01 -1.09053373e+00 -5.57441488e-02
7.16878355e-01 4.66309190e-01 -8.15639853e-01 4.81903821e-01
2.50694633e-01 1.29057741e+00 -4.55146521e-01 -2.40320623e-01
-6.50654361e-02 -1.04590878e-01 4.39574838e-01 1.07082283e+00
2.49952033e-01 -4.02007312e-01 2.68390357e-01 4.13957268e-01
2.60393620e-01 7.64517561e-02 -7.97409534e-01 -4.11029130e-01
4.70215946e-01 1.20269501e+00 -9.14619088e-01 -5.66394925e-01
-2.33026385e-01 8.86580884e-01 -1.13259151e-03 1.11774936e-01
-1.00939238e+00 -2.92635292e-01 6.43587530e-01 4.84751105e-01
1.45931959e-01 -1.68356955e-01 -2.73549594e-02 -1.05956542e+00
4.20469828e-02 -1.21074247e+00 3.06541026e-01 -1.65566161e-01
-1.36931276e+00 5.05726218e-01 3.03461938e-03 -1.30046117e+00
-4.55895782e-01 -8.99977684e-01 -6.93871856e-01 2.38501504e-01
-9.42268372e-01 -8.45229566e-01 -2.99199671e-02 7.61291146e-01
4.04251456e-01 -4.40210164e-01 8.21014285e-01 3.02107513e-01
-8.40386629e-01 9.43989635e-01 2.46860504e-01 1.84125230e-01
5.21360278e-01 -8.17161381e-01 7.42742121e-02 6.41267657e-01
-6.30810112e-02 7.75900662e-01 2.43002847e-01 -1.00110114e+00
-1.48785233e+00 -1.22295630e+00 4.83533710e-01 -5.10756731e-01
6.96357846e-01 -4.48486239e-01 -9.35917914e-01 4.59016800e-01
-5.05031884e-01 9.81065035e-02 1.17828608e+00 -1.35646194e-01
-7.73324609e-01 -2.32085392e-01 -1.63088262e+00 3.71577859e-01
6.90415621e-01 -6.93525374e-01 6.35540858e-02 5.67121387e-01
5.46197891e-01 1.43803552e-01 -6.08105004e-01 4.92905766e-01
5.64562023e-01 -1.09004235e+00 9.13241982e-01 -5.69876254e-01
-8.51131082e-02 -1.25498429e-01 -3.83927524e-01 -6.53652012e-01
3.50214422e-01 -7.41060376e-01 -6.22792959e-01 1.22298276e+00
5.07453501e-01 -1.08840442e+00 9.19119656e-01 2.10946575e-01
2.59277016e-01 -9.93383825e-01 -9.46340442e-01 -1.19538605e+00
-2.89100289e-01 -7.83566058e-01 3.86785090e-01 9.99070823e-01
1.85339764e-01 4.61199582e-02 -3.02387595e-01 6.00360483e-02
6.30824447e-01 -4.22015488e-01 1.01806915e+00 -1.28444326e+00
-6.90699816e-01 -2.90678293e-01 -5.75953722e-01 -6.13533378e-01
3.43022317e-01 -6.86109066e-01 -3.45696807e-01 -4.45187181e-01
2.98859686e-01 -5.97765625e-01 1.08403414e-01 5.46866179e-01
2.64825933e-02 6.00853443e-01 -3.94633174e-01 3.88532043e-01
-4.58267391e-01 5.46094552e-02 4.67818648e-01 -9.95386764e-02
-6.12231791e-01 6.26515567e-01 -3.66032124e-01 1.00615036e+00
1.01243198e+00 -4.31689382e-01 -5.46795905e-01 4.32923198e-01
-1.54517502e-01 -2.28185982e-01 1.81743294e-01 -9.49579000e-01
-2.59811461e-01 -7.13145360e-02 3.40905219e-01 -3.76663357e-01
4.71137822e-01 -7.81605899e-01 1.18349098e-01 9.10078466e-01
3.11035603e-01 -2.96940804e-02 1.50633782e-01 8.27132046e-01
1.06323965e-01 -1.75988987e-01 8.51017177e-01 1.56941637e-01
-1.45332888e-01 2.55849391e-01 -6.50517821e-01 -5.04399166e-02
1.33719444e+00 -7.01851010e-01 -2.79255927e-01 -3.08802396e-01
-4.65161860e-01 -3.69907647e-01 5.41199565e-01 2.50014752e-01
4.15798992e-01 -9.57875490e-01 2.90299132e-02 5.29848337e-01
-3.73587422e-02 -3.81217360e-01 5.04177213e-02 1.05233788e+00
-2.56487936e-01 1.65665552e-01 2.23155886e-01 -9.41722989e-01
-1.63634515e+00 7.65608191e-01 -1.78909011e-03 -3.09026062e-01
7.42856488e-02 7.31609344e-01 -1.91926375e-01 -6.20277107e-01
1.79121464e-01 5.14916107e-02 -7.14737028e-02 -2.94233598e-02
7.39959419e-01 7.27270246e-01 4.48662341e-02 -8.96894157e-01
-6.16322935e-01 2.97076851e-01 -1.81454703e-01 2.19241187e-01
8.08650315e-01 3.19498837e-01 -2.68883944e-01 4.34084684e-01
1.66126943e+00 5.70795417e-01 -7.14815974e-01 1.01239324e-01
4.31175418e-02 -4.92674679e-01 -4.12127227e-01 -4.46441293e-01
-8.84254634e-01 7.16642320e-01 7.33196795e-01 6.89565420e-01
9.51708436e-01 5.70547991e-02 9.11962569e-01 3.49869460e-01
5.01299024e-01 -7.34802604e-01 2.28510678e-01 1.98462859e-01
2.32751630e-02 -1.34649718e+00 -2.58273989e-01 -8.05323720e-01
-4.28721130e-01 7.49740124e-01 6.71950042e-01 -6.05865791e-02
1.13981855e+00 4.90695119e-01 -2.86319941e-01 -5.60991513e-03
-3.49157691e-01 3.21942091e-01 7.34457970e-02 9.45508182e-01
-1.34819269e-01 1.87594652e-01 -6.55687451e-02 8.35178912e-01
-2.04823211e-01 -3.77181828e-01 1.98114678e-01 9.98983979e-01
-3.48467767e-01 -1.29919434e+00 -4.39976335e-01 1.02028787e+00
-6.44582868e-01 1.22814529e-01 -6.32624984e-01 5.50186992e-01
2.17234492e-01 1.16952777e+00 -4.75917049e-02 -9.18261468e-01
-2.69337416e-01 3.19573879e-01 -2.16320809e-02 -5.68078041e-01
-4.34146613e-01 2.02417281e-02 -1.09588832e-01 -5.28251410e-01
5.54798879e-02 -6.44708037e-01 -1.03987646e+00 -3.93924028e-01
-5.94209969e-01 2.11528778e-01 7.18013585e-01 9.13473010e-01
5.68098664e-01 -1.23447165e-01 9.78874743e-01 -6.12185061e-01
-7.93608427e-01 -7.79334009e-01 -5.03533125e-01 8.77160579e-02
2.64573008e-01 -6.50572896e-01 -8.31928134e-01 -1.69860944e-02] | [14.419934272766113, 9.67808723449707] |
a4541dee-2b80-43b8-99cb-bea13c26230b | hipode-enhancing-offline-reinforcement | 2306.06329 | null | https://arxiv.org/abs/2306.06329v1 | https://arxiv.org/pdf/2306.06329v1.pdf | HIPODE: Enhancing Offline Reinforcement Learning with High-Quality Synthetic Data from a Policy-Decoupled Approach | Offline reinforcement learning (ORL) has gained attention as a means of training reinforcement learning models using pre-collected static data. To address the issue of limited data and improve downstream ORL performance, recent work has attempted to expand the dataset's coverage through data augmentation. However, most of these methods are tied to a specific policy (policy-dependent), where the generated data can only guarantee to support the current downstream ORL policy, limiting its usage scope on other downstream policies. Moreover, the quality of synthetic data is often not well-controlled, which limits the potential for further improving the downstream policy. To tackle these issues, we propose \textbf{HI}gh-quality \textbf{PO}licy-\textbf{DE}coupled~(HIPODE), a novel data augmentation method for ORL. On the one hand, HIPODE generates high-quality synthetic data by selecting states near the dataset distribution with potentially high value among candidate states using the negative sampling technique. On the other hand, HIPODE is policy-decoupled, thus can be used as a common plug-in method for any downstream ORL process. We conduct experiments on the widely studied TD3BC and CQL algorithms, and the results show that HIPODE outperforms the state-of-the-art policy-decoupled data augmentation method and most prevalent model-based ORL methods on D4RL benchmarks. | ['Zhaopeng Meng', 'Yan Zheng', 'Jinyi Liu', 'Yi Ma', 'Shixi Lian'] | 2023-06-10 | null | null | null | null | ['d4rl'] | ['robots'] | [-1.49672508e-01 5.51038049e-02 -1.05485058e+00 -9.29408967e-02
-8.16371441e-01 -4.57170069e-01 7.13407397e-01 3.37104172e-01
-5.87646842e-01 1.19997156e+00 2.49840692e-01 -7.96967149e-01
-7.76182413e-02 -8.66176963e-01 -5.66613495e-01 -8.96905303e-01
1.47072211e-01 7.13136017e-01 1.74405232e-01 -4.28169399e-01
4.65643406e-02 3.58765543e-01 -1.46386290e+00 -6.89791590e-02
1.10794127e+00 9.63994920e-01 9.07209143e-03 2.76863754e-01
-1.50769621e-01 7.38060057e-01 -7.92197049e-01 5.38847893e-02
4.65811610e-01 -4.98011231e-01 -5.80480516e-01 -3.39223593e-01
-1.06056638e-01 -4.73313004e-01 -5.30634820e-01 8.94537866e-01
7.25049078e-01 1.72104180e-01 3.22186321e-01 -1.43837357e+00
-2.59108067e-01 7.55472779e-01 -5.54311275e-01 3.45108449e-01
7.70193785e-02 6.13067508e-01 7.57509768e-01 -2.10263982e-01
4.45548564e-01 1.32036591e+00 2.32387170e-01 8.34521532e-01
-1.44596136e+00 -8.10494661e-01 5.86754739e-01 1.26287669e-01
-8.85641694e-01 -4.08449948e-01 7.41572857e-01 -1.30162612e-01
8.20885420e-01 3.74347530e-02 8.05302024e-01 1.15623522e+00
-1.64361343e-01 1.05448699e+00 1.53460598e+00 -4.14566547e-01
5.74675083e-01 3.87783013e-02 -6.40285835e-02 3.33078116e-01
1.27813727e-01 6.49334252e-01 -4.39153165e-01 -2.51218557e-01
7.83166885e-01 -3.40115190e-01 -9.86979529e-02 -1.71752229e-01
-9.41992939e-01 8.93800974e-01 2.08541736e-01 -3.40703540e-02
-2.29706183e-01 2.15124294e-01 4.88534361e-01 4.42389309e-01
4.15796727e-01 4.84323144e-01 -7.29839385e-01 -6.00277543e-01
-7.74350524e-01 5.56743383e-01 5.87326825e-01 7.86957145e-01
6.53632879e-01 2.78362632e-01 -6.66746140e-01 6.56593144e-01
2.19231308e-01 6.12154543e-01 5.15191555e-01 -1.08440113e+00
7.32054651e-01 5.01794577e-01 3.81437898e-01 -3.99251282e-01
-3.55174035e-01 -3.89813125e-01 -6.58953011e-01 3.06684434e-01
5.36720932e-01 -3.98969114e-01 -8.81615400e-01 2.23886395e+00
4.90825534e-01 7.55247399e-02 2.34239727e-01 7.19862521e-01
4.00402218e-01 7.52291799e-01 2.17555299e-01 -5.85981011e-01
8.76695216e-01 -6.86345041e-01 -7.19994247e-01 -1.17782645e-01
6.51582420e-01 -3.43280911e-01 1.25543058e+00 4.51946229e-01
-9.10433233e-01 -4.54873025e-01 -7.65723705e-01 5.66857040e-01
-1.70762360e-01 -6.93751732e-03 5.26728570e-01 6.16176605e-01
-8.95017385e-01 3.91847044e-01 -8.42239141e-01 -3.67975235e-02
4.04998302e-01 3.71936768e-01 1.77338660e-01 -9.46947262e-02
-1.46831667e+00 7.77369559e-01 6.75853193e-01 -2.49168292e-01
-1.12823331e+00 -6.82583451e-01 -6.11605704e-01 -2.02950705e-02
7.22670674e-01 -3.43890488e-01 1.37106597e+00 -6.64765894e-01
-1.88608897e+00 1.15342066e-01 1.67679638e-01 -6.48840606e-01
7.05945015e-01 -2.23362848e-01 -6.03734612e-01 -4.10847738e-02
2.84893736e-02 7.75846004e-01 7.81855762e-01 -1.31802118e+00
-7.70235479e-01 -1.79467842e-01 1.64734572e-01 2.49170855e-01
-4.22387272e-01 -3.44465256e-01 -5.72447240e-01 -7.22104371e-01
-4.67161119e-01 -8.82054687e-01 -4.98305112e-01 -3.98699313e-01
-4.88363832e-01 -4.28177357e-01 1.05336511e+00 -3.62231016e-01
1.71724963e+00 -2.00128198e+00 -2.55107045e-01 3.52289468e-01
-3.03334862e-01 7.76452661e-01 -3.55150908e-01 6.12051487e-01
1.94760323e-01 1.57817379e-01 -3.46059911e-02 -2.52375245e-01
-3.86441834e-02 5.05156636e-01 -3.73748034e-01 3.27197313e-01
9.78317037e-02 6.47121370e-01 -1.02369738e+00 -3.67791146e-01
3.57251793e-01 -2.15772748e-01 -8.49035859e-01 2.41227105e-01
-7.86075950e-01 8.51866603e-01 -6.55316651e-01 3.53201389e-01
4.74753708e-01 -3.16929743e-02 2.51789182e-01 1.21594593e-01
-1.68708608e-01 3.85319114e-01 -1.18150461e+00 1.46568775e+00
-5.05702436e-01 8.81337896e-02 -1.76805168e-01 -1.26447439e+00
9.61866677e-01 2.82366604e-01 8.71065080e-01 -1.04792631e+00
9.41686332e-02 5.76519482e-02 1.29235432e-01 -2.70332009e-01
3.47125918e-01 -1.63327325e-02 -2.24964485e-01 4.03249681e-01
-3.72022182e-01 2.76252404e-02 4.17296946e-01 1.35270193e-01
1.02614379e+00 4.50364232e-01 2.47183546e-01 -5.64911924e-02
4.59986120e-01 1.19225070e-01 1.09885669e+00 9.35131788e-01
-4.34491098e-01 -4.01449502e-02 7.60844409e-01 4.09092428e-03
-9.09950316e-01 -8.17027450e-01 -2.36935169e-02 1.01794183e+00
1.91681474e-01 -3.37369382e-01 -5.45209944e-01 -9.58170414e-01
2.86737829e-01 9.41276908e-01 -4.25855160e-01 -4.95922059e-01
-5.23400664e-01 -7.82590985e-01 7.00412989e-01 4.60579306e-01
7.08748281e-01 -1.22163296e+00 -4.74684715e-01 7.53308713e-01
-1.40205458e-01 -1.10099053e+00 -1.81552887e-01 3.29656094e-01
-8.72290432e-01 -9.54178154e-01 -4.33994800e-01 -2.63777792e-01
3.78183812e-01 -1.91460088e-01 9.49084103e-01 -3.06625366e-01
3.61595303e-01 9.09682810e-02 -5.27588189e-01 -3.95830691e-01
-8.27858627e-01 1.40308768e-01 3.30900729e-01 -1.87751308e-01
2.82090724e-01 -3.86942744e-01 -7.09745169e-01 3.58614892e-01
-7.36235857e-01 -1.13906994e-01 5.12106180e-01 9.67364967e-01
6.63396358e-01 -2.73020193e-03 1.32502425e+00 -8.23124588e-01
1.00249374e+00 -2.82092094e-01 -8.69003952e-01 1.15699328e-01
-1.11630929e+00 3.83433580e-01 1.09067523e+00 -4.82510388e-01
-1.11360013e+00 -3.04139346e-01 -3.23436469e-01 -5.60982227e-01
-1.99968383e-01 4.93561417e-01 -1.51186958e-01 4.78324145e-01
6.30410612e-01 3.67740273e-01 2.97616184e-01 -4.83808279e-01
4.64554846e-01 6.86127365e-01 3.28080744e-01 -1.02219200e+00
6.41245067e-01 2.84364223e-01 -1.00827880e-01 -3.68056446e-01
-9.02061820e-01 -3.23611647e-01 -4.20880429e-02 -1.20004550e-01
4.64341551e-01 -8.21751177e-01 -9.06934619e-01 3.35876375e-01
-4.12948936e-01 -1.02678561e+00 -6.80981815e-01 4.04406786e-01
-7.87660599e-01 2.49180451e-01 -5.80439627e-01 -9.29852068e-01
-2.19171688e-01 -1.32528448e+00 7.91130245e-01 2.72058249e-01
9.40486565e-02 -7.63063788e-01 2.74076611e-01 2.25216851e-01
2.24526227e-01 1.35291979e-01 1.15536857e+00 -6.62857950e-01
-2.47408882e-01 5.57512529e-02 -2.17321776e-02 5.99894285e-01
6.84123635e-02 -9.82126147e-02 -7.94807255e-01 -7.42296398e-01
-3.83515477e-01 -6.81366205e-01 6.58505857e-01 4.93605167e-01
1.51952314e+00 -4.57551539e-01 -2.24309802e-01 1.61987409e-01
1.42665708e+00 5.01361310e-01 4.54633206e-01 5.87426364e-01
2.32312799e-01 1.84328973e-01 1.28621328e+00 9.11245167e-01
3.14788997e-01 7.74263680e-01 5.36499262e-01 -6.63107336e-02
4.54469435e-02 -4.86560524e-01 6.02192044e-01 3.61197531e-01
1.19593024e-01 -4.31064099e-01 -7.41165638e-01 4.19791520e-01
-2.05813503e+00 -1.02179360e+00 1.32904217e-01 2.29246140e+00
1.16527355e+00 4.49982971e-01 4.79982078e-01 3.00636888e-01
3.17396253e-01 1.61233082e-01 -9.55180883e-01 -5.30125976e-01
1.03108935e-01 1.61629930e-01 6.81518316e-01 9.42827538e-02
-8.76223981e-01 1.09960067e+00 5.54743481e+00 1.11501861e+00
-1.23610294e+00 -4.47016433e-02 7.50254273e-01 -1.06175423e-01
-2.65028328e-01 8.43285397e-02 -1.17144477e+00 7.27025270e-01
1.07642090e+00 -6.23452999e-02 4.65268821e-01 7.71466136e-01
9.25825953e-01 -3.28545094e-01 -9.52212691e-01 5.75978279e-01
-6.86720550e-01 -1.34537959e+00 -7.55887432e-03 2.90555447e-01
9.02257979e-01 2.43140861e-01 9.88616273e-02 9.42818046e-01
7.90202558e-01 -7.20335841e-01 7.69267797e-01 3.59979123e-01
1.18573320e+00 -1.12247038e+00 4.95336294e-01 8.70805442e-01
-9.08099830e-01 -5.04113793e-01 -1.37220278e-01 1.30174056e-01
-2.30166931e-02 5.32973170e-01 -7.76415229e-01 5.39626122e-01
5.82059383e-01 6.06730640e-01 -3.85514736e-01 7.57408440e-01
-2.65375555e-01 1.03048551e+00 -3.17595840e-01 1.74944792e-02
5.61098158e-01 -1.82776198e-01 4.35631216e-01 9.11963105e-01
7.40893334e-02 -3.25148329e-02 7.45926499e-01 6.59392238e-01
-5.33127151e-02 -1.11678347e-01 -4.48306859e-01 -1.07338345e-02
8.03252339e-01 7.58643627e-01 -1.13368444e-01 -3.73683035e-01
-3.47464710e-01 2.55160958e-01 2.38504633e-01 4.10693765e-01
-8.25870633e-01 2.77913064e-02 8.72568130e-01 -6.75052032e-02
9.90515500e-02 -3.43911014e-02 -1.48165196e-01 -9.43710208e-01
-2.45235339e-01 -1.37642622e+00 4.85880077e-01 -1.53519079e-01
-1.25410938e+00 2.02059016e-01 6.66443780e-02 -1.49232006e+00
-4.73182082e-01 -1.15841590e-01 -3.81565809e-01 7.30386674e-01
-1.90806866e+00 -7.77316213e-01 5.63430265e-02 8.50109696e-01
5.09073079e-01 -3.58850956e-01 6.07044876e-01 3.39869529e-01
-8.87542188e-01 7.01724172e-01 5.09140670e-01 -7.21971095e-02
6.29536688e-01 -1.23412001e+00 6.48357421e-02 7.73473442e-01
-3.22244912e-01 2.56965905e-01 6.74482763e-01 -6.48006439e-01
-1.26305068e+00 -1.40786028e+00 7.81037807e-02 -1.59496116e-03
4.77306128e-01 -1.11769415e-01 -7.48714089e-01 3.43747556e-01
-7.32918084e-02 4.95375730e-02 4.61511850e-01 -3.03227883e-02
1.53613150e-01 -3.43679160e-01 -1.19494689e+00 6.68901563e-01
9.08378243e-01 -7.82009438e-02 -1.34437561e-01 1.77890778e-01
7.04293609e-01 -3.14656675e-01 -9.64468777e-01 5.80983937e-01
2.55083665e-02 -9.21178222e-01 7.13425756e-01 -7.56361365e-01
2.11038947e-01 -2.75694251e-01 4.22409177e-02 -1.47884500e+00
3.61483954e-02 -7.47627735e-01 -4.37169880e-01 1.44536328e+00
3.47309023e-01 -6.52684867e-01 1.03691995e+00 3.07222366e-01
-1.28075287e-01 -1.00039840e+00 -1.08361411e+00 -1.05092442e+00
2.25735381e-01 -5.63150585e-01 7.66245484e-01 6.85959399e-01
-9.10987183e-02 3.54574062e-02 -4.87336069e-01 -1.04829259e-01
4.11540985e-01 2.89894313e-01 9.81962383e-01 -8.74688983e-01
-4.86944765e-01 -5.51238060e-01 2.41845831e-01 -1.48004687e+00
6.54779598e-02 -7.25089014e-01 6.66232035e-02 -1.48249054e+00
-1.99417681e-01 -1.33766139e+00 -4.85205263e-01 6.98919535e-01
-1.51728570e-01 -3.26870263e-01 2.74592727e-01 1.37200460e-01
-4.12235707e-01 1.00334179e+00 1.53133154e+00 4.43482436e-02
-6.46003246e-01 3.07879508e-01 -6.59375250e-01 3.97040695e-01
9.92143452e-01 -4.96060342e-01 -8.23725760e-01 1.08271122e-01
2.68015992e-02 4.10541862e-01 7.31867701e-02 -9.43784058e-01
-1.83166876e-01 -6.55654252e-01 -4.57693636e-03 -6.38937175e-01
1.15717269e-01 -8.07099640e-01 -4.19646591e-01 7.24315524e-01
-4.72913086e-01 -4.96494435e-02 3.32263052e-01 9.72356200e-01
-1.65222421e-01 1.59808666e-01 8.96918237e-01 2.46885978e-02
-7.39146709e-01 5.37212729e-01 -5.26092231e-01 4.44208682e-01
1.12421215e+00 4.44950610e-02 -3.54654700e-01 -3.80675405e-01
-6.09236479e-01 7.42022455e-01 2.83521920e-01 4.14597303e-01
3.58052284e-01 -1.26322937e+00 -4.61384118e-01 2.42709920e-01
1.51651457e-01 8.65811557e-02 -1.72144845e-01 8.03853631e-01
9.55200568e-03 4.19582605e-01 7.75962789e-03 -4.82576340e-01
-7.40705371e-01 6.37417495e-01 3.37436497e-01 -7.81011820e-01
-4.72415954e-01 1.99424341e-01 -2.95569122e-01 -4.62166518e-01
2.69530505e-01 -3.36995631e-01 -2.89624542e-01 -1.66862272e-02
9.86605957e-02 3.12593788e-01 -1.08202942e-01 -1.96522903e-02
-7.50819817e-02 -1.59734026e-01 8.29484612e-02 -2.46180579e-01
1.36904526e+00 -6.26584962e-02 4.96116251e-01 2.64143497e-01
7.11105645e-01 -2.29139522e-01 -1.66033554e+00 -4.01749283e-01
1.37718897e-02 -3.28675807e-01 9.79152098e-02 -1.04002261e+00
-1.16482019e+00 5.49888790e-01 6.14582360e-01 2.42980853e-01
1.19160771e+00 -3.10513377e-01 7.58886933e-01 3.17024767e-01
5.70349276e-01 -1.53195226e+00 6.56842738e-02 4.50901687e-01
5.26595116e-01 -1.39847040e+00 -1.12317309e-01 6.72146305e-02
-7.02408075e-01 7.84624219e-01 1.01829779e+00 1.29352331e-01
5.75962603e-01 1.78468779e-01 -5.19729443e-02 1.19368330e-01
-1.00158441e+00 -3.78538787e-01 -1.55422404e-01 5.52783787e-01
-1.16181877e-02 3.03531457e-02 -5.47169924e-01 1.74322695e-01
1.10232830e-01 2.11327955e-01 3.95104915e-01 1.15972269e+00
-3.19838673e-01 -1.57050049e+00 -2.19020173e-01 7.31686771e-01
-1.99776620e-01 1.09550692e-01 1.18158542e-01 9.78192627e-01
1.05604485e-01 1.06004131e+00 -9.61388946e-02 -1.40229091e-01
3.08171511e-01 -7.98794404e-02 2.04730988e-01 -4.07063872e-01
-5.84395707e-01 2.34607637e-01 3.86659324e-01 -6.69265211e-01
-3.37385178e-01 -7.43140578e-01 -1.39526534e+00 -3.19699138e-01
-2.86394238e-01 2.02865019e-01 3.76990229e-01 1.02275050e+00
5.07566869e-01 6.77231908e-01 9.11739767e-01 -3.31248701e-01
-1.10241592e+00 -8.68765473e-01 -5.30181885e-01 4.87066627e-01
2.20705450e-01 -8.42840672e-01 7.36921728e-02 -4.90429550e-01] | [4.064946174621582, 2.1746792793273926] |
2367bd51-9fa8-4812-8411-173dc14670b5 | uadam-unified-adam-type-algorithmic-framework | 2305.05675 | null | https://arxiv.org/abs/2305.05675v1 | https://arxiv.org/pdf/2305.05675v1.pdf | UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic Optimization | Adam-type algorithms have become a preferred choice for optimisation in the deep learning setting, however, despite success, their convergence is still not well understood. To this end, we introduce a unified framework for Adam-type algorithms (called UAdam). This is equipped with a general form of the second-order moment, which makes it possible to include Adam and its variants as special cases, such as NAdam, AMSGrad, AdaBound, AdaFom, and Adan. This is supported by a rigorous convergence analysis of UAdam in the non-convex stochastic setting, showing that UAdam converges to the neighborhood of stationary points with the rate of $\mathcal{O}(1/T)$. Furthermore, the size of neighborhood decreases as $\beta$ increases. Importantly, our analysis only requires the first-order momentum factor to be close enough to 1, without any restrictions on the second-order momentum factor. Theoretical results also show that vanilla Adam can converge by selecting appropriate hyperparameters, which provides a theoretical guarantee for the analysis, applications, and further developments of the whole class of Adam-type algorithms. | ['Danilo P. Mandic', 'Dongpo Xu', 'Jinlan Liu', 'Yiming Jiang'] | 2023-05-09 | null | null | null | null | ['stochastic-optimization', 'type'] | ['methodology', 'speech'] | [-5.36787271e-01 1.24453388e-01 -9.57925245e-03 -1.39354527e-01
-6.46191955e-01 -3.44439417e-01 2.97890902e-01 3.07426274e-01
-7.74615049e-01 8.96889031e-01 -1.71031207e-01 -2.37255186e-01
-3.75802577e-01 -6.69554710e-01 -9.59917784e-01 -1.21909869e+00
-3.15155506e-01 4.12349552e-01 2.59751175e-02 -3.82804781e-01
9.62226316e-02 3.93308818e-01 -1.01333332e+00 -5.64822793e-01
1.10960436e+00 1.20262957e+00 -2.16479838e-01 5.56994975e-01
2.02487987e-02 3.34184557e-01 -2.97706038e-01 -6.17430925e-01
6.43046081e-01 -5.39328039e-01 -6.16223037e-01 -1.46357819e-01
1.90498233e-01 -2.76638091e-01 -1.83079004e-01 1.29452622e+00
5.09201229e-01 7.17823625e-01 3.79438460e-01 -1.08671832e+00
-1.45703882e-01 5.52520216e-01 -6.26255572e-01 2.88376987e-01
-2.66896188e-01 4.44298610e-02 1.07462943e+00 -9.15054858e-01
4.09942150e-01 9.07155097e-01 7.73683369e-01 5.24038553e-01
-9.33641911e-01 -4.23577249e-01 4.11521375e-01 3.37241474e-03
-1.07980132e+00 -5.23542017e-02 5.74650884e-01 -3.15212131e-01
4.48778808e-01 3.23741585e-01 8.64378810e-01 6.86688662e-01
1.06575809e-01 1.06750882e+00 8.02320004e-01 -3.96869272e-01
5.50336063e-01 -7.16693327e-02 1.27176672e-01 7.77113199e-01
3.73317897e-01 -8.77930149e-02 -3.11691046e-01 -2.89646029e-01
7.59265721e-01 -1.22404605e-01 -4.58738923e-01 -5.62382996e-01
-1.06195366e+00 1.22271144e+00 3.48942369e-01 2.49838889e-01
-4.26671684e-01 2.69343495e-01 3.95875067e-01 1.58089966e-01
8.29977334e-01 4.10315037e-01 -3.61585408e-01 -3.98235440e-01
-8.63599241e-01 5.26185393e-01 8.14761579e-01 6.96063042e-01
3.94334406e-01 1.16024777e-01 4.21610177e-02 6.37758195e-01
2.12985575e-01 4.46699798e-01 4.12978590e-01 -8.68443727e-01
5.96275806e-01 1.92319736e-01 3.18625361e-01 -9.30037737e-01
-6.20061278e-01 -8.52682114e-01 -1.12036872e+00 1.72430202e-01
8.25016677e-01 -2.50301450e-01 -3.20357412e-01 1.91892219e+00
6.35478079e-01 1.62081644e-01 -1.12186827e-01 1.07027626e+00
-5.09365872e-02 6.86970234e-01 -4.00756508e-01 -4.11972851e-01
8.14543605e-01 -8.94703865e-01 -4.58265245e-01 3.63381281e-02
6.54485822e-01 -2.84820169e-01 1.14645898e+00 5.62519312e-01
-1.19790530e+00 -6.15591668e-02 -9.55914319e-01 2.06028730e-01
4.02558222e-02 8.20375234e-03 6.30769730e-01 5.28204322e-01
-9.56018865e-01 8.14420104e-01 -1.14834189e+00 4.89794947e-02
5.01296639e-01 3.41166586e-01 -5.72012737e-02 3.91104221e-01
-1.00935304e+00 7.52455711e-01 4.03078675e-01 4.96094644e-01
-6.75001383e-01 -7.84625709e-01 -6.54830456e-01 4.39498797e-02
3.02267104e-01 -5.00461578e-01 1.27106297e+00 -8.44419956e-01
-1.75089228e+00 5.66173613e-01 -1.36430874e-01 -9.23681378e-01
1.28948867e+00 -5.39255977e-01 3.51816624e-01 8.24272111e-02
-9.64903682e-02 4.53661382e-02 9.88537669e-01 -8.05286229e-01
-6.15321457e-01 -5.17485082e-01 3.15090895e-01 2.32557163e-01
-5.36460161e-01 -1.99589387e-01 -1.01064384e-01 -6.26090109e-01
4.18102480e-02 -8.80304396e-01 -5.06921351e-01 1.71064302e-01
-1.29742160e-01 -2.60937929e-01 1.63097501e-01 -4.13237810e-01
1.05717051e+00 -2.19663048e+00 3.86671245e-01 2.93553859e-01
3.32049787e-01 2.78409392e-01 1.53471157e-01 2.75225192e-01
4.52197529e-02 1.49243951e-01 -4.96819556e-01 -4.31358635e-01
1.31860480e-01 6.01546802e-02 -4.30778921e-01 1.00043297e+00
-1.08521350e-01 6.66584611e-01 -1.06201398e+00 -1.45894304e-01
9.67867300e-02 3.36035073e-01 -6.79812551e-01 -2.11039737e-01
-1.92309931e-01 3.37287396e-01 -7.55663097e-01 9.97530296e-02
7.27426231e-01 -2.41693243e-01 5.17167896e-03 2.29296505e-01
-1.97076008e-01 1.59907341e-01 -1.40723515e+00 1.36661541e+00
-6.15495563e-01 5.40148437e-01 5.47302186e-01 -1.36661541e+00
6.54378891e-01 1.13808550e-01 5.93436301e-01 -3.67681175e-01
2.55568504e-01 4.89590675e-01 -1.98702648e-01 -1.77172899e-01
1.66403815e-01 -4.17535990e-01 2.73337930e-01 4.94967848e-01
-2.57131308e-01 2.13782445e-01 4.81914967e-01 3.24456915e-02
7.52679348e-01 -1.31781220e-01 1.60134703e-01 -5.82300305e-01
5.80077410e-01 -1.23751879e-01 5.67195892e-01 7.82611668e-01
-2.54352331e-01 3.82563263e-01 6.94148123e-01 -5.50872862e-01
-1.08723295e+00 -8.90378833e-01 -4.60543275e-01 9.84056056e-01
2.15144828e-01 -1.46080539e-01 -8.73740256e-01 -6.20323420e-01
8.30541477e-02 4.94018614e-01 -7.80426443e-01 -1.69644311e-01
-8.15404177e-01 -1.11331320e+00 2.16272935e-01 4.55015451e-01
4.96531695e-01 -7.67542720e-01 -7.74265528e-01 2.23054722e-01
2.76568942e-02 -8.55842292e-01 -6.39626682e-01 2.18157515e-01
-1.18807995e+00 -1.11586308e+00 -1.13076830e+00 -4.36875582e-01
5.68012297e-01 -1.30593538e-01 8.00708055e-01 1.10489978e-04
2.31699690e-01 2.17684612e-01 -3.25243741e-01 -4.01478499e-01
-1.96617037e-01 3.07785362e-01 3.75577718e-01 2.97390968e-01
-1.53479829e-01 -5.45869529e-01 -7.04243422e-01 2.11492464e-01
-7.71191478e-01 -1.91397890e-01 3.40683490e-01 9.19180751e-01
6.39089227e-01 -1.54826632e-02 3.39859962e-01 -4.78163749e-01
6.88537836e-01 -4.16738212e-01 -1.05547631e+00 -7.79551268e-02
-5.58617949e-01 2.74740845e-01 1.07597375e+00 -5.55540681e-01
-6.16406083e-01 -2.51181990e-01 -2.50803620e-01 -3.86736751e-01
4.92361069e-01 5.39450765e-01 1.17107831e-01 -1.84212163e-01
4.20827895e-01 3.34450126e-01 1.77748471e-01 -6.43729270e-01
2.92930245e-01 3.03975433e-01 4.30300087e-01 -6.61185801e-01
7.80811667e-01 8.15719247e-01 1.29530281e-01 -9.28900242e-01
-1.13409185e+00 -2.32876539e-01 -4.42176312e-01 -1.89618662e-01
5.41954875e-01 -6.10191584e-01 -1.07350302e+00 3.33614558e-01
-1.01546431e+00 -4.42945868e-01 -4.72398162e-01 6.16125464e-01
-6.56611323e-01 3.60385001e-01 -5.94108641e-01 -1.15700543e+00
-5.39000332e-01 -1.05988669e+00 4.82695550e-01 2.07980603e-01
1.63922265e-01 -1.30778420e+00 1.76596828e-02 1.63224205e-01
4.14258629e-01 4.10392225e-01 6.53725803e-01 -8.01301301e-01
-1.29987955e-01 -2.45214060e-01 7.57937506e-02 6.30216420e-01
-3.47931504e-01 -1.22439563e-01 -3.77169609e-01 -3.98992091e-01
5.70180058e-01 -1.19776127e-03 8.71922374e-01 6.30434513e-01
1.11329556e+00 -5.59749961e-01 -7.64724240e-02 8.42015147e-01
1.29756606e+00 -2.03584395e-02 1.56180739e-01 6.23803198e-01
4.66332495e-01 1.36129409e-01 4.74631846e-01 6.64504647e-01
8.34244862e-02 6.20923340e-01 7.44119942e-01 1.22237138e-01
5.94706476e-01 5.69773428e-02 3.66213143e-01 8.43763471e-01
-1.66353822e-01 1.53817637e-02 -7.49311924e-01 4.85477805e-01
-2.01168013e+00 -7.10613012e-01 -2.43828341e-01 2.50382233e+00
9.77938294e-01 1.22554794e-01 3.89380813e-01 1.76919773e-01
6.31514907e-01 1.76483780e-01 -8.35025489e-01 -5.30339420e-01
-1.66652650e-01 4.86285597e-01 7.15134025e-01 5.78664780e-01
-1.19429958e+00 5.72069049e-01 6.28348541e+00 1.00666058e+00
-1.02823901e+00 2.19627932e-01 6.20197237e-01 -3.78967017e-01
-6.66093677e-02 -1.97251678e-01 -7.01765776e-01 7.40028799e-01
6.16442323e-01 -3.14152718e-01 5.02569139e-01 1.23170078e+00
4.40918207e-01 1.89541117e-03 -8.45053792e-01 9.11483169e-01
-1.66782588e-01 -1.32786238e+00 -3.34639966e-01 3.64594042e-01
7.87336528e-01 2.93126274e-02 6.71978220e-02 1.27020657e-01
2.90573388e-01 -8.26752901e-01 8.22375476e-01 1.13975398e-01
2.72032142e-01 -1.10693693e+00 8.42288792e-01 4.60471600e-01
-8.03279579e-01 -2.38080904e-01 -5.70613801e-01 -9.74350795e-02
3.05140972e-01 9.56947684e-01 -2.34249622e-01 5.77268898e-01
4.93449211e-01 5.62168419e-01 1.38748605e-02 1.23165214e+00
-7.71579966e-02 6.62661970e-01 -8.54768813e-01 -2.98443168e-01
6.05890155e-01 -7.52058089e-01 8.62592101e-01 7.96237171e-01
2.87938833e-01 1.18738480e-01 7.37800747e-02 5.93698740e-01
-2.59551316e-01 3.19564551e-01 8.45813304e-02 1.07584946e-01
1.67208284e-01 1.05262101e+00 -6.40496731e-01 -7.11400881e-02
-6.96699396e-02 7.50444412e-01 3.14321876e-01 1.85007960e-01
-9.50011373e-01 -3.24713022e-01 1.02097893e+00 3.75943966e-02
3.85546297e-01 -5.20581424e-01 -2.99150765e-01 -1.17576635e+00
6.22600853e-01 -8.17341745e-01 3.79349738e-01 2.01290827e-02
-1.17035484e+00 3.64937514e-01 -6.12025894e-02 -9.43011820e-01
-1.49738248e-02 -6.54783487e-01 -6.75450504e-01 5.44784129e-01
-1.17887235e+00 -4.30805832e-01 2.56880391e-02 4.57550794e-01
3.70754451e-01 5.02854958e-02 3.39637518e-01 2.73287833e-01
-8.93511772e-01 7.27130473e-01 7.30030119e-01 2.03128219e-01
2.01046541e-01 -1.30725253e+00 1.48131624e-01 8.99929881e-01
1.13860935e-01 5.03382564e-01 1.01427639e+00 -1.56840265e-01
-1.42281199e+00 -7.77049720e-01 4.34163243e-01 -2.75273412e-01
9.61800575e-01 -2.69354075e-01 -8.27916980e-01 4.29696620e-01
-2.67374665e-01 1.84043512e-01 3.14205617e-01 9.85894576e-02
1.39857501e-01 -2.97562391e-01 -9.73462105e-01 6.60425603e-01
8.52134287e-01 -3.85741331e-02 -1.80056751e-01 5.25374353e-01
5.36934078e-01 -6.70774639e-01 -9.08843815e-01 2.41745010e-01
3.62646580e-01 -9.77780938e-01 8.02093506e-01 -8.16596448e-01
2.71241277e-01 1.12799164e-02 -9.93376132e-04 -1.18418443e+00
1.54773295e-01 -1.06634247e+00 -6.05749607e-01 7.64650822e-01
3.64567518e-01 -1.04791117e+00 7.49522328e-01 5.20316720e-01
-5.40327504e-02 -1.43007243e+00 -1.38761520e+00 -1.05410028e+00
6.98840797e-01 -5.01102388e-01 2.58690447e-01 6.89455092e-01
-7.40906522e-02 -2.11004287e-01 -3.90988410e-01 5.05280010e-02
6.39975429e-01 -6.13406813e-03 6.33861840e-01 -1.03255320e+00
-4.71993595e-01 -8.57280791e-01 -3.96870852e-01 -1.27886033e+00
1.59078628e-01 -7.68813133e-01 -8.65780041e-02 -1.18001413e+00
-4.97922115e-02 -6.64833903e-01 -2.30999112e-01 1.27308086e-01
-1.28159434e-01 9.46599711e-03 2.38011181e-01 2.25271389e-01
-4.50633198e-01 1.09238386e+00 1.24174178e+00 1.06247209e-01
-4.16614294e-01 3.82147819e-01 -5.08240998e-01 8.78717065e-01
8.33835542e-01 -4.24441785e-01 -1.61288664e-01 -4.68610525e-01
6.13449693e-01 -1.74891621e-01 2.52938151e-01 -8.19932938e-01
8.26632418e-03 -1.69880152e-01 -5.88992722e-02 -1.95528045e-01
2.84340918e-01 -3.32955539e-01 -3.31438273e-01 4.54965383e-01
-4.22813892e-01 1.09947912e-01 1.32814944e-02 5.54828286e-01
-6.08643256e-02 -3.97933036e-01 1.06171310e+00 1.43752024e-01
4.29753065e-02 5.36721826e-01 -2.40254208e-01 6.21820092e-01
9.21892226e-01 1.99455898e-02 1.83524624e-01 -5.16331732e-01
-6.93016410e-01 3.65872085e-01 2.29937866e-01 3.37601895e-03
3.54640633e-01 -1.25481725e+00 -7.25220382e-01 -5.64049743e-02
-5.10806859e-01 4.53894526e-01 1.59415260e-01 1.46788859e+00
-6.23506844e-01 1.79370627e-01 3.61285269e-01 -5.12812316e-01
-7.05852091e-01 2.57714063e-01 6.20365560e-01 -3.42114955e-01
-8.99453282e-01 9.45534110e-01 2.87159141e-02 -1.97106779e-01
3.24965537e-01 -4.31804031e-01 2.57890880e-01 -5.96348308e-02
6.06364548e-01 5.77876806e-01 6.72142953e-02 -3.47973645e-01
-3.73682737e-01 4.63720083e-01 1.70276240e-02 -2.36903831e-01
1.45296800e+00 4.23438884e-02 -1.27863213e-01 3.83702874e-01
1.28863502e+00 -4.66507301e-02 -1.47503889e+00 -2.95424629e-02
-9.09673348e-02 -2.12542742e-01 -8.10725093e-02 -1.10631362e-01
-1.30420792e+00 9.20608699e-01 3.43240798e-01 2.70912379e-01
9.82106686e-01 -1.60463423e-01 9.03922558e-01 4.06938612e-01
4.06486988e-01 -1.19522095e+00 -1.76874042e-01 6.96935833e-01
8.70144844e-01 -9.79942441e-01 -1.46236047e-02 6.48486838e-02
-4.12179559e-01 1.16748393e+00 2.86706060e-01 -4.48969126e-01
7.92922199e-01 -6.91759810e-02 -2.64646083e-01 1.91501617e-01
-4.72002476e-01 -3.34912576e-02 6.80596083e-02 1.28335401e-01
2.64860451e-01 -2.40173992e-02 -7.56481349e-01 5.14822781e-01
-4.59532142e-01 -3.44151378e-01 3.42327684e-01 5.87289393e-01
-3.79713833e-01 -8.66630793e-01 -1.93692371e-01 3.64900142e-01
-7.15906858e-01 -3.44734341e-02 1.55041693e-02 9.78457272e-01
-2.88953185e-01 5.76586783e-01 -5.78791723e-02 1.40052453e-01
1.35495037e-01 -1.08466677e-01 4.86670822e-01 -9.49141905e-02
-4.60818559e-01 -1.81895331e-01 -3.43845427e-01 -4.95189190e-01
-1.65173173e-01 -6.68855190e-01 -1.26541018e+00 -4.36172217e-01
-3.42424035e-01 4.88804430e-01 6.78539872e-01 1.25632310e+00
1.57458559e-01 -6.70393333e-02 6.34523332e-01 -8.10578227e-01
-1.20045447e+00 -7.39497840e-01 -5.79191029e-01 7.19333217e-02
4.69355404e-01 -6.32470489e-01 -7.76235461e-01 -4.74344790e-01] | [7.156538009643555, 4.0512261390686035] |
2d7ae4c2-4cfd-4029-a68b-c9cb73feea6e | fusing-structure-from-motion-and-simulation | 2304.0725 | null | https://arxiv.org/abs/2304.07250v1 | https://arxiv.org/pdf/2304.07250v1.pdf | Fusing Structure from Motion and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments | The localization of objects is a crucial task in various applications such as robotics, virtual and augmented reality, and the transportation of goods in warehouses. Recent advances in deep learning have enabled the localization using monocular visual cameras. While structure from motion (SfM) predicts the absolute pose from a point cloud, absolute pose regression (APR) methods learn a semantic understanding of the environment through neural networks. However, both fields face challenges caused by the environment such as motion blur, lighting changes, repetitive patterns, and feature-less structures. This study aims to address these challenges by incorporating additional information and regularizing the absolute pose using relative pose regression (RPR) methods. The optical flow between consecutive images is computed using the Lucas-Kanade algorithm, and the relative pose is predicted using an auxiliary small recurrent convolutional network. The fusion of absolute and relative poses is a complex task due to the mismatch between the global and local coordinate systems. State-of-the-art methods fusing absolute and relative poses use pose graph optimization (PGO) to regularize the absolute pose predictions using relative poses. In this work, we propose recurrent fusion networks to optimally align absolute and relative pose predictions to improve the absolute pose prediction. We evaluate eight different recurrent units and construct a simulation environment to pre-train the APR and RPR networks for better generalized training. Additionally, we record a large database of different scenarios in a challenging large-scale indoor environment that mimics a warehouse with transportation robots. We conduct hyperparameter searches and experiments to show the effectiveness of our recurrent fusion method compared to PGO. | ['Christopher Mutschler', 'Bernd Bischl', 'David Rügamer', 'Lucas Heublein', 'Felix Ott'] | 2023-04-14 | null | null | null | null | ['pose-prediction'] | ['computer-vision'] | [-3.88645977e-02 -3.83529186e-01 1.27600849e-01 -4.69610244e-01
-3.36591214e-01 -5.22441745e-01 6.91708267e-01 -2.33922809e-01
-3.67573589e-01 4.14930761e-01 2.06250343e-02 4.10531498e-02
-7.03267083e-02 -6.66676044e-01 -1.21733487e+00 -6.75898433e-01
-6.32373169e-02 4.51587975e-01 1.55020371e-01 -4.09414619e-01
1.95540145e-01 9.61118877e-01 -1.32564461e+00 -1.99846461e-01
6.17727637e-01 9.77837503e-01 6.00770414e-01 6.43101990e-01
7.35117868e-02 6.69709980e-01 -5.30310154e-01 1.13659218e-01
5.99890947e-01 -4.78198268e-02 -3.79101753e-01 1.12860635e-01
4.94032562e-01 -1.89816713e-01 -6.55234694e-01 9.80542719e-01
4.10641313e-01 4.18371230e-01 2.39631221e-01 -1.38441014e+00
-7.49786377e-01 1.09317645e-01 -4.46448416e-01 -1.68227091e-01
6.20021343e-01 2.98555374e-01 4.34102386e-01 -8.36721003e-01
7.23829806e-01 1.31957150e+00 8.26236963e-01 1.51700184e-01
-9.78920698e-01 -6.04607999e-01 3.62041771e-01 2.28901193e-01
-1.60459208e+00 -1.70369893e-01 1.01882589e+00 -2.75859624e-01
1.06336212e+00 -4.24078926e-02 6.37911975e-01 1.09751499e+00
5.44997334e-01 5.66885889e-01 5.08107007e-01 -5.89985885e-02
2.90532112e-02 -2.91934669e-01 -2.57035404e-01 8.39651823e-01
2.75942624e-01 1.25904083e-01 -4.20407474e-01 3.01343083e-01
1.17250919e+00 4.99996930e-01 -4.22493696e-01 -1.02572072e+00
-1.55982590e+00 5.96796155e-01 1.11736619e+00 -1.18995681e-02
-3.76083672e-01 4.95956987e-01 -1.78096183e-02 -5.50510436e-02
7.51526877e-02 5.83362818e-01 -6.60470247e-01 8.45907629e-02
-3.09075385e-01 8.01205710e-02 7.44478881e-01 1.34331334e+00
1.04884911e+00 7.63635933e-02 2.39750937e-01 3.84223998e-01
5.85989714e-01 6.66314781e-01 5.66196263e-01 -1.17250228e+00
7.45534420e-01 6.60332322e-01 3.51996303e-01 -1.52388453e+00
-8.85056317e-01 -4.74550933e-01 -9.75601494e-01 1.00901179e-01
2.18069449e-01 9.68135055e-03 -9.78641510e-01 1.65881908e+00
3.15447003e-01 4.94150907e-01 2.01904774e-02 1.22169864e+00
6.06705070e-01 6.88930690e-01 -3.41548175e-01 1.18147992e-01
8.78011167e-01 -1.08913374e+00 -8.00606370e-01 -5.06589472e-01
7.98023343e-01 -7.40610421e-01 6.06010020e-01 5.13005182e-02
-5.81396639e-01 -7.97532678e-01 -1.23610759e+00 -2.37849846e-01
-5.94692826e-01 3.44324112e-01 5.64271390e-01 7.11838827e-02
-8.72310340e-01 5.76966405e-01 -1.17537916e+00 -4.97099489e-01
-6.87607229e-02 6.21159315e-01 -7.51622856e-01 -2.72965521e-01
-8.90954852e-01 1.07452834e+00 2.34509096e-01 7.41112471e-01
-5.32071888e-01 -5.60502350e-01 -1.44396067e+00 -1.65214077e-01
3.25620890e-01 -8.04806530e-01 8.68949175e-01 -6.24888301e-01
-1.69233143e+00 3.46393466e-01 -9.63224471e-02 -4.24693167e-01
4.68280494e-01 -7.05520272e-01 -5.02775684e-02 -2.63116121e-01
1.45470858e-01 7.28466868e-01 4.72928017e-01 -1.40781736e+00
-4.28636372e-01 -4.96264815e-01 2.71921158e-02 5.01329064e-01
5.05764723e-01 -5.11500716e-01 -4.71276760e-01 -3.59100789e-01
7.81363428e-01 -1.14326549e+00 -4.37531292e-01 1.17056459e-01
-1.86009169e-01 6.99796006e-02 1.05932355e+00 -5.04820645e-01
4.49015588e-01 -1.97876823e+00 3.58426720e-01 -9.48047191e-02
-7.59201273e-02 -3.44664007e-02 -2.80077368e-01 5.85981160e-02
-3.35914642e-02 -3.56013179e-01 2.78705209e-01 -6.15706563e-01
8.81346781e-03 5.99271417e-01 -2.42349774e-01 8.45323980e-01
1.46297172e-01 1.16020942e+00 -9.56995189e-01 -8.62133205e-02
7.49542713e-01 7.88976967e-01 -3.23634118e-01 3.11244786e-01
-9.70700607e-02 7.08752036e-01 -2.77796566e-01 5.45692980e-01
6.61548615e-01 -2.24017307e-01 -1.32841051e-01 -6.72020495e-01
-1.96511269e-01 2.00652987e-01 -1.49946928e+00 2.28640008e+00
-5.65582871e-01 5.97539842e-01 2.00088695e-02 -8.00528288e-01
1.18301857e+00 -9.97862816e-02 5.78356564e-01 -7.44774461e-01
3.43680143e-01 -2.61351503e-02 -4.14826781e-01 -2.88466722e-01
8.28586876e-01 3.64724636e-01 -6.48663193e-02 -1.33403897e-01
7.46614859e-02 -2.69800603e-01 -1.46982253e-01 -1.20230071e-01
9.07544672e-01 8.35083187e-01 2.30408534e-01 3.11945409e-01
4.72576946e-01 -9.39501598e-02 7.17312396e-01 4.36929524e-01
-1.51127815e-01 1.01982570e+00 -8.14297870e-02 -8.70802224e-01
-8.28946471e-01 -1.06949914e+00 3.75943363e-01 6.05340183e-01
8.86244178e-01 -2.19927371e-01 -1.61611035e-01 -4.29859757e-01
5.01910448e-02 4.76627171e-01 -3.92851233e-01 -3.17435324e-01
-1.02992427e+00 -5.68582416e-01 -3.10937893e-02 8.07707667e-01
8.24058652e-01 -6.60639822e-01 -7.37206519e-01 1.86374798e-01
-2.84618497e-01 -1.48598611e+00 -4.68306005e-01 1.97787955e-01
-5.29844284e-01 -1.06093001e+00 -4.04250145e-01 -7.79426038e-01
6.59983695e-01 6.70397997e-01 7.33639240e-01 -2.67639488e-01
-8.81335959e-02 2.85462052e-01 -2.70053923e-01 -1.61727145e-01
-9.72362757e-02 8.16975608e-02 4.17600989e-01 -7.55178854e-02
1.77004695e-01 -4.28490967e-01 -5.57131469e-01 6.72198892e-01
-5.10653496e-01 2.18879893e-01 6.59523904e-01 5.30761659e-01
7.42677629e-01 -3.04956228e-01 -4.71461862e-02 -1.64811939e-01
1.36256635e-01 -3.22293073e-01 -9.73728120e-01 1.47990838e-01
-1.47708073e-01 9.13849026e-02 4.66052353e-01 -5.01479387e-01
-8.85711372e-01 6.95752442e-01 1.39023989e-01 -8.26407671e-01
-2.48514146e-01 3.91287506e-01 -2.40031987e-01 -2.86607623e-01
5.05179703e-01 -5.48737831e-02 3.01946905e-02 -3.75546873e-01
3.38368267e-01 2.07586899e-01 7.81191289e-01 -2.87122995e-01
9.11987126e-01 3.86354119e-01 2.87780046e-01 -4.77877289e-01
-7.01471210e-01 -4.64216560e-01 -9.96765494e-01 -2.29410142e-01
8.38958919e-01 -1.04169416e+00 -1.02599227e+00 3.72886807e-01
-1.58141327e+00 -2.88126558e-01 -7.31573105e-02 8.06420565e-01
-6.85001314e-01 3.16133738e-01 -3.65182996e-01 -4.56392884e-01
-9.56243202e-02 -1.44722509e+00 1.41138601e+00 2.45601490e-01
-6.76793978e-02 -7.01697707e-01 1.21704536e-02 7.52975643e-02
1.68747813e-01 4.80900884e-01 1.94736123e-01 -2.46739134e-01
-1.10845315e+00 -2.81806529e-01 -1.05097897e-01 -3.90981883e-02
4.02161926e-01 -1.26511067e-01 -5.20050228e-01 -3.04860234e-01
5.28888591e-02 1.35572910e-01 4.62909907e-01 4.72642809e-01
7.15972066e-01 -4.35483381e-02 -4.74746794e-01 1.11613929e+00
1.35730529e+00 1.93632096e-01 4.24111992e-01 6.34828269e-01
1.30404639e+00 3.91711384e-01 7.45474517e-01 2.71749049e-01
6.70731246e-01 7.86900818e-01 8.98094714e-01 1.55620888e-01
-3.68233360e-02 -3.69818836e-01 3.20780814e-01 7.76516378e-01
6.88876063e-02 -1.44842952e-01 -9.25069094e-01 2.84732878e-01
-2.26673293e+00 -4.74923760e-01 7.23378435e-02 2.11973953e+00
2.31508076e-01 -5.62484786e-02 -5.05490959e-01 -1.83836907e-01
6.80230021e-01 6.83196411e-02 -5.93027771e-01 1.52920514e-01
-8.97195935e-02 -4.39645261e-01 8.45378935e-01 6.45621061e-01
-1.14456928e+00 1.01031220e+00 5.35359383e+00 3.14226225e-02
-1.45998168e+00 -2.01423302e-01 1.96598098e-01 5.38715385e-02
2.53039509e-01 -1.95418745e-01 -8.74599934e-01 2.09000587e-01
6.43871248e-01 3.01475465e-01 5.46021283e-01 8.84660244e-01
3.46380286e-02 -8.53908807e-02 -1.23798144e+00 1.24490237e+00
2.39318252e-01 -1.28196800e+00 -9.83025804e-02 -1.06783144e-01
7.61959076e-01 4.76941854e-01 2.45152246e-02 1.87604249e-01
3.89955729e-01 -9.17097867e-01 8.46828640e-01 6.80093765e-01
4.15743798e-01 -5.31554222e-01 9.79098022e-01 5.04471183e-01
-1.39569020e+00 -1.77878082e-01 -3.90079141e-01 -2.15081766e-01
2.88759589e-01 1.40689999e-01 -9.54366267e-01 8.59891295e-01
7.54992068e-01 9.98073578e-01 -4.66415256e-01 8.92790198e-01
-1.74487591e-01 -4.15165931e-01 -7.40505755e-01 -1.65685341e-02
2.23429143e-01 -2.81147450e-01 3.64413857e-01 7.13967204e-01
5.53838730e-01 -4.04627323e-02 3.94785613e-01 8.94391119e-01
9.41835269e-02 -4.13537323e-01 -7.32727230e-01 3.75588387e-01
3.27418000e-01 1.28226376e+00 -7.00474977e-01 9.03904885e-02
-3.35174531e-01 9.14981186e-01 2.78017551e-01 5.92087567e-01
-8.42815280e-01 -1.32005677e-01 8.77933502e-01 -2.33207747e-01
3.03935826e-01 -9.39932287e-01 -1.94009259e-01 -1.28757966e+00
1.41409263e-01 -2.51918405e-01 -1.31528005e-01 -1.30818844e+00
-9.00009990e-01 4.82399613e-01 -5.80209568e-02 -1.43314767e+00
-3.97223264e-01 -8.06728601e-01 -2.44813979e-01 8.37599874e-01
-1.49343455e+00 -1.25642800e+00 -7.95379937e-01 3.60448211e-01
6.11973941e-01 1.47625014e-01 5.70775092e-01 7.40917679e-03
-5.02224684e-01 1.35136053e-01 -1.26001984e-01 2.45316386e-01
6.69145882e-01 -9.95337307e-01 6.32609427e-01 7.83198833e-01
3.55545133e-02 6.25316799e-01 8.69053662e-01 -6.60729825e-01
-1.88428962e+00 -1.30722880e+00 5.42100132e-01 -7.40857303e-01
4.75613564e-01 -4.18465436e-01 -7.38307953e-01 1.13007224e+00
-2.68912971e-01 6.40894532e-01 -7.98736587e-02 -3.90597999e-01
-1.59858391e-01 -3.56085330e-01 -9.78992701e-01 5.52494287e-01
1.21044135e+00 -2.92544901e-01 -3.49300325e-01 2.79797554e-01
1.10030019e+00 -1.04939854e+00 -6.97010517e-01 6.80116773e-01
4.58887637e-01 -6.69247687e-01 1.11604548e+00 -1.00972399e-01
-4.58020391e-03 -6.92066729e-01 -4.82454419e-01 -1.53019643e+00
-4.21822399e-01 -6.29170358e-01 -2.84779400e-01 9.06178713e-01
-7.69297555e-02 -6.39697671e-01 8.98371398e-01 5.43942392e-01
-2.98831075e-01 -7.00004160e-01 -8.20120752e-01 -6.29833102e-01
-4.24434632e-01 -3.14325303e-01 9.11977112e-01 7.14890599e-01
-4.79709357e-01 4.66765940e-01 -2.57292747e-01 8.19435477e-01
3.40367049e-01 6.08202368e-02 1.16008270e+00 -1.12725449e+00
1.35278955e-01 -9.32932720e-02 -9.74513769e-01 -1.48937595e+00
3.74373764e-01 -4.84472513e-01 4.20327872e-01 -1.65995991e+00
-4.46060747e-01 -2.31628701e-01 -5.90539910e-02 2.42368728e-01
1.72917679e-01 -3.56642939e-02 3.19824219e-01 9.22893211e-02
-7.61445999e-01 8.70388389e-01 1.19535267e+00 -1.96042135e-01
-3.29727292e-01 -5.58733866e-02 -1.38126820e-01 7.56244183e-01
6.82360411e-01 -6.26793504e-02 -3.64434540e-01 -9.64126289e-01
4.05460566e-01 1.02261513e-01 5.42010963e-01 -1.26484954e+00
6.86031878e-01 -1.42597944e-01 7.78060794e-01 -9.72822368e-01
7.22156048e-01 -1.14801228e+00 3.02019954e-01 3.75662714e-01
7.76564926e-02 6.83204949e-01 4.63504419e-02 6.61231160e-01
-1.37230441e-01 2.22926378e-01 3.57987255e-01 -2.06133574e-01
-1.04338026e+00 4.65959668e-01 6.29219711e-02 -6.24344647e-01
9.79690433e-01 -4.50364411e-01 -3.54995042e-01 -4.39366281e-01
-3.95158172e-01 4.10582632e-01 5.77350438e-01 8.04388106e-01
8.39113057e-01 -1.48141968e+00 -2.15793684e-01 5.12522638e-01
7.26141408e-02 8.64510775e-01 4.98403013e-02 9.00885940e-01
-9.66553509e-01 5.72301626e-01 -2.04759270e-01 -1.12224174e+00
-9.11497891e-01 6.38506234e-01 5.33107281e-01 -6.30086958e-02
-4.94749784e-01 6.77445412e-01 3.22456747e-01 -1.02933061e+00
3.47039461e-01 -5.87694943e-01 -7.53764110e-03 -4.99736667e-01
2.70686805e-01 4.69514370e-01 9.31824595e-02 -1.08817315e+00
-3.43668580e-01 1.04008782e+00 1.62297428e-01 2.20119596e-01
1.33922255e+00 -5.30273438e-01 1.31726284e-02 3.46115917e-01
1.59120309e+00 -4.93535787e-01 -1.65251422e+00 -3.37280214e-01
-1.94921702e-01 -4.61070508e-01 -9.16420594e-02 -3.44679892e-01
-1.16387093e+00 6.99714303e-01 6.82784438e-01 -2.87797093e-01
8.27507555e-01 -2.19772428e-01 6.46827638e-01 8.45662832e-01
7.01037586e-01 -7.80224383e-01 1.77612469e-01 9.52804685e-01
9.73812759e-01 -1.30981660e+00 -1.91019867e-02 -3.99981558e-01
-3.34337503e-01 1.17593575e+00 8.98093462e-01 -3.37909132e-01
5.49630582e-01 2.08667666e-01 2.62639552e-01 -4.22708364e-03
-3.54222625e-01 6.55296147e-02 1.83065385e-01 5.87705672e-01
7.28262067e-02 -1.23128593e-01 4.41905469e-01 1.66614816e-01
-3.28609675e-01 -1.37517229e-01 2.53412664e-01 1.17484260e+00
-1.93862632e-01 -5.88407338e-01 -5.70937037e-01 -1.73998967e-01
1.28194168e-01 4.79854941e-01 -1.19047202e-01 8.27679217e-01
1.82815596e-01 7.56729424e-01 3.89412493e-01 -6.18327022e-01
5.04217029e-01 -3.41581076e-01 5.69516420e-01 -4.26674217e-01
-3.10260326e-01 1.14697022e-02 -3.90782565e-01 -1.07515669e+00
-4.67703432e-01 -5.87285817e-01 -1.47465253e+00 -1.26103774e-01
-3.92183065e-01 -3.02460968e-01 9.96079743e-01 1.10527360e+00
5.25813103e-01 6.40963256e-01 5.02716184e-01 -1.65195370e+00
-4.06076640e-01 -7.62608767e-01 -2.33029127e-01 3.67019653e-01
7.62318671e-01 -8.93165231e-01 -1.67776391e-01 -1.75285682e-01] | [7.709527492523193, -2.165611743927002] |
22a5f63c-b6f7-4aef-b4cc-8b5e62a9e1cf | graph-property-prediction-on-open-graph | 2207.06027 | null | https://arxiv.org/abs/2207.06027v1 | https://arxiv.org/pdf/2207.06027v1.pdf | Graph Property Prediction on Open Graph Benchmark: A Winning Solution by Graph Neural Architecture Search | Aiming at two molecular graph datasets and one protein association subgraph dataset in OGB graph classification task, we design a graph neural network framework for graph classification task by introducing PAS(Pooling Architecture Search). At the same time, we improve it based on the GNN topology design method F2GNN to further design the feature selection and fusion strategies, so as to further improve the performance of the model in the graph property prediction task while overcoming the over smoothing problem of deep GNN training. Finally, a performance breakthrough is achieved on these three datasets, which is significantly better than other methods with fixed aggregate function. It is proved that the NAS method has high generalization ability for multiple tasks and the advantage of our method in processing graph property prediction tasks. | ['Quanming Yao', 'Lanning Wei', 'Huan Zhao', 'Xu Wang'] | 2022-07-13 | null | null | null | null | ['graph-property-prediction'] | ['graphs'] | [ 6.92865774e-02 1.60911262e-01 -3.38145435e-01 -1.62016526e-01
1.11239001e-01 -1.62317380e-01 1.85763091e-01 4.25428480e-01
-6.62921891e-02 7.16112077e-01 -2.06199467e-01 -5.36836624e-01
-5.06406784e-01 -1.31852221e+00 -5.09603322e-01 -8.06643844e-01
-3.44099134e-01 2.93784529e-01 4.60763961e-01 -3.59227747e-01
-5.47638126e-02 7.40681648e-01 -9.53072727e-01 -6.91836551e-02
1.02734065e+00 1.32723534e+00 1.44765988e-01 2.86242425e-01
-7.06209168e-02 7.65638232e-01 -4.62591648e-01 -5.32925606e-01
1.91305667e-01 -6.60637766e-02 -6.77967250e-01 -2.00099409e-01
2.31776357e-01 2.90924579e-01 -8.20445955e-01 1.17564023e+00
6.72571540e-01 3.72376800e-01 5.49752116e-01 -1.19115400e+00
-8.83334935e-01 6.80956244e-01 -4.02508199e-01 1.63565829e-01
1.42816186e-01 4.20207083e-02 1.29294980e+00 -3.62175643e-01
5.84502280e-01 1.15470171e+00 7.33013630e-01 3.05905402e-01
-1.14486861e+00 -6.48007989e-01 3.06730717e-01 4.30607796e-01
-1.31106532e+00 7.96001256e-02 8.20255518e-01 -8.98925811e-02
1.16583848e+00 1.55893490e-01 8.04719090e-01 1.09342933e+00
3.85174006e-01 6.41087592e-01 5.38191020e-01 7.98856616e-02
-1.17517322e-01 -5.05177796e-01 4.29642439e-01 1.22096169e+00
4.64355916e-01 -1.92208812e-01 -4.26018417e-01 -1.19695559e-01
8.96119356e-01 1.76490754e-01 -5.65244675e-01 -2.17950284e-01
-9.31255102e-01 7.25440741e-01 1.10489476e+00 2.28083953e-01
-3.58862907e-01 2.29011491e-01 4.57198501e-01 4.40084845e-01
4.66810107e-01 6.31957889e-01 -5.49030781e-01 5.84685743e-01
-2.37988338e-01 3.02344728e-02 7.21802175e-01 9.88057971e-01
6.59521103e-01 2.52023041e-01 -4.02322441e-01 7.71085382e-01
2.28644058e-01 1.89767107e-01 3.96626830e-01 -1.09253690e-01
4.64366764e-01 1.23085248e+00 -6.50749624e-01 -1.26313603e+00
-1.04746628e+00 -9.23466384e-01 -1.29244888e+00 -3.16963732e-01
2.04245880e-01 3.04242577e-02 -1.17996776e+00 1.64895391e+00
1.68540347e-02 1.68921664e-01 -7.81376567e-03 7.28563726e-01
1.38739562e+00 4.77187097e-01 3.66462976e-01 1.25341818e-01
1.53395045e+00 -1.01094520e+00 -7.08977282e-01 5.83294854e-02
8.86875093e-01 1.15770940e-02 8.70044649e-01 3.31281751e-01
-5.99272966e-01 -5.88037491e-01 -1.35076237e+00 -1.20004222e-01
-6.97182238e-01 5.88626154e-02 1.49172223e+00 3.49174410e-01
-1.00002408e+00 9.27146614e-01 -5.23754179e-01 -3.39135140e-01
7.99452841e-01 6.31723046e-01 -5.86996138e-01 -8.74609500e-02
-1.49468398e+00 6.47800624e-01 8.49922597e-01 2.00439557e-01
-4.41503704e-01 -6.84275389e-01 -8.70574951e-01 4.40948278e-01
3.25795829e-01 -9.76019502e-01 3.49133968e-01 -5.39762855e-01
-1.42253578e+00 4.58140105e-01 2.54669756e-01 -4.91710514e-01
4.36750799e-02 4.17553544e-01 -7.21725345e-01 1.54135257e-01
-3.38148773e-01 4.57414508e-01 4.00898248e-01 -4.84780133e-01
-1.18877858e-01 -5.13689160e-01 1.75941158e-02 1.27560288e-01
-5.17119825e-01 -4.76527810e-01 -5.02933025e-01 -6.91367209e-01
4.08312291e-01 -5.10191321e-01 -4.22733217e-01 -4.40171421e-01
-5.86208105e-01 -6.15785301e-01 6.59169436e-01 -6.49130642e-01
1.30785418e+00 -1.97876990e+00 3.91264796e-01 6.06348574e-01
8.60770166e-01 4.16341394e-01 -4.78140324e-01 3.54735404e-01
-2.35053807e-01 1.37567654e-01 1.96747869e-01 9.66347978e-02
-1.97790623e-01 -1.62203144e-02 -8.29567760e-03 3.69633824e-01
3.22020262e-01 1.51112163e+00 -7.39768267e-01 -2.59305865e-01
-7.27535561e-02 2.66925871e-01 -3.44316959e-01 3.62797379e-02
-4.45381761e-01 1.42888919e-01 -8.62474382e-01 7.81324446e-01
7.66319275e-01 -8.76823843e-01 6.10297620e-01 -5.20977199e-01
5.48289359e-01 1.94545612e-01 -7.10715234e-01 1.69679523e+00
8.37756917e-02 2.48050407e-01 -2.71658659e-01 -1.25914812e+00
1.41276574e+00 7.66855404e-02 4.11122590e-01 -7.30535388e-01
1.94799274e-01 -6.82348832e-02 3.84292811e-01 -3.67322803e-01
7.61446431e-02 1.25140920e-01 8.58071893e-02 -1.42952934e-01
4.36098009e-01 4.92081106e-01 1.05567478e-01 2.25387007e-01
1.46758866e+00 -1.88073069e-01 2.17411295e-01 -5.49607873e-01
6.09632552e-01 -3.21069598e-01 6.22729301e-01 6.30993128e-01
-1.30980447e-01 2.06902057e-01 9.98880208e-01 -7.22481787e-01
-5.93381643e-01 -8.46135557e-01 -1.39649808e-02 8.60256135e-01
2.83499092e-01 -7.32535183e-01 -3.46932441e-01 -9.81241882e-01
2.04214662e-01 1.07442766e-01 -6.47712171e-01 -6.11102700e-01
-4.32800084e-01 -1.17159581e+00 7.25147605e-01 5.23889601e-01
8.15345168e-01 -1.05789363e+00 4.80096638e-01 3.20064038e-01
2.16978297e-01 -1.12758696e+00 -3.20625275e-01 3.49881679e-01
-9.14197981e-01 -1.33155859e+00 -2.81056672e-01 -1.03461981e+00
5.68763137e-01 1.44074634e-01 9.72453594e-01 5.18786490e-01
-1.40301421e-01 -2.01004162e-01 -3.72287601e-01 -2.87096053e-01
-6.37153238e-02 5.25683522e-01 -1.68292180e-01 -4.29926440e-02
3.40317160e-01 -8.28569770e-01 -5.63598037e-01 2.29373366e-01
-7.52498984e-01 1.42483950e-01 6.61155701e-01 9.54697490e-01
4.64531898e-01 3.46997768e-01 9.53375459e-01 -9.09000874e-01
8.62770379e-01 -3.41514617e-01 -5.77604651e-01 4.97234136e-01
-7.46508121e-01 3.78484838e-02 8.53183091e-01 -2.89151460e-01
-4.77348924e-01 -2.35836685e-01 -4.19980586e-02 -3.31587493e-01
2.75144845e-01 8.56827974e-01 -5.69888592e-01 -5.66757083e-01
4.58904326e-01 1.58106387e-01 3.05175871e-01 -5.84649801e-01
1.64144546e-01 1.78198934e-01 5.36171645e-02 -2.69554198e-01
4.60587978e-01 -6.17309064e-02 7.19790637e-01 -6.52841806e-01
-6.61316037e-01 -1.41496435e-01 -3.66350263e-01 -3.74434143e-02
8.34868550e-01 -8.76463532e-01 -1.43867898e+00 6.07516646e-01
-7.99452186e-01 -2.49439389e-01 3.95411193e-01 4.22923595e-01
-2.58424670e-01 5.03718615e-01 -8.92374992e-01 -2.38204092e-01
-7.14774132e-01 -1.05279291e+00 6.25828564e-01 3.25836599e-01
3.97511005e-01 -1.31253290e+00 -4.28869843e-01 2.26454258e-01
4.29312944e-01 3.94185752e-01 1.38828540e+00 -1.01733494e+00
-8.47331822e-01 -2.40219727e-01 -6.47375703e-01 1.69629470e-01
1.86250359e-01 -3.02127033e-01 -5.78040361e-01 -4.52979118e-01
-4.43299770e-01 -1.70420319e-01 1.25217283e+00 3.01331729e-01
1.59955728e+00 -1.14128366e-01 -5.98467112e-01 1.04564011e+00
1.48412216e+00 1.88698471e-01 7.91191280e-01 1.69842020e-01
1.18639314e+00 3.12980264e-01 -1.60307381e-02 -2.90098935e-01
3.08143765e-01 5.65189421e-01 5.20014524e-01 -4.26234931e-01
-1.75323188e-01 -3.63078207e-01 1.00033525e-02 6.86986387e-01
-1.39794260e-01 -6.27258420e-01 -8.22349489e-01 -8.42678547e-02
-2.15126252e+00 -6.25763655e-01 -2.30949178e-01 1.63946748e+00
2.89472669e-01 1.37501821e-01 1.05650295e-02 -2.48557791e-01
6.58948183e-01 2.86804706e-01 -6.72346115e-01 -1.43749326e-01
-4.35028672e-01 3.76444191e-01 5.94079077e-01 1.23515114e-01
-1.22585440e+00 1.10323322e+00 6.32344627e+00 1.15822494e+00
-1.07185900e+00 -2.76031256e-01 6.17600739e-01 4.01059985e-01
-2.37181619e-01 -2.19379097e-01 -6.84755087e-01 3.89310181e-01
6.96823657e-01 -7.52458572e-02 5.85406125e-01 6.31962478e-01
-1.34806767e-01 4.43807274e-01 -7.69419909e-01 9.54903781e-01
-6.68155700e-02 -1.64807308e+00 4.72077191e-01 1.28174067e-01
3.21755916e-01 1.78338349e-01 -1.69014767e-01 4.08938497e-01
2.60866523e-01 -1.35415888e+00 -1.84216216e-01 6.29603446e-01
5.43135762e-01 -7.30795920e-01 8.54743659e-01 1.13613486e-01
-1.35898840e+00 -2.36687541e-01 -5.71904838e-01 -4.20608148e-02
-1.24689892e-01 6.63101017e-01 -8.01875353e-01 1.28719687e+00
3.61083388e-01 9.95719373e-01 -9.43954289e-01 1.20071995e+00
-2.74897963e-01 4.33188736e-01 -1.27597809e-01 -3.57819349e-01
1.11706950e-01 -6.17748916e-01 4.04992431e-01 8.26110005e-01
1.76355511e-01 7.39125907e-03 4.35351670e-01 8.77913415e-01
-4.98759449e-01 3.03794563e-01 -7.52985001e-01 -2.76739746e-01
2.37788290e-01 1.46684277e+00 -9.31671143e-01 -9.24157277e-02
-2.57929623e-01 6.29041255e-01 8.38443696e-01 6.91835821e-01
-7.32994676e-01 -7.96957016e-01 5.19440651e-01 -1.79696664e-01
3.03217918e-01 -1.46369040e-01 -1.19207978e-01 -1.13810241e+00
-5.56028932e-02 -6.41054392e-01 6.19961619e-01 -6.50575519e-01
-1.54505205e+00 6.48187757e-01 -4.10391629e-01 -8.20712864e-01
5.92094898e-01 -1.13585341e+00 -7.30580151e-01 9.04751718e-01
-1.41822982e+00 -1.41489732e+00 -3.04643720e-01 4.32333678e-01
-2.76890755e-01 -5.26699722e-01 7.32183814e-01 4.03214961e-01
-9.28821623e-01 6.68737769e-01 -2.03108460e-01 3.26650888e-01
3.58871520e-01 -1.15423954e+00 4.94611561e-01 6.59385145e-01
-9.01704654e-02 8.20264637e-01 6.09741956e-02 -8.04189980e-01
-1.69928706e+00 -1.30967259e+00 3.55553895e-01 -1.42427683e-01
8.47437799e-01 -6.79114878e-01 -1.09993696e+00 5.79034746e-01
-2.42158428e-01 8.43089446e-02 7.17829704e-01 5.04876494e-01
-2.87538797e-01 -1.74927235e-01 -1.06279314e+00 4.78131622e-01
1.36378169e+00 -2.50286341e-01 -1.89016312e-01 5.91760039e-01
1.20964575e+00 -3.64532441e-01 -1.39613104e+00 7.31440663e-01
2.60269761e-01 -5.79346895e-01 1.00881386e+00 -1.20965862e+00
9.33732465e-02 -3.62871975e-01 5.77406175e-02 -1.26207066e+00
-8.33306193e-01 -5.53570688e-01 -2.62331277e-01 9.05544460e-01
5.75343132e-01 -1.29113865e+00 9.62693274e-01 -2.51370054e-02
-3.15405846e-01 -1.04491627e+00 -8.25816154e-01 -7.41706014e-01
-2.80896902e-01 7.46118203e-02 9.37182188e-01 9.46976423e-01
-1.01541758e-01 8.52289498e-01 -1.16114147e-01 2.16201395e-01
4.50110942e-01 2.15502694e-01 5.79539359e-01 -1.51783466e+00
-2.76991218e-01 -6.20761812e-01 -1.01132655e+00 -9.14207280e-01
3.16661090e-01 -1.60020077e+00 -6.82569861e-01 -1.64976323e+00
1.22475259e-01 -3.90730590e-01 -7.94870734e-01 6.71704829e-01
-4.18912739e-01 1.58869356e-01 1.55126154e-02 -1.02624498e-01
-6.83499634e-01 7.39342391e-01 1.86544943e+00 -2.00056598e-01
-8.84700939e-02 5.63017018e-02 -9.67349827e-01 3.72746736e-01
7.52229691e-01 7.94291031e-03 -5.84043503e-01 -1.56653106e-01
3.81813049e-01 1.34400651e-01 4.09887433e-01 -8.71420979e-01
5.42939119e-02 1.57227218e-01 6.94133699e-01 -4.46851045e-01
9.86020174e-03 -5.04215956e-01 2.27663219e-01 5.63103795e-01
-2.95058414e-02 -1.21243134e-01 2.45720267e-01 9.13115859e-01
-1.54764019e-03 1.69672117e-01 5.42842269e-01 1.06429420e-01
-6.29902065e-01 1.08841515e+00 3.72797064e-02 -4.31288749e-01
7.61647940e-01 -1.85466245e-01 -8.05198133e-01 2.38034055e-02
-8.99801731e-01 7.62029111e-01 2.02196836e-01 3.28475893e-01
5.47904432e-01 -1.44478083e+00 -3.77374530e-01 4.55227673e-01
1.64980918e-01 -8.46879557e-02 3.14797759e-01 9.99607146e-01
-6.40152991e-01 3.02784055e-01 -2.80768335e-01 -3.18235010e-01
-1.00401700e+00 7.42731094e-01 5.13748348e-01 -5.95388472e-01
-7.64997959e-01 9.41840410e-01 3.55921566e-01 -4.70384717e-01
1.19594969e-01 -1.43493935e-01 -5.12648642e-01 -2.24009752e-01
1.48929983e-01 2.61221617e-01 2.95402944e-01 -6.09721504e-02
-3.73566121e-01 3.04638833e-01 -1.56079024e-01 1.00189722e+00
1.39278197e+00 3.77544880e-01 -4.82662648e-01 -9.98018757e-02
1.16777539e+00 -3.10844392e-01 -7.27505207e-01 -1.08871281e-01
1.98143050e-02 4.54143658e-02 3.58521529e-02 -7.31777847e-01
-1.29386973e+00 5.45920372e-01 3.62537384e-01 5.09031475e-01
1.13937008e+00 3.68991047e-02 7.38204837e-01 7.89179444e-01
2.44789526e-01 -6.37037635e-01 3.00098993e-02 4.69237685e-01
7.57003784e-01 -1.05969441e+00 2.40242511e-01 -7.31018603e-01
-2.65993357e-01 1.34610701e+00 8.10190737e-01 -2.60055691e-01
7.80170739e-01 -1.80229694e-01 -4.54255074e-01 -8.37259948e-01
-6.06714249e-01 -2.99892217e-01 6.75215781e-01 7.53320992e-01
1.59617335e-01 2.88221955e-01 -3.47795516e-01 7.70977557e-01
-1.36262789e-01 -2.53746808e-01 1.17192000e-01 1.82668656e-01
-3.34357828e-01 -1.09631407e+00 5.29418111e-01 9.59963977e-01
-2.69049108e-01 -2.28398889e-01 -5.00852346e-01 9.71765876e-01
-2.23000944e-01 5.18664241e-01 -1.94979429e-01 -7.55526006e-01
3.83374125e-01 -3.10526527e-02 5.23866415e-01 -4.88113970e-01
-6.60699129e-01 -2.00019270e-01 2.80780941e-01 -6.81939483e-01
-1.47459665e-02 -2.43790820e-02 -1.22358882e+00 -3.25045884e-01
-6.01621151e-01 1.61683246e-01 1.92336455e-01 6.48242116e-01
6.22770309e-01 9.25858378e-01 5.40126264e-01 -5.06674767e-01
-2.93357581e-01 -1.00629187e+00 -1.02189410e+00 3.95917594e-01
-1.49270054e-02 -7.77052820e-01 -1.43945128e-01 -7.97942042e-01] | [7.072296619415283, 6.2035932540893555] |
6aa45bcb-4aa8-416d-94ca-a9bd009de181 | calibrated-predictive-distributions-via | 2205.14568 | null | https://arxiv.org/abs/2205.14568v3 | https://arxiv.org/pdf/2205.14568v3.pdf | Conditionally Calibrated Predictive Distributions by Probability-Probability Map: Application to Galaxy Redshift Estimation and Probabilistic Forecasting | Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. Much research has been devoted to describing the predictive distribution (PD) $F(y|\mathbf{x})$ of a target variable $y \in \mathbb{R}$ given complex input features $\mathbf{x} \in \mathcal{X}$. However, off-the-shelf PDs (from, e.g., normalizing flows and Bayesian neural networks) often lack conditional calibration with the probability of occurrence of an event given input $\mathbf{x}$ being significantly different from the predicted probability. Current calibration methods do not fully assess and enforce conditionally calibrated PDs. Here we propose \texttt{Cal-PIT}, a method that addresses both PD diagnostics and recalibration by learning a single probability-probability map from calibration data. The key idea is to regress probability integral transform scores against $\mathbf{x}$. The estimated regression provides interpretable diagnostics of conditional coverage across the feature space. The same regression function morphs the misspecified PD to a re-calibrated PD for all $\mathbf{x}$. We benchmark our corrected prediction bands (a by-product of corrected PDs) against oracle bands and state-of-the-art predictive inference algorithms for synthetic data. We also provide results for two applications: (i) probabilistic nowcasting given sequences of satellite images, and (ii) conditional density estimation of galaxy distances given imaging data (so-called photometric redshift estimation). Our code is available as a Python package https://github.com/lee-group-cmu/Cal-PIT . | ['Ann B. Lee', 'Rafael Izbicki', 'Brett H. Andrews', 'Jeffrey A. Newman', 'David Zhao', 'Biprateep Dey'] | 2022-05-29 | null | null | null | null | ['photometric-redshift-estimation'] | ['miscellaneous'] | [ 6.16093874e-02 3.87560017e-02 1.03929915e-01 -6.15599513e-01
-1.29792118e+00 -7.67619193e-01 6.77769363e-01 -1.38067126e-01
-1.50758311e-01 1.08338773e+00 -3.59318495e-01 -5.02914846e-01
-6.50281966e-01 -1.16936076e+00 -1.11104572e+00 -1.12162745e+00
-8.44692439e-02 9.88385975e-01 2.78182030e-01 3.46473932e-01
1.98482513e-01 4.44879502e-01 -1.62085342e+00 -3.27807575e-01
1.08673811e+00 1.30411649e+00 2.64668554e-01 8.14229667e-01
1.69639125e-01 5.02190173e-01 -5.16244054e-01 -8.57730269e-01
1.54808730e-01 -2.64987826e-01 -5.48501670e-01 -4.71319824e-01
3.13477874e-01 -1.24684595e-01 -4.40661252e-01 1.37249041e+00
1.45168453e-02 8.27627406e-02 1.23532999e+00 -1.33324564e+00
-5.85347652e-01 6.08665287e-01 -5.51949143e-01 3.38635951e-01
-1.46532074e-01 2.27576032e-01 1.19441307e+00 -6.35712326e-01
2.03128859e-01 1.01532590e+00 7.59491205e-01 -6.30238727e-02
-1.64437580e+00 -9.48185205e-01 -3.78207147e-01 -4.19133604e-02
-1.59100783e+00 1.06794775e-01 3.82742077e-01 -8.75649095e-01
8.47268283e-01 3.09508502e-01 2.66324133e-01 7.92985916e-01
1.63736179e-01 1.27688646e-01 1.10248446e+00 -3.42592806e-01
2.56379306e-01 1.04442999e-01 1.04514651e-01 6.51048005e-01
3.64023745e-01 5.93993425e-01 -6.16942465e-01 -3.43750954e-01
9.50331748e-01 -2.90118068e-01 -1.83997586e-01 -1.38740465e-01
-9.78449762e-01 9.72680867e-01 2.84466326e-01 -2.61331439e-01
-1.02857336e-01 5.45021772e-01 -2.63188601e-01 -2.67003149e-01
6.86068714e-01 4.61556226e-01 -7.06030071e-01 -1.99341297e-01
-1.06102324e+00 4.76823032e-01 6.55906856e-01 7.07794666e-01
1.24568307e+00 -8.28790069e-02 -4.71885055e-02 7.85117567e-01
2.88829654e-01 1.02053189e+00 -1.95555538e-01 -1.46802735e+00
2.04123572e-01 1.61567718e-01 2.69907773e-01 -5.52521825e-01
-2.63733685e-01 -4.33448970e-01 -6.24449909e-01 3.37354124e-01
7.41813838e-01 -2.86144793e-01 -7.54125059e-01 1.94412863e+00
9.18071344e-02 2.82175869e-01 -1.40502095e-01 5.99855542e-01
4.07565683e-01 8.36428583e-01 -2.08240300e-02 -3.73860262e-02
1.02846026e+00 -2.90207893e-01 9.41506624e-02 -2.97220767e-01
1.39138862e-01 -6.26608372e-01 1.02826118e+00 6.03820026e-01
-8.85511875e-01 -3.44003826e-01 -8.92456770e-01 3.18929076e-01
-8.28503147e-02 1.99064255e-01 9.32389617e-01 8.09626460e-01
-7.76465952e-01 8.76206160e-01 -9.95572865e-01 1.96988788e-02
3.36816758e-01 3.85413677e-01 -3.35629359e-02 6.42854422e-02
-1.01459849e+00 6.67555630e-01 2.71114737e-01 -3.21557969e-01
-1.05386508e+00 -1.22613585e+00 -5.77790022e-01 2.25414753e-01
2.84612626e-01 -3.85385454e-01 1.20505631e+00 -8.74871790e-01
-1.08999860e+00 9.28441167e-01 2.00381711e-01 -5.75674415e-01
3.18013012e-01 -1.19551867e-01 -3.76938313e-01 3.38840336e-02
2.08037362e-01 6.28654897e-01 7.61670887e-01 -1.12419415e+00
-5.98033667e-01 -3.06074023e-01 -6.13024794e-02 -3.47732216e-01
2.56925642e-01 -4.76529337e-02 -3.30981255e-01 -6.47808194e-01
2.87060052e-01 -9.76608455e-01 1.38930306e-01 -9.80259255e-02
-5.74756205e-01 -1.26839831e-01 1.28089219e-01 -6.56899273e-01
9.72039044e-01 -1.88115370e+00 1.87832981e-01 4.74570125e-01
4.39041294e-02 -2.73326963e-01 4.09755915e-01 8.14112723e-02
-2.91180491e-01 5.59025183e-02 -8.82740438e-01 -3.61723639e-02
2.37336829e-01 1.97852716e-01 -5.45482695e-01 6.89855814e-01
3.90116990e-01 2.64003277e-01 -5.53426504e-01 -2.52355784e-01
3.53355020e-01 4.76516992e-01 -6.43234253e-01 3.96338195e-01
-6.56890869e-01 5.53554833e-01 -1.64768994e-02 5.60056686e-01
9.61169958e-01 -3.47972989e-01 -1.58290535e-01 -4.93724756e-02
-3.38431358e-01 2.69320518e-01 -1.20022762e+00 1.24015772e+00
-3.53580602e-02 4.68798488e-01 -2.69643128e-01 -1.06507134e+00
1.10291171e+00 -2.85894156e-01 5.45810521e-01 -2.00912565e-01
5.07827774e-02 4.53491174e-02 -6.19328544e-02 2.43468564e-02
3.71242166e-01 -3.67217839e-01 -2.20455229e-01 4.05719668e-01
6.09835982e-01 -6.26022696e-01 6.77414536e-02 1.39192685e-01
1.03183043e+00 5.69167197e-01 3.61165889e-02 -4.03086215e-01
2.14605331e-01 6.27703965e-02 5.63140631e-01 9.74793375e-01
1.37871265e-01 8.44033957e-01 1.01633501e+00 6.13796674e-02
-1.21534169e+00 -1.84579849e+00 -7.99766958e-01 9.98195231e-01
-1.53332919e-01 -1.75273851e-01 -7.22990215e-01 -1.90954059e-01
3.55652183e-01 1.24034643e+00 -5.74190855e-01 -2.61254668e-01
3.67911421e-02 -1.43732071e+00 8.28376174e-01 4.00458515e-01
3.17654788e-01 -6.34303808e-01 -3.23019266e-01 -9.55344588e-02
-8.73211771e-03 -6.03145242e-01 7.24403262e-02 5.07302225e-01
-3.88294131e-01 -1.05902934e+00 -4.07577485e-01 6.07223902e-03
4.22587067e-01 -3.86816710e-01 1.31841159e+00 -3.40526700e-01
-3.76852989e-01 5.55440068e-01 3.02439891e-02 -5.24482965e-01
-2.70481706e-01 -2.88380384e-01 1.91788897e-01 -2.68218815e-01
3.72090042e-01 -7.40648985e-01 -5.52348614e-01 5.36617219e-01
-7.37169564e-01 -1.71586663e-01 3.56594294e-01 8.21301162e-01
1.01437008e+00 1.52562499e-01 1.40262052e-01 -6.25485599e-01
-1.68916583e-02 -6.05238318e-01 -1.32805324e+00 4.10006642e-01
-6.34816945e-01 3.28568786e-01 1.20912619e-01 -2.94212908e-01
-1.40655184e+00 -1.12485185e-01 -9.36288387e-02 -4.76923287e-01
-7.06630945e-02 5.08891582e-01 -8.69502276e-02 1.62462071e-01
9.70662713e-01 -1.99531298e-02 -2.85834998e-01 -4.39751983e-01
2.85731167e-01 3.45809370e-01 1.19901609e+00 -1.16899455e+00
7.45753348e-01 3.59956205e-01 3.78656715e-01 -3.55303109e-01
-1.00442076e+00 -7.09606856e-02 -5.66489756e-01 -3.63160789e-01
8.35692823e-01 -8.37184429e-01 -8.73318374e-01 3.44965011e-01
-7.55803585e-01 -4.72748250e-01 -3.92063767e-01 7.63399482e-01
-7.51989424e-01 1.69224679e-01 -2.09396362e-01 -1.08406293e+00
5.38912714e-02 -1.06398392e+00 1.02429855e+00 4.16666150e-01
5.81183173e-02 -8.79419804e-01 3.55466217e-01 3.11369568e-01
-3.00981253e-02 1.30593404e-01 9.82049108e-01 -3.22806120e-01
-6.92922115e-01 -2.39341870e-01 -5.21922171e-01 5.41125476e-01
-2.74331808e-01 5.67024827e-01 -1.35842001e+00 1.13716498e-01
-7.80973136e-02 -1.93788022e-01 9.82517302e-01 9.72514451e-01
1.55032456e+00 -4.53058220e-02 -1.86832190e-01 8.14136744e-01
1.38492310e+00 -1.03416927e-01 7.26551712e-01 6.08460866e-02
2.07136616e-01 4.42064703e-01 5.19427776e-01 6.82247400e-01
1.25102937e-01 4.45887595e-01 5.95974445e-01 4.37125325e-01
1.74260333e-01 -1.76595926e-01 3.32646251e-01 1.35493547e-01
-2.45921955e-01 -1.03080377e-01 -1.24576986e+00 2.00411126e-01
-1.50811779e+00 -1.06765437e+00 -2.18594566e-01 2.60920739e+00
9.29931283e-01 4.00860399e-01 -6.84892014e-02 -2.01878116e-01
8.93022537e-01 -1.40722379e-01 -7.58756280e-01 2.08616674e-01
-3.35314721e-01 6.52905226e-01 8.18555176e-01 7.17700005e-01
-1.02596998e+00 5.33207715e-01 5.18598032e+00 1.02518404e+00
-9.06851292e-01 1.11007646e-01 9.77000177e-01 -8.31980780e-02
-5.17940760e-01 3.72061104e-01 -8.46436620e-01 5.69466770e-01
1.13567269e+00 -1.52407706e-01 6.74241602e-01 1.01706755e+00
-3.07725757e-01 -7.21602976e-01 -1.03651690e+00 9.13590789e-01
-6.54841214e-02 -1.32587349e+00 -4.95285302e-01 1.27068996e-01
6.67886019e-01 3.40249211e-01 3.28983963e-01 4.24011052e-01
9.98026609e-01 -1.13540423e+00 9.66956556e-01 1.06757975e+00
1.29854345e+00 -8.61973584e-01 4.75540698e-01 1.40109032e-01
-8.21152270e-01 1.80148691e-01 -6.17985785e-01 -3.10192024e-03
8.78055580e-03 1.19884729e+00 -7.81662881e-01 5.79132557e-01
1.18591309e+00 4.00536299e-01 -5.55675447e-01 9.22738433e-01
-2.83023298e-01 9.15582955e-01 -6.46707535e-01 3.45053226e-01
-1.88399047e-01 -6.23730302e-01 5.42812467e-01 9.74084437e-01
8.23018134e-01 1.53871730e-01 -4.85595703e-01 1.53735316e+00
7.31910691e-02 -5.94722629e-01 -2.97696948e-01 -8.03660899e-02
4.86894548e-01 1.10995376e+00 -6.34257436e-01 -6.17002733e-02
-2.93056518e-01 3.87242973e-01 3.39825988e-01 2.72453755e-01
-1.19658828e+00 -2.42158338e-01 9.06904995e-01 -6.04081862e-02
5.08142948e-01 -2.11590707e-01 -4.42127794e-01 -1.07044995e+00
-3.38875413e-01 -1.64883256e-01 5.80417454e-01 -1.35852003e+00
-1.69214690e+00 1.97665095e-01 3.71948123e-01 -9.27435338e-01
-2.49808654e-01 -9.38058019e-01 -5.03175676e-01 1.12167573e+00
-1.05723321e+00 -7.92038858e-01 -1.87956333e-01 4.32101905e-01
-1.18949965e-01 -1.84835941e-01 8.74793947e-01 -1.94357559e-02
-5.48519790e-01 3.21394175e-01 5.14388442e-01 -1.27689958e-01
7.87343264e-01 -1.49063373e+00 -4.01332825e-02 8.47097099e-01
2.32046880e-02 3.15597147e-01 1.07534945e+00 -8.86545122e-01
-1.03958046e+00 -1.02563190e+00 2.64486551e-01 -7.66468823e-01
1.04140389e+00 -1.55086011e-01 -7.83486903e-01 9.27882731e-01
-2.08831266e-01 3.46603058e-02 6.58250391e-01 1.99859098e-01
-5.60519576e-01 -4.55049187e-01 -1.40853798e+00 2.56830752e-01
6.47606909e-01 -5.33607423e-01 -3.79471958e-01 3.39007854e-01
6.83268070e-01 -3.36515099e-01 -1.12348473e+00 4.64344501e-01
4.97572929e-01 -1.26477647e+00 1.17854822e+00 -2.62293667e-01
4.12365735e-01 -3.79713833e-01 -6.94999874e-01 -1.10588264e+00
-1.41245916e-01 -2.99630255e-01 1.67552188e-01 1.39924693e+00
5.70047379e-01 -6.63382232e-01 5.76856256e-01 9.56476867e-01
-1.17565736e-01 -7.42728338e-02 -1.23712420e+00 -6.51787281e-01
4.27336127e-01 -1.11988521e+00 6.75476015e-01 6.94373131e-01
-3.99821401e-01 -2.79078901e-01 -9.33370665e-02 6.75098658e-01
9.74863529e-01 -2.00002715e-02 6.34950042e-01 -1.52590132e+00
-7.58917034e-01 -4.23200488e-01 -2.64079869e-01 -3.80469054e-01
3.87409925e-02 -8.35279644e-01 9.00184140e-02 -1.09360182e+00
3.12893659e-01 -8.55544329e-01 -1.00739077e-01 3.04745346e-01
8.65012556e-02 3.40717137e-02 -2.81457305e-01 1.67886257e-01
-2.60924906e-01 3.70318085e-01 5.78328907e-01 -4.22271434e-03
3.62121940e-01 1.38015389e-01 -3.84337336e-01 8.52670014e-01
8.36444557e-01 -7.22454131e-01 -1.84252992e-01 -7.27658868e-02
6.38756514e-01 3.36231440e-01 9.08746302e-01 -1.13950741e+00
8.70533660e-02 -4.95655596e-01 4.92547452e-01 -8.02673101e-01
6.01058424e-01 -4.14256930e-01 5.48712254e-01 4.08858024e-02
-5.01371473e-02 -8.53221714e-02 1.80205151e-01 5.01542330e-01
9.05244127e-02 -5.51727831e-01 8.52488697e-01 -1.34847224e-01
-1.35994136e-01 1.77286834e-01 -5.79801090e-02 9.98109207e-02
7.49406993e-01 4.65334237e-01 -6.60197258e-01 -4.06723797e-01
-6.20406628e-01 -1.45865142e-01 4.78539556e-01 -3.72998685e-01
1.99689880e-01 -1.02764177e+00 -6.40745997e-01 1.42622486e-01
4.10709679e-02 2.56566525e-01 3.42465699e-01 7.10087240e-01
-5.53839743e-01 2.70446360e-01 -2.09115464e-02 -9.39743221e-01
-5.87574661e-01 2.75654972e-01 5.83622634e-01 -2.14041043e-02
-2.19473131e-02 1.27117765e+00 2.92646646e-01 -6.43184066e-01
8.37410763e-02 -3.46198738e-01 3.93535048e-01 -1.70364991e-01
3.23048264e-01 4.78923231e-01 -1.26263931e-01 -3.20594639e-01
-1.09539583e-01 3.90818626e-01 4.76325989e-01 -4.48153257e-01
1.54269624e+00 2.19900906e-02 -4.21039492e-01 6.53733194e-01
6.78494751e-01 -1.21726729e-01 -1.89669621e+00 -1.74951747e-01
-1.42975792e-01 -5.57784140e-01 -5.76410070e-03 -1.18801033e+00
-9.72528756e-01 8.93723607e-01 5.73977947e-01 2.31819719e-01
8.60966384e-01 4.72702652e-01 -1.56631485e-01 2.77274311e-01
4.10747647e-01 -1.00039268e+00 -1.53108045e-01 2.95204431e-01
8.98529947e-01 -1.15775716e+00 1.95926756e-01 -2.02109933e-01
-7.20048130e-01 9.59722579e-01 6.54267132e-01 -3.07919532e-01
8.70084763e-01 3.99417520e-01 -5.11204064e-01 -2.44810298e-01
-4.83501911e-01 -4.43717949e-02 3.31999958e-01 5.82188129e-01
1.54907644e-01 3.54427278e-01 2.27065608e-01 1.05774081e+00
-6.54800475e-01 -2.62816727e-01 4.83733773e-01 3.86012286e-01
-4.62557465e-01 -8.33539426e-01 -7.73021400e-01 8.27901363e-01
-2.83927083e-01 -2.00200304e-01 -1.90087873e-02 7.33204484e-01
2.76516408e-01 6.16900206e-01 4.34608251e-01 -1.98799312e-01
-7.40058720e-02 2.69057602e-01 6.06173277e-01 -3.27733368e-01
4.29243371e-02 6.75086826e-02 6.30527884e-02 -2.32991651e-01
-3.58918905e-01 -1.30709314e+00 -1.24270165e+00 -4.80421394e-01
-2.36327112e-01 1.59862012e-01 7.62555182e-01 7.46895909e-01
-1.96355209e-01 3.40605825e-01 3.73184919e-01 -8.94900620e-01
-4.31985259e-01 -1.08521700e+00 -9.25411642e-01 -2.09884997e-02
-1.37918424e-02 -1.14570713e+00 -8.08371723e-01 -1.01570012e-02] | [7.258779048919678, 3.613044500350952] |
d76f8c1f-5e59-4bb1-b8e0-c217496af888 | comparing-well-and-geophysical-data-for | null | null | https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022WR033045 | https://www.researchgate.net/publication/364419032_Comparing_Well_and_Geophysical_Data_for_Temperature_Monitoring_within_a_Bayesian_Experimental_Design_Framework | Comparing Well and Geophysical Data for Temperature Monitoring Within a Bayesian Experimental Design Framework | Temperature logs are an important tool in the geothermal industry. Temperature measurements from boreholes are used for exploration, system design, and monitoring. The number of observations, however, is not always sufficient to fully determine the temperature field or explore the entire parameter space of interest. Drilling in the best locations is still difficult and expensive. It is therefore critical to optimize the number and location of boreholes. Due to its higher spatial resolution and lower cost, four-dimensional (4D) temperature field monitoring via time-lapse Electrical Resistivity Tomography has been investigated as a potential alternative. We use Bayesian Evidential Learning (BEL), a Monte Carlo-based training approach, to optimize the design of a 4D temperature field monitoring experiment. We demonstrate how BEL can take into account various data source combinations (temperature logs combined with geophysical data) in the Bayesian optimal experimental design (BOED). To determine the optimal data source combination, we use the Root Mean Squared Error of the predicted target in the low dimensional latent space where BEL is solving the prediction problem. The parameter estimates are accurate enough to use in BOED. Furthermore, the method is not limited to monitoring temperature fields and can be applied to other similar experimental design problems. The method is computationally efficient and requires little training data. For the considered optimal design problem, a training set of only 200 samples and a test set of 50 samples is sufficient. | ['Thomas Hermans', 'Eric Laloy', 'Maximilian Ramgraber', 'Nolwenn Lesparre', 'Nicolas Compaire', 'Robin Thibaut'] | 2022-10-19 | null | null | null | water-resources-research-2022-10 | ['time-series-regression'] | ['time-series'] | [ 5.88244200e-03 -3.47261906e-01 -5.01320623e-02 -1.05787173e-01
-5.99108458e-01 -6.00414202e-02 5.13094008e-01 2.75831044e-01
-4.85317051e-01 9.74129856e-01 -2.58133084e-01 -5.38945436e-01
-6.03938520e-01 -7.63945103e-01 -3.56230021e-01 -1.11410952e+00
-2.14655846e-01 7.76418447e-01 1.88954145e-01 2.61459351e-01
5.06993890e-01 9.80239928e-01 -1.21519160e+00 -4.17354345e-01
9.78487253e-01 1.05205476e+00 6.98471427e-01 2.91907549e-01
2.29492888e-01 2.77381271e-01 -2.93316007e-01 6.20459378e-01
6.09781444e-02 -3.28414381e-01 -7.33215630e-01 6.64438158e-02
-4.70717400e-01 -3.83800209e-01 4.23279613e-01 6.63334310e-01
4.65613604e-01 5.02593637e-01 1.07455099e+00 -8.42925787e-01
3.64248425e-01 1.99535161e-01 -7.52786696e-01 1.28561482e-01
-2.80894578e-01 -2.54277885e-03 5.86364985e-01 -6.83031917e-01
-5.77870570e-02 8.43618751e-01 2.67638594e-01 -6.67363927e-02
-1.47938454e+00 -4.48570400e-01 -3.97264689e-01 2.72646189e-01
-1.40290153e+00 -3.84469032e-01 9.24835443e-01 -6.73789918e-01
9.36259449e-01 4.29699458e-02 8.45765531e-01 6.76326513e-01
5.59197009e-01 2.72898763e-01 1.51554203e+00 -8.60387027e-01
9.49345350e-01 6.06787577e-02 -3.45836461e-01 4.58988369e-01
4.66764212e-01 3.96272600e-01 -3.58018219e-01 -2.20399722e-01
8.22797716e-01 -2.26538554e-01 -1.65214345e-01 -3.30816686e-01
-6.61109924e-01 9.42001700e-01 1.71570197e-01 4.30680066e-01
-5.59443653e-01 2.43217334e-01 6.41840771e-02 -2.45027542e-02
5.43556690e-01 9.37730789e-01 -5.77817976e-01 -2.94269532e-01
-1.22489107e+00 2.01127425e-01 6.84036732e-01 1.00384958e-01
9.36275005e-01 1.05756350e-01 4.59131509e-01 8.33182752e-01
5.79872131e-01 7.52250433e-01 2.30445936e-01 -7.87313402e-01
2.38918453e-01 1.49150208e-01 2.69244730e-01 -5.82125902e-01
-4.13092017e-01 -1.65325031e-01 -8.46442461e-01 4.14565623e-01
3.47247273e-01 -3.40119749e-01 -8.24672818e-01 1.13123810e+00
4.88347411e-01 1.45149335e-01 -9.90257785e-03 6.31967604e-01
-1.92909434e-01 9.26319361e-01 4.46154848e-02 -5.22235692e-01
1.11200035e+00 -1.23751357e-01 -4.43775475e-01 -6.29827678e-01
7.74831712e-01 -7.13844419e-01 7.66620338e-01 4.92535442e-01
-4.84289795e-01 5.68170734e-02 -1.12808108e+00 6.64164722e-01
-1.85261697e-01 3.36071610e-01 6.28047645e-01 6.61992908e-01
-3.96375448e-01 9.21113908e-01 -1.36047006e+00 -1.98633328e-01
1.70962811e-01 2.71321297e-01 -1.86534494e-01 -3.98217002e-03
-1.14044178e+00 1.25682652e+00 4.66297150e-01 5.87714076e-01
-7.34153748e-01 -4.16041762e-01 -7.82805562e-01 4.49655503e-02
4.33389604e-01 -1.34744227e-01 1.03873146e+00 1.58133596e-01
-1.72984982e+00 2.95492541e-02 -1.61122352e-01 -8.85931998e-02
2.31305182e-01 -1.60403237e-01 -3.36568616e-02 1.26518324e-01
2.63191909e-02 -3.45026217e-02 6.12251103e-01 -1.06834924e+00
-1.87947378e-01 -2.91485995e-01 -6.53708637e-01 -1.11654170e-01
-8.24188963e-02 -1.68658718e-01 2.25111604e-01 -9.70865935e-02
6.11118078e-01 -9.49116528e-01 -6.46951973e-01 -4.92359161e-01
-3.58218193e-01 9.29758027e-02 8.38091552e-01 -7.53845215e-01
8.35215986e-01 -1.80321372e+00 -6.93984628e-02 7.36450493e-01
-4.23513502e-01 -1.63908616e-01 5.24608314e-01 6.03111386e-01
9.92550403e-02 1.12575099e-01 -6.00628197e-01 -7.76246786e-02
-1.66127026e-01 2.57081151e-01 -6.73465943e-03 6.53518617e-01
1.59355044e-01 3.48555475e-01 -6.69794500e-01 -4.76739556e-01
7.61712253e-01 1.56712592e-01 -3.56254965e-01 1.61464766e-01
-9.91908982e-02 6.38582647e-01 -9.20429587e-01 2.56137431e-01
6.50091946e-01 -1.68754622e-01 1.50221631e-01 -9.88823548e-02
-4.08803612e-01 1.45005465e-01 -1.38254356e+00 1.20323765e+00
-9.55510199e-01 4.62122500e-01 -1.52635807e-02 -1.27935123e+00
1.30093777e+00 3.66734117e-01 6.28907382e-01 -7.56765008e-01
-1.03438171e-02 5.84638476e-01 -3.39936614e-02 -7.78818429e-01
4.63104576e-01 -7.92421162e-01 -1.09968543e-01 5.40686727e-01
-2.98731923e-01 -7.77125835e-01 -7.89628327e-02 -2.93934435e-01
9.02554870e-01 1.15675367e-01 3.32557172e-01 -5.67247927e-01
1.51130915e-01 -1.46630049e-01 5.70090294e-01 5.56111932e-01
3.33478928e-01 1.85991988e-01 6.78920448e-01 5.21148853e-02
-1.25905979e+00 -6.38858438e-01 -6.25604928e-01 2.93275137e-02
1.04420446e-01 4.18647230e-02 -3.20095569e-01 -4.16159295e-02
-1.18712611e-01 1.02664018e+00 -3.46138239e-01 -1.00639164e-01
-4.42831159e-01 -1.25566936e+00 3.88410571e-03 4.58715707e-01
5.88930905e-01 -7.79238582e-01 -9.79776680e-01 4.68223870e-01
-1.15132041e-01 -7.03596413e-01 5.00637949e-01 8.54040980e-01
-1.33167446e+00 -1.01761591e+00 -4.49806035e-01 6.45377636e-02
6.43684506e-01 -3.81797224e-01 5.99540651e-01 -3.39386791e-01
-2.42834762e-01 -2.11024079e-02 -3.30184639e-01 -2.59825677e-01
-4.51270968e-01 -1.23902261e-02 3.85812484e-03 -3.45087558e-01
5.01578599e-02 -6.16289198e-01 -3.80533248e-01 6.15928173e-01
-6.57790422e-01 -3.03051472e-02 6.63074911e-01 1.00382757e+00
4.80293632e-01 7.71620989e-01 4.73952115e-01 -5.93008935e-01
4.14795935e-01 -3.81253272e-01 -1.08179104e+00 3.58019263e-01
-6.28073156e-01 5.65358579e-01 4.31675881e-01 -2.41956845e-01
-1.22635615e+00 -7.82658756e-02 -1.82146102e-01 -2.50494517e-02
-2.66750813e-01 1.06823170e+00 -1.53940678e-01 -2.95535009e-02
6.52425408e-01 -1.61369815e-01 -9.09978375e-02 -7.02670932e-01
-3.89335603e-01 6.63762510e-01 8.05639662e-03 -9.78647053e-01
4.60139513e-01 5.90095595e-02 7.02149272e-01 -1.25319040e+00
-3.65631789e-01 -3.70044440e-01 -6.56512141e-01 -3.25634271e-01
4.42842990e-01 -4.22587037e-01 -5.80987632e-01 4.25006121e-01
-6.78590298e-01 -6.21884644e-01 -1.01067282e-01 1.12308657e+00
-5.84267437e-01 2.69622356e-01 -9.74986330e-02 -1.35241342e+00
6.66686334e-03 -1.32997024e+00 8.71535599e-01 9.42548737e-02
-1.32568598e-01 -1.07564771e+00 6.47264868e-02 7.50961602e-02
3.24314952e-01 4.72263724e-01 1.01676679e+00 -1.68873355e-01
-4.47922170e-01 -3.59199673e-01 2.47221142e-01 2.35134766e-01
2.27951944e-01 1.07018121e-01 -9.13431644e-01 -2.40263164e-01
4.65558380e-01 -2.62831986e-01 7.31018424e-01 8.54953647e-01
1.12560070e+00 1.63912680e-02 -4.90074247e-01 2.35861629e-01
1.61887193e+00 4.89946842e-01 5.94613492e-01 4.29629117e-01
1.69465408e-01 6.71947837e-01 8.30164313e-01 7.51436770e-01
-3.81700456e-01 7.29268968e-01 1.96247712e-01 1.66170359e-01
6.86430037e-01 -8.01349133e-02 4.00373675e-02 3.11062306e-01
-1.78299308e-01 -2.50876665e-01 -1.25391698e+00 4.35903102e-01
-1.65447140e+00 -9.11103129e-01 -9.01111960e-02 2.58627486e+00
5.40774703e-01 6.94789551e-03 -4.38516200e-01 5.42873442e-01
5.76397657e-01 -4.96677682e-02 -3.35194260e-01 -4.26737130e-01
3.40840101e-01 3.80075961e-01 8.21964681e-01 5.32158196e-01
-7.52197862e-01 2.45436862e-01 5.60426950e+00 8.79567802e-01
-1.19709504e+00 -1.40140653e-01 6.47361219e-01 2.95972347e-01
-2.08510101e-01 5.37890732e-01 -7.17431366e-01 4.14329082e-01
1.05657721e+00 6.91249669e-02 3.29531878e-01 5.33799767e-01
9.94580150e-01 -1.27732289e+00 -9.14729059e-01 6.70314908e-01
-6.72807634e-01 -1.03205419e+00 -6.99731886e-01 4.58262533e-01
4.69130546e-01 -1.60934389e-01 -3.63043010e-01 -1.58326194e-01
1.79410502e-01 -8.78655255e-01 5.48790574e-01 4.56775993e-01
7.73000896e-01 -6.65096939e-01 8.53863716e-01 6.46079481e-01
-9.53206718e-01 -2.36590758e-01 -3.67536724e-01 -1.05741546e-01
6.22991562e-01 1.18687844e+00 -1.18453467e+00 6.43242836e-01
6.83591783e-01 3.73767853e-01 -1.20365910e-01 1.21073151e+00
-2.81476676e-01 1.02189195e+00 -1.19373846e+00 -3.04696023e-01
2.30516791e-01 -5.33648789e-01 1.95007026e-01 4.37501192e-01
8.59336078e-01 2.26832002e-01 -7.64755979e-02 9.47508574e-01
7.02370524e-01 -3.63385566e-02 -4.86558408e-01 6.66048601e-02
7.37156928e-01 8.16151381e-01 -9.85026956e-01 2.01590285e-01
1.74398497e-01 3.22800964e-01 -5.08778393e-02 3.51988763e-01
-4.42864269e-01 -2.86407143e-01 1.41811922e-01 2.44079426e-01
2.24695027e-01 -5.54973602e-01 -4.25359845e-01 -6.78845704e-01
-7.30287805e-02 -1.79820865e-01 1.10463217e-01 -7.05317736e-01
-9.31232333e-01 -7.71797225e-02 7.78344691e-01 -1.02010298e+00
-6.15061343e-01 -6.34470880e-01 -7.70927191e-01 1.16612720e+00
-1.20529497e+00 -5.13064206e-01 -3.44886445e-02 -7.83941448e-02
8.19005072e-02 1.79206461e-01 7.98537731e-01 6.45503029e-02
-7.59808540e-01 -9.96719226e-02 8.10086071e-01 -3.90120000e-01
2.42774323e-01 -1.09885037e+00 -1.67422935e-01 7.96953917e-01
-3.84694546e-01 2.13517800e-01 1.12395012e+00 -8.22504878e-01
-1.16594422e+00 -7.03368962e-01 6.28797948e-01 3.52228969e-01
6.44553900e-01 -2.22574592e-01 -9.60114062e-01 2.02735469e-01
-3.89969856e-01 -1.51677996e-01 3.82080376e-01 2.60657698e-01
6.45244420e-01 -2.07673237e-01 -1.27832091e+00 2.66787082e-01
4.24865000e-02 -2.47833684e-01 -3.65982801e-01 1.26726702e-01
-1.42629698e-01 -1.43779621e-01 -1.08110666e+00 6.36602938e-01
3.88287425e-01 -6.77245021e-01 5.53261161e-01 8.24683234e-02
2.16387719e-01 -1.29371271e-01 1.25876162e-02 -1.51157796e+00
-2.45230645e-03 -2.81486332e-01 2.99977392e-01 1.11147892e+00
5.27120650e-01 -7.47960508e-01 1.02191126e+00 8.67820621e-01
5.36119863e-02 -9.10004735e-01 -1.20919383e+00 -8.02953601e-01
1.50757641e-01 -6.00438297e-01 4.05660510e-01 5.50565779e-01
1.79392174e-02 8.68414640e-02 -3.60954434e-01 4.83346134e-01
8.55990171e-01 9.01041850e-02 5.36661327e-01 -1.31826150e+00
-4.36324894e-01 1.82708749e-03 -1.13612331e-01 -8.14054668e-01
-2.97755618e-02 -3.48600119e-01 4.18617010e-01 -1.61476982e+00
-1.17226630e-01 -1.15573955e+00 5.11415377e-02 4.10388201e-01
1.16139688e-01 -4.11416948e-01 -3.55972022e-01 2.22540319e-01
6.47452772e-01 9.39362526e-01 1.06362104e+00 -2.00098865e-02
-5.06070435e-01 2.06855312e-01 1.89180911e-01 4.15026635e-01
9.88872290e-01 -6.99181616e-01 -4.32928115e-01 -5.81965484e-02
3.34093839e-01 6.10339820e-01 3.38524640e-01 -1.03126359e+00
1.00131191e-01 -6.39133632e-01 4.41986829e-01 -7.91265190e-01
4.19766307e-01 -9.59612846e-01 6.29152596e-01 5.47772288e-01
8.96233916e-02 -4.39172328e-01 1.66947275e-01 4.22383338e-01
-1.70131698e-01 -9.86972034e-01 8.18018913e-01 -1.31330028e-01
-5.83172560e-01 2.41169035e-02 -7.17157483e-01 -4.61811453e-01
8.22055101e-01 -3.05541009e-01 1.14033014e-01 3.69043984e-02
-6.21779859e-01 2.40841359e-01 4.15939271e-01 -3.45027894e-01
4.83284771e-01 -8.52517128e-01 -4.65717226e-01 1.16929054e-01
-1.30784720e-01 3.78587157e-01 4.37795162e-01 8.40730071e-01
-7.75979817e-01 2.47610569e-01 -1.00938790e-02 -7.72440493e-01
-7.08579242e-01 1.06076449e-01 6.16910160e-01 -5.32637715e-01
-5.74737668e-01 5.00551403e-01 -2.50001490e-01 -7.67446011e-02
-5.55935621e-01 -2.70155549e-01 -1.11103870e-01 -5.65112801e-03
8.14114064e-02 4.50892568e-01 3.32638860e-01 -1.56936571e-01
-2.33676061e-01 4.96204436e-01 4.02169824e-01 -5.21298707e-01
1.74178350e+00 -1.82521604e-02 -9.37961489e-02 6.91266894e-01
1.09175634e+00 -3.97477984e-01 -1.20393288e+00 7.37816617e-02
2.84801334e-01 -5.89851439e-01 7.08561361e-01 -4.59505439e-01
-8.55914831e-01 8.52511406e-01 4.80754733e-01 5.29055558e-02
1.01215649e+00 -1.51189983e-01 4.46572192e-02 5.16220272e-01
4.73143131e-01 -1.32659829e+00 -2.97569185e-01 2.36922294e-01
6.92925453e-01 -9.20570314e-01 5.11020720e-01 -1.66843697e-01
-2.68855006e-01 1.10807192e+00 3.24659258e-01 2.31987402e-01
9.65366960e-01 5.17685235e-01 -3.26577604e-01 -2.66030133e-01
-5.66366732e-01 3.18298131e-01 -2.55474508e-01 2.05525473e-01
1.72616690e-01 9.93594974e-02 -3.38407367e-01 -7.33692423e-02
-7.35386163e-02 -1.75086851e-03 4.84599471e-01 1.33462203e+00
-6.39954150e-01 -1.24369979e+00 -8.54899466e-01 8.46906006e-01
-1.86361298e-01 2.30933174e-01 4.06001776e-01 6.33905351e-01
-2.50939637e-01 1.07275808e+00 5.15260585e-02 5.68164252e-02
8.30113813e-02 1.06889702e-01 4.08344656e-01 -3.39229017e-01
1.53778285e-01 1.89097911e-01 2.55369753e-01 -1.00195371e-01
-4.02839243e-01 -8.90909255e-01 -9.99847114e-01 -2.30612740e-01
-1.03438568e+00 7.74025857e-01 1.13268495e+00 1.22716665e+00
-2.02848047e-01 1.53768107e-01 1.01005876e+00 -1.04310584e+00
-6.22722745e-01 -1.19540811e+00 -1.23936236e+00 -3.73441845e-01
3.97763029e-02 -1.13627195e+00 -6.40556872e-01 -3.44975859e-01] | [6.3514485359191895, 3.401796817779541] |
ca59358f-4c70-40bf-b08b-c6e08f64913f | learning-multimodal-graph-to-graph-1 | 1812.0107 | null | http://arxiv.org/abs/1812.01070v3 | http://arxiv.org/pdf/1812.01070v3.pdf | Learning Multimodal Graph-to-Graph Translation for Molecular Optimization | We view molecular optimization as a graph-to-graph translation problem. The
goal is to learn to map from one molecular graph to another with better
properties based on an available corpus of paired molecules. Since molecules
can be optimized in different ways, there are multiple viable translations for
each input graph. A key challenge is therefore to model diverse translation
outputs. Our primary contributions include a junction tree encoder-decoder for
learning diverse graph translations along with a novel adversarial training
method for aligning distributions of molecules. Diverse output distributions in
our model are explicitly realized by low-dimensional latent vectors that
modulate the translation process. We evaluate our model on multiple molecular
optimization tasks and show that our model outperforms previous
state-of-the-art baselines. | ['Wengong Jin', 'Regina Barzilay', 'Kevin Yang', 'Tommi Jaakkola'] | 2018-12-03 | null | null | null | null | ['graph-to-graph-translation'] | ['graphs'] | [ 6.73045456e-01 2.75560647e-01 -5.47006071e-01 -1.12806886e-01
-1.07046247e+00 -9.77311432e-01 6.57315433e-01 1.98470175e-01
-1.16531037e-01 1.26646376e+00 3.72336984e-01 -4.41164643e-01
3.94588828e-01 -7.94809759e-01 -1.45030451e+00 -8.12831998e-01
6.91675991e-02 8.55755806e-01 -2.49887511e-01 -3.55993718e-01
1.79034457e-01 4.95466232e-01 -3.05564523e-01 3.55576307e-01
1.04570270e+00 2.35822365e-01 -1.48304895e-01 9.80006218e-01
-3.74602191e-02 4.25177097e-01 -4.77953523e-01 -8.15392077e-01
2.55010188e-01 -8.48482609e-01 -5.86695075e-01 -2.58724153e-01
7.35228539e-01 1.75348178e-01 -3.68631035e-01 1.01156843e+00
7.37023354e-01 -2.13736463e-02 1.18197596e+00 -8.42769802e-01
-1.16925633e+00 6.29028440e-01 -2.43285149e-01 -8.14725012e-02
3.95581096e-01 5.61124265e-01 1.25942838e+00 -6.29927039e-01
1.20559919e+00 1.23686874e+00 1.67923391e-01 8.85467350e-01
-2.08790350e+00 -5.58102548e-01 5.98703586e-02 -1.78298041e-01
-1.18456328e+00 -6.08450174e-01 5.55302203e-01 -5.61688185e-01
1.33834291e+00 -1.22514002e-01 5.94678938e-01 1.47314656e+00
1.00008523e+00 1.98715255e-01 6.93645775e-01 -1.71108067e-01
1.55734316e-01 -3.19064945e-01 -4.44128454e-01 8.67601752e-01
2.99366921e-01 3.79031785e-02 -9.49377954e-01 -4.17254537e-01
6.45470619e-01 -3.12637419e-01 -2.58146584e-01 -5.90242028e-01
-1.16580153e+00 9.91149485e-01 5.70565641e-01 -1.12444840e-01
-3.81621629e-01 6.29081726e-01 2.41964664e-02 3.44253689e-01
3.73274386e-01 1.01348114e+00 -3.83694023e-01 2.30069965e-01
-3.71209741e-01 5.09218752e-01 8.71562004e-01 9.06142771e-01
7.10911751e-01 5.18895946e-02 -4.81615365e-01 2.71946043e-01
5.24279416e-01 5.77416062e-01 -1.53108954e-01 -5.90114295e-01
7.70108938e-01 2.02342466e-01 2.01831162e-02 -6.80875540e-01
-3.85248028e-02 -3.09712023e-01 -5.74746013e-01 -8.77672136e-02
3.81793082e-01 -2.67863810e-01 -1.11388338e+00 1.98893702e+00
1.81938887e-01 9.44658965e-02 1.67949870e-01 4.96440113e-01
7.03896701e-01 9.35338795e-01 4.16458786e-01 -1.06393546e-01
7.66940236e-01 -1.09106863e+00 -7.14350522e-01 -2.94748545e-01
4.68696386e-01 -8.91096592e-01 7.83966362e-01 6.71172794e-03
-1.20555663e+00 -1.72083601e-01 -1.12977278e+00 -2.53268838e-01
-4.36877429e-01 -3.72833729e-01 8.55455756e-01 4.04722422e-01
-1.05729306e+00 1.00323904e+00 -7.81191647e-01 -4.21312451e-02
5.93391597e-01 8.21927547e-01 -5.02304196e-01 2.56692246e-03
-1.12447011e+00 1.12279630e+00 1.48772195e-01 -2.82859445e-01
-1.16125846e+00 -8.83782446e-01 -7.91845918e-01 -1.77834809e-01
-8.25732946e-03 -1.54987705e+00 9.31896031e-01 -6.98920369e-01
-2.01308799e+00 7.60843515e-01 -3.61655325e-01 -3.63932252e-01
2.97401339e-01 2.83919245e-01 -1.21475533e-01 1.14850327e-02
4.20889296e-02 7.98187137e-01 7.64363825e-01 -9.79705095e-01
1.63740903e-01 -2.50166804e-01 -1.31716684e-01 3.45766813e-01
6.37406930e-02 -3.08145046e-01 -3.91458452e-01 -5.36294758e-01
-3.48072529e-01 -9.75611091e-01 -6.16589963e-01 -1.97197273e-01
-8.23435783e-01 1.50121838e-01 9.07633528e-02 -5.02732038e-01
8.51315498e-01 -1.33424497e+00 1.24110579e+00 2.04717323e-01
4.61555064e-01 -1.26895890e-01 -6.15940392e-01 8.54126930e-01
-2.09035292e-01 5.36408305e-01 -2.23579407e-01 -4.08118367e-01
2.21303515e-02 1.49905281e-02 -3.21148008e-01 5.09234369e-01
4.28604037e-01 1.59233069e+00 -1.10577428e+00 -3.25501859e-01
-9.12134424e-02 5.82184196e-01 -8.65416467e-01 3.38999152e-01
-9.02766049e-01 9.70479369e-01 -4.71128404e-01 7.54675865e-01
3.62975568e-01 -4.69331264e-01 5.16991854e-01 -3.11138093e-01
3.09492081e-01 4.40572113e-01 -2.54320502e-01 2.15725994e+00
-5.97718582e-02 1.96963772e-01 -3.24628472e-01 -6.66628122e-01
5.92815816e-01 1.90230697e-01 3.09939265e-01 -3.34855735e-01
5.61119616e-02 2.04145789e-01 2.88670838e-01 8.21571127e-02
1.59711033e-01 -4.99302536e-01 -3.62469405e-02 3.05044115e-01
4.47435677e-01 -6.48440063e-01 1.88251302e-01 3.49159032e-01
1.15073371e+00 5.68354845e-01 2.62033790e-01 -2.26983398e-01
1.43996671e-01 -2.43028011e-02 3.73742014e-01 5.73218703e-01
1.76905077e-02 3.44435573e-01 7.95444787e-01 -3.52193534e-01
-1.29636037e+00 -1.40958726e+00 1.94027036e-01 9.21514332e-01
3.25919092e-02 -5.55556953e-01 -6.18579447e-01 -7.42376447e-01
1.96542237e-02 4.69310343e-01 -5.03716469e-01 -3.40671718e-01
-4.97366875e-01 -1.01641333e+00 5.24353802e-01 -7.05585107e-02
-3.66537273e-01 -6.53268635e-01 5.92217028e-01 3.98285389e-01
2.51577646e-01 -8.87471795e-01 -1.07033849e+00 4.43222553e-01
-8.15476596e-01 -9.24912333e-01 -4.03800249e-01 -7.96561241e-01
9.24772620e-01 -1.74176142e-01 1.58639586e+00 -2.23502800e-01
-2.50589073e-01 -1.83482528e-01 2.21592665e-01 -4.03796762e-01
-9.17114377e-01 3.99179757e-01 3.83447553e-03 -2.03147769e-01
1.30310506e-01 -8.13252270e-01 -6.65322304e-01 -1.53311700e-01
-7.29311049e-01 3.02001625e-01 5.39255738e-01 8.38122785e-01
1.00102580e+00 -7.66397715e-01 5.35510302e-01 -1.20361710e+00
9.18267310e-01 -2.79416233e-01 -6.73053026e-01 4.91267443e-01
-5.55896163e-01 7.64674842e-01 9.83582258e-01 -4.87863541e-01
-4.66000944e-01 2.82565236e-01 -9.84759107e-02 -2.15343893e-01
3.73434901e-01 3.72120917e-01 -4.18807477e-01 -4.07720655e-01
9.04967308e-01 1.78264752e-01 5.15167527e-02 1.10755280e-01
1.15604293e+00 -6.62183538e-02 1.75566494e-01 -9.59359944e-01
9.19198513e-01 -1.85770933e-02 5.94850361e-01 -5.64368963e-01
-6.20652497e-01 5.93173429e-02 -7.61709213e-01 1.52721837e-01
1.15360487e+00 -9.73818004e-01 -7.56183922e-01 1.20503835e-01
-1.39693320e+00 -6.40409648e-01 -1.85683072e-01 2.29263306e-01
-6.68889940e-01 2.09015921e-01 -8.84438276e-01 -1.21619999e-01
-5.63042641e-01 -1.68019867e+00 1.25319564e+00 -7.00735906e-03
-3.07487786e-01 -1.37826872e+00 5.96812427e-01 2.40852892e-01
2.39063218e-01 5.54397702e-01 1.18175316e+00 -4.64412898e-01
-1.19139552e+00 8.93292204e-02 2.36258835e-01 -1.76329330e-01
4.41333979e-01 1.95633084e-01 -5.41882038e-01 -4.02592123e-01
-7.51746178e-01 -6.12420321e-01 1.15142226e+00 5.12891293e-01
6.44116461e-01 -5.05224049e-01 -7.19760478e-01 1.04823041e+00
1.35538507e+00 1.98292285e-02 6.35125935e-01 -2.01461166e-01
1.19220459e+00 9.17233527e-02 -1.10029340e-01 -2.26034582e-01
1.23795174e-01 8.00435066e-01 2.58050352e-01 -2.94734001e-01
-1.30143702e-01 -8.08109999e-01 6.33766472e-01 1.01896107e+00
1.33285974e-03 -7.53627956e-01 -4.92471904e-01 -5.10762259e-03
-1.72791934e+00 -9.56470609e-01 8.01757053e-02 2.01975346e+00
1.26205480e+00 6.01432063e-02 2.52919570e-02 -9.12370026e-01
3.25153828e-01 3.85671794e-01 -9.84128892e-01 -5.19042015e-01
-1.25820875e-01 8.80890489e-01 9.00074542e-01 1.09660530e+00
-8.66788626e-01 1.36161423e+00 7.93053722e+00 7.98698604e-01
-1.10961795e+00 -1.49727911e-01 7.79486716e-01 -1.93712384e-01
-9.54289436e-01 1.62712827e-01 -7.81891644e-01 3.11064720e-01
1.03489649e+00 -3.36321354e-01 8.38723183e-01 3.66490871e-01
6.83592781e-02 6.53569996e-01 -1.46857905e+00 7.94775128e-01
1.28676593e-01 -2.17630076e+00 6.41578496e-01 3.16930294e-01
1.18485510e+00 1.79554299e-01 2.94730574e-01 4.24935892e-02
8.78564596e-01 -1.60028279e+00 2.69394636e-01 6.55966759e-01
9.47962582e-01 -7.30293095e-01 3.62995490e-02 -1.58040866e-01
-9.64336097e-01 7.94180095e-01 -4.47553128e-01 2.00480521e-01
1.47452682e-01 2.85991818e-01 -1.07022381e+00 5.66711009e-01
-4.55925554e-01 8.97536516e-01 -2.49982446e-01 3.13647389e-01
-6.31668568e-01 3.27665418e-01 1.61095113e-02 -2.53184319e-01
-7.46809468e-02 -8.96901608e-01 5.03593862e-01 9.83885288e-01
6.70987368e-02 -8.46567154e-02 3.59592080e-01 1.38594651e+00
-9.14983511e-01 1.22029111e-01 -1.09983611e+00 -8.35008621e-01
3.89809638e-01 9.98767734e-01 -3.25848997e-01 -1.87625110e-01
-2.69814968e-01 1.40213132e+00 7.36093044e-01 5.88292539e-01
-8.68374586e-01 -2.88892657e-01 1.16801882e+00 -1.01692595e-01
1.05906516e-01 -4.46909517e-01 -2.11306900e-01 -1.35865808e+00
-5.10683119e-01 -1.08874226e+00 -3.42231467e-02 -4.30325687e-01
-1.50270164e+00 4.19336259e-01 -5.82234740e-01 -5.82174897e-01
-9.14020985e-02 -7.13768780e-01 -5.15142202e-01 1.30317354e+00
-1.24482620e+00 -1.25069475e+00 4.78126228e-01 1.70688868e-01
2.67385960e-01 -3.35078061e-01 1.09487331e+00 9.51987281e-02
-5.63905358e-01 7.21174419e-01 2.53686666e-01 -3.09084177e-01
8.94298971e-01 -1.38806760e+00 1.11890447e+00 7.48854458e-01
3.49463105e-01 1.03521848e+00 8.02950978e-01 -9.26863074e-01
-1.88938332e+00 -1.21632385e+00 8.58744621e-01 -1.10796273e+00
7.72840858e-01 -6.48153543e-01 -4.99003738e-01 7.87942290e-01
3.41661423e-01 -2.31313288e-01 1.02931559e+00 5.63241281e-02
-3.99351746e-01 3.15789104e-01 -7.84314632e-01 1.01843679e+00
1.26448274e+00 -8.80691111e-01 -2.85315774e-02 9.23099220e-01
1.16802144e+00 -7.01234221e-01 -1.07005024e+00 3.67667675e-02
3.01680177e-01 -2.95380622e-01 1.27186048e+00 -1.32738161e+00
7.81868160e-01 -4.03622925e-01 -8.16478953e-02 -1.75012326e+00
-3.53719711e-01 -1.16763461e+00 -1.78366944e-01 5.20328760e-01
1.09604728e+00 -5.87254584e-01 9.42675292e-01 4.45702672e-01
-4.79360148e-02 -9.79896128e-01 -7.69739151e-01 -4.59773511e-01
4.97685730e-01 2.78933585e-01 4.62876976e-01 7.07143009e-01
-4.83329222e-03 1.34643519e+00 -5.67901909e-01 1.41964136e-02
6.33180797e-01 1.22223765e-01 1.12541604e+00 -5.50724030e-01
-8.40662777e-01 -4.86274362e-01 -2.89698809e-01 -1.26536393e+00
2.92767853e-01 -1.53178144e+00 -1.53691322e-01 -1.62293553e+00
5.01263976e-01 1.37859374e-01 4.16514371e-03 1.17185242e-01
-5.03091455e-01 1.60928339e-01 1.53303012e-01 9.85358804e-02
-4.67256337e-01 9.43554640e-01 1.81493032e+00 -5.95432162e-01
-3.20317388e-01 -3.44857424e-01 -8.35925460e-01 1.64072327e-02
6.59642398e-01 -6.14887953e-01 -4.61940050e-01 -3.17268103e-01
5.40931940e-01 1.13195121e-01 -2.34162480e-01 -4.25052434e-01
4.58825864e-02 -5.88917494e-01 3.89603436e-01 -8.18260596e-04
5.76875925e-01 -8.35389569e-02 4.05850023e-01 4.82570589e-01
-5.91370761e-01 2.02470720e-02 1.80178303e-02 8.58459592e-01
1.98879912e-01 2.70338774e-01 7.17615306e-01 -2.92086631e-01
1.96595713e-01 9.88415897e-01 -1.71607584e-01 1.60413712e-01
8.01625967e-01 2.09803089e-01 -5.00158250e-01 -3.19733441e-01
-6.78147376e-01 1.13978602e-01 8.96250546e-01 4.01530266e-02
4.15372938e-01 -1.31958735e+00 -7.38147497e-01 -5.59718162e-02
1.21730961e-01 -1.26197278e-01 -4.59565461e-01 3.16556424e-01
-8.07499230e-01 4.59480375e-01 -1.78274468e-01 -3.06562662e-01
-1.03660381e+00 5.98639429e-01 6.26472354e-01 -5.73236704e-01
9.21346545e-02 1.08078778e+00 3.59981537e-01 -6.48132086e-01
-1.71072334e-01 -2.08367169e-01 3.11401635e-01 -5.04378140e-01
8.07443112e-02 -2.80567646e-01 -2.16602221e-01 -4.64611143e-01
-2.79244363e-01 6.68693542e-01 -1.21764109e-01 -5.97838759e-02
1.27243721e+00 4.12883312e-01 -3.04551303e-01 2.05343679e-01
1.32586122e+00 3.40469301e-01 -1.17649615e+00 1.04677603e-01
-3.63868296e-01 -9.60133150e-02 -4.04955983e-01 -7.48625636e-01
-5.83243608e-01 7.05853999e-01 2.47292280e-01 -5.67324281e-01
3.97545636e-01 1.38750412e-02 7.22408772e-01 5.74085832e-01
3.56806636e-01 -6.45344615e-01 3.99524361e-01 4.08354938e-01
8.11618626e-01 -1.15727341e+00 4.17465717e-01 -5.12655079e-01
-6.00257218e-01 1.01315618e+00 3.52183521e-01 -1.31273299e-01
1.82177171e-01 -6.36640787e-02 -7.83067048e-02 -3.55819851e-01
-9.44023311e-01 -4.14988808e-02 5.70772946e-01 8.32018852e-01
8.02326202e-01 2.89645702e-01 -2.92630881e-01 -1.77431162e-02
-1.01509579e-01 -2.90429413e-01 2.09959850e-01 5.40368080e-01
-2.06446677e-01 -2.12979293e+00 9.58355442e-02 3.63551319e-01
-5.60285628e-01 -4.56071287e-01 -9.23840165e-01 2.70875305e-01
-1.19201504e-01 8.07522535e-01 -5.00062704e-01 -4.50116336e-01
1.30686581e-01 1.60877362e-01 1.22266757e+00 -1.02007091e+00
-4.94841903e-01 4.61806636e-03 1.67997688e-01 -5.26388466e-01
-1.57363832e-01 -2.83799261e-01 -1.14061773e+00 -4.54333067e-01
-1.84665650e-01 2.40338564e-01 5.35615444e-01 6.57010078e-01
7.27157772e-01 8.59970272e-01 4.93062764e-01 -9.17182505e-01
-5.16555190e-01 -4.97570038e-01 -1.48227513e-01 4.09759462e-01
3.11643869e-01 -2.12899059e-01 4.23417464e-02 2.44085848e-01] | [4.869469165802002, 5.852307319641113] |
d7cb76ef-f04e-479e-966c-98a5c8195a4a | towards-multilingual-conversations-in-the | null | null | https://aclanthology.org/L14-1556 | https://aclanthology.org/L14-1556.pdf | Towards Multilingual Conversations in the Medical Domain: Development of Multilingual Medical Data and A Network-based ASR System | This paper outlines the recent development on multilingual medical data and multilingual speech recognition system for network-based speech-to-speech translation in the medical domain. The overall speech-to-speech translation (S2ST) system was designed to translate spoken utterances from a given source language into a target language in order to facilitate multilingual conversations and reduce the problems caused by language barriers in medical situations. Our final system utilizes a weighted finite-state transducers with n-gram language models. Currently, the system successfully covers three languages: Japanese, English, and Chinese. The difficulties involved in connecting Japanese, English and Chinese speech recognition systems through Web servers will be discussed, and the experimental results in simulated medical conversation will also be presented. | ['Ryosuke Isotani', 'Keigo Kubo', 'Fumihiro Adachi', 'Tomoki Toda', 'Sho Matsumiya', 'Satoshi Nakamura', 'Sakriani Sakti', 'Graham Neubig'] | 2014-05-01 | null | null | null | lrec-2014-5 | ['speech-to-speech-translation'] | ['speech'] | [ 1.98806763e-01 4.15039152e-01 -2.41236404e-01 -4.77735668e-01
-1.47779822e+00 -4.27951515e-02 3.41494054e-01 -5.61278947e-02
-4.15084988e-01 9.57719743e-01 5.84349990e-01 -1.06500936e+00
4.66464162e-01 -2.36131102e-01 -3.24063841e-03 -5.34093678e-01
6.82330355e-02 7.93199360e-01 2.54126370e-01 -4.28177863e-01
-3.73179525e-01 3.40289325e-01 -2.72638351e-01 5.87886810e-01
7.49336064e-01 2.10746750e-03 6.27830923e-01 1.12508512e+00
-6.15923643e-01 8.39010000e-01 -8.10367465e-01 -2.00483173e-01
-2.53703415e-01 -9.12274361e-01 -1.20482254e+00 2.07252637e-01
-4.62117523e-01 -8.23719576e-02 -3.99501890e-01 9.06085849e-01
8.84162724e-01 -2.79666781e-01 2.34197408e-01 -5.45470059e-01
-3.10222715e-01 9.24523711e-01 1.94052830e-01 3.94901216e-01
7.33469665e-01 -1.44836619e-01 1.55959353e-01 -7.11511791e-01
7.73393452e-01 1.52987325e+00 3.67378473e-01 9.21268284e-01
-6.50938392e-01 -2.27635354e-01 -1.69603392e-01 -3.54149222e-01
-1.45433545e+00 -7.36944437e-01 1.97180599e-01 -1.00167155e-01
1.37537551e+00 3.81280631e-01 3.47457379e-01 1.10620677e+00
6.59264863e-01 6.24351025e-01 9.45636630e-01 -7.80520976e-01
-1.83521494e-01 6.17853343e-01 6.22633658e-02 6.79035366e-01
-4.25744206e-01 -1.97146028e-01 -4.76403207e-01 -5.27828455e-01
6.53403819e-01 -4.62433934e-01 5.93144074e-02 6.18314147e-01
-1.52506423e+00 6.86979890e-01 -3.33082885e-01 8.55233490e-01
-5.13988495e-01 -5.70112646e-01 7.58621812e-01 6.60473704e-01
6.17504478e-01 -7.91861638e-02 -4.88482505e-01 -2.59018213e-01
-5.23042619e-01 -5.70079446e-01 1.08021474e+00 1.16057324e+00
-1.85413361e-01 3.78135979e-01 -4.73905914e-03 1.10435176e+00
5.87650716e-01 1.02739799e+00 7.99148858e-01 -5.18050849e-01
6.08115196e-01 -1.18563086e-01 -3.35686833e-01 -4.32059199e-01
-4.83678043e-01 4.16120999e-02 -5.15148997e-01 -6.28981054e-01
-2.27213159e-01 -6.39565110e-01 -8.21180403e-01 1.12373853e+00
3.19481194e-01 -1.93051502e-01 1.05782032e+00 5.70496082e-01
1.11992967e+00 9.68864560e-01 1.03364341e-01 -7.42520690e-01
1.52018011e+00 -1.10334671e+00 -1.23471189e+00 -2.91318834e-01
9.00532901e-01 -1.52974582e+00 5.06659925e-01 -1.61765337e-01
-1.34629571e+00 -2.33394861e-01 -4.58435267e-01 2.04204768e-01
-9.57494676e-02 -2.99322642e-02 2.35663727e-02 8.30314636e-01
-1.61347401e+00 -2.44779453e-01 -1.19005370e+00 -9.33562696e-01
-5.21437407e-01 4.44106430e-01 -3.24692219e-01 6.92117959e-02
-1.67311287e+00 1.20578206e+00 9.13312752e-03 2.40003057e-02
-6.74891293e-01 4.65005398e-01 -1.05931580e+00 -4.52135861e-01
-1.47471979e-01 -6.21854186e-01 1.66640699e+00 -7.68907070e-01
-1.93072486e+00 7.41256893e-01 -7.57571638e-01 -2.18585253e-01
-6.39226288e-02 4.69269425e-01 -1.15108311e+00 4.28634375e-01
9.28150937e-02 2.21615508e-01 1.30383059e-01 -7.05945015e-01
-6.85009241e-01 -1.76842526e-01 -6.30468726e-01 5.61466634e-01
1.90768763e-02 1.05632353e+00 -4.35555756e-01 -5.08232653e-01
8.46871659e-02 -9.78512943e-01 -4.81349230e-01 -6.47187233e-01
-4.68655050e-01 -1.54377222e-01 3.51650894e-01 -1.15037084e+00
1.23990536e+00 -2.01390743e+00 -2.64726505e-02 1.80940628e-01
-4.63443398e-01 4.41368610e-01 -3.24045271e-01 9.17834103e-01
-5.05940579e-02 2.02120058e-02 5.40538281e-02 -5.01155555e-01
-6.92631304e-01 6.74569428e-01 1.46757439e-01 2.13971809e-01
-7.42693022e-02 7.17127502e-01 -7.03140378e-01 -9.03742433e-01
1.23236060e-01 5.43609977e-01 1.72811627e-01 4.08994406e-01
4.22742754e-01 5.88348091e-01 -7.52229631e-01 7.97515154e-01
4.64375876e-02 1.14613652e-01 4.04478133e-01 4.11357373e-01
-1.50968477e-01 1.06791401e+00 -4.87211794e-01 1.72605169e+00
-5.51650882e-01 2.91326731e-01 6.31246209e-01 -9.02381063e-01
9.48057652e-01 1.40928471e+00 5.06224275e-01 -5.36369801e-01
1.92487955e-01 6.56850278e-01 1.22144312e-01 -1.08645272e+00
2.65418768e-01 -4.21913981e-01 -2.84866005e-01 3.31422359e-01
4.85012531e-02 -1.61422193e-02 -1.52221888e-01 1.76191047e-01
6.94521248e-01 -4.44840312e-01 4.25695688e-01 -3.06540877e-01
7.00925171e-01 2.29884475e-01 5.52404881e-01 3.59117657e-01
-4.88413334e-01 2.75358438e-01 1.46520287e-02 -6.88626543e-02
-7.29835391e-01 -7.76200473e-01 3.95399472e-03 8.82937968e-01
-3.12188089e-01 -1.44479468e-01 -9.43717778e-01 -6.70561910e-01
-8.76895905e-01 7.11716831e-01 3.57722968e-01 1.52391359e-01
-7.37247944e-01 -4.39085871e-01 1.14688170e+00 1.40684783e-01
-1.41842380e-01 -1.20746398e+00 2.66187042e-01 6.80734694e-01
-8.35415781e-01 -1.57181466e+00 -1.15679216e+00 8.05938318e-02
-8.27107906e-01 -6.47266269e-01 -1.08497250e+00 -1.72054625e+00
7.56893158e-01 1.88378066e-01 6.04719639e-01 -4.13510114e-01
-1.24270171e-01 4.29341823e-01 -4.15716738e-01 -3.28372568e-01
-1.50129795e+00 1.67181194e-01 3.19585115e-01 -2.91284919e-01
6.13564014e-01 -9.18244421e-02 -6.83342218e-02 4.91117954e-01
-6.35264874e-01 -4.93861560e-04 6.36352897e-01 8.20808709e-01
1.62227392e-01 -6.08269334e-01 7.97407389e-01 -6.56682789e-01
1.11203873e+00 -3.10430825e-01 6.08867034e-02 6.41025722e-01
-3.83325398e-01 -2.08812535e-01 3.48663032e-01 -3.59854609e-01
-1.18640316e+00 1.96755826e-02 -7.31720686e-01 2.90767819e-01
-3.52319658e-01 8.77291501e-01 1.31216571e-01 1.43289611e-01
5.82199454e-01 7.35801697e-01 5.00855088e-01 -2.84742922e-01
6.15451001e-02 1.73014379e+00 3.90143514e-01 -1.30345091e-01
3.09409071e-02 -1.27317175e-01 -7.11473167e-01 -1.20840514e+00
6.21075556e-02 -8.18622887e-01 -3.43749613e-01 -6.05090000e-02
1.20977700e+00 -1.02617681e+00 -3.34706008e-01 4.37758356e-01
-1.66561210e+00 -1.53124481e-01 1.02363706e-01 1.15682435e+00
-1.90883085e-01 5.25074840e-01 -1.43850982e+00 -9.87544060e-01
-7.52610683e-01 -1.58700216e+00 1.00126302e+00 -1.01491243e-01
-4.33645040e-01 -1.27683294e+00 1.74295038e-01 5.37720680e-01
4.81451184e-01 -5.45000017e-01 7.85089672e-01 -9.94268477e-01
2.28902072e-01 -1.69046730e-01 2.84853429e-01 4.56893206e-01
5.96698880e-01 -3.17419410e-01 -2.19112068e-01 -3.50989014e-01
2.45596781e-01 -1.73709139e-01 -5.99768683e-02 4.67920661e-01
-9.82106477e-02 -3.92349184e-01 -5.04865289e-01 -1.31012589e-01
6.34181976e-01 8.86592865e-01 3.94799292e-01 -2.12538764e-01
3.37254912e-01 8.60538781e-01 4.34383303e-01 -1.34824827e-01
6.12254918e-01 4.77336615e-01 -5.25744140e-01 -4.18856800e-01
-2.01117232e-01 -1.10346666e-02 8.67818594e-01 2.18967628e+00
5.49198866e-01 -3.23294193e-01 -1.17610586e+00 5.89702904e-01
-1.62899673e+00 -3.33854139e-01 -2.57032394e-01 1.80335939e+00
1.25019467e+00 -1.63479924e-01 1.05235554e-01 -5.80821753e-01
8.33100021e-01 -2.65522569e-01 1.02394260e-01 -9.22532976e-01
7.16345236e-02 -4.82466584e-03 5.51678717e-01 1.22298515e+00
-5.99087715e-01 1.12821281e+00 7.60099173e+00 6.86519027e-01
-1.34101164e+00 4.45249915e-01 6.80352211e-01 4.00798738e-01
-1.43302679e-01 -3.06293488e-01 -7.55706429e-01 9.79366153e-02
1.85927105e+00 -2.50455111e-01 3.19661558e-01 4.02662575e-01
7.66224086e-01 7.81400502e-02 -6.22795522e-01 8.51367414e-01
2.77377009e-01 -1.17172253e+00 -1.31121902e-02 -1.64603442e-01
3.08255643e-01 6.13169730e-01 -4.10142601e-01 -1.45857623e-02
3.96690160e-01 -6.76254094e-01 2.00290948e-01 1.61591724e-01
1.08471930e+00 -5.59409380e-01 1.00312114e+00 5.97738206e-01
-1.08229673e+00 5.16072452e-01 -1.51717499e-01 4.10936445e-01
8.64424825e-01 1.23700529e-01 -1.38241839e+00 8.79258871e-01
2.34727904e-01 2.51703888e-01 3.10095489e-01 3.91332269e-01
3.78387049e-02 7.80546963e-01 -2.13345394e-01 -2.80247778e-01
3.80709678e-01 -1.42416313e-01 6.26156509e-01 1.62334561e+00
5.65362751e-01 2.54083782e-01 5.90005100e-01 -1.18413515e-01
3.47928494e-01 5.79351127e-01 -7.26895332e-01 -1.30740732e-01
2.18774945e-01 7.88156033e-01 -6.09029412e-01 -6.24010026e-01
-5.87717891e-01 9.67500627e-01 -4.72675532e-01 3.80156368e-01
-2.63407022e-01 -3.90157074e-01 3.20300698e-01 -1.35969408e-02
-4.40219671e-01 -2.90133983e-01 2.64354739e-02 -9.56901670e-01
-3.03346794e-02 -1.45137095e+00 2.04175681e-01 -5.86670220e-01
-9.61964369e-01 1.52097034e+00 -1.06133968e-01 -1.00480628e+00
-7.20591366e-01 -1.82745159e-01 -2.05568552e-01 1.33811152e+00
-1.07327092e+00 -1.04389763e+00 7.59136498e-01 8.00556004e-01
1.08656180e+00 -6.75677299e-01 1.46813869e+00 5.75646520e-01
-4.54452157e-01 4.04753715e-01 3.50051722e-03 3.75632375e-01
8.56242359e-01 -5.82627118e-01 5.31437039e-01 6.37507617e-01
-1.07173488e-01 8.36302161e-01 6.34306908e-01 -9.29304779e-01
-1.09209502e+00 -7.80188203e-01 2.00450325e+00 -7.79695287e-02
5.79862416e-01 -1.43121541e-01 -7.19144464e-01 5.81288338e-01
8.23498368e-01 -4.53227580e-01 9.32711542e-01 -2.50790685e-01
4.06852216e-01 -5.27347019e-03 -1.07425904e+00 6.48738146e-01
5.27424574e-01 -1.00307596e+00 -4.95870024e-01 8.07962954e-01
1.15925217e+00 -5.10008216e-01 -1.03118885e+00 1.50606409e-02
1.59094170e-01 1.25480548e-01 6.87280893e-01 -5.80125988e-01
-8.82318839e-02 -4.23540287e-02 1.34982937e-03 -1.44604301e+00
1.70362741e-01 -1.20553493e+00 7.41849959e-01 6.80561483e-01
9.92511451e-01 -9.64484155e-01 3.74420255e-01 4.02788669e-01
-4.97277230e-01 -4.01767015e-01 -1.38140392e+00 -6.62730634e-01
3.75443287e-02 -2.59428650e-01 1.12169862e-01 8.86050761e-01
9.91705000e-01 7.40737617e-01 -5.47120631e-01 2.11758822e-01
4.27623577e-02 -6.65554643e-01 2.19178230e-01 -4.34307098e-01
-2.44043946e-01 -2.74431836e-02 -1.38663083e-01 -1.11373258e+00
2.50719255e-03 -8.21753025e-01 4.84032512e-01 -1.79825115e+00
-2.67145690e-02 -1.03110947e-01 1.56239271e-01 4.74755257e-01
1.94511712e-02 -3.21333408e-01 -1.20847963e-01 1.87054768e-01
-1.56713873e-01 1.55938894e-01 1.12235129e+00 -1.05547830e-01
-3.46729666e-01 3.22074980e-01 -4.69199717e-01 3.31719398e-01
8.15453053e-01 -8.31043899e-01 -3.48347753e-01 -4.19479877e-01
-5.60958624e-01 1.33733368e+00 -5.96841633e-01 -1.86075866e-01
5.03228724e-01 -2.44596735e-01 -6.42014205e-01 -3.80304307e-01
1.33699521e-01 -8.85910630e-01 1.47142783e-01 9.78802264e-01
-6.21889353e-01 4.02193904e-01 1.21550150e-01 2.73172647e-01
-5.77553868e-01 -1.00161768e-01 5.20665884e-01 -1.62217885e-01
-1.68728486e-01 -9.59508717e-02 -1.41090071e+00 -5.17277479e-01
9.50355113e-01 1.36023760e-01 -1.51758343e-01 -7.53687978e-01
-1.38924265e+00 2.32039198e-01 -3.11250478e-01 6.39675558e-01
7.99050391e-01 -1.07592487e+00 -1.14395666e+00 4.15837884e-01
7.97988251e-02 -5.15357375e-01 6.57484084e-02 1.23059201e+00
-8.15524876e-01 1.01433969e+00 2.71146625e-01 -5.83502769e-01
-1.90833962e+00 2.46844366e-01 5.41801989e-01 -3.72353882e-01
-4.52339381e-01 5.95944643e-01 -2.51921207e-01 -8.55281472e-01
3.41611445e-01 -3.54018241e-01 -1.07081108e-01 -5.57544351e-01
5.49716711e-01 -7.19437725e-04 2.78395742e-01 -1.04601860e+00
-5.96957862e-01 9.08851624e-04 -1.45478666e-01 -6.53419077e-01
7.01935828e-01 -7.65529096e-01 -3.83069128e-01 6.40515089e-01
1.19997740e+00 -1.87409177e-01 2.33942457e-02 -6.12057269e-01
1.93207845e-01 3.80673915e-01 -2.49519706e-01 -8.10677588e-01
-6.94936931e-01 7.35575914e-01 5.78024983e-01 8.72344300e-02
8.02797318e-01 2.19434023e-01 1.28379822e+00 6.02701008e-01
6.81781590e-01 -1.23416793e+00 -4.52606708e-01 6.25090599e-01
5.28381944e-01 -1.19326448e+00 -7.73081958e-01 -4.53548908e-01
-1.11259401e+00 1.17306066e+00 -5.56618273e-02 5.74479878e-01
9.02094126e-01 6.75351143e-01 1.24034381e+00 -2.49461029e-02
-8.29437077e-01 6.46267831e-02 1.63651165e-02 6.54098094e-01
9.24261332e-01 3.59816164e-01 -6.75443113e-01 5.73934726e-02
1.63542300e-01 5.57718910e-02 4.71868575e-01 1.06865227e+00
-4.03829068e-01 -1.64341009e+00 -6.94402277e-01 9.94888991e-02
-1.03153634e+00 -4.10316169e-01 -4.51260448e-01 2.08138406e-01
-4.43492889e-01 1.61116219e+00 -4.06383038e-01 -1.74981549e-01
4.68514681e-01 2.62815863e-01 -2.80770212e-01 -9.02616322e-01
-7.29379416e-01 1.03552139e+00 8.54379058e-01 -4.43495363e-01
-6.38451219e-01 -5.95689535e-01 -1.45748925e+00 -1.50196418e-01
-1.38385877e-01 7.48746276e-01 8.90502393e-01 9.34639573e-01
2.69170403e-01 7.62780488e-01 6.74643934e-01 -1.01817966e-01
-5.18725812e-01 -1.21215343e+00 -5.14718354e-01 -3.95929128e-01
3.31423998e-01 6.20511234e-01 -1.28943212e-02 1.50802478e-01] | [14.420988082885742, 7.180373191833496] |
220312cf-c24a-477e-854d-37375d8cc802 | phase-aware-single-stage-speech-denoising-and-1 | 2006.00687 | null | https://arxiv.org/abs/2006.00687v1 | https://arxiv.org/pdf/2006.00687v1.pdf | Phase-aware Single-stage Speech Denoising and Dereverberation with U-Net | In this work, we tackle a denoising and dereverberation problem with a single-stage framework. Although denoising and dereverberation may be considered two separate challenging tasks, and thus, two modules are typically required for each task, we show that a single deep network can be shared to solve the two problems. To this end, we propose a new masking method called phase-aware beta-sigmoid mask (PHM), which reuses the estimated magnitude values to estimate the clean phase by respecting the triangle inequality in the complex domain between three signal components such as mixture, source and the rest. Two PHMs are used to deal with direct and reverberant source, which allows controlling the proportion of reverberation in the enhanced speech at inference time. In addition, to improve the speech enhancement performance, we propose a new time-domain loss function and show a reasonable performance gain compared to MSE loss in the complex domain. Finally, to achieve a real-time inference, an optimization strategy for U-Net is proposed which significantly reduces the computational overhead up to 88.9% compared to the na\"ive version. | [] | 2020-06-01 | phase-aware-single-stage-speech-denoising-and | https://arxiv.org/abs/2006.00687 | https://arxiv.org/pdf/2006.00687 | interspeech-2020-6 | ['speech-denoising'] | ['speech'] | [ 1.81178555e-01 -2.08712861e-01 4.14085984e-01 -4.05556887e-01
-8.78496051e-01 -1.87959284e-01 1.31978512e-01 -2.32407048e-01
-5.03595352e-01 7.21190393e-01 2.07461603e-02 -2.39043072e-01
-1.47625450e-02 -6.20270312e-01 -6.64333463e-01 -1.08457232e+00
7.32758269e-02 -3.86804521e-01 4.19507250e-02 -1.33237675e-01
-1.32150844e-01 1.35438755e-01 -1.32133114e+00 -1.14127446e-03
1.34607017e+00 1.27948666e+00 4.96673465e-01 4.84382421e-01
2.41504177e-01 5.00154793e-01 -9.65105951e-01 -1.79584950e-01
1.42088786e-01 -6.07024789e-01 5.89029714e-02 -1.24285989e-01
1.92565888e-01 -3.86211634e-01 -4.96185243e-01 1.41578948e+00
1.08477294e+00 3.58631372e-01 5.06787896e-01 -9.44461703e-01
-1.88894957e-01 6.44740939e-01 -7.57823229e-01 1.96197942e-01
-3.87862176e-02 1.23537362e-01 6.51472092e-01 -8.56027365e-01
-2.80308612e-02 1.16124129e+00 7.58770108e-01 2.61584401e-01
-1.07277465e+00 -1.09830761e+00 2.57697433e-01 4.94353592e-01
-1.42834580e+00 -7.16332734e-01 9.54745889e-01 -1.31882895e-02
5.81332207e-01 3.91164601e-01 4.54520136e-01 9.51026499e-01
-2.58103479e-02 5.68488598e-01 1.20254636e+00 -3.05343091e-01
3.62746827e-02 -2.67517213e-02 4.01893519e-02 3.16984832e-01
4.98041585e-02 8.44793394e-02 -4.60751086e-01 1.62818238e-01
5.90481162e-01 -2.52621621e-01 -9.11116302e-01 2.88678169e-01
-1.04051411e+00 3.77976179e-01 6.38822377e-01 3.58738840e-01
-1.90216601e-01 1.57043323e-01 1.66797996e-01 2.65126228e-01
7.06055641e-01 1.82052493e-01 -4.37872142e-01 1.74692199e-01
-1.05416417e+00 2.43357912e-01 6.43926084e-01 6.02820218e-01
5.83866537e-01 3.69307131e-01 -4.31421906e-01 1.13919067e+00
5.82156479e-01 6.77429378e-01 2.85317332e-01 -6.61270618e-01
6.17428660e-01 -1.02619343e-01 1.46224678e-01 -1.06201589e+00
-3.92704993e-01 -1.04069269e+00 -1.37157953e+00 1.18162006e-01
1.86926469e-01 -5.07706523e-01 -9.24179733e-01 1.99228942e+00
4.24930155e-01 5.99949419e-01 3.45262028e-02 1.12074792e+00
6.92686200e-01 9.28146482e-01 -2.50691265e-01 -6.15254819e-01
1.41061592e+00 -9.82802808e-01 -1.39135456e+00 -3.63006324e-01
-8.30506533e-02 -8.91268134e-01 6.92628205e-01 6.14356279e-01
-1.29960704e+00 -6.62207305e-01 -1.44088185e+00 -4.69782688e-02
8.55819322e-03 2.12815210e-01 1.08822897e-01 7.35555649e-01
-8.67417753e-01 6.37162030e-01 -8.33075464e-01 5.20457745e-01
1.15211420e-01 1.82644442e-01 1.11463450e-01 2.11118199e-02
-1.44426274e+00 8.18407953e-01 9.81805325e-02 7.35395551e-01
-7.66067088e-01 -7.05920219e-01 -8.13522577e-01 2.67206937e-01
2.65913874e-01 -4.76498693e-01 1.13537824e+00 -8.34213495e-01
-1.67707896e+00 2.46860519e-01 -3.53204012e-01 -3.11258078e-01
5.60458779e-01 -3.89007270e-01 -8.10353816e-01 8.89182615e-04
-1.22197658e-01 2.42750440e-03 1.20353627e+00 -1.21922410e+00
-4.86169755e-01 -2.66891569e-01 -7.45662972e-02 2.48559117e-01
-4.41142380e-01 -5.64305298e-02 -4.98655468e-01 -1.24153471e+00
4.53304797e-01 -4.56655234e-01 -1.82830751e-01 -1.65659368e-01
-3.41139376e-01 3.13401252e-01 5.74034512e-01 -1.35867810e+00
1.47705948e+00 -2.47663450e+00 1.43907145e-01 1.87199771e-01
1.73542932e-01 4.42497492e-01 1.00097828e-01 6.22139638e-03
-5.87261878e-02 -1.83001310e-01 -6.38220191e-01 -6.46612108e-01
2.86337025e-02 -8.81631747e-02 -2.65850872e-01 5.30709922e-01
1.52528152e-01 2.39464745e-01 -5.93794703e-01 -1.80595666e-01
3.05891074e-02 7.70816565e-01 -4.91484791e-01 3.80666643e-01
1.72837496e-01 5.78102708e-01 1.81304459e-02 2.73560345e-01
1.37606096e+00 2.23336607e-01 1.93492442e-01 -5.05185544e-01
-1.63109794e-01 3.45391035e-01 -1.54917121e+00 1.57055163e+00
-8.82770061e-01 5.32836556e-01 1.00122309e+00 -1.06087828e+00
9.36126292e-01 5.96890569e-01 -3.19136754e-02 -7.73688257e-01
1.73546240e-01 4.67716306e-01 2.27359056e-01 -3.97400886e-01
1.62280649e-01 -2.32005432e-01 3.65408927e-01 1.05025612e-01
7.54740164e-02 -9.44405049e-02 -1.20984584e-01 -3.39958757e-01
8.26873183e-01 -4.46982905e-02 -6.25320002e-02 -2.45897546e-01
6.35900140e-01 -7.92881370e-01 1.07471359e+00 6.12139523e-01
-1.14300489e-01 6.91094697e-01 2.47323349e-01 1.82446659e-01
-5.76080203e-01 -1.04064417e+00 -1.59151658e-01 8.26901734e-01
3.50433528e-01 -1.06129870e-01 -9.26669717e-01 -1.62894413e-01
-3.25695276e-01 7.19663262e-01 -1.11593828e-01 -2.14788854e-01
-8.94241154e-01 -1.02799785e+00 4.31090713e-01 2.22177699e-01
9.33724046e-01 -5.97256720e-01 -8.02041143e-02 2.93370932e-01
-4.49818522e-01 -1.01268601e+00 -8.71931374e-01 4.93063807e-01
-5.26996315e-01 -6.73783541e-01 -9.34354246e-01 -9.16655838e-01
5.38292050e-01 3.98090094e-01 5.81105292e-01 -1.52259052e-01
7.92714804e-02 -2.83815533e-01 -1.96388289e-01 -3.37100565e-01
-1.23537593e-01 -1.68914214e-01 1.15359537e-02 3.49334002e-01
-2.99188524e-01 -1.02159178e+00 -9.72516418e-01 3.31756800e-01
-8.64288092e-01 6.45593256e-02 5.57131648e-01 8.41718435e-01
2.89183199e-01 4.99351412e-01 7.91509271e-01 -2.09546506e-01
7.74323702e-01 -3.50316823e-01 -5.49248815e-01 4.50958014e-02
-4.09813404e-01 -2.07675666e-01 7.81223357e-01 -6.38602853e-01
-1.36869466e+00 -2.97767311e-01 -5.27185023e-01 -3.61972839e-01
2.43541032e-01 4.74655509e-01 -6.33398533e-01 2.58717984e-02
2.96343058e-01 3.87336403e-01 -8.90803710e-02 -7.57427514e-01
1.65325314e-01 8.86906087e-01 6.30743265e-01 -2.42898032e-01
8.90891433e-01 2.30753124e-01 -1.60407007e-01 -8.33335936e-01
-8.38409424e-01 -2.88998872e-01 1.34459019e-01 -5.14990278e-02
5.64661026e-01 -1.15320218e+00 -8.10653806e-01 9.34522152e-01
-1.45124030e+00 -2.42056504e-01 1.55494198e-01 7.66949832e-01
-1.77920461e-01 4.42110211e-01 -7.79098332e-01 -1.06295276e+00
-5.61583281e-01 -1.20764112e+00 6.75298393e-01 3.84173721e-01
2.34728441e-01 -5.53354204e-01 -2.70853847e-01 1.68260470e-01
5.52392423e-01 2.21739896e-02 6.24536276e-01 -1.51993185e-01
-3.56683642e-01 3.15336771e-02 -2.30106980e-01 7.77222216e-01
5.45798726e-02 -4.57049429e-01 -1.26936305e+00 -4.25233066e-01
7.93007493e-01 1.92737088e-01 9.12183881e-01 5.24317324e-01
1.30562341e+00 -3.63706708e-01 -9.82630327e-02 9.24206138e-01
1.06606460e+00 5.42729139e-01 8.18606257e-01 3.21648419e-02
4.36082602e-01 4.57125425e-01 4.88388389e-01 3.71662378e-01
2.01493636e-01 6.19903803e-01 2.69029438e-01 -3.04281741e-01
-3.13893437e-01 3.03647947e-02 3.17223310e-01 1.28760600e+00
1.44422978e-01 -4.18075621e-01 -3.67762387e-01 3.53980064e-01
-1.62753868e+00 -7.49453723e-01 -2.16153219e-01 2.26299405e+00
1.17105556e+00 2.05625847e-01 -3.69714707e-01 3.72772247e-01
8.62063229e-01 4.34573233e-01 -6.27282798e-01 -6.14163578e-02
-1.99840561e-01 5.19682109e-01 4.14805233e-01 7.08908260e-01
-1.02552140e+00 3.07540625e-01 5.99134779e+00 1.33821762e+00
-1.27646101e+00 3.32304537e-01 6.84641182e-01 -5.14783897e-02
-2.68143982e-01 -2.62909651e-01 -5.87309480e-01 7.06469178e-01
7.45159447e-01 5.24335019e-02 6.87399209e-01 3.50803256e-01
5.82465112e-01 -1.89430378e-02 -5.67537963e-01 1.05544651e+00
-7.14212358e-02 -5.67829013e-01 -5.20326138e-01 -3.70848149e-01
4.46630597e-01 -4.18259054e-01 1.12026699e-01 2.87886173e-01
-2.54712552e-01 -8.79855633e-01 8.43602836e-01 5.61874151e-01
6.92986846e-01 -8.85561585e-01 4.93605733e-01 5.21123290e-01
-1.29930007e+00 -9.04522613e-02 -1.85831279e-01 -7.00592399e-02
2.46193111e-01 1.20979702e+00 -2.79356241e-01 8.41248751e-01
7.00777531e-01 3.55407238e-01 2.30321705e-01 1.19453347e+00
-5.63499033e-01 7.53390491e-01 -2.85028964e-01 2.35174164e-01
-1.64276645e-01 -4.67670739e-01 7.25022733e-01 1.20000029e+00
6.17071450e-01 5.19804358e-02 -1.23656891e-01 8.31462741e-01
-1.38670251e-01 -2.83700407e-01 1.40012532e-01 4.14665490e-01
5.14421642e-01 1.33203089e+00 -2.75721729e-01 -1.13378577e-01
-2.50557214e-01 1.10957325e+00 -9.50241238e-02 7.67763495e-01
-1.13471735e+00 -1.02937782e+00 7.94257700e-01 -1.51028819e-02
4.04323906e-01 -2.23169178e-01 -3.51312906e-01 -1.19513655e+00
4.56115931e-01 -1.04114151e+00 -1.23816811e-01 -6.51328444e-01
-1.02486396e+00 6.19936824e-01 -3.54139060e-01 -1.31648946e+00
6.03263453e-02 -3.68051857e-01 -7.54070461e-01 1.33953464e+00
-1.81346512e+00 -6.53126836e-01 -2.96876520e-01 3.77347827e-01
3.63026708e-01 2.58582979e-01 4.86418098e-01 9.66564059e-01
-7.79967189e-01 6.30376458e-01 3.42285872e-01 -1.12384059e-01
9.03161824e-01 -1.09504843e+00 3.65808636e-01 1.08560419e+00
-2.79008180e-01 6.25115037e-01 8.76150191e-01 -3.82822365e-01
-1.16821337e+00 -1.05188286e+00 6.62185788e-01 5.16080081e-01
3.16745251e-01 -6.22503579e-01 -1.01934898e+00 1.54034063e-01
4.08240557e-01 -3.64870131e-02 3.93435150e-01 -1.69782624e-01
-2.13340148e-01 -6.09965861e-01 -1.04000986e+00 7.44390249e-01
8.94628525e-01 -3.90732199e-01 -2.87267715e-01 8.90320688e-02
9.71291840e-01 -6.68210506e-01 -6.86458528e-01 5.51086903e-01
3.07572663e-01 -9.07572210e-01 9.75071132e-01 8.69701728e-02
2.95892805e-01 -6.28725410e-01 -1.80429444e-01 -1.68391192e+00
-9.54391882e-02 -1.10988772e+00 -4.44539934e-01 1.51856184e+00
3.08864117e-01 -8.56032312e-01 2.17255309e-01 4.96957377e-02
-4.00869399e-01 -6.96517885e-01 -9.74147558e-01 -7.41025448e-01
-2.43410960e-01 -3.87072921e-01 5.00338852e-01 6.95998669e-01
-2.60591924e-01 2.90668994e-01 -6.78544819e-01 4.80707049e-01
7.24844217e-01 -5.93209006e-02 3.73123288e-01 -6.85114980e-01
-5.95867634e-01 -3.43253493e-01 1.18622541e-01 -1.62917984e+00
-3.06876265e-02 -6.14483535e-01 5.56586862e-01 -1.44304454e+00
-2.94037372e-01 -2.64905661e-01 -4.75572109e-01 -4.41824496e-02
-5.81587076e-01 5.86079806e-02 -1.48959700e-02 -2.24596232e-01
8.09870940e-03 9.63265419e-01 1.34741938e+00 -3.26004624e-01
-1.26362696e-01 2.55317569e-01 -7.41546035e-01 7.56380916e-01
6.55935407e-01 -4.71443295e-01 -3.08115184e-01 -6.52773142e-01
-1.34490296e-01 3.47915858e-01 2.97775149e-01 -1.14754403e+00
3.07676047e-01 2.26398572e-01 2.97307402e-01 -5.74193537e-01
7.06953526e-01 -7.94621050e-01 1.19199254e-01 5.22685766e-01
-1.29431412e-01 -5.04070997e-01 2.17595741e-01 5.37846625e-01
-5.47433376e-01 -8.47122744e-02 1.08372152e+00 1.74677610e-01
-1.23682030e-01 1.70927674e-01 -2.89100766e-01 -2.10901603e-01
6.23332024e-01 1.30071566e-01 -2.30146095e-01 -5.65663874e-01
-6.11149788e-01 3.01569253e-01 -2.89152652e-01 -1.78910978e-02
5.47342181e-01 -1.30090487e+00 -7.96915650e-01 1.24310106e-01
-5.14722526e-01 5.32599241e-02 8.30766678e-01 1.00797760e+00
-1.95493713e-01 2.11664326e-02 2.08619893e-01 -2.76793271e-01
-1.01315415e+00 3.07935327e-01 6.24793649e-01 -1.90488040e-01
-2.99187511e-01 9.51225460e-01 3.53242546e-01 -2.55645424e-01
4.84122247e-01 -2.62242347e-01 -1.04695059e-01 1.17961638e-01
7.17328429e-01 5.76126635e-01 2.50012338e-01 -2.64428020e-01
-1.69660583e-01 3.93769413e-01 1.41698658e-01 -3.24528009e-01
1.22536945e+00 -3.35984796e-01 -3.38092744e-01 3.45082968e-01
1.30506766e+00 3.55155379e-01 -1.37470436e+00 -2.64804959e-01
-4.59646553e-01 -3.34223628e-01 4.02433813e-01 -8.12308073e-01
-1.29886687e+00 9.50494289e-01 7.73303092e-01 1.77214801e-01
1.74343157e+00 -6.65692925e-01 1.08507168e+00 4.16352451e-02
-1.22903243e-01 -1.09784949e+00 -1.27089769e-01 3.64989579e-01
9.81249809e-01 -8.15246046e-01 -1.82281286e-01 -5.53530276e-01
-1.26667410e-01 8.67941260e-01 5.58508098e-01 3.80819030e-02
8.01672101e-01 4.98623490e-01 1.65238187e-01 3.70919943e-01
-3.18258405e-01 -3.09466608e-02 3.16468954e-01 4.39596295e-01
5.07648170e-01 -4.14881594e-02 -6.17836058e-01 9.13974345e-01
-7.66647011e-02 -3.75978798e-01 1.93968564e-01 5.68862498e-01
-4.72821444e-01 -9.53708708e-01 -6.24558270e-01 3.19080442e-01
-7.15837419e-01 -4.03465658e-01 2.47312903e-01 2.17419863e-01
2.38887921e-01 1.37308156e+00 -6.52999356e-02 -3.82589817e-01
4.64081138e-01 -2.26582512e-01 2.46329784e-01 -2.03256145e-01
-6.81980848e-01 6.56194806e-01 4.11680266e-02 -2.84525245e-01
-1.46911263e-01 -2.59854317e-01 -9.00142789e-01 -2.76431859e-01
-5.98992765e-01 9.94628891e-02 7.03270018e-01 7.40759254e-01
1.43462718e-01 1.07323658e+00 8.52095306e-01 -8.94864559e-01
-7.59695530e-01 -1.14665329e+00 -9.40839767e-01 4.64615598e-02
6.56674802e-01 -4.52373415e-01 -5.93221486e-01 -1.36106625e-01] | [14.966816902160645, 5.9065070152282715] |
e3aeb223-bb5e-45ad-948b-0a554732a4ae | the-ethical-ambiguity-of-ai-data-enrichment | 2306.018 | null | https://arxiv.org/abs/2306.01800v1 | https://arxiv.org/pdf/2306.01800v1.pdf | The ethical ambiguity of AI data enrichment: Measuring gaps in research ethics norms and practices | The technical progression of artificial intelligence (AI) research has been built on breakthroughs in fields such as computer science, statistics, and mathematics. However, in the past decade AI researchers have increasingly looked to the social sciences, turning to human interactions to solve the challenges of model development. Paying crowdsourcing workers to generate or curate data, or data enrichment, has become indispensable for many areas of AI research, from natural language processing to reinforcement learning from human feedback (RLHF). Other fields that routinely interact with crowdsourcing workers, such as Psychology, have developed common governance requirements and norms to ensure research is undertaken ethically. This study explores how, and to what extent, comparable research ethics requirements and norms have developed for AI research and data enrichment. We focus on the approach taken by two leading conferences: ICLR and NeurIPS, and journal publisher Springer. In a longitudinal study of accepted papers, and via a comparison with Psychology and CHI papers, this work finds that leading AI venues have begun to establish protocols for human data collection, but these are are inconsistently followed by authors. Whilst Psychology papers engaging with crowdsourcing workers frequently disclose ethics reviews, payment data, demographic data and other information, similar disclosures are far less common in leading AI venues despite similar guidance. The work concludes with hypotheses to explain these gaps in research ethics practices and considerations for its implications. | ['Brent Mittelstadt', 'Will Hawkins'] | 2023-06-01 | null | null | null | null | ['ethics'] | ['miscellaneous'] | [ 2.16826145e-02 5.37242055e-01 -1.15169346e-01 -5.40316582e-01
-5.62165916e-01 -6.84326053e-01 5.15311062e-01 5.75923443e-01
-9.63721395e-01 7.44489014e-01 6.84564173e-01 -4.77114290e-01
-1.34015922e-02 -1.61740094e-01 -4.25328851e-01 -2.43574470e-01
4.76538777e-01 4.49687243e-01 -1.60224006e-01 -1.24966964e-01
7.38928258e-01 3.56156319e-01 -1.40553463e+00 -1.03390433e-01
8.80596399e-01 1.80046469e-01 -3.91393125e-01 5.13320744e-01
-6.84425831e-02 1.05664563e+00 -7.28217185e-01 -8.13349128e-01
3.71506542e-01 -3.49676907e-01 -8.63839328e-01 -1.26283482e-01
2.65486211e-01 -4.56096977e-01 8.12826976e-02 7.37208426e-01
7.52948403e-01 1.17816009e-01 2.18013465e-01 -1.54835403e+00
-1.14009583e+00 4.63002414e-01 -5.85393310e-01 2.11159006e-01
6.91262841e-01 5.90913951e-01 6.64305389e-01 -5.40002108e-01
7.84763992e-01 1.36603642e+00 5.67076385e-01 5.09585798e-01
-1.02972460e+00 -7.50207365e-01 -8.03023502e-02 -8.38902667e-02
-1.12506032e+00 -6.66711628e-01 3.19209874e-01 -7.64146924e-01
6.89649701e-01 1.85500011e-01 5.69628298e-01 1.04982245e+00
-4.79153730e-02 3.12860578e-01 1.37809360e+00 -5.52280664e-01
6.16283476e-01 5.27379274e-01 2.03030825e-01 1.24628022e-01
6.08241022e-01 -1.46463260e-01 -6.53898478e-01 -5.28128266e-01
6.85615122e-01 -4.00699615e-01 1.57415435e-01 8.19196478e-02
-1.23625791e+00 7.34090984e-01 5.76730557e-02 5.51582515e-01
-5.37072778e-01 -4.23296131e-02 4.24059510e-01 9.84091610e-02
4.81689572e-01 7.96139419e-01 1.46944327e-02 -6.89233780e-01
-6.26005411e-01 7.43810058e-01 1.23111856e+00 8.37944031e-01
4.59672660e-01 -2.14827746e-01 -2.55080730e-01 7.52256751e-01
4.63918924e-01 3.08817327e-01 2.83547282e-01 -1.44629622e+00
2.12602153e-01 8.71425509e-01 5.87577701e-01 -1.34737933e+00
-1.58297867e-01 3.40256721e-01 -3.68996710e-01 2.41607726e-01
6.74797952e-01 -3.49071592e-01 -5.22912025e-01 1.32100868e+00
4.97132331e-01 -3.74629736e-01 -2.40788281e-01 1.30831683e+00
6.88210726e-01 -3.33018717e-03 6.98093355e-01 -6.23775199e-02
1.37465978e+00 -3.15129846e-01 -8.18349957e-01 -4.89448190e-01
6.51803732e-01 -7.07029402e-01 1.01513147e+00 4.32319731e-01
-1.42455316e+00 -2.32460052e-01 -5.46701491e-01 -5.14711797e-01
-3.28768045e-01 -4.66588020e-01 5.31269133e-01 8.75294566e-01
-1.18833160e+00 4.26634192e-01 -6.46711111e-01 -1.00116456e+00
4.94742334e-01 1.35147274e-01 -4.11625475e-01 -9.24121886e-02
-1.21251631e+00 1.13619089e+00 -6.03476688e-02 2.09855825e-01
-3.10266852e-01 -5.38512528e-01 -6.76827610e-01 -5.28043509e-01
2.98742533e-01 -3.96796435e-01 1.22354186e+00 -9.66578901e-01
-1.07716238e+00 1.22062290e+00 -1.89089671e-01 -3.38286966e-01
5.42019010e-01 -1.32191435e-01 -2.81320393e-01 -4.45835851e-02
5.41915834e-01 7.32637942e-01 1.84871927e-01 -1.14294970e+00
-5.92128277e-01 -5.48186839e-01 1.52526842e-02 2.64194459e-01
-2.18386143e-01 8.86426389e-01 -1.28546646e-02 -2.65290082e-01
-1.71957478e-01 -8.09812367e-01 -4.23258305e-01 -6.54717209e-03
1.44991115e-01 -5.59131503e-01 2.16538623e-01 -5.91080725e-01
1.07808852e+00 -1.96899879e+00 -3.85580331e-01 1.20187163e-01
5.85880160e-01 1.50537655e-01 1.95936173e-01 8.03433597e-01
4.83783782e-01 6.95642173e-01 3.31925638e-02 -6.53325394e-02
3.30245256e-01 3.70568372e-02 -1.01738192e-01 6.25890732e-01
1.84703857e-01 9.62960958e-01 -1.29295015e+00 -5.50145209e-01
-1.95672825e-01 2.37810612e-01 -3.18184525e-01 -3.90753075e-02
1.59640655e-01 4.19618011e-01 -3.94111067e-01 6.14847839e-01
4.41293955e-01 -1.25115946e-01 2.63009876e-01 6.27305865e-01
-6.06890500e-01 1.43378749e-01 -9.80615556e-01 1.22566760e+00
8.21801499e-02 7.30216980e-01 4.99265492e-01 -5.62157691e-01
1.06841707e+00 5.56281865e-01 4.65811938e-01 -6.82505429e-01
3.20429772e-01 4.80839729e-01 3.37382942e-01 -7.81251907e-01
6.13086641e-01 1.21713271e-02 1.43628463e-01 8.59830916e-01
-5.15578687e-01 -3.94912541e-01 1.47267625e-01 1.91536173e-01
1.24851596e+00 3.42708498e-01 1.59679979e-01 -3.06948543e-01
5.86423324e-03 6.35709107e-01 7.69055605e-01 8.49822402e-01
-8.55314195e-01 3.05356503e-01 3.39361221e-01 -4.85531837e-01
-1.31199694e+00 -4.01935786e-01 -9.66137201e-02 1.21871114e+00
1.69190280e-02 -2.68175542e-01 -9.96481180e-01 -2.22544931e-02
1.47103652e-01 6.31673932e-01 -4.51316535e-01 -1.77033879e-02
-3.32738847e-01 -1.99912548e-01 6.84133470e-01 3.77391845e-01
3.93226087e-01 -1.45952547e+00 -1.01287031e+00 2.94098705e-01
-3.62772159e-02 -1.16029143e+00 -1.43980235e-01 -4.19436455e-01
-5.70879817e-01 -9.04368520e-01 -7.26727188e-01 -4.50403214e-01
5.34525692e-01 3.44200015e-01 9.43855762e-01 2.23691091e-01
-4.74415123e-01 7.21049011e-01 -4.19343263e-01 -1.19944906e+00
-4.88960028e-01 -1.87858090e-01 1.49852693e-01 -3.23910445e-01
1.32958436e+00 -3.60897094e-01 -4.33114141e-01 3.21197510e-01
-1.11449730e+00 -3.01536262e-01 6.38447344e-01 1.40138671e-01
-1.25485986e-01 -6.54977560e-01 8.74891162e-01 -8.40173960e-01
1.10702586e+00 -8.06284070e-01 -1.26856081e-02 1.09925099e-01
-9.13428605e-01 -5.99614859e-01 2.55826384e-01 -2.17415601e-01
-7.51488924e-01 -5.09855449e-01 6.71316922e-01 -1.01024345e-01
-7.32739568e-01 5.54338217e-01 2.72817045e-01 -5.72587550e-02
1.34279966e+00 -6.02561593e-01 4.10364807e-01 1.10924290e-02
-5.70131792e-03 1.05224943e+00 2.19811887e-01 -6.67827547e-01
6.04324043e-01 3.90994281e-01 -5.86944818e-01 -8.88504505e-01
-3.16469580e-01 -4.93690521e-01 -3.81695002e-01 -3.95212382e-01
9.07364368e-01 -8.75155866e-01 -1.09129822e+00 1.19077839e-01
-1.03940475e+00 -4.14393991e-01 -2.98943430e-01 7.98709035e-01
-1.99296474e-01 1.11159690e-01 -4.07441497e-01 -1.32855248e+00
-2.83586066e-02 -7.53621757e-01 8.50539804e-01 4.01198834e-01
-9.84251261e-01 -7.63248324e-01 1.93177179e-01 1.01561689e+00
5.15575707e-01 3.75107378e-01 4.21818227e-01 -8.06367218e-01
-2.21155450e-01 -5.42004406e-01 -1.13102749e-01 6.58236295e-02
-1.30284712e-01 2.42385700e-01 -1.10546064e+00 1.21914528e-01
-1.87554285e-02 -7.64772594e-01 -1.07019112e-01 1.42774761e-01
4.97261852e-01 -4.12421316e-01 -1.77385300e-01 -3.46270055e-01
9.46923912e-01 5.52246451e-01 5.19452691e-01 6.17331028e-01
4.86494273e-01 1.40543997e+00 6.12178802e-01 4.60053086e-01
6.58781946e-01 1.52610287e-01 -1.80104539e-01 2.13394791e-01
5.89779735e-01 -8.91375542e-02 3.95994514e-01 4.45396423e-01
-3.29749823e-01 5.93654141e-02 -1.50985134e+00 8.26336801e-01
-2.04231501e+00 -8.34582925e-01 -3.39970231e-01 2.11247659e+00
8.78575981e-01 3.12083941e-02 4.69869405e-01 -1.06313169e-01
7.87335455e-01 -3.67172323e-02 -4.52604890e-01 -9.44938540e-01
7.12715462e-02 -3.53811681e-02 4.14573967e-01 3.83112788e-01
-5.32354712e-01 8.04472446e-01 6.64380693e+00 1.73428595e-01
-6.64011955e-01 -1.01144118e-02 6.59628987e-01 -1.23001724e-01
-7.07696676e-01 2.55705267e-01 -3.28837186e-01 2.47601092e-01
9.90586162e-01 -6.09874964e-01 6.35795772e-01 6.23161316e-01
7.39716411e-01 -5.98469198e-01 -1.15246427e+00 7.17822671e-01
-6.89149052e-02 -8.63423526e-01 -5.36135197e-01 2.85316288e-01
6.03065431e-01 -2.15863232e-02 -2.79992610e-01 1.17879681e-01
7.94948578e-01 -1.30858076e+00 6.60555780e-01 5.09056509e-01
3.11648995e-01 -3.39887291e-01 7.25689530e-01 3.52960110e-01
-2.41798311e-01 -7.18886778e-02 -3.48620176e-01 -8.37255776e-01
1.03687234e-02 5.21525085e-01 -1.07089901e+00 1.36054724e-01
9.45447147e-01 2.74569809e-01 -3.27417254e-01 8.50642383e-01
-8.38714186e-03 6.40088737e-01 -8.83193016e-02 -4.93101865e-01
1.63749129e-01 -3.53306770e-01 4.99202162e-01 9.93264914e-01
-2.72770762e-01 5.51743686e-01 -1.13650896e-01 9.70672846e-01
4.43225652e-02 9.05932561e-02 -9.62029159e-01 -6.61972940e-01
8.56933951e-01 1.31471121e+00 -7.09347606e-01 4.81180549e-02
-3.26511621e-01 3.81230623e-01 2.32142016e-01 5.89503288e-01
-3.53512138e-01 -4.05323476e-01 5.94371378e-01 4.45847720e-01
-5.67558944e-01 -2.78831720e-01 -6.16851449e-01 -3.91425639e-01
3.20898622e-01 -1.27667391e+00 -1.33465067e-01 -7.82370210e-01
-1.36979520e+00 1.78110749e-01 4.62071896e-02 -7.43242383e-01
-2.93939829e-01 -2.24430412e-01 -3.12925786e-01 1.07539248e+00
-7.71157682e-01 -8.71013880e-01 -3.46459776e-01 3.85891274e-02
-5.09168208e-02 1.21994510e-01 6.35750055e-01 6.44435175e-03
-4.10331219e-01 3.50993633e-01 -1.85232967e-01 2.44613230e-01
1.05071175e+00 -9.08563316e-01 4.41237152e-01 4.29488420e-01
-3.29274982e-01 1.09581363e+00 7.06351399e-01 -9.96033907e-01
-1.46297789e+00 -4.44767565e-01 1.27326381e+00 -8.63088608e-01
7.16835856e-01 -3.78365964e-01 -8.08316946e-01 6.27089500e-01
3.93333346e-01 -2.11827487e-01 8.40271235e-01 -1.08189741e-02
4.13990766e-02 1.63889095e-01 -1.27671421e+00 8.38540375e-01
9.98065889e-01 -6.65508509e-01 -4.92262095e-01 4.28902119e-01
6.65540278e-01 -2.36473337e-01 -8.83016050e-01 -8.29832703e-02
6.66377544e-01 -7.75340199e-01 2.38967896e-01 -8.39943588e-01
5.40236294e-01 -2.12771565e-01 3.09194773e-01 -8.90449882e-01
-3.43842745e-01 -1.05116165e+00 7.11841881e-01 1.53240895e+00
2.19237536e-01 -7.80469000e-01 7.72860408e-01 1.95024514e+00
1.50134554e-02 -4.81706291e-01 -6.02154672e-01 -3.01381111e-01
2.07007483e-01 -4.25263315e-01 3.47826540e-01 1.32355499e+00
2.72719920e-01 7.33936578e-02 1.38380304e-01 -2.27845058e-01
3.09937775e-01 -7.14350462e-01 1.01211643e+00 -1.35069108e+00
2.37552568e-01 -4.95086282e-01 -4.60693538e-01 -3.39700207e-02
-1.21602707e-01 -3.97000641e-01 1.73880294e-01 -1.85723746e+00
-7.22849593e-02 -3.86699468e-01 2.53979594e-01 3.45895886e-01
-3.06732267e-01 -7.00119734e-02 2.73485810e-01 3.13071549e-01
-4.30888623e-01 3.80877964e-02 1.22942579e+00 3.99272621e-01
-5.05727828e-01 -5.20808518e-01 -1.42097914e+00 5.31280994e-01
7.35808313e-01 -4.05056119e-01 -2.75385112e-01 -4.62099344e-01
7.61625230e-01 -3.41947824e-01 7.40135968e-01 -8.87865484e-01
6.65807009e-01 -6.19444907e-01 2.37523645e-01 2.79891968e-01
-1.69165775e-01 -8.94247234e-01 1.73704252e-01 -4.61811088e-02
-6.96585715e-01 4.78388257e-02 3.25884014e-01 2.42594942e-01
-8.33714902e-02 -3.61352682e-01 1.39931276e-01 -2.78186649e-01
-1.37209073e-01 -8.90680924e-02 -5.88289678e-01 5.67197621e-01
1.32144964e+00 -7.33594418e-01 -5.64398050e-01 -6.91057742e-01
-3.49088997e-01 5.72037876e-01 7.72813261e-01 3.72273058e-01
2.72390604e-01 -1.00013602e+00 -9.15882528e-01 -2.72809774e-01
-1.20947436e-04 2.64321357e-01 1.44387513e-01 1.18068087e+00
-4.88077700e-01 2.85105497e-01 -1.75137818e-01 -8.82121101e-02
-6.92391157e-01 3.24524760e-01 -1.23422630e-01 3.92113984e-01
-3.07750762e-01 5.92107952e-01 -2.03999013e-01 -4.31442082e-01
4.23352152e-01 -9.64036863e-03 -2.05701619e-01 2.16133669e-01
5.76261103e-01 8.93349349e-01 -1.14987709e-01 -5.48680723e-01
-4.19658095e-01 1.03317618e-01 -1.64675731e-02 -8.17542732e-01
1.15335155e+00 -6.23198831e-03 -4.18944001e-01 7.74031758e-01
6.52647376e-01 1.77158471e-02 -8.40901494e-01 1.20666914e-01
4.29982454e-01 -5.56488454e-01 -4.39942390e-01 -8.64178360e-01
-3.46245974e-01 7.34249890e-01 8.28687027e-02 6.26760185e-01
6.32084429e-01 -1.50184661e-01 3.87250572e-01 2.60138124e-01
4.65611279e-01 -1.63364732e+00 -2.43961841e-01 2.22295731e-01
1.12042844e+00 -1.32777786e+00 1.41282007e-02 -2.98703108e-02
-1.17276931e+00 7.71461725e-01 7.84694552e-01 7.47480467e-02
4.75235254e-01 9.11105871e-02 3.28703582e-01 -4.44268078e-01
-4.69689548e-01 3.13321725e-02 -1.58290863e-01 8.30231905e-01
9.09852803e-01 3.81867997e-02 -9.67676520e-01 6.22676492e-01
-2.49593586e-01 6.82964981e-01 7.25043476e-01 1.28050733e+00
-2.82952249e-01 -9.40895021e-01 -8.31791461e-01 4.85003352e-01
-7.33272731e-01 4.87077013e-02 -1.23355162e+00 8.93581212e-01
6.35764152e-02 1.44914782e+00 1.93295062e-01 -2.34215468e-01
3.31521034e-01 1.02395974e-01 -1.12278350e-01 -7.29710937e-01
-1.31698596e+00 -1.59460828e-01 2.65399247e-01 -5.39581954e-01
-7.64613748e-01 -8.19218576e-01 -1.25653446e+00 -6.61106944e-01
6.74343556e-02 4.23389435e-01 7.53475487e-01 8.64400685e-01
7.19283104e-01 -8.24314877e-02 2.27274910e-01 -5.54796100e-01
-4.35923696e-01 -1.01012170e+00 -5.81928849e-01 4.39459592e-01
2.15740558e-02 -2.84753054e-01 -3.98065537e-01 -7.32398257e-02] | [9.288463592529297, 6.539114475250244] |
10fa5ad9-fc1e-46fc-80ef-c03c70fe1aa3 | event-camera-based-visual-odometry-for | 2305.08962 | null | https://arxiv.org/abs/2305.08962v1 | https://arxiv.org/pdf/2305.08962v1.pdf | Event Camera-based Visual Odometry for Dynamic Motion Tracking of a Legged Robot Using Adaptive Time Surface | Our paper proposes a direct sparse visual odometry method that combines event and RGB-D data to estimate the pose of agile-legged robots during dynamic locomotion and acrobatic behaviors. Event cameras offer high temporal resolution and dynamic range, which can eliminate the issue of blurred RGB images during fast movements. This unique strength holds a potential for accurate pose estimation of agile-legged robots, which has been a challenging problem to tackle. Our framework leverages the benefits of both RGB-D and event cameras to achieve robust and accurate pose estimation, even during dynamic maneuvers such as jumping and landing a quadruped robot, the Mini-Cheetah. Our major contributions are threefold: Firstly, we introduce an adaptive time surface (ATS) method that addresses the whiteout and blackout issue in conventional time surfaces by formulating pixel-wise decay rates based on scene complexity and motion speed. Secondly, we develop an effective pixel selection method that directly samples from event data and applies sample filtering through ATS, enabling us to pick pixels on distinct features. Lastly, we propose a nonlinear pose optimization formula that simultaneously performs 3D-2D alignment on both RGB-based and event-based maps and images, allowing the algorithm to fully exploit the benefits of both data streams. We extensively evaluate the performance of our framework on both public datasets and our own quadruped robot dataset, demonstrating its effectiveness in accurately estimating the pose of agile robots during dynamic movements. | ['Donghyun Kim', 'Erik Learned-Miller', 'Michael Yang', 'Zhipeng Tang', 'Shifan Zhu'] | 2023-05-15 | null | null | null | null | ['visual-odometry'] | ['robots'] | [ 1.46916822e-01 -3.52068841e-01 1.73312187e-01 -9.73848850e-02
-6.00801945e-01 -5.84965765e-01 1.61498576e-01 -1.11114308e-01
-6.79783642e-01 5.65444350e-01 -1.93011656e-01 3.13316166e-01
3.78820696e-03 -9.08708513e-01 -9.59829628e-01 -5.24001598e-01
-4.97062296e-01 5.46090066e-01 6.47073984e-01 -5.03650367e-01
1.64326325e-01 5.19231021e-01 -1.86837196e+00 -3.63528162e-01
7.57971823e-01 1.02004325e+00 2.70277083e-01 6.77250803e-01
4.34577018e-01 4.21773016e-01 -3.75648260e-01 -5.79501539e-02
7.05744565e-01 -2.41579086e-01 -2.18849555e-01 2.77653128e-01
4.52674776e-01 -4.49588895e-01 -3.39266926e-01 6.15145326e-01
6.48384750e-01 2.59292454e-01 3.22552860e-01 -1.30490899e+00
5.27191982e-02 -1.50515184e-01 -8.73873413e-01 4.21517231e-02
5.68404257e-01 8.08519185e-01 7.03792453e-01 -7.90610611e-01
7.53577113e-01 1.04420233e+00 1.00895870e+00 1.01152502e-01
-1.14867413e+00 -4.86643374e-01 -3.89831141e-02 3.40351552e-01
-1.32665837e+00 -2.20762029e-01 5.81499040e-01 -3.64136070e-01
1.08946812e+00 -1.02362990e-01 1.31806993e+00 8.32153857e-01
3.46296757e-01 5.33216298e-01 9.45205629e-01 -8.21352825e-02
3.17853659e-01 -7.35894799e-01 -3.97460014e-01 9.36681688e-01
4.21049237e-01 1.23186829e-02 -1.12303293e+00 8.38591009e-02
9.25321937e-01 1.66927561e-01 -3.84119540e-01 -9.53475475e-01
-1.52175200e+00 4.60719168e-01 6.15993083e-01 -5.92127740e-01
-6.68613136e-01 5.11271656e-01 1.25624210e-01 8.80426317e-02
8.94427076e-02 3.03117901e-01 -3.85539562e-01 -7.43618369e-01
-5.47012806e-01 3.42075884e-01 6.93454087e-01 1.01925623e+00
1.01097798e+00 1.25672277e-02 4.43068415e-01 4.58648473e-01
1.63924634e-01 1.05136871e+00 1.61074057e-01 -1.21669638e+00
6.39457762e-01 7.08774447e-01 2.87092328e-01 -9.95241165e-01
-8.05786371e-01 -2.26962399e-02 -2.31289417e-01 4.86915827e-01
4.96125311e-01 -8.79156962e-02 -8.56253266e-01 1.44327438e+00
6.73727930e-01 -2.01801181e-01 -1.58345416e-01 1.29089832e+00
2.96606839e-01 5.08491337e-01 -2.89485663e-01 6.55365884e-02
1.28793728e+00 -6.08140767e-01 -3.01443100e-01 -6.82528496e-01
2.02837527e-01 -1.98138058e-01 1.19074917e+00 4.61557716e-01
-9.19814289e-01 -1.04050517e-01 -1.41708636e+00 -3.01545769e-01
-8.10695142e-02 -7.92155042e-02 6.13942266e-01 3.40336025e-01
-6.98723972e-01 4.62296516e-01 -1.42527831e+00 -5.58967531e-01
9.24531966e-02 4.20613945e-01 -5.53330779e-01 -1.37907282e-01
-8.63794625e-01 9.88937736e-01 2.21870318e-01 1.24152221e-01
-8.95521224e-01 -5.82273066e-01 -1.07862353e+00 -3.53292435e-01
6.18523717e-01 -7.12466240e-01 9.95797813e-01 -4.90699053e-01
-1.66767383e+00 7.89674938e-01 1.46592677e-01 -5.42528212e-01
6.48580909e-01 -5.95759869e-01 2.22978041e-01 4.38606083e-01
2.35306829e-01 6.88289881e-01 7.31831074e-01 -1.05194569e+00
-7.74919033e-01 -7.61240959e-01 -4.04058062e-02 7.40621269e-01
-1.23489745e-01 -7.68003881e-01 -6.98199630e-01 -2.36011907e-01
6.60045624e-01 -1.16400814e+00 -2.91274697e-01 4.52297777e-01
5.09178042e-02 4.77187335e-01 6.19012594e-01 -4.43227142e-01
5.97780704e-01 -2.17534876e+00 4.73300159e-01 1.24552608e-01
-1.89575404e-02 -3.73672217e-01 2.16966167e-01 5.74409246e-01
6.90124810e-01 -7.11325645e-01 -3.50113243e-01 -2.14962795e-01
-4.47409339e-02 5.51638246e-01 -5.60209006e-02 8.78573656e-01
2.01297849e-01 7.41551459e-01 -1.03543413e+00 -3.72850031e-01
3.01911533e-01 5.13664246e-01 -4.93975729e-01 3.24283950e-02
-9.47724059e-02 5.07121623e-01 -1.72443330e-01 1.05499947e+00
4.74382699e-01 -3.35396864e-02 2.35361367e-01 -1.99759886e-01
-5.96448123e-01 2.05752417e-01 -1.33747613e+00 2.09168077e+00
-3.14081877e-01 4.07782108e-01 1.91306025e-01 -4.55923587e-01
8.81742418e-01 -2.27219492e-01 6.69540763e-01 -8.62914920e-01
5.90753071e-02 5.27864933e-01 -5.43068886e-01 -3.67223680e-01
7.82709181e-01 6.98599033e-03 -3.11616153e-01 1.26940116e-01
-4.47939895e-02 -5.92762113e-01 2.12021351e-01 -1.65252224e-01
1.37442529e+00 9.05758560e-01 3.75350922e-01 -3.63745876e-02
-4.48090024e-02 5.25398910e-01 6.99801505e-01 4.69735384e-01
-2.73966372e-01 8.00930798e-01 1.17403708e-01 -4.82672095e-01
-9.32122529e-01 -1.38985288e+00 1.47278965e-01 8.79834592e-01
8.18601966e-01 -9.86600816e-02 -3.76632899e-01 -1.22600801e-01
5.21841109e-01 1.87765826e-02 -5.25000751e-01 -1.77756980e-01
-8.88590693e-01 -8.04845989e-01 1.91184655e-01 5.60690105e-01
6.17654443e-01 -6.54674113e-01 -1.71552610e+00 3.13480288e-01
-3.48998994e-01 -1.18408704e+00 -1.65252134e-01 5.62068164e-01
-9.36217546e-01 -1.15436149e+00 -5.37838459e-01 -4.54335839e-01
5.94294369e-01 6.06283545e-01 8.09787333e-01 -3.71619880e-01
-4.56212193e-01 6.24482870e-01 -5.48673332e-01 -1.70761883e-01
3.38923216e-01 -2.52384245e-02 2.19369113e-01 -2.84034282e-01
-9.82534606e-03 -7.14526951e-01 -7.38326728e-01 4.10697311e-01
-5.00878036e-01 1.56406283e-01 5.40442109e-01 5.87252617e-01
8.82090986e-01 -3.92573237e-01 -1.66514575e-01 -1.05672233e-01
-6.19616807e-02 -3.81272644e-01 -8.87650311e-01 -1.56837940e-01
-3.06324601e-01 -1.30264670e-01 2.89766818e-01 -2.67619967e-01
-6.18221939e-01 6.76709056e-01 7.89978057e-02 -2.35973820e-01
2.63975918e-01 3.30168158e-01 2.25197017e-01 -3.71436089e-01
7.44659543e-01 2.08433777e-01 2.50878423e-01 -2.01647684e-01
2.90486604e-01 3.63252103e-01 1.02443540e+00 -4.22380924e-01
8.19187403e-01 1.11436284e+00 2.95593590e-01 -8.85260522e-01
-3.48162681e-01 -5.82992494e-01 -6.75119281e-01 -5.18820167e-01
7.94894814e-01 -1.17304218e+00 -9.12689745e-01 7.07307398e-01
-7.89153218e-01 -4.88818347e-01 -4.24681306e-01 5.97417235e-01
-9.03467357e-01 4.84106541e-01 -5.74211836e-01 -7.41849482e-01
-2.40773618e-01 -1.03411758e+00 1.45608056e+00 3.39319527e-01
-1.26109153e-01 -3.23889494e-01 2.89104879e-01 1.26700133e-01
-4.20251153e-02 8.57177556e-01 1.06072716e-01 2.42154837e-01
-7.46568978e-01 -2.04699963e-01 1.12760276e-01 -3.75384420e-01
1.02601470e-02 -4.67088111e-02 -5.58691621e-01 -5.30188203e-01
-2.28355885e-01 -4.81119066e-01 6.37420774e-01 2.98784703e-01
2.42889136e-01 1.07116610e-01 -1.87883437e-01 1.08738160e+00
1.56520808e+00 -2.90727228e-01 4.71988112e-01 9.44994092e-01
7.64649987e-01 5.58440745e-01 1.21919835e+00 9.08110201e-01
8.49078119e-01 9.51328635e-01 1.03732646e+00 1.04213178e-01
-3.17491703e-02 -1.80168539e-01 6.39795601e-01 6.34541512e-01
-3.13920259e-01 4.89112288e-02 -1.04549313e+00 6.86429143e-01
-1.87793016e+00 -5.63935876e-01 -3.87037039e-01 2.43366933e+00
6.84774399e-01 8.16617385e-02 3.84762943e-01 8.54001716e-02
3.93442035e-01 -6.53492138e-02 -7.43633389e-01 1.66423291e-01
-1.00709639e-01 8.97172615e-02 1.02819729e+00 2.19664410e-01
-8.88574541e-01 7.13056087e-01 5.63712454e+00 1.57184005e-01
-1.08194673e+00 -1.60410956e-01 -3.66587073e-01 -4.92089242e-01
9.40681696e-02 -4.44775447e-02 -7.21306264e-01 3.86716753e-01
6.25840604e-01 1.45606712e-01 4.34212297e-01 9.26351845e-01
1.06571577e-01 -5.76952934e-01 -7.86952138e-01 9.64209378e-01
8.31670463e-02 -9.16455328e-01 -5.29089987e-01 1.30448967e-01
6.46221459e-01 3.99690688e-01 -1.38036832e-01 -1.15251102e-01
2.27236554e-01 -3.58637691e-01 1.22236741e+00 2.87553728e-01
6.94906831e-01 -7.37478137e-01 3.59251410e-01 2.79269069e-01
-1.49973273e+00 -2.44843021e-01 -1.96109474e-01 -3.36968184e-01
4.75491196e-01 5.80382645e-01 -8.05554867e-01 5.35678089e-01
1.03381777e+00 8.64112437e-01 -4.42847759e-01 1.25360155e+00
-2.60132819e-01 -1.17428438e-03 -8.63036752e-01 -5.69549948e-03
1.74503811e-02 -2.41355166e-01 6.87549710e-01 7.90334642e-01
4.92495775e-01 -3.07912994e-02 2.33179942e-01 6.46533430e-01
4.43206578e-01 -2.00960264e-01 -4.59394515e-01 2.38848105e-01
4.99274969e-01 1.23685777e+00 -8.51831019e-01 1.42658670e-02
-3.44191045e-01 1.20858335e+00 2.75530219e-01 8.08464289e-02
-9.42214727e-01 -4.74200010e-01 7.27896035e-01 1.98980853e-01
5.49050391e-01 -1.05043578e+00 -3.93742204e-01 -1.10768807e+00
3.75339895e-01 -6.27503395e-01 3.38492781e-01 -6.90420210e-01
-7.03003824e-01 1.11514702e-01 -8.45442191e-02 -1.76729536e+00
-1.92230776e-01 -6.35018289e-01 -4.30601835e-02 3.51605773e-01
-1.38702273e+00 -1.03785789e+00 -8.53983343e-01 4.85510230e-01
4.60530907e-01 4.58244085e-01 4.35844570e-01 1.72824562e-01
-3.21470112e-01 -4.45846543e-02 -1.18398145e-02 -3.15898687e-01
6.92196786e-01 -1.27926648e+00 5.26453078e-01 1.05114901e+00
-8.54518786e-02 3.26627105e-01 7.98439384e-01 -8.28829765e-01
-2.21541762e+00 -6.84426010e-01 8.40002745e-02 -4.13133860e-01
4.89250839e-01 -2.82265037e-01 -4.58803266e-01 5.82075775e-01
-6.02223694e-01 6.06999621e-02 1.65018409e-01 -3.24790508e-01
3.37932222e-02 -3.38130832e-01 -1.05400825e+00 5.21678388e-01
1.20985019e+00 -1.47651225e-01 -4.01620030e-01 1.09600224e-01
4.70253229e-01 -1.05631495e+00 -8.32186341e-01 5.23025751e-01
9.87011492e-01 -1.00634336e+00 1.18513179e+00 2.60488123e-01
2.47229040e-01 -7.74988055e-01 -1.86904326e-01 -1.11167109e+00
-1.05362102e-01 -6.73940301e-01 -2.98364192e-01 7.57303119e-01
-7.40562901e-02 -6.00605726e-01 7.44810104e-01 2.83159614e-01
-2.65044630e-01 -4.26941693e-01 -1.24804366e+00 -9.05238390e-01
-7.30657935e-01 -2.97718912e-01 3.41139376e-01 4.26200598e-01
7.50007993e-03 -1.23546772e-01 -4.82744873e-01 4.35527444e-01
8.21191251e-01 3.00099999e-01 1.23837733e+00 -9.56286967e-01
-2.54355401e-01 4.81270328e-02 -8.75288188e-01 -1.26918602e+00
-5.11377096e-01 -2.78786540e-01 6.80381000e-01 -1.39372575e+00
-3.34471881e-01 -2.54949600e-01 1.86533347e-01 5.15450180e-01
-9.65206772e-02 7.42927670e-01 7.80023262e-02 3.16986203e-01
-6.84101105e-01 6.24353290e-01 9.97060359e-01 2.72832185e-01
-3.20340276e-01 -2.60268956e-01 3.36651243e-02 6.59878969e-01
4.30643052e-01 -3.73606116e-01 -1.04673713e-01 -6.32930696e-01
4.89648193e-01 1.08278133e-01 6.49959087e-01 -1.49758959e+00
2.36474633e-01 -2.27905199e-01 3.70639563e-01 -5.97079337e-01
6.87487245e-01 -8.26240838e-01 3.68857950e-01 8.47230077e-01
3.57762992e-01 2.80862570e-01 1.15123011e-01 8.83337379e-01
9.47014838e-02 2.28158191e-01 6.65855348e-01 -2.82547474e-01
-1.27377689e+00 2.43803680e-01 -3.14036578e-01 9.32242721e-02
1.14689398e+00 -8.16798687e-01 -2.20638022e-01 -2.01651469e-01
-2.29924887e-01 4.50853288e-01 1.23516726e+00 2.74689555e-01
7.18661189e-01 -1.20774126e+00 -4.16282773e-01 3.37150306e-01
4.01393116e-01 3.27198476e-01 1.75770417e-01 1.27198517e+00
-1.34145546e+00 -1.64357185e-01 -6.95473671e-01 -1.05427814e+00
-8.86196077e-01 2.73507517e-02 5.14467284e-02 3.11651856e-01
-1.02310252e+00 8.43920827e-01 -2.00069621e-01 -3.54355395e-01
2.11344585e-02 -4.11878735e-01 2.12121949e-01 -1.83883503e-01
3.03278178e-01 7.23824024e-01 9.19261947e-02 -6.48258269e-01
-6.01173878e-01 8.95898759e-01 5.69681704e-01 -3.38099360e-01
1.45377409e+00 -5.61020792e-01 1.31244123e-01 6.14792168e-01
8.32105577e-01 -1.66015197e-02 -2.02426910e+00 1.22660540e-01
-2.40132540e-01 -6.39926672e-01 -3.12175483e-01 -3.28871906e-01
-6.66466892e-01 7.51448929e-01 6.74909890e-01 -1.53991925e-02
1.10964227e+00 -2.58207649e-01 1.07391798e+00 4.22948629e-01
1.00840294e+00 -1.36247063e+00 2.36139223e-01 6.26266122e-01
6.36066020e-01 -1.17045140e+00 3.84450346e-01 -3.85725617e-01
-6.24231815e-01 1.16800046e+00 6.56787753e-01 -3.54699016e-01
-1.52975425e-01 3.36059242e-01 1.11623548e-01 -2.32483536e-01
-5.08772731e-01 -4.45547402e-01 -6.91878572e-02 7.10059702e-01
-2.38279969e-01 -8.80624354e-02 -1.24656312e-01 3.31337601e-02
-2.81499445e-01 -1.48517221e-01 4.89311337e-01 1.60238278e+00
-8.11638772e-01 -6.45409226e-01 -5.79945505e-01 4.67406437e-02
4.35160883e-02 2.00629592e-01 -1.41849458e-01 8.76173854e-01
5.49056008e-02 4.99021918e-01 7.57212639e-02 -5.74193358e-01
6.15872502e-01 -2.12334946e-01 8.11746120e-01 -4.70516652e-01
-4.10487741e-01 -1.24439761e-01 2.61597969e-02 -1.02272475e+00
-3.53267998e-01 -8.84469688e-01 -1.60794294e+00 -5.31522892e-02
-1.65898919e-01 -4.03492182e-01 8.63631845e-01 7.87929058e-01
4.09515828e-01 2.27834359e-01 4.18390810e-01 -1.48853147e+00
-4.21105206e-01 -4.76972640e-01 -6.48497224e-01 3.68461847e-01
4.44296151e-01 -1.09641683e+00 -2.50774324e-01 1.10760912e-01] | [7.547848224639893, -1.6077483892440796] |
59c1c474-567c-4898-8adb-8e144d45ab61 | approximately-optimal-domain-adaptation-with | 2302.14186 | null | https://arxiv.org/abs/2302.14186v2 | https://arxiv.org/pdf/2302.14186v2.pdf | Approximately optimal domain adaptation with Fisher's Linear Discriminant Analysis | We propose a class of models based on Fisher's Linear Discriminant (FLD) in the context of domain adaptation. The class is the convex combination of two hypotheses: i) an average hypothesis representing previously seen source tasks and ii) a hypothesis trained on a new target task. For a particular generative setting we derive the optimal convex combination of the two models under 0-1 loss, propose a computable approximation, and study the effect of various parameter settings on the relative risks between the optimal hypothesis, hypothesis i), and hypothesis ii). We demonstrate the effectiveness of the proposed optimal classifier in the context of EEG- and ECG-based classification settings and argue that the optimal classifier can be computed without access to direct information from any of the individual source tasks. We conclude by discussing further applications, limitations, and possible future directions. | ['Carey E. Priebe', 'Joshua T. Vogelstein', 'Ashwin De Silva', 'Weiwei Yang', 'Hayden S. Helm'] | 2023-02-27 | null | null | null | null | ['eeg', 'eeg'] | ['methodology', 'time-series'] | [ 5.84522545e-01 3.11899602e-01 -1.84546784e-01 -5.38380682e-01
-1.10445511e+00 -4.12270010e-01 5.99926412e-01 1.98062181e-01
-6.16110206e-01 9.33203161e-01 1.31205752e-01 -1.78699911e-01
-4.78171080e-01 -2.18626097e-01 -5.79950869e-01 -8.65626276e-01
-4.19288129e-01 3.97853732e-01 1.34849206e-01 3.07019591e-01
1.69498906e-01 3.53439748e-01 -1.13819611e+00 5.74768372e-02
9.70361233e-01 1.24789906e+00 1.35635644e-01 3.70842218e-01
5.56328475e-01 3.46575789e-02 -9.61485803e-01 -3.09152216e-01
5.25669754e-01 -7.93202996e-01 -4.52552021e-01 -6.42090512e-04
1.13188669e-01 -7.31728524e-02 -1.36222020e-01 9.92890894e-01
8.74620557e-01 2.16650322e-01 1.10791171e+00 -1.42712772e+00
-2.86576331e-01 5.61195016e-01 -3.11480403e-01 5.79502881e-01
6.22954071e-02 -7.13645369e-02 6.73548102e-01 -6.52007639e-01
3.97203356e-01 8.55130017e-01 6.50047362e-01 5.56883931e-01
-1.44742024e+00 -8.36871862e-01 2.43747965e-01 -1.96650205e-03
-1.53319395e+00 -6.40946984e-01 4.16170686e-01 -6.81495667e-01
6.67566001e-01 -1.58626169e-01 2.64443070e-01 1.45578098e+00
4.07183766e-01 5.72201014e-01 1.42300582e+00 -3.93267423e-01
6.26691580e-01 4.75729287e-01 4.37341839e-01 2.59801269e-01
3.17721784e-01 2.26017818e-01 -5.99607944e-01 -7.25882351e-01
3.26225817e-01 -4.41815943e-01 -6.72646582e-01 -3.22549433e-01
-9.04443681e-01 7.02062726e-01 4.43325229e-02 1.62971124e-01
-6.04064107e-01 -1.85904011e-01 2.06377476e-01 1.54674456e-01
6.42093778e-01 3.50169808e-01 -6.08599365e-01 2.31624052e-01
-9.99772370e-01 3.48804116e-01 6.32624507e-01 6.22667789e-01
4.26144809e-01 5.47336377e-02 -4.38186824e-01 7.93170154e-01
2.53143944e-02 5.10301709e-01 5.66982508e-01 -5.48833787e-01
3.18959713e-01 -1.55568317e-01 7.32671171e-02 -3.53044212e-01
-5.28602421e-01 -1.01140618e+00 -4.76203501e-01 -1.48859888e-01
4.15642023e-01 -4.30539519e-01 -5.27461767e-01 2.08307576e+00
-1.10320568e-01 4.71851200e-01 -2.60864049e-02 7.61840761e-01
1.79074436e-01 2.62069762e-01 1.40165254e-01 -6.72863662e-01
9.40024376e-01 -3.04939061e-01 -5.03117979e-01 -3.53516072e-01
3.11485112e-01 -2.62650162e-01 7.50473559e-01 4.98131216e-01
-8.86812329e-01 -3.96269917e-01 -1.12261188e+00 4.55530167e-01
1.04304245e-02 1.28082290e-01 2.26735562e-01 9.28260207e-01
-9.03999746e-01 6.14296377e-01 -6.66420817e-01 -2.24206895e-01
4.07461107e-01 4.21815068e-01 -1.20228998e-01 1.10212281e-01
-1.12506402e+00 9.04060841e-01 1.63323820e-01 -2.14072123e-01
-9.87392485e-01 -5.81598461e-01 -4.06983644e-01 1.99974880e-01
1.16426505e-01 -6.76618814e-01 9.51292455e-01 -1.08129120e+00
-1.03354049e+00 6.40393019e-01 -3.57872903e-01 -6.09684110e-01
6.05810106e-01 -1.22833839e-02 -2.70133078e-01 5.94494604e-02
2.00760618e-01 3.86422575e-01 1.00885105e+00 -1.13134634e+00
-6.39659882e-01 -5.27738810e-01 -3.06363881e-01 2.16767356e-01
-2.85262525e-01 -1.48573950e-01 -7.44240172e-03 -7.37536669e-01
-7.99777210e-02 -1.01295900e+00 5.39666079e-02 -1.65708691e-01
-3.73108000e-01 -3.13290238e-01 2.32707664e-01 -7.86995232e-01
1.13901186e+00 -2.36407399e+00 1.47208437e-01 4.40846980e-01
-1.04308389e-02 -1.44873515e-01 -8.70939195e-02 3.77013050e-02
-2.84510344e-01 -2.46527437e-02 -3.95095199e-01 -2.65505135e-01
-1.14036307e-01 -1.42109215e-01 -3.76161993e-01 6.35049284e-01
6.06277548e-02 3.36481780e-01 -7.07287550e-01 -5.77953942e-02
-2.51150221e-01 4.35459077e-01 -3.78125638e-01 1.44125938e-01
4.05975789e-01 3.96617353e-01 -3.27162236e-01 4.61657271e-02
5.21217406e-01 -7.69090131e-02 4.05981451e-01 -2.55104810e-01
1.99409485e-01 2.96465576e-01 -1.05839992e+00 1.33489895e+00
-2.47843638e-01 5.81011474e-01 -1.97234854e-01 -1.35725451e+00
8.77115786e-01 3.95595491e-01 2.95854956e-01 -3.40027869e-01
2.12690294e-01 2.19391480e-01 3.64579290e-01 -2.28744254e-01
-2.63388276e-01 -5.33657908e-01 -1.45094573e-01 5.39362907e-01
4.88949060e-01 4.74269032e-01 -2.89006948e-01 -1.32981790e-02
1.24479687e+00 -3.89164090e-02 7.02077806e-01 -5.81276834e-01
1.18429080e-01 -6.52012348e-01 5.19003332e-01 1.24114871e+00
-3.94806862e-01 5.54484308e-01 6.21895969e-01 8.30878168e-02
-5.37990391e-01 -1.35027349e+00 -6.74096406e-01 7.85666466e-01
4.76293452e-03 1.66191325e-01 -6.02824688e-01 -7.23215461e-01
1.62709087e-01 1.12152588e+00 -7.67205954e-01 -5.80994189e-01
-2.04270124e-01 -1.15751398e+00 5.54649830e-01 5.17922819e-01
3.23137224e-01 -4.72477168e-01 -7.90869236e-01 -3.09888367e-02
-2.67790139e-01 -9.68262553e-01 -4.28544730e-01 6.02342606e-01
-9.42175210e-01 -8.86838436e-01 -7.29870379e-01 -3.62195402e-01
3.54626268e-01 1.09489821e-01 7.75832653e-01 -5.04049361e-01
1.85790226e-01 6.70375526e-01 -1.81473345e-01 -4.94534254e-01
-3.41426343e-01 1.28848879e-02 4.52015668e-01 3.65452528e-01
1.28392681e-01 -6.28030837e-01 -4.94200438e-01 3.33225578e-01
-4.85031664e-01 -4.26564515e-01 6.36061490e-01 8.99168730e-01
3.38116646e-01 1.27089635e-01 1.06030846e+00 -9.13205266e-01
7.65432537e-01 -9.22012210e-01 -2.96833962e-01 4.35744405e-01
-9.44023073e-01 2.27789640e-01 3.46009314e-01 -7.25977659e-01
-1.11200607e+00 2.31482647e-02 2.55444735e-01 -5.51205635e-01
-1.02054469e-01 4.14640605e-01 -2.30959639e-01 -2.67953184e-02
9.28731203e-01 2.10217386e-01 -2.55017549e-01 -4.43643898e-01
-3.93904001e-02 7.79609203e-01 6.33820891e-01 -7.32075930e-01
5.02541482e-01 2.19171554e-01 -1.25684127e-01 -8.77761960e-01
-8.25291276e-01 -2.04380289e-01 -5.74358404e-01 -1.86909974e-01
6.91711545e-01 -8.69883001e-01 -3.59225690e-01 1.71766564e-01
-9.49148595e-01 -3.26458365e-01 -2.29630232e-01 7.29178309e-01
-6.36675417e-01 2.20347494e-01 -8.78547877e-02 -1.02589512e+00
-7.94606805e-02 -9.84548211e-01 9.15052772e-01 6.51201117e-04
-3.63514513e-01 -1.06884313e+00 1.51909760e-03 1.73339680e-01
-6.39559189e-03 2.14119688e-01 1.12119424e+00 -1.21428442e+00
-1.45977020e-01 -3.22328895e-01 1.27920508e-01 4.47336882e-01
9.02186241e-03 -5.68933964e-01 -1.22004151e+00 -4.67034250e-01
4.84062016e-01 -1.09168857e-01 8.31955969e-01 8.15912962e-01
8.88601720e-01 -3.05326492e-01 -4.85733271e-01 4.64274347e-01
1.29884052e+00 4.78552252e-01 4.28472996e-01 -6.76730573e-02
-1.04775056e-02 4.17313725e-01 2.40627289e-01 4.84065384e-01
1.54768094e-01 6.72978401e-01 -1.22408964e-01 3.07580501e-01
3.62621136e-02 -1.48540556e-01 3.91838759e-01 4.56156939e-01
1.29587248e-01 -4.39001352e-01 -7.53456712e-01 4.89792615e-01
-1.56357872e+00 -7.33258426e-01 4.38355803e-01 2.70101285e+00
4.93770570e-01 3.69899541e-01 3.58756006e-01 2.07463935e-01
7.84591973e-01 -2.19982028e-01 -8.55288208e-01 -7.54661486e-02
-1.23804905e-01 5.47913134e-01 4.59367663e-01 3.22692603e-01
-1.13397908e+00 2.04415098e-01 7.63820553e+00 7.28001416e-01
-9.56292689e-01 4.26138699e-01 5.48010647e-01 -1.77381635e-01
5.27086370e-02 -3.04272305e-02 -6.85776055e-01 6.45043254e-01
1.19417095e+00 -5.53659022e-01 4.16217774e-01 5.37706017e-01
9.92149189e-02 -2.58155882e-01 -1.43622756e+00 7.50821590e-01
2.71726578e-01 -8.12717438e-01 -1.50576398e-01 2.40930587e-01
5.08751810e-01 1.00983605e-01 1.96572125e-01 2.90814191e-01
-1.49845928e-01 -7.32828617e-01 8.94618034e-01 5.68802834e-01
6.79017007e-01 -3.92940998e-01 5.68552375e-01 5.49764454e-01
-6.57336831e-01 -3.81597012e-01 -1.46537706e-01 9.52597931e-02
-2.48698428e-01 5.33431292e-01 -6.88691914e-01 4.48154569e-01
4.64991868e-01 4.98358637e-01 -5.28687179e-01 1.15687442e+00
7.63509125e-02 9.41651881e-01 -2.68139362e-01 2.49960899e-01
-1.95541114e-01 1.01622656e-01 8.22158098e-01 1.00065315e+00
4.71246362e-01 9.98792574e-02 1.70404702e-01 7.03338683e-01
2.26333529e-01 -4.37644348e-02 -3.83412480e-01 3.51535708e-01
7.10068643e-01 8.35445225e-01 -7.60682583e-01 -8.51100087e-02
-3.86534631e-01 8.29558849e-01 2.71653205e-01 5.68816483e-01
-6.92650557e-01 -4.04488295e-01 4.39742506e-01 1.12274922e-01
2.02360481e-01 2.36315519e-01 -3.47236454e-01 -1.16246736e+00
2.62403749e-02 -7.31367707e-01 7.22762704e-01 -6.68572962e-01
-1.45855308e+00 5.69227099e-01 5.91301858e-01 -1.16138446e+00
-2.25562319e-01 -5.56712627e-01 -4.17396724e-01 9.59028423e-01
-1.02165830e+00 -4.15809214e-01 1.92372367e-01 4.71789062e-01
3.85212511e-01 -2.68310934e-01 7.51741588e-01 2.56192029e-01
-5.53378463e-01 9.10145462e-01 3.45122784e-01 -2.33253211e-01
8.15468729e-01 -1.11713266e+00 -1.81649849e-01 7.17685342e-01
-6.31053373e-02 3.51753175e-01 7.63025701e-01 -4.43628460e-01
-6.86512113e-01 -8.98533046e-01 6.05532825e-01 -3.95611703e-01
2.42305785e-01 -4.23101008e-01 -8.07433963e-01 6.60417020e-01
-1.87099770e-01 -3.24460000e-01 9.39129472e-01 1.65481731e-01
-2.56483704e-01 -3.07710737e-01 -1.27079046e+00 1.69945523e-01
8.49078596e-01 -4.56540734e-01 -5.78280509e-01 4.33940738e-01
1.23718545e-01 -1.14180058e-01 -8.06913793e-01 3.62522900e-01
7.50713170e-01 -9.19121861e-01 7.50957847e-01 -6.43764377e-01
-4.20430303e-02 3.73457856e-02 -3.55087727e-01 -1.54524016e+00
-3.17139149e-01 -4.88491863e-01 2.76139230e-01 8.55344951e-01
3.76239330e-01 -9.26274836e-01 2.08073422e-01 6.53099179e-01
-4.14060503e-02 -7.23693132e-01 -1.30042112e+00 -1.02200234e+00
3.21128607e-01 -5.16868472e-01 1.45490021e-01 8.20357800e-01
2.48759929e-02 5.83248138e-01 -3.13892514e-01 3.37496489e-01
7.87099123e-01 -3.62504460e-02 2.29974166e-01 -1.34875190e+00
-6.95575178e-01 -2.43413731e-01 -5.37743270e-01 -8.48554850e-01
4.48502779e-01 -1.06689560e+00 -1.79468878e-02 -9.45382476e-01
3.91711384e-01 -3.44300956e-01 -6.77162647e-01 4.90518719e-01
-2.08705008e-01 -1.30590945e-01 1.59568682e-01 3.42261195e-01
-1.18576095e-01 3.52027357e-01 5.60307741e-01 5.82715049e-02
-1.94477931e-01 3.84698182e-01 -9.86060977e-01 5.89525044e-01
6.08452499e-01 -8.09964657e-01 -6.61153615e-01 -6.49752319e-02
-1.52576625e-01 2.81738490e-01 3.96391600e-01 -9.46925819e-01
-9.89308581e-02 7.08334744e-02 6.18916392e-01 6.77115694e-02
3.00067067e-01 -5.23049295e-01 5.18073812e-02 4.02871966e-01
-7.51194596e-01 -2.74277091e-01 7.25638196e-02 9.27720666e-01
2.92400807e-01 -3.79093558e-01 1.03715456e+00 3.25275391e-01
-1.23296797e-01 -1.07188150e-02 -4.81212407e-01 2.90991247e-01
9.69796300e-01 -8.29358324e-02 -9.69048366e-02 -5.65101743e-01
-1.13174272e+00 -1.09840026e-02 -6.63395301e-02 2.32736558e-01
3.60971212e-01 -1.10214639e+00 -7.16060400e-01 2.35893548e-01
-3.94403003e-02 -7.42304265e-01 2.71038972e-02 8.81193817e-01
4.39892441e-01 2.21323967e-01 -5.33699058e-02 -4.92921740e-01
-9.29346025e-01 4.21975553e-01 5.53836465e-01 -8.74262229e-02
-2.31228903e-01 5.72606981e-01 6.74028158e-01 5.62153906e-02
1.97650984e-01 4.41120286e-03 5.15454784e-02 2.00753175e-02
2.46585965e-01 5.31622946e-01 1.27564624e-01 -5.02762556e-01
-5.70652187e-01 1.48971319e-01 1.15884177e-01 -4.05944556e-01
9.59673405e-01 -9.72668454e-02 3.23234826e-01 7.70201385e-01
1.09997523e+00 -3.12704563e-01 -1.26631320e+00 -2.18499169e-01
-2.90968213e-02 -3.50675136e-01 1.85607597e-01 -9.06073630e-01
-7.95650661e-01 8.07947278e-01 1.01222074e+00 -8.65397155e-02
1.39201760e+00 3.04935314e-02 1.44609049e-01 3.07285577e-01
5.09693563e-01 -7.95199156e-01 -2.36232325e-01 -3.62128280e-02
8.29377711e-01 -7.42800415e-01 2.29775503e-01 -1.14915781e-01
-7.20601261e-01 8.82103622e-01 2.28195012e-01 -3.42247933e-01
1.15652585e+00 1.82406574e-01 -1.59803420e-01 2.46402606e-01
-9.37805533e-01 -9.15092975e-02 5.51674008e-01 8.77649546e-01
1.66769937e-01 9.33061093e-02 -4.67104435e-01 1.12800837e+00
9.39509422e-02 -6.67941049e-02 3.39280993e-01 6.14096105e-01
-1.20649494e-01 -7.32224464e-01 -2.27615625e-01 9.87572849e-01
-4.97423410e-01 -2.96028983e-02 -2.09723696e-01 6.86229229e-01
2.27611810e-01 8.67477298e-01 1.56222299e-01 -3.46451819e-01
2.76624352e-01 6.19437575e-01 6.96976364e-01 -5.34536302e-01
-2.96231091e-01 3.03593576e-01 -1.14140995e-01 -1.15250595e-01
-3.30940872e-01 -1.06979370e+00 -5.49658298e-01 2.94537812e-01
-5.81426919e-01 4.80513535e-02 4.19315100e-01 1.20472264e+00
4.18603688e-01 1.69438705e-01 6.29603028e-01 -7.57449925e-01
-1.03719795e+00 -9.43194389e-01 -7.68904984e-01 1.76247418e-01
2.54569381e-01 -1.03403592e+00 -6.88137591e-01 6.51049837e-02] | [8.785208702087402, 4.091343402862549] |
90c2a33c-89f4-4524-9b07-7c32e9294b89 | weakly-supervised-domain-adaptive-semantic | null | null | http://openaccess.thecvf.com//content/CVPR2023/html/Das_Weakly-Supervised_Domain_Adaptive_Semantic_Segmentation_With_Prototypical_Contrastive_Learning_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Das_Weakly-Supervised_Domain_Adaptive_Semantic_Segmentation_With_Prototypical_Contrastive_Learning_CVPR_2023_paper.pdf | Weakly-Supervised Domain Adaptive Semantic Segmentation With Prototypical Contrastive Learning | There has been a lot of effort in improving the performance of unsupervised domain adaptation for semantic segmentation task, however there is still a huge gap in performance when compared with supervised learning. In this work, we propose a common framework to use different weak labels, e.g. image, point and coarse labels from target domain to reduce this performance gap. Specifically, we propose to learn better prototypes that are representative class features, by exploiting these weak labels. We use these improved prototypes for contrastive alignment of class features. In particular, we perform two different feature alignments, first, we align pixel features with prototypes within each domain and second, we align pixel features from source to prototype of target domain in an asymmetric way. This asymmetric alignment is beneficial as it preserves the target features during training, which is essential when weak labels are available from target domain. Our experiments on standard benchmarks shows that our framework achieves significant improvement compared to existing works and is able to reduce the performance gap with supervised learning. | ['Bernt Schiele', 'Dengxin Dai', 'Yongqin Xian', 'Anurag Das'] | 2023-01-01 | null | null | null | cvpr-2023-1 | ['unsupervised-domain-adaptation'] | ['methodology'] | [ 4.53990102e-01 2.18450144e-01 -3.54524851e-01 -6.07236981e-01
-5.48890173e-01 -5.10545671e-01 5.88051617e-01 2.38350719e-01
-6.10789835e-01 6.05629265e-01 2.30261367e-02 1.99699402e-01
-7.38616809e-02 -7.88813591e-01 -5.91737628e-01 -7.46837676e-01
3.83891642e-01 5.01163304e-01 9.04620826e-01 1.76804569e-02
5.02776206e-01 4.20736909e-01 -1.71016288e+00 2.78002292e-01
9.64975834e-01 8.16938162e-01 4.35802877e-01 1.34560913e-01
-5.45050919e-01 4.53229070e-01 -4.99124944e-01 -1.07278891e-01
3.15437317e-01 -4.27769065e-01 -1.20750701e+00 4.02671039e-01
4.50156868e-01 2.10566506e-01 3.35164309e-01 1.16549563e+00
3.66597176e-01 -1.80315133e-02 8.26916337e-01 -1.11861825e+00
-1.49881899e-01 5.23790240e-01 -7.17281997e-01 -1.51992738e-02
1.09189311e-02 -8.30919072e-02 1.00054157e+00 -5.96050978e-01
8.35637033e-01 1.09078133e+00 7.36670911e-01 5.21619320e-01
-1.22363842e+00 -5.21525681e-01 2.93724000e-01 3.14177990e-01
-1.25497627e+00 -1.45897284e-01 9.92105782e-01 -6.12025738e-01
4.93592083e-01 -1.67599861e-02 3.94292146e-01 9.18750346e-01
-4.46613967e-01 7.69710481e-01 1.34150898e+00 -7.24739015e-01
2.70431042e-01 5.10571361e-01 4.60173786e-01 3.85104626e-01
-1.23694148e-02 -7.17142299e-02 -2.24408790e-01 6.62724301e-02
5.22740245e-01 -8.43895599e-02 -2.17520475e-01 -9.17930841e-01
-1.06434786e+00 8.41176212e-01 4.43275452e-01 7.31560290e-01
-1.57777846e-01 -3.52430850e-01 3.93452734e-01 2.07538471e-01
4.74525303e-01 3.96842450e-01 -6.82918608e-01 2.13567708e-02
-9.30625677e-01 2.64946744e-03 6.55879021e-01 7.37256289e-01
1.19822001e+00 -4.45807725e-01 -1.06230669e-01 1.28748548e+00
1.97800100e-01 2.76332229e-01 6.75485313e-01 -8.12906742e-01
4.16409761e-01 8.15363646e-01 -1.28129244e-01 -8.46035659e-01
-5.30191958e-01 -3.11711729e-01 -6.23741925e-01 3.21874321e-01
6.50087535e-01 1.18529186e-01 -1.08453727e+00 1.58136523e+00
3.73934746e-01 3.03273708e-01 2.78609395e-01 8.70687485e-01
7.34705150e-01 5.40895700e-01 1.72754198e-01 6.82626888e-02
1.16310763e+00 -1.16739166e+00 -3.31604481e-01 -3.65983367e-01
8.12490821e-01 -9.20952618e-01 1.26075411e+00 2.20872954e-01
-7.13421226e-01 -8.44737649e-01 -1.01098621e+00 1.45007223e-01
-5.94017804e-01 3.26374233e-01 3.17738622e-01 7.06147611e-01
-6.91736877e-01 7.28551984e-01 -5.93620241e-01 -5.81360579e-01
5.40615737e-01 4.46751058e-01 -4.65451777e-01 4.54621203e-02
-9.40405011e-01 7.57276118e-01 7.99751341e-01 -3.09460849e-01
-3.93248498e-01 -5.99037111e-01 -8.52148831e-01 -6.10820167e-02
2.99296409e-01 -2.58338064e-01 9.80236113e-01 -1.32851470e+00
-1.55153489e+00 1.17402709e+00 9.66210812e-02 -4.88141298e-01
5.61131477e-01 -6.30868673e-02 -9.14411992e-02 1.57008827e-01
1.79687753e-01 9.95035827e-01 8.32432806e-01 -1.50191426e+00
-9.23131287e-01 -3.82651269e-01 -1.18591614e-01 1.61995247e-01
-7.16834188e-01 -1.04221649e-01 -5.06838560e-01 -4.63694036e-01
2.46616706e-01 -1.06022537e+00 -2.36394927e-01 -1.66651025e-01
-2.68224210e-01 -3.96603823e-01 1.05557811e+00 -4.54278588e-01
8.36368859e-01 -2.23083043e+00 3.25821191e-02 4.16258931e-01
-8.34294632e-02 6.25199974e-01 -1.15802497e-01 5.72945289e-02
-1.01324208e-01 -2.44931933e-02 -6.17009044e-01 -2.96235532e-01
-1.80736259e-01 4.41483557e-01 -2.39887163e-02 2.15163916e-01
4.56425607e-01 5.70022941e-01 -7.82616675e-01 -7.52755344e-01
3.77755940e-01 2.67662466e-01 -4.32103276e-01 9.13445428e-02
-2.94673413e-01 8.59485030e-01 -5.44574797e-01 2.95662940e-01
9.81037796e-01 -8.72110277e-02 8.45021456e-02 -1.67456269e-01
-7.77231306e-02 2.57477164e-01 -1.47292256e+00 1.80497074e+00
-4.56656784e-01 3.35459858e-01 -2.25578815e-01 -1.63244200e+00
1.20683074e+00 8.28527808e-02 4.15103287e-01 -7.00692236e-01
1.23138890e-01 3.73853356e-01 -3.73583660e-02 -3.48369330e-01
2.81731993e-01 -4.51217815e-02 5.19436635e-02 2.01604292e-01
1.95972517e-01 -2.18633175e-01 3.90191585e-01 -2.79654711e-01
6.84333086e-01 3.47179294e-01 2.65218794e-01 -3.50018591e-01
9.10176933e-01 1.93263203e-01 6.79729879e-01 4.86820847e-01
-2.13277414e-02 9.41023707e-01 4.76198792e-01 -3.72512668e-01
-1.03033066e+00 -8.95596266e-01 -2.58998483e-01 1.02191007e+00
3.57660741e-01 -2.66171902e-01 -9.29473698e-01 -1.14649022e+00
-1.96973816e-01 4.90315974e-01 -4.66607064e-01 -1.02240458e-01
-7.73512840e-01 -6.93027973e-01 2.94785291e-01 7.25858271e-01
7.94044197e-01 -1.18466067e+00 -7.44714916e-01 1.09379008e-01
-6.40277788e-02 -1.26029181e+00 -9.97359753e-02 4.20604944e-01
-1.12656152e+00 -9.67176199e-01 -9.52527761e-01 -1.12326097e+00
8.37898970e-01 1.89879313e-01 1.17757511e+00 9.63196158e-02
-1.84733897e-01 1.06652252e-01 -7.17231572e-01 -4.02702332e-01
-3.91642958e-01 3.89762878e-01 -3.55384648e-01 9.86167416e-02
4.20516729e-01 -5.12327611e-01 -4.51298147e-01 5.83480835e-01
-9.81111228e-01 -2.07611881e-02 7.64662623e-01 9.02933002e-01
7.35666513e-01 -9.41379517e-02 4.40190583e-01 -1.23068178e+00
2.40338251e-01 -2.66642570e-01 -5.90864778e-01 1.42396361e-01
-5.93531847e-01 2.81342804e-01 7.25248873e-01 -2.67498642e-01
-1.13584411e+00 4.39355761e-01 -3.37374061e-01 -5.27088754e-02
-7.24233747e-01 1.50495052e-01 -2.48184010e-01 -1.49810344e-01
7.64771819e-01 -8.54375772e-03 -5.79101257e-02 -7.88413465e-01
2.54963070e-01 8.58599901e-01 2.91463256e-01 -6.81074977e-01
7.07716823e-01 4.78299677e-01 -1.44622102e-01 -6.69573307e-01
-7.55876422e-01 -8.00885737e-01 -1.10676277e+00 9.85485315e-02
8.56613398e-01 -4.98419255e-01 4.62223142e-02 5.19914746e-01
-9.75790322e-01 -3.14043850e-01 -4.52059805e-01 5.04011273e-01
-5.62498271e-01 5.80976486e-01 -1.59615442e-01 -3.81238520e-01
-2.11582184e-01 -1.26947939e+00 1.06189823e+00 4.49786037e-01
3.01709808e-02 -9.45778251e-01 6.59024417e-02 2.20363423e-01
1.65198296e-01 1.59257919e-01 7.30858386e-01 -9.64879692e-01
-2.51449049e-01 3.98068875e-02 -4.34738129e-01 7.40105212e-01
3.46397698e-01 -1.13093168e-01 -9.75866079e-01 -1.65710330e-01
-1.51469603e-01 -1.87377080e-01 1.01901877e+00 2.69298643e-01
1.16782284e+00 2.04213381e-01 -6.60258591e-01 4.26066160e-01
1.32919872e+00 8.56148005e-02 5.81359506e-01 5.68808615e-01
5.56609869e-01 8.52759004e-01 1.00785363e+00 1.05931371e-01
1.40471756e-01 9.31472778e-01 1.94916978e-01 -3.88377607e-01
-3.30722451e-01 3.63246761e-02 1.31382838e-01 5.33988595e-01
-1.18322171e-01 2.85187244e-01 -9.48251963e-01 7.29014635e-01
-1.92555606e+00 -5.07926166e-01 -1.53310657e-01 2.38100624e+00
8.62079322e-01 3.84210825e-01 3.86473119e-01 3.60889196e-01
9.09143746e-01 -5.17550968e-02 -2.48631299e-01 -3.79521877e-01
-3.51361483e-02 4.65104222e-01 5.95139563e-01 2.15202019e-01
-1.36452568e+00 1.12461531e+00 5.64690256e+00 1.00443208e+00
-1.35336304e+00 2.07835734e-01 4.60247993e-01 4.68924642e-01
1.23150289e-01 1.03724815e-01 -9.25158262e-01 5.51021755e-01
4.91800636e-01 2.30257243e-01 -1.90941557e-01 1.03412223e+00
-2.28385583e-01 -3.82727608e-02 -9.65524137e-01 7.83381283e-01
4.81899157e-02 -1.01698577e+00 -2.02058807e-01 -1.50599301e-01
8.37901115e-01 -1.20791622e-01 -1.33027330e-01 5.76152019e-02
1.61844045e-01 -7.23102450e-01 4.38833177e-01 1.83014065e-01
2.32284024e-01 -7.61132658e-01 9.94679451e-01 4.46990341e-01
-1.08321559e+00 5.92770241e-02 -5.23990452e-01 1.57164827e-01
2.46076100e-02 7.11337447e-01 -8.52385342e-01 7.42169559e-01
8.49355996e-01 7.60360897e-01 -6.82903647e-01 1.33426130e+00
-3.51970673e-01 5.63531458e-01 -3.51122528e-01 1.82195142e-01
3.87651265e-01 -3.94611239e-01 3.09882820e-01 1.31865835e+00
1.33464292e-01 -5.07423759e-01 3.70268464e-01 6.81620419e-01
1.34973615e-01 4.54407930e-01 -5.65927446e-01 2.88117260e-01
1.14551403e-01 1.31143141e+00 -1.11645079e+00 -3.93599451e-01
-5.28192759e-01 1.07189822e+00 2.82855779e-01 2.21131109e-02
-8.10499609e-01 -3.24683219e-01 2.82542914e-01 -5.64368628e-03
6.06738985e-01 -7.00366572e-02 -3.36996675e-01 -8.03672433e-01
1.07739575e-01 -5.44945121e-01 5.27844667e-01 -3.82351100e-01
-1.28494596e+00 5.45299470e-01 1.32277340e-01 -1.37423074e+00
-2.03025818e-01 -6.83846653e-01 -4.65826333e-01 6.23644471e-01
-1.87775505e+00 -1.25992334e+00 -3.98167878e-01 6.30323470e-01
5.60145199e-01 1.89741701e-02 7.03172624e-01 4.15369779e-01
-2.64749110e-01 5.73249102e-01 1.99262574e-01 1.99845210e-01
9.61971879e-01 -1.40458632e+00 1.41975462e-01 5.88182032e-01
5.22256553e-01 2.96032578e-01 4.93430465e-01 -4.29291606e-01
-4.49182063e-01 -1.00840545e+00 6.19077504e-01 -1.04522839e-01
3.83318514e-01 -2.23983049e-01 -1.02619791e+00 4.84157681e-01
2.05165908e-01 7.18084127e-02 6.25351846e-01 6.12413511e-03
-3.52126122e-01 -2.40386650e-01 -1.25299859e+00 3.67404282e-01
9.29453850e-01 -8.56534764e-02 -8.42233121e-01 3.22976708e-01
3.79164577e-01 -2.08440736e-01 -7.55600572e-01 7.02078760e-01
3.31277102e-01 -1.01926911e+00 1.03049827e+00 -1.40680268e-01
1.44735351e-01 -5.52510977e-01 1.52708307e-01 -1.41443765e+00
-4.61030044e-02 -8.96856785e-02 5.58356881e-01 1.60508394e+00
3.94188613e-01 -7.07518458e-01 9.51473653e-01 8.57006311e-02
-1.38046086e-01 -4.84963298e-01 -7.22497106e-01 -9.60385382e-01
3.15800786e-01 -9.87812877e-02 4.46455598e-01 9.86009181e-01
-3.77656966e-01 3.21198165e-01 -9.84931737e-02 -7.38784496e-04
4.33314860e-01 5.10439694e-01 7.96648324e-01 -1.67018270e+00
-1.02108136e-01 -5.67705393e-01 -5.70577502e-01 -1.02011228e+00
2.36545220e-01 -8.54230940e-01 1.18895963e-01 -1.50788772e+00
2.24764615e-01 -9.06280279e-01 -4.35633719e-01 6.85534239e-01
-1.28015175e-01 5.27376413e-01 2.36510381e-01 2.34368250e-01
-4.89650249e-01 2.50067532e-01 1.19416654e+00 -2.15224147e-01
-3.56651455e-01 3.81399915e-02 -4.39138979e-01 9.58120227e-01
9.76655841e-01 -6.16782784e-01 -2.11319432e-01 -3.30304086e-01
-3.41516674e-01 -7.50445902e-01 1.78349480e-01 -1.32425177e+00
3.97656821e-02 2.37263758e-02 2.67365068e-01 -5.58035135e-01
1.39334932e-01 -9.98920619e-01 -2.33155623e-01 4.85514700e-01
-1.79554731e-01 -5.76134682e-01 1.39476106e-01 2.85192788e-01
-5.34981132e-01 -7.71770775e-01 1.15625906e+00 -1.61270663e-01
-1.26258385e+00 -1.27206072e-01 1.01707302e-01 -1.66690294e-02
1.10780108e+00 -4.88206238e-01 1.67883504e-02 2.28453949e-01
-7.85899282e-01 4.43216376e-02 6.85823381e-01 4.12104517e-01
2.54320174e-01 -1.07194781e+00 -6.05242729e-01 1.61162302e-01
3.68385166e-01 1.80032715e-01 3.36843394e-02 9.59706247e-01
-3.93868655e-01 2.51578271e-01 -5.54864466e-01 -9.93862808e-01
-1.49934340e+00 4.91367966e-01 1.10567674e-01 -4.34914529e-01
-7.33724713e-01 7.30928004e-01 2.84826308e-01 -7.46155739e-01
1.52402341e-01 -3.32420498e-01 -7.01609910e-01 1.47634447e-01
2.08261684e-01 1.04649872e-01 2.15591952e-01 -7.58604467e-01
-3.47659260e-01 1.28816712e+00 -1.87190026e-01 2.91025549e-01
1.36115432e+00 -5.60916029e-02 -3.66928428e-03 2.90030509e-01
1.18721282e+00 8.71615931e-02 -1.23620534e+00 -3.61969620e-01
4.96438682e-01 -4.88312453e-01 -2.69533187e-01 -6.16024256e-01
-1.28290749e+00 9.64961648e-01 9.76154387e-01 2.64914572e-01
1.30251181e+00 3.02920222e-01 7.07543135e-01 1.42481431e-01
3.25521827e-01 -1.32027102e+00 6.41626567e-02 4.69307214e-01
4.10948485e-01 -1.34212506e+00 -2.00843409e-01 -8.64431798e-01
-6.37621343e-01 1.16380119e+00 5.96174538e-01 -3.83269519e-01
3.93485755e-01 -2.71749571e-02 1.79134369e-01 -2.57835947e-02
1.78764742e-02 -6.67970598e-01 4.07600224e-01 7.56301880e-01
3.82391185e-01 -1.00319296e-01 -8.16951275e-01 5.05398691e-01
3.66560183e-02 -2.50995718e-02 1.35406286e-01 9.49879408e-01
-5.48602998e-01 -1.77105665e+00 -4.25236255e-01 1.83184996e-01
-3.60294312e-01 7.78663829e-02 -4.16245669e-01 8.88826549e-01
4.60738063e-01 8.12349856e-01 1.25401258e-01 -1.05575159e-01
3.92998040e-01 1.61958113e-01 5.65960646e-01 -7.87556827e-01
-5.46247780e-01 4.62568365e-02 -1.16878144e-01 -4.08663750e-01
-9.26880181e-01 -5.31465054e-01 -1.41574955e+00 4.67332244e-01
-4.29993987e-01 2.86072433e-01 7.51212239e-01 1.09675062e+00
3.41797799e-01 3.74232471e-01 5.98161578e-01 -7.66645432e-01
-2.96036303e-01 -9.95364547e-01 -4.08495367e-01 9.31324303e-01
-1.69833526e-01 -1.05402851e+00 -3.01472455e-01 2.49770314e-01] | [9.642324447631836, 1.316994547843933] |
63ca721a-a4bb-4b7f-8586-7451c80859af | probabilistic-attention-based-on-gaussian | 2302.04061 | null | https://arxiv.org/abs/2302.04061v1 | https://arxiv.org/pdf/2302.04061v1.pdf | Probabilistic Attention based on Gaussian Processes for Deep Multiple Instance Learning | Multiple Instance Learning (MIL) is a weakly supervised learning paradigm that is becoming increasingly popular because it requires less labeling effort than fully supervised methods. This is especially interesting for areas where the creation of large annotated datasets remains challenging, as in medicine. Although recent deep learning MIL approaches have obtained state-of-the-art results, they are fully deterministic and do not provide uncertainty estimations for the predictions. In this work, we introduce the Attention Gaussian Process (AGP) model, a novel probabilistic attention mechanism based on Gaussian Processes for deep MIL. AGP provides accurate bag-level predictions as well as instance-level explainability, and can be trained end-to-end. Moreover, its probabilistic nature guarantees robustness to overfitting on small datasets and uncertainty estimations for the predictions. The latter is especially important in medical applications, where decisions have a direct impact on the patient's health. The proposed model is validated experimentally as follows. First, its behavior is illustrated in two synthetic MIL experiments based on the well-known MNIST and CIFAR-10 datasets, respectively. Then, it is evaluated in three different real-world cancer detection experiments. AGP outperforms state-of-the-art MIL approaches, including deterministic deep learning ones. It shows a strong performance even on a small dataset with less than 100 labels and generalizes better than competing methods on an external test set. Moreover, we experimentally show that predictive uncertainty correlates with the risk of wrong predictions, and therefore it is a good indicator of reliability in practice. Our code is publicly available. | ['Rafael Molina', 'Pablo Morales-Álvarez', 'Arne Schmidt'] | 2023-02-08 | null | null | null | null | ['multiple-instance-learning'] | ['methodology'] | [ 6.22902177e-02 4.45915163e-01 -3.71264637e-01 -5.17072618e-01
-1.28573835e+00 -7.60256052e-02 5.51545143e-01 6.78794265e-01
-5.27208209e-01 1.15549374e+00 -8.15105885e-02 -1.61760643e-01
-3.65881205e-01 -6.83171988e-01 -9.25524890e-01 -1.08335114e+00
1.11647155e-02 1.11438227e+00 1.11834720e-01 3.72372955e-01
-1.25115976e-01 1.21822819e-01 -1.26168609e+00 2.32836455e-01
1.07472348e+00 1.19549930e+00 -8.11925903e-02 2.71120369e-01
7.32921585e-02 7.80659139e-01 -3.99009913e-01 -7.21693873e-01
-2.21801385e-01 -1.07206628e-02 -6.87295377e-01 -4.96704951e-02
1.03209512e-02 1.65915966e-01 8.88891444e-02 8.73317063e-01
4.39207613e-01 -2.59479764e-03 9.00157809e-01 -1.08739197e+00
-4.88227457e-01 7.29487121e-01 -3.62286329e-01 -2.48870999e-01
-2.06975639e-01 2.02997476e-01 1.16024423e+00 -6.72264993e-01
1.76446095e-01 1.09884667e+00 9.17003751e-01 4.85026330e-01
-1.45629942e+00 -4.06563103e-01 1.34387761e-01 3.27599905e-02
-1.27415597e+00 7.06444681e-02 4.17942375e-01 -5.00149369e-01
5.03998399e-01 -4.14712820e-03 1.76412538e-01 1.43379641e+00
5.48458576e-01 1.04350519e+00 1.22200465e+00 -1.61128879e-01
5.75228870e-01 3.20375919e-01 3.13400418e-01 5.92049599e-01
3.98099005e-01 5.92176355e-02 -2.79320538e-01 -4.60556656e-01
4.29059654e-01 1.68688804e-01 -3.60110343e-01 -3.77539158e-01
-1.33300471e+00 8.95233572e-01 5.71805596e-01 2.71040738e-01
-5.76678813e-01 4.17490244e-01 3.11694175e-01 -3.22349399e-01
7.28310287e-01 3.52707356e-01 -5.14069974e-01 -9.60811228e-02
-8.35925758e-01 2.02880189e-01 7.40773261e-01 6.83669627e-01
3.08862418e-01 -3.27652663e-01 -6.64382458e-01 7.08981037e-01
2.76765376e-01 4.56786215e-01 4.73151952e-01 -2.63358444e-01
3.55875552e-01 3.95632684e-01 2.48760298e-01 -7.40603685e-01
-7.48133659e-01 -8.19527328e-01 -1.25992286e+00 -1.17256589e-01
5.16874850e-01 -1.87819242e-01 -9.42493021e-01 1.71271026e+00
9.96317193e-02 4.37672436e-01 1.79582983e-01 6.44317091e-01
8.50022733e-01 4.66460556e-01 5.55159867e-01 -1.11470200e-01
1.44138336e+00 -9.59962308e-01 -7.94093668e-01 -2.05897138e-01
4.77051377e-01 -3.52378458e-01 9.35073435e-01 5.35336971e-01
-6.68197572e-01 -4.68975842e-01 -6.07235909e-01 2.43972778e-01
-1.55173898e-01 3.47379774e-01 6.73257709e-01 6.31203353e-01
-6.15264773e-01 7.72107661e-01 -1.10553586e+00 -4.42943759e-02
7.79668570e-01 2.64524937e-01 -3.43695939e-01 -1.45357057e-01
-1.36732030e+00 7.23034620e-01 6.13634765e-01 1.88623294e-01
-9.90317345e-01 -8.09213996e-01 -8.16193163e-01 3.43393236e-01
4.26560909e-01 -7.73094237e-01 1.19933343e+00 -7.21698284e-01
-1.31511652e+00 6.51630282e-01 8.20755307e-03 -8.90895545e-01
8.95791054e-01 -2.78948575e-01 -1.09496117e-01 -2.02046573e-01
-1.24714263e-01 4.95137095e-01 7.85540700e-01 -1.27013659e+00
-5.73993206e-01 -2.76835769e-01 -1.70954555e-01 -2.01785445e-01
-1.27389073e-01 -4.33989257e-01 -3.28267395e-01 -5.89388609e-01
-4.64052595e-02 -1.08359003e+00 -5.31492591e-01 -2.61017591e-01
-9.41385508e-01 -3.45156133e-01 1.52829424e-01 -3.85595113e-01
9.76627827e-01 -2.00712895e+00 -1.67816691e-02 1.40034363e-01
1.35845676e-01 1.31008580e-01 2.83843666e-01 2.14084730e-01
3.60819176e-02 2.75905013e-01 -6.33660793e-01 -7.69800723e-01
1.51552528e-01 1.75789639e-01 -4.19502333e-02 4.13310081e-01
3.94697249e-01 9.86779630e-01 -1.04303646e+00 -4.79997963e-01
1.85161214e-02 5.77073336e-01 -3.43234181e-01 2.48952284e-01
-4.54657912e-01 7.07448125e-01 -3.69518042e-01 6.05885148e-01
4.35496688e-01 -6.71058059e-01 -3.82181699e-03 -9.61242542e-02
4.58771199e-01 -1.22940563e-01 -8.59437704e-01 1.32789910e+00
-5.92123985e-01 3.00374031e-01 -6.26846135e-01 -9.92366135e-01
8.56631339e-01 4.29196417e-01 4.69787538e-01 -7.36152306e-02
1.81153744e-01 2.58887559e-01 1.08319391e-02 -2.27421001e-01
1.48052752e-01 -4.39455777e-01 -2.58429736e-01 1.39224619e-01
6.37920871e-02 -9.77918208e-02 6.60280585e-02 -1.73436612e-01
1.00282085e+00 4.10112999e-02 4.32172775e-01 -3.65573496e-01
5.18705904e-01 -1.51883334e-01 8.06518614e-01 8.55636775e-01
4.31293761e-03 7.71450937e-01 8.28493953e-01 -4.54966426e-01
-6.89536929e-01 -1.00458741e+00 -6.22897625e-01 6.03728533e-01
1.10829912e-01 -1.39633015e-01 -6.99186981e-01 -9.72062111e-01
1.13621116e-01 1.08150840e+00 -8.90695333e-01 -2.10356489e-01
-6.25517510e-04 -1.47344565e+00 3.54911804e-01 6.60729349e-01
2.23082706e-01 -1.14403653e+00 -3.22584778e-01 2.97987998e-01
-2.74275810e-01 -1.36695957e+00 7.38049373e-02 3.30409318e-01
-7.86211371e-01 -1.17173898e+00 -9.11545277e-01 -3.00411433e-01
6.40813053e-01 -5.57069182e-01 1.38354087e+00 -1.91738576e-01
3.43659483e-02 1.85322627e-01 -2.16873854e-01 -7.53970683e-01
-4.97768879e-01 2.37750962e-01 1.62687823e-02 3.33140314e-01
3.02580208e-01 -2.36409798e-01 -4.83335346e-01 3.52260053e-01
-8.85612488e-01 1.17356278e-01 8.53140593e-01 1.35705554e+00
1.12456071e+00 1.17498912e-01 8.18043768e-01 -1.42528439e+00
5.18453658e-01 -6.25592411e-01 -5.75003624e-01 3.57878774e-01
-6.95248127e-01 2.95662969e-01 6.61169410e-01 -2.15275735e-01
-1.16228759e+00 1.05151325e-01 -2.84355909e-01 -3.22467148e-01
-3.09564441e-01 6.80449963e-01 -9.57800448e-02 4.37390268e-01
6.32200301e-01 -4.02573124e-02 -2.01913252e-01 -5.32252610e-01
6.99384362e-02 4.53197241e-01 3.80871087e-01 -5.67930520e-01
4.73009855e-01 4.77147043e-01 2.26489633e-01 -4.54590142e-01
-1.29874444e+00 -2.80829638e-01 -4.54992890e-01 1.45493314e-01
8.75861228e-01 -8.74049067e-01 -8.12238634e-01 4.89501894e-01
-1.05758405e+00 -4.49034423e-01 -2.83139706e-01 6.80676818e-01
-7.73877800e-01 4.11736369e-02 -6.43244624e-01 -8.23320627e-01
-4.90607232e-01 -1.39237881e+00 1.23680604e+00 1.68346986e-01
-7.30283335e-02 -1.23611915e+00 -4.51480709e-02 3.29366058e-01
2.53215849e-01 4.90671217e-01 1.09814370e+00 -1.14019775e+00
-3.57326299e-01 -4.24224645e-01 -1.99492857e-01 4.81092244e-01
-1.12688139e-01 -1.62413985e-01 -1.21175933e+00 -9.32880566e-02
-1.98010057e-01 -3.08359981e-01 1.07596040e+00 5.98668396e-01
1.55349374e+00 -7.04724118e-02 -5.30972898e-01 2.50991672e-01
1.48276329e+00 -2.37707525e-01 5.29407978e-01 1.34729773e-01
6.68053508e-01 5.69052160e-01 8.10584426e-01 3.73512894e-01
3.27979982e-01 5.81822813e-01 7.48460352e-01 -1.62969664e-01
2.64580339e-01 -1.54364541e-01 1.02630466e-01 2.95673043e-01
-4.76965830e-02 -4.51742113e-01 -1.11587989e+00 4.57424223e-01
-2.22436976e+00 -5.82516968e-01 -3.20023119e-01 2.48287320e+00
8.71669114e-01 4.40077662e-01 -1.38091937e-01 9.37843025e-02
6.69671893e-01 -1.70609862e-01 -5.25895476e-01 -3.52187268e-02
3.45325768e-02 2.45542079e-01 5.50258875e-01 2.30941504e-01
-1.36563993e+00 7.02714562e-01 5.16236639e+00 1.09798753e+00
-8.83144975e-01 4.85392362e-01 1.44730711e+00 9.44794789e-02
-1.24239199e-01 -4.22686636e-01 -9.49717224e-01 6.29577160e-01
9.94502723e-01 1.27008319e-01 -3.39930266e-01 1.10247433e+00
1.47656426e-01 -2.48476669e-01 -1.34601200e+00 9.12354290e-01
-1.78362608e-01 -1.29397106e+00 -2.59382039e-01 -3.23304161e-02
8.65593910e-01 2.96216253e-02 7.27761313e-02 5.25807500e-01
2.65034795e-01 -1.23031497e+00 4.68592912e-01 7.36415088e-01
5.17981231e-01 -9.72485542e-01 1.52579165e+00 5.88334322e-01
-5.88648379e-01 -1.24295235e-01 -3.92188400e-01 5.12890339e-01
3.89488220e-01 1.38811243e+00 -8.19892347e-01 6.67043269e-01
4.52903956e-01 4.36038584e-01 -3.75668734e-01 1.29570091e+00
-6.11531198e-01 8.19266200e-01 -3.26682955e-01 -9.58754197e-02
3.70094150e-01 1.97758764e-01 2.98633039e-01 1.22416818e+00
2.78555125e-01 -2.20919684e-01 1.07967988e-01 9.27578270e-01
-2.56749123e-01 1.56618997e-01 -1.81486368e-01 1.46164998e-01
9.75092873e-02 1.34755003e+00 -7.21620023e-01 -2.97696590e-01
-1.17844298e-01 7.03681290e-01 2.38620728e-01 1.22558266e-01
-1.18253577e+00 8.57264474e-02 3.76124591e-01 -1.82761420e-02
1.55824766e-01 4.07348424e-01 -2.70210743e-01 -9.59619761e-01
-8.15323442e-02 -6.29367709e-01 4.10535663e-01 -4.66457605e-01
-1.70262945e+00 1.03267395e+00 -1.44258905e-02 -1.17666841e+00
-3.42515081e-01 -6.45334363e-01 -3.55798870e-01 7.89873362e-01
-1.74911809e+00 -1.18953061e+00 -4.51520085e-01 2.44196042e-01
3.67001891e-01 8.97268355e-02 1.00265539e+00 2.71710724e-01
-7.70785034e-01 6.78611457e-01 2.46285126e-01 -4.98803928e-02
7.34421074e-01 -1.42053485e+00 2.38855466e-01 4.45097864e-01
2.34138682e-01 1.33012608e-01 7.80259073e-01 -5.14007390e-01
-7.85785198e-01 -1.43014336e+00 7.08306313e-01 -6.02295995e-01
5.34614921e-01 -1.76121205e-01 -1.06868410e+00 5.04408717e-01
-2.43064612e-01 4.24269050e-01 8.07413459e-01 2.48733833e-01
3.37267853e-02 -7.36739486e-02 -1.31087399e+00 1.05678923e-01
5.58641195e-01 -2.05631964e-02 -2.74898589e-01 8.34883690e-01
7.29033649e-01 -5.73867917e-01 -1.04036760e+00 7.24955857e-01
3.25783491e-01 -1.01703346e+00 7.52924383e-01 -6.07533813e-01
6.10256732e-01 -1.54733844e-02 8.50643292e-02 -1.58918512e+00
-2.21621975e-01 -1.85066298e-01 -2.44091824e-01 1.19615531e+00
7.93038845e-01 -7.60835767e-01 7.91991472e-01 7.34186292e-01
-5.18650748e-02 -1.40844727e+00 -9.03904140e-01 -8.58655393e-01
7.07040951e-02 -6.50748670e-01 5.05199254e-01 6.59889877e-01
-2.74072111e-01 1.55545816e-01 -4.35077667e-01 2.94351012e-01
8.04783523e-01 8.75389725e-02 4.99396205e-01 -1.49342990e+00
-5.78186333e-01 -3.00245821e-01 -4.68948066e-01 -4.98728037e-01
3.07326376e-01 -6.51545405e-01 3.55360776e-01 -1.53511786e+00
3.17021400e-01 -8.62968326e-01 -6.17450774e-01 5.24066508e-01
-5.22335708e-01 1.96253061e-01 -9.46195424e-02 1.84087038e-01
-5.65535724e-01 7.10254252e-01 8.48003685e-01 -1.62008524e-01
-1.78253688e-02 6.56449020e-01 -4.75318611e-01 8.79235864e-01
8.58106196e-01 -7.58236587e-01 -2.92640895e-01 5.08962292e-03
1.05306163e-01 2.19125599e-02 3.87659818e-01 -1.11504972e+00
-3.25174145e-02 6.91388696e-02 2.81730592e-01 -5.43329477e-01
3.03244114e-01 -9.15525019e-01 2.07553759e-01 5.88187814e-01
-5.10933161e-01 -3.86038899e-01 1.65742159e-01 1.03963959e+00
-3.52705568e-01 -4.23040628e-01 9.09443319e-01 7.02535780e-03
-3.31352979e-01 6.09998822e-01 1.53407380e-02 -2.23193108e-03
1.21559262e+00 4.19850081e-01 -1.01764359e-01 -3.21505517e-01
-8.74817371e-01 3.23376238e-01 4.89629358e-02 2.80079365e-01
2.60632008e-01 -1.20562172e+00 -8.73385489e-01 -2.41931871e-01
4.54235911e-01 4.50115353e-01 3.86668533e-01 1.19242346e+00
-3.11007798e-01 5.96893430e-01 3.91239464e-01 -1.04511237e+00
-9.47325885e-01 6.94974542e-01 3.15596253e-01 -9.14560556e-01
-4.50099945e-01 8.63593638e-01 5.03624558e-01 -3.17759037e-01
4.13982600e-01 -5.55213749e-01 -1.54157743e-01 -1.84511781e-01
6.05899394e-01 1.23356499e-01 1.95097387e-01 -3.75186414e-01
-3.01488549e-01 1.93806216e-01 6.99667707e-02 2.28012532e-01
1.30347848e+00 2.61290669e-01 1.04427390e-01 6.43063843e-01
7.44434237e-01 -2.82387644e-01 -1.30978477e+00 -3.91023666e-01
2.38603294e-01 -1.72213450e-01 3.83942239e-02 -9.38195646e-01
-1.04425240e+00 1.18701959e+00 5.31792760e-01 1.72888458e-01
8.27857077e-01 2.21973248e-02 6.18654966e-01 2.97013462e-01
4.61507708e-01 -7.11239040e-01 -2.25179959e-02 2.07219243e-01
7.95324624e-01 -1.64858401e+00 -7.30988011e-02 -4.78464961e-01
-9.92791474e-01 8.96073937e-01 4.33442622e-01 1.62271723e-01
7.55066037e-01 6.36420995e-02 -2.70720214e-01 -3.48143652e-02
-7.54621923e-01 -9.47617665e-02 4.73763525e-01 4.11979616e-01
4.04488802e-01 3.40875477e-01 -2.13377789e-01 1.14197171e+00
2.01719314e-01 8.84884894e-02 2.24761650e-01 3.21053624e-01
-8.63840654e-02 -9.50253487e-01 -2.65442312e-01 6.09315455e-01
-8.00044060e-01 -2.07071915e-01 1.65394828e-01 7.59556413e-01
6.49403408e-02 6.97675109e-01 -1.50416687e-01 -1.45642906e-02
2.11034849e-01 8.61277729e-02 1.62284389e-01 -6.84597790e-01
-4.93301630e-01 -1.18557639e-01 1.06193565e-01 -4.15339053e-01
-3.44397426e-01 -5.42243838e-01 -1.30465055e+00 -1.41526153e-02
-4.17556167e-01 2.54117221e-01 7.01974392e-01 1.06539476e+00
3.56258541e-01 7.97755599e-01 3.37228328e-01 -7.17654645e-01
-7.91442752e-01 -1.13048363e+00 -4.95538026e-01 4.28755641e-01
5.87889962e-02 -9.13013935e-01 -3.24534893e-01 -1.24258742e-01] | [14.377866744995117, -2.022735118865967] |
60691639-9620-489e-9103-59240f4fec21 | prodmps-a-unified-perspective-on-dynamic-and | 2210.01531 | null | https://arxiv.org/abs/2210.01531v1 | https://arxiv.org/pdf/2210.01531v1.pdf | ProDMPs: A Unified Perspective on Dynamic and Probabilistic Movement Primitives | Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into basis functions that can be computed offline. These basis functions can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. | ['Gerhard Neumann', 'Rudolf Lioutikov', 'Fabian Otto', 'Michael Volpp', 'Zeqi Jin', 'Ge Li'] | 2022-10-04 | null | null | null | null | ['numerical-integration'] | ['miscellaneous'] | [-3.19933206e-01 -2.65709013e-01 -1.53270677e-01 5.68673527e-03
-8.65582347e-01 -6.54778957e-01 7.81097591e-01 1.34033978e-01
-2.87290394e-01 7.29428232e-01 2.66209602e-01 -2.04983532e-01
-5.35625160e-01 -9.27641869e-01 -9.55957532e-01 -8.89775097e-01
-2.81760633e-01 4.03541863e-01 3.06359947e-01 -1.10132515e-01
4.64362986e-02 7.52040625e-01 -1.49841356e+00 -6.15425482e-02
9.87084866e-01 8.70925307e-01 1.44141629e-01 6.21126056e-01
1.77580878e-01 5.81024110e-01 -1.32887200e-01 5.49112819e-02
1.33770302e-01 -3.56510878e-01 -4.97857839e-01 -3.66217613e-01
-1.08978778e-01 -4.06190306e-01 -5.80983102e-01 8.99131179e-01
3.69542599e-01 6.47088826e-01 7.73947060e-01 -1.48171937e+00
-4.00878489e-01 6.98067069e-01 -1.75504416e-01 -1.15587637e-01
1.85052693e-01 5.13292432e-01 8.21873128e-01 -5.54343522e-01
4.29961562e-01 1.28692043e+00 7.09986567e-01 5.99924088e-01
-1.34127021e+00 -4.39758033e-01 3.80690932e-01 3.25876474e-03
-1.41047084e+00 -1.39645845e-01 7.19265580e-01 -6.78670585e-01
5.90935826e-01 2.78666645e-01 7.56802440e-01 1.29471695e+00
4.18197483e-01 9.31107521e-01 1.00344491e+00 1.32621869e-01
6.02332234e-01 -4.28823858e-01 1.73803344e-01 4.05149281e-01
5.57858609e-02 5.26403010e-01 -3.45648527e-01 -2.55399495e-01
6.64297938e-01 2.47028559e-01 -2.08739147e-01 -2.70135850e-01
-1.13457274e+00 6.26390159e-01 3.73233736e-01 3.83410156e-02
-5.87776721e-01 6.64110899e-01 1.46870658e-01 -2.29428798e-01
1.40841901e-02 7.42598921e-02 -1.58795819e-01 -3.64287764e-01
-9.09114480e-01 9.64568496e-01 6.14673376e-01 8.90126467e-01
6.85513020e-01 2.67766505e-01 -5.17436981e-01 2.01321706e-01
4.58829045e-01 7.87265778e-01 5.23053288e-01 -8.81422400e-01
2.63485253e-01 4.88220125e-01 4.31358844e-01 -9.69247222e-01
-5.59785306e-01 -2.04597890e-01 -9.32263613e-01 2.84726143e-01
5.38014233e-01 -2.79895812e-01 -9.21444416e-01 2.17077565e+00
3.83825302e-01 5.22643626e-01 -1.65229589e-02 7.63087571e-01
3.23436528e-01 9.41084445e-01 1.55208170e-01 3.88577767e-02
9.33355629e-01 -5.22183239e-01 -4.54118073e-01 3.10000360e-01
3.59337211e-01 -1.29247785e-01 1.07833433e+00 3.61621737e-01
-1.06433773e+00 -3.58237535e-01 -7.82430768e-01 2.33038768e-01
-1.63550586e-01 2.47573748e-01 3.82772595e-01 4.71207082e-01
-1.02309287e+00 1.11391938e+00 -1.64143538e+00 5.11125438e-02
2.39480883e-01 3.85051608e-01 6.05284497e-02 3.55149448e-01
-9.65873241e-01 6.71736240e-01 5.05843163e-01 -6.46803752e-02
-1.51819801e+00 -8.66347134e-01 -7.09156275e-01 7.47469962e-02
2.68871278e-01 -7.46396244e-01 1.15525746e+00 -3.79416615e-01
-1.95559657e+00 -1.35628236e-02 -1.72826320e-01 -6.97168410e-01
4.67967480e-01 -4.51551735e-01 -8.69126171e-02 5.47744054e-03
-1.84793115e-01 6.06302679e-01 7.97480106e-01 -1.07771087e+00
-5.58863819e-01 3.81958596e-02 4.64167967e-02 1.16719410e-01
-1.36819437e-01 -2.77041286e-01 -2.53091425e-01 -5.78341007e-01
-8.62256214e-02 -1.34840190e+00 -3.64284545e-01 -7.35530183e-02
-6.73476517e-01 -3.22636187e-01 5.97966015e-01 -5.59169829e-01
1.31863344e+00 -1.84626901e+00 5.42392731e-01 2.18500689e-01
1.95468754e-01 2.64464200e-01 -1.87690333e-01 7.38079250e-01
1.58786759e-01 -5.30793443e-02 -4.35403526e-01 -3.96351039e-01
3.80498677e-01 1.85376480e-01 -8.43262017e-01 4.35858637e-01
2.88599581e-01 1.03301692e+00 -1.04906166e+00 -5.25012389e-02
3.75493050e-01 5.98973274e-01 -6.81344926e-01 2.47918889e-02
-5.43347955e-01 7.67176807e-01 -5.44516802e-01 2.12205872e-01
4.28125769e-01 6.74125999e-02 -8.78705755e-02 -4.35098726e-03
-3.15023243e-01 1.94287136e-01 -1.36209679e+00 1.41332614e+00
-4.35496986e-01 2.74965078e-01 -1.94730610e-01 -7.85923421e-01
8.16584945e-01 8.15386772e-02 6.59507096e-01 4.64346893e-02
1.72330007e-01 3.38463157e-01 -1.19028367e-01 -9.67139676e-02
6.44540310e-01 -1.69962257e-01 -1.28756851e-01 3.18622500e-01
-5.88477254e-02 5.42967729e-02 2.22947821e-01 -2.15985645e-02
1.11766231e+00 6.15512371e-01 1.05710916e-01 -1.28076285e-01
2.62913078e-01 3.13533135e-02 6.02492273e-01 7.29700387e-01
3.47019881e-02 4.82689381e-01 4.45944637e-01 -2.15517208e-01
-8.69296074e-01 -1.52515841e+00 1.92422569e-01 7.32734561e-01
1.63542747e-01 -4.39746410e-01 -7.89784193e-01 -2.12859660e-01
-6.29649498e-03 6.60759807e-01 -4.16030943e-01 -2.72159606e-01
-7.54413784e-01 -6.97039902e-01 5.97908199e-01 6.72017932e-01
2.64444351e-01 -9.28033948e-01 -8.32785904e-01 3.49371821e-01
2.47833617e-02 -7.68179297e-01 -5.14164925e-01 -1.07957304e-01
-9.13145542e-01 -7.64540970e-01 -8.20341051e-01 -2.85157561e-01
4.50570405e-01 -6.39270768e-02 6.78718328e-01 -3.64542276e-01
1.49106681e-01 4.86473143e-01 -2.78174251e-01 -2.61206985e-01
-2.89254367e-01 -4.53238003e-03 4.43678468e-01 1.69183284e-01
-1.36801302e-01 -9.84604478e-01 -6.02035701e-01 2.49293268e-01
-1.10387707e+00 6.34848401e-02 5.75228930e-01 6.93632305e-01
9.86611187e-01 1.48683950e-01 4.98148024e-01 -2.45221093e-01
8.00009429e-01 -6.90943003e-01 -8.41243804e-01 -4.74980623e-02
-1.42927900e-01 2.90720612e-01 1.03429210e+00 -7.96965003e-01
-7.18993008e-01 3.58359486e-01 -3.48171324e-01 -8.27302992e-01
-2.22841665e-01 6.90504432e-01 -1.34502277e-01 1.52734756e-01
6.33945823e-01 5.12042999e-01 -1.99541464e-01 -3.54664624e-01
6.80790007e-01 2.72777319e-01 6.15973830e-01 -1.04012942e+00
9.15113986e-01 6.55639768e-01 2.95591086e-01 -7.54065692e-01
-4.91469562e-01 -1.49246812e-01 -3.52562517e-01 -2.33672887e-01
8.37486088e-01 -6.36905491e-01 -1.19708002e+00 7.17898905e-01
-1.10796583e+00 -6.67402625e-01 -4.60531175e-01 6.80928171e-01
-9.82657790e-01 2.14219257e-01 -4.49656636e-01 -1.27785337e+00
-2.08797768e-01 -1.11622739e+00 9.70430553e-01 3.02943647e-01
-3.13935429e-01 -8.60920012e-01 3.46561432e-01 -6.07636809e-01
3.74244630e-01 9.50430930e-01 6.47967577e-01 -4.68343109e-01
-8.93552005e-01 -3.64399403e-01 2.28185669e-01 1.79634333e-01
-1.14424117e-01 1.31326422e-01 -6.14935338e-01 -1.93483457e-01
-7.10770208e-03 -8.92502964e-02 6.99157834e-01 7.17135906e-01
9.17173207e-01 -6.15069687e-01 -5.47280252e-01 6.86560035e-01
1.22372878e+00 2.79890835e-01 4.58894700e-01 -6.51340559e-02
7.11146533e-01 6.69485629e-01 5.47839940e-01 5.48173368e-01
4.78145778e-01 7.72795379e-01 4.31381047e-01 4.80946243e-01
1.91924393e-01 -6.26673877e-01 7.04669237e-01 7.29021072e-01
-1.40578136e-01 -1.65797457e-01 -1.05396438e+00 7.03008175e-01
-2.18766284e+00 -1.11623466e+00 -1.64399251e-01 2.23964405e+00
6.70899630e-01 1.37918428e-01 5.49263179e-01 8.21946282e-03
5.80871522e-01 -9.37279372e-04 -7.62822390e-01 7.56290480e-02
2.51127988e-01 1.63096368e-01 4.15865093e-01 5.25431752e-01
-1.12812769e+00 8.03547263e-01 5.33500528e+00 1.07268059e+00
-1.16021705e+00 3.66907679e-02 2.73608297e-01 -1.47611529e-01
-4.62420523e-01 4.82617803e-02 -1.02247763e+00 8.43353689e-01
1.03454256e+00 -4.56448883e-01 6.40652418e-01 1.04621279e+00
4.53060240e-01 1.59408882e-01 -1.15178740e+00 8.49502981e-01
-5.23584366e-01 -1.38490593e+00 3.11958976e-02 1.52744958e-02
7.32269108e-01 8.04305300e-02 2.43199751e-01 3.82545799e-01
7.38207281e-01 -1.05024683e+00 1.06982541e+00 1.01529825e+00
4.39050287e-01 -8.05426002e-01 2.33907223e-01 7.13165402e-01
-1.38292503e+00 -1.23015642e-01 -1.47555396e-01 9.51057002e-02
6.12135828e-01 5.86211443e-01 -2.65881121e-01 8.58942986e-01
3.66395742e-01 6.29693508e-01 9.92117301e-02 1.28249288e+00
-1.78457290e-01 6.17339313e-01 -8.22587967e-01 -3.04878920e-01
3.84651333e-01 -4.82771635e-01 9.40119922e-01 8.21126163e-01
6.54695809e-01 -1.56688824e-01 2.80826718e-01 1.22183347e+00
4.63347286e-01 -3.70743632e-01 -5.68792939e-01 -1.91252619e-01
6.61656439e-01 1.04379773e+00 -5.58413684e-01 -1.29952669e-01
2.01510444e-01 5.06942987e-01 2.12903813e-01 3.75013500e-01
-1.05520821e+00 -4.07814115e-01 8.47091258e-01 5.36621213e-02
2.17963651e-01 -6.90668344e-01 -8.39505717e-02 -9.93097007e-01
2.38233544e-02 -6.32507086e-01 1.36760920e-01 -4.05800372e-01
-1.24458659e+00 6.14006519e-01 5.60399413e-01 -1.41376579e+00
-5.14282525e-01 -5.92264593e-01 -8.98333073e-01 9.81395900e-01
-1.18960595e+00 -1.19371295e+00 -1.99682012e-01 6.15026653e-01
9.98612195e-02 1.66433543e-01 5.92282653e-01 1.35556430e-01
-5.55633128e-01 3.50107163e-01 2.13039815e-01 -1.09381072e-01
3.90741713e-02 -1.23259723e+00 4.97655451e-01 9.25906241e-01
6.96086064e-02 8.57047260e-01 7.71565139e-01 -8.06278646e-01
-1.45437622e+00 -1.42055595e+00 3.24219882e-01 -5.80195963e-01
7.68443286e-01 -1.46627456e-01 -9.01208758e-01 6.24625921e-01
-3.52831006e-01 -1.84178934e-01 2.76443243e-01 -1.99114993e-01
9.41040590e-02 -7.52429813e-02 -8.07242751e-01 1.04489815e+00
9.31821942e-01 -2.50572056e-01 -3.08585703e-01 2.67322928e-01
7.22034037e-01 -6.46426141e-01 -7.33558178e-01 3.67203385e-01
5.48242271e-01 -7.17336297e-01 1.05326915e+00 -6.65860832e-01
3.85613799e-01 -6.58861220e-01 -8.94204602e-02 -1.39588332e+00
-5.16844131e-02 -1.22035658e+00 -6.13048375e-01 1.12491620e+00
8.15641060e-02 -7.44016767e-01 6.59570575e-01 5.15945792e-01
-5.41018724e-01 -1.18905997e+00 -1.05339730e+00 -1.27863407e+00
3.96739572e-01 -8.00535381e-01 8.01127970e-01 3.97109717e-01
-1.28169268e-01 -2.28924245e-01 -4.88683909e-01 3.48920196e-01
5.86438537e-01 8.21649581e-02 9.06851649e-01 -8.64706516e-01
-5.26657224e-01 -6.30843282e-01 -3.09288770e-01 -1.31167746e+00
1.87623158e-01 -9.54937577e-01 3.33733141e-01 -1.54067183e+00
-2.40342230e-01 -5.73294103e-01 -9.61965621e-02 2.81840563e-01
-1.02442719e-01 -2.59383976e-01 2.30000347e-01 3.83126915e-01
-3.79363298e-01 1.11656880e+00 9.29333150e-01 2.74629921e-01
-6.18437588e-01 1.69584051e-01 -3.05895150e-01 8.81092191e-01
9.04669642e-01 -6.61023140e-01 -5.79972267e-01 -9.17469338e-02
1.19961418e-01 1.71284571e-01 7.00501621e-01 -1.37223101e+00
3.55821103e-01 -5.44606686e-01 -1.53396249e-01 -9.24469948e-01
4.47643876e-01 -4.52617735e-01 4.55934018e-01 5.50491929e-01
-2.21031055e-01 3.64174172e-02 2.24844128e-01 9.35644567e-01
3.54540311e-02 -4.69530597e-02 6.93125188e-01 2.30605483e-01
-2.25900248e-01 5.61564028e-01 -6.70024514e-01 1.44611657e-01
1.08938205e+00 1.04723185e-01 -2.58102983e-01 -4.44772154e-01
-7.67446637e-01 3.41169089e-01 3.01962882e-01 2.03790665e-01
6.09284401e-01 -1.66124821e+00 -4.05384511e-01 -2.76644945e-01
-2.73935080e-01 1.60338551e-01 4.01046664e-01 1.11037672e+00
-4.40957248e-01 4.39005077e-01 -1.17758952e-01 -6.15885735e-01
-5.07327139e-01 4.96851921e-01 2.34445632e-01 -4.72570807e-01
-7.13534772e-01 4.92335200e-01 2.10302487e-01 -4.98168111e-01
1.70829937e-01 -6.98662817e-01 -2.96373270e-03 -2.09870383e-01
4.41006422e-01 5.59423208e-01 -3.83393288e-01 -4.96994853e-01
-3.13168585e-01 5.40669680e-01 3.25577766e-01 -4.44066316e-01
1.20503664e+00 1.27493694e-01 2.22515807e-01 7.20829546e-01
8.24126482e-01 -1.64922714e-01 -1.74999630e+00 8.37053284e-02
4.28277999e-02 -5.98594137e-02 -1.53634027e-01 -5.03085017e-01
-7.52234519e-01 9.40718055e-01 4.19983178e-01 1.98788494e-01
9.03888404e-01 -2.78914362e-01 1.17330074e+00 5.49989581e-01
5.85972071e-01 -8.99269581e-01 -1.09608680e-01 6.04301274e-01
8.66923213e-01 -5.42733848e-01 -3.79719287e-01 -8.96799639e-02
-6.81634247e-01 9.58830535e-01 2.51373768e-01 -7.14458346e-01
7.50844002e-01 1.69358417e-01 -5.18854558e-01 9.32900757e-02
-6.65942371e-01 -3.17338973e-01 4.45689142e-01 6.85503185e-01
-1.41765356e-01 2.38752037e-01 -2.81557083e-01 9.02300358e-01
-2.19551653e-01 2.45523095e-01 3.57685417e-01 7.77038157e-01
-3.04460526e-01 -9.60520029e-01 -2.42966354e-01 2.61190295e-01
-1.78195551e-01 5.64633049e-02 5.87833673e-02 6.73186421e-01
-1.29855886e-01 7.38445699e-01 -2.10338030e-02 -6.37876570e-01
2.32734323e-01 -9.63235181e-03 2.86940217e-01 -4.93461758e-01
-3.77992779e-01 -1.63372710e-01 -1.28052443e-01 -7.31468797e-01
-5.49638644e-02 -7.89324462e-01 -1.39890528e+00 -3.75486702e-01
-1.04918741e-02 -1.77045241e-02 4.95105028e-01 9.52469885e-01
6.05238378e-01 5.41238487e-01 3.88456762e-01 -1.27049184e+00
-9.52761292e-01 -7.23824024e-01 -4.14699644e-01 1.70497820e-01
3.38237166e-01 -8.93738627e-01 -2.41387010e-01 1.21625969e-02] | [6.353351593017578, 0.877469539642334] |
95c1f32e-5236-430c-ad38-84c8f5064cf7 | cross-lingual-speaker-identification-from | null | null | https://openreview.net/forum?id=jCqESRWnumE | https://openreview.net/pdf?id=jCqESRWnumE | Cross-Lingual Speaker Identification from Weak Local Evidence | Speaker identification, determining which character said each utterance in text, benefits many downstream tasks. Most existing approaches use expert-defined rules or rule-based features to directly approach this task, but these approaches come with significant drawbacks, such as lack of contextual reasoning and poor cross-lingual generalization. In this work, we propose a speaker identification framework that addresses these issues. We first extract large-scale distant supervision signals in English via general-purpose tools and heuristics, and then apply these weakly-labeled instances with a focus on encouraging contextual reasoning to train a cross-lingual language model. We show that our final model outperforms the previous state-of-the-art methods on two English speaker identification benchmarks by $5.4\%$ in accuracy, as well as two Chinese speaker identification datasets by up to $4.7\%$. | ['Anonymous'] | 2022-01-16 | null | null | null | acl-arr-january-2022-1 | ['speaker-identification'] | ['speech'] | [ 9.11092311e-02 -9.28579196e-02 -3.71749490e-01 -9.09647226e-01
-1.44279480e+00 -6.77720606e-01 5.12551129e-01 -1.60050154e-01
-4.04631406e-01 7.14155793e-01 2.52643615e-01 -5.49747109e-01
1.41443342e-01 -2.69969761e-01 -5.82048416e-01 -4.83422250e-01
1.87024698e-01 5.21982074e-01 1.28055200e-01 -1.41916901e-01
4.00838889e-02 2.03136891e-01 -1.31908751e+00 3.94132733e-01
1.05507612e+00 9.25407767e-01 -1.84621543e-01 3.73782575e-01
-3.34511548e-01 8.63220811e-01 -4.97095406e-01 -8.24238360e-01
-1.36036769e-01 -3.62731636e-01 -1.06474352e+00 -6.37063459e-02
4.78201479e-01 -1.42477930e-01 7.01589659e-02 1.21095240e+00
6.22027338e-01 1.66841540e-02 4.57084477e-01 -8.94769013e-01
-6.83546245e-01 1.23007214e+00 -4.85896885e-01 2.17267051e-01
4.59457427e-01 4.74108709e-03 1.11743665e+00 -9.70959783e-01
3.06861192e-01 1.39703226e+00 8.00124943e-01 8.74280512e-01
-1.32765722e+00 -8.93212616e-01 5.12590110e-01 2.24912420e-01
-1.49736738e+00 -1.10541964e+00 7.62692034e-01 -2.54901767e-01
1.08129108e+00 2.70401120e-01 -2.17757508e-01 1.26364899e+00
-6.69921279e-01 1.12556088e+00 1.30767405e+00 -6.38043344e-01
2.83866853e-01 4.99247253e-01 4.95856076e-01 6.90535128e-01
-3.83096606e-01 -4.34966758e-02 -6.91095948e-01 -6.82681352e-02
4.96155545e-02 -4.62692350e-01 -2.53055364e-01 1.95480570e-01
-9.72048581e-01 7.73027539e-01 1.44593999e-01 2.40472078e-01
-3.77242006e-02 -4.20642674e-01 4.90138739e-01 2.30661079e-01
4.24073696e-01 2.25419909e-01 -7.48790562e-01 -2.38499597e-01
-8.67483258e-01 -2.11534441e-01 9.07729685e-01 9.50519979e-01
7.87837207e-01 1.38945237e-01 2.70638652e-02 1.35803139e+00
3.35404068e-01 6.22221828e-01 5.89135110e-01 -6.70540988e-01
7.28957176e-01 3.83078903e-01 -1.73565015e-01 -3.82154107e-01
-1.73910350e-01 -3.54110092e-01 -4.29406732e-01 -3.03053021e-01
4.95384932e-01 -3.85271281e-01 -7.47564018e-01 1.97270453e+00
2.60707200e-01 2.81681508e-01 3.51237178e-01 6.13248587e-01
7.97007918e-01 5.29542089e-01 2.11340845e-01 -8.41098353e-02
1.47054899e+00 -1.09285271e+00 -5.95534921e-01 -5.60530663e-01
6.05396509e-01 -7.39627898e-01 1.32654858e+00 1.98175788e-01
-8.87753308e-01 -4.66608077e-01 -8.15098345e-01 1.44696906e-01
-2.57035673e-01 2.34775528e-01 3.67018461e-01 1.09605479e+00
-1.03811169e+00 7.93982297e-02 -7.16869593e-01 -2.93421268e-01
2.65847862e-01 3.74426156e-01 -1.70959488e-01 -5.27589284e-02
-1.26567006e+00 7.91463077e-01 7.78842047e-02 1.64712463e-02
-7.77036190e-01 -7.42128968e-01 -9.03240442e-01 -7.93829858e-02
4.77523327e-01 -1.51172444e-01 1.55036318e+00 -9.00207877e-01
-1.92158687e+00 1.09573436e+00 -7.03409314e-01 -5.37683129e-01
3.56148660e-01 -2.17825443e-01 -8.25085759e-01 -2.31912211e-01
1.79127797e-01 5.42797387e-01 5.69409490e-01 -1.14816105e+00
-8.87783110e-01 -5.60979247e-01 8.71167853e-02 1.30024418e-01
-5.33294916e-01 5.33021867e-01 -7.73069501e-01 -4.60897624e-01
2.21742056e-02 -8.89818251e-01 -5.33133419e-03 -6.96472347e-01
-6.63397789e-01 -5.45465171e-01 7.39468515e-01 -7.52420843e-01
1.14671159e+00 -2.15963078e+00 -2.19065137e-02 7.30179846e-02
-2.11097136e-01 3.05895925e-01 3.56350094e-02 -3.37092727e-02
2.28947312e-01 2.74219751e-01 -2.07825482e-01 -6.91672504e-01
2.53182530e-01 1.16748631e-01 -4.14234340e-01 6.97022155e-02
3.43824029e-01 6.56686783e-01 -6.28906310e-01 -5.10444880e-01
-1.13724535e-02 4.77515072e-01 -4.74456817e-01 1.89539224e-01
-1.29718274e-01 3.10905427e-01 -3.02308500e-01 7.70313859e-01
5.37980616e-01 1.65346395e-02 3.80791157e-01 1.64588735e-01
-4.24285866e-02 9.37961221e-01 -1.06307793e+00 1.57113075e+00
-7.06162632e-01 4.40363139e-01 3.84353667e-01 -1.02237999e+00
9.17069912e-01 3.68630677e-01 -8.19016472e-02 -5.13215423e-01
5.64298369e-02 3.59559685e-01 -2.50785071e-02 -3.48287314e-01
7.22634792e-02 -2.99709290e-01 -2.28691041e-01 4.62230772e-01
-5.04733808e-03 1.04950540e-01 -1.39199018e-01 2.91648526e-02
8.24440181e-01 -1.67275622e-01 1.40729755e-01 -4.44929242e-01
1.12893844e+00 -2.32223824e-01 8.70172381e-01 7.12001860e-01
-4.96886581e-01 2.38557175e-01 2.77210027e-01 -5.54406159e-02
-3.88247013e-01 -8.31103206e-01 -3.11667919e-01 1.61983919e+00
-7.89084062e-02 -3.37644398e-01 -1.12165952e+00 -1.05308259e+00
-4.75578681e-02 1.05344713e+00 -3.45132560e-01 3.68448347e-02
-7.11342514e-01 -5.01004934e-01 9.52192247e-01 7.11067736e-01
5.38698435e-01 -1.08497810e+00 2.91902184e-01 1.49334505e-01
-2.84186482e-01 -1.55774951e+00 -6.29683137e-01 4.27482873e-01
-5.24074137e-01 -5.74529469e-01 -3.27749044e-01 -1.08845508e+00
4.64613050e-01 4.59612394e-03 1.18729937e+00 -1.20337956e-01
1.18818097e-01 5.36168600e-03 -2.23834500e-01 -4.09343272e-01
-6.31544709e-01 4.28172350e-01 4.16144490e-01 2.31828511e-01
1.12874877e+00 -2.06229985e-01 -1.56509951e-01 5.66256166e-01
-2.48369709e-01 -3.24322820e-01 4.00014579e-01 9.08160627e-01
3.24926943e-01 2.68663522e-02 9.94508147e-01 -9.96605694e-01
4.38901991e-01 -1.60936639e-01 -6.22445464e-01 4.02020127e-01
-5.11986375e-01 2.65136540e-01 6.78646147e-01 -2.88006634e-01
-1.32963204e+00 2.33069003e-01 -5.18758893e-01 -1.87029108e-01
-5.43231428e-01 3.77250940e-01 -6.34886384e-01 1.97769657e-01
6.34862244e-01 4.10216093e-01 -1.72299713e-01 -5.93625009e-01
2.93836892e-01 1.20065093e+00 6.08228266e-01 -9.05082285e-01
6.50179029e-01 2.43830279e-01 -8.79762948e-01 -7.76764452e-01
-1.12077487e+00 -5.37409186e-01 -6.76723421e-01 1.57465354e-01
7.85208941e-01 -1.09392416e+00 -6.92035913e-01 3.71723056e-01
-9.38482881e-01 -4.11753088e-01 9.72779542e-02 4.85772789e-01
-2.86356658e-01 2.22177684e-01 -8.47475111e-01 -9.78460193e-01
-3.43720675e-01 -1.42619693e+00 9.99945521e-01 -8.41241702e-03
-2.76835948e-01 -9.07765329e-01 -2.59599715e-01 8.70468140e-01
3.80537838e-01 -6.54944301e-01 6.94231391e-01 -8.98417711e-01
-3.02015454e-01 -5.68553247e-02 -1.26677051e-01 5.42190373e-01
2.87201375e-01 -1.96620584e-01 -1.51163292e+00 -1.75004855e-01
-7.35138431e-02 -5.18829882e-01 7.22974241e-01 1.66205943e-01
1.07524443e+00 -2.66900033e-01 -4.22811389e-01 5.42461932e-01
9.02389884e-01 2.26586103e-01 2.40161568e-01 2.06270069e-01
5.84218323e-01 8.13746631e-01 3.19631577e-01 -1.13907702e-01
6.31286025e-01 8.52694511e-01 -1.68034345e-01 2.14672714e-01
-3.07806488e-02 -3.99282098e-01 7.83372402e-01 9.91492331e-01
2.63541728e-01 1.49961054e-01 -1.24303913e+00 6.06215894e-01
-1.65196037e+00 -9.27815735e-01 2.29457721e-01 2.02123165e+00
1.28152227e+00 2.96378881e-01 2.89705932e-01 3.24708149e-02
9.42489624e-01 -1.46949783e-01 -5.80625594e-01 -4.58420962e-01
-1.37877122e-01 -2.63799373e-02 2.75488973e-01 7.64651477e-01
-1.26369393e+00 1.45005417e+00 6.31964827e+00 8.92939389e-01
-1.34647810e+00 1.89557984e-01 7.80596375e-01 5.52958101e-02
-1.77675292e-01 -1.85160488e-01 -1.49224234e+00 4.37042683e-01
1.24401450e+00 5.76777905e-02 4.16310787e-01 1.06533456e+00
-1.23801036e-02 4.09528285e-01 -1.38141716e+00 1.03096926e+00
3.87808859e-01 -1.03045642e+00 -2.59383529e-01 -5.36896335e-03
7.18435943e-01 1.57706201e-01 1.30902708e-01 6.83530927e-01
7.34874010e-01 -9.72427189e-01 8.00048828e-01 -2.24339426e-01
6.48551226e-01 -7.24026382e-01 7.02716112e-01 4.54005748e-01
-1.01774883e+00 -6.52372688e-02 -6.01266325e-02 1.95053563e-01
1.27481371e-01 3.64661694e-01 -1.00954247e+00 2.88196772e-01
8.70342314e-01 5.25121272e-01 -4.30744082e-01 3.94441575e-01
-5.54859221e-01 1.24114132e+00 -3.93270105e-01 -1.46479473e-01
2.32435584e-01 7.69623965e-02 2.31938422e-01 1.52425969e+00
9.47824493e-02 -1.67278631e-03 3.09697986e-01 6.25622869e-01
-3.23181242e-01 3.16202700e-01 -3.64573330e-01 2.24631369e-01
7.00940430e-01 9.50226188e-01 -2.56985217e-01 -5.71279287e-01
-7.76773036e-01 9.67073023e-01 6.63519681e-01 3.55629891e-01
-7.84010231e-01 -1.79874569e-01 8.78044367e-01 -2.03387216e-01
3.54446858e-01 1.02774553e-01 -4.13429707e-01 -1.33383036e+00
1.81173131e-01 -1.33184636e+00 5.84029198e-01 -2.37372085e-01
-1.60657144e+00 8.54394674e-01 -4.08375680e-01 -8.09121788e-01
-5.23947775e-01 -7.19283283e-01 -5.37404180e-01 9.40336108e-01
-1.66777217e+00 -1.18519437e+00 1.36725426e-01 6.86829746e-01
8.17867339e-01 -5.68619370e-01 9.91379499e-01 4.58527952e-01
-9.24691021e-01 1.18009162e+00 -1.52874750e-03 6.69252992e-01
8.90431345e-01 -1.26324773e+00 5.00834703e-01 8.79472613e-01
3.86749059e-01 9.24447358e-01 4.53458309e-01 -1.98967576e-01
-1.30588615e+00 -9.77700710e-01 1.21867156e+00 -8.33473623e-01
8.71402800e-01 -6.63269460e-01 -1.00800407e+00 1.03439212e+00
2.40623429e-01 -1.98016167e-02 9.44235682e-01 8.72712135e-01
-8.65342438e-01 -3.32809567e-01 -1.04566801e+00 6.04891181e-01
1.09764421e+00 -1.02731752e+00 -8.06520879e-01 1.72636271e-01
6.15037680e-01 -2.56957442e-01 -6.72365665e-01 2.42811829e-01
4.04093325e-01 -7.80008733e-01 9.26309168e-01 -7.99813211e-01
1.16601903e-02 -2.40302637e-01 -4.19238746e-01 -1.33234775e+00
-1.89277202e-01 -6.18023276e-01 2.13227779e-01 1.77903605e+00
1.14121008e+00 -7.31516123e-01 8.20078850e-01 7.27841556e-01
-2.76301891e-01 -3.93136978e-01 -9.93836164e-01 -9.67415035e-01
2.59085983e-01 -8.03323090e-01 8.65444720e-01 1.23235583e+00
3.25838625e-01 8.03884923e-01 -1.84531942e-01 5.17606378e-01
5.58912337e-01 1.46583751e-01 7.27193415e-01 -1.00121522e+00
-2.45376945e-01 -5.78365386e-01 -3.26215327e-01 -1.24897325e+00
8.68343294e-01 -9.32732224e-01 3.11803341e-01 -9.94479418e-01
1.39679492e-01 -6.09040439e-01 -5.09149551e-01 6.48582876e-01
-4.20207262e-01 1.55934528e-01 -1.40187457e-01 1.66162085e-02
-6.39866829e-01 2.20686004e-01 4.49627370e-01 -3.85068595e-01
-3.04539204e-01 1.66952416e-01 -1.04015362e+00 7.98686922e-01
9.78404760e-01 -3.63905758e-01 -2.55921602e-01 -7.60333240e-01
-3.76474738e-01 -1.34840876e-01 -4.08642441e-02 -7.65732706e-01
3.27346057e-01 -2.21782587e-02 6.91252276e-02 -3.85315120e-01
3.36752236e-01 -6.12587571e-01 -4.72602397e-01 1.47519812e-01
-6.52941465e-01 -2.59045005e-01 1.94058433e-01 3.04392159e-01
-5.16812682e-01 -1.27693459e-01 8.39005768e-01 1.07418217e-01
-7.69540131e-01 9.93857160e-02 -2.02889457e-01 2.36941442e-01
8.19657266e-01 1.63565829e-01 -2.65209198e-01 -4.09226090e-01
-5.49293995e-01 3.04188848e-01 2.12699801e-01 5.83150089e-01
1.33841440e-01 -1.18131256e+00 -9.65877950e-01 3.61527681e-01
3.65000039e-01 -2.42162153e-01 1.11346446e-01 7.40781724e-01
-1.04446290e-02 6.81652784e-01 3.01206380e-01 -8.37067008e-01
-1.39148319e+00 4.57342267e-01 4.91667897e-01 1.39555503e-02
-3.21593851e-01 1.23053098e+00 9.03925896e-02 -9.69809353e-01
4.97761041e-01 -2.55060494e-01 -1.75244398e-02 -7.33799711e-02
7.44877994e-01 -3.85651626e-02 1.73236966e-01 -9.45393860e-01
-8.71679783e-01 5.77410340e-01 -3.56580138e-01 -2.50247180e-01
9.80813324e-01 -2.64534950e-01 9.78503972e-02 3.78103465e-01
1.20713842e+00 4.45270628e-01 -1.08265841e+00 -8.00060809e-01
4.42316025e-01 -2.12828860e-01 6.94565028e-02 -1.01748788e+00
-8.69880497e-01 9.39859092e-01 3.44722480e-01 2.34676942e-01
8.56899858e-01 4.42572176e-01 6.61031246e-01 5.24165034e-01
3.20597321e-01 -1.22364199e+00 -3.01303506e-01 6.55003309e-01
6.02533400e-01 -1.71618640e+00 -4.87012327e-01 -6.10146523e-01
-9.08283651e-01 6.22018158e-01 7.13100672e-01 4.42358583e-01
7.45702088e-01 4.28628087e-01 6.56806171e-01 2.09272474e-01
-7.49851644e-01 -3.13358128e-01 3.26198697e-01 6.20562375e-01
7.79704452e-01 3.37409139e-01 2.42245778e-01 7.97011614e-01
-5.03735363e-01 -3.16974878e-01 -2.34229073e-01 7.39818752e-01
-3.01758707e-01 -1.35220468e+00 -3.45302284e-01 1.67615995e-01
-6.79748595e-01 -4.00487602e-01 -5.69424748e-01 4.48083758e-01
-9.57630947e-02 1.35684323e+00 -1.69779971e-01 -3.43017846e-01
2.88216114e-01 5.91861725e-01 1.95397139e-02 -6.61405921e-01
-5.83644092e-01 7.60693103e-02 4.12399739e-01 -2.13756055e-01
-2.63365120e-01 -1.08648586e+00 -1.21962810e+00 -2.22055525e-01
-3.36713761e-01 3.20741951e-01 7.18772352e-01 9.60623801e-01
4.10245061e-01 2.46402249e-01 7.40299165e-01 -3.09579730e-01
-8.64542246e-01 -1.10299504e+00 -3.02292526e-01 4.58793104e-01
3.30524266e-01 -3.19001973e-01 -5.86736202e-01 2.25645244e-01] | [14.197402000427246, 6.692615985870361] |
f0885ad6-880c-45a3-95b0-59de99eadcec | prosit-latent-variable-discovery-with | 2210.14763 | null | https://arxiv.org/abs/2210.14763v1 | https://arxiv.org/pdf/2210.14763v1.pdf | ProSiT! Latent Variable Discovery with PROgressive SImilarity Thresholds | The most common ways to explore latent document dimensions are topic models and clustering methods. However, topic models have several drawbacks: e.g., they require us to choose the number of latent dimensions a priori, and the results are stochastic. Most clustering methods have the same issues and lack flexibility in various ways, such as not accounting for the influence of different topics on single documents, forcing word-descriptors to belong to a single topic (hard-clustering) or necessarily relying on word representations. We propose PROgressive SImilarity Thresholds - ProSiT, a deterministic and interpretable method, agnostic to the input format, that finds the optimal number of latent dimensions and only has two hyper-parameters, which can be set efficiently via grid search. We compare this method with a wide range of topic models and clustering methods on four benchmark data sets. In most setting, ProSiT matches or outperforms the other methods in terms six metrics of topic coherence and distinctiveness, producing replicable, deterministic results. | ['Federico Bianchi', 'Dirk Hovy', 'Tommaso Fornaciari'] | 2022-10-26 | null | null | null | null | ['topic-models'] | ['natural-language-processing'] | [-1.15713544e-01 -8.73775110e-02 -4.23370242e-01 -2.07350746e-01
-7.44016707e-01 -9.12381470e-01 9.83118594e-01 2.12703586e-01
-1.51726902e-01 2.36835539e-01 5.32267809e-01 -2.03719288e-01
-6.28843606e-01 -7.21382201e-01 3.41683701e-02 -1.01352870e+00
-1.46750525e-01 1.01998734e+00 4.57730889e-01 1.93600997e-01
7.59577334e-01 -3.08537250e-03 -1.50230145e+00 1.60287805e-02
9.22173798e-01 7.22243309e-01 2.11413741e-01 2.42447704e-01
-5.15404701e-01 -1.50135025e-01 -7.13037789e-01 -1.98774740e-01
3.85403857e-02 -3.52766871e-01 -7.08043933e-01 2.61420548e-01
6.59928620e-02 4.41782065e-02 1.57136679e-01 1.01035380e+00
2.81406939e-01 1.22904472e-01 1.14493334e+00 -1.33635318e+00
-4.76461709e-01 6.97517753e-01 -6.48942411e-01 7.90302604e-02
1.53080195e-01 -1.54175743e-01 1.18743575e+00 -8.34971905e-01
6.40757024e-01 1.57032514e+00 6.09359920e-01 1.47355795e-01
-1.75828123e+00 -4.84477490e-01 3.53211761e-01 -1.64050475e-01
-1.41165233e+00 -2.77679056e-01 7.08385587e-01 -8.52836370e-01
6.91017985e-01 2.53818810e-01 2.77706563e-01 1.07786548e+00
1.55156523e-01 5.39406180e-01 1.23982930e+00 -3.39451671e-01
7.29300201e-01 2.81990051e-01 5.06495416e-01 5.96665181e-02
3.63447011e-01 -2.75243282e-01 -4.13335621e-01 -9.14492846e-01
3.70557755e-01 2.44640231e-01 -9.12328362e-02 -8.12250316e-01
-1.27557862e+00 1.28035498e+00 -1.79895610e-01 3.21368694e-01
-2.92244196e-01 -1.12000285e-02 3.82018507e-01 1.43382207e-01
7.13521183e-01 6.66464388e-01 -2.60369778e-01 -2.31272116e-01
-1.31433964e+00 4.40842837e-01 7.51248896e-01 7.91870892e-01
8.65050197e-01 -4.30674851e-01 -3.00747603e-01 8.61576200e-01
4.16230172e-01 2.31084451e-01 8.55942070e-01 -9.30862904e-01
3.26882035e-01 6.43387854e-01 7.06614405e-02 -1.19326484e+00
-3.92233580e-01 -1.19840331e-01 -6.43172681e-01 8.92919302e-02
1.95846573e-01 -8.23736936e-02 -1.04099154e+00 1.60803342e+00
2.33404487e-01 -1.13603525e-01 -6.34463876e-02 7.43000507e-01
4.70761001e-01 7.65401185e-01 8.90162289e-02 -3.17507416e-01
1.49247670e+00 -7.20593870e-01 -8.04452300e-01 -1.05073676e-01
4.25151527e-01 -8.18279207e-01 1.17792761e+00 6.31722510e-01
-9.36678886e-01 -2.80339062e-01 -7.01350033e-01 1.33158088e-01
-6.16043568e-01 -5.38991950e-02 7.13424385e-01 9.86433566e-01
-1.20464945e+00 4.32525516e-01 -9.09144938e-01 -5.27255654e-01
-1.18024074e-01 3.23374122e-01 1.14842787e-01 1.10183358e-01
-1.02450120e+00 3.95379186e-01 6.63167179e-01 -6.34817541e-01
-6.35637641e-01 -5.86670160e-01 -4.73291963e-01 3.20474952e-01
4.78836209e-01 -5.99524438e-01 8.75750005e-01 -4.24464226e-01
-1.38831651e+00 5.15428662e-01 -2.64486015e-01 -3.23619723e-01
3.06977600e-01 -2.10657373e-01 -1.92022771e-01 2.98987310e-02
3.48444462e-01 8.49085927e-01 7.89113522e-01 -1.29475188e+00
-4.55223620e-01 -2.15671778e-01 -2.19306141e-01 1.94267854e-01
-6.27115309e-01 1.16962139e-02 -8.83792281e-01 -8.05348277e-01
5.80555320e-01 -1.14275551e+00 -4.21751469e-01 -4.42303538e-01
-7.08385289e-01 -5.87060094e-01 1.00072122e+00 -3.72238755e-02
1.54793572e+00 -2.19701958e+00 2.16691971e-01 3.64392161e-01
2.84828603e-01 -2.44134694e-01 1.90711275e-01 7.38885820e-01
1.59265082e-02 5.73705494e-01 -2.17459396e-01 -4.55849171e-01
2.80513227e-01 2.48161927e-02 -6.04404509e-01 3.64799410e-01
-2.29573920e-01 4.09707665e-01 -7.60491133e-01 -6.89776123e-01
7.69293010e-02 2.80154705e-01 -6.75882041e-01 -2.80722734e-02
-3.18282038e-01 -2.78994143e-02 -4.18170661e-01 1.76373988e-01
6.28271818e-01 -5.17408431e-01 4.29446518e-01 2.72723466e-01
-2.91814506e-01 5.72062731e-01 -1.55544984e+00 1.56089365e+00
-9.36998129e-02 6.37867987e-01 -3.93190533e-01 -6.76421344e-01
9.73624885e-01 3.91523659e-01 8.08214486e-01 2.11467291e-03
-2.05151573e-01 -4.04549763e-02 -3.25458884e-01 2.07931828e-02
8.19048703e-01 6.69142231e-02 -2.01162711e-01 1.10573280e+00
1.21200569e-02 -1.04257718e-01 3.06121469e-01 3.59845877e-01
9.04297650e-01 -4.02503550e-01 1.83205813e-01 -6.88166678e-01
-1.46566078e-01 2.41824239e-02 4.60077077e-01 8.13666165e-01
3.43629688e-01 8.81151080e-01 8.89253318e-01 -1.33121908e-01
-9.78141248e-01 -1.11687613e+00 -3.65705550e-01 1.13370061e+00
1.69717401e-01 -8.91897202e-01 -7.06330061e-01 -4.72603917e-01
-1.31029218e-01 7.43250072e-01 -7.48587430e-01 3.01863384e-02
-8.94574821e-02 -8.80800247e-01 5.71620204e-02 2.42923602e-01
-4.82623056e-02 -7.07940161e-01 -6.98389530e-01 1.83589399e-01
-2.17334941e-01 -7.04124987e-01 -3.90714884e-01 3.91826808e-01
-1.10094047e+00 -7.52646089e-01 -8.53577733e-01 -2.34940842e-01
5.73088348e-01 5.56411505e-01 1.12935412e+00 -2.76549548e-01
6.14125282e-02 1.75234884e-01 -3.40848446e-01 -1.08131483e-01
-1.11711621e-01 5.42143285e-01 3.77530456e-02 -1.57328799e-01
5.77004015e-01 -5.48550248e-01 -6.35350227e-01 5.96681356e-01
-9.74511445e-01 -2.44486585e-01 3.57955754e-01 6.91692412e-01
4.65301752e-01 5.24604499e-01 2.78028280e-01 -1.12650359e+00
1.03503728e+00 -7.41009951e-01 -4.51426566e-01 1.14257850e-01
-1.11611068e+00 2.14808762e-01 2.53881782e-01 -5.62435865e-01
-6.98599279e-01 -2.74933904e-01 4.85019654e-01 -4.91769701e-01
-2.80077785e-01 5.07506847e-01 -2.76299492e-02 7.08827615e-01
5.61738968e-01 1.82127610e-01 -2.25630924e-01 -7.09778130e-01
5.59803426e-01 5.50878286e-01 1.55205026e-01 -6.71722353e-01
6.71674013e-01 6.38742030e-01 -3.65332156e-01 -7.48960376e-01
-4.76382285e-01 -9.44505155e-01 -6.12271309e-01 1.90917313e-01
6.89035594e-01 -7.68319190e-01 -3.11728269e-01 1.01236410e-01
-1.01654112e+00 3.77378538e-02 -1.19166724e-01 4.64738399e-01
-4.53449219e-01 5.23125529e-01 -2.61982262e-01 -6.64069533e-01
-1.93115041e-01 -1.27758884e+00 1.23983693e+00 -1.62320420e-01
-6.97588503e-01 -1.19400191e+00 3.44677538e-01 -1.62362069e-01
4.15329546e-01 1.32161692e-01 1.21382260e+00 -8.08491707e-01
-3.52230430e-01 5.83583787e-02 -3.12950909e-02 -2.26579472e-01
3.37104172e-01 2.02753842e-01 -7.79460311e-01 -4.58362699e-01
-1.86689392e-01 -1.97205637e-02 1.12238014e+00 6.85434461e-01
1.00728929e+00 -4.94098157e-01 -7.59727120e-01 4.25908089e-01
1.27758384e+00 2.34135747e-01 4.66293424e-01 3.98418605e-01
2.64453202e-01 7.92070329e-01 4.15286750e-01 5.81301451e-01
4.07636404e-01 9.22258019e-01 1.59092292e-01 -1.19346203e-02
3.81396741e-01 -6.05575107e-02 1.33039474e-01 7.67232239e-01
6.79951161e-02 -4.10700798e-01 -1.11493361e+00 8.15754294e-01
-1.91785932e+00 -9.20417786e-01 -1.35876700e-01 2.21452951e+00
7.35491991e-01 2.78105944e-01 5.40824711e-01 1.27647385e-01
7.30365932e-01 1.82008818e-01 -4.20076132e-01 -2.06606358e-01
1.22348713e-02 -3.49564224e-01 2.44022086e-01 2.27588639e-01
-1.06588650e+00 9.76835549e-01 7.28987312e+00 8.51584673e-01
-9.69570041e-01 1.14923403e-01 5.77256083e-01 -1.99244589e-01
-6.47358596e-01 1.95359200e-01 -9.15975690e-01 7.13168204e-01
8.60304415e-01 -2.85902470e-01 7.68296048e-03 9.87095773e-01
1.49476990e-01 -9.46631953e-02 -9.37606037e-01 7.06100285e-01
-1.15216561e-01 -1.19553864e+00 1.37168601e-01 4.02887493e-01
9.48859215e-01 -1.16206229e-01 4.07436550e-01 1.01296324e-02
7.21644104e-01 -8.58682811e-01 5.79983711e-01 3.67003322e-01
4.62048143e-01 -7.77996778e-01 4.22286987e-01 1.99252948e-01
-8.51640046e-01 -2.12290287e-02 -5.88922739e-01 2.88567871e-01
9.98579636e-02 8.71419907e-01 -6.53937340e-01 1.99257970e-01
9.59642887e-01 3.54293525e-01 -6.13890171e-01 1.06808805e+00
1.59643978e-01 8.48643303e-01 -5.97523689e-01 -2.43430398e-02
4.94304746e-01 -3.29425633e-01 5.96239209e-01 1.32989132e+00
4.87115413e-01 -2.51135558e-01 3.21277738e-01 9.91095662e-01
5.43166637e-01 1.67761594e-01 -5.04843354e-01 -9.61860269e-03
8.56772542e-01 1.05808830e+00 -1.30068350e+00 -3.53624910e-01
-1.32644311e-01 6.07830167e-01 -9.70657989e-02 4.48568493e-01
-4.71817940e-01 -2.32292324e-01 6.65814102e-01 2.87718594e-01
5.29624403e-01 -4.69071865e-01 -5.07725298e-01 -9.75958169e-01
-1.69952467e-01 -7.43108869e-01 6.07524514e-01 -4.25830185e-01
-1.34790611e+00 6.97689116e-01 5.20742536e-01 -1.13329124e+00
-6.11258507e-01 -3.09827298e-01 -6.41332865e-01 6.34012640e-01
-1.09538341e+00 -7.47490525e-01 -7.16222823e-02 5.80832362e-01
6.27079487e-01 -2.12644815e-01 7.15842366e-01 -1.52302846e-01
-2.22433880e-01 3.26522321e-01 6.10469580e-01 -2.89858460e-01
7.91425049e-01 -1.54425931e+00 5.64604938e-01 4.94814545e-01
1.82288542e-01 1.03200328e+00 9.74114180e-01 -4.93547887e-01
-8.94629359e-01 -8.44186723e-01 9.14046288e-01 -5.04754007e-01
7.21069813e-01 -6.94152296e-01 -1.05274975e+00 4.74362195e-01
3.66009712e-01 -7.56608963e-01 9.97195601e-01 7.78531909e-01
-3.19849432e-01 3.06442231e-01 -6.50633395e-01 6.76958799e-01
7.19298840e-01 -2.54912496e-01 -5.73853672e-01 4.86166954e-01
8.58101249e-01 1.43338084e-01 -8.92293811e-01 5.75693212e-02
3.26274753e-01 -1.08335280e+00 1.03106713e+00 -4.57233459e-01
2.90768027e-01 -1.53449804e-01 -1.33388862e-01 -1.37064242e+00
-6.68830335e-01 -7.44883060e-01 -1.67461727e-02 1.59205043e+00
5.23446977e-01 -6.94915473e-01 8.24018538e-01 6.39450848e-01
1.96725368e-01 -6.78378046e-01 -7.78120875e-01 -9.28415596e-01
2.33319640e-01 -2.60266393e-01 9.98668730e-01 1.18111920e+00
1.45629749e-01 3.99551153e-01 -2.24153191e-01 2.49763597e-02
6.72583401e-01 5.44521809e-01 7.74287045e-01 -1.68814135e+00
-8.23759511e-02 -8.43048096e-01 -1.42935336e-01 -1.01377535e+00
-6.68285713e-02 -4.83941466e-01 -1.47851482e-01 -1.47579157e+00
3.52082372e-01 -8.72298419e-01 -1.62366390e-01 3.84846240e-01
-2.13103965e-01 -1.55534565e-01 -3.50105986e-02 8.02918494e-01
-7.11789966e-01 4.73357469e-01 5.54937124e-01 3.47291492e-02
-5.44808686e-01 3.45892757e-02 -8.70485544e-01 7.31929123e-01
8.47840667e-01 -7.30808914e-01 -6.33963048e-01 -1.78814337e-01
2.97357738e-01 -9.98759642e-02 1.09481946e-01 -8.79866183e-01
4.14047122e-01 -3.26865137e-01 1.17496260e-01 -9.93758976e-01
3.12740088e-01 -6.39603317e-01 3.40500802e-01 1.33086979e-01
-5.33964992e-01 2.45036617e-01 -8.86739641e-02 7.07851350e-01
-2.26357967e-01 -3.79120797e-01 5.10910273e-01 -7.73086026e-02
-3.85288894e-01 9.97945815e-02 -5.99166512e-01 5.18106781e-02
8.44689488e-01 -4.15992111e-01 -2.48380020e-01 -4.12435353e-01
-5.41976333e-01 1.65487766e-01 6.74647093e-01 5.76621950e-01
2.27641732e-01 -1.26193988e+00 -5.64554930e-01 -7.78466538e-02
2.12045938e-01 -1.15906164e-01 2.56666616e-02 4.65814769e-01
3.58742960e-02 8.33266258e-01 1.96188107e-01 -9.13073003e-01
-1.00760007e+00 9.04351950e-01 -1.60345823e-01 -5.02133846e-01
-6.80922925e-01 2.69549817e-01 5.53502262e-01 -3.85186583e-01
2.44866922e-01 -1.58698201e-01 -3.12751651e-01 4.87661958e-01
2.45228872e-01 3.62396657e-01 -1.11725353e-01 -3.00029188e-01
-2.80054122e-01 5.90347588e-01 -2.49433890e-01 -3.93149644e-01
1.23293233e+00 -3.46793890e-01 -6.68430403e-02 7.04470098e-01
1.03625298e+00 -2.19856992e-01 -1.14091718e+00 -3.83028060e-01
4.87150878e-01 -4.44838464e-01 1.14595950e-01 -4.71095413e-01
-7.73652375e-01 8.01526606e-01 4.29967552e-01 8.24589610e-01
9.48281646e-01 3.24344218e-01 3.21853876e-01 2.65722722e-01
1.82870537e-01 -1.23557472e+00 3.20427746e-01 3.07018787e-01
6.43320322e-01 -1.00507152e+00 2.89106280e-01 -3.14715683e-01
-7.85610557e-01 1.00228477e+00 2.11720020e-01 -5.26914708e-02
8.73488128e-01 2.82733198e-02 7.43866861e-02 -5.27929366e-01
-1.06449211e+00 8.16081464e-02 4.46334273e-01 4.70961452e-01
4.97471124e-01 3.44350524e-02 -4.80281651e-01 3.63019645e-01
-5.37104249e-01 -5.31360269e-01 3.22214693e-01 5.26104152e-01
-5.61983228e-01 -1.13299119e+00 -5.43568313e-01 4.20603901e-01
-5.17286837e-01 -1.15729436e-01 -4.37247187e-01 7.34077752e-01
-1.34716257e-01 1.03915083e+00 2.95987636e-01 -1.13073654e-01
-1.97720960e-01 1.73365191e-01 -3.74333858e-01 -7.17559993e-01
-3.17685246e-01 6.83951557e-01 -2.31941685e-01 -2.78108776e-01
-3.90277773e-01 -1.05368364e+00 -7.66208172e-01 -3.02775443e-01
-6.67601287e-01 5.77027202e-01 7.32831061e-01 7.94844985e-01
6.44630969e-01 1.86533973e-01 6.47048473e-01 -6.67038739e-01
-4.06870455e-01 -1.02783477e+00 -6.58372462e-01 2.98603863e-01
-6.82537481e-02 -9.58534181e-01 -4.17921633e-01 7.15111569e-02] | [10.363126754760742, 6.982141017913818] |
41bef87f-24d7-41a4-88b7-dfc07516681f | query-based-named-entity-recognition | 1908.09138 | null | https://arxiv.org/abs/1908.09138v2 | https://arxiv.org/pdf/1908.09138v2.pdf | Query-Based Named Entity Recognition | In this paper, we propose a new strategy for the task of named entity recognition (NER). We cast the task as a query-based machine reading comprehension task: e.g., the task of extracting entities with PER is formalized as answering the question of "which person is mentioned in the text ?". Such a strategy comes with the advantage that it solves the long-standing issue of handling overlapping or nested entities (the same token that participates in more than one entity categories) with sequence-labeling techniques for NER. Additionally, since the query encodes informative prior knowledge, this strategy facilitates the process of entity extraction, leading to better performances. We experiment the proposed model on five widely used NER datasets on English and Chinese, including MSRA, Resume, OntoNotes, ACE04 and ACE05. The proposed model sets new SOTA results on all of these datasets. | ['Zijun Sun', 'Yuxian Meng', 'Jiwei Li', 'Xiaoya Li'] | 2019-08-24 | null | null | null | null | ['entity-extraction'] | ['natural-language-processing'] | [-3.38103212e-02 3.34948272e-01 1.50361940e-01 -3.73459458e-01
-8.76625121e-01 -7.32851326e-01 4.55790520e-01 5.95057964e-01
-1.07410502e+00 1.11748981e+00 5.66880584e-01 -3.25179875e-01
5.15917875e-02 -9.19039190e-01 -5.30078471e-01 -2.10363358e-01
2.84749717e-01 3.89840633e-01 2.38374770e-01 -1.85180560e-01
4.07348126e-01 2.96330124e-01 -1.22493732e+00 3.84687223e-02
1.29067528e+00 6.54715955e-01 3.45284790e-01 4.78302270e-01
-5.68789005e-01 8.70716989e-01 -7.19899714e-01 -7.73016453e-01
-3.69165719e-01 -1.77794114e-01 -1.49110830e+00 -1.56507209e-01
8.97645056e-02 1.40210986e-01 -1.12518862e-01 1.06746173e+00
5.19440293e-01 3.56268883e-01 7.19113827e-01 -8.30312133e-01
-5.85990012e-01 7.57510543e-01 -3.66088539e-01 3.70273530e-01
5.55569887e-01 -5.40065408e-01 1.16971302e+00 -7.70397663e-01
7.10451961e-01 8.78704369e-01 4.48048413e-01 5.21698952e-01
-7.18186438e-01 -2.86325812e-01 -1.13293782e-01 3.71918499e-01
-1.57722020e+00 -4.02428746e-01 3.59110832e-01 -3.10735315e-01
9.14042532e-01 3.18231791e-01 -7.96199962e-02 7.11331367e-01
-1.33398563e-01 8.86597872e-01 1.04456902e+00 -7.12987304e-01
1.82638630e-01 3.13679188e-01 9.28140163e-01 4.15547788e-01
3.20657462e-01 -5.77047229e-01 -3.96392196e-01 -4.01391201e-02
1.95655659e-01 -3.72093886e-01 -5.28482080e-01 2.70192623e-01
-1.05305433e+00 5.67010045e-01 -1.96238924e-02 6.39209092e-01
-5.79605699e-01 -3.83478731e-01 4.31370825e-01 1.49235763e-02
2.67872870e-01 6.94656014e-01 -9.64059651e-01 -2.83723742e-01
-6.95152044e-01 -5.90901934e-02 1.30705929e+00 1.22601938e+00
7.74352014e-01 -4.08609748e-01 -1.97408050e-01 7.22981393e-01
1.14621021e-01 2.57135779e-01 4.31859016e-01 -4.77200389e-01
7.47333288e-01 6.81701064e-01 6.53173923e-01 -8.55468750e-01
-5.14088154e-01 -4.95081723e-01 -7.69899428e-01 -5.48194051e-01
3.83172840e-01 -5.65043867e-01 -7.85287440e-01 1.75730133e+00
4.36098844e-01 1.50937382e-02 6.22735143e-01 5.01164019e-01
1.09962618e+00 8.45830142e-01 5.12994707e-01 -2.99048424e-01
1.90308535e+00 -8.46288741e-01 -1.19785249e+00 2.12708805e-02
5.27058363e-01 -8.54635060e-01 6.74620807e-01 5.18452302e-02
-7.99239099e-01 -4.66369361e-01 -6.19657516e-01 -3.65072072e-01
-7.91177392e-01 4.91081625e-01 4.37155366e-01 5.97477734e-01
-6.42144203e-01 3.21764737e-01 -5.25519967e-01 -6.21609330e-01
-1.73012152e-01 1.40179634e-01 -3.90684873e-01 4.14416902e-02
-1.54541743e+00 9.76842880e-01 9.75786269e-01 2.99461275e-01
-4.48998272e-01 -4.21619773e-01 -8.57781589e-01 4.68777925e-01
5.40240169e-01 -4.37672287e-01 1.22085559e+00 -5.98665595e-01
-1.17139542e+00 9.65477109e-01 -5.12542069e-01 -3.68738532e-01
2.08349645e-01 -7.51495302e-01 -8.51299107e-01 3.49243730e-02
3.11600924e-01 2.99702913e-01 1.65297747e-01 -1.03089654e+00
-7.97208965e-01 -4.42062110e-01 2.44447201e-01 3.56676310e-01
-2.43284985e-01 3.79614413e-01 -5.12623370e-01 -5.10510623e-01
-1.61825165e-01 -7.15223432e-01 -2.81219799e-02 -9.00135934e-01
-7.09067047e-01 -7.09968150e-01 4.02765363e-01 -1.18477845e+00
1.56533384e+00 -2.15496492e+00 3.27909738e-02 -7.74990767e-02
7.62594715e-02 2.47483790e-01 1.44495860e-01 7.45295167e-01
-5.80235645e-02 6.29844487e-01 -9.42346677e-02 1.11741990e-01
-5.87869473e-02 -1.19234063e-02 -2.36787677e-01 -2.23256156e-01
1.80637166e-01 7.42313325e-01 -8.10724437e-01 -7.66170204e-01
-3.35475773e-01 9.13091451e-02 -7.24917129e-02 4.02634770e-01
-5.68505786e-02 3.52178961e-01 -6.70293987e-01 3.02642196e-01
7.13450491e-01 -1.13886334e-01 1.21925354e-01 -1.80188805e-01
-5.00210702e-01 4.53481078e-01 -1.53033698e+00 1.41464949e+00
-3.60878170e-01 2.58053601e-01 -5.28510325e-02 -7.23474026e-01
7.94082224e-01 6.76222384e-01 -2.57852371e-04 -2.65555441e-01
-1.45628974e-02 1.90646663e-01 -2.70088077e-01 -7.15416670e-01
8.74080360e-01 4.73844819e-02 -3.89246374e-01 8.31275582e-02
3.02517295e-01 4.48630691e-01 4.66959894e-01 1.22938283e-01
1.09430003e+00 8.15145224e-02 7.86083221e-01 -2.47707978e-01
8.73588622e-01 3.29148412e-01 7.67255068e-01 7.19046295e-01
-6.30900040e-02 2.38273740e-02 3.75282317e-01 1.14202745e-01
-8.75480890e-01 -8.07367742e-01 -9.85679179e-02 1.10049117e+00
1.28730908e-01 -4.44356650e-01 -8.15278351e-01 -8.65658998e-01
-5.24888277e-01 1.12512279e+00 -4.08788294e-01 3.77377480e-01
-7.27001369e-01 -5.25752246e-01 8.33759069e-01 4.23822016e-01
9.14615214e-01 -1.26360750e+00 -3.71600360e-01 2.83868909e-01
-7.52729595e-01 -1.29704440e+00 -5.30892253e-01 2.57553160e-01
-6.41190827e-01 -9.65536535e-01 -6.68291390e-01 -1.21327674e+00
4.97440994e-01 -2.54159123e-01 1.27554965e+00 -6.28618971e-02
1.30709987e-02 2.77351856e-01 -6.78281248e-01 -5.07150471e-01
-1.60526872e-01 4.85154569e-01 -3.35006356e-01 -1.34413987e-01
7.45488703e-01 -8.52339640e-02 -1.53233573e-01 1.52103931e-01
-8.44119966e-01 -4.49985415e-02 6.06032789e-01 7.48202384e-01
4.63225514e-01 2.98062474e-01 9.14153516e-01 -1.13862252e+00
7.19833136e-01 -5.87993681e-01 -3.21496725e-01 9.49079990e-01
-2.79444396e-01 3.81358325e-01 8.13618243e-01 -7.36817122e-02
-1.73641407e+00 4.71648462e-02 -3.44977528e-01 4.75814998e-01
-7.25797176e-01 9.25203621e-01 -6.83579206e-01 5.42092085e-01
3.07933152e-01 4.85982120e-01 -8.74557734e-01 -9.03236091e-01
4.05361146e-01 8.76343131e-01 7.54263401e-01 -6.85485780e-01
6.89714313e-01 -1.27950430e-01 -2.73397446e-01 -1.05168605e+00
-1.01959991e+00 -9.52738225e-01 -8.79183948e-01 1.73416868e-01
1.29840052e+00 -9.48963344e-01 -7.90098548e-01 5.50492764e-01
-1.46391630e+00 4.13926780e-01 -5.52325957e-02 5.37434161e-01
-1.48081362e-01 5.75156569e-01 -7.09658086e-01 -9.30846810e-01
-5.86007357e-01 -4.67406034e-01 7.31336057e-01 7.85924911e-01
-1.55653477e-01 -9.55613971e-01 5.36871552e-02 4.23367202e-01
2.35474408e-02 1.38222337e-01 1.31178653e+00 -1.39133954e+00
-4.01262075e-01 -3.75923775e-02 -1.27695844e-01 1.91843465e-01
-5.66243902e-02 -3.43194574e-01 -7.17251062e-01 1.20207906e-01
-8.63999724e-02 -2.38178745e-01 5.07017553e-01 -1.92510739e-01
7.38524139e-01 -2.60283291e-01 -2.17988506e-01 2.41184961e-02
1.57142806e+00 3.56057733e-01 7.72062778e-01 3.49391282e-01
6.03328526e-01 8.63029242e-01 8.09251010e-01 2.01213673e-01
6.33660913e-01 3.79565716e-01 -1.91391006e-01 6.76203370e-02
1.73230067e-01 -4.79734838e-01 2.97987126e-02 1.09056544e+00
-8.89311954e-02 -5.31447411e-01 -1.03750348e+00 7.00339735e-01
-1.64558315e+00 -1.00553751e+00 -3.15662265e-01 1.99066770e+00
1.06172478e+00 -1.62742630e-01 -2.64700323e-01 -1.17602922e-01
1.01405537e+00 -1.25650629e-01 -2.13216022e-01 -2.79068619e-01
-1.62661716e-01 4.75600332e-01 3.71231258e-01 3.74356657e-01
-1.32254934e+00 1.14600515e+00 5.15287161e+00 8.71626079e-01
-5.62567592e-01 1.64762959e-01 4.17655826e-01 1.07455313e+00
-6.65122829e-03 2.62694865e-01 -1.35263729e+00 1.98719382e-01
9.69180226e-01 -4.47449833e-01 -1.34128882e-02 6.58182323e-01
8.97888541e-02 -3.43172759e-01 -9.78301644e-01 6.01877034e-01
8.70759860e-02 -8.16098869e-01 3.23875397e-02 -2.99695700e-01
3.63208801e-01 -3.42108369e-01 -6.60352051e-01 5.98078132e-01
2.20013425e-01 -8.57903838e-01 4.46857095e-01 5.50593853e-01
4.46974039e-01 -8.36878061e-01 1.12933850e+00 7.46763766e-01
-1.18951333e+00 1.92010641e-01 -3.20504546e-01 2.60332584e-01
3.21422964e-01 3.76421958e-01 -8.05517793e-01 1.07759023e+00
6.13944173e-01 1.30900428e-01 -4.96587873e-01 1.25649464e+00
-6.15501702e-01 6.87852561e-01 -1.78580999e-01 -3.21182132e-01
-1.58975478e-02 -3.68821397e-02 4.80184197e-01 1.43214941e+00
1.88717321e-01 5.72727740e-01 5.48121743e-02 5.97419322e-01
-3.96477014e-01 5.95202386e-01 -2.45847434e-01 -1.44874215e-01
7.17513680e-01 1.25366449e+00 -5.69944501e-01 -5.67496181e-01
-3.45203161e-01 1.14542127e+00 6.22080088e-01 2.91631043e-01
-5.16583323e-01 -1.14281321e+00 -1.93262529e-02 -2.74681896e-01
4.27489370e-01 -2.38384098e-01 -4.77984222e-03 -1.46465957e+00
-1.06579764e-02 -8.16427648e-01 6.71292841e-01 -7.17852116e-01
-1.17957699e+00 7.54387736e-01 -9.54450145e-02 -7.57064819e-01
-6.48277029e-02 -4.24175322e-01 -5.54704010e-01 8.33874762e-01
-1.61519277e+00 -8.87190163e-01 -2.66819745e-01 5.04814506e-01
5.18709779e-01 3.45421642e-01 1.07238328e+00 6.92598820e-01
-7.93879747e-01 4.41687435e-01 -5.63567691e-03 8.32276344e-01
7.49501824e-01 -1.50458920e+00 1.74540088e-01 1.10775197e+00
2.58586019e-01 9.00424540e-01 7.13433683e-01 -7.15506792e-01
-9.38362241e-01 -8.99009585e-01 1.82670736e+00 -3.51962626e-01
4.71001476e-01 -1.74279869e-01 -9.11839485e-01 7.51421690e-01
6.01189852e-01 -5.55584431e-01 9.36735511e-01 3.16721201e-01
4.04582825e-03 3.10758680e-01 -1.07761765e+00 3.53605986e-01
8.79936874e-01 -4.39657211e-01 -1.35168207e+00 1.66572556e-01
7.39367545e-01 -2.78534353e-01 -1.07931447e+00 1.16535209e-01
-5.65798357e-02 -3.85204434e-01 5.41962624e-01 -9.43278313e-01
1.09493792e-01 -4.78793055e-01 -8.09838176e-02 -1.31717002e+00
4.51577827e-02 -5.12569487e-01 1.60977449e-02 1.93402302e+00
7.32760966e-01 -3.65708411e-01 3.75194699e-01 7.85471976e-01
-1.11930951e-01 -2.30533957e-01 -8.07687938e-01 -5.04064023e-01
-5.57766818e-02 8.18061084e-02 5.49026966e-01 1.12072909e+00
1.13521598e-01 8.39062572e-01 -2.43495941e-01 4.22081292e-01
3.62710118e-01 -1.40748955e-02 3.64118516e-01 -1.26356256e+00
-9.64023247e-02 2.80002385e-01 -1.82461023e-01 -1.23910093e+00
2.69154757e-01 -7.22107947e-01 2.94610828e-01 -1.60244989e+00
3.64987880e-01 -4.33644056e-01 -2.41370171e-01 4.77447242e-01
-5.97849309e-01 -4.77498233e-01 1.99875385e-01 1.20376863e-01
-7.91933298e-01 3.99011374e-01 7.98955321e-01 2.19066814e-01
-1.39658183e-01 -9.74055007e-02 -6.15672588e-01 7.35263646e-01
5.86822629e-01 -6.35436773e-01 8.64523277e-02 -5.41075051e-01
2.40998194e-01 3.65770400e-01 3.28164804e-03 -8.65766823e-01
5.40755391e-01 -9.28223655e-02 1.87485337e-01 -8.22920144e-01
-1.27962872e-01 -8.01912189e-01 -6.48290217e-02 1.46654442e-01
-4.73502725e-01 2.94017583e-01 -1.57724898e-02 4.86562043e-01
-5.82826316e-01 -7.41136432e-01 4.31113005e-01 -2.30800644e-01
-1.15083361e+00 -1.06310479e-01 -4.02785093e-01 6.91497743e-01
9.23758507e-01 2.29053602e-01 -4.13046628e-01 -1.13590345e-01
-9.93453920e-01 3.80835921e-01 -4.33408506e-02 3.87460470e-01
2.76004970e-01 -9.14449513e-01 -7.39044428e-01 -4.67448473e-01
1.63107544e-01 -1.26956627e-01 2.31221348e-01 5.28247356e-01
-4.11500990e-01 6.04931295e-01 -7.71243796e-02 4.38884273e-03
-1.21306980e+00 5.13798892e-01 7.04870149e-02 -7.32311249e-01
-2.27003083e-01 5.63545167e-01 -6.88079074e-02 -6.15105271e-01
1.71426550e-01 1.13577712e-02 -1.09376431e+00 1.38658226e-01
4.07741785e-01 4.89750445e-01 2.58153323e-02 -8.03271592e-01
-4.03913587e-01 2.95921534e-01 -1.88298792e-01 -7.42012709e-02
1.16544998e+00 -4.75912780e-01 -3.33930701e-01 4.17614132e-01
9.92040694e-01 5.77805877e-01 -1.31500587e-01 -2.74079472e-01
8.65585566e-01 1.93423480e-01 -1.99915990e-01 -1.03398466e+00
-4.44905490e-01 6.53240979e-01 3.80663812e-01 4.62786332e-02
9.46798980e-01 6.71840366e-03 9.54199672e-01 8.81665289e-01
3.60327959e-01 -1.22902739e+00 -4.76241052e-01 9.92294252e-01
4.06878293e-01 -1.08611631e+00 -3.00957948e-01 -6.58769310e-01
-7.06861973e-01 1.00615597e+00 7.53632784e-01 3.95040065e-01
5.09695530e-01 -1.23926133e-01 -8.20125826e-03 -2.30599776e-01
-4.08684999e-01 -4.13023442e-01 3.36305916e-01 2.10126415e-01
6.84222937e-01 1.66249990e-01 -1.08631468e+00 9.28234756e-01
-1.10045440e-01 7.23270401e-02 6.28098369e-01 1.09405982e+00
-5.84150016e-01 -1.08851159e+00 -1.50278702e-01 1.70052186e-01
-9.98276174e-01 -4.25143957e-01 -2.97749579e-01 8.55652213e-01
1.11747049e-01 1.34027898e+00 -1.93914577e-01 -2.10536364e-02
5.43677568e-01 5.06872237e-01 -2.82086842e-02 -8.49522948e-01
-7.47403264e-01 -3.01504880e-01 7.07196176e-01 6.33660555e-02
-5.59376359e-01 -4.91101533e-01 -1.57684600e+00 8.62506479e-02
-6.84146404e-01 1.02491260e+00 5.42731583e-01 1.10928488e+00
4.07853365e-01 2.43950695e-01 4.82868165e-01 2.47747540e-01
-5.81574380e-01 -1.13943923e+00 -5.26373029e-01 6.17052138e-01
-1.15375467e-01 -3.36120933e-01 -2.34767079e-01 1.70425996e-01] | [9.636527061462402, 9.514569282531738] |
a3fae9d2-e89f-4eb4-aa3e-a17c70aa2964 | joint-distribution-matters-deep-brownian | 2204.04567 | null | https://arxiv.org/abs/2204.04567v1 | https://arxiv.org/pdf/2204.04567v1.pdf | Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification | Few-shot classification is a challenging problem as only very few training examples are given for each new task. One of the effective research lines to address this challenge focuses on learning deep representations driven by a similarity measure between a query image and few support images of some class. Statistically, this amounts to measure the dependency of image features, viewed as random vectors in a high-dimensional embedding space. Previous methods either only use marginal distributions without considering joint distributions, suffering from limited representation capability, or are computationally expensive though harnessing joint distributions. In this paper, we propose a deep Brownian Distance Covariance (DeepBDC) method for few-shot classification. The central idea of DeepBDC is to learn image representations by measuring the discrepancy between joint characteristic functions of embedded features and product of the marginals. As the BDC metric is decoupled, we formulate it as a highly modular and efficient layer. Furthermore, we instantiate DeepBDC in two different few-shot classification frameworks. We make experiments on six standard few-shot image benchmarks, covering general object recognition, fine-grained categorization and cross-domain classification. Extensive evaluations show our DeepBDC significantly outperforms the counterparts, while establishing new state-of-the-art results. The source code is available at http://www.peihuali.org/DeepBDC | ['Peihua Li', 'Qilong Wang', 'Jiaming Lv', 'Fei Long', 'Jiangtao Xie'] | 2022-04-09 | null | http://openaccess.thecvf.com//content/CVPR2022/html/Xie_Joint_Distribution_Matters_Deep_Brownian_Distance_Covariance_for_Few-Shot_Classification_CVPR_2022_paper.html | http://openaccess.thecvf.com//content/CVPR2022/papers/Xie_Joint_Distribution_Matters_Deep_Brownian_Distance_Covariance_for_Few-Shot_Classification_CVPR_2022_paper.pdf | cvpr-2022-1 | ['few-shot-image-classification'] | ['computer-vision'] | [-8.15383065e-03 -3.63038838e-01 -2.32260004e-01 -5.48403144e-01
-8.27742994e-01 -1.86305359e-01 9.11366522e-01 1.14463851e-01
-4.45438862e-01 3.45094144e-01 -8.44154228e-03 1.84335053e-01
-2.63711363e-01 -8.47765386e-01 -6.99717581e-01 -7.81179547e-01
1.33968741e-01 2.00745597e-01 2.85647303e-01 -7.58925080e-02
2.04755768e-01 2.23333210e-01 -1.71607494e+00 1.42595112e-01
4.61209446e-01 1.41091287e+00 1.72823742e-01 5.59717655e-01
-9.64876041e-02 5.73991179e-01 -4.97388929e-01 -4.06357884e-01
1.58072487e-01 -4.36079443e-01 -6.17814183e-01 1.39983907e-01
2.42534816e-01 -2.16598928e-01 -4.27936435e-01 1.25850499e+00
5.41165113e-01 2.71733403e-01 1.15196598e+00 -1.52407146e+00
-1.08014274e+00 2.08820954e-01 -5.28669775e-01 3.50921810e-01
-5.62475771e-02 1.11027442e-01 1.17342687e+00 -1.13829684e+00
3.55553895e-01 1.00519431e+00 5.26577175e-01 5.78827977e-01
-1.45172763e+00 -2.96708614e-01 -1.61486454e-02 5.61125934e-01
-1.37598264e+00 -4.27011877e-01 6.75662756e-01 -7.56848395e-01
7.93606460e-01 -8.30817372e-02 3.04944396e-01 1.35600698e+00
2.29035929e-01 7.47628868e-01 9.18283105e-01 -3.82218599e-01
6.55052483e-01 1.83287978e-01 5.14013588e-01 6.11419916e-01
1.48114637e-01 -4.73491475e-02 -3.51802498e-01 -1.11180186e-01
2.65706956e-01 6.56707227e-01 -1.87565878e-01 -8.91683817e-01
-9.09208655e-01 1.17660356e+00 4.75116938e-01 4.85298425e-01
-1.77342981e-01 2.13649109e-01 5.46554565e-01 4.23840314e-01
6.01352274e-01 -7.32085779e-02 -9.08290446e-02 -1.71983719e-01
-5.35550714e-01 1.62233293e-01 6.82787538e-01 8.76616776e-01
9.73690689e-01 -1.69634998e-01 -4.35369104e-01 1.12801254e+00
1.69075951e-01 3.14930648e-01 8.68646920e-01 -6.98283613e-01
1.26042441e-01 4.22915250e-01 -1.88407943e-01 -1.06453753e+00
-6.87093660e-02 -3.19228142e-01 -9.12652910e-01 1.98802218e-01
1.44760370e-01 1.08728044e-01 -7.16588557e-01 1.65611434e+00
1.20526537e-01 2.02919826e-01 7.42856879e-03 8.73135686e-01
6.02952003e-01 6.88529730e-01 -7.57263079e-02 3.50642726e-02
1.31705475e+00 -1.09850299e+00 -5.15024245e-01 -1.90214157e-01
5.83051682e-01 -4.22252357e-01 1.22642493e+00 8.21565837e-02
-7.67423511e-01 -6.98758960e-01 -1.30680966e+00 -6.60773069e-02
-7.50442266e-01 1.12514338e-02 3.52477580e-01 5.36400795e-01
-7.28788376e-01 8.20975959e-01 -7.65128434e-01 -3.43216598e-01
6.87147081e-01 -5.98759055e-02 -3.12234670e-01 -4.87694621e-01
-1.09482408e+00 7.54027545e-01 2.41951898e-01 -3.16262752e-01
-9.17345822e-01 -6.41535699e-01 -1.14063799e+00 3.04803848e-01
2.31381297e-01 -4.06958491e-01 1.18105054e+00 -4.07253057e-01
-1.37411833e+00 9.67123151e-01 1.91311926e-01 -5.65816522e-01
3.55994284e-01 -1.54333219e-01 -3.14338565e-01 3.68516780e-02
2.71793514e-01 4.25991714e-01 1.24743855e+00 -8.60836327e-01
-4.22966301e-01 -4.44057584e-01 -1.83235575e-02 -2.85852641e-01
-7.58993268e-01 -1.92797631e-01 -2.95088351e-01 -5.81997812e-01
-2.17173249e-01 -7.68395662e-01 -6.06547517e-04 3.09297413e-01
-1.90520838e-01 -5.31350374e-01 8.49779010e-01 -2.45637819e-02
1.01708806e+00 -2.50705338e+00 1.30102187e-01 -3.05059046e-01
2.08322465e-01 4.26413387e-01 -3.06598842e-01 3.96711677e-01
2.10074373e-02 -1.63428262e-01 -4.08545464e-01 -4.84879166e-01
5.70618093e-01 2.53259391e-01 -5.04027426e-01 7.93999076e-01
4.39274073e-01 9.82490957e-01 -8.27762961e-01 -2.52092630e-01
3.53415817e-01 5.59592545e-01 -3.73155057e-01 2.64853030e-01
7.20793456e-02 -1.55654401e-01 -2.09815949e-01 5.51035166e-01
7.60287166e-01 -4.91355687e-01 -2.21479386e-01 3.96534149e-03
1.50122061e-01 -5.80548644e-02 -9.76825356e-01 1.87533987e+00
-5.64415157e-01 5.71262002e-01 -3.62081081e-01 -1.59903324e+00
1.02943122e+00 -2.95767039e-02 2.68515319e-01 -6.82717204e-01
3.22836876e-01 2.39075676e-01 -1.84269160e-01 -4.16313469e-01
6.96019977e-02 -2.65809923e-01 -2.33414531e-01 4.73219186e-01
5.90137362e-01 1.22772045e-02 2.74559945e-01 9.81839970e-02
1.20582819e+00 -2.24981904e-01 5.67681551e-01 -3.34087670e-01
4.39978093e-01 -4.26850289e-01 5.06781042e-01 7.69667089e-01
-5.45293152e-01 8.14309955e-01 6.11352146e-01 -4.22163367e-01
-8.80884945e-01 -1.29044116e+00 -3.79390568e-01 1.20796812e+00
1.31530032e-01 -4.26951021e-01 -5.66664934e-01 -7.99959660e-01
1.52455866e-01 6.23075187e-01 -9.08814073e-01 -6.24161839e-01
-5.01189614e-03 -6.29992783e-01 1.09797411e-01 5.93325436e-01
3.28380436e-01 -7.53404319e-01 -7.53255427e-01 1.22072823e-01
2.04314590e-01 -1.07447207e+00 -4.80517298e-01 3.29629511e-01
-5.21763146e-01 -9.95695114e-01 -1.15103793e+00 -8.48923504e-01
2.64806449e-01 6.55484319e-01 9.18300331e-01 -3.07171941e-01
-8.91176879e-01 5.32045364e-01 -5.40429533e-01 -3.71206701e-01
1.08160637e-02 -3.73880602e-02 9.77373645e-02 3.72323692e-01
7.50456214e-01 -5.82544148e-01 -7.09751844e-01 2.79558331e-01
-9.94499207e-01 -3.32457423e-01 6.02183402e-01 1.17413986e+00
4.90616858e-01 -9.39028263e-02 5.29261112e-01 -6.11740828e-01
5.43484926e-01 -7.66735196e-01 -4.53744888e-01 2.86365837e-01
-4.53473032e-01 1.18591212e-01 7.46481061e-01 -4.22377229e-01
-7.10371256e-01 -1.72440201e-01 8.61837938e-02 -7.41684556e-01
-3.20443898e-01 2.95868278e-01 -1.89437512e-02 2.99575418e-01
6.65327668e-01 3.60821009e-01 1.14836521e-01 -5.56849599e-01
4.10720527e-01 7.54308283e-01 2.82346368e-01 -5.22188306e-01
6.65479362e-01 6.17599785e-01 -1.97927341e-01 -8.84629011e-01
-1.12915838e+00 -7.66612768e-01 -6.79677486e-01 3.07789985e-02
8.20945561e-01 -8.05000484e-01 -4.63870257e-01 5.30939698e-01
-9.56074774e-01 -2.42585421e-01 -5.36886215e-01 6.14143372e-01
-7.28435099e-01 1.78673729e-01 -3.79750669e-01 -6.59120202e-01
-1.30200520e-01 -1.04885876e+00 1.25195944e+00 1.46503299e-01
1.60717033e-02 -9.57803369e-01 3.94060224e-01 1.18584353e-02
4.04764861e-01 1.01383306e-01 9.23550069e-01 -7.32022047e-01
-1.55633718e-01 -5.34923255e-01 -5.10642648e-01 6.89031422e-01
1.79606751e-01 -2.86374778e-01 -1.16496301e+00 -4.22883391e-01
1.80621251e-01 -8.17472935e-01 1.19720042e+00 2.78459340e-01
1.37543046e+00 6.53555663e-03 -5.20558134e-02 6.75745845e-01
1.65731728e+00 -1.86317742e-01 4.21485931e-01 2.39012629e-01
3.82727355e-01 6.13592446e-01 6.02456808e-01 7.39757240e-01
1.64233714e-01 7.02465236e-01 2.58710384e-01 4.10796851e-01
-6.56213388e-02 -6.59123063e-02 2.87032455e-01 8.42491448e-01
3.02995235e-01 -7.34262019e-02 -8.43853831e-01 5.90278387e-01
-1.95501554e+00 -9.42986310e-01 2.39082083e-01 1.88225341e+00
4.59026217e-01 9.54951197e-02 3.14016566e-02 1.65501714e-01
7.68808246e-01 5.09240806e-01 -7.91170716e-01 -1.96716741e-01
3.90566420e-03 3.03361535e-01 1.09628253e-01 3.86354178e-02
-1.30484498e+00 5.60640574e-01 5.05357313e+00 1.01631570e+00
-1.00181150e+00 3.16893101e-01 5.89743018e-01 -1.37888879e-01
1.70315638e-01 -2.32283220e-01 -7.46901274e-01 6.26867354e-01
8.20225596e-01 -3.85764629e-01 1.60652772e-01 1.21388400e+00
-3.46091211e-01 6.42438084e-02 -1.25413334e+00 1.24636364e+00
3.58048111e-01 -1.32937264e+00 -1.04269788e-01 6.14628419e-02
6.34719014e-01 1.67092592e-01 3.68570089e-01 8.04531395e-01
9.66400504e-02 -8.35607648e-01 6.50108218e-01 4.78784949e-01
7.33121336e-01 -5.95501184e-01 6.60453081e-01 3.19849640e-01
-1.08143377e+00 -2.78141677e-01 -1.01539433e+00 -1.42448455e-01
-1.99799433e-01 6.30405128e-01 -2.67778844e-01 2.52772450e-01
7.88891137e-01 1.08987236e+00 -5.57049036e-01 8.69227290e-01
5.38448356e-02 3.49501669e-01 2.36662522e-01 -1.67953014e-01
3.09346646e-01 -1.80404291e-01 2.46369660e-01 1.10520470e+00
3.27670932e-01 -2.00263172e-01 1.14291906e-01 1.03406215e+00
-1.78085282e-01 2.18273290e-02 -7.94486344e-01 -1.38598025e-01
2.19185293e-01 1.32816386e+00 -6.41766667e-01 -4.14140016e-01
-7.47404873e-01 1.18151689e+00 6.42382324e-01 1.78963676e-01
-9.30674016e-01 -8.09197664e-01 9.73837674e-01 -2.06671834e-01
7.26606727e-01 -1.19140707e-01 1.64354388e-02 -1.43022823e+00
1.08934633e-01 -5.32843471e-01 3.47281724e-01 -4.10921574e-01
-1.87787688e+00 5.15819192e-01 -6.94660842e-02 -1.40941072e+00
-1.62602112e-01 -9.58113790e-01 -8.36600065e-01 6.58774018e-01
-1.68016052e+00 -8.18979204e-01 -3.59433085e-01 6.43383265e-01
7.83965170e-01 -3.69911849e-01 9.94673133e-01 2.91976839e-01
-6.52295530e-01 5.41443348e-01 5.82837462e-01 2.11579502e-01
6.67213202e-01 -1.26888549e+00 3.78253698e-01 5.32299936e-01
2.27066442e-01 4.08244222e-01 4.06056285e-01 1.66378804e-02
-1.36611116e+00 -1.12738991e+00 5.42936683e-01 -1.98491246e-01
1.00296915e+00 -6.61842108e-01 -1.07720900e+00 2.32130080e-01
-1.95213556e-02 7.81988442e-01 8.68945360e-01 -8.82851258e-02
-7.20278025e-01 -2.25759596e-01 -8.82784486e-01 2.37483516e-01
9.67954636e-01 -8.32662165e-01 -6.55372679e-01 2.82785118e-01
6.55956388e-01 3.62949789e-01 -7.47565150e-01 1.24582767e-01
4.89180446e-01 -1.20650625e+00 9.69374180e-01 -8.24314296e-01
5.63922822e-01 7.67547712e-02 -7.44321942e-01 -1.46892500e+00
-4.52182591e-01 -1.32959327e-02 -3.60901177e-01 1.07665658e+00
7.40654990e-02 -6.35628819e-01 6.88931286e-01 4.30474222e-01
-4.27058712e-02 -8.79458964e-01 -8.31475735e-01 -1.35465300e+00
2.52103180e-01 -3.28599393e-01 3.93948197e-01 7.84615338e-01
-2.41314881e-02 4.31455463e-01 -2.91827351e-01 -1.24227859e-01
8.56892824e-01 4.45967317e-01 6.89036667e-01 -1.26490414e+00
-4.56061542e-01 -5.70512950e-01 -9.57827568e-01 -7.94101596e-01
3.90987396e-01 -1.05224049e+00 1.94390416e-01 -1.37060022e+00
5.48804641e-01 4.48776633e-02 -6.31083548e-01 2.38924876e-01
-1.77990627e-02 2.14276701e-01 2.59515971e-01 1.89739794e-01
-7.92735815e-01 1.11346459e+00 7.61820972e-01 -4.89556402e-01
3.28695565e-01 -2.35299747e-02 -4.05491024e-01 8.00429821e-01
8.80093634e-01 -5.59716046e-01 -4.52713341e-01 -3.10190886e-01
-2.74899662e-01 -3.34972739e-01 6.55312300e-01 -1.22374880e+00
2.74145603e-01 -7.99476728e-02 2.92261988e-01 -3.39348167e-01
5.47894895e-01 -5.63915312e-01 -4.67664182e-01 6.03532016e-01
-4.17885780e-01 -3.88023794e-01 -2.73687124e-01 9.51590478e-01
-4.28270876e-01 -4.59798217e-01 1.22399843e+00 -1.43494485e-02
-1.00255167e+00 5.36409438e-01 -1.72959685e-01 3.53910029e-01
1.27263057e+00 1.58705264e-02 -3.18484485e-01 -1.27807081e-01
-5.56486785e-01 -9.84153301e-02 2.42688283e-01 5.42626739e-01
8.73641431e-01 -1.65882468e+00 -5.19555509e-01 2.97034621e-01
7.36654997e-01 -3.58801335e-01 4.52926099e-01 7.87579775e-01
-1.09327145e-01 4.33677375e-01 -3.40523154e-01 -6.89457715e-01
-9.40884411e-01 8.91471565e-01 1.57211244e-01 2.65261643e-02
-6.57092214e-01 9.15607095e-01 5.08773565e-01 -3.68137687e-01
3.49185407e-01 -1.74950659e-01 -2.30617225e-02 2.80942023e-01
8.44865799e-01 4.61308748e-01 3.20308767e-02 -4.99820232e-01
-3.04638714e-01 5.14210343e-01 -3.21203381e-01 5.58400676e-02
1.54310834e+00 1.96503811e-02 1.65715188e-01 8.54130149e-01
2.06415534e+00 -8.18669736e-01 -1.44798756e+00 -6.30295932e-01
1.39376342e-01 -6.48045719e-01 8.59694555e-03 -1.70505658e-01
-7.85658121e-01 1.41528869e+00 8.38377416e-01 3.88653785e-01
8.28507304e-01 2.33636826e-01 7.22849071e-01 5.82440019e-01
2.93755352e-01 -1.23954308e+00 5.64168692e-01 4.76211995e-01
8.28432202e-01 -1.59081030e+00 -2.60989726e-01 1.31934330e-01
-6.51037097e-01 1.11912715e+00 5.03594398e-01 -4.24255669e-01
1.11873019e+00 -1.00904502e-01 -2.29853809e-01 -2.64024198e-01
-8.46387446e-01 -4.48959976e-01 2.77215987e-01 5.51304340e-01
2.16352582e-01 4.57801223e-02 -5.78281842e-02 7.89294481e-01
2.04040051e-01 -6.19009584e-02 2.98017472e-01 1.03377163e+00
-5.68598270e-01 -8.69431257e-01 3.50872017e-02 5.05784869e-01
-1.93953261e-01 1.20128445e-01 -1.11176513e-01 5.27250409e-01
-2.14351043e-02 7.68213749e-01 1.93885103e-01 -3.73881221e-01
2.83544272e-01 8.47432166e-02 2.92687446e-01 -8.67659092e-01
3.07197452e-01 -2.30944291e-01 -6.25824332e-01 -5.29874921e-01
-2.18389630e-01 -6.04685068e-01 -7.68813729e-01 -1.39424980e-01
-1.56500354e-01 -1.49646830e-02 7.44949877e-01 7.52554417e-01
4.10219610e-01 3.33727002e-01 9.80100036e-01 -9.64807689e-01
-1.20817363e+00 -9.45009053e-01 -9.23068106e-01 5.35076618e-01
3.73907775e-01 -1.03484082e+00 -4.33664262e-01 -8.90638903e-02] | [9.892231941223145, 2.733476400375366] |
55a3571f-deb5-4a62-a774-ed60287dc4d4 | a-comparative-study-of-fruit-detection-and | 1810.09499 | null | http://arxiv.org/abs/1810.09499v2 | http://arxiv.org/pdf/1810.09499v2.pdf | A Comparative Study of Fruit Detection and Counting Methods for Yield Mapping in Apple Orchards | We present new methods for apple detection and counting based on recent deep
learning approaches and compare them with state-of-the-art results based on
classical methods. Our goal is to quantify performance improvements by neural
network-based methods compared to methods based on classical approaches.
Additionally, we introduce a complete system for counting apples in an entire
row. This task is challenging as it requires tracking fruits in images from
both sides of the row. We evaluate the performances of three fruit detection
methods and two fruit counting methods on six datasets. Results indicate that
the classical detection approach still outperforms the deep learning based
methods in the majority of the datasets. For fruit counting though, the deep
learning based approach performs better for all of the datasets. Combining the
classical detection method together with the neural network based counting
approach, we achieve remarkable yield accuracies ranging from 95.56% to 97.83%. | ['Nicolai Häni', 'Volkan Isler', 'Pravakar Roy'] | 2018-10-22 | null | null | null | null | ['yield-mapping-in-apple-orchards'] | ['computer-vision'] | [ 1.14324987e-01 -7.09635675e-01 -8.81746560e-02 4.40631062e-02
-3.19495142e-01 -8.88494134e-01 4.92394090e-01 4.61613983e-01
-5.59748411e-01 3.51987220e-02 -6.82514191e-01 -1.08524024e-01
2.50913441e-01 -1.16854012e+00 -6.42767370e-01 -6.46557570e-01
-1.15654700e-01 2.70939380e-01 4.12388474e-01 1.53222576e-01
4.54041988e-01 4.97352570e-01 -1.57974708e+00 3.49913478e-01
3.98168653e-01 1.15489924e+00 4.60117757e-01 1.27833676e+00
-3.90603006e-01 8.05181324e-01 -9.90433156e-01 -6.52362585e-01
1.69977546e-01 9.78998542e-02 -2.74231642e-01 -3.33871603e-01
9.53850806e-01 -1.01309967e+00 -1.00513976e-02 1.02727461e+00
3.56016874e-01 -7.32169807e-01 6.50973201e-01 -1.10260928e+00
-9.16739762e-01 8.65724564e-01 -1.03147006e+00 1.66994423e-01
1.12578936e-01 2.72179265e-02 7.05629230e-01 -5.58050990e-01
2.01781943e-01 9.30913031e-01 1.12169647e+00 2.10935667e-01
-9.64166522e-01 -7.79307246e-01 -9.92683694e-02 -8.50622132e-02
-1.07628977e+00 2.11607248e-01 3.08336347e-01 -2.92237639e-01
6.42376661e-01 -1.86041109e-02 8.95516276e-01 8.09830487e-01
-1.12099081e-01 1.25347269e+00 8.07818830e-01 -7.63653755e-01
1.78176109e-02 -1.35038495e-01 4.51913357e-01 8.88608158e-01
1.07309175e+00 1.38592590e-02 -2.65111387e-01 1.47764683e-01
8.97478878e-01 1.56064391e-01 6.96169376e-01 -2.76635528e-01
-1.17264879e+00 1.12033236e+00 7.03617990e-01 5.80692708e-01
-3.92089963e-01 4.69001502e-01 7.77942657e-01 -4.67818022e-01
4.03452933e-01 3.85466248e-01 -6.47899389e-01 4.61324640e-02
-1.32938671e+00 2.11072713e-01 1.08685768e+00 9.75504577e-01
-7.19401538e-02 2.13094309e-01 -4.69177932e-01 6.34041309e-01
2.11727187e-01 8.18041503e-01 -1.52259588e-01 -1.18609631e+00
7.48908892e-02 6.85254872e-01 3.46307009e-01 -8.40295136e-01
-5.12969792e-01 -2.43827105e-01 -9.46961462e-01 3.16234142e-01
1.17709303e+00 -7.61329830e-02 -9.70212519e-01 1.14289010e+00
1.16027981e-01 -1.35668516e-01 -4.20152009e-01 4.33122098e-01
1.20525575e+00 5.43841779e-01 4.85008895e-01 1.96544662e-01
1.51898229e+00 -9.18307543e-01 -5.34114361e-01 -6.19147010e-02
6.97102070e-01 -9.76604462e-01 6.35391474e-01 9.50425804e-01
-1.04276443e+00 -7.42271662e-01 -1.30530834e+00 -1.46832680e-02
-9.51813459e-01 1.33638442e+00 1.00207567e+00 1.01220059e+00
-7.11697698e-01 8.51976454e-01 -7.67831385e-01 -6.27408922e-01
8.12607348e-01 3.42350841e-01 1.10537015e-01 -1.79344445e-01
-3.30980331e-01 6.55401170e-01 5.90472102e-01 2.12986872e-01
-7.40677893e-01 -4.13899481e-01 -5.00053823e-01 3.79363745e-01
2.05915198e-01 -1.94629088e-01 1.68560147e+00 -6.94760442e-01
-1.39577031e+00 1.18900931e+00 2.19803765e-01 -5.88615000e-01
5.39308012e-01 -6.88710928e-01 5.97350895e-02 9.02473629e-02
2.56989330e-01 8.80147457e-01 6.17357671e-01 -1.22658730e+00
-1.03075123e+00 -4.04261619e-01 1.31773546e-01 -6.87872052e-01
-4.45760697e-01 1.92139581e-01 -1.82742268e-01 -3.29521358e-01
-3.25160563e-01 -7.23001301e-01 1.77108377e-01 5.49572825e-01
-6.11630797e-01 -4.70556319e-01 9.51937914e-01 -6.34680986e-01
9.95881319e-01 -1.74167562e+00 -4.52145994e-01 -5.25106072e-01
3.77824873e-01 1.16097009e+00 -3.46022367e-01 2.31810212e-01
3.14732134e-01 6.05889969e-02 5.20883352e-02 -5.19470632e-01
-4.57563512e-02 1.29474461e-01 6.41515255e-02 2.44559899e-01
3.88345331e-01 9.41216707e-01 -1.04232955e+00 -6.32083595e-01
8.88924181e-01 6.95518672e-01 2.47010857e-01 5.96924834e-02
-1.12096369e-01 -1.69978335e-01 -1.13317087e-01 1.39349830e+00
1.12093461e+00 -2.84182936e-01 6.96376339e-03 -3.58541280e-01
-3.70646834e-01 -3.60088259e-01 -1.01650679e+00 1.45462537e+00
-3.30053091e-01 5.88916183e-01 1.42556965e-01 -8.30705225e-01
8.71491671e-01 -1.39227465e-01 3.73036325e-01 -2.63593167e-01
5.47443688e-01 1.31259918e-01 1.04365401e-01 -1.03060856e-01
4.63421494e-01 6.69186592e-01 9.45680887e-02 9.61748138e-02
3.70958865e-01 -5.34540266e-02 9.66664612e-01 2.45360568e-01
1.13380945e+00 3.35516125e-01 4.90920722e-01 -1.18309341e-01
3.15861076e-01 3.38020891e-01 1.09281614e-01 1.27790809e+00
-6.77347362e-01 5.18247902e-01 6.53347194e-01 -7.04945087e-01
-9.59214032e-01 -1.10437906e+00 -2.03754872e-01 1.44465184e+00
-1.98669344e-01 -3.48108679e-01 -1.06577885e+00 -6.84676409e-01
2.24213615e-01 5.74524403e-01 -1.04366469e+00 2.16447562e-01
-5.90209305e-01 -1.05056858e+00 8.52970719e-01 1.17427945e+00
9.85220194e-01 -1.19104171e+00 -1.14418626e+00 2.27159366e-01
2.75853992e-01 -1.26515365e+00 2.83455491e-01 6.71374321e-01
-8.93291235e-01 -1.43715000e+00 -1.03579533e+00 -6.37129903e-01
-3.01522072e-02 4.48010474e-01 1.58017945e+00 2.27404326e-01
-9.46357965e-01 1.31694272e-01 -5.12947738e-01 -1.12669539e+00
-4.67918366e-01 4.04153675e-01 -5.78872085e-01 -8.31562459e-01
1.07933664e+00 1.98854849e-01 -6.85019672e-01 -1.30955234e-01
-5.37812233e-01 -5.28211594e-01 7.56142855e-01 4.77917135e-01
3.46842915e-01 -4.57813412e-01 3.61143112e-01 -7.91290700e-01
2.50959247e-01 -3.12723786e-01 -1.15967417e+00 3.00441235e-01
-2.95698881e-01 -2.49443233e-01 4.43604797e-01 -6.90198720e-01
-5.43046296e-01 9.01768386e-01 9.19134244e-02 -1.94335803e-01
-3.94419193e-01 -4.07729596e-01 1.97452396e-01 -1.52555019e-01
5.71366072e-01 -1.06332228e-01 -3.00195634e-01 -4.44108784e-01
5.56603312e-01 2.72703886e-01 6.88449740e-01 -7.59007484e-02
4.23063636e-01 4.95515049e-01 3.83510619e-01 -8.02751780e-01
-1.07344663e+00 -8.12213957e-01 -1.42842746e+00 -2.84807324e-01
1.17579353e+00 -6.63521647e-01 -1.32569218e+00 1.02452457e+00
-1.57615674e+00 -2.16272816e-01 -2.58888841e-01 1.73158094e-01
-8.19107965e-02 3.97954255e-01 -9.50434566e-01 -1.10480487e+00
-8.01157176e-01 -7.62342393e-01 1.72592354e+00 4.42393273e-01
5.24313115e-02 -7.03381300e-01 5.35069257e-02 -1.30969524e-01
3.17935646e-01 5.83935082e-01 3.26334506e-01 -4.39162523e-01
-2.14106396e-01 -9.85978484e-01 -1.01059723e+00 4.18242276e-01
-1.28082350e-01 8.87598753e-01 -1.10030007e+00 1.69852778e-01
-7.12870717e-01 -2.68050939e-01 1.20980537e+00 1.05878353e+00
1.35036314e+00 6.08713269e-01 -6.81527257e-01 3.14120352e-01
1.69171691e+00 3.33817452e-02 4.74751115e-01 3.54814798e-01
8.77470434e-01 1.98693141e-01 5.31663597e-01 6.42209411e-01
-1.64395738e-02 1.48796886e-01 1.10986066e+00 -1.37297422e-01
-4.16267216e-02 3.22604328e-02 -1.56229306e-02 2.83685267e-01
-3.75569493e-01 -4.04683948e-01 -5.32781065e-01 5.60082793e-01
-1.57042599e+00 -8.69124234e-01 -9.28140402e-01 2.03721547e+00
2.01120704e-01 1.45180505e-02 7.36588120e-01 6.31193340e-01
8.45990300e-01 -8.90278667e-02 -4.59508359e-01 -6.93698645e-01
6.67150542e-02 6.68798149e-01 1.07929099e+00 -2.99931198e-01
-1.80203354e+00 8.85722876e-01 7.47840261e+00 5.77989578e-01
-6.79849505e-01 1.48240939e-01 3.79038841e-01 -1.12267196e-01
1.14912212e+00 -4.01970893e-01 -1.27060640e+00 2.96056330e-01
7.45745122e-01 7.06186831e-01 1.32744119e-01 1.26585639e+00
-3.95689368e-01 -6.83214962e-01 -1.03630710e+00 7.77520835e-01
1.14289440e-01 -1.06180501e+00 -3.64854097e-01 -1.94252014e-01
4.48583961e-01 1.16672032e-02 -2.44981453e-01 5.90497971e-01
7.51646936e-01 -9.33143079e-01 5.08583069e-01 1.79819942e-01
6.10483527e-01 -6.44971192e-01 9.89035070e-01 2.95667112e-01
-1.68679011e+00 -2.97863483e-01 -7.87489891e-01 -1.32474393e-01
-9.40235183e-02 8.55304360e-01 -4.69416827e-01 1.06995665e-01
1.18813813e+00 6.50509655e-01 -1.07817554e+00 1.18687260e+00
-4.44967926e-01 6.59572124e-01 -6.96080446e-01 -6.55496418e-01
3.69658291e-01 4.93162237e-02 -1.78604573e-01 1.65242958e+00
3.36720109e-01 -4.31666046e-01 -7.09352344e-02 1.16255975e+00
-2.12664485e-01 -9.39658731e-02 -7.55006075e-01 -2.99931437e-01
3.67250085e-01 1.94264936e+00 -1.26551688e+00 -5.25405526e-01
-4.32986200e-01 9.37552512e-01 1.76938683e-01 -4.29774314e-01
-8.20195317e-01 -5.79423487e-01 -6.95326850e-02 -1.03552476e-01
7.88848698e-01 -1.37256026e-01 -3.75706255e-01 -6.51112735e-01
-1.96619540e-01 -1.69912368e-01 3.85257125e-01 -8.82433712e-01
-1.39782953e+00 -1.62059851e-02 -1.31028658e-02 -8.53720427e-01
-6.25804067e-02 -1.52680266e+00 -9.58934188e-01 3.47859174e-01
-1.36162722e+00 -1.72138214e+00 -8.29119146e-01 1.51383430e-02
5.15174747e-01 -8.60987883e-03 9.70526040e-01 4.40568358e-01
-6.48332119e-01 5.94795287e-01 4.40923840e-01 6.00562155e-01
5.15118182e-01 -1.67358470e+00 4.65269953e-01 7.35527098e-01
5.01416385e-01 6.22477680e-02 1.46466687e-01 -4.14580524e-01
-1.27052665e+00 -1.06177020e+00 5.34851909e-01 -8.03689361e-01
4.49467838e-01 -3.55848789e-01 -4.94279236e-01 5.02947509e-01
3.05249095e-01 2.39515409e-01 4.26854610e-01 1.33923471e-01
-3.76359314e-01 4.94899414e-02 -1.19689584e+00 -1.35353729e-01
5.81004024e-01 1.71625152e-01 4.53450903e-02 6.76140308e-01
1.67634964e-01 -1.28899485e-01 -8.09001863e-01 4.86532211e-01
1.12254381e+00 -9.41215396e-01 1.17786765e+00 -1.90568075e-01
8.07053387e-01 -3.17103676e-02 -2.77286023e-01 -7.23675370e-01
-5.07296741e-01 2.21385896e-01 -4.97480541e-01 1.47029281e+00
-1.80189654e-01 -8.36757720e-02 1.07596803e+00 -2.87099242e-01
3.66153121e-01 -3.34142655e-01 -3.40016931e-01 -8.36797535e-01
6.07144117e-01 -1.73016250e-01 3.36955935e-01 5.35468519e-01
-6.20636344e-01 5.47631755e-02 -7.57284090e-02 1.30717993e-01
8.54701042e-01 2.14975610e-01 8.77459884e-01 -1.64556432e+00
-5.49373403e-02 -5.72632611e-01 -3.80202293e-01 -5.57439268e-01
-3.48739207e-01 -5.23481727e-01 8.53874385e-02 -1.73564661e+00
4.93438631e-01 2.06311330e-01 -9.25962403e-02 4.07443166e-01
-3.33889425e-01 5.20349383e-01 6.27326250e-01 -9.12371203e-02
-6.98489785e-01 -3.19959402e-01 9.96480465e-01 -2.20832959e-01
1.08514406e-01 8.23091120e-02 -2.91855395e-01 1.17957783e+00
1.17859900e+00 -5.94569683e-01 3.87446165e-01 -5.78449547e-01
-7.02357367e-02 -4.19681609e-01 7.35055268e-01 -1.56325448e+00
-3.36319804e-02 5.44067740e-01 1.16966796e+00 -1.36937034e+00
2.92174399e-01 -5.81854939e-01 -7.24868000e-01 1.12602925e+00
1.28855854e-02 -2.43304640e-01 4.89802659e-01 4.06726241e-01
2.22800568e-01 -6.43483043e-01 9.92531478e-01 -4.25696552e-01
-6.78514361e-01 -8.47248361e-02 -3.26046586e-01 -2.99382776e-01
8.91013443e-01 -2.83134192e-01 -4.43474978e-01 1.74126044e-01
-6.85746610e-01 -1.29920438e-01 -1.84072331e-01 2.83514321e-01
-2.69867666e-02 -1.05131972e+00 -8.59042585e-01 -1.85296834e-01
2.69022822e-01 -2.14250743e-01 -3.79912466e-01 3.66654724e-01
-1.06852734e+00 5.27400553e-01 -5.04408240e-01 -9.69948828e-01
-1.53834772e+00 7.42161453e-01 -5.03680389e-03 -6.42015934e-01
-1.48223534e-01 8.62355530e-01 -2.33256489e-01 -4.54481006e-01
5.63838720e-01 -8.27532232e-01 -4.43730772e-01 1.49265394e-01
6.29601419e-01 9.33521569e-01 -4.84065637e-02 -1.21635072e-01
-2.49450430e-01 7.53373206e-01 -8.99710227e-03 7.62785852e-01
1.19369805e+00 5.73095143e-01 3.17136467e-01 4.93670523e-01
7.44251728e-01 -6.32909119e-01 -8.92692804e-01 1.94254905e-01
-4.67338525e-02 -4.36357111e-01 1.85448751e-01 -1.08179510e+00
-1.34702468e+00 1.48932970e+00 1.41448534e+00 6.60746455e-01
8.94051254e-01 -2.05856726e-01 6.44670129e-01 6.17355943e-01
1.39730632e-01 -1.01549268e+00 3.31967175e-02 3.52447003e-01
3.13591868e-01 -1.89942598e+00 4.18763489e-01 -5.83951294e-01
-1.56664606e-02 1.58256114e+00 7.52840698e-01 -7.65138447e-01
5.41901648e-01 8.07472527e-01 -2.27385998e-01 -3.27885181e-01
-2.53303926e-02 -5.82176089e-01 -9.14901346e-02 9.65588093e-01
7.77823389e-01 3.17296833e-01 -2.06498638e-01 4.24992651e-01
2.61507958e-01 4.25604641e-01 2.88825691e-01 1.08266604e+00
-5.12111485e-01 -7.98250198e-01 -5.50217152e-01 7.78299987e-01
-6.05233371e-01 -5.65160103e-02 -9.30068612e-01 1.41538012e+00
4.30498630e-01 9.99447405e-01 1.17442980e-01 8.43523294e-02
2.86604673e-01 -1.48204863e-01 9.22685683e-01 -4.42624629e-01
-9.57381070e-01 -1.77414969e-01 -1.55142367e-01 -5.05537331e-01
-5.31874478e-01 -5.81189930e-01 -6.85816228e-01 -7.32702374e-01
-1.09720373e+00 -9.05835509e-01 9.99899924e-01 5.68240643e-01
-1.27107918e-01 7.25877345e-01 3.49445120e-02 -1.25490165e+00
-6.49999619e-01 -1.16653454e+00 -8.87052178e-01 -5.95459267e-02
-1.91098064e-01 -6.82802856e-01 -9.06677023e-02 1.60076275e-01] | [9.109281539916992, -1.4667738676071167] |
1c80341a-3629-4ee4-9ed3-edf93b0b47ef | semeval-2016-task-11-complex-word | null | null | https://aclanthology.org/S16-1085 | https://aclanthology.org/S16-1085.pdf | SemEval 2016 Task 11: Complex Word Identification | null | ['Lucia Specia', 'Gustavo Paetzold'] | 2016-06-01 | null | null | null | semeval-2016-6 | ['complex-word-identification'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.408107757568359, 3.6139261722564697] |
c6dba10b-6a15-448f-9ce8-f479c4f561dc | multi-level-sequence-gan-for-group-activity | 1812.07124 | null | http://arxiv.org/abs/1812.07124v1 | http://arxiv.org/pdf/1812.07124v1.pdf | Multi-Level Sequence GAN for Group Activity Recognition | We propose a novel semi-supervised, Multi-Level Sequential Generative
Adversarial Network (MLS-GAN) architecture for group activity recognition. In
contrast to previous works which utilise manually annotated individual human
action predictions, we allow the models to learn it's own internal
representations to discover pertinent sub-activities that aid the final group
activity recognition task. The generator is fed with person-level and
scene-level features that are mapped temporally through LSTM networks.
Action-based feature fusion is performed through novel gated fusion units that
are able to consider long-term dependencies, exploring the relationships among
all individual actions, to learn an intermediate representation or `action
code' for the current group activity. The network achieves its semi-supervised
behaviour by allowing it to perform group action classification together with
the adversarial real/fake validation. We perform extensive evaluations on
different architectural variants to demonstrate the importance of the proposed
architecture. Furthermore, we show that utilising both person-level and
scene-level features facilitates the group activity prediction better than
using only person-level features. Our proposed architecture outperforms current
state-of-the-art results for sports and pedestrian based classification tasks
on Volleyball and Collective Activity datasets, showing it's flexible nature
for effective learning of group activities. | ['Harshala Gammulle', 'Clinton Fookes', 'Sridha Sridharan', 'Simon Denman'] | 2018-12-18 | null | null | null | null | ['group-activity-recognition', 'activity-prediction', 'activity-prediction'] | ['computer-vision', 'computer-vision', 'time-series'] | [ 6.14403665e-01 3.04376364e-01 -1.96454972e-01 -3.76571625e-01
-8.54197383e-01 -2.30342939e-01 1.10797858e+00 -2.08498091e-01
-4.07509238e-01 9.56665516e-01 4.82156098e-01 8.10618699e-02
1.62765294e-01 -8.49027038e-01 -9.32172060e-01 -8.84700537e-01
-4.66088951e-01 3.44576776e-01 4.08614635e-01 -2.23934293e-01
-1.54210538e-01 5.43795764e-01 -1.78935051e+00 7.91024983e-01
6.24889553e-01 1.01334596e+00 -3.24930280e-01 9.91748035e-01
4.30003703e-01 1.67499280e+00 -1.05762470e+00 -1.50230065e-01
2.20048711e-01 -1.06541491e+00 -7.70736456e-01 5.11687517e-01
4.22930479e-01 -1.76416188e-01 -3.64842474e-01 3.20580244e-01
3.77711743e-01 5.19187331e-01 5.86049259e-01 -1.42100978e+00
-3.68053764e-01 2.64432639e-01 5.58269992e-02 2.61372715e-01
8.45232785e-01 6.90342009e-01 7.36787975e-01 -4.41859871e-01
6.98986053e-01 1.12280810e+00 6.03281021e-01 7.51087964e-01
-1.23503852e+00 -4.87678826e-01 3.18760514e-01 4.67103064e-01
-9.86272216e-01 -2.72590578e-01 7.65181661e-01 -4.96130526e-01
1.13668346e+00 1.71041757e-01 1.08130324e+00 1.88791108e+00
2.95163304e-01 1.11265039e+00 1.16913056e+00 -3.72351140e-01
3.39718938e-01 -2.28015780e-01 -3.37158620e-01 6.55053973e-01
-2.35522494e-01 3.61371279e-01 -8.23922157e-01 2.92991042e-01
7.37178087e-01 -2.95201614e-02 8.64529163e-02 -2.86465824e-01
-1.36915410e+00 6.31029367e-01 6.32489800e-01 3.59948844e-01
-6.79683328e-01 6.26271009e-01 3.85935247e-01 2.84350842e-01
4.37769681e-01 1.58529997e-01 7.78390393e-02 -2.67865866e-01
-1.05667102e+00 2.76288271e-01 7.06331193e-01 4.79862750e-01
6.05767608e-01 3.81594837e-01 -6.69378281e-01 3.83923084e-01
1.06530719e-01 3.39136757e-02 6.44117832e-01 -9.30654168e-01
3.21970940e-01 7.66968191e-01 3.58544067e-02 -5.56978464e-01
-2.51680166e-01 -6.00281775e-01 -9.00011659e-01 6.32519245e-01
4.55987930e-01 -8.00974220e-02 -1.11942196e+00 1.69633389e+00
1.90278247e-01 6.91255331e-01 2.22731203e-01 7.07976937e-01
5.77194273e-01 4.31255132e-01 5.85357904e-01 1.26651481e-01
1.07747161e+00 -1.25079930e+00 -3.77396882e-01 -4.46354687e-01
5.60832083e-01 -4.01176810e-02 6.43484652e-01 3.09194535e-01
-9.91119623e-01 -1.11855173e+00 -1.07236004e+00 2.92428792e-01
-4.97411668e-01 1.30449086e-01 6.56556189e-01 5.95794678e-01
-1.04155755e+00 8.39914560e-01 -1.05207157e+00 -3.14942896e-01
7.87895560e-01 4.55680341e-01 -5.95739365e-01 1.90011472e-01
-1.25790703e+00 8.73191476e-01 4.39127147e-01 1.34961084e-01
-1.39213347e+00 -2.23866731e-01 -9.74066079e-01 -2.14293987e-01
1.78305715e-01 -9.39496994e-01 8.43172550e-01 -1.50321817e+00
-1.57445192e+00 8.32110167e-01 8.58773571e-03 -1.19002271e+00
9.07622516e-01 -2.00191826e-01 -5.82340479e-01 2.36212105e-01
1.48072764e-01 7.96475768e-01 8.51253867e-01 -1.00156963e+00
-6.51980937e-01 -1.23755075e-01 1.42576069e-01 3.17557663e-01
4.92790081e-02 -8.92632306e-02 -1.19603917e-01 -8.55546355e-01
-3.15897346e-01 -9.61872578e-01 -4.58630204e-01 -2.07093388e-01
-2.66587883e-01 -1.45807862e-01 6.57383263e-01 -7.33734965e-01
8.99241269e-01 -1.91249192e+00 2.96521932e-01 3.51291224e-02
-1.43018633e-01 2.59169400e-01 -1.04220048e-01 4.99160945e-01
-1.83930963e-01 -2.92308152e-01 -1.75264582e-01 -7.26294994e-01
-8.82640779e-02 4.92274195e-01 -2.71653980e-02 4.83879983e-01
4.82929736e-01 1.32992220e+00 -9.06541944e-01 -3.86855453e-01
6.23562932e-01 4.88529027e-01 -3.59559476e-01 3.63368601e-01
-1.65239662e-01 1.13515270e+00 -2.93741703e-01 6.25154614e-01
-2.32515074e-02 3.98852900e-02 -7.89155513e-02 2.66845167e-01
1.94823787e-01 6.49620444e-02 -1.02647185e+00 1.84551096e+00
-4.39272732e-01 5.17341018e-01 -4.98928577e-01 -1.27372813e+00
8.29755425e-01 4.02530283e-01 6.51330709e-01 -6.32346690e-01
-2.62156036e-02 -2.64203716e-02 -5.77422082e-02 -2.59252578e-01
7.26172552e-02 -1.29036933e-01 -4.93739158e-01 3.85434210e-01
5.71124136e-01 3.65321189e-01 1.94025457e-01 9.19907540e-02
1.55660379e+00 9.34623778e-01 4.19587672e-01 1.49177372e-01
9.72501636e-01 -9.56469029e-02 4.87721592e-01 9.33102131e-01
-3.41201693e-01 4.94635820e-01 3.27027977e-01 -6.44002199e-01
-7.18520045e-01 -1.09357059e+00 4.63186502e-01 1.30477762e+00
-2.14214232e-02 -1.02482356e-01 -8.19352686e-01 -1.14459920e+00
-3.58767509e-01 7.62677312e-01 -1.20839787e+00 -5.14266729e-01
-8.75492454e-01 -5.27849674e-01 7.58488894e-01 1.01928496e+00
8.17137122e-01 -1.68122506e+00 -8.43866527e-01 4.91223752e-01
-7.33332261e-02 -1.08937454e+00 -1.04502067e-01 3.50837529e-01
-6.89575553e-01 -1.08178401e+00 -5.06181002e-01 -4.83884871e-01
5.37900805e-01 -4.95014131e-01 1.12512064e+00 -1.45685628e-01
-3.24230283e-01 5.46748519e-01 -6.08371377e-01 -2.87429512e-01
-8.01980734e-01 -1.18166044e-01 -1.03823893e-01 5.52880406e-01
2.63224959e-01 -9.44058239e-01 -7.65277207e-01 3.87945026e-01
-7.43254840e-01 1.45123020e-01 7.33410418e-01 1.00094509e+00
5.81946075e-01 -1.42789602e-01 6.08208418e-01 -7.61957169e-01
1.71088666e-01 -3.32194418e-01 -3.87084000e-02 2.30743438e-01
-1.28551349e-01 8.93350691e-02 6.17759705e-01 -5.74267030e-01
-1.20001841e+00 4.08893347e-01 -1.81060672e-01 -4.40307707e-01
-7.07501650e-01 -1.48270577e-01 -3.27025592e-01 5.09052426e-02
9.37933207e-01 5.90744376e-01 -1.92284614e-01 -2.10965693e-01
3.94126654e-01 1.73720598e-01 9.16270614e-01 -4.02321309e-01
7.06832707e-01 6.02959394e-01 2.28917152e-01 -4.57002699e-01
-8.69614184e-01 -3.73853028e-01 -1.07820261e+00 -7.62292624e-01
1.34898984e+00 -1.14562523e+00 -6.25363052e-01 7.18322754e-01
-8.42029095e-01 -6.26553953e-01 -9.67413902e-01 3.34752023e-01
-1.07137918e+00 1.24339901e-01 -4.21047270e-01 -8.76076818e-01
-7.93662220e-02 -8.24428022e-01 1.32810855e+00 3.16738337e-02
-3.45324099e-01 -1.21241224e+00 2.46584117e-01 7.18242347e-01
6.55091926e-02 1.12953520e+00 1.06701910e-01 -8.55505586e-01
-6.75693691e-01 -5.17850876e-01 4.96074319e-01 7.58252501e-01
-3.25522944e-02 -4.12959814e-01 -9.86791909e-01 -1.66673660e-01
-2.41894394e-01 -4.19961333e-01 1.03710210e+00 2.64968872e-01
1.10673499e+00 -3.14171880e-01 -2.37806246e-01 5.32981575e-01
1.02143645e+00 7.95480907e-02 1.09161258e+00 3.39717448e-01
7.22301722e-01 4.33104277e-01 7.39664316e-01 3.56062800e-01
1.21897772e-01 8.44781220e-01 5.64569056e-01 -2.50885040e-01
-5.16788244e-01 -5.57204962e-01 8.00474286e-01 -3.81551273e-02
-7.57113159e-01 -3.38092476e-01 -5.60998321e-01 4.15138334e-01
-2.10467577e+00 -1.47551012e+00 1.20206326e-01 2.03638983e+00
3.06936324e-01 2.80178964e-01 5.22291183e-01 4.35849637e-01
4.35352147e-01 3.47274005e-01 -3.50940138e-01 -3.13626170e-01
-2.51636058e-01 6.05241299e-01 4.45712030e-01 1.36798501e-01
-1.51504302e+00 9.65213776e-01 5.73908997e+00 7.80462861e-01
-6.40962005e-01 4.02927637e-01 5.51094770e-01 -2.32258037e-01
2.08660126e-01 -7.48232007e-02 -5.18559635e-01 4.86271113e-01
1.09477437e+00 3.74898255e-01 2.27390021e-01 7.91592538e-01
2.19977453e-01 -2.63382316e-01 -1.22662044e+00 5.33016801e-01
2.74080127e-01 -1.26751876e+00 7.84386881e-03 1.94665134e-01
8.25716734e-01 -2.84072727e-01 -2.40021676e-01 6.65874124e-01
6.47792399e-01 -1.16933846e+00 1.01837683e+00 9.89170313e-01
5.96143603e-01 -7.75834680e-01 5.79520047e-01 5.69000125e-01
-1.26844168e+00 -3.68588120e-01 3.86967719e-01 -2.56162465e-01
5.18823981e-01 -3.14591974e-02 -7.71682262e-01 7.73926556e-01
4.70717371e-01 9.98790324e-01 -9.10464168e-01 5.08862495e-01
-6.69952214e-01 6.75107419e-01 -8.72974396e-02 2.77184337e-01
4.62389618e-01 4.54885401e-02 5.83887696e-01 1.29185677e+00
1.26778245e-01 -2.07313150e-01 3.32840472e-01 5.90424418e-01
1.49790168e-01 -2.85466552e-01 -6.37976646e-01 1.34862229e-01
-2.47063696e-01 8.30749631e-01 -6.81782007e-01 -4.64353263e-01
-2.20581636e-01 1.53273106e+00 2.39969373e-01 2.09154785e-01
-1.15777516e+00 8.75790864e-02 6.08443975e-01 3.81027311e-01
3.87831092e-01 -1.24325519e-02 3.71255800e-02 -1.08288479e+00
-5.85454926e-02 -7.29599118e-01 6.72342181e-01 -7.09282517e-01
-8.84131312e-01 6.63873196e-01 -2.78320536e-03 -1.55454874e+00
-1.03714430e+00 -3.82641882e-01 -8.75152528e-01 6.67239547e-01
-8.00067186e-01 -1.96803045e+00 -3.25350165e-01 8.66829753e-01
7.02301562e-01 -4.38497275e-01 9.09098864e-01 -1.83572434e-02
-3.86040062e-01 4.99854445e-01 -6.05604053e-01 3.97248685e-01
2.95566499e-01 -1.32959604e+00 4.80993450e-01 1.21064305e+00
5.47048092e-01 1.37770772e-02 6.93367958e-01 -6.98034763e-01
-7.81163275e-01 -1.32331324e+00 6.58477843e-01 -8.54446173e-01
4.91931945e-01 -4.88278806e-01 -5.05491853e-01 9.37399626e-01
8.65401253e-02 4.39998925e-01 7.08090425e-01 -2.67031074e-01
-7.10913688e-02 -4.91496027e-02 -1.16263533e+00 4.22731936e-01
1.58422732e+00 -4.51628089e-01 -5.97666323e-01 3.25831890e-01
3.39447081e-01 -2.14801952e-01 -9.40296412e-01 3.69402230e-01
4.59041238e-01 -1.33381069e+00 1.13365042e+00 -9.00303543e-01
4.42829967e-01 -3.01849127e-01 1.11365728e-01 -1.15422630e+00
-2.72022843e-01 -5.20761132e-01 -4.49068725e-01 8.15439284e-01
3.63051482e-02 -4.55534548e-01 1.08280230e+00 1.55198216e-01
-2.83887416e-01 -7.19315171e-01 -1.19615650e+00 -8.56584072e-01
-3.93643498e-01 -5.64995646e-01 3.89833033e-01 5.24798989e-01
-3.44277561e-01 1.64298207e-01 -8.64736199e-01 -3.39681059e-02
6.13819182e-01 -6.94377348e-02 1.05473661e+00 -8.58340681e-01
-7.80339479e-01 -2.60096967e-01 -1.22435987e+00 -6.38573885e-01
3.78176153e-01 -6.90286875e-01 -7.53043368e-02 -1.46918833e+00
-2.41778463e-01 9.16433036e-02 -3.99856746e-01 7.58201957e-01
6.43599629e-02 7.12758064e-01 1.38261586e-01 -4.06272821e-02
-9.56211627e-01 4.52309728e-01 1.16051579e+00 -3.45276892e-02
-2.40446880e-01 4.48484987e-01 -2.35297814e-01 5.62108934e-01
5.31819344e-01 -2.64631927e-01 -2.61734098e-01 2.77805567e-01
-3.45828861e-01 1.16138354e-01 1.15654278e+00 -1.83065534e+00
1.56784445e-01 -1.13139182e-01 7.62831628e-01 -3.45831811e-01
6.61325395e-01 -5.96743941e-01 5.84321499e-01 7.60853231e-01
-4.66247112e-01 -5.92996836e-01 -1.30595982e-01 9.47325468e-01
-4.25739408e-01 2.64822006e-01 7.49902368e-01 -3.19104314e-01
-9.94041204e-01 2.60891825e-01 -5.82396865e-01 -3.09086770e-01
1.48525715e+00 -7.93216527e-01 1.99244916e-01 -5.09292722e-01
-1.50417805e+00 -1.94131322e-02 3.26660573e-01 5.39376855e-01
3.35139632e-01 -1.47675490e+00 -7.40847468e-01 3.28709394e-01
2.54388183e-01 -2.07682312e-01 6.09226048e-01 8.71414542e-01
-3.05349469e-01 1.73481822e-01 -6.01039886e-01 -6.84105039e-01
-1.16100335e+00 4.26833510e-01 6.06287956e-01 -7.79273093e-01
-6.41619861e-01 7.96368003e-01 -1.80230085e-02 3.71975601e-02
4.81355889e-03 -1.24720991e-01 -3.35128486e-01 3.47215869e-02
3.64766032e-01 4.73349988e-01 -2.82554738e-02 -1.05789125e+00
-2.92636305e-01 5.25736101e-02 4.48860765e-01 -2.15982094e-01
1.34074044e+00 1.74953789e-01 4.53835338e-01 4.13823575e-01
8.75970125e-01 -3.64191055e-01 -1.86549747e+00 -2.67893653e-02
-1.86918020e-01 -2.24200368e-01 -3.28171074e-01 -1.00772941e+00
-9.05641317e-01 7.38734722e-01 6.99846983e-01 -1.01166621e-01
1.33019733e+00 1.51282072e-01 5.03469765e-01 3.05079147e-02
6.22842669e-01 -1.04294610e+00 4.44524974e-01 7.33746663e-02
9.22203600e-01 -1.00485730e+00 -1.21059582e-01 -8.94710422e-02
-9.15948868e-01 7.89045095e-01 6.11443877e-01 -5.35559595e-01
2.27119595e-01 2.01293603e-02 -2.25839034e-01 -5.71184084e-02
-7.56036997e-01 -5.03101110e-01 4.89794374e-01 9.40594316e-01
2.24514771e-03 1.66190356e-01 1.36061177e-01 5.67172170e-01
-1.03156999e-01 1.16615340e-01 1.81823656e-01 9.97417033e-01
-2.27888256e-01 -1.29254270e+00 -2.92674094e-01 4.12995398e-01
-2.67092824e-01 3.89425457e-01 -3.37389052e-01 8.65781903e-01
7.51599193e-01 6.40339673e-01 5.28638214e-02 -5.24368286e-01
4.27178681e-01 3.81891698e-01 6.75460458e-01 -7.53929555e-01
-1.01650894e+00 -3.05804372e-01 3.60183060e-01 -1.12507522e+00
-8.69544744e-01 -1.00290120e+00 -8.89602780e-01 1.23455703e-01
2.95213938e-01 -2.39226103e-01 2.48556554e-01 1.09554362e+00
1.23332851e-01 9.09535408e-01 5.29265285e-01 -1.25292897e+00
-1.59072876e-01 -1.06798553e+00 -4.05957103e-01 9.09883320e-01
1.78908467e-01 -8.11016440e-01 -2.05549836e-01 4.63674128e-01] | [8.29609203338623, 0.4551445245742798] |
2e3c723c-beb3-499e-8144-2c0be9a67744 | complex-hyperbolic-knowledge-graph-embeddings | 2211.03635 | null | https://arxiv.org/abs/2211.03635v1 | https://arxiv.org/pdf/2211.03635v1.pdf | Complex Hyperbolic Knowledge Graph Embeddings with Fast Fourier Transform | The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models. | ['Simon See', 'Ginny Y. Wong', 'Yangqiu Song', 'Xin Liu', 'Huiru Xiao'] | 2022-11-07 | null | null | null | null | ['knowledge-graph-embeddings', 'knowledge-graph-embeddings'] | ['graphs', 'methodology'] | [-4.62709755e-01 3.68134081e-01 -3.47531997e-02 -6.98862374e-02
-2.18157753e-01 -4.50012863e-01 5.18730700e-01 1.94540530e-01
-3.00128251e-01 1.26671374e-01 5.42064607e-01 -3.80949706e-01
-6.91264212e-01 -1.17187333e+00 -4.25194591e-01 -8.35221708e-01
-4.33187753e-01 5.30674517e-01 3.16021711e-01 -3.88465583e-01
9.46033671e-02 5.63012779e-01 -1.37562680e+00 -4.05661799e-02
7.94667363e-01 7.57851720e-01 8.67424160e-02 5.92959762e-01
1.41037693e-02 5.88634610e-01 -3.18626434e-01 -6.02814853e-01
2.31081113e-01 -1.00634232e-01 -1.02709675e+00 -4.24146712e-01
2.72316545e-01 -3.13269049e-01 -9.90754426e-01 7.94132531e-01
5.40323079e-01 3.31872612e-01 6.77100539e-01 -1.60445845e+00
-1.33700454e+00 8.01679015e-01 -2.88954258e-01 1.50173858e-01
2.49179408e-01 -5.46076238e-01 1.63623130e+00 -1.07684684e+00
4.47998583e-01 1.41270041e+00 8.39849412e-01 -1.45582423e-01
-8.73213172e-01 -4.83430058e-01 -1.56822130e-01 7.47200429e-01
-1.98837090e+00 8.30060095e-02 7.22249091e-01 -2.69276112e-01
1.04584539e+00 1.90862015e-01 8.06018054e-01 7.55795062e-01
1.63420066e-01 4.94090408e-01 7.86675334e-01 -3.05946350e-01
-3.77249300e-01 -8.63025859e-02 4.94829416e-01 9.22632158e-01
4.08333361e-01 -1.45067856e-01 -4.13466275e-01 -1.88847467e-01
9.70892727e-01 1.05587840e-01 -5.16615748e-01 -6.25582755e-01
-1.28056204e+00 1.04026914e+00 9.88292038e-01 3.96909624e-01
-1.53953567e-01 3.56698781e-01 2.60956198e-01 2.88893700e-01
1.91422433e-01 9.24221575e-01 -2.65718758e-01 -8.44253674e-02
-2.36570805e-01 1.50123045e-01 8.01420033e-01 1.15887237e+00
8.44392657e-01 -3.50701571e-01 -1.34403989e-01 7.96383679e-01
4.04013306e-01 7.01128617e-02 1.58837333e-01 -7.30139852e-01
6.55495763e-01 8.23439896e-01 -2.67102927e-01 -1.61994493e+00
-7.74058640e-01 -5.03908932e-01 -9.99673545e-01 -5.09814143e-01
4.99952942e-01 5.09619713e-01 -4.22632515e-01 1.60139549e+00
4.47076112e-01 1.12984248e-01 1.48326993e-01 8.03533852e-01
9.42107737e-01 7.09440410e-01 -2.75892675e-01 1.64875314e-01
1.49342084e+00 -1.01528907e+00 -9.05361712e-01 3.62663180e-01
1.11766613e+00 -5.69222331e-01 1.28932190e+00 6.66690199e-03
-9.08516765e-01 -4.49022144e-01 -1.32133281e+00 -7.41207242e-01
-8.37623894e-01 -7.04611167e-02 8.05281281e-01 4.62623507e-01
-1.08919275e+00 7.21235693e-01 -7.17541277e-01 -4.23794776e-01
-3.30275879e-03 2.04487473e-01 -5.64615846e-01 -3.32317024e-01
-1.69841731e+00 1.05501831e+00 6.29874110e-01 3.24395031e-01
-1.54844746e-02 -8.05615127e-01 -1.14910209e+00 3.80520105e-01
4.06015068e-01 -6.12037122e-01 4.52623367e-01 2.17582136e-01
-1.09233105e+00 4.73708630e-01 4.28302914e-01 -1.12626985e-01
1.44666359e-01 -2.51157790e-01 -2.08234340e-01 3.84675115e-01
-1.38192564e-01 4.09735352e-01 4.58283931e-01 -8.63027692e-01
-3.35244127e-02 -5.25389493e-01 5.44112861e-01 5.83265662e-01
-7.95290351e-01 -3.47638279e-01 -4.48489487e-01 -8.07579517e-01
5.24642110e-01 -1.16983521e+00 3.35890770e-01 -1.12729967e-01
-3.56168807e-01 -6.18548334e-01 8.96230698e-01 -7.11228788e-01
1.60216689e+00 -2.23136282e+00 4.60166126e-01 2.25823984e-01
4.24197197e-01 4.92693223e-02 1.55299352e-02 1.08168614e+00
-7.02948356e-03 3.50963444e-01 1.97006777e-01 -1.02620170e-01
2.33567849e-01 5.50025284e-01 -2.69885153e-01 4.05222744e-01
1.91798046e-01 9.65493321e-01 -9.20682430e-01 -6.10569656e-01
-1.55709788e-01 7.06044614e-01 -7.02669263e-01 1.94284722e-01
3.40598643e-01 -2.93452889e-01 -2.65867263e-01 2.43255660e-01
6.73414886e-01 -2.63898045e-01 2.97760159e-01 -7.18675733e-01
1.27172500e-01 5.18584788e-01 -1.30180323e+00 1.60289085e+00
-3.18795145e-01 4.95730549e-01 -4.08337742e-01 -7.93267071e-01
1.00258553e+00 1.34228602e-01 4.09678429e-01 -4.23091859e-01
-1.60450175e-01 -3.97052355e-02 3.08806568e-01 -4.78990704e-01
8.96572709e-01 2.36451644e-02 -5.95094748e-02 4.58983898e-01
7.39687756e-02 -1.18116818e-01 -4.36453819e-02 6.57498717e-01
1.30899370e+00 4.01617251e-02 1.78532973e-01 -3.75798970e-01
2.46505737e-01 -3.68779570e-01 4.12842959e-01 4.16373968e-01
8.02696124e-02 6.74397588e-01 8.19302142e-01 -3.93961757e-01
-9.31887209e-01 -1.25248945e+00 -2.25506574e-01 1.08230889e+00
4.72514927e-01 -1.18373334e+00 -3.77281368e-01 -5.41570067e-01
1.49080558e-02 4.99734372e-01 -7.56635725e-01 -6.65855289e-01
-7.00471401e-01 -6.51623189e-01 8.19639981e-01 7.49401510e-01
7.27878392e-01 -5.86312354e-01 -2.39006788e-01 1.00682840e-01
-1.87677458e-01 -1.26575720e+00 -7.52355099e-01 1.14969082e-01
-4.08815712e-01 -1.35144699e+00 -2.61423916e-01 -9.10967827e-01
3.42723280e-01 4.93358076e-01 6.52631104e-01 3.25963646e-01
-1.77766457e-01 5.98169327e-01 -7.51366198e-01 6.01328090e-02
-1.16964597e-02 3.80874962e-01 6.29937416e-03 -3.59779112e-02
-6.85676513e-03 -6.97756946e-01 -5.33210158e-01 3.88602287e-01
-1.03932476e+00 1.48501948e-01 5.84853649e-01 8.08252633e-01
1.86907485e-01 4.62799639e-01 3.99403304e-01 -7.93640316e-01
8.37142646e-01 -4.09582824e-01 1.00651339e-01 3.04212660e-01
-6.38294220e-01 4.94078010e-01 6.37156367e-01 -4.72467899e-01
-6.21813297e-01 -5.77827930e-01 6.57496080e-02 -5.37531793e-01
7.13806272e-01 8.33149076e-01 -2.11533979e-01 -4.81510088e-02
4.18395519e-01 -3.15563902e-02 -1.39205828e-01 -4.88452703e-01
6.52847946e-01 3.91449958e-01 2.72573143e-01 -8.08404922e-01
8.77624214e-01 1.66070387e-01 2.53710479e-01 -9.45294321e-01
-6.54488981e-01 -4.73628372e-01 -7.96675205e-01 2.92892039e-01
9.70483959e-01 -5.52186489e-01 -6.04332626e-01 9.86371711e-02
-1.30609214e+00 -1.94767322e-02 -1.71027422e-01 5.06931424e-01
-3.27904373e-01 6.59212649e-01 -8.80949020e-01 -4.24487084e-01
-2.46231958e-01 -1.11738563e+00 1.03235102e+00 -2.63044327e-01
-2.05297545e-01 -1.12321591e+00 8.53469521e-02 2.28174582e-01
2.08745867e-01 1.63934588e-01 1.68434703e+00 -6.56473041e-01
-7.28002369e-01 -1.06645092e-01 -4.81599867e-01 5.93083575e-02
-1.50425881e-01 7.56476400e-03 -5.60248196e-01 -2.29353160e-01
-1.98179215e-01 -1.28183469e-01 7.94649541e-01 -3.77029181e-01
1.00322461e+00 -4.22790676e-01 -1.67842150e-01 8.07531536e-01
1.25559676e+00 -4.00432236e-02 8.52211654e-01 3.09857160e-01
1.18891060e+00 5.59000671e-01 4.19372350e-01 1.87344447e-01
1.04778135e+00 7.62322128e-01 3.29960972e-01 1.61385939e-01
-1.90069094e-01 -5.39248407e-01 2.48897299e-01 1.51295388e+00
-1.75522730e-01 9.53338202e-03 -1.03111041e+00 4.17429715e-01
-1.81650352e+00 -8.40732396e-01 -3.70561361e-01 2.01253748e+00
7.51274884e-01 -9.96771380e-02 -1.14721261e-01 3.53497297e-01
5.69799960e-01 2.09138677e-01 -1.43967289e-02 -4.42218244e-01
-1.49329454e-01 3.00885677e-01 4.87433821e-01 6.33778870e-01
-8.60398412e-01 8.96432579e-01 5.95041513e+00 6.59642696e-01
-5.57881176e-01 1.07599854e-01 -2.71518230e-01 3.10658991e-01
-3.85512620e-01 9.54493210e-02 -7.71320999e-01 3.78164314e-02
7.14693904e-01 -1.27762988e-01 4.26961631e-01 5.22571087e-01
-3.76728237e-01 2.73373991e-01 -1.30801129e+00 1.13704407e+00
-1.06232166e-02 -1.10594547e+00 2.89019287e-01 3.46876144e-01
3.73940885e-01 -3.13980311e-01 1.13159373e-01 6.77186489e-01
1.36790007e-01 -1.08102596e+00 4.05872405e-01 3.33171308e-01
5.79702795e-01 -6.88256741e-01 6.41199172e-01 8.87107328e-02
-1.66789496e+00 -7.12418333e-02 -6.74359620e-01 4.35327031e-02
-2.74435163e-01 1.18425064e-01 -1.01392937e+00 9.05336082e-01
6.19656384e-01 6.73992813e-01 -8.54560971e-01 6.41263008e-01
-2.05360055e-01 1.45879552e-01 -3.58254850e-01 3.75043564e-02
3.18062276e-01 -5.26354790e-01 2.29481325e-01 1.05350876e+00
3.64790976e-01 2.56383121e-01 5.52478759e-03 7.71912456e-01
-7.71310776e-02 2.20848918e-01 -7.98149109e-01 -3.27022582e-01
5.79172432e-01 1.20927739e+00 -5.40285707e-01 2.66697798e-02
-5.21312416e-01 8.11562538e-01 7.73375690e-01 4.76556242e-01
-9.64091420e-01 -7.79395938e-01 6.23808026e-01 3.19366753e-01
2.69317329e-01 -7.78840184e-01 4.98555489e-02 -1.16532111e+00
1.93212748e-01 -5.32304108e-01 7.71906197e-01 -8.54517937e-01
-1.12445378e+00 5.31059682e-01 4.26100254e-01 -7.57898271e-01
1.27769634e-01 -6.42106354e-01 -3.82096380e-01 6.18796408e-01
-1.16268754e+00 -1.38518023e+00 -3.96673530e-01 6.95535600e-01
-1.87251583e-01 3.08706790e-01 9.57521975e-01 4.10147816e-01
-4.86599177e-01 8.68256986e-01 4.47519384e-02 2.90343344e-01
5.89152932e-01 -1.46514952e+00 1.53681621e-01 4.31023061e-01
2.92062104e-01 9.19605732e-01 3.59398037e-01 -3.82901996e-01
-1.86610436e+00 -1.06763041e+00 8.45678329e-01 -4.10220057e-01
8.63174319e-01 -5.92811286e-01 -1.32544434e+00 9.47999954e-01
-7.32971430e-02 1.47005841e-01 8.65646243e-01 3.56302679e-01
-9.19838130e-01 -1.49036571e-01 -8.21581244e-01 8.26831460e-01
1.44234109e+00 -7.76698232e-01 -7.01181412e-01 2.17988268e-01
1.16806054e+00 -1.11289687e-01 -1.58299828e+00 4.84913021e-01
4.68167126e-01 -6.97781146e-01 1.19628441e+00 -5.99362254e-01
2.54703969e-01 -2.68976808e-01 -3.77361804e-01 -1.27913284e+00
-7.57881582e-01 -5.06689727e-01 -3.39119673e-01 1.16154170e+00
1.48400351e-01 -9.31766391e-01 5.53307831e-01 3.75916272e-01
-3.44966620e-01 -1.10023332e+00 -9.60705101e-01 -7.76026607e-01
2.18358278e-01 -2.22783566e-01 6.59208000e-01 1.20924008e+00
3.49063814e-01 5.96173942e-01 -1.27015799e-01 4.02211815e-01
3.32762390e-01 1.08459152e-01 7.29143023e-01 -1.18205297e+00
-2.95122892e-01 -2.36506552e-01 -9.41328347e-01 -1.15245891e+00
1.30731583e-01 -1.35562813e+00 -5.78760147e-01 -1.73205400e+00
-5.22847213e-02 -7.28065372e-01 -2.11843029e-01 3.14501911e-01
-1.86996862e-01 -4.21955995e-02 2.56437927e-01 2.28492051e-01
-4.54520375e-01 1.09265316e+00 1.40033352e+00 -2.89796423e-02
-4.52744961e-03 -5.50995529e-01 -6.80832863e-01 4.55123574e-01
5.94497263e-01 -2.88715690e-01 -7.83809781e-01 -4.52620596e-01
6.36984766e-01 -9.93885621e-02 1.33720636e-01 -7.74697959e-01
5.44412494e-01 1.72328502e-01 1.23832207e-02 -5.14014423e-01
7.81795323e-01 -8.57545435e-01 1.67589948e-01 6.88062385e-02
-1.12831198e-01 4.37066048e-01 -8.67575556e-02 6.80994987e-01
-9.74360183e-02 -2.53236312e-02 4.56870139e-01 1.50173873e-01
-4.29283530e-01 4.48588371e-01 8.31442475e-02 1.93725511e-01
9.81131017e-01 -3.04162890e-01 -4.82884467e-01 -2.37187847e-01
-7.22541690e-01 2.20664099e-01 2.80097872e-01 6.01817727e-01
7.38779068e-01 -1.84081054e+00 -3.27794820e-01 1.25266671e-01
1.07188158e-01 8.69898275e-02 -3.54115921e-03 1.06483710e+00
-7.23902762e-01 3.59008700e-01 -1.08481817e-01 -3.01297426e-01
-1.02010834e+00 8.40931237e-01 2.74354309e-01 -5.52044392e-01
-8.22396934e-01 4.77998048e-01 3.95386904e-01 -4.82475907e-01
2.61714280e-01 -5.72344661e-01 -1.32839844e-01 1.84640378e-01
2.10669145e-01 6.51268363e-01 5.40198945e-02 -6.35307014e-01
-2.99379557e-01 8.33929360e-01 -1.22800127e-01 -3.76007371e-02
1.29871750e+00 2.64535882e-02 -3.72575253e-01 4.80697572e-01
1.63297021e+00 -1.38638765e-01 -5.35331786e-01 -4.43929970e-01
-1.90626998e-02 -4.10431117e-01 -1.08705975e-01 -1.02630898e-03
-7.71557927e-01 1.05508780e+00 -3.49784009e-02 6.74791038e-01
7.13662028e-01 3.83673273e-02 7.44986415e-01 5.26526153e-01
4.18967098e-01 -8.82263362e-01 3.34457010e-01 6.65769279e-01
1.23288941e+00 -6.25791430e-01 1.46313742e-01 -9.80163574e-01
-3.60183865e-01 1.29514325e+00 7.63431132e-01 -1.30163535e-01
9.50884163e-01 -2.35739544e-01 -5.03477871e-01 -5.14957368e-01
-6.11128211e-01 -1.64038867e-01 3.79141152e-01 5.65937400e-01
3.26081038e-01 -7.30443373e-02 -3.08252096e-01 5.46065867e-01
-7.42783666e-01 -8.06352079e-01 4.89046037e-01 6.38272882e-01
-1.44230917e-01 -9.95876729e-01 -3.20274919e-01 2.54884213e-01
-1.27581030e-01 -9.29939225e-02 -4.81737614e-01 1.29116738e+00
1.35977134e-01 7.57978439e-01 1.59762621e-01 -5.74365318e-01
5.21304965e-01 1.53766081e-01 7.95452535e-01 -6.94216371e-01
-2.71200031e-01 -3.59427065e-01 7.28517845e-02 -3.82582098e-01
7.11120591e-02 -2.32578531e-01 -1.45271528e+00 -6.02555692e-01
-4.17182386e-01 3.35179985e-01 3.51610631e-01 6.07118309e-01
4.27836001e-01 4.05313253e-01 3.93422335e-01 -4.84948158e-01
-7.86923707e-01 -9.84146476e-01 -8.67361546e-01 6.92429900e-01
3.19571681e-02 -1.05717874e+00 -3.37318331e-01 -4.99172360e-01] | [8.661627769470215, 7.760256290435791] |
c670f79c-a806-4500-8c4f-34d7b80d64e6 | domain-adaptation-for-semg-based-gesture | 1901.06958 | null | https://arxiv.org/abs/1901.06958v2 | https://arxiv.org/pdf/1901.06958v2.pdf | Domain Adaptation for sEMG-based Gesture Recognition with Recurrent Neural Networks | Surface Electromyography (sEMG/EMG) is to record muscles' electrical activity from a restricted area of the skin by using electrodes. The sEMG-based gesture recognition is extremely sensitive of inter-session and inter-subject variances. We propose a model and a deep-learning-based domain adaptation method to approximate the domain shift for recognition accuracy enhancement. Analysis performed on sparse and HighDensity (HD) sEMG public datasets validate that our approach outperforms state-of-the-art methods. | ['Krisztián Zsolt Varga', 'Ferenc Kovács', 'István Ketykó'] | 2019-01-21 | null | null | null | null | ['emg-gesture-recognition'] | ['medical'] | [ 6.55820549e-01 -8.30210671e-02 -4.90243286e-01 -2.37557590e-01
-1.02841675e+00 -1.65748551e-01 1.53037101e-01 -9.13794816e-01
-6.13374531e-01 9.51155007e-01 4.42958444e-01 4.94314134e-01
-2.80179709e-01 -1.99551687e-01 -8.28565896e-01 -6.59466267e-01
-2.94045866e-01 2.47852132e-01 -1.40954882e-01 2.28924438e-01
2.07692862e-01 3.26946497e-01 -1.19963074e+00 4.57507342e-01
6.79308593e-01 1.15247452e+00 1.64589629e-01 4.64718729e-01
1.13990605e-01 3.52820978e-02 -7.67722011e-01 2.44611606e-01
5.33073187e-01 -7.01871514e-01 -5.05405486e-01 -1.61767229e-01
2.28396505e-01 -2.96418786e-01 -6.33160114e-01 9.91978407e-01
1.01466322e+00 1.57795370e-01 8.50135565e-01 -6.50098622e-01
-4.47167188e-01 3.96762371e-01 -6.55651569e-01 2.06402093e-01
6.24633312e-01 7.25814030e-02 3.48666400e-01 -7.18743205e-01
9.90102351e-01 7.28497326e-01 1.09871638e+00 1.11290896e+00
-1.09235454e+00 -7.49756038e-01 -1.75170064e-01 3.40965599e-01
-1.57744730e+00 -1.80361867e-01 9.37452137e-01 -1.87979087e-01
1.03536117e+00 2.46717080e-01 6.80824816e-01 2.23556662e+00
3.84172946e-01 8.64626765e-01 1.57095850e+00 -2.72007644e-01
5.16521752e-01 -4.83004510e-01 -2.76013941e-01 -1.32212406e-02
1.27403945e-01 3.85802746e-01 -1.26306427e+00 -1.37947693e-01
1.18319380e+00 -8.31556693e-02 -2.51782924e-01 2.52787899e-02
-9.98150826e-01 3.29175919e-01 -7.54803196e-02 4.93714601e-01
-1.09012294e+00 1.80024385e-01 4.54697192e-01 3.27825487e-01
3.66288126e-01 2.66345948e-01 -3.72907579e-01 -1.04902947e+00
-1.13777888e+00 2.17302531e-01 9.95381117e-01 8.71028244e-01
-1.91624403e-01 3.73158343e-02 -1.59066170e-01 9.50757146e-01
7.15661421e-02 6.46850884e-01 9.45871174e-01 -8.63622606e-01
4.88972932e-01 3.84480536e-01 -3.17056179e-01 -6.29364848e-01
-5.11961997e-01 -7.74065629e-02 -9.74803686e-01 8.72373655e-02
5.57334125e-01 -4.07607585e-01 -1.03144085e+00 1.42777264e+00
3.04829441e-02 5.34876347e-01 -4.67527270e-01 1.47221160e+00
6.05094135e-01 9.47874635e-02 1.43802688e-01 -1.61092326e-01
9.03111994e-01 -2.37180620e-01 -9.78569269e-01 -3.78283054e-01
1.24430023e-01 -1.73992872e-01 1.18493330e+00 7.33648598e-01
-8.48584771e-01 -4.14392143e-01 -8.70335817e-01 3.62997532e-01
-5.16709425e-02 -3.84174706e-03 4.90367979e-01 6.88529611e-01
-2.74608105e-01 1.03021991e+00 -1.27827799e+00 -3.80272329e-01
6.81564689e-01 7.53924966e-01 -7.09985256e-01 3.13064337e-01
-1.10333753e+00 9.04845595e-01 6.97813407e-02 2.42512733e-01
-5.12786508e-01 -5.33603430e-01 -2.82933861e-01 -5.39341748e-01
6.15510382e-02 -2.12922618e-01 6.70891643e-01 -7.24847257e-01
-2.24145174e+00 9.30696845e-01 3.46303098e-02 -3.70356351e-01
4.68826532e-01 -6.13988042e-01 -6.09608352e-01 2.38068178e-01
-4.90364462e-01 1.36990964e-01 1.08779240e+00 -5.55245042e-01
1.49146840e-01 -8.69361699e-01 -8.41891050e-01 1.89580441e-01
-3.94082159e-01 9.88549888e-02 -9.12835076e-02 -9.81015205e-01
2.67720312e-01 -9.45138931e-01 7.46139735e-02 -2.05732435e-01
-3.05267245e-01 -1.79034576e-01 4.79348034e-01 -1.26648641e+00
1.26696515e+00 -2.14528990e+00 4.74269599e-01 5.76131999e-01
-1.41834170e-01 5.21335185e-01 -3.79164517e-01 3.90750915e-01
1.95461027e-02 -4.36993301e-01 -3.04442644e-01 3.98198888e-02
1.98639352e-02 2.11599901e-01 2.06065521e-01 9.03515935e-01
-1.10485211e-01 9.74217951e-01 -6.13539338e-01 -1.53394148e-01
2.07249790e-01 4.52501208e-01 -1.26906455e-01 4.04934973e-01
2.69964665e-01 6.75716758e-01 -3.33870083e-01 1.09989285e+00
5.50322354e-01 1.37726888e-01 4.75437313e-01 -3.68720740e-01
3.87518406e-01 3.17121536e-01 -1.34368849e+00 2.64608955e+00
-1.49796024e-01 5.93941092e-01 2.07522616e-01 -1.15776980e+00
1.22394645e+00 2.88472116e-01 7.45781898e-01 -7.37884700e-01
4.14692640e-01 4.52680618e-01 3.04919332e-02 -8.92746866e-01
-2.66382813e-01 -3.91299248e-01 -5.87738901e-02 2.70385683e-01
3.96964699e-01 3.52752537e-01 -4.54079121e-01 -5.25198936e-01
1.45140815e+00 6.10063851e-01 2.72233605e-01 -2.64788568e-01
1.24954119e-01 -3.73984694e-01 5.96667230e-01 7.28169203e-01
-3.18835497e-01 7.44370580e-01 -2.02764776e-02 3.11172307e-02
-5.81230462e-01 -1.30518126e+00 -2.61406839e-01 7.53628254e-01
8.05219114e-02 -4.04159278e-02 -8.46038520e-01 -5.85774064e-01
5.39379358e-01 6.03337102e-02 -9.13714409e-01 -2.71008015e-01
-5.69518685e-01 -3.91252428e-01 9.01678264e-01 1.25543833e+00
3.92792463e-01 -1.06314802e+00 -5.31519711e-01 4.00043011e-01
5.21001518e-02 -9.88728166e-01 -3.84077519e-01 3.06041270e-01
-1.14207268e+00 -1.00901127e+00 -1.17431927e+00 -6.23379409e-01
1.83540761e-01 -7.37163126e-01 3.54880989e-01 -7.98530519e-01
-5.44877231e-01 4.38558608e-01 -5.48181832e-01 -3.52030993e-01
1.14414237e-01 1.67186365e-01 5.63579023e-01 1.28203463e-02
1.17433584e+00 -1.08817768e+00 -5.88520765e-01 2.05311313e-01
-3.93309087e-01 -5.11487365e-01 7.90850818e-01 9.88790631e-01
8.85113537e-01 -7.68562973e-01 6.99776530e-01 -6.49043620e-01
1.06892824e+00 -3.63645107e-01 6.62093386e-02 -1.40164569e-02
-5.65557480e-01 -9.65759158e-02 1.73036367e-01 -1.09953356e+00
-8.42049778e-01 1.43480673e-01 -1.26687691e-01 -7.56730020e-01
-3.59045208e-01 4.82859701e-01 -1.37225255e-01 -3.49547088e-01
9.48870063e-01 3.37195307e-01 4.52389419e-01 -9.16118026e-01
1.14230372e-01 1.23024404e+00 1.06728804e+00 -4.19211954e-01
3.17555785e-01 2.68202156e-01 1.11481130e-01 -9.52000976e-01
2.69275699e-02 -5.69102049e-01 -9.26392198e-01 -3.92383307e-01
5.40677667e-01 -8.17374408e-01 -7.20470309e-01 8.99745524e-01
-8.29533815e-01 -5.45232117e-01 -5.57714105e-01 1.11999059e+00
-7.74832070e-01 2.96861589e-01 -7.16201007e-01 -9.52929556e-01
-5.36336780e-01 -4.34241921e-01 1.21004629e+00 6.94862530e-02
-7.48051167e-01 -6.30507529e-01 3.51424485e-01 8.43184069e-02
2.72702098e-01 4.13903028e-01 -1.84297055e-01 -7.17222929e-01
1.69415772e-01 -5.88843346e-01 1.77123517e-01 7.71848321e-01
2.27825075e-01 -8.27646971e-01 -9.19725239e-01 -2.70225435e-01
3.86353657e-02 -2.62904018e-01 6.19013250e-01 7.39876449e-01
1.37886047e+00 -1.71255860e-02 -4.23153579e-01 8.67682755e-01
1.14616239e+00 2.50264555e-01 1.08989692e+00 1.26752630e-01
6.32621229e-01 2.78991580e-01 6.28426433e-01 6.26442730e-01
-4.18831706e-01 8.07899535e-01 -2.14364499e-01 9.55887288e-02
-2.23176971e-01 -2.22180799e-01 3.57918769e-01 8.72701824e-01
-7.06769288e-01 2.29792863e-01 -4.41094697e-01 4.70142245e-01
-1.75688457e+00 -9.18155491e-01 6.79833665e-02 1.91602898e+00
8.67626131e-01 -3.96688342e-01 5.46753049e-01 2.63784021e-01
4.76272434e-01 -2.19953135e-02 -9.84448195e-01 -3.05119306e-01
-2.16692060e-01 1.01439703e+00 8.86348903e-01 -4.33568656e-02
-8.84132326e-01 5.72827399e-01 7.64435101e+00 7.31007993e-01
-1.17789602e+00 2.06199482e-01 -3.42369318e-01 -6.08619094e-01
2.75279164e-01 -8.56846273e-01 -4.95486528e-01 8.16594720e-01
9.95674968e-01 2.97744805e-03 7.26478815e-01 7.79796660e-01
1.17257293e-02 -3.81539017e-02 -9.47623372e-01 1.49942172e+00
3.16781819e-01 -1.16457844e+00 -6.66519761e-01 2.72740155e-01
4.84998673e-01 2.30079532e-01 -2.75222301e-01 -5.82477590e-03
-5.67597091e-01 -1.02179372e+00 1.25649825e-01 1.02906024e+00
1.29792106e+00 -3.27445149e-01 7.59099007e-01 1.71623185e-01
-8.94036770e-01 1.06152119e-02 -1.10355422e-01 -1.78584263e-01
1.13126993e-01 2.67208695e-01 -3.50169420e-01 3.03250343e-01
8.50292087e-01 7.75485039e-01 1.23176023e-01 7.14208782e-01
-2.41961673e-01 9.64027047e-01 -8.36139739e-01 -3.47221673e-01
-2.63630062e-01 -6.68735653e-02 7.27157116e-01 1.40034473e+00
3.77928972e-01 3.30723763e-01 -3.97457570e-01 1.04221749e+00
-2.14391537e-02 -1.96613088e-01 -7.39755094e-01 -4.17179227e-01
6.11647129e-01 6.75935805e-01 -7.62009770e-02 8.03392828e-02
-3.68787169e-01 1.46371877e+00 -1.18634105e-01 4.28201497e-01
-3.36056083e-01 -6.69529200e-01 9.25602138e-01 1.68292210e-01
1.08962581e-01 -3.70620042e-01 -8.36654961e-01 -1.11410379e+00
6.01227820e-01 -9.40773308e-01 3.08834106e-01 -2.81840950e-01
-1.65061951e+00 5.18866852e-02 2.79294625e-02 -1.39114392e+00
-5.37742317e-01 -8.35534036e-01 -2.52360970e-01 1.05611920e+00
-7.71795154e-01 -7.51826644e-01 -3.18105191e-01 8.09517682e-01
2.30972856e-01 -4.10551459e-01 1.08698046e+00 5.15685976e-01
-2.25677580e-01 9.48934257e-01 1.52028129e-01 2.27009237e-01
6.52769506e-01 -7.92562306e-01 4.30557430e-01 5.99249065e-01
2.37060059e-02 6.93644464e-01 3.66809875e-01 -8.46285522e-01
-2.03728890e+00 -4.94903177e-01 5.93963385e-01 -4.93026882e-01
4.38526034e-01 -4.31907833e-01 -9.52338874e-01 4.72002625e-01
-2.68875927e-01 6.50448203e-02 9.47440624e-01 2.77179033e-01
-2.88092624e-02 -1.93013340e-01 -1.31147432e+00 4.26045023e-02
1.66032851e+00 -8.54538858e-01 -1.16632771e+00 -9.69061069e-03
-4.82545108e-01 -6.88548446e-01 -1.38547075e+00 5.39959073e-01
1.40183473e+00 -2.01306298e-01 8.98319840e-01 -6.98402345e-01
8.33176076e-02 1.51479885e-01 -1.72005951e-01 -1.34416890e+00
-3.62652004e-01 -7.90875554e-01 -6.59223855e-01 8.13809991e-01
-1.46703914e-01 -4.05825764e-01 1.33563066e+00 7.35169828e-01
-3.01477835e-02 -5.59027553e-01 -1.43047035e+00 -1.31579888e+00
-1.14602365e-01 -5.18272460e-01 3.42399001e-01 6.95018947e-01
8.44533205e-01 -1.64231479e-01 -6.98525369e-01 -3.10003519e-01
6.55363381e-01 -2.64450341e-01 5.40783525e-01 -1.15566730e+00
-3.76492798e-01 -7.85889551e-02 -8.33036840e-01 -1.06289911e+00
1.60997480e-01 -7.51986146e-01 3.16320509e-01 -1.28940213e+00
-9.52987224e-02 3.85119915e-01 -6.17864907e-01 2.99410969e-01
1.09846741e-01 3.77516419e-01 -9.21948329e-02 -3.26547474e-02
-2.40024760e-01 3.86728764e-01 1.13972974e+00 8.65793303e-02
-4.76724088e-01 -1.08495355e-01 -2.06376687e-01 4.37412024e-01
5.60754538e-01 -5.49090207e-01 5.88928498e-02 -1.06710643e-01
-4.30952698e-01 6.71196058e-02 2.01604888e-01 -1.27623284e+00
3.05659890e-01 -1.40010595e-01 5.48959017e-01 -3.15722555e-01
3.75533819e-01 -7.57154405e-01 2.61324048e-01 4.47574586e-01
-4.32990372e-01 -6.21086895e-01 1.98058590e-01 6.63577020e-01
-1.06205128e-01 1.94680378e-01 5.06726205e-01 -6.45880997e-02
-7.81385422e-01 9.65042412e-02 -5.94849408e-01 9.08641145e-02
6.97086155e-01 -7.05187261e-01 2.35672936e-01 -6.58995211e-02
-9.14692819e-01 -4.23740059e-01 -1.33389551e-02 4.87624973e-01
9.07636225e-01 -1.55072296e+00 -5.89245737e-01 7.32151270e-01
1.42488331e-01 -5.66075504e-01 3.52094680e-01 1.03518128e+00
-6.28708676e-02 1.23921633e-01 -7.72808731e-01 -5.13160050e-01
-1.26340854e+00 -2.77202249e-01 3.09671581e-01 1.52355492e-01
-8.83697748e-01 1.29510343e+00 -6.59147084e-01 -2.75594234e-01
6.57623112e-01 -2.62671828e-01 3.37558836e-01 -3.13001156e-01
5.81030428e-01 7.54518688e-01 -4.92485054e-02 -1.47618949e-01
-8.19473028e-01 6.67148829e-01 4.98751163e-01 -2.05638796e-01
1.36172950e+00 2.21506625e-01 4.24764335e-01 6.78076923e-01
1.12121117e+00 -5.09168506e-01 -1.36994946e+00 3.07236798e-02
-8.56823400e-02 -6.78748906e-01 -5.63385477e-03 -1.23638308e+00
-7.86149442e-01 8.02480280e-01 1.14696026e+00 -6.27080083e-01
1.27685130e+00 -1.70144409e-01 9.94208455e-01 2.69713849e-01
7.16303170e-01 -1.90247977e+00 -2.68943787e-01 1.73094273e-01
9.48700488e-01 -9.27658081e-01 8.03149939e-02 -2.49202996e-01
-6.49117351e-01 9.37733650e-01 4.61590528e-01 -7.39369154e-01
8.37680936e-01 6.97384953e-01 1.22161463e-01 -1.10051356e-01
-1.67531684e-01 -1.97744127e-02 7.52414227e-01 1.31365609e+00
4.32234913e-01 3.69739115e-01 -1.05611062e+00 1.23657513e+00
1.97774455e-01 1.00506747e+00 -4.56392944e-01 9.24132347e-01
1.46649107e-01 -1.15256810e+00 -1.69633225e-01 8.47172976e-01
-4.74409491e-01 3.48240316e-01 -8.06460679e-01 8.83911610e-01
-1.29135936e-01 5.19615829e-01 -8.67612660e-02 -1.09082806e+00
6.23440444e-01 3.85789990e-01 1.17598259e+00 -4.13836867e-01
-7.46109605e-01 2.28780448e-01 1.86122239e-01 -1.20604455e+00
-6.09447837e-01 -9.44824398e-01 -1.31893134e+00 2.33474914e-02
-1.89491570e-01 -3.32755059e-01 9.05372083e-01 9.75800753e-01
6.47803724e-01 3.40341240e-01 2.38358617e-01 -1.00251698e+00
-1.05656564e+00 -1.52044225e+00 -1.60981357e+00 8.59609067e-01
-1.63168192e-01 -7.79166698e-01 -2.88325250e-01 -1.34054273e-01] | [6.823986053466797, 0.15220455825328827] |
938e713a-c2d6-4abc-80b6-7274f0de74f2 | neural-separation-of-observed-and-unobserved | 1811.12739 | null | https://arxiv.org/abs/1811.12739v2 | https://arxiv.org/pdf/1811.12739v2.pdf | Neural separation of observed and unobserved distributions | Separating mixed distributions is a long standing challenge for machine learning and signal processing. Most current methods either rely on making strong assumptions on the source distributions or rely on having training samples of each source in the mixture. In this work, we introduce a new method---Neural Egg Separation---to tackle the scenario of extracting a signal from an unobserved distribution additively mixed with a signal from an observed distribution. Our method iteratively learns to separate the known distribution from progressively finer estimates of the unknown distribution. In some settings, Neural Egg Separation is initialization sensitive, we therefore introduce Latent Mixture Masking which ensures a good initialization. Extensive experiments on audio and image separation tasks show that our method outperforms current methods that use the same level of supervision, and often achieves similar performance to full supervision. | ['Ariel Ephrat', 'Yedid Hoshen', 'Tavi Halperin'] | 2018-11-30 | neural-separation-of-observed-and-unobserved-1 | https://openreview.net/forum?id=SkelJnRqt7 | https://openreview.net/pdf?id=SkelJnRqt7 | iclr-2019-5 | ['speaker-separation'] | ['speech'] | [ 4.45621461e-01 2.81863343e-02 -8.41121972e-02 -2.77419955e-01
-1.20872736e+00 -4.47951555e-01 4.82037157e-01 -2.72253633e-01
-1.96768135e-01 6.93020463e-01 2.57983580e-02 1.88311655e-02
-1.25031337e-01 -1.63119420e-01 -8.42197299e-01 -1.11839592e+00
-1.88411862e-01 4.86276478e-01 3.96271311e-02 1.81797102e-01
-2.48309508e-01 -8.69204625e-02 -1.45772266e+00 2.63459265e-01
7.69256115e-01 7.61101604e-01 1.62023306e-01 1.04224408e+00
-1.64597202e-02 8.25087845e-01 -9.86695707e-01 -3.19013447e-01
2.84675747e-01 -8.10850501e-01 -1.75110400e-01 4.24303859e-01
3.61299396e-01 -1.20776437e-01 4.45744209e-03 1.30089033e+00
5.89177310e-01 -9.53353494e-02 1.06384575e+00 -1.38331056e+00
-2.74681211e-01 9.75313425e-01 -9.23889339e-01 2.90098876e-01
7.36537650e-02 -2.66362458e-01 5.59752285e-01 -7.37837195e-01
4.20229547e-02 1.03093421e+00 9.26480532e-01 5.10309219e-01
-1.67723167e+00 -1.07089078e+00 2.45176911e-01 -2.13085338e-01
-1.53943419e+00 -9.55518126e-01 8.64657283e-01 -5.99552810e-01
4.74836022e-01 -4.13898826e-02 1.67211831e-01 1.20032024e+00
-8.02925229e-02 1.03425777e+00 1.15703392e+00 -4.10211653e-01
2.08688706e-01 4.40919578e-01 1.56605199e-01 3.28396320e-01
1.42154336e-01 -9.86134484e-02 -7.81455278e-01 -3.41509402e-01
6.60031140e-01 -2.45559528e-01 -6.99362993e-01 -3.32592309e-01
-9.57351029e-01 5.94002962e-01 -2.08942756e-01 3.56798202e-01
-3.64863634e-01 2.16949463e-01 -4.55143005e-02 4.84849334e-01
7.21665084e-01 1.18836639e-02 -4.34218884e-01 -7.65117817e-03
-1.54777527e+00 1.20525070e-01 1.01951861e+00 8.99012089e-01
6.68837726e-01 3.71316165e-01 2.81421877e-02 7.90802717e-01
4.66161937e-01 7.17230856e-01 5.14397144e-01 -7.90439069e-01
3.99223924e-01 -3.04264575e-02 2.05406427e-01 -5.40980220e-01
7.24606812e-02 -6.96022689e-01 -9.95111823e-01 3.42615128e-01
7.92453527e-01 -4.57591116e-01 -1.27468848e+00 1.94949746e+00
2.71117836e-01 8.06824744e-01 2.92601883e-01 4.89879400e-01
5.01246154e-01 7.08968222e-01 -3.87157053e-01 -4.23834622e-01
8.62702370e-01 -7.18593597e-01 -1.06581271e+00 -3.13638687e-01
-1.93048075e-01 -8.18102896e-01 5.50939202e-01 9.68563974e-01
-1.25684154e+00 -6.91749871e-01 -1.22589207e+00 4.46129620e-01
-2.94430573e-02 3.98568600e-01 2.75105536e-01 1.08620775e+00
-8.94174576e-01 5.93162954e-01 -9.07491386e-01 2.62924612e-01
1.50871903e-01 6.38173699e-01 -2.84065038e-01 1.20187491e-01
-8.01301718e-01 3.72712582e-01 1.97395742e-01 6.34082928e-02
-1.17210495e+00 -6.96059883e-01 -8.43953609e-01 9.16116908e-02
3.14725518e-01 -4.86343443e-01 1.37900770e+00 -1.40490854e+00
-1.67841232e+00 5.92354059e-01 -3.32731545e-01 -6.18069410e-01
3.19515467e-01 -5.36729813e-01 -4.19078261e-01 1.10131115e-01
-1.34460092e-01 4.29759771e-01 1.91559386e+00 -1.45299911e+00
-4.84805733e-01 -1.63188398e-01 -4.61721420e-01 7.74688181e-03
-2.57735580e-01 1.87760517e-02 -3.43704373e-01 -8.94279540e-01
1.38363764e-01 -7.89168894e-01 -8.21669847e-02 -5.01731157e-01
-3.54362041e-01 1.80040792e-01 6.45881534e-01 -7.32466698e-01
1.04568148e+00 -2.46793509e+00 4.00694668e-01 2.20157921e-01
3.47401589e-01 2.63159256e-02 1.42348006e-01 1.22080199e-01
-4.00277048e-01 -3.04470330e-01 -5.40675044e-01 -1.03815198e+00
2.48629823e-01 1.44330725e-01 -7.17943728e-01 7.81436920e-01
2.25057423e-01 3.23136926e-01 -7.98861563e-01 -2.68495649e-01
-9.39448327e-02 7.66349673e-01 -4.77665007e-01 4.16378528e-01
-1.19023643e-01 5.69414675e-01 3.77074599e-01 3.19566935e-01
8.59729469e-01 -8.09629038e-02 1.41819045e-01 2.79931687e-02
4.37538743e-01 4.65977639e-02 -1.78820193e+00 1.54942870e+00
-2.30931520e-01 6.80447400e-01 8.68207037e-01 -8.90478551e-01
6.59320056e-01 6.06570959e-01 3.33084047e-01 2.33060658e-01
2.60842890e-01 2.63684303e-01 1.75862178e-01 -1.38031811e-01
1.77198827e-01 -5.10709405e-01 1.40526341e-02 3.09770852e-01
6.58686519e-01 -1.91720203e-01 1.21395938e-01 1.56249568e-01
9.07420158e-01 7.12680295e-02 1.48926675e-01 -1.27517045e-01
3.70089620e-01 -5.45157790e-01 5.88556945e-01 9.09228861e-01
3.58201973e-02 8.64155352e-01 4.16757703e-01 4.03655708e-01
-5.38178921e-01 -1.42454362e+00 -2.00521909e-02 8.93603086e-01
-1.84317201e-01 -3.58766049e-01 -9.86644208e-01 -6.63372397e-01
-1.87839746e-01 5.07544279e-01 -3.39193434e-01 -4.39339317e-02
-4.72279459e-01 -1.09936631e+00 7.57421315e-01 5.25088727e-01
2.10399553e-01 -5.46094060e-01 -7.97717273e-02 1.91714644e-01
-2.14109853e-01 -1.10521472e+00 -5.34667313e-01 6.16363704e-01
-7.43086874e-01 -7.11723745e-01 -1.07353532e+00 -6.63590550e-01
6.72735989e-01 1.57167003e-01 1.01047671e+00 -4.46521491e-01
-7.18283653e-02 4.59165543e-01 -4.02011201e-02 -6.49631023e-01
-6.64784789e-01 -1.63559541e-01 3.71258527e-01 6.04694605e-01
2.83440500e-01 -9.37075078e-01 -3.29478690e-03 1.43756479e-01
-8.98580372e-01 -3.06000471e-01 7.71103621e-01 6.45635545e-01
1.78023487e-01 7.52893031e-01 5.60235083e-01 -8.20416808e-01
6.83399677e-01 -6.75857365e-01 -4.36225355e-01 -1.06285073e-01
-2.12047160e-01 2.06872910e-01 5.38325369e-01 -1.06019509e+00
-1.12078941e+00 2.81798065e-01 3.54779102e-02 -9.15183485e-01
-4.41476762e-01 3.51420552e-01 -5.69875658e-01 3.27824503e-01
5.37056863e-01 2.43724823e-01 -1.03160832e-02 -7.06961870e-01
3.54107320e-01 6.93291366e-01 1.05118895e+00 -5.55009365e-01
9.43935335e-01 5.17294168e-01 -3.58233243e-01 -9.93123055e-01
-7.53489971e-01 -6.98263764e-01 -5.92278183e-01 -3.41370441e-02
5.57751894e-01 -1.18726516e+00 -1.34016663e-01 8.41237545e-01
-9.85192955e-01 -4.64157581e-01 -2.86340564e-01 8.40241551e-01
-4.36739683e-01 3.72018158e-01 -5.81170559e-01 -1.25442600e+00
1.66688085e-01 -7.97554851e-01 1.14087129e+00 2.27454364e-01
-2.74637163e-01 -9.44000423e-01 3.23682457e-01 1.50681779e-01
2.14383453e-01 -7.79329613e-02 2.94576555e-01 -7.72555530e-01
-3.39995205e-01 -2.24411160e-01 1.97490782e-01 7.20038474e-01
4.67880458e-01 -2.33402923e-02 -1.42222512e+00 -4.25415903e-01
5.71790814e-01 -5.97497113e-02 1.06004310e+00 7.30164587e-01
6.62474930e-01 -1.81258604e-01 -3.18965346e-01 5.47425866e-01
1.07153225e+00 -2.46277843e-02 3.80107880e-01 -3.18881959e-01
4.64205891e-01 6.38388932e-01 1.52281106e-01 3.42104912e-01
-9.16208234e-03 2.83839434e-01 4.22959886e-02 -2.16204241e-01
-1.62164778e-01 -1.07628085e-01 8.17543268e-01 9.41400230e-01
2.24380001e-01 -3.65555942e-01 -5.49021482e-01 6.64521694e-01
-1.71149731e+00 -1.11037588e+00 -2.95964871e-02 2.32374287e+00
1.06934106e+00 2.90982425e-01 3.50228071e-01 5.75159550e-01
8.24819982e-01 -2.25718524e-02 -3.16138446e-01 2.48712361e-01
-7.77168125e-02 3.58349562e-01 3.66670817e-01 7.46673882e-01
-1.37056947e+00 3.98768634e-01 7.11938381e+00 1.00808740e+00
-1.01200068e+00 7.51304924e-02 2.45505273e-01 -2.42930368e-01
9.70027745e-02 -2.77756363e-01 -9.32957530e-01 6.26350343e-01
1.08620560e+00 9.85252261e-02 2.25221232e-01 4.81031299e-01
-2.04668373e-01 -1.12716176e-01 -1.32413113e+00 1.12536693e+00
3.96297187e-01 -5.53952575e-01 -3.49852115e-01 1.36851773e-01
5.30521333e-01 -2.38155127e-01 3.60517651e-01 2.98341602e-01
6.65072024e-01 -1.06278622e+00 8.85612130e-01 4.33607370e-01
5.07213831e-01 -6.60910845e-01 5.14035583e-01 9.00690556e-01
-1.01546836e+00 -1.23846612e-03 -2.22977534e-01 -4.96280342e-02
1.57967225e-01 9.82575119e-01 -5.58836937e-01 4.93338227e-01
6.07111871e-01 5.59650302e-01 -2.07620457e-01 1.04995751e+00
-4.22219634e-01 1.14194500e+00 -5.92922390e-01 6.86821043e-01
-2.22550586e-01 -2.45210439e-01 8.22384179e-01 1.51688659e+00
2.97041684e-01 -1.93486407e-01 1.76333681e-01 8.26472402e-01
1.95607189e-02 -2.87923068e-01 -5.43836713e-01 -3.03927623e-02
1.13726765e-01 1.13819683e+00 -9.88598406e-01 -4.70182687e-01
-2.82214552e-01 1.02285504e+00 -2.82319970e-02 4.72500056e-01
-1.04892790e+00 -3.13590765e-01 4.93420154e-01 -1.39388368e-01
7.14387655e-01 -2.31197461e-01 1.54229209e-01 -1.38294470e+00
-2.93637663e-02 -1.03347528e+00 3.43617827e-01 -5.62438071e-01
-1.39559877e+00 6.48877025e-01 3.58935803e-01 -1.28072357e+00
-5.32817602e-01 -4.39715743e-01 -6.53470039e-01 8.91779602e-01
-1.43381524e+00 -9.10927653e-01 -1.83059219e-02 5.62687278e-01
6.01691186e-01 -3.15139979e-01 5.21493018e-01 5.29109776e-01
-5.55959404e-01 4.27946746e-01 1.79268301e-01 1.41156197e-01
1.03095198e+00 -1.57130837e+00 5.86965159e-02 1.02756548e+00
7.37246871e-01 7.14976013e-01 1.11313236e+00 -5.54789186e-01
-9.38198328e-01 -7.81008124e-01 3.85714918e-01 -6.44563019e-01
5.87729990e-01 -7.32243538e-01 -1.03571773e+00 8.25302124e-01
6.17830038e-01 -2.81468391e-01 1.07818997e+00 -5.58007099e-02
-3.03076565e-01 -9.00814533e-02 -8.81609678e-01 6.47999793e-02
4.70701218e-01 -4.88130689e-01 -8.47634256e-01 -5.89350238e-02
4.44974959e-01 -2.86234885e-01 -4.50347811e-01 3.01073879e-01
4.27662551e-01 -1.05646265e+00 1.11725318e+00 -2.74487227e-01
-3.61128114e-02 -6.39860809e-01 -1.57993630e-01 -1.53866613e+00
-1.20093495e-01 -1.09695148e+00 -5.35586536e-01 1.70082223e+00
4.02612805e-01 -5.03711164e-01 7.50707746e-01 4.30955499e-01
8.19041878e-02 -8.61656070e-02 -6.45083785e-01 -1.04479063e+00
-7.63964355e-02 -6.15752876e-01 3.53165925e-01 8.88230264e-01
-2.26398170e-01 4.94589925e-01 -6.34085119e-01 7.36955464e-01
1.07872438e+00 3.74897197e-02 1.01452017e+00 -1.13423204e+00
-9.34595704e-01 -4.53600019e-01 -1.80079281e-01 -1.34904277e+00
3.28690708e-01 -5.59295237e-01 5.22590995e-01 -1.00600576e+00
2.95993332e-02 9.15039778e-02 -4.72955793e-01 8.80001485e-02
-3.70103300e-01 4.06032413e-01 -3.09517663e-02 9.61556733e-02
-4.24577057e-01 4.79386151e-01 3.27544838e-01 -2.66882479e-01
-3.34191889e-01 4.91620392e-01 -7.66965508e-01 1.22963989e+00
6.04409575e-01 -7.81398416e-01 -6.41536832e-01 -2.33582363e-01
-5.46505563e-02 -3.31459641e-02 2.44300425e-01 -1.19463623e+00
3.56702656e-01 3.10654014e-01 4.71073270e-01 -6.02642715e-01
5.76016665e-01 -8.89696658e-01 3.27145964e-01 8.81352201e-02
-1.27973571e-01 -3.96021158e-01 2.84079760e-01 8.50448132e-01
-4.93853539e-01 -4.77641195e-01 7.34450459e-01 8.64993036e-02
-1.19716607e-01 -6.18945584e-02 -6.33369207e-01 1.00175820e-01
6.46139979e-01 -1.22506693e-01 1.79925486e-01 -7.67417490e-01
-9.81174529e-01 3.00853625e-02 1.98821679e-01 1.43243939e-01
4.19007033e-01 -1.06043029e+00 -9.01433110e-01 4.74447787e-01
-4.40503538e-01 5.45560196e-02 -9.86597314e-02 1.05563605e+00
1.59402400e-01 -4.26504426e-02 2.94201016e-01 -6.78318024e-01
-1.54170763e+00 5.95367610e-01 2.83749461e-01 -1.77792996e-01
-3.66336614e-01 1.18158150e+00 6.43998623e-01 -2.48667389e-01
5.91495752e-01 -4.55624193e-01 -1.71576962e-01 2.43802071e-01
7.15752482e-01 4.06271219e-01 -1.84806123e-01 -6.54329538e-01
-1.32385015e-01 4.82525766e-01 1.36947885e-01 -5.55156708e-01
1.20981765e+00 -1.04275845e-01 -1.47065401e-01 9.33581233e-01
9.82735038e-01 6.06193960e-01 -1.46764076e+00 -3.12058479e-01
4.83133793e-02 -4.09195811e-01 7.91431870e-03 -4.63265479e-01
-9.48617518e-01 1.02888584e+00 2.68512398e-01 4.05632943e-01
1.35884082e+00 9.50216353e-02 3.95397872e-01 8.88021290e-02
3.05502918e-02 -7.54104555e-01 1.13412797e-01 1.27889931e-01
6.00434124e-01 -8.78536940e-01 -3.31457630e-02 -3.48018914e-01
-5.40633738e-01 8.52022886e-01 3.68466318e-01 -3.33346248e-01
8.55816782e-01 9.26553249e-01 1.61370680e-01 3.73665467e-02
-6.76720083e-01 -3.45218301e-01 6.05819225e-01 6.39447033e-01
2.67741829e-01 -3.35680783e-01 6.37181997e-01 1.03742814e+00
-1.39941797e-01 -1.45036370e-01 5.92760563e-01 7.25437164e-01
-3.46318632e-01 -1.23447633e+00 -9.11990702e-01 2.46604621e-01
-9.10136521e-01 -1.07187636e-01 -4.43259865e-01 4.45192188e-01
2.50325829e-01 1.07040501e+00 -8.61888379e-02 -5.13989888e-02
-7.03665838e-02 4.63246733e-01 6.92201018e-01 -6.91254020e-01
-3.22236329e-01 1.10319531e+00 -1.15349375e-01 4.61320989e-02
-7.80450106e-01 -8.76857400e-01 -9.28447247e-01 2.20439211e-01
-7.94528842e-01 4.24444407e-01 4.84551996e-01 8.89991522e-01
-4.35043089e-02 6.48678541e-01 2.68265992e-01 -1.17971349e+00
-6.09678924e-01 -1.08756351e+00 -1.00943851e+00 1.58542857e-01
9.65926647e-01 -5.78489482e-01 -9.38695848e-01 6.47344232e-01] | [15.333200454711914, 5.640718936920166] |
fc8ae82c-b799-42c7-92fe-cacfd6505b10 | emotion-aware-human-attention-prediction | null | null | http://openaccess.thecvf.com/content_CVPR_2019/html/Cordel_Emotion-Aware_Human_Attention_Prediction_CVPR_2019_paper.html | http://openaccess.thecvf.com/content_CVPR_2019/papers/Cordel_Emotion-Aware_Human_Attention_Prediction_CVPR_2019_paper.pdf | Emotion-Aware Human Attention Prediction | Despite the recent success in face recognition and object classification, in the field of human gaze prediction, computer models are still struggling to accurately mimic human attention. One main reason is that visual attention is a complex human behavior influenced by multiple factors, ranging from low-level features (e.g., color, contrast) to high-level human perception (e.g., objects interactions, object sentiment), making it difficult to model computationally. In this work, we investigate the relation between object sentiment and human attention. We first introduce a new evaluation metric (AttI) for measuring human attention that focuses on human fixation consensus. A series of empirical data analyses with AttI indicate that emotion-evoking objects receive attention favor, especially when they co-occur with emotionally-neutral objects, and this favor varies with different image complexity. Based on the empirical analyses, we design a deep neural network for human attention prediction which allows the attention bias on emotion-evoking objects to be encoded in its feature space. Experiments on two benchmark datasets demonstrate its superior performance, especially on metrics that evaluate relative importance of salient regions. This research provides the clearest picture to date on how object sentiments influence human attention, and it makes one of the first attempts to model this phenomenon computationally.
| [' Mohan S. Kankanhalli', ' Zhiqi Shen', ' Shaojing Fan', 'Macario O. Cordel II'] | 2019-06-01 | null | null | null | cvpr-2019-6 | ['eye-tracking'] | ['computer-vision'] | [ 1.31454349e-01 -3.66322458e-01 -2.04207703e-01 -3.21346045e-01
4.50198740e-01 -1.18433222e-01 2.93789893e-01 8.65370557e-02
-3.69628489e-01 3.81478399e-01 2.08144054e-01 -7.71256015e-02
-1.42159150e-03 -3.53091806e-01 -5.62207222e-01 -6.36784971e-01
5.88439628e-02 -1.93533614e-01 8.13517645e-02 -1.90720588e-01
7.66554892e-01 4.78571117e-01 -2.07657743e+00 1.34802625e-01
5.65268397e-01 1.28704715e+00 2.93106139e-01 3.30190629e-01
-5.67185916e-02 8.84049952e-01 -6.17669940e-01 -4.70365882e-01
-5.09935915e-02 -7.77298272e-01 -5.45827985e-01 -4.34630103e-02
3.37562591e-01 -5.37394732e-03 4.68598120e-02 1.27723539e+00
6.07551575e-01 7.59049654e-02 8.57955277e-01 -1.70660210e+00
-1.39768028e+00 1.54864371e-01 -8.92740488e-01 7.45636523e-01
3.22305590e-01 3.50696892e-01 9.38244522e-01 -1.12826908e+00
2.07327232e-01 1.39468372e+00 2.06319153e-01 5.96031487e-01
-8.43682349e-01 -7.86971927e-01 2.31757462e-01 9.05405641e-01
-1.30789661e+00 -2.31570035e-01 9.34467673e-01 -5.84894240e-01
6.74607873e-01 4.28866297e-01 8.54021728e-01 9.08150852e-01
4.93094087e-01 7.71623790e-01 1.35666168e+00 -5.97537398e-01
2.91480757e-02 5.56029320e-01 1.87620476e-01 4.43907559e-01
3.58991832e-01 2.13106982e-02 -6.23353541e-01 2.87812293e-01
5.06091774e-01 1.67774349e-01 -4.50671434e-01 -1.26116917e-01
-9.09767687e-01 6.71167195e-01 8.58905435e-01 2.96863586e-01
-5.61302960e-01 -1.46033257e-01 9.65684373e-03 -1.30285934e-01
2.51205772e-01 3.94504637e-01 -3.01955938e-01 8.09092969e-02
-4.86172467e-01 5.54567240e-02 2.50373542e-01 7.91112185e-01
7.98677027e-01 -1.78969786e-01 -6.99043572e-01 7.82865405e-01
5.93912721e-01 6.23834193e-01 7.27605879e-01 -5.86397946e-01
-1.56253472e-01 8.29820096e-01 -3.77373919e-02 -1.52583981e+00
-4.71471667e-01 -2.18263865e-01 -7.73997366e-01 4.56273377e-01
3.09901416e-01 7.48990476e-02 -5.97141504e-01 1.87692857e+00
3.01449805e-01 -1.66086182e-01 -4.33855683e-01 1.33499718e+00
8.92245948e-01 3.89076740e-01 4.74519253e-01 -5.16666412e-01
1.98748755e+00 -9.07852471e-01 -1.01710868e+00 -3.61558199e-01
1.15323275e-01 -8.10823262e-01 1.41881788e+00 2.02244818e-01
-1.06053197e+00 -8.40675294e-01 -7.91082561e-01 5.80672100e-02
-5.65620065e-01 -2.58562323e-02 6.72174394e-01 6.81611955e-01
-8.97776008e-01 1.06171153e-01 -1.95102036e-01 -5.55012763e-01
5.44558227e-01 2.03684330e-01 4.62430418e-02 2.40637213e-01
-1.22021914e+00 1.12682986e+00 9.78785306e-02 3.00348461e-01
-5.64934015e-01 -4.34090942e-01 -5.60878873e-01 3.77303660e-01
2.46748909e-01 -4.27489340e-01 1.01281011e+00 -1.72902179e+00
-1.09638655e+00 8.02390695e-01 -4.19748247e-01 7.16684386e-02
-8.15157127e-03 1.00703249e-02 -6.23832762e-01 9.44859684e-02
-1.93540648e-01 8.76359582e-01 1.04464638e+00 -1.28279603e+00
-6.86070025e-01 -5.47721565e-01 8.63549486e-02 2.41677463e-01
-8.35714340e-01 5.92758536e-01 -2.49036491e-01 -4.89729524e-01
-3.85609239e-01 -8.56914401e-01 1.56478614e-01 2.36181229e-01
-1.62651330e-01 -6.36470258e-01 8.52667153e-01 -2.18119323e-01
1.51480913e+00 -2.09734607e+00 8.15408602e-02 6.65000156e-02
2.88118660e-01 2.95847595e-01 -5.03406450e-02 2.78611463e-02
-3.52714390e-01 2.29633078e-01 7.05610961e-02 2.60050278e-02
2.31920034e-02 -1.75988600e-01 -2.02196926e-01 4.87601370e-01
4.33759451e-01 1.09568357e+00 -7.53236115e-01 -7.98576117e-01
5.99772222e-02 6.07294977e-01 -6.35088742e-01 3.42679650e-01
1.16187520e-01 3.33789617e-01 -2.83201069e-01 7.63483763e-01
6.02969587e-01 -5.30911148e-01 -2.48255283e-01 -3.49687517e-01
-2.77126074e-01 -2.77524740e-01 -7.17229664e-01 8.22261214e-01
-4.52024899e-02 1.11523366e+00 -3.05904180e-01 -6.17899299e-01
7.49577701e-01 8.34536478e-02 2.43549526e-01 -1.15121198e+00
6.46480858e-01 -2.40565613e-01 5.56641281e-01 -8.62199247e-01
4.67059195e-01 4.05428298e-02 3.62978250e-01 5.03646195e-01
-3.62805724e-01 4.24192518e-01 6.13951124e-03 -8.43261108e-02
4.38482851e-01 -2.07521707e-01 4.31629419e-01 -4.61497277e-01
7.74146438e-01 -4.61926222e-01 3.80365998e-01 2.62097806e-01
-7.76400983e-01 3.31840307e-01 6.43313885e-01 -3.94874334e-01
-6.89770222e-01 -3.71189028e-01 -2.66688228e-01 1.61424839e+00
6.41408324e-01 -2.05982793e-02 -9.72301602e-01 -5.08309960e-01
-3.66342328e-02 7.06335723e-01 -1.09857273e+00 -4.86407191e-01
-2.43722409e-01 -8.81749094e-01 -1.13792084e-01 5.67129195e-01
3.56676847e-01 -1.90583622e+00 -1.11139297e+00 -5.32441199e-01
7.88130462e-02 -8.93132269e-01 -6.07896626e-01 -1.99615240e-01
-3.06597561e-01 -1.13965666e+00 -6.81781530e-01 -8.15692425e-01
9.27737534e-01 6.03454411e-01 1.16028512e+00 5.15900612e-01
-5.40948093e-01 4.83011007e-01 -3.22559237e-01 -9.85427082e-01
2.88305998e-01 -2.97327667e-01 4.68879379e-02 4.75600123e-01
9.54683185e-01 4.72709686e-02 -1.02544117e+00 5.53268611e-01
-9.19709504e-01 -1.21181853e-01 6.44815147e-01 6.27405286e-01
2.91721463e-01 -9.16342959e-02 3.68882358e-01 -3.47552150e-01
7.57612765e-01 -5.73404431e-01 -3.59871835e-01 3.62433046e-01
-7.78909564e-01 -2.47456878e-01 1.69931278e-01 -6.27811670e-01
-1.09684229e+00 -4.29657161e-01 4.74393338e-01 -4.26871091e-01
-2.86882967e-01 3.45239580e-01 -1.79854020e-01 -2.19958931e-01
5.22516906e-01 4.16755211e-04 -8.78480636e-03 1.27963033e-02
-2.57813279e-02 7.48370171e-01 3.22921127e-02 -1.62558749e-01
3.90310138e-01 3.75819683e-01 1.85902417e-02 -8.38878632e-01
-9.94677007e-01 -1.37480244e-01 -5.02707243e-01 -8.22233617e-01
1.08108735e+00 -4.38631326e-01 -1.39481473e+00 4.97164041e-01
-1.15464616e+00 -1.55762704e-02 1.57827586e-01 4.84650016e-01
-2.48496652e-01 1.52084976e-01 -1.96357220e-01 -1.15869880e+00
-2.89312899e-01 -1.14529037e+00 8.72754097e-01 7.96142220e-01
-2.80499250e-01 -8.59071374e-01 -2.49999061e-01 2.61010647e-01
5.57409585e-01 -1.55745760e-01 8.75795364e-01 -2.82227695e-01
-6.46754324e-01 6.78924024e-02 -6.78505540e-01 2.67301828e-01
5.51396236e-02 3.07943910e-01 -9.99593377e-01 -9.96820256e-02
1.05185866e-01 -2.20348045e-01 5.42814732e-01 5.95713258e-01
1.64894390e+00 -6.55910522e-02 -4.16307122e-01 3.90291512e-01
1.11108851e+00 3.97093207e-01 8.24045300e-01 3.49809617e-01
6.92338169e-01 9.01737392e-01 8.65654409e-01 3.56658280e-01
3.23483914e-01 6.63827062e-01 7.80940890e-01 -2.83047527e-01
-1.52491629e-01 6.55606538e-02 1.34715006e-01 4.31349367e-01
-4.68173981e-01 -4.17783707e-01 -8.56273055e-01 3.23416740e-01
-1.54947782e+00 -9.43895400e-01 -2.77366012e-01 2.03083944e+00
5.80688179e-01 -3.53029068e-03 7.26763159e-02 -6.34347647e-02
9.06489909e-01 1.66312903e-02 -6.53851151e-01 -3.57568562e-01
-1.07763335e-01 -9.82564986e-02 1.64978966e-01 1.09970592e-01
-8.13087165e-01 9.15151358e-01 6.28976440e+00 3.73408198e-01
-1.42738366e+00 -8.08524489e-02 8.40189934e-01 -1.86758131e-01
-1.70371994e-01 -3.33200604e-01 -8.82767439e-01 7.83032298e-01
6.14864588e-01 -1.81116417e-01 4.69912171e-01 7.28982568e-01
1.76370561e-01 -2.45104164e-01 -9.93575513e-01 1.26798511e+00
7.52114475e-01 -4.86243755e-01 1.38022780e-01 1.40349820e-01
4.74970728e-01 -6.18883193e-01 5.96042275e-01 2.15044603e-01
-3.72496128e-01 -1.31505811e+00 8.05767238e-01 8.23003471e-01
5.07506609e-01 -6.34142816e-01 6.27176404e-01 9.18953642e-02
-8.42666388e-01 -4.87711847e-01 -4.34199810e-01 -3.69634360e-01
-8.16252157e-02 1.27765313e-01 -5.30873418e-01 -3.18914354e-01
1.04586101e+00 5.99182487e-01 -8.45074534e-01 1.00007951e+00
-2.92427331e-01 4.05478090e-01 3.04840863e-01 -5.75222671e-01
-1.91710129e-01 4.30137254e-02 3.06784034e-01 9.13901091e-01
2.65111536e-01 4.11156029e-01 -4.11104739e-01 1.03097165e+00
-1.36199854e-02 3.40873808e-01 -3.01611215e-01 -4.66320058e-03
3.28407705e-01 1.52244270e+00 -7.87940502e-01 -2.16341063e-01
-6.35524094e-01 6.69394493e-01 3.77082437e-01 4.61111397e-01
-1.19770861e+00 -2.77321190e-01 8.19776833e-01 2.48549327e-01
3.31498623e-01 1.31120726e-01 -2.58395523e-01 -7.47518897e-01
-2.78941672e-02 -8.18537056e-01 1.63999379e-01 -1.22834814e+00
-1.30963838e+00 7.29787588e-01 -1.42882079e-01 -1.10128987e+00
2.46895596e-01 -9.72708046e-01 -5.66982448e-01 9.37477052e-01
-1.71348941e+00 -9.30341840e-01 -7.82051325e-01 7.49260128e-01
3.96138996e-01 -1.32687017e-01 4.52201337e-01 2.48945668e-01
-8.73413920e-01 7.78705359e-01 -6.84240043e-01 -5.05664796e-02
6.87365651e-01 -8.93899441e-01 -2.34574214e-01 5.59839547e-01
-7.87538663e-02 6.44268751e-01 6.88990176e-01 -2.86525875e-01
-1.26056182e+00 -6.60275638e-01 7.82930255e-01 -7.42934525e-01
4.30436641e-01 -1.61087647e-01 -1.02073383e+00 4.08837944e-01
6.02520227e-01 2.45012697e-02 7.60424197e-01 1.00109510e-01
-1.70627713e-01 -2.02489614e-01 -8.20665956e-01 6.90631628e-01
9.65588808e-01 -4.06953722e-01 -5.24099946e-01 7.99714923e-02
3.53440911e-01 9.01228189e-03 -4.81496155e-01 4.83850509e-01
6.25132799e-01 -1.20683897e+00 8.94005120e-01 -7.56269395e-01
6.14284754e-01 -2.94912428e-01 7.65893981e-02 -1.08140826e+00
-7.72319794e-01 -1.36402994e-01 -1.85154110e-01 1.07653832e+00
1.28311321e-01 -6.00041866e-01 3.18738788e-01 6.36578500e-01
2.17435598e-01 -7.76137054e-01 -5.51651657e-01 -3.41353565e-01
-3.51557136e-01 -7.52010122e-02 7.96606302e-01 9.63452339e-01
5.08634672e-02 5.10462821e-01 -3.78881752e-01 1.00651741e-01
4.42143261e-01 1.43215641e-01 6.43696010e-01 -1.32619441e+00
1.76165566e-01 -9.55441058e-01 -5.58092773e-01 -6.63612783e-01
8.68979543e-02 -4.39768910e-01 -4.76138107e-02 -1.11619389e+00
6.62800431e-01 -1.13271438e-02 -8.36325049e-01 4.13292199e-01
-7.18814552e-01 4.71811771e-01 1.97821334e-01 1.79979533e-01
-7.06424296e-01 5.46000123e-01 1.65523767e+00 -4.08985429e-02
-1.07888458e-03 -2.90570050e-01 -1.11202753e+00 7.76614368e-01
6.85668468e-01 -1.82150632e-01 -3.20398033e-01 -2.87740946e-01
3.66968095e-01 -3.52782488e-01 5.28715253e-01 -9.03155088e-01
2.87961751e-01 -3.99870485e-01 7.72435784e-01 -4.15458351e-01
2.42871910e-01 -9.82420981e-01 -3.76098663e-01 3.66464138e-01
-3.24851245e-01 1.23349451e-01 3.25444788e-01 3.60021442e-01
-2.00526088e-01 -2.07873747e-01 8.78807127e-01 1.82501122e-01
-9.59996998e-01 3.70496899e-01 -9.54429731e-02 -3.60110812e-02
1.34232116e+00 -3.81392896e-01 -4.07438755e-01 -3.01885724e-01
-3.06767821e-01 6.44792244e-02 3.55360270e-01 9.18809831e-01
5.43103516e-01 -1.39322865e+00 -5.32017112e-01 4.49364930e-01
3.44205469e-01 -6.02657199e-01 4.28521067e-01 9.87574279e-01
-3.75428535e-02 5.03288448e-01 -6.25803709e-01 -7.74710000e-01
-1.50302386e+00 1.10835886e+00 2.95240939e-01 4.69658703e-01
1.33267313e-01 9.60698903e-01 7.30027974e-01 4.25145447e-01
2.30353430e-01 -1.38411269e-01 -9.38622415e-01 2.69370049e-01
8.94048810e-01 3.11066687e-01 -2.25327954e-01 -9.64713991e-01
-4.08223540e-01 8.66367042e-01 3.79122011e-02 3.99701804e-01
9.90063071e-01 -2.22837120e-01 -3.89228791e-01 4.32246357e-01
8.95007491e-01 -1.17056541e-01 -1.07634604e+00 3.96281434e-03
-2.79939264e-01 -8.42091560e-01 1.87415570e-01 -7.47375429e-01
-1.29981065e+00 1.20640278e+00 9.92483377e-01 5.50682962e-01
1.51602328e+00 6.02644756e-02 3.39417845e-01 1.21011976e-02
1.18977003e-01 -1.11206603e+00 5.33265531e-01 3.01477015e-01
1.16432154e+00 -1.45845342e+00 4.80885170e-02 -2.66942203e-01
-9.59813893e-01 7.33099878e-01 1.23879981e+00 2.37530634e-01
8.31125379e-01 -1.84360534e-01 6.86289668e-02 -4.56442803e-01
-7.08613157e-01 -3.50904673e-01 7.87869632e-01 3.19508135e-01
6.44347906e-01 1.51109798e-02 -3.23423564e-01 6.27694964e-01
-1.32969826e-01 -6.24238253e-02 1.46185368e-01 6.34231031e-01
-6.30191267e-01 -5.47488809e-01 -6.62462234e-01 3.44788551e-01
-4.96865869e-01 -6.26089424e-02 -3.83831531e-01 7.00000107e-01
3.20090950e-01 8.89451087e-01 4.97714132e-01 -2.27231622e-01
4.26402867e-01 -1.47244900e-01 4.64886636e-01 -2.58359194e-01
-3.54636788e-01 -1.60495281e-01 -6.41522408e-01 -5.20282745e-01
-6.59126639e-01 -6.37784004e-01 -9.75858569e-01 -3.00369263e-01
-4.15972948e-01 -7.69514292e-02 6.65703237e-01 7.31298387e-01
3.33304256e-01 7.39093006e-01 6.06596112e-01 -8.58678162e-01
-8.48690793e-02 -1.12819386e+00 -5.80566347e-01 8.17167282e-01
2.50366330e-01 -1.13203156e+00 -5.01919687e-01 3.45179364e-02] | [10.268671989440918, 2.029336452484131] |
769c6706-c2c3-4ecf-b6dd-da0b49ae446d | confident-anchor-induced-multi-source-free | null | null | http://proceedings.neurips.cc/paper/2021/hash/168908dd3227b8358eababa07fcaf091-Abstract.html | http://proceedings.neurips.cc/paper/2021/file/168908dd3227b8358eababa07fcaf091-Paper.pdf | Confident Anchor-Induced Multi-Source Free Domain Adaptation | Unsupervised domain adaptation has attracted appealing academic attentions by transferring knowledge from labeled source domain to unlabeled target domain. However, most existing methods assume the source data are drawn from a single domain, which cannot be successfully applied to explore complementarily transferable knowledge from multiple source domains with large distribution discrepancies. Moreover, they require access to source data during training, which are inefficient and unpractical due to privacy preservation and memory storage. To address these challenges, we develop a novel Confident-Anchor-induced multi-source-free Domain Adaptation (CAiDA) model, which is a pioneer exploration of knowledge adaptation from multiple source domains to the unlabeled target domain without any source data, but with only pre-trained source models. Specifically, a source-specific transferable perception module is proposed to automatically quantify the contributions of the complementary knowledge transferred from multi-source domains to the target domain. To generate pseudo labels for the target domain without access to the source data, we develop a confident-anchor-induced pseudo label generator by constructing a confident anchor group and assigning each unconfident target sample with a semantic-nearest confident anchor. Furthermore, a class-relationship-aware consistency loss is proposed to preserve consistent inter-class relationships by aligning soft confusion matrices across domains. Theoretical analysis answers why multi-source domains are better than a single source domain, and establishes a novel learning bound to show the effectiveness of exploiting multi-source domains. Experiments on several representative datasets illustrate the superiority of our proposed CAiDA model. The code is available at https://github.com/Learning-group123/CAiDA. | ['Tongliang Liu', 'Gan Sun', 'Anjin Liu', 'Zhen Fang', 'Jiahua Dong'] | 2021-12-01 | null | https://openreview.net/forum?id=EAdJEN8xKUl | https://openreview.net/pdf?id=EAdJEN8xKUl | neurips-2021-12 | ['source-free-domain-adaptation'] | ['computer-vision'] | [ 4.71417844e-01 2.12934762e-01 -5.45930445e-01 -5.37469864e-01
-1.15878630e+00 -8.76353145e-01 4.26590115e-01 1.36364549e-02
-1.16260670e-01 1.14837182e+00 -8.26419964e-02 4.92567662e-03
-1.19311221e-01 -6.34967148e-01 -9.63102579e-01 -7.68773675e-01
3.76027942e-01 5.56156278e-01 5.85936084e-02 2.25192383e-02
-9.51189026e-02 -8.77533108e-02 -1.05091417e+00 1.83925331e-01
1.39824355e+00 9.60793257e-01 1.78106248e-01 -1.02043785e-01
-1.58050865e-01 4.01217133e-01 -6.46812737e-01 -4.45039809e-01
5.09459913e-01 -6.77274346e-01 -6.56481802e-01 1.87213212e-01
1.73326984e-01 -1.68937489e-01 6.99307024e-02 1.36654460e+00
2.72631973e-01 4.67989743e-02 8.06310177e-01 -1.65983963e+00
-1.21959591e+00 3.47950399e-01 -4.95710969e-01 -2.63189912e-01
1.37427047e-01 -1.58515587e-01 7.19673038e-01 -9.21459377e-01
6.09935760e-01 9.97326255e-01 4.43076670e-01 7.79650331e-01
-1.23319113e+00 -1.11294305e+00 2.74677873e-01 1.37511060e-01
-1.37735963e+00 -4.33778822e-01 8.86198819e-01 -3.44284862e-01
8.30246136e-02 -1.18196160e-01 -2.63582338e-02 1.34766340e+00
-3.67031455e-01 7.26774693e-01 1.26476085e+00 -5.00755966e-01
5.49551547e-01 8.10315907e-01 -3.02570779e-02 2.94603258e-01
5.25440395e-01 3.79229337e-02 -5.15672863e-01 -2.44017482e-01
6.22034431e-01 4.92460094e-02 -2.90951490e-01 -9.92719233e-01
-1.19381642e+00 8.16325188e-01 5.04409254e-01 7.62653202e-02
-1.29960120e-01 -5.16457856e-01 2.59582967e-01 4.78115439e-01
5.50767422e-01 1.89744204e-01 -6.62439466e-01 3.89560789e-01
-5.80844522e-01 -1.04988143e-01 6.24520779e-01 1.54769790e+00
1.00447237e+00 -8.56708735e-02 2.02408090e-01 9.76428986e-01
3.16421509e-01 8.71624172e-01 6.07871711e-01 -9.23300505e-01
7.60942161e-01 6.60821795e-01 3.01080167e-01 -7.65340269e-01
1.16951741e-01 -3.61631840e-01 -9.52537656e-01 8.19670185e-02
6.50548935e-01 -1.60253227e-01 -6.93931401e-01 2.14621305e+00
6.21876180e-01 1.55200988e-01 5.05340934e-01 8.56717825e-01
3.87717038e-01 4.82939273e-01 8.58354196e-02 -2.49085873e-01
1.12786937e+00 -8.80599320e-01 -4.04526025e-01 -4.54772204e-01
4.83393013e-01 -3.43762100e-01 1.11026919e+00 1.72538891e-01
-6.43204987e-01 -5.42229593e-01 -1.12475693e+00 4.77197506e-02
-4.77630287e-01 2.39132047e-01 3.12526643e-01 5.87871611e-01
-5.24441183e-01 8.80310833e-02 -5.20722568e-01 -3.48593742e-01
7.34728694e-01 1.79399788e-01 -6.39929950e-01 -4.37689483e-01
-1.31861031e+00 6.72880173e-01 6.60240889e-01 -4.21672612e-01
-8.46299350e-01 -6.96344018e-01 -8.65726054e-01 -1.62972271e-01
4.68682140e-01 -5.61736524e-01 1.09222829e+00 -1.40484202e+00
-1.38611388e+00 8.30907166e-01 -3.37849915e-01 -2.81067282e-01
4.67937261e-01 2.07011923e-02 -6.09947324e-01 7.04610497e-02
5.56789398e-01 5.70189953e-01 9.15234685e-01 -1.64586580e+00
-6.76762938e-01 -4.23097581e-01 -2.06261992e-01 3.78764957e-01
-7.05984175e-01 -3.87403280e-01 -3.02083164e-01 -6.95326090e-01
5.34712076e-02 -8.98942173e-01 -3.37877721e-02 1.55806556e-01
-3.99533778e-01 2.03251801e-02 6.36909306e-01 -5.36629677e-01
7.11239874e-01 -2.37390256e+00 -4.71827429e-04 2.48985529e-01
5.52458428e-02 3.01032603e-01 -2.83679038e-01 8.44748877e-03
-1.28852502e-01 -1.42551288e-01 -7.18580961e-01 -1.75479293e-01
8.40629190e-02 2.25884661e-01 -6.14367962e-01 2.42270574e-01
1.98754415e-01 6.05639875e-01 -1.01436162e+00 -3.06018382e-01
-2.11505983e-02 3.37041318e-01 -2.70411432e-01 2.59210646e-01
-1.75365478e-01 7.36669242e-01 -6.47600651e-01 7.48138607e-01
1.07391047e+00 -4.86188591e-01 3.32977384e-01 -4.69388328e-02
5.44867516e-01 -1.59194712e-02 -1.13879728e+00 1.81199074e+00
-3.22353810e-01 1.35155603e-01 8.29061866e-03 -1.28340781e+00
1.23895872e+00 2.35843867e-01 2.93215990e-01 -7.18018532e-01
-2.17442494e-02 5.32229066e-01 -3.66651028e-01 -7.55363181e-02
9.09976289e-02 -4.41967964e-01 -3.47819567e-01 4.04819697e-01
1.81366429e-01 1.51239038e-01 -1.43324435e-01 8.47525671e-02
8.66226673e-01 1.08292259e-01 4.30896133e-01 1.23303859e-02
5.63428462e-01 1.48291156e-01 9.18260276e-01 3.75651032e-01
-5.11700213e-01 6.66866720e-01 1.59337431e-01 7.64758140e-02
-9.54737663e-01 -1.52645981e+00 -1.40973404e-01 1.04783309e+00
5.28682053e-01 2.88908273e-01 -6.85692966e-01 -1.23630726e+00
1.17324971e-01 7.57696807e-01 -5.58677077e-01 -4.11194414e-01
-8.20430815e-02 -4.94433552e-01 3.72837454e-01 5.30730247e-01
6.62506580e-01 -7.33018816e-01 -4.95896153e-02 1.03342772e-01
-5.36711812e-01 -1.06244361e+00 -5.87059975e-01 2.35545993e-01
-7.77108610e-01 -1.09598458e+00 -1.04729116e+00 -1.01825690e+00
1.08621800e+00 3.15476537e-01 7.80968606e-01 -6.26258552e-01
3.28055412e-01 3.30734640e-01 -4.36705053e-01 -4.56633210e-01
-5.45264244e-01 1.32444531e-01 3.60957831e-01 1.69698268e-01
8.40376973e-01 -5.89642465e-01 -3.09325188e-01 6.26428127e-01
-8.72873664e-01 -8.98377821e-02 6.84805453e-01 8.76000643e-01
7.83907831e-01 5.15672080e-02 1.16713750e+00 -1.07588434e+00
3.50353777e-01 -1.07246459e+00 -5.69058001e-01 4.48314637e-01
-7.52805829e-01 -2.33696774e-02 8.64254832e-01 -7.05993831e-01
-1.29392171e+00 2.51705080e-01 4.78351235e-01 -6.18827641e-01
-4.41485226e-01 2.45859072e-01 -8.38494122e-01 1.30270496e-01
8.52632105e-01 4.57849652e-01 7.83993676e-02 -4.17583615e-01
5.26788056e-01 8.92870188e-01 7.59912133e-01 -8.52451444e-01
1.12842441e+00 5.02555728e-01 -4.48529333e-01 -2.37978950e-01
-9.29640293e-01 -3.92009676e-01 -8.06622088e-01 3.00182372e-01
4.89524692e-01 -1.28908956e+00 2.42380220e-02 5.14712751e-01
-9.21057224e-01 -3.20443928e-01 -5.54747343e-01 5.51435530e-01
-5.07091165e-01 3.30782354e-01 -3.70521881e-02 -5.11911511e-01
-7.78742358e-02 -7.35288262e-01 7.23944902e-01 3.11018050e-01
-5.69256023e-02 -1.08587885e+00 -3.95053700e-02 5.18984318e-01
1.92147970e-01 1.79204941e-01 7.17918694e-01 -1.21428049e+00
-4.84709471e-01 -1.36155531e-01 -4.01010096e-01 7.75497079e-01
5.67611396e-01 -7.58793294e-01 -9.34556067e-01 -3.85299683e-01
8.59260410e-02 -6.26436293e-01 4.48791504e-01 4.28375751e-02
9.99034286e-01 -4.17347580e-01 -4.87201005e-01 5.22329092e-01
1.30951118e+00 3.10497135e-01 3.24523985e-01 3.42236549e-01
6.59509897e-01 6.62347436e-01 8.68455827e-01 4.52969700e-01
7.47750282e-01 3.75774592e-01 1.61917627e-01 2.73980387e-03
-7.68708512e-02 -5.40411353e-01 4.69641924e-01 6.53223336e-01
4.90872443e-01 -2.70887226e-01 -6.99277282e-01 8.89581203e-01
-1.54346418e+00 -6.66213512e-01 2.35362545e-01 2.46398520e+00
1.25733495e+00 -1.43387849e-02 -2.37148721e-02 -1.08888671e-01
9.77800310e-01 -3.45160037e-01 -1.18541610e+00 2.38126829e-01
-1.88717738e-01 -6.87072352e-02 4.45666075e-01 3.77888203e-01
-1.18017530e+00 7.33030736e-01 5.00821972e+00 9.39378619e-01
-8.96123767e-01 3.27469707e-01 4.96987134e-01 1.40201434e-01
-5.02247512e-01 -1.52252978e-02 -7.99098849e-01 7.69914389e-01
7.35328913e-01 -5.68471670e-01 2.92044908e-01 1.24933732e+00
-3.19445878e-01 1.50353014e-01 -1.34301043e+00 8.24342608e-01
1.27377406e-01 -8.78021419e-01 5.50346151e-02 9.37017649e-02
8.71228576e-01 -1.98435545e-01 1.61796853e-01 3.58496368e-01
6.31246209e-01 -5.66580117e-01 5.24525344e-01 1.03211068e-01
1.27828825e+00 -6.27969444e-01 5.27520597e-01 3.84353548e-01
-1.04262805e+00 -8.70237127e-02 -4.98625010e-01 2.63539821e-01
-1.25026554e-01 6.50136650e-01 -8.99956048e-01 7.49022901e-01
5.86495221e-01 8.31526697e-01 -3.80781054e-01 7.36789703e-01
-2.70848036e-01 5.52832246e-01 -2.67653435e-01 4.55166966e-01
-2.73683339e-01 -2.18780428e-01 3.59221339e-01 8.35917175e-01
6.75476372e-01 8.51368830e-02 1.35870859e-01 9.17121768e-01
-3.72436792e-01 4.47009727e-02 -7.61542141e-01 5.79579249e-02
1.13450241e+00 8.95102203e-01 -3.59476209e-01 -4.24927503e-01
-4.69693333e-01 1.26517975e+00 3.36622477e-01 5.76568246e-01
-8.39522302e-01 -4.72839952e-01 7.07693875e-01 -4.29915972e-02
2.46828005e-01 1.78885147e-01 -4.84116495e-01 -1.45026195e+00
3.02853256e-01 -8.66064131e-01 5.82584381e-01 -6.91538155e-01
-1.91551292e+00 4.50899601e-01 1.58129204e-02 -1.83789384e+00
-9.76505280e-02 -3.25668216e-01 -2.55331427e-01 1.03944159e+00
-1.78166521e+00 -1.13551676e+00 -3.47342640e-01 1.04659867e+00
2.59639412e-01 -4.62181896e-01 1.03024101e+00 3.24870348e-01
-3.89881819e-01 1.21924722e+00 5.97745299e-01 2.45676965e-01
1.28750849e+00 -1.11793733e+00 5.32429591e-02 8.32308888e-01
-1.64781824e-01 6.40726984e-01 3.00733358e-01 -5.55938840e-01
-8.97220850e-01 -1.48539817e+00 7.41056681e-01 -7.03806758e-01
4.46246982e-01 -3.47435594e-01 -1.33027267e+00 9.02567863e-01
-7.35840797e-02 1.88035175e-01 1.05040121e+00 -1.46048397e-01
-8.66052091e-01 -3.80063027e-01 -1.57525182e+00 2.70286083e-01
9.47313905e-01 -5.63579440e-01 -7.09152102e-01 2.84072936e-01
7.23404229e-01 -2.51474530e-01 -8.42346013e-01 2.64381051e-01
1.32485062e-01 -6.21069252e-01 1.00114119e+00 -2.80443847e-01
4.23330158e-01 -5.77384412e-01 -2.83447325e-01 -1.50629473e+00
-1.71918929e-01 -1.46612197e-01 -5.52513972e-02 1.61598718e+00
4.35395360e-01 -1.02589989e+00 7.56492972e-01 7.39823163e-01
-1.94238108e-02 -4.93920110e-02 -1.05148208e+00 -1.23546386e+00
4.64805096e-01 -1.12778410e-01 6.45313084e-01 1.50016677e+00
9.43240598e-02 3.29817653e-01 -3.31542045e-01 5.44317842e-01
8.73139918e-01 2.62386411e-01 7.82573044e-01 -1.23017740e+00
-1.50285482e-01 5.29541522e-02 -4.53733094e-02 -1.02944386e+00
3.56214315e-01 -1.12019801e+00 2.41397500e-01 -1.27981186e+00
2.05051124e-01 -9.39750254e-01 -6.05378211e-01 8.17453682e-01
-2.36829370e-01 1.56684816e-01 -8.35468434e-03 4.76336151e-01
-6.40275061e-01 7.89091170e-01 1.16806567e+00 -1.61018610e-01
-7.68691525e-02 -2.52549946e-02 -1.28141236e+00 5.80801964e-01
8.83788109e-01 -7.14521050e-01 -9.86056626e-01 -4.42442924e-01
-2.82332242e-01 -1.21445097e-01 3.53723019e-01 -1.07527530e+00
1.35814115e-01 -4.44831908e-01 4.63552654e-01 -3.99227366e-02
2.08762541e-01 -1.10766637e+00 1.29826948e-01 4.27981950e-02
-4.44280416e-01 -6.84072196e-01 7.20108598e-02 9.26037014e-01
-3.27908576e-01 -8.09978172e-02 9.17073190e-01 6.76011667e-02
-8.23815644e-01 3.09714049e-01 2.57734001e-01 3.55719239e-01
1.30324018e+00 -1.54583856e-01 -3.60454023e-01 -1.73040405e-01
-5.88102818e-01 2.31874734e-01 6.83519125e-01 5.33498108e-01
4.84895498e-01 -1.61634421e+00 -6.62866354e-01 4.52164739e-01
5.84067643e-01 2.74209023e-01 2.90158600e-01 2.54067183e-01
2.51185507e-01 1.44945994e-01 -3.36249501e-01 -5.33299387e-01
-8.68650258e-01 8.56737554e-01 1.19594857e-01 -1.62054878e-02
-1.77229568e-01 8.90166759e-01 6.44717276e-01 -9.78672922e-01
1.39529333e-01 -6.04333356e-02 1.55300960e-01 -1.99298561e-02
5.30323684e-01 2.04043895e-01 -1.35927230e-01 -4.87824231e-01
-4.81903791e-01 6.04266465e-01 -1.45630375e-01 2.63357926e-02
9.17775989e-01 -5.58049858e-01 2.21685469e-01 3.28313559e-01
1.24076831e+00 -9.88019481e-02 -1.55749321e+00 -8.43781650e-01
-8.22813138e-02 -5.48605084e-01 -6.05507851e-01 -1.14605939e+00
-9.24299181e-01 8.23161781e-01 6.13274813e-01 -2.73515195e-01
1.41693938e+00 7.54413009e-02 7.81639218e-01 3.12319756e-01
6.52520955e-01 -1.10114908e+00 2.13824973e-01 3.39448988e-01
7.10951746e-01 -1.62488508e+00 -3.49833846e-01 -5.34169853e-01
-1.08764672e+00 6.66050076e-01 9.11724269e-01 1.61599517e-01
6.55636013e-01 -1.28500059e-01 2.12953925e-01 3.42818737e-01
-4.08639044e-01 4.34162989e-02 1.03259735e-01 1.23801994e+00
-9.76069421e-02 1.79141805e-01 1.67018920e-01 1.15904641e+00
7.54536092e-02 2.75242567e-01 3.41014057e-01 7.07934439e-01
-2.57576108e-01 -1.35320723e+00 -4.16141897e-01 1.60351843e-01
-1.01344921e-01 -2.58855219e-03 -2.65254587e-01 5.25563598e-01
3.19800287e-01 1.06213272e+00 -2.04311654e-01 -3.96794289e-01
2.90411741e-01 3.05281103e-01 9.28736106e-02 -7.06191182e-01
1.65371671e-01 -2.08098352e-01 -3.96251559e-01 -1.03897259e-01
-3.84780347e-01 -6.41964018e-01 -1.31637549e+00 -1.76456705e-01
-1.82516441e-01 3.95659000e-01 3.48254025e-01 7.76626229e-01
7.75318027e-01 5.19046448e-02 8.79760921e-01 -3.31060857e-01
-6.93977654e-01 -7.82213390e-01 -6.51227891e-01 6.53473735e-01
3.69598597e-01 -8.21367800e-01 -4.56303567e-01 4.51302946e-01] | [10.401406288146973, 3.126574754714966] |
fa15350a-cead-4436-afaf-dfb41e62aa87 | adaptive-window-pruning-for-efficient-local | 2306.14268 | null | https://arxiv.org/abs/2306.14268v1 | https://arxiv.org/pdf/2306.14268v1.pdf | Adaptive Window Pruning for Efficient Local Motion Deblurring | Local motion blur commonly occurs in real-world photography due to the mixing between moving objects and stationary backgrounds during exposure. Existing image deblurring methods predominantly focus on global deblurring, inadvertently affecting the sharpness of backgrounds in locally blurred images and wasting unnecessary computation on sharp pixels, especially for high-resolution images. This paper aims to adaptively and efficiently restore high-resolution locally blurred images. We propose a local motion deblurring vision Transformer (LMD-ViT) built on adaptive window pruning Transformer blocks (AdaWPT). To focus deblurring on local regions and reduce computation, AdaWPT prunes unnecessary windows, only allowing the active windows to be involved in the deblurring processes. The pruning operation relies on the blurriness confidence predicted by a confidence predictor that is trained end-to-end using a reconstruction loss with Gumbel-Softmax re-parameterization and a pruning loss guided by annotated blur masks. Our method removes local motion blur effectively without distorting sharp regions, demonstrated by its exceptional perceptual and quantitative improvements (+0.24dB) compared to state-of-the-art methods. In addition, our approach substantially reduces FLOPs by 66% and achieves more than a twofold increase in inference speed compared to Transformer-based deblurring methods. We will make our code and annotated blur masks publicly available. | ['Chen Change Loy', 'Chongyi Li', 'Huajun Feng', 'Shangchen Zhou', 'Jixin Zhao', 'Haoying Li'] | 2023-06-25 | null | null | null | null | ['deblurring'] | ['computer-vision'] | [ 5.31876683e-01 -4.46077973e-01 1.80677608e-01 -1.63878635e-01
-6.52805030e-01 -3.82577568e-01 3.19141746e-01 -6.20938480e-01
-4.34712052e-01 7.56043375e-01 5.79882860e-01 -3.45768422e-01
2.30666772e-02 -2.83865809e-01 -6.94741011e-01 -7.87565231e-01
1.48827419e-01 -3.85148168e-01 4.48259413e-01 4.12835538e-01
4.15791184e-01 3.18417788e-01 -1.27669358e+00 2.85921097e-01
1.24663651e+00 9.60222960e-01 6.30338132e-01 1.05008829e+00
5.15814364e-01 1.10161638e+00 -5.91221094e-01 -2.73093075e-01
3.12745839e-01 -3.88895154e-01 -6.76440895e-01 1.57310084e-01
9.17978287e-01 -1.00538993e+00 -6.41045809e-01 1.27040672e+00
4.20397043e-01 2.92393625e-01 3.52287203e-01 -4.58478093e-01
-9.64630961e-01 2.16952577e-01 -1.00843632e+00 6.56761706e-01
3.29288431e-02 4.20138985e-01 4.77596432e-01 -9.30021942e-01
3.04681748e-01 1.11985290e+00 8.02128077e-01 4.84431148e-01
-1.30838609e+00 -3.96426618e-01 -1.77840874e-01 5.84862173e-01
-1.31860518e+00 -7.63870180e-01 5.49878418e-01 -3.26750278e-01
7.48129368e-01 5.27166367e-01 1.16527848e-01 7.17338741e-01
3.93687576e-01 5.33302903e-01 1.14574873e+00 -2.59702951e-01
1.52288333e-01 -3.37601602e-01 3.88778746e-02 5.11981130e-01
2.50794768e-01 2.94782996e-01 -4.01235253e-01 -5.93220927e-02
1.07961023e+00 -7.45111108e-02 -9.57480550e-01 -9.58876982e-02
-1.06810617e+00 2.86011457e-01 4.35845464e-01 -1.26719981e-01
-3.91688615e-01 3.63815188e-01 1.92116201e-01 1.10390857e-01
8.40044260e-01 3.91091138e-01 -3.68793160e-01 -2.28298485e-01
-1.43405783e+00 -4.76233149e-03 2.75925636e-01 5.41597486e-01
4.95714515e-01 -1.30692974e-01 -5.44346035e-01 1.15636301e+00
1.26299441e-01 4.29780155e-01 3.79926920e-01 -1.23647952e+00
3.21741343e-01 7.58031523e-03 5.44901729e-01 -8.11349213e-01
1.18203215e-01 -2.02308893e-01 -1.04648650e+00 4.35976833e-01
2.98683584e-01 -2.05679983e-01 -1.14524972e+00 1.38066959e+00
1.45093471e-01 5.57096720e-01 -2.15156764e-01 1.56508327e+00
2.18167990e-01 7.62096882e-01 -2.22256020e-01 -3.33670318e-01
1.42114854e+00 -1.22227395e+00 -8.31951439e-01 -4.77666646e-01
-1.32324159e-01 -1.03085923e+00 8.36293042e-01 4.43318874e-01
-1.37156129e+00 -5.71310878e-01 -1.05198598e+00 -4.38808084e-01
3.76008779e-01 3.34868789e-01 1.84705660e-01 6.19201124e-01
-1.19123101e+00 6.14051104e-01 -9.63856697e-01 9.99451503e-02
5.96481681e-01 1.09201916e-01 8.12945291e-02 -4.74569380e-01
-1.10206664e+00 1.22068727e+00 -3.20694372e-02 2.64714777e-01
-8.64017725e-01 -9.20897067e-01 -9.38615561e-01 9.87829790e-02
3.53807300e-01 -1.00222027e+00 1.23357964e+00 -8.28521371e-01
-1.59209478e+00 6.04590595e-01 -4.86000121e-01 -8.17787468e-01
9.27903891e-01 -8.09756994e-01 -2.39331558e-01 2.63062745e-01
-1.36458933e-01 4.68779892e-01 1.55390334e+00 -1.06009328e+00
-5.54578066e-01 -5.06031662e-02 -3.88089389e-01 2.74764538e-01
1.24707539e-02 2.95347750e-01 -6.80254102e-01 -1.22455025e+00
-1.74202681e-01 -5.12148201e-01 -2.08701745e-01 1.54052123e-01
-1.02175280e-01 4.40558523e-01 1.12685299e+00 -1.30946875e+00
1.54737914e+00 -2.25868344e+00 1.14574909e-01 -5.50419688e-01
4.30677772e-01 5.79017520e-01 -6.80109560e-02 -2.72264332e-01
4.10057604e-02 -2.45986521e-01 -6.60924792e-01 -3.51460159e-01
-3.86514515e-01 -1.13091722e-01 -4.91487861e-01 7.86245584e-01
4.16320004e-02 7.36809194e-01 -8.19868803e-01 -1.13766752e-01
6.07480705e-01 5.74934185e-01 -3.04572940e-01 3.09314728e-01
5.54804429e-02 1.41001523e-01 2.21798271e-01 4.37007695e-01
1.26972914e+00 -1.70204610e-01 -2.90869385e-01 -4.40598130e-01
-3.22001606e-01 2.76169274e-02 -8.41527820e-01 1.49781477e+00
-6.60503566e-01 1.07259226e+00 4.00284678e-01 -3.09300154e-01
5.16694188e-01 9.54084918e-02 -3.20808440e-02 -2.91416526e-01
2.38393638e-02 1.40876561e-01 -4.12164837e-01 -5.75199544e-01
7.89090812e-01 -2.46103033e-02 4.02228236e-01 1.20839491e-01
-3.68286014e-01 -2.26493016e-01 -1.95366487e-01 -8.23693648e-02
1.16077018e+00 1.53572574e-01 3.85655165e-02 -2.40484715e-01
5.71743429e-01 -4.06927854e-01 3.81878734e-01 7.32428312e-01
-3.38708878e-01 1.11000931e+00 -5.97414114e-02 -3.41247559e-01
-1.10537803e+00 -1.05429316e+00 -1.88006237e-01 8.02684128e-01
6.15068197e-01 2.52838954e-02 -9.85350907e-01 -4.61327016e-01
-2.56422728e-01 9.34932292e-01 -4.37542826e-01 -2.20140159e-01
-6.81719065e-01 -8.66499186e-01 3.40030521e-01 3.08059216e-01
8.92542839e-01 -5.91906726e-01 -7.37328291e-01 6.09347038e-02
-3.45383525e-01 -1.13835347e+00 -1.33748603e+00 -1.47543803e-01
-9.88563538e-01 -9.06261027e-01 -1.27315521e+00 -6.13727868e-01
7.62760162e-01 8.29279363e-01 7.66095281e-01 -2.61102647e-01
-5.04165411e-01 -1.92826718e-01 -3.58773619e-02 2.38833845e-01
-3.61667633e-01 -3.99866164e-01 -1.92416742e-01 1.82183862e-01
2.35312432e-02 -3.98008764e-01 -1.09282470e+00 4.62086529e-01
-9.63778198e-01 2.95688272e-01 6.57004118e-01 9.61150885e-01
7.07811341e-02 2.00737894e-01 9.97906178e-02 -3.54107976e-01
6.71260774e-01 -1.94889322e-01 -8.57868493e-01 4.56625074e-02
-7.08794057e-01 3.42131928e-02 3.74578536e-01 -6.42479181e-01
-1.56579340e+00 -3.17820340e-01 3.52528512e-01 -9.55149949e-01
-4.82717417e-02 2.36397460e-02 5.64443469e-02 -1.70600578e-01
7.30974317e-01 2.69715369e-01 -9.39326435e-02 -6.20395124e-01
5.17423749e-01 8.28536689e-01 9.66342926e-01 -6.95174634e-02
6.39487803e-01 4.41260815e-01 -3.20281297e-01 -9.02999341e-01
-5.62893748e-01 -4.62433189e-01 -1.26524508e-01 -1.75326139e-01
8.18237185e-01 -1.13738501e+00 -4.37883079e-01 1.04273927e+00
-1.20737481e+00 -5.10581732e-01 -5.14864437e-02 4.56198633e-01
-2.35309660e-01 8.84208977e-01 -1.09127021e+00 -7.20408320e-01
-4.82527733e-01 -1.06500471e+00 8.30474734e-01 3.46716523e-01
-1.11773200e-01 -6.72261298e-01 -1.97228134e-01 5.87848425e-01
8.84470999e-01 -1.80041134e-01 4.30062473e-01 4.90934581e-01
-8.11305881e-01 1.19061828e-01 -8.03005397e-01 7.40060389e-01
3.91820282e-01 -2.75513977e-01 -1.12040472e+00 -3.46734464e-01
3.80544245e-01 1.43004730e-01 1.39719439e+00 9.65909123e-01
1.27231562e+00 -6.46796763e-01 -2.25809515e-01 8.76855552e-01
1.32289922e+00 3.84063199e-02 9.78701472e-01 2.71630645e-01
7.44390965e-01 2.07975328e-01 3.82477403e-01 2.56519824e-01
1.46033233e-02 7.58209109e-01 3.15472126e-01 -2.21986309e-01
-7.61638105e-01 1.39153555e-01 4.69580233e-01 2.91416734e-01
3.67195159e-03 -2.19816744e-01 -4.35705334e-01 8.26775312e-01
-1.82662797e+00 -9.62457418e-01 -2.66459256e-01 2.38440299e+00
1.38348913e+00 -5.44503368e-02 -4.47899222e-01 -3.05715144e-01
1.07181871e+00 4.85716283e-01 -7.36769915e-01 -2.04059258e-01
-1.54389456e-01 1.69080630e-01 9.02455866e-01 1.13625181e+00
-1.27148056e+00 9.73492503e-01 5.48622799e+00 9.24561620e-01
-9.60979700e-01 2.70084649e-01 1.02069497e+00 -3.43458325e-01
1.67636469e-01 -1.05698191e-01 -4.05860156e-01 8.02063286e-01
7.14226961e-01 1.70971394e-01 8.50631714e-01 5.53617060e-01
7.51120329e-01 -5.48715889e-01 -6.78082705e-01 1.15539575e+00
3.33980471e-03 -1.28832293e+00 -3.04313719e-01 -1.51811182e-01
9.55126882e-01 9.30868387e-02 1.62648097e-01 -3.71224403e-01
3.44187707e-01 -9.67315793e-01 8.54693949e-01 6.99199378e-01
1.02437699e+00 -5.52897990e-01 7.00088739e-01 1.02574356e-01
-6.90944076e-01 -3.24129686e-02 -3.99896204e-01 -5.80632612e-02
4.15752023e-01 1.16531134e+00 -5.13708353e-01 3.33626479e-01
8.75868559e-01 5.67428112e-01 -2.71473557e-01 1.36693299e+00
-3.91970009e-01 7.24314272e-01 -1.96356848e-02 5.87850213e-01
-1.13964319e-01 -2.68825352e-01 7.93884516e-01 1.41841745e+00
4.01105583e-01 2.83901811e-01 -5.04714131e-01 9.63189244e-01
-1.39427632e-01 -8.32194209e-01 1.18603826e-01 6.04788899e-01
4.37808275e-01 1.00266731e+00 -1.99427575e-01 -4.37195927e-01
-2.50731587e-01 1.82070601e+00 -1.88613996e-01 5.79477966e-01
-1.04022360e+00 -5.71057618e-01 1.13055611e+00 1.37284561e-03
6.71003997e-01 -1.74582168e-01 -5.80525160e-01 -1.41287577e+00
1.30238794e-02 -6.74382865e-01 -1.06595643e-01 -1.16096008e+00
-1.33910298e+00 4.89217401e-01 -1.86827198e-01 -1.06155074e+00
1.81816876e-01 -3.54733616e-01 -5.31399071e-01 1.42416811e+00
-1.60865974e+00 -7.60668159e-01 -5.28682172e-01 2.17953816e-01
9.33385551e-01 5.08537173e-01 1.25752971e-01 2.70013273e-01
-4.74417359e-01 3.79290372e-01 1.64754659e-01 -1.90314829e-01
1.18475473e+00 -1.10077238e+00 7.65391827e-01 1.54197836e+00
-4.91308212e-01 5.32377481e-01 1.06113970e+00 -6.64359033e-01
-9.72500503e-01 -1.22255754e+00 7.22939849e-01 -2.28190258e-01
4.87052500e-01 3.70376259e-02 -1.18734920e+00 1.83919430e-01
5.88634193e-01 1.83203056e-01 -1.69789288e-02 -5.71364701e-01
-2.95820296e-01 -1.45266265e-01 -1.17587495e+00 6.82911873e-01
8.44295382e-01 -4.46295619e-01 -6.30008459e-01 -8.79073516e-02
7.95521021e-01 -7.17889607e-01 -3.99976313e-01 3.90025675e-01
4.13927078e-01 -1.11542261e+00 1.12854052e+00 1.05286807e-01
6.31319046e-01 -7.17957079e-01 2.41706312e-01 -1.34021974e+00
-6.49972081e-01 -1.02125609e+00 -6.37866497e-01 1.01059592e+00
4.30072774e-04 -5.14425695e-01 4.73507196e-01 6.17608309e-01
-1.58246696e-01 -4.29271162e-01 -7.75152385e-01 -4.84951913e-01
-4.26186860e-01 -1.68683976e-01 1.79974064e-01 8.55058014e-01
-3.80266011e-01 8.98780972e-02 -8.12501192e-01 5.70071757e-01
9.45125163e-01 -4.38891836e-02 3.50077122e-01 -4.89517272e-01
-3.55960995e-01 -5.18296480e-01 1.09926173e-02 -1.78392196e+00
-4.09393162e-01 -9.79008302e-02 4.47454989e-01 -1.35798967e+00
3.14717501e-01 -8.62132683e-02 -9.49391797e-02 1.51876718e-01
-7.46022224e-01 4.88056928e-01 -3.22791934e-02 3.80371273e-01
-2.83789486e-01 4.30587292e-01 1.28618073e+00 -1.60398275e-01
-2.31052950e-01 7.88043588e-02 -6.01713717e-01 7.02890277e-01
5.81078708e-01 -2.10457191e-01 -2.60542005e-01 -8.70836496e-01
-2.82419324e-01 1.55693129e-01 7.52309144e-01 -9.07715559e-01
3.66623998e-01 -1.57315999e-01 6.13753200e-01 -3.79124701e-01
2.51037329e-01 -5.99592626e-01 7.93802887e-02 3.47727895e-01
-3.16242397e-01 -3.46679747e-01 2.53988534e-01 6.90760314e-01
-1.25938997e-01 -1.76248282e-01 1.26122391e+00 1.23754770e-01
-5.74874461e-01 -3.65196206e-02 -5.68745434e-01 -1.32822543e-01
7.67037511e-01 -2.61716783e-01 -6.51667237e-01 -4.45857584e-01
-4.15764689e-01 -4.80316803e-02 8.26660216e-01 2.87022561e-01
8.04237604e-01 -7.71891832e-01 -8.14381719e-01 1.77274764e-01
-4.01842713e-01 5.01831956e-02 7.11855173e-01 9.93746459e-01
-8.85912061e-01 2.18469888e-01 6.36517676e-03 -2.95796961e-01
-1.48997033e+00 5.64546347e-01 4.78685915e-01 3.82868014e-02
-6.85369790e-01 1.22281504e+00 4.00048614e-01 5.43512642e-01
1.97347015e-01 -7.79125929e-01 3.28793645e-01 -5.11508107e-01
9.09986913e-01 8.05013001e-01 3.81681100e-02 -2.09806845e-01
-1.41981080e-01 4.17157710e-01 -2.63060957e-01 -1.20887175e-01
1.09651268e+00 -6.93419874e-01 -2.91577756e-01 -1.64660409e-01
9.82620537e-01 4.01104301e-01 -2.14394379e+00 -2.36940384e-01
-2.72071898e-01 -9.67502594e-01 6.60170794e-01 -1.12296045e+00
-1.01742148e+00 6.56617641e-01 8.09136450e-01 -7.11909086e-02
1.63253784e+00 -1.41071007e-01 1.15499437e+00 -3.40462923e-01
5.60831046e-03 -6.75126612e-01 -1.06998578e-01 2.72978365e-01
9.49309647e-01 -1.07695448e+00 2.39279851e-01 -3.57259125e-01
-5.52535594e-01 9.69185710e-01 3.41699243e-01 -1.36667088e-01
2.75407970e-01 3.57978344e-01 2.42916010e-02 3.73413503e-01
-5.66080272e-01 2.00702131e-01 5.04173160e-01 4.12195563e-01
-1.13211072e-03 -1.25614062e-01 -1.86550707e-01 3.57260913e-01
2.98354983e-01 2.41525710e-01 6.24641001e-01 4.32256818e-01
-6.84143066e-01 -5.87275982e-01 -7.75838315e-01 1.93679631e-01
-6.28797531e-01 -5.60565710e-01 9.14180726e-02 -7.59162102e-03
2.22831041e-01 1.11011696e+00 1.49251848e-01 3.82996281e-04
-7.16426075e-02 -4.94159490e-01 4.75921482e-01 -7.13216215e-02
-2.37363636e-01 3.38892132e-01 -4.43839692e-02 -5.95182657e-01
-2.05281079e-01 -5.62057436e-01 -6.69488609e-01 -5.04592896e-01
-4.73346829e-01 -2.70898223e-01 2.74505973e-01 6.11657143e-01
5.88858068e-01 5.69167435e-01 4.01739031e-01 -1.10532784e+00
-5.94874322e-01 -1.18226469e+00 -2.99291670e-01 2.04095505e-02
9.78985071e-01 -2.42623389e-01 -6.50416911e-01 5.05334198e-01] | [11.545602798461914, -2.669739246368408] |
0b018087-55a5-4cb6-a9c1-c06003020012 | bebold-exploration-beyond-the-boundary-of-1 | 2012.08621 | null | https://arxiv.org/abs/2012.08621v1 | https://arxiv.org/pdf/2012.08621v1.pdf | BeBold: Exploration Beyond the Boundary of Explored Regions | Efficient exploration under sparse rewards remains a key challenge in deep reinforcement learning. To guide exploration, previous work makes extensive use of intrinsic reward (IR). There are many heuristics for IR, including visitation counts, curiosity, and state-difference. In this paper, we analyze the pros and cons of each method and propose the regulated difference of inverse visitation counts as a simple but effective criterion for IR. The criterion helps the agent explore Beyond the Boundary of explored regions and mitigates common issues in count-based methods, such as short-sightedness and detachment. The resulting method, BeBold, solves the 12 most challenging procedurally-generated tasks in MiniGrid with just 120M environment steps, without any curriculum learning. In comparison, the previous SoTA only solves 50% of the tasks. BeBold also achieves SoTA on multiple tasks in NetHack, a popular rogue-like game that contains more challenging procedurally-generated environments. | ['Yuandong Tian', 'Joseph E. Gonzalez', 'Kurt Keutzer', 'Yi Wu', 'Xiaolong Wang', 'Huazhe Xu', 'Tianjun Zhang'] | 2020-12-15 | bebold-exploration-beyond-the-boundary-of | https://openreview.net/forum?id=_ptUyYP19mP | https://openreview.net/pdf?id=_ptUyYP19mP | null | ['nethack'] | ['playing-games'] | [-2.77263612e-01 1.07550390e-01 -2.06648454e-01 5.05306870e-02
-7.38850057e-01 -7.42204249e-01 3.42303187e-01 1.30675241e-01
-8.22379887e-01 1.21003354e+00 1.75827872e-02 -4.85118747e-01
-4.05728400e-01 -7.27527857e-01 -7.44229555e-01 -7.86614060e-01
-4.46517289e-01 5.67798197e-01 1.38598472e-01 -7.25120008e-01
6.32113874e-01 2.10654780e-01 -1.49044335e+00 -3.00258458e-01
1.34482741e+00 7.46424079e-01 5.58257341e-01 4.46044207e-01
-9.81877744e-02 9.20823395e-01 -6.85543358e-01 2.55251974e-01
4.95784611e-01 -3.90722245e-01 -1.02306890e+00 -2.34536096e-01
-2.46550012e-02 -4.16507810e-01 -9.40622687e-02 7.82604277e-01
5.56433320e-01 7.31463373e-01 3.86542797e-01 -1.17710459e+00
-1.55301735e-01 9.92393017e-01 -9.98425364e-01 4.29204315e-01
1.53639242e-01 3.43745589e-01 8.82937670e-01 -4.59004611e-01
5.32447100e-01 1.18434429e+00 2.31154844e-01 4.14849043e-01
-1.22222841e+00 -6.70865595e-01 4.81429547e-01 -1.05927408e-01
-1.04870307e+00 2.29818025e-03 4.63386238e-01 -2.83077538e-01
1.00061953e+00 1.31225988e-01 8.90492499e-01 8.06040704e-01
2.10592076e-01 8.24980438e-01 1.44675839e+00 -2.33490184e-01
8.73179853e-01 -1.01031527e-01 -1.45090207e-01 7.37486839e-01
2.05336198e-01 5.50484478e-01 -6.27546787e-01 -1.19472347e-01
1.10281193e+00 -3.15561950e-01 -1.16701752e-01 -8.01780522e-01
-9.29532290e-01 1.10965359e+00 5.10033965e-01 -6.85463026e-02
-2.39019543e-01 4.86834198e-01 3.60356122e-01 3.41405451e-01
7.59051964e-02 1.20667076e+00 -3.56367111e-01 -7.10704565e-01
-6.15623534e-01 7.13821113e-01 6.76617980e-01 8.53863955e-01
9.00100410e-01 2.82392323e-01 -2.23778665e-01 6.82040155e-01
9.40793660e-03 2.65448876e-02 3.34629446e-01 -1.35357976e+00
5.61984599e-01 4.34183776e-01 4.48535293e-01 -7.13626623e-01
-5.94914317e-01 -7.06976414e-01 -4.53591913e-01 8.96724463e-01
3.91654581e-01 -5.00912368e-01 -8.57877910e-01 1.69852281e+00
5.21692395e-01 -2.61853367e-01 9.36963186e-02 1.02272153e+00
6.64361894e-01 3.58451307e-01 5.13411872e-02 -1.43588064e-02
9.55442786e-01 -1.41183281e+00 -5.43039799e-01 -5.64121008e-01
7.42835701e-01 -2.60434210e-01 1.30271876e+00 6.25954747e-01
-1.31984103e+00 -3.29198629e-01 -9.11039710e-01 1.42262638e-01
-3.07525694e-01 -2.18387842e-01 1.18223631e+00 5.22288740e-01
-1.08688068e+00 7.48388469e-01 -7.09084153e-01 -6.53852522e-02
2.07285374e-01 4.10167783e-01 2.90038437e-02 1.94172025e-01
-9.87884462e-01 1.02685285e+00 3.93224925e-01 -1.29738882e-01
-1.46723568e+00 -5.50165057e-01 -8.37748289e-01 1.72067910e-01
1.01309228e+00 -2.72536695e-01 1.41712892e+00 -4.97212499e-01
-1.84013987e+00 5.49782932e-01 3.30363870e-01 -4.64317322e-01
6.55657470e-01 -4.41060901e-01 4.58507776e-01 -2.21603289e-01
1.22262664e-01 1.00804055e+00 4.30840731e-01 -1.26043093e+00
-7.09475279e-01 -2.22244002e-02 6.23175442e-01 8.97151709e-01
2.82599740e-02 -4.14173841e-01 -1.80587620e-01 -4.46861982e-01
4.79795504e-03 -1.06549942e+00 -1.02089643e+00 -4.75721776e-01
-1.68612733e-01 -3.07685971e-01 6.53991327e-02 -1.31241545e-01
1.03598869e+00 -1.88762510e+00 3.74414802e-01 2.17970967e-01
2.26392597e-01 -3.25804800e-01 -3.21482807e-01 3.68577093e-01
2.87533164e-01 2.63277050e-02 -1.32616058e-01 -1.25637680e-01
4.53914935e-03 3.57539356e-01 -2.52810061e-01 7.69091547e-02
-2.45378867e-01 7.25743115e-01 -1.33713520e+00 -3.39627475e-01
1.04193822e-01 -1.48498684e-01 -8.84938478e-01 1.58183753e-01
-3.21568191e-01 6.59308791e-01 -5.90815723e-01 3.77736241e-01
6.38883710e-01 6.50579408e-02 4.23908569e-02 8.30299556e-01
-4.21244204e-01 5.31493723e-01 -1.23263693e+00 2.10038280e+00
-5.52463055e-01 2.08637819e-01 3.14715207e-01 -6.68910384e-01
1.05866361e+00 -3.26528698e-01 5.01073360e-01 -1.01234162e+00
4.06239480e-02 7.91942552e-02 -2.16290262e-02 -2.51383305e-01
1.09026480e+00 4.42054600e-01 -2.22420141e-01 4.88803864e-01
-3.43140662e-01 -5.55908918e-01 5.11314154e-01 2.82680750e-01
1.40771949e+00 6.35246992e-01 3.33513618e-01 -7.26630569e-01
-1.07974790e-01 4.35992390e-01 6.02784038e-01 1.27021646e+00
-3.78485262e-01 2.05934986e-01 8.08479548e-01 -4.92492676e-01
-6.47635162e-01 -1.13741422e+00 1.68500379e-01 1.46443892e+00
6.03490114e-01 -3.68262112e-01 -6.55028462e-01 -6.40238941e-01
-3.92714329e-03 7.48279631e-01 -7.44567275e-01 -4.74483930e-02
-6.57929897e-01 -5.69404662e-01 1.86662093e-01 3.42305779e-01
4.09317285e-01 -1.57017267e+00 -1.29306877e+00 2.40556002e-01
-2.07503527e-01 -5.66253841e-01 -3.67316008e-01 8.56204569e-01
-9.36027527e-01 -9.24066842e-01 -5.95961690e-01 -5.59069514e-01
5.19533575e-01 3.59859318e-01 1.42209065e+00 2.55383346e-02
-3.86438161e-01 1.60052329e-02 -3.99983615e-01 -2.23524675e-01
1.41847998e-01 2.97108501e-01 -8.16130415e-02 -9.60258901e-01
4.21452560e-02 -5.69208562e-01 -7.35348463e-01 3.75304252e-01
-3.72040838e-01 4.71779183e-02 5.26759863e-01 8.63088250e-01
6.55079126e-01 -4.71032672e-02 4.50353533e-01 -6.38138175e-01
9.80448663e-01 -5.37700236e-01 -8.90585780e-01 -7.92101547e-02
-5.89838982e-01 3.47971052e-01 2.81806052e-01 -5.41359901e-01
-1.01109838e+00 -8.74290839e-02 2.59861141e-01 -7.54248202e-02
5.89414779e-03 4.37338173e-01 4.67943460e-01 -1.46660045e-01
1.01206088e+00 7.09029734e-02 -6.22145161e-02 -2.32722983e-01
2.55263001e-01 -5.01970463e-02 1.97572187e-01 -1.15906465e+00
4.67626423e-01 2.36600578e-01 -1.61563605e-01 -4.73990142e-01
-7.08376229e-01 -2.97155410e-01 -4.75350507e-02 -1.44682378e-01
4.58550215e-01 -9.59325671e-01 -1.11850643e+00 9.44784582e-02
-6.90028846e-01 -1.23073661e+00 -6.31646514e-01 3.80439669e-01
-9.12054539e-01 -1.75444353e-02 -5.20428061e-01 -9.66653407e-01
-1.93560302e-01 -1.41520298e+00 6.92314744e-01 6.50024235e-01
-2.09442019e-01 -5.00654101e-01 3.73724192e-01 1.43928975e-01
4.91169453e-01 3.79610300e-01 5.86913586e-01 -1.59823690e-02
-6.11142278e-01 6.06028259e-01 1.86136831e-02 -4.19643551e-01
-2.09822729e-01 -4.89807934e-01 -3.79461944e-01 -5.93975008e-01
-2.93579757e-01 -8.64317775e-01 8.52189422e-01 5.90781689e-01
1.36764073e+00 -2.87720039e-02 -1.16354614e-01 7.71692097e-01
1.37284756e+00 5.25452495e-01 6.45987093e-01 1.07610989e+00
1.72776744e-01 5.30865133e-01 1.18386364e+00 9.75100279e-01
4.70596224e-01 5.31748176e-01 1.01000774e+00 -1.95227578e-01
4.38586473e-01 -2.07354441e-01 3.98037344e-01 2.48470098e-01
-1.82609618e-01 -3.33782472e-02 -7.79606104e-01 6.62581921e-01
-1.96152604e+00 -7.68391371e-01 1.37802422e-01 2.09637785e+00
1.04845166e+00 2.36871719e-01 3.09539318e-01 -2.86067247e-01
3.17573458e-01 2.51105338e-01 -8.96523476e-01 -8.56240869e-01
3.08852136e-01 3.31143022e-01 6.54279053e-01 6.43386066e-01
-8.39842737e-01 1.38383949e+00 6.96361494e+00 8.31134796e-01
-5.81829667e-01 -1.48434177e-01 6.12384200e-01 -6.89508319e-01
-1.80361941e-01 1.17194302e-01 -7.95920908e-01 2.33954683e-01
3.82656485e-01 7.74187455e-03 1.06936026e+00 1.26672959e+00
2.83824891e-01 -9.01938319e-01 -9.65599000e-01 6.28764331e-01
-3.40844572e-01 -1.04517686e+00 -6.11821055e-01 1.13022767e-01
9.64384139e-01 1.46510363e-01 3.29896659e-01 8.59836638e-01
1.28624439e+00 -1.29418588e+00 7.21873999e-01 5.36319092e-02
6.03030741e-01 -1.13820302e+00 3.58805358e-01 3.80286545e-01
-1.02299106e+00 -2.11874574e-01 -4.78579313e-01 -5.32112360e-01
-5.07956930e-02 1.75849020e-01 -6.22321665e-01 1.78865448e-01
1.15785027e+00 1.53648004e-01 -3.01261812e-01 1.12659431e+00
-4.37335670e-01 1.69663131e-01 -3.44869882e-01 -3.60573560e-01
9.20246661e-01 -5.02959371e-01 4.80750173e-01 6.15317643e-01
2.00411782e-01 9.68262330e-02 6.02185547e-01 9.97877955e-01
3.74777883e-01 -1.22141562e-01 -5.64475298e-01 1.77880421e-01
5.71707904e-01 1.26932168e+00 -7.47449279e-01 1.75050590e-02
3.51870090e-01 6.04397416e-01 8.84594440e-01 4.48888183e-01
-9.06350911e-01 -3.20283532e-01 7.65847325e-01 -1.21258236e-01
2.19812006e-01 -4.16719645e-01 -6.18094921e-01 -6.87777638e-01
-1.13694720e-01 -1.10616493e+00 3.39598507e-01 -5.44871449e-01
-5.20276666e-01 4.78412598e-01 7.21054301e-02 -1.00394726e+00
-1.07876956e-01 -2.51934588e-01 -7.35996008e-01 7.68251479e-01
-1.69859052e+00 -3.08154225e-01 -5.01226068e-01 4.66285557e-01
7.76082397e-01 -2.39446148e-01 5.93747437e-01 -2.47952834e-01
-6.22549236e-01 4.57137436e-01 2.14650527e-01 -3.78348827e-01
4.86618042e-01 -1.62409937e+00 3.43472570e-01 3.50438803e-01
-4.03665960e-01 5.62960565e-01 8.99046659e-01 -5.77723980e-01
-1.19894040e+00 -5.72293401e-01 -4.18775976e-02 4.47708145e-02
4.64312315e-01 -1.76018521e-01 -4.70022172e-01 3.61688405e-01
2.91478515e-01 -3.81233215e-01 2.78586686e-01 6.30173147e-01
4.30499613e-02 1.48584545e-01 -9.56914783e-01 9.44299996e-01
1.25578165e+00 1.90947667e-01 -3.82531971e-01 1.88077420e-01
6.34229958e-01 -1.01821721e+00 -4.08512980e-01 1.53185830e-01
2.55583793e-01 -1.10178316e+00 8.66424263e-01 -3.61668885e-01
6.53783441e-01 -9.01488215e-02 2.39400089e-01 -1.82789147e+00
-3.70500773e-01 -9.35418010e-01 3.35827395e-02 6.81216180e-01
3.57563943e-01 -5.18822491e-01 1.28704774e+00 4.22927350e-01
-2.45644748e-01 -1.11736262e+00 -7.20099628e-01 -8.89830947e-01
2.25366145e-01 1.02131769e-01 5.54455876e-01 7.12114453e-01
3.01532447e-01 3.77633311e-02 -4.51919407e-01 -1.89154983e-01
7.36007214e-01 2.13946134e-01 9.38139319e-01 -9.65677202e-01
-4.96303141e-01 -5.30254662e-01 5.40722668e-01 -1.23903513e+00
-1.91109478e-01 -5.50784886e-01 4.12928522e-01 -1.66835535e+00
9.45114344e-02 -1.11022782e+00 -2.23357335e-01 4.94880259e-01
-1.16855036e-02 -3.13926518e-01 1.86738774e-01 -1.08046807e-01
-8.84856641e-01 8.28530908e-01 1.72387445e+00 9.77870226e-02
-8.63872588e-01 -2.95642972e-01 -8.77448857e-01 6.82182252e-01
1.16649163e+00 -4.86205339e-01 -6.34945154e-01 -5.10368824e-01
5.68617940e-01 3.51835907e-01 4.46891412e-02 -1.05572367e+00
8.44544768e-02 -8.70147407e-01 8.04113820e-02 -6.63039207e-01
4.20023948e-01 -4.60632622e-01 -2.11689398e-01 6.63509429e-01
-6.20202422e-01 3.81945461e-01 3.42732906e-01 4.59357291e-01
8.44233297e-03 -3.94803911e-01 5.86623251e-01 -5.62041223e-01
-9.01727200e-01 1.09668985e-01 -5.64676106e-01 5.31263232e-01
1.35822213e+00 -4.31161880e-01 -5.29030263e-01 -3.82165819e-01
-5.19883454e-01 1.00153661e+00 4.18843508e-01 3.18842053e-01
6.68536603e-01 -9.95089054e-01 -4.85647231e-01 -7.54393488e-02
-1.89128637e-01 4.84060258e-01 3.56942087e-01 6.72519922e-01
-6.72777772e-01 1.06279723e-01 -6.31912231e-01 -3.15179199e-01
-9.91316020e-01 4.22599792e-01 3.47326696e-01 -8.40101659e-01
-6.91228926e-01 9.92811680e-01 3.82074356e-01 -6.07029617e-01
6.13581002e-01 -2.21472844e-01 -4.44357067e-01 -6.57974482e-02
2.90310591e-01 5.28149724e-01 -3.05704981e-01 3.33793163e-01
-1.39888018e-01 2.79804379e-01 -2.47299507e-01 -4.13201153e-01
1.35994828e+00 6.90537021e-02 1.66030735e-01 1.44437104e-01
3.40012223e-01 -2.98303187e-01 -1.87421262e+00 2.93562319e-02
-1.40982613e-01 -5.56146741e-01 2.09752351e-01 -9.54296291e-01
-8.81440222e-01 7.34909832e-01 3.80251586e-01 8.45190734e-02
8.26138556e-01 -3.33627224e-01 4.99532729e-01 6.78305626e-01
9.02752459e-01 -1.60314953e+00 4.63726193e-01 8.93410146e-01
1.02158308e+00 -1.12683582e+00 1.60073727e-01 8.55234079e-03
-1.06013882e+00 6.69986010e-01 1.37206006e+00 -2.67821461e-01
2.77604666e-02 3.63541245e-01 -1.79077893e-01 -3.49657834e-01
-9.23709571e-01 -4.00187045e-01 -4.41168368e-01 5.98161936e-01
1.11347273e-01 1.41912863e-01 -5.10419369e-01 1.33384183e-01
-5.78240037e-01 -3.36285293e-01 7.25253642e-01 1.21289730e+00
-7.71655500e-01 -7.60328650e-01 -4.02321011e-01 3.47699612e-01
-1.21125847e-01 2.80106184e-03 -1.29044920e-01 8.56278777e-01
-8.29004720e-02 8.73012125e-01 1.80180922e-01 -1.08316801e-01
4.21475731e-02 -6.16499543e-01 4.91257250e-01 -5.71817875e-01
-9.36054766e-01 -1.21087678e-01 1.02967575e-01 -8.70436192e-01
8.59850869e-02 -4.70782191e-01 -1.50787389e+00 -4.36345845e-01
-2.29820520e-01 4.00468856e-01 5.50072789e-01 5.98155499e-01
2.24181980e-01 7.78482139e-01 6.23682320e-01 -9.76975083e-01
-7.73853719e-01 -6.92339838e-01 -6.86318994e-01 5.97120821e-02
2.16519296e-01 -1.09645486e+00 -3.11191142e-01 -8.04847002e-01] | [3.904327630996704, 1.7408944368362427] |
333c61d5-be7a-4872-ba49-3b4211016af8 | shiva-a-framework-for-graph-based-ontology | 1403.7465 | null | http://arxiv.org/abs/1403.7465v1 | http://arxiv.org/pdf/1403.7465v1.pdf | Shiva: A Framework for Graph Based Ontology Matching | Since long, corporations are looking for knowledge sources which can provide
structured description of data and can focus on meaning and shared
understanding. Structures which can facilitate open world assumptions and can
be flexible enough to incorporate and recognize more than one name for an
entity. A source whose major purpose is to facilitate human communication and
interoperability. Clearly, databases fail to provide these features and
ontologies have emerged as an alternative choice, but corporations working on
same domain tend to make different ontologies. The problem occurs when they
want to share their data/knowledge. Thus we need tools to merge ontologies into
one. This task is termed as ontology matching. This is an emerging area and
still we have to go a long way in having an ideal matcher which can produce
good results. In this paper we have shown a framework to matching ontologies
using graphs. | ['Nisheeth Joshi', 'Hemant Darbari', 'Iti Mathur', 'Ajai Kumar'] | 2014-03-28 | null | null | null | null | ['ontology-matching'] | ['knowledge-base'] | [-3.88204038e-01 1.25242919e-01 -2.22858638e-01 -4.61944759e-01
-1.74109504e-01 -5.88432610e-01 7.31398880e-01 5.97393632e-01
-3.45489889e-01 5.39677858e-01 1.95706546e-01 -3.18938226e-01
-5.64013302e-01 -1.23807645e+00 -1.24788873e-01 -1.30578637e-01
1.61651582e-01 7.22686589e-01 5.85611582e-01 -6.00218952e-01
3.09066355e-01 5.22591531e-01 -1.70843399e+00 2.93343067e-01
8.47080827e-01 6.63978279e-01 3.42858434e-01 9.34558213e-02
-1.20759249e+00 7.33954072e-01 -4.44296718e-01 -7.33491063e-01
1.79064602e-01 -1.47903025e-01 -1.35568690e+00 -3.30027252e-01
5.84810413e-03 3.19344074e-01 3.66359413e-01 1.32478690e+00
2.43074104e-01 -1.86011419e-01 2.90731549e-01 -1.58410668e+00
-6.12910867e-01 6.81676388e-01 1.84928641e-01 -2.75297426e-02
7.69930005e-01 -5.40098071e-01 7.90772974e-01 -2.17870355e-01
1.01276934e+00 1.06944835e+00 6.31294549e-01 3.61126542e-01
-8.34560513e-01 -4.38906312e-01 -1.91373259e-01 1.74921989e-01
-1.45619118e+00 -1.80387124e-01 4.51600701e-01 -6.00901484e-01
7.88413882e-01 4.96580780e-01 5.96449137e-01 4.14832830e-01
6.99059069e-02 -3.58754277e-01 8.86618137e-01 -8.30215335e-01
3.88586856e-02 8.55752826e-01 2.58555263e-01 1.56977311e-01
9.63208556e-01 -4.95880306e-01 -1.78060427e-01 2.60490943e-02
5.08906901e-01 2.91245520e-01 -1.91601560e-01 -4.22481090e-01
-1.01733696e+00 6.07052147e-01 3.38923216e-01 1.30408895e+00
-2.15323523e-01 -1.81795448e-01 3.03008974e-01 6.20741367e-01
-1.56920657e-01 8.01777959e-01 -1.64297849e-01 -2.47262895e-01
-4.22665417e-01 3.53222340e-01 1.26940465e+00 1.06696117e+00
9.63762045e-01 -4.37984109e-01 7.42308557e-01 6.98815823e-01
4.80687320e-01 1.71234429e-01 5.64885020e-01 -9.68088806e-01
2.17016459e-01 1.44081461e+00 2.21110910e-01 -1.24631870e+00
-1.88265234e-01 -1.16815209e-01 -3.51437986e-01 5.15743673e-01
5.88845432e-01 2.81264871e-01 -5.24479032e-01 1.48813462e+00
3.30456227e-01 -6.56068802e-01 4.99120921e-01 5.73615491e-01
9.53415751e-01 3.54186416e-01 1.95671633e-01 1.49013534e-01
1.48139846e+00 -3.55504692e-01 -9.69000816e-01 9.56055745e-02
8.45220685e-01 -9.36908722e-01 6.44435883e-01 1.95575476e-01
-9.74270344e-01 -3.69479001e-01 -8.67934227e-01 -6.75375983e-02
-1.44558692e+00 -8.05264115e-01 7.84841061e-01 8.85310233e-01
-9.95645404e-01 6.54266834e-01 -3.24328601e-01 -9.98768568e-01
6.40281811e-02 2.91875184e-01 -7.81658649e-01 -3.17908637e-02
-1.44214177e+00 1.38761246e+00 9.05958414e-01 -3.75970960e-01
5.47121279e-02 -3.45763624e-01 -5.52960575e-01 6.13911152e-02
5.26183426e-01 -6.96453273e-01 7.97779918e-01 -1.25817597e+00
-7.34283209e-01 1.16887617e+00 1.73483863e-01 -4.06661332e-01
3.45325828e-01 1.89413682e-01 -1.21424806e+00 -2.22821549e-01
4.36116070e-01 2.76127428e-01 -3.03366855e-02 -1.28467178e+00
-1.00590229e+00 -3.70115191e-01 4.00022566e-01 -2.07484663e-01
-5.52801132e-01 5.78805804e-01 -3.57534662e-02 -1.38795137e-01
2.71864772e-01 -5.45377076e-01 -5.22644967e-02 -1.32911921e-01
8.44768807e-02 -2.31324211e-01 7.20190167e-01 -4.93799746e-01
1.61388826e+00 -1.67277718e+00 -2.36577079e-01 3.99944782e-01
1.43960014e-01 2.69198954e-01 4.97703493e-01 1.13159406e+00
-1.17056705e-01 7.44408965e-01 1.00585058e-01 4.65574265e-01
3.99935186e-01 4.91130680e-01 -3.44341286e-02 -1.63775682e-01
-2.30656341e-01 4.29790556e-01 -6.83655083e-01 -7.56202161e-01
-3.07404324e-02 4.18216139e-01 -2.25767627e-01 -1.58190399e-01
-3.38153131e-02 1.30021470e-02 -5.66193938e-01 6.47341907e-01
4.32389051e-01 -5.20003736e-01 6.70889318e-01 7.66610503e-02
-4.59395885e-01 9.25360546e-02 -1.84657133e+00 1.66392410e+00
-4.61023450e-01 3.17105085e-01 -5.23089767e-02 -8.57169390e-01
1.28827131e+00 8.12196493e-01 5.59702992e-01 -6.55000925e-01
2.47017458e-01 8.24634612e-01 2.31552079e-01 -5.62418640e-01
4.35022265e-01 -3.02176893e-01 -5.14900908e-02 3.27038139e-01
-2.19002321e-01 9.74591589e-04 2.55993128e-01 1.05743036e-01
8.35398734e-01 8.68383721e-02 7.02973783e-01 -4.33203638e-01
7.01043546e-01 4.54485625e-01 6.01109207e-01 2.11832196e-01
1.88941076e-01 -2.14730669e-02 3.76200020e-01 -8.58443737e-01
-1.04823339e+00 -7.38299489e-01 -2.52928317e-01 5.24302185e-01
2.37484097e-01 -4.28068787e-01 -3.95901948e-01 -2.83272296e-01
-5.85788600e-02 4.91547644e-01 -1.94475248e-01 4.02428836e-01
-1.80185899e-01 6.86697960e-02 1.84576392e-01 1.12364009e-01
5.02704263e-01 -9.40322220e-01 -9.03653443e-01 5.03895640e-01
7.54628405e-02 -1.09012568e+00 4.57548648e-01 7.75590986e-02
-6.24445319e-01 -1.14444041e+00 -3.39552402e-01 -6.92305982e-01
5.66523254e-01 1.75183937e-01 1.26140487e+00 4.01905507e-01
-2.43080929e-01 3.55161816e-01 -6.74697518e-01 -9.28120732e-01
-7.77569950e-01 2.82643437e-01 -1.95712373e-01 -2.61910439e-01
5.54292262e-01 -8.21278512e-01 -1.68814272e-01 4.64813322e-01
-1.31700957e+00 -7.29159415e-02 2.79814780e-01 1.33730963e-01
1.59671485e-01 1.79239303e-01 9.55734909e-01 -9.38825190e-01
4.62785840e-01 -5.47988653e-01 -5.38035274e-01 7.29092062e-01
-8.32518399e-01 1.48636028e-01 4.25053626e-01 5.27517721e-02
-1.01899123e+00 -2.57161379e-01 1.07048497e-01 1.12591036e-01
-3.44728470e-01 7.27427959e-01 -6.57232881e-01 -2.11878598e-01
4.32523191e-01 -4.69978899e-01 1.65179878e-01 -6.71129525e-01
2.70389527e-01 8.81576359e-01 3.08809072e-01 -6.28286183e-01
7.21437693e-01 4.76768553e-01 2.72227135e-02 -5.60802460e-01
-2.84438908e-01 -6.94821060e-01 -6.80972934e-01 -1.12360567e-01
1.00844300e+00 -5.60655177e-01 -5.31040311e-01 -1.59141168e-01
-1.14656639e+00 2.59422779e-01 -4.57297117e-01 3.46236825e-01
-2.49157965e-01 2.78041691e-01 2.19212756e-01 -7.99720883e-01
-3.65272947e-02 -6.64825261e-01 1.08436935e-01 5.45655608e-01
-4.46191788e-01 -1.19295180e+00 1.78915232e-01 3.59306842e-01
8.01783502e-01 4.64797914e-01 8.71981323e-01 -1.25072420e+00
-6.52350247e-01 -3.54036778e-01 -1.59971744e-01 2.03182429e-01
5.06833255e-01 6.49322718e-02 -6.61192834e-01 2.31786389e-02
-3.57786983e-01 2.15391964e-01 -9.50178578e-02 -4.61423278e-01
5.86244524e-01 -1.96267650e-01 -6.21578574e-01 1.66432828e-01
2.03787279e+00 6.81314528e-01 1.01370704e+00 8.77590001e-01
3.22051913e-01 1.08317018e+00 5.01938999e-01 8.33957642e-02
3.95630449e-01 8.82086158e-01 9.66585949e-02 3.44448015e-02
6.41773827e-03 -5.16637228e-02 -4.01396930e-01 8.99300873e-01
-4.51025307e-01 -5.65459579e-02 -1.36112928e+00 6.90876842e-01
-1.96098816e+00 -1.30998337e+00 -4.14559573e-01 2.35471129e+00
6.06006145e-01 1.70960888e-01 -5.41937463e-02 2.13207275e-01
6.49690032e-01 -2.96072334e-01 1.43020600e-01 -6.78887963e-01
-8.28394443e-02 2.43093837e-02 4.36862499e-01 3.35677326e-01
-4.94604349e-01 6.40167654e-01 5.86432457e+00 3.44854236e-01
-9.67709601e-01 1.24643728e-01 -1.73453271e-01 6.54232621e-01
-7.86108017e-01 6.11340404e-01 -7.89052248e-01 4.35511738e-01
9.87664580e-01 -7.92623997e-01 1.65777534e-01 7.95977414e-01
-9.29601863e-02 -1.10074580e-01 -8.05224776e-01 8.16537082e-01
-2.03271091e-01 -1.56270421e+00 9.14132521e-02 4.20304090e-01
5.56626916e-01 -2.96501279e-01 -8.14680636e-01 -2.22382799e-01
4.58104044e-01 -1.07148933e+00 3.74372065e-01 1.04063106e+00
3.63967955e-01 -5.36812782e-01 9.96136308e-01 1.21298634e-01
-1.29097509e+00 -1.93511508e-02 -3.35021824e-01 -1.84899747e-01
1.99310347e-01 1.20692395e-01 -5.52798510e-01 1.29386878e+00
8.01323473e-01 2.47699618e-01 -3.66118282e-01 1.42144382e+00
3.03183734e-01 -3.39741260e-01 -1.54412985e-01 -1.54957563e-01
-4.74245548e-02 -5.10639369e-01 2.19865367e-01 8.20321023e-01
6.43211484e-01 -1.45418197e-01 9.89411175e-02 7.54147589e-01
1.95837766e-01 5.99478245e-01 -1.01763153e+00 -2.39798576e-01
6.81517184e-01 1.05885935e+00 -8.60623837e-01 -2.74723262e-01
-9.61031437e-01 5.62265873e-01 -4.88218442e-02 -1.01555251e-01
-6.51464641e-01 -6.90124929e-01 7.80176163e-01 5.63458800e-01
9.21852663e-02 -3.10747493e-02 1.35341033e-01 -9.07929480e-01
-1.24546170e-01 -9.78106320e-01 5.64165831e-01 -7.93483496e-01
-1.22898853e+00 5.78376293e-01 1.04122058e-01 -1.21458638e+00
-2.64470220e-01 -6.66141272e-01 -4.13646907e-01 9.91811037e-01
-1.53013492e+00 -1.28609753e+00 -4.48340118e-01 4.04690862e-01
-2.11373478e-01 -1.04781203e-01 1.23381805e+00 6.72245443e-01
5.93615398e-02 -1.54650852e-01 6.33805841e-02 1.44635454e-01
7.78532922e-01 -1.07032716e+00 -1.95246145e-01 6.08913004e-01
2.91283190e-01 9.44691300e-01 7.16208339e-01 -7.74358988e-01
-1.06913638e+00 -3.85984272e-01 1.56239104e+00 -3.70032847e-01
7.45617211e-01 1.47615150e-01 -1.16578281e+00 6.27184987e-01
3.94652247e-01 -1.76335797e-01 1.05906415e+00 1.09293930e-01
-3.15262347e-01 -4.73024964e-01 -1.07810080e+00 3.34997028e-01
1.11800420e+00 -3.64447534e-01 -1.01595974e+00 1.27043098e-01
5.81415534e-01 1.51332527e-01 -1.34753990e+00 2.40382310e-02
6.48278058e-01 -1.37131763e+00 7.50238299e-01 -7.85736799e-01
-1.26989871e-01 -6.48642421e-01 -3.22137505e-01 -8.24306309e-01
-7.64013082e-03 -6.76938593e-01 8.87154043e-01 1.76153767e+00
5.55354953e-01 -1.37115872e+00 4.49153543e-01 1.20372415e+00
-4.57768813e-02 -3.41433957e-02 -8.18973720e-01 -1.28033161e+00
-8.23701248e-02 -4.39734727e-01 1.36413670e+00 1.56127226e+00
4.00875807e-01 1.22282617e-02 1.35538220e-01 5.59219019e-03
2.84448624e-01 3.19239706e-01 9.13259029e-01 -2.07696009e+00
2.42281452e-01 -5.41813910e-01 -8.56707036e-01 8.02332014e-02
-2.13694721e-01 -7.76358664e-01 -7.62528121e-01 -2.19491291e+00
-8.79948810e-02 -7.69873619e-01 -2.18798459e-01 4.69820887e-01
5.27212143e-01 -2.42146626e-01 2.38942102e-01 3.04012954e-01
-3.74707609e-01 -4.05964971e-01 1.04405379e+00 2.99547881e-01
2.44845934e-02 -4.28953141e-01 -1.11126518e+00 7.22169697e-01
8.06141973e-01 -5.58196187e-01 -3.21123004e-01 -3.58247757e-02
8.87143135e-01 -8.71062353e-02 1.88971668e-01 -1.31819260e+00
5.21986783e-01 -4.64560777e-01 -4.01868001e-02 -2.95730960e-02
1.37131903e-02 -1.56396151e+00 1.28332579e+00 4.94469523e-01
7.22611472e-02 2.23560497e-01 -1.93411678e-01 1.17191508e-01
-5.77829003e-01 -7.40462720e-01 4.73412812e-01 -6.05044603e-01
-1.17853487e+00 3.76927145e-02 3.52004617e-02 -3.07085607e-02
1.20336545e+00 -7.77839065e-01 -4.03059095e-01 -2.83240229e-01
-7.44066179e-01 2.58625567e-01 1.13910890e+00 5.87731183e-01
-4.13993448e-02 -1.27192664e+00 -3.43790144e-01 -1.54534906e-01
4.50966746e-01 -3.83226693e-01 -1.11039639e-01 3.71916413e-01
-6.55465364e-01 5.85859895e-01 -8.05983484e-01 3.33703216e-03
-1.33495593e+00 6.64643347e-01 4.38538939e-01 -2.58435398e-01
-5.16626120e-01 2.93801039e-01 -2.84210771e-01 -3.78020227e-01
-1.85460206e-02 -1.59545422e-01 -6.25991523e-01 3.20792079e-01
5.46500266e-01 3.62603724e-01 -2.06291489e-02 -8.46133709e-01
-5.80534041e-01 7.13424146e-01 4.01491106e-01 -1.07841929e-02
1.30538094e+00 -1.87111750e-01 -5.41677177e-01 6.33778155e-01
9.12850142e-01 3.60488236e-01 -1.94153592e-01 -3.29421833e-02
5.97577393e-01 -7.83811808e-01 -3.19215775e-01 -8.57887805e-01
-6.25346065e-01 4.07351673e-01 5.76296687e-01 1.21093571e+00
7.99893916e-01 2.40127131e-01 3.60031605e-01 1.58832356e-01
7.06363022e-01 -1.26800394e+00 -5.10152638e-01 1.90878987e-01
7.32755363e-01 -1.11991930e+00 1.22293875e-01 -6.57618225e-01
-4.22077984e-01 1.40351617e+00 3.58204186e-01 3.42689872e-01
5.89571297e-01 2.16901854e-01 4.66910839e-01 -5.96235454e-01
-3.30507696e-01 -7.20157623e-01 2.66036261e-02 8.54230464e-01
5.68970263e-01 -5.37011065e-02 -8.86866927e-01 4.82367963e-01
-9.40293744e-02 2.46207446e-01 4.89825666e-01 1.18259370e+00
-7.86129653e-01 -1.96120536e+00 -4.83367652e-01 1.75390646e-01
-7.35042751e-01 3.45381200e-01 -4.40929443e-01 1.23446882e+00
6.23239756e-01 8.80202115e-01 1.02974467e-01 -6.39714822e-02
5.20740449e-01 5.08271813e-01 2.53409505e-01 -5.78644216e-01
-7.47355342e-01 -4.12178636e-01 5.66708028e-01 -4.63743687e-01
-8.19367588e-01 -3.96743208e-01 -1.47411263e+00 -4.98236269e-01
-3.35073173e-01 7.81496525e-01 9.33720887e-01 6.98216915e-01
3.77586097e-01 3.12782317e-01 2.07604200e-01 1.06084697e-01
-1.69886842e-01 -4.00623471e-01 -7.49389470e-01 6.44115329e-01
-3.96935910e-01 -7.15337574e-01 -9.75357275e-03 2.13917628e-01] | [9.165251731872559, 7.926514148712158] |
24111f8f-63d5-4399-8e32-69fa41a8a9f1 | omega-a-probabilistic-approach-to-referring | null | null | https://aclanthology.org/2020.inlg-1.36 | https://aclanthology.org/2020.inlg-1.36.pdf | OMEGA : A probabilistic approach to referring expression generation in a virtual environment | In recent years, referring expression genera- tion algorithms were inspired by game theory and probability theory. In this paper, an al- gorithm is designed for the generation of re- ferring expressions (REG) that base on both models by integrating maximization of utilities into the content determination process. It im- plements cognitive models for assessing visual salience of objects and additional features. In order to evaluate the algorithm properly and validate the applicability of existing models and evaluative information criteria, both, pro- duction and comprehension studies, are con- ducted using a complex domain of objects, pro- viding new directions of approaching the eval- uation of REG algorithms. | ['Maurice Langner'] | null | null | null | null | inlg-acl-2020-12 | ['referring-expression-generation'] | ['computer-vision'] | [ 2.42746070e-01 3.43829244e-01 -2.55387556e-02 -3.48352581e-01
-4.28775102e-01 -7.00900733e-01 5.84678888e-01 5.38468182e-01
-6.28095925e-01 7.38008142e-01 3.72973084e-01 -3.78624290e-01
-7.96440005e-01 -1.09058011e+00 6.48084730e-02 -1.28267799e-02
-2.88901199e-02 2.63707548e-01 -1.55864909e-01 -2.31230006e-01
7.79003799e-01 5.72845995e-01 -1.94151461e+00 1.97343796e-01
1.09040630e+00 9.80808198e-01 2.59635538e-01 5.01024365e-01
-2.95219928e-01 1.11553776e+00 -5.28608561e-01 -1.04377878e+00
-2.31381327e-01 -7.13556588e-01 -9.81468320e-01 1.97069153e-01
-1.27680540e-01 -2.42714033e-01 -2.61944413e-01 1.24121761e+00
3.57237548e-01 4.88221318e-01 9.03174996e-01 -1.30738258e+00
-1.01423872e+00 7.94244647e-01 6.82439506e-02 4.02759492e-01
9.64190602e-01 -7.41066337e-02 1.46470416e+00 -7.36501992e-01
8.81033659e-01 1.50806677e+00 1.50712073e-01 3.38186085e-01
-1.01632977e+00 -2.19442710e-01 1.48894936e-01 6.87946498e-01
-1.33384383e+00 -2.23068506e-01 8.24365973e-01 -2.32257262e-01
1.00170982e+00 6.73650444e-01 9.76977587e-01 6.82704389e-01
-8.01750794e-02 1.07622755e+00 1.46041608e+00 -8.18016946e-01
4.51029807e-01 1.87542483e-01 3.28110516e-01 3.01896453e-01
3.91454399e-01 2.51996160e-01 -9.10622776e-01 5.48415957e-03
6.99284375e-01 -7.32222617e-01 -1.57334059e-01 -2.96305269e-01
-7.42281318e-01 8.08403015e-01 2.59240597e-01 5.43687105e-01
-9.03107703e-01 -1.40330389e-01 1.86466679e-01 1.53641567e-01
2.61109114e-01 8.55895340e-01 1.84673801e-01 -5.62043905e-01
-6.16252303e-01 4.57564175e-01 6.82383418e-01 8.15576017e-01
3.52687120e-01 1.41924158e-01 -7.85753906e-01 6.69034183e-01
5.79579532e-01 8.03209767e-02 3.78149986e-01 -1.09566498e+00
-2.39422191e-02 6.23572946e-01 3.40314716e-01 -9.21585083e-01
-5.05358756e-01 -2.44899586e-01 -1.15944073e-01 2.40142524e-01
1.90901354e-01 -1.83022901e-01 -4.59083676e-01 1.74570858e+00
-1.52747491e-02 -5.38277209e-01 2.05710396e-01 7.78164864e-01
9.75587130e-01 4.38926697e-01 6.38834357e-01 -5.08269608e-01
1.54837787e+00 -4.07509893e-01 -1.16565537e+00 4.00785096e-02
6.70112967e-01 -4.07180756e-01 1.30058181e+00 6.61886692e-01
-1.53914690e+00 -3.75257730e-01 -1.04458380e+00 7.40446448e-02
-4.70592380e-01 -3.75444174e-01 1.04584956e+00 9.98517811e-01
-1.24023438e+00 3.31898689e-01 1.12093752e-02 -5.72534978e-01
4.54618603e-01 -3.32907997e-02 1.08515136e-02 -4.19186652e-02
-1.19912899e+00 1.25368166e+00 5.93324840e-01 -4.77469936e-02
-4.47854131e-01 -3.18729728e-01 -8.08646381e-01 1.88227326e-01
3.36159319e-01 -8.44913960e-01 1.14477456e+00 -1.50836718e+00
-1.54992580e+00 1.06050861e+00 8.88622031e-02 3.32920365e-02
2.81297982e-01 -5.63161001e-02 -6.69627666e-01 3.09880853e-01
1.67370677e-01 5.31719685e-01 3.98739725e-01 -1.29199982e+00
-4.28972214e-01 -4.39036608e-01 3.69260311e-01 9.41447139e-01
-1.82867542e-01 5.37867010e-01 -5.59717566e-02 -7.98730254e-01
-5.79271801e-02 -1.87054306e-01 -9.73176304e-03 2.41709370e-02
-3.55564766e-02 -4.29612488e-01 1.89500228e-01 -2.59882659e-01
1.51304138e+00 -1.84848595e+00 1.41310975e-01 2.40154818e-01
2.84664482e-01 -2.67437045e-02 -2.23470405e-01 5.10321498e-01
-1.63345888e-01 1.66816354e-01 1.03806697e-01 1.91654831e-01
4.39165801e-01 2.03339353e-01 1.80402115e-01 3.34847011e-02
9.72269401e-02 1.08304381e+00 -8.92634392e-01 -6.87317133e-01
1.87573910e-01 5.25502935e-02 -4.41545099e-01 5.33589959e-01
-1.77580655e-01 -3.20177197e-01 -4.29672360e-01 6.14292741e-01
4.82122838e-01 -5.20290509e-02 1.61252528e-01 2.16047436e-01
-2.93912411e-01 3.50331336e-01 -1.28640103e+00 1.33565485e+00
-1.55184120e-01 7.34989822e-01 -1.54148459e-01 -7.82558203e-01
9.39433336e-01 8.14846903e-02 1.43857181e-01 -1.05912662e+00
7.19212413e-01 -3.18593979e-01 2.26213947e-01 -8.82952988e-01
8.42944205e-01 -2.80064076e-01 -3.25761735e-02 3.95659804e-01
2.22572193e-01 -4.28839236e-01 4.70202357e-01 3.14072162e-01
6.52978659e-01 3.97793263e-01 7.56841779e-01 -3.69842798e-01
2.99658865e-01 1.66852072e-01 1.71760857e-01 8.29235673e-01
-3.85515600e-01 1.60806715e-01 7.78595746e-01 9.99356136e-02
-7.26398647e-01 -1.25913405e+00 -2.48081878e-01 1.31354833e+00
2.26478949e-01 -5.63949466e-01 -1.08045268e+00 -1.63934484e-01
-4.85655844e-01 1.70444572e+00 -6.94146574e-01 -4.51760888e-02
3.25650543e-01 -7.58122742e-01 4.39675927e-01 5.29994965e-01
4.45723116e-01 -1.42438698e+00 -1.34093106e+00 4.24981117e-01
-3.48861903e-01 -7.31595993e-01 4.06398565e-01 2.92908967e-01
-6.97544873e-01 -8.64439011e-01 -5.30959547e-01 -4.47111666e-01
4.39301103e-01 2.02506542e-01 1.39172399e+00 2.32371286e-01
-1.56895623e-01 8.74239802e-01 -8.67362440e-01 -7.32411027e-01
-1.81345388e-01 -5.11537611e-01 -4.15482253e-01 -3.66513640e-01
8.67085278e-01 -4.52963561e-01 -2.89578497e-01 9.35677290e-02
-8.83048117e-01 6.25944734e-02 6.27843976e-01 5.26241779e-01
3.47294241e-01 -3.21524381e-03 6.22003734e-01 -4.65597451e-01
1.50129783e+00 -6.18066549e-01 -4.51631784e-01 4.77167159e-01
-7.20469832e-01 -2.16576666e-01 -2.15832472e-01 -1.64538428e-01
-1.43576121e+00 -5.98222911e-01 -1.75568864e-01 1.72140256e-01
-2.48982742e-01 7.70060956e-01 -4.90564764e-01 6.36937767e-02
9.15145457e-01 1.09952196e-01 -1.60531133e-01 1.42333329e-01
8.20460916e-01 3.89223188e-01 4.43511397e-01 -8.15928102e-01
1.76782250e-01 -1.65060446e-01 -1.23564981e-01 -7.82010436e-01
-4.67242360e-01 -1.12297662e-01 -2.74768114e-01 -9.11259592e-01
8.35998952e-01 -4.81200844e-01 -7.95790434e-01 2.80539215e-01
-1.04385900e+00 -1.54000938e-01 -5.87274969e-01 4.82414901e-01
-9.41058517e-01 4.29368824e-01 -1.91937536e-01 -1.31936622e+00
9.13862810e-02 -7.97303200e-01 4.40788686e-01 5.69399655e-01
-5.28056204e-01 -8.08660984e-01 -2.70024896e-01 2.44437173e-01
5.39861798e-01 1.23048633e-01 1.04908991e+00 -5.31933367e-01
-4.68425930e-01 -4.08319868e-02 -4.50460434e-01 -1.94748595e-01
-4.50604230e-01 -1.43547550e-01 -8.84796798e-01 4.42344844e-01
2.75186837e-01 -4.68519688e-01 3.21664184e-01 4.62378830e-01
1.06386268e+00 -5.30628450e-02 2.20535636e-01 1.46664688e-02
1.46684647e+00 4.90204841e-01 1.25775719e+00 6.21685147e-01
-2.80415893e-01 1.05015790e+00 1.00168800e+00 8.92003834e-01
4.35663313e-01 4.66590375e-01 5.53362429e-01 4.41279143e-01
-6.93023801e-02 -3.34700555e-01 -7.03100786e-02 1.98682487e-01
-5.00881374e-01 -6.83597624e-01 -7.49537468e-01 4.67999101e-01
-1.73035705e+00 -1.04610896e+00 -4.23735566e-02 1.95689571e+00
5.47734082e-01 1.21751979e-01 1.59074590e-01 -4.46652882e-02
4.98775989e-01 1.50769278e-01 -3.05545002e-01 -4.87857997e-01
-5.22135079e-01 2.81750381e-01 2.31938753e-02 5.13010800e-01
-4.97488886e-01 1.07325697e+00 7.60747671e+00 8.67683768e-01
-3.13275993e-01 -1.23813696e-01 7.12622464e-01 2.09944904e-01
-7.00710177e-01 -1.03340581e-01 -1.71934187e-01 -8.26691929e-03
7.11930454e-01 -7.54141212e-01 5.82269967e-01 7.93203294e-01
1.94704965e-01 -7.54027486e-01 -7.40155399e-01 9.59118485e-01
3.04505467e-01 -9.03538823e-01 1.73384652e-01 -3.62695336e-01
2.07681045e-01 -7.46100247e-01 1.58651516e-01 3.75081569e-01
5.12295842e-01 -1.12550581e+00 8.97043526e-01 8.44838917e-01
4.95090365e-01 -8.08038354e-01 8.04595172e-01 -1.32084358e-02
-5.27449965e-01 5.33549301e-02 -5.20472288e-01 -6.51494920e-01
2.31753871e-01 4.05294113e-02 -3.74252588e-01 5.08391976e-01
5.71745276e-01 2.14360893e-01 -7.31384158e-01 1.20036614e+00
-5.43213427e-01 3.25280786e-01 5.22770770e-02 -9.30359304e-01
1.08210877e-01 -2.35806152e-01 6.19759917e-01 1.06744611e+00
4.80894774e-01 5.72240829e-01 -4.15711105e-01 1.27452826e+00
2.33512849e-01 6.71523035e-01 -5.79032600e-01 -2.06429437e-01
8.53276372e-01 1.21075702e+00 -1.02419293e+00 -2.91684031e-01
-4.19647843e-01 9.18060362e-01 4.39682037e-01 4.63619918e-01
-8.12874734e-01 -4.63656425e-01 3.72876793e-01 -5.50591983e-02
-4.66589816e-02 -1.78505227e-01 -8.63805294e-01 -6.94734216e-01
-2.99494088e-01 -5.76729834e-01 4.55325246e-01 -1.57373095e+00
-1.23880982e+00 4.64757234e-01 6.35425270e-01 -8.14895809e-01
-2.56067246e-01 -6.46424592e-01 -5.91342092e-01 9.05135512e-01
-1.12203300e+00 -9.50008571e-01 -3.77388686e-01 5.03098071e-01
1.79380357e-01 6.88549504e-02 9.46950912e-01 -4.45253998e-01
-2.89280593e-01 4.62138802e-01 -3.22216630e-01 -3.97962600e-01
1.64622247e-01 -1.31605339e+00 -4.60168533e-02 7.82292008e-01
-1.51481922e-03 4.28942859e-01 9.06463087e-01 -5.91721773e-01
-1.18173683e+00 -2.75170207e-01 8.90637517e-01 -2.49809757e-01
6.39609456e-01 -2.42105015e-02 -7.48801649e-01 3.06976140e-01
4.65688556e-01 -8.47545266e-01 1.22521710e+00 1.84108302e-01
2.05313772e-01 6.57310843e-01 -1.23491549e+00 8.94080341e-01
1.14333951e+00 -3.68017673e-01 -1.18848050e+00 -1.72071651e-01
2.92627811e-01 -2.04028293e-01 -7.82944500e-01 -1.69375136e-01
2.18433335e-01 -1.15832162e+00 9.14652109e-01 -7.20956028e-01
4.49996233e-01 1.18171334e-01 -4.94968086e-01 -1.17227376e+00
-7.34736860e-01 -5.68250000e-01 3.37129831e-01 1.09878540e+00
3.69044930e-01 -3.51742566e-01 6.50406659e-01 1.04225445e+00
-1.09309942e-01 -4.76762205e-01 -9.31858659e-01 -5.77094853e-01
-3.93590750e-03 -9.38329816e-01 5.48643231e-01 8.35527122e-01
6.37391508e-01 4.89290535e-01 4.17776443e-02 -2.56274998e-01
5.59390545e-01 -3.65909159e-01 2.92617500e-01 -1.45365250e+00
-1.19975843e-02 -7.83386827e-01 -4.88226622e-01 -8.71192575e-01
1.79012939e-01 -6.50054038e-01 -1.83756784e-01 -1.74458313e+00
1.49418160e-01 6.75184280e-02 -2.05955371e-01 3.20909858e-01
-4.08729494e-01 -2.52062261e-01 4.97361451e-01 -1.77182078e-01
-7.57928073e-01 7.75808334e-01 1.15225446e+00 3.92451435e-01
-1.81324631e-01 -3.36193353e-01 -1.33783317e+00 8.45686674e-01
8.23876560e-01 -1.21673018e-01 -6.43987358e-01 1.20878249e-01
6.89498901e-01 3.20613682e-01 4.33191746e-01 -7.62510359e-01
-3.24969785e-03 -4.22552407e-01 4.33369249e-01 -5.74435353e-01
4.48761821e-01 -7.38143504e-01 2.72154398e-02 1.21989541e-01
-5.55150270e-01 2.55262762e-01 3.85232270e-01 3.50356281e-01
-2.46788859e-01 -9.41347182e-01 4.59136635e-01 -2.24914253e-01
-1.34161663e+00 -3.64774019e-01 -9.27106380e-01 2.33322848e-02
1.17947459e+00 -7.68252850e-01 -1.05076637e-02 -7.36860275e-01
-8.10227394e-01 2.96505336e-02 2.65708566e-01 3.60487610e-01
9.14126694e-01 -1.41227794e+00 -6.41055226e-01 -2.78298259e-01
3.26994628e-01 -7.90099978e-01 4.36230868e-01 3.84070128e-01
-5.47188699e-01 2.98473418e-01 -7.87032545e-01 1.50055498e-01
-1.22459567e+00 7.73005188e-01 1.04867630e-01 3.63022722e-02
-9.06129777e-02 7.19403267e-01 1.58485979e-01 1.66199818e-01
1.37510329e-01 5.42680696e-02 -9.28397357e-01 2.94728369e-01
5.09790599e-01 7.12523222e-01 -3.51702422e-01 -6.75106883e-01
4.52560261e-02 -5.52079827e-03 3.60065490e-01 -5.19180119e-01
1.09267771e+00 -3.75010848e-01 -3.44928026e-01 4.19422656e-01
5.25463820e-01 -4.30527061e-01 -7.57695735e-01 1.17112659e-02
9.80176628e-02 -7.96117604e-01 2.58325666e-01 -1.29419148e+00
-3.77910942e-01 6.43726230e-01 6.47103488e-01 3.77893895e-01
1.44038010e+00 1.64664969e-01 -4.48606431e-01 3.66722435e-01
4.12164956e-01 -1.47980225e+00 1.38237476e-01 2.53120154e-01
1.06734240e+00 -7.17353225e-01 -8.79967511e-02 -6.88449621e-01
-1.09202158e+00 1.36674237e+00 7.75473535e-01 1.72484294e-01
4.25651371e-01 7.22170575e-03 -2.89511353e-01 -6.18777275e-01
-5.73209107e-01 -7.27247894e-01 1.78316891e-01 1.11219454e+00
7.57446051e-01 4.04552788e-01 -1.23421502e+00 1.07668889e+00
-3.09764802e-01 1.69938773e-01 7.18551517e-01 1.07464802e+00
-7.20243633e-01 -7.91505873e-01 -5.80851436e-01 5.18802226e-01
-3.81567121e-01 -3.09432864e-01 -7.79364526e-01 1.05298889e+00
-1.81190401e-01 1.28513420e+00 9.44897011e-02 -1.77633554e-01
4.81553167e-01 7.84203708e-02 6.94355845e-01 -3.05581927e-01
-4.52561289e-01 -1.00933820e-01 7.36641645e-01 -4.89197820e-01
-8.01705658e-01 -7.56244838e-01 -9.79636490e-01 -2.82364845e-01
-5.35988569e-01 9.71641168e-02 4.30516720e-01 7.34678268e-01
1.92118615e-01 7.67239511e-01 6.02701008e-02 -5.34120560e-01
-1.00581758e-01 -1.03878367e+00 -9.40228879e-01 3.16625476e-01
-7.83043563e-01 -8.86118948e-01 -1.04992330e-01 -2.84329623e-01] | [9.429643630981445, 6.942612648010254] |
5200fcb9-6ca3-49d0-a9e2-c59224fa7b34 | tspnet-hierarchical-feature-learning-via | 2010.05468 | null | https://arxiv.org/abs/2010.05468v1 | https://arxiv.org/pdf/2010.05468v1.pdf | TSPNet: Hierarchical Feature Learning via Temporal Semantic Pyramid for Sign Language Translation | Sign language translation (SLT) aims to interpret sign video sequences into text-based natural language sentences. Sign videos consist of continuous sequences of sign gestures with no clear boundaries in between. Existing SLT models usually represent sign visual features in a frame-wise manner so as to avoid needing to explicitly segmenting the videos into isolated signs. However, these methods neglect the temporal information of signs and lead to substantial ambiguity in translation. In this paper, we explore the temporal semantic structures of signvideos to learn more discriminative features. To this end, we first present a novel sign video segment representation which takes into account multiple temporal granularities, thus alleviating the need for accurate video segmentation. Taking advantage of the proposed segment representation, we develop a novel hierarchical sign video feature learning method via a temporal semantic pyramid network, called TSPNet. Specifically, TSPNet introduces an inter-scale attention to evaluate and enhance local semantic consistency of sign segments and an intra-scale attention to resolve semantic ambiguity by using non-local video context. Experiments show that our TSPNet outperforms the state-of-the-art with significant improvements on the BLEU score (from 9.58 to 13.41) and ROUGE score (from 31.80 to 34.96)on the largest commonly-used SLT dataset. Our implementation is available at https://github.com/verashira/TSPNet. | ['Hongdong Li', 'Hanna Suominen', 'Ben Swift', 'Kaihao Zhang', 'Xin Yu', 'Chenchen Xu', 'Dongxu Li'] | 2020-10-12 | null | http://proceedings.neurips.cc/paper/2020/hash/8c00dee24c9878fea090ed070b44f1ab-Abstract.html | http://proceedings.neurips.cc/paper/2020/file/8c00dee24c9878fea090ed070b44f1ab-Paper.pdf | neurips-2020-12 | ['sign-language-translation'] | ['computer-vision'] | [ 3.98427635e-01 -4.57475185e-01 -4.83121097e-01 -4.64827955e-01
-7.50546515e-01 -6.48902953e-01 4.64105994e-01 -5.34548998e-01
-4.65481728e-01 4.99078602e-01 4.98098582e-01 -9.47323143e-02
3.85721698e-02 -3.25667053e-01 -5.82633376e-01 -6.32057667e-01
9.59286094e-02 1.21576205e-01 5.76392889e-01 2.93513015e-02
2.29475215e-01 2.07058534e-01 -1.49579561e+00 4.42515880e-01
1.02228820e+00 8.51411343e-01 1.52623564e-01 4.86335427e-01
-2.88955271e-01 9.14540112e-01 -5.66684186e-01 -1.57250270e-01
2.90889859e-01 -1.01463497e+00 -7.01990485e-01 3.40756506e-01
6.72422945e-01 -6.46418691e-01 -4.87732202e-01 1.01472044e+00
4.17304873e-01 1.48409247e-01 4.00005490e-01 -1.31658256e+00
-6.64508879e-01 4.06819046e-01 -5.53062201e-01 5.98209240e-02
2.73295820e-01 4.38667506e-01 1.10224891e+00 -7.62899399e-01
1.02521384e+00 1.08984292e+00 3.96393895e-01 6.00614011e-01
-7.14645684e-01 -6.85359001e-01 3.68710697e-01 7.17874587e-01
-1.21623850e+00 -1.72414839e-01 6.90091550e-01 -3.17646921e-01
7.18482137e-01 2.39717767e-01 1.08224273e+00 1.00738955e+00
-2.04219639e-01 1.27949166e+00 1.17667055e+00 -2.46189147e-01
1.57592341e-03 -7.04226077e-01 9.59875211e-02 7.96842337e-01
8.48723277e-02 -9.40447971e-02 -5.31954467e-01 3.19425344e-01
9.82294679e-01 6.84093833e-02 -2.71438569e-01 -4.30933386e-01
-1.44918191e+00 4.98290122e-01 4.87227768e-01 6.22017145e-01
-4.62545663e-01 4.17126596e-01 5.38102210e-01 1.78096429e-01
-1.05541006e-01 -6.78967237e-02 -2.26542518e-01 -5.08897603e-01
-9.14877951e-01 3.24646868e-02 3.34004760e-01 8.19013715e-01
2.99776107e-01 8.58975481e-03 -3.79736096e-01 6.93076313e-01
4.03535813e-01 7.03289986e-01 6.24452055e-01 -1.19724393e+00
5.28292477e-01 5.61628222e-01 -4.17137705e-02 -6.35448456e-01
-1.24525994e-01 -1.57950923e-01 -4.51001465e-01 5.81275299e-02
6.61622047e-01 1.08560510e-01 -1.55327785e+00 1.70731354e+00
1.49466962e-01 3.32089871e-01 -1.43835902e-01 1.43688321e+00
7.31876194e-01 5.08672416e-01 2.84337461e-01 2.39266269e-02
1.38488853e+00 -1.20340741e+00 -8.50968063e-01 -2.90530436e-02
4.95110244e-01 -8.02205682e-01 1.22024047e+00 1.72305658e-01
-8.96573067e-01 -2.63445824e-01 -7.72376239e-01 -2.08307579e-01
-1.78226173e-01 3.33114237e-01 4.05414999e-01 2.73190856e-01
-8.97414863e-01 2.78554887e-01 -1.07237959e+00 -5.79453588e-01
5.38800001e-01 1.17160022e-01 -2.43413478e-01 -3.43735188e-01
-1.01127183e+00 6.81732297e-01 3.57433707e-01 2.60192484e-01
-4.89696741e-01 -2.99098313e-01 -8.19126606e-01 -1.86559305e-01
4.91318434e-01 -6.11752570e-01 1.43369186e+00 -1.30809951e+00
-1.57377291e+00 7.42870331e-01 -6.09576941e-01 -2.58469969e-01
8.61566901e-01 -2.45321587e-01 -2.55902231e-01 6.47136867e-01
7.28774816e-02 8.02087128e-01 8.34527969e-01 -1.05646265e+00
-7.73504317e-01 -6.41575456e-02 1.58762991e-01 3.41690153e-01
-1.46786598e-02 3.71769339e-01 -8.49930048e-01 -8.53524923e-01
4.00861204e-01 -9.72791135e-01 2.35422049e-02 3.57478261e-01
-1.26057804e-01 -1.99096248e-01 1.05082738e+00 -1.04798627e+00
1.14754665e+00 -1.91590059e+00 1.43541455e-01 1.51992857e-01
1.69532537e-01 5.14041305e-01 -3.93983960e-01 2.41068587e-01
3.02822649e-01 -1.29102692e-01 -4.98717189e-01 -8.82873964e-03
1.16099920e-02 5.23146033e-01 9.12829265e-02 2.98599005e-01
1.27404496e-01 1.20511103e+00 -1.06115294e+00 -6.60905242e-01
3.88563782e-01 6.40815973e-01 -5.11706769e-01 -1.45109043e-01
-2.56428927e-01 7.08016574e-01 -6.06039166e-01 1.00500619e+00
4.47599292e-01 -3.49371791e-01 2.43355170e-01 -1.98845744e-01
-1.82063550e-01 3.11022520e-01 -8.10020685e-01 1.84322965e+00
-1.87191516e-01 8.29613447e-01 -1.62038386e-01 -9.43479538e-01
5.02811253e-01 1.59840703e-01 8.26278448e-01 -7.83496261e-01
2.78815597e-01 4.77895230e-01 8.28120485e-02 -8.51723492e-01
2.04115421e-01 6.17568521e-03 -4.88929898e-02 4.53535348e-01
-9.64549258e-02 1.64182454e-01 6.16266549e-01 1.14516774e-03
9.05637920e-01 3.62647742e-01 2.07826048e-01 3.43049049e-01
3.96065950e-01 5.83242252e-02 8.40144992e-01 4.81766909e-01
-5.63802421e-01 7.37959027e-01 3.67401809e-01 -2.81037509e-01
-8.47701788e-01 -1.11874735e+00 2.19901919e-01 9.40385401e-01
3.96895558e-01 -2.97238767e-01 -6.91304266e-01 -8.62849653e-01
-2.02462319e-02 4.32216883e-01 -4.59662378e-01 8.98843110e-02
-1.03734708e+00 -3.03195775e-01 4.45238113e-01 8.44793856e-01
9.22692358e-01 -1.17262352e+00 -9.02907372e-01 -8.07044059e-02
-6.63369238e-01 -1.19324803e+00 -1.08553720e+00 -4.82896179e-01
-8.29946995e-01 -1.13177490e+00 -1.09179771e+00 -1.07617366e+00
7.38095105e-01 3.14719468e-01 5.19635260e-01 3.46786268e-02
-2.64178842e-01 4.44947362e-01 -7.20525146e-01 7.91493282e-02
-1.48620903e-01 -1.29940942e-01 -2.75735766e-01 9.95238498e-02
5.36781549e-01 -4.71191525e-01 -8.17218244e-01 4.41179246e-01
-1.09996367e+00 3.24370295e-01 8.31327379e-01 9.33020949e-01
5.77935338e-01 -6.81130469e-01 2.01884270e-01 -1.33975521e-01
2.70092726e-01 3.90981734e-02 -4.25193518e-01 5.24417460e-01
-2.22768024e-01 1.14578649e-01 2.50849009e-01 -5.66582024e-01
-9.03419673e-01 3.39415483e-02 1.09575793e-01 -4.91330236e-01
-9.17465836e-02 4.41593558e-01 -6.84798956e-02 -1.85103163e-01
3.63057740e-02 5.97476125e-01 7.54784569e-02 -3.78776699e-01
5.03584623e-01 6.50179982e-01 5.70195794e-01 -3.14717352e-01
7.17430174e-01 4.84594226e-01 -2.46582538e-01 -6.31588817e-01
-5.79030097e-01 -5.98358989e-01 -8.58918250e-01 -5.52247167e-01
9.16782618e-01 -5.61360180e-01 -5.19553125e-01 7.08412766e-01
-9.51933026e-01 -4.33736414e-01 -2.88702577e-01 6.52708530e-01
-7.49064386e-01 8.27518940e-01 -6.82549179e-01 -4.12210464e-01
-1.59197882e-01 -1.08395207e+00 1.07122898e+00 2.99205214e-01
-1.72572926e-01 -5.55524468e-01 -2.50628531e-01 6.22078955e-01
3.30791950e-01 3.28037173e-01 4.57021862e-01 -1.80928454e-01
-9.68013763e-01 -6.87195733e-02 -6.47825897e-01 4.04872060e-01
2.97826201e-01 -9.20686424e-02 -5.15534282e-01 -1.20718539e-01
-5.30290961e-01 -1.78672537e-01 1.13347673e+00 5.18105268e-01
9.35032368e-01 -2.43694335e-01 -4.67142276e-02 5.82729340e-01
1.19829142e+00 4.45488274e-01 5.29219806e-01 2.31545195e-01
8.52368355e-01 4.59016025e-01 7.80617535e-01 3.60371977e-01
4.41986740e-01 7.80549586e-01 5.03514223e-02 8.20329133e-03
-6.38590455e-01 -4.60689425e-01 5.18730521e-01 9.60216403e-01
-4.26261008e-01 -7.39221349e-02 -8.62971187e-01 6.85212791e-01
-2.05915284e+00 -9.47789967e-01 1.63969085e-01 1.93231332e+00
7.53562689e-01 -1.76383525e-01 2.05141023e-01 -3.10740853e-03
7.12781847e-01 1.93589628e-01 -7.63775289e-01 -1.90680232e-02
-3.23908061e-01 -3.86103764e-02 5.40260196e-01 3.98692399e-01
-1.07280600e+00 1.20482802e+00 4.93576908e+00 6.38565302e-01
-1.38515508e+00 1.66669011e-01 -6.71306476e-02 -1.42502412e-01
-5.45955859e-02 -1.66243427e-02 -2.84398586e-01 5.61129808e-01
3.72086197e-01 -1.58761561e-01 2.95220941e-01 4.41260129e-01
5.67221165e-01 -4.50977646e-02 -6.35459960e-01 1.06115794e+00
2.56031752e-01 -1.00524342e+00 2.23119140e-01 -5.43965064e-02
7.90462971e-01 1.54936969e-01 -8.02747533e-02 1.49252769e-02
2.04114933e-02 -6.33660674e-01 9.77561712e-01 5.67576587e-01
7.89194286e-01 -3.22518736e-01 6.46239758e-01 -1.97079778e-01
-1.53253782e+00 -6.74211010e-02 1.87455028e-01 1.45758167e-01
6.43336773e-01 1.04638580e-02 -5.39417267e-01 4.02157128e-01
5.75473070e-01 1.11798859e+00 -3.60047579e-01 1.46698320e+00
-6.28973365e-01 6.46643817e-01 -4.19754297e-01 -1.06857382e-01
6.64185345e-01 -2.13446751e-01 6.44823432e-01 1.17900920e+00
4.63248312e-01 2.42242873e-01 2.33575359e-01 5.35505414e-01
-3.44515070e-02 1.48179531e-01 -2.87422508e-01 -1.26857460e-01
1.90683618e-01 5.21373391e-01 -8.49361897e-01 -5.82995236e-01
-5.69100976e-01 1.39859867e+00 -2.09905177e-01 6.79599345e-01
-9.48006809e-01 -4.10141468e-01 8.57182324e-01 -8.14991966e-02
8.04451346e-01 -3.55598986e-01 -2.02091530e-01 -1.52429283e+00
4.67005700e-01 -7.66897798e-01 4.07271057e-01 -7.01563239e-01
-1.04273140e+00 2.90973008e-01 -4.01726104e-02 -1.68447423e+00
-3.45137507e-01 -5.18095970e-01 -3.43856603e-01 4.00054753e-01
-1.68766296e+00 -1.32734835e+00 -4.59485769e-01 6.59093738e-01
7.59636581e-01 2.80544579e-01 3.40822101e-01 3.46114635e-01
-3.10016990e-01 6.67341113e-01 2.36989647e-01 5.26505291e-01
7.55710602e-01 -9.55170333e-01 2.92706519e-01 1.07359159e+00
1.82889611e-01 4.56280053e-01 4.24765050e-01 -6.65384769e-01
-9.82367158e-01 -9.01266038e-01 1.22154665e+00 -1.52961254e-01
6.44270241e-01 6.27688840e-02 -7.17775643e-01 5.34409225e-01
1.67477839e-02 5.90548143e-02 3.59601974e-01 -5.55051148e-01
-5.71186125e-01 4.05490510e-02 -1.02681398e+00 7.96324492e-01
1.59092665e+00 -4.75288123e-01 -7.25674927e-01 1.75410688e-01
4.01908606e-01 -4.69975293e-01 -6.45002306e-01 4.35284883e-01
1.12859905e+00 -6.60372317e-01 8.32579792e-01 -4.26001757e-01
4.15144801e-01 -5.59709728e-01 -5.37370592e-02 -8.07660341e-01
6.00054152e-02 -4.58177954e-01 -4.37539518e-02 7.08728254e-01
7.36393183e-02 -6.03897095e-01 7.79664636e-01 4.45858985e-01
-2.24349231e-01 -5.93120635e-01 -1.12070620e+00 -1.05647373e+00
-2.56989568e-01 -3.29935193e-01 3.77289981e-01 8.11244428e-01
6.19466156e-02 -1.47209689e-01 -5.23485720e-01 -1.57830894e-01
7.70403981e-01 5.55157244e-01 4.76497948e-01 -8.83883953e-01
-1.06814886e-02 -8.35620880e-01 -6.64266884e-01 -1.45233262e+00
-3.11851837e-02 -8.35686088e-01 2.71067262e-01 -1.82948458e+00
1.54382527e-01 8.39141682e-02 -4.35911000e-01 7.83612311e-01
-1.13769025e-01 5.51484644e-01 6.49737358e-01 3.41135919e-01
-9.04822290e-01 6.58699691e-01 1.62177920e+00 -2.26311371e-01
-2.67018348e-01 -2.73566604e-01 -2.10313305e-01 7.02891409e-01
1.07619667e+00 -2.31582642e-01 -2.56170273e-01 -6.29069746e-01
-5.66979229e-01 -1.24099545e-01 5.06927907e-01 -8.50825191e-01
9.92342159e-02 -2.39979610e-01 9.46113653e-03 -6.10157013e-01
1.86979443e-01 -6.37230337e-01 -1.83400542e-01 6.93874002e-01
-3.64416838e-01 -1.69094503e-01 -3.91658619e-02 5.17070234e-01
-5.45928717e-01 5.04065398e-03 6.14637494e-01 -1.05435411e-02
-1.29713142e+00 2.80155510e-01 -5.04723549e-01 1.40178055e-02
1.00019133e+00 -4.44696933e-01 -1.36113390e-01 -4.17265713e-01
-6.52463794e-01 4.06437546e-01 5.36592185e-01 7.21920609e-01
8.36970329e-01 -1.42983532e+00 -5.36995709e-01 1.38303697e-01
2.96809852e-01 -3.85444105e-01 4.17024463e-01 1.14994991e+00
-7.51956940e-01 6.37984931e-01 -4.95283961e-01 -7.06660211e-01
-1.64056563e+00 -6.29671616e-03 2.43057042e-01 -3.22880633e-02
-9.45040286e-01 6.75192952e-01 -8.27689841e-02 -6.83705881e-02
3.27682734e-01 -9.54593480e-01 -2.57680826e-02 -2.44199522e-02
3.54394764e-01 1.61840349e-01 -4.11293060e-01 -9.61035788e-01
-3.45111996e-01 1.12961161e+00 1.51714414e-01 -1.96540132e-01
1.03426504e+00 -1.97485775e-01 3.17456387e-02 2.03760400e-01
1.20803583e+00 -3.34282517e-01 -1.54570198e+00 -4.54174340e-01
1.28316745e-01 -7.21433163e-01 -2.18564793e-01 -9.25048828e-01
-1.21552277e+00 6.89550042e-01 5.99532008e-01 -5.37244439e-01
1.45903885e+00 6.81430846e-02 1.39258909e+00 3.27258945e-01
4.30081636e-01 -1.06320298e+00 1.02591731e-01 5.80801249e-01
8.34094703e-01 -1.31732428e+00 -3.41228455e-01 -2.67139673e-01
-8.18971932e-01 1.03213596e+00 3.12433451e-01 9.85743105e-03
3.18822056e-01 -1.53616965e-01 4.91986364e-01 2.51712906e-03
-3.35514039e-01 -6.26810908e-01 5.38569093e-01 4.60898399e-01
2.41073608e-01 2.67886464e-02 -8.78676534e-01 2.86340207e-01
9.80211422e-02 4.17113185e-01 2.02266291e-01 1.19406652e+00
-4.46964383e-01 -1.25950527e+00 -2.76021093e-01 3.14284414e-01
-1.51290044e-01 8.73360410e-03 -4.67139304e-01 7.86199272e-01
1.95558637e-01 6.85993373e-01 -1.80038288e-01 -3.00877213e-01
3.91002744e-01 2.64698535e-01 6.54434264e-01 -1.08276553e-01
-2.23451287e-01 3.13924283e-01 4.57500806e-03 -8.23238075e-01
-1.01966524e+00 -1.08464015e+00 -1.54011703e+00 8.84286165e-02
1.40394941e-01 -2.00231507e-01 4.33319956e-01 9.83485639e-01
1.83636576e-01 4.20441836e-01 1.43550530e-01 -7.42714584e-01
-2.18586430e-01 -9.28560495e-01 -3.40632766e-01 6.31746948e-01
3.80189419e-01 -7.12135971e-01 -1.19608417e-01 3.74487102e-01] | [9.251214027404785, -6.541750907897949] |
d2e36998-9118-4b68-b279-ccb1f07deab6 | multilayer-deep-feature-extraction-for-visual | 2208.10044 | null | https://arxiv.org/abs/2208.10044v1 | https://arxiv.org/pdf/2208.10044v1.pdf | Multilayer deep feature extraction for visual texture recognition | Convolutional neural networks have shown successful results in image classification achieving real-time results superior to the human level. However, texture images still pose some challenge to these models due, for example, to the limited availability of data for training in several problems where these images appear, high inter-class similarity, the absence of a global viewpoint of the object represented, and others. In this context, the present paper is focused on improving the accuracy of convolutional neural networks in texture classification. This is done by extracting features from multiple convolutional layers of a pretrained neural network and aggregating such features using Fisher vector. The reason for using features from earlier convolutional layers is obtaining information that is less domain specific. We verify the effectiveness of our method on texture classification of benchmark datasets, as well as on a practical task of Brazilian plant species identification. In both scenarios, Fisher vectors calculated on multiple layers outperform state-of-art methods, confirming that early convolutional layers provide important information about the texture image for classification. | ['Joao B. Florindo', 'Antonio Elias Fabris', 'Lucas O. Lyra'] | 2022-08-22 | null | null | null | null | ['texture-classification'] | ['computer-vision'] | [ 2.55259216e-01 -2.18469903e-01 -1.07771665e-01 -3.25079829e-01
-3.09122860e-01 -5.46914518e-01 6.32782042e-01 4.39124227e-01
-4.70459521e-01 4.11854953e-01 -1.33946195e-01 5.32606877e-02
-4.89548773e-01 -9.29232180e-01 -5.08288205e-01 -9.06448007e-01
-2.78935194e-01 3.09061408e-01 1.70795575e-01 -3.26092124e-01
2.69877970e-01 9.50898468e-01 -1.90626299e+00 8.02559555e-01
3.35355818e-01 1.61488867e+00 1.81766629e-01 5.53057134e-01
-1.86916143e-01 7.28173494e-01 -5.34388542e-01 -2.17307776e-01
4.23535444e-02 -2.17410326e-02 -8.87102604e-01 9.98092517e-02
5.18957794e-01 -2.45928839e-01 3.23644541e-02 9.39939082e-01
1.14077456e-01 -1.54102176e-01 1.07305038e+00 -9.86006081e-01
-5.93875647e-01 4.44254428e-01 -3.26246917e-01 1.17724314e-01
2.88875531e-02 -1.66875944e-01 9.68512297e-01 -8.07586133e-01
7.30532825e-01 1.10749114e+00 8.09128165e-01 8.18102434e-02
-1.41391468e+00 -2.12569430e-01 -4.28575054e-02 4.33700711e-01
-1.42703342e+00 -2.62728542e-01 6.31827950e-01 -7.16213048e-01
7.24859178e-01 3.03658277e-01 4.19012815e-01 1.07970834e+00
2.38717541e-01 6.91017985e-01 1.29987252e+00 -4.44263369e-01
1.65288314e-01 1.66804403e-01 1.49384931e-01 5.27066052e-01
2.17510134e-01 -2.27424335e-02 -2.89644361e-01 2.18832031e-01
6.00834668e-01 -1.22181915e-01 -6.29199073e-02 -4.15661901e-01
-1.02132738e+00 6.64567471e-01 6.97457492e-01 9.64029312e-01
-7.38590121e-01 -2.07498029e-01 4.81193990e-01 4.91117686e-01
6.14848793e-01 3.97775233e-01 -5.42990804e-01 9.34495851e-02
-8.78016651e-01 -8.84645269e-04 7.85887122e-01 2.23480687e-01
7.15156853e-01 -8.87070224e-03 -1.96800858e-01 8.56673956e-01
-5.89772910e-02 4.57034707e-01 4.63607252e-01 -4.43747908e-01
4.11735959e-02 8.41478288e-01 -2.37549827e-01 -1.42966175e+00
-3.93784076e-01 -5.34867406e-01 -1.01169825e+00 5.75212002e-01
8.77823114e-01 4.61913764e-01 -7.46935964e-01 1.40735829e+00
2.41751354e-02 -3.27952772e-01 3.64060961e-02 7.34099865e-01
8.34410250e-01 4.38302457e-01 1.11021735e-01 2.34133124e-01
1.43382323e+00 -6.09419882e-01 -3.67464602e-01 9.22720656e-02
5.38618565e-01 -9.88388419e-01 7.94303715e-01 7.70003915e-01
-4.15597498e-01 -9.84011710e-01 -1.03809881e+00 2.10869387e-01
-9.57989633e-01 8.03046584e-01 6.38749599e-01 6.85028434e-01
-9.17608976e-01 1.05659962e+00 -5.85491955e-01 -6.07543588e-01
7.59618402e-01 4.26426381e-01 -9.23888624e-01 -2.40901280e-02
-7.10444629e-01 9.98799860e-01 6.75457358e-01 3.44513357e-01
-6.41619265e-01 -4.68867034e-01 -7.14891613e-01 4.37811196e-01
8.99072513e-02 1.88731968e-01 7.89069653e-01 -1.43122959e+00
-1.35606587e+00 9.68309999e-01 2.34294489e-01 -4.13702726e-01
4.87099409e-01 3.44691277e-02 -2.26810798e-01 5.78286797e-02
-9.05419141e-02 7.03391194e-01 8.14826250e-01 -1.23783934e+00
-6.88235343e-01 -3.81968230e-01 -1.94908343e-02 -3.54791105e-01
-6.98020577e-01 -2.24683106e-01 1.15027763e-02 -4.15306270e-01
5.16148992e-02 -8.60644341e-01 -1.43443672e-02 2.29322001e-01
-1.31151617e-01 -3.33714694e-01 1.06958318e+00 -6.45200789e-01
7.76761293e-01 -2.29684901e+00 1.66039407e-01 2.94047266e-01
1.75457090e-01 5.46031117e-01 -3.73468399e-01 3.59564930e-01
-4.19110090e-01 7.65298381e-02 -3.55734453e-02 3.77355553e-02
-8.13203752e-02 2.03246683e-01 -6.39106706e-02 3.74130487e-01
6.21014655e-01 7.92104900e-01 -5.68152606e-01 -4.30009395e-01
6.17572665e-01 6.79091036e-01 -1.17759362e-01 2.59934715e-03
1.66795384e-02 3.33210468e-01 -4.04358685e-01 6.30691350e-01
8.75967026e-01 -2.40028366e-01 1.82316512e-01 -6.12905681e-01
-1.82483450e-01 -1.57340780e-01 -1.18098164e+00 1.26456130e+00
-5.33361375e-01 9.82821345e-01 -2.55435735e-01 -1.33710992e+00
9.68196690e-01 2.12476343e-01 5.29495716e-01 -7.31092155e-01
4.50343609e-01 4.42533761e-01 3.02838951e-01 -2.99772680e-01
3.50342363e-01 2.51076370e-01 1.72696680e-01 2.05779299e-01
4.93446529e-01 -1.01661928e-01 4.27886039e-01 -3.99926126e-01
5.65340340e-01 2.36662209e-01 3.94744575e-01 -5.61698616e-01
8.51778030e-01 -3.01232319e-02 -3.98053303e-02 6.57480538e-01
-1.18793495e-01 5.71226776e-01 8.82759273e-01 -9.54692006e-01
-1.08145130e+00 -5.94211876e-01 -5.02398908e-01 8.96177053e-01
-1.59628540e-01 -3.05909365e-01 -7.91559279e-01 -6.43287539e-01
2.13347167e-01 1.51239961e-01 -1.36504066e+00 -1.01030074e-01
-2.16029122e-01 -7.42807925e-01 5.01946568e-01 4.11926985e-01
5.34649849e-01 -1.09353852e+00 -8.49548519e-01 2.95871884e-01
-1.11066699e-02 -1.16512191e+00 4.15884495e-01 5.38277388e-01
-8.63676727e-01 -1.20986032e+00 -7.05218315e-01 -5.49557388e-01
5.45579135e-01 7.52803460e-02 1.08620155e+00 1.26162782e-01
-5.59123039e-01 -2.19850540e-02 -4.64680135e-01 -4.60044026e-01
-4.20029670e-01 4.68883485e-01 -3.26168001e-01 3.01205158e-01
4.20683771e-01 -2.43733168e-01 -4.09523100e-01 3.96523088e-01
-1.01937687e+00 -1.81824222e-01 7.88879693e-01 9.56728041e-01
2.27222234e-01 2.41008490e-01 1.86139375e-01 -6.31670177e-01
4.46474582e-01 -1.96093768e-01 -5.48767149e-01 2.45091036e-01
-3.36025834e-01 1.10367619e-01 6.27913535e-01 -3.99592847e-01
-6.83203757e-01 1.80077866e-01 -2.48310611e-01 -8.47414136e-02
-6.66986227e-01 6.28467143e-01 2.18393818e-01 -4.61184442e-01
8.85619044e-01 -1.42278876e-02 2.31020123e-01 -5.26103556e-01
-1.49492368e-01 6.07603312e-01 1.43849269e-01 -5.49455285e-01
4.63070601e-01 3.91370088e-01 3.53853911e-01 -1.06746507e+00
-9.06988680e-01 -3.75941396e-01 -1.15597808e+00 -3.22912395e-01
8.75188172e-01 -4.07454103e-01 -9.48126733e-01 7.83558369e-01
-9.24793959e-01 -1.05126210e-01 -2.46341079e-01 4.03974265e-01
-3.12583089e-01 2.79585004e-01 -4.07541156e-01 -7.40366876e-01
-7.51476586e-02 -1.41404915e+00 1.15397394e+00 1.27289489e-01
2.14608591e-02 -1.06747055e+00 -2.27468386e-01 8.93883258e-02
7.80975044e-01 5.14479220e-01 8.89229000e-01 -6.08871877e-01
-1.71153679e-01 -4.74672556e-01 -5.42020738e-01 7.32280493e-01
3.95985276e-01 3.29844266e-01 -1.47204280e+00 -9.63464677e-02
-2.66484380e-01 -4.36423302e-01 1.09800744e+00 2.75156438e-01
1.46478212e+00 1.59940571e-01 -1.97799027e-01 3.76218170e-01
1.50605762e+00 -5.29441945e-02 5.54106653e-01 4.83770400e-01
4.77815866e-01 9.29980874e-01 4.54758048e-01 3.20877314e-01
-7.12563246e-02 7.51590848e-01 7.09640801e-01 -4.56170022e-01
-4.69100215e-02 3.65278125e-01 -4.11390886e-02 3.28566343e-01
-3.77130330e-01 -1.38502464e-01 -9.56856072e-01 4.51520115e-01
-1.74068832e+00 -8.56965005e-01 -2.85670489e-01 2.18760896e+00
3.60643655e-01 2.19467223e-01 4.70749848e-02 5.83203971e-01
4.53333020e-01 -2.04734318e-02 -9.99002904e-02 -4.02219445e-01
-4.48037654e-01 5.16785026e-01 5.34886718e-01 1.50378216e-02
-1.63761461e+00 9.15817618e-01 6.02456760e+00 9.83485997e-01
-1.67515218e+00 -2.27819324e-01 8.57491553e-01 6.19535804e-01
4.84814048e-01 -3.58232737e-01 -2.39483282e-01 1.94601566e-01
7.02879190e-01 3.33874613e-01 2.52478898e-01 9.67344224e-01
-1.88521549e-01 -1.75458595e-01 -1.00083554e+00 8.24583948e-01
3.59906144e-02 -1.30990827e+00 1.34877935e-01 2.78745592e-01
5.39754570e-01 -8.88627619e-02 2.36198887e-01 8.55319947e-02
-8.79631788e-02 -1.38411021e+00 6.20518386e-01 4.43343818e-01
6.20931029e-01 -7.39304602e-01 1.32025647e+00 -1.61202718e-02
-1.20545363e+00 -1.48213446e-01 -6.19395554e-01 -3.90056409e-02
-4.76631939e-01 6.23996735e-01 -7.63315737e-01 9.21073794e-01
9.01527822e-01 7.04340637e-01 -1.08922625e+00 9.38604474e-01
1.00979395e-01 4.52481151e-01 -3.09160978e-01 -1.72298178e-02
6.33775055e-01 2.34462731e-02 -5.06860949e-02 1.32647550e+00
3.81149054e-01 -3.77640665e-01 9.10650268e-02 7.47872233e-01
3.40723276e-01 4.65833247e-01 -8.23558927e-01 -2.89626211e-01
-2.52926439e-01 1.74661398e+00 -1.15247476e+00 -2.24895939e-01
-2.03883916e-01 7.48101413e-01 1.91057995e-01 1.15873255e-02
-4.13282543e-01 -3.90276313e-01 4.70221847e-01 -1.40020341e-01
4.90687072e-01 -1.85216352e-01 -2.19554722e-01 -9.29322660e-01
-2.26152584e-01 -8.74449313e-01 2.74942815e-01 -7.05768049e-01
-1.10152793e+00 9.73615944e-01 -2.21661076e-01 -1.19252777e+00
-1.36139393e-01 -1.56978095e+00 -3.33983988e-01 8.88374627e-01
-1.37038064e+00 -1.59410155e+00 -6.45255685e-01 4.18441921e-01
3.22677702e-01 -3.37197930e-01 1.14319289e+00 3.45265061e-01
-1.79264665e-01 3.42240959e-01 1.27244666e-01 1.66402385e-01
5.42504370e-01 -1.27122915e+00 8.36259872e-02 5.90959191e-01
2.84399331e-01 3.21820736e-01 4.50932980e-01 -2.02702820e-01
-1.10770833e+00 -6.07231081e-01 8.58828545e-01 -3.72571737e-01
6.35829687e-01 -3.16103101e-01 -9.60070193e-01 8.48617330e-02
1.04245201e-01 1.23221353e-01 5.29516935e-01 2.18789011e-01
-4.16845083e-01 -1.99517161e-01 -1.03718126e+00 2.42696255e-01
5.74074090e-01 -5.49158931e-01 -1.03294350e-01 1.84444904e-01
-2.17153311e-01 -1.61551014e-01 -1.03693604e+00 5.19737422e-01
9.46964204e-01 -1.05255175e+00 8.94698083e-01 -6.40681267e-01
8.04581225e-01 -1.73211709e-01 -3.06443572e-01 -1.35039711e+00
-4.15469795e-01 3.20387304e-01 5.97390354e-01 9.53243017e-01
2.92888254e-01 -3.97921354e-01 7.61294246e-01 -7.32654110e-02
2.42449164e-01 -4.69306052e-01 -7.98234165e-01 -6.18385017e-01
8.69635418e-02 -2.36320883e-01 4.34607416e-01 1.05212617e+00
-5.00278413e-01 -4.29380983e-02 -2.46693864e-01 -6.02600537e-02
3.62511188e-01 2.37930894e-01 6.37942433e-01 -1.82366180e+00
1.43920541e-01 -9.08459008e-01 -1.01899195e+00 -2.11863935e-01
2.43757695e-01 -8.36990952e-01 -2.38349333e-01 -1.25905073e+00
1.20600104e-01 -4.00768965e-01 -5.06166875e-01 7.32574821e-01
1.68716744e-01 6.91328526e-01 1.40312865e-01 2.11642664e-02
-1.74118325e-01 2.47191131e-01 1.25209439e+00 -4.48960155e-01
2.88718641e-01 -2.38776013e-01 -3.79347235e-01 6.02582633e-01
7.20909178e-01 -3.04606348e-01 -6.37127981e-02 -3.84881854e-01
9.44807827e-02 -4.44090158e-01 5.56480646e-01 -1.24279463e+00
-3.38915400e-02 6.90805912e-02 8.75713706e-01 -3.89180869e-01
1.79712772e-01 -1.17830682e+00 2.46787891e-01 7.59115219e-01
-2.53451586e-01 -1.55668825e-01 4.22597945e-01 4.03722450e-02
-5.47215641e-01 -4.11480427e-01 8.42079043e-01 -9.76329222e-02
-9.43870187e-01 1.43526852e-01 -4.76990640e-01 -5.84871829e-01
6.43898189e-01 -4.14206237e-01 -1.48015246e-01 -1.23167582e-01
-8.43952954e-01 -4.48092401e-01 3.71412605e-01 6.45713627e-01
1.79441869e-01 -1.32503700e+00 -7.41465032e-01 3.79620552e-01
4.87391591e-01 -4.40377235e-01 3.17595750e-01 9.02123868e-01
-8.71159315e-01 5.00989854e-01 -1.08164704e+00 -1.15511727e+00
-1.40012074e+00 3.59920412e-01 4.77824718e-01 -3.10549676e-01
-3.52098316e-01 5.33112943e-01 1.95175290e-01 -4.33014959e-01
8.25146586e-02 -3.99665385e-01 -8.08598638e-01 5.21947563e-01
3.52637053e-01 -5.15034460e-02 6.19762003e-01 -7.58300602e-01
-4.24944550e-01 7.10891902e-01 -4.06548232e-02 2.23546758e-01
1.49595511e+00 4.18297172e-01 -2.37281844e-01 3.70329469e-01
1.25392497e+00 -3.00639004e-01 -8.82378519e-01 -6.49643764e-02
2.91263074e-01 -5.89975715e-01 2.19866306e-01 -7.71307409e-01
-1.20778298e+00 1.03915846e+00 1.16212451e+00 5.31098247e-01
1.05383527e+00 -3.11389416e-01 1.28388116e-02 7.02893078e-01
3.08684915e-01 -1.02008307e+00 5.04532643e-02 6.13017082e-01
8.55385721e-01 -1.50769079e+00 -1.32562846e-01 -3.26355696e-01
-3.83711308e-01 1.75385928e+00 3.38856757e-01 -2.52541006e-01
8.02466154e-01 1.34569958e-01 3.11636388e-01 -2.58832753e-01
-5.31021416e-01 -3.95504892e-01 5.71986616e-01 6.45200491e-01
7.61136949e-01 2.02425048e-01 -2.68319130e-01 2.59288430e-01
-3.40096541e-02 -4.27693650e-02 3.64092112e-01 7.92191386e-01
-2.42093325e-01 -1.28215981e+00 -2.34618619e-01 4.26025927e-01
-7.12589025e-01 1.02757640e-01 -6.12360120e-01 9.94929731e-01
1.87604085e-01 7.24901617e-01 1.11524694e-01 -4.74678487e-01
2.82457441e-01 -6.89420924e-02 6.19234681e-01 -2.39339992e-01
-8.80487502e-01 -7.54943043e-02 5.64263202e-02 -5.33027709e-01
-4.15598422e-01 -5.23006499e-01 -2.61180282e-01 -2.22803324e-01
-3.74877423e-01 2.75145583e-02 1.11947477e+00 9.39488828e-01
9.66781750e-02 7.45697796e-01 5.32544076e-01 -1.16046143e+00
-4.47787941e-01 -1.11705291e+00 -5.77495575e-01 7.45779276e-01
2.16160670e-01 -9.14360940e-01 -1.66033268e-01 9.78967734e-03] | [10.225089073181152, -0.3243653476238251] |
a6a6b447-ce17-4d41-9be2-ad9216117c75 | pareto-policy-adaptation | null | null | https://openreview.net/forum?id=wfZGut6e09 | https://openreview.net/pdf?id=wfZGut6e09 | Pareto Policy Adaptation | We present a policy gradient method for Multi-Objective Reinforcement Learning under unknown, linear preferences. By enforcing Pareto stationarity, a first-order condition for Pareto optimality, we are able to design a simple policy gradient algorithm that approximates the Pareto front and infers the unknown preferences. Our method relies on a projected gradient descent solver that identifies common ascent directions for all objectives. Leveraging the solution of that solver, we introduce Pareto Policy Adaptation (PPA), a loss function that adapts the policy to be optimal with respect to any distribution over preferences. PPA uses implicit differentiation to back-propagate the loss gradient bypassing the operations of the projected gradient descent solver. Our approach is straightforward, easy to implement and can be used with all existing policy gradient and actor-critic methods. We evaluate our method in a series of reinforcement learning tasks | ['Paul Bogdan', 'Jyotirmoy Deshmukh', 'Panagiotis Kyriakis'] | 2021-09-29 | null | null | null | iclr-2022-4 | ['multi-objective-reinforcement-learning'] | ['methodology'] | [-2.70690352e-01 -2.14865757e-03 -3.39171052e-01 -9.71433967e-02
-8.04394484e-01 -8.26616943e-01 3.15322846e-01 3.69925685e-02
-6.10304952e-01 1.41463947e+00 2.09293738e-01 -4.87557560e-01
-3.79027933e-01 -4.71459806e-01 -6.66047752e-01 -6.34400129e-01
1.89599693e-02 7.68403411e-01 -1.48101822e-01 -4.20662940e-01
5.42572916e-01 4.54055816e-01 -1.34758329e+00 1.54333010e-01
1.06199920e+00 8.86987150e-01 1.12071633e-02 8.60425472e-01
-9.38228369e-02 8.57336581e-01 -4.19357091e-01 -2.25153700e-01
3.48762095e-01 -5.68197846e-01 -9.74442124e-01 -7.06527233e-02
1.20510817e-01 -4.26715821e-01 1.91866621e-01 9.23534214e-01
6.19269729e-01 3.57839853e-01 6.26198828e-01 -1.38313854e+00
-1.37347981e-01 3.70417386e-01 -3.71643811e-01 -8.82373564e-03
3.01324129e-01 4.25679803e-01 1.25055838e+00 -6.12721920e-01
5.72464168e-01 1.45198226e+00 6.71912551e-01 5.75107038e-01
-1.41405165e+00 -2.02272847e-01 4.50427234e-01 -1.46797270e-01
-6.01723909e-01 -1.03966720e-01 5.42858660e-01 -3.99447262e-01
8.05417955e-01 2.77808636e-01 1.01924086e+00 1.06960881e+00
4.00007516e-01 9.32730854e-01 1.41486573e+00 -3.44540417e-01
7.26488054e-01 8.41744542e-02 -4.46737826e-01 8.39345276e-01
-8.14889744e-02 5.10379374e-01 -4.46540952e-01 -5.33774674e-01
6.63444757e-01 -3.86022836e-01 -1.54234588e-01 -8.59821498e-01
-5.97990274e-01 1.03814912e+00 1.32683754e-01 -2.87486136e-01
-5.94401598e-01 4.79064137e-01 2.94509619e-01 5.03186703e-01
5.35011888e-01 8.29788804e-01 -6.60686374e-01 -3.28194499e-01
-8.17706525e-01 8.03106904e-01 1.13573575e+00 3.75191480e-01
7.32430995e-01 3.33457351e-01 -5.95147133e-01 6.00994527e-01
3.92820358e-01 5.47413588e-01 3.08194071e-01 -1.53372037e+00
2.60206610e-01 2.89555967e-01 9.33075905e-01 -4.80071038e-01
-1.75272465e-01 -7.53855228e-01 9.63959470e-02 1.07485771e+00
5.99662304e-01 -7.35140204e-01 -5.77032864e-01 1.78974605e+00
5.33882082e-01 -1.93434060e-01 -2.69626044e-02 1.06875563e+00
-3.01092148e-01 5.40220857e-01 -4.00313102e-02 -4.86102372e-01
6.49223626e-01 -6.77821100e-01 -2.61534870e-01 -9.57865715e-02
2.92760313e-01 -5.46223044e-01 1.35020864e+00 4.86605465e-01
-1.44576287e+00 1.37977421e-01 -9.47912931e-01 3.59890580e-01
-8.32770951e-03 1.61263160e-02 4.43132997e-01 5.80260158e-01
-1.27077794e+00 1.24982285e+00 -6.75781846e-01 -7.60308839e-03
4.44478542e-01 4.64963466e-01 3.86633128e-01 3.49191129e-01
-7.41196632e-01 1.14027071e+00 5.36344409e-01 -3.28854829e-01
-1.28132236e+00 -1.05293548e+00 -3.88567835e-01 1.32129982e-01
6.50436580e-01 -9.73828793e-01 1.63765252e+00 -1.52017367e+00
-2.59787178e+00 4.57860082e-01 5.40936515e-02 -3.59935611e-01
1.15010440e+00 -3.32868218e-01 -4.09345469e-03 -1.25315666e-01
-9.37978700e-02 2.17050612e-01 1.21071053e+00 -1.35730493e+00
-9.61558402e-01 -3.09921484e-02 6.01018034e-02 6.28009617e-01
-3.20939273e-01 4.09026891e-02 2.18880773e-01 -2.51514643e-01
-6.65790558e-01 -6.74740374e-01 -4.87530798e-01 -4.49746996e-02
-2.06571832e-01 -1.30585447e-01 5.35695553e-01 -4.86160100e-01
1.05877769e+00 -1.62800574e+00 4.77853596e-01 5.02101362e-01
-1.19982906e-01 1.97018340e-01 -2.18258753e-01 4.30012167e-01
2.44552657e-01 -2.42780223e-01 -4.63776708e-01 -3.41594905e-01
4.05678630e-01 3.90166789e-01 -7.02268302e-01 5.20660758e-01
1.48650333e-01 7.69252300e-01 -1.35492349e+00 -2.04930127e-01
-4.39263433e-02 7.16421530e-02 -1.03915310e+00 4.03371394e-01
-8.52234423e-01 4.69199479e-01 -5.47871172e-01 2.91977197e-01
2.85043091e-01 4.78096567e-02 4.89289075e-01 3.96267176e-01
-5.77751577e-01 1.75667301e-01 -1.33744860e+00 1.45222926e+00
-6.96030080e-01 1.08443119e-01 4.08329666e-01 -1.08598781e+00
6.61037683e-01 7.74914175e-02 6.88380241e-01 -2.86218435e-01
2.27977023e-01 5.44002056e-01 -5.16465485e-01 -3.03605735e-01
3.66039306e-01 -3.33106995e-01 1.54460579e-01 5.09267449e-01
1.74401045e-01 -2.89930373e-01 3.25773060e-01 -2.02111498e-01
8.44448686e-01 8.53818417e-01 2.33319283e-01 -6.97724938e-01
6.11585557e-01 2.59100735e-01 7.26828694e-01 7.34017015e-01
6.68963492e-02 7.93406367e-02 8.82178605e-01 -6.31997287e-01
-1.04949093e+00 -1.05489564e+00 4.70033556e-01 1.54084873e+00
-3.03470463e-01 -1.29247114e-01 -4.05441254e-01 -9.77249086e-01
5.24758458e-01 8.70975256e-01 -5.17986178e-01 9.46105458e-03
-7.29822457e-01 -7.21296251e-01 2.37308353e-01 2.29137480e-01
1.44603178e-01 -8.83264482e-01 -1.00978637e+00 4.92819846e-01
2.95501739e-01 -3.34043235e-01 -5.40071726e-01 2.26052538e-01
-8.78062308e-01 -1.13314521e+00 -8.87528062e-01 -3.42826486e-01
6.30767345e-01 -6.03781343e-01 1.26997995e+00 -3.50386649e-01
-9.39667448e-02 7.05871880e-01 3.72834355e-01 -4.15519059e-01
-6.27654254e-01 -1.85302928e-01 8.07692185e-02 6.25516102e-02
-3.62113684e-01 -6.39411569e-01 -6.49223447e-01 9.68962684e-02
-4.45654005e-01 -2.70381689e-01 2.06580743e-01 9.95590150e-01
5.94093382e-01 -3.19546729e-01 4.39656943e-01 -6.41215086e-01
1.37884045e+00 -4.87535447e-01 -1.45633769e+00 3.03839296e-01
-1.00114727e+00 7.30947614e-01 1.06491959e+00 -4.36645776e-01
-1.14187789e+00 9.36902389e-02 6.50794506e-02 -4.50870186e-01
3.29131275e-01 3.25633317e-01 1.48833334e-01 -1.75242469e-01
5.87015450e-01 5.68893738e-02 1.84266582e-01 -4.47995991e-01
6.90627456e-01 8.99269134e-02 4.37653869e-01 -1.25028324e+00
5.63395917e-01 5.00877023e-01 2.41115019e-01 -2.61108696e-01
-7.77612448e-01 -1.54990301e-01 1.49298776e-02 -3.59616131e-01
4.95537192e-01 -4.04071391e-01 -1.31763113e+00 1.17478985e-02
-8.38030636e-01 -8.07558119e-01 -7.61286855e-01 4.26217318e-01
-1.14706826e+00 7.33568370e-02 -2.06967831e-01 -1.10593510e+00
-4.19825107e-01 -8.76323700e-01 5.51983595e-01 1.86150640e-01
-1.53920874e-01 -1.35090685e+00 5.92033684e-01 -4.37664419e-01
5.21856725e-01 2.60140806e-01 8.69741857e-01 -2.38987505e-01
-1.06918178e-01 4.29872394e-01 3.16430986e-01 3.57659370e-01
-2.19101503e-01 8.79105777e-02 -5.67727745e-01 -6.57464266e-01
-4.55828290e-03 -6.54785097e-01 7.87435055e-01 5.08545697e-01
9.58738029e-01 -9.80033815e-01 -1.13817081e-01 8.36349308e-01
1.68550599e+00 -3.71650159e-02 2.07551382e-02 6.30688310e-01
2.39661455e-01 4.69726562e-01 5.67713261e-01 1.00253737e+00
2.11953431e-01 3.99098098e-01 5.76179504e-01 8.94636214e-02
3.39363128e-01 -5.78309774e-01 6.01492703e-01 7.33610755e-03
-2.24405125e-01 1.05492488e-01 -6.89360917e-01 4.77886975e-01
-2.19354868e+00 -9.93798137e-01 4.79102612e-01 2.46709251e+00
1.01579177e+00 3.13365459e-02 6.67602479e-01 -3.50298256e-01
3.90106738e-01 -2.30292246e-01 -1.11600840e+00 -9.32778537e-01
2.07741186e-01 4.56402212e-01 8.74354661e-01 1.01364934e+00
-8.25936139e-01 9.04250920e-01 7.66705084e+00 5.62752008e-01
-1.16178656e+00 -1.00863464e-01 4.19948548e-01 -4.76198256e-01
-6.36413813e-01 1.63389847e-01 -5.20097375e-01 4.60351497e-01
6.40316486e-01 -4.01942104e-01 1.20746171e+00 9.73331392e-01
5.55339277e-01 9.67293456e-02 -9.83883321e-01 4.93987590e-01
-5.09896100e-01 -1.20552313e+00 -3.25735152e-01 7.21246609e-03
1.03802645e+00 -1.18705839e-01 3.54202896e-01 3.75326782e-01
1.36581695e+00 -1.00248277e+00 7.96251535e-01 3.49917859e-01
5.26583374e-01 -1.13432443e+00 1.00698426e-01 4.05008286e-01
-5.76248705e-01 -6.75100207e-01 -2.54294425e-01 -2.26508737e-01
6.72740862e-02 3.16555977e-01 -8.50292563e-01 3.47728491e-01
3.32100779e-01 3.45102698e-01 3.29244435e-01 1.02081525e+00
-6.64170802e-01 4.65934277e-01 -4.38412845e-01 -2.42313981e-01
6.96281672e-01 -5.87203741e-01 8.96946609e-01 1.08702993e+00
3.43060821e-01 -3.12575132e-01 4.05982852e-01 1.08014607e+00
7.01440871e-02 2.50852853e-01 -1.64854437e-01 7.08198771e-02
1.18699595e-01 1.04100764e+00 -2.89185852e-01 -1.22562185e-01
1.74371414e-02 9.18858409e-01 7.74549901e-01 7.43603289e-01
-6.45864964e-01 -2.43702382e-01 1.03033769e+00 -2.62974173e-01
5.71350276e-01 -1.91958562e-01 -2.42090374e-01 -1.05356944e+00
-1.25394836e-01 -1.02130091e+00 6.41543090e-01 -3.16476464e-01
-1.13516307e+00 2.73342468e-02 -3.42584588e-02 -8.78731549e-01
-6.99114680e-01 -7.41869926e-01 -7.59110391e-01 9.84371603e-01
-1.69955480e+00 -5.15330195e-01 4.31552470e-01 6.63011074e-01
1.90342188e-01 -2.70529002e-01 6.34986401e-01 -3.48304003e-01
-4.21702027e-01 3.01827222e-01 6.42189443e-01 -5.85866809e-01
5.01959026e-01 -1.68670118e+00 -2.53116637e-01 5.94152689e-01
-4.84164178e-01 2.05908254e-01 1.02775335e+00 -4.12794322e-01
-1.46504211e+00 -7.09566772e-01 3.78380388e-01 -3.72046418e-02
8.97482634e-01 2.52318904e-02 -3.31186175e-01 5.48796296e-01
3.28820735e-01 -1.62504122e-01 1.93628728e-01 -2.21261233e-02
1.83911354e-04 -2.16420755e-01 -1.20191741e+00 6.90232754e-01
6.64084792e-01 -3.41109745e-02 -3.39805633e-01 2.95955271e-01
2.95588702e-01 -5.77123463e-01 -6.75235927e-01 1.36987455e-02
6.07973576e-01 -6.96922302e-01 8.95854235e-01 -1.27586091e+00
4.16664958e-01 -1.63322106e-01 6.21066242e-02 -2.07454967e+00
-3.26811314e-01 -1.38319314e+00 -5.05743027e-01 6.79906547e-01
3.28595012e-01 -9.75545943e-01 6.32785439e-01 5.73286295e-01
-1.25890702e-01 -1.01191413e+00 -9.14664924e-01 -1.00906360e+00
5.15482605e-01 4.80416268e-02 6.62755668e-01 5.93611300e-01
2.33849823e-01 8.18258803e-03 -4.57846075e-01 1.54783223e-02
8.73298347e-01 3.55882347e-01 4.39915746e-01 -8.79306614e-01
-8.55845571e-01 -9.63227749e-01 4.81796741e-01 -9.84293461e-01
4.73457307e-01 -8.56145859e-01 1.03612378e-01 -1.55065084e+00
-2.81261772e-01 -3.89251173e-01 -5.36645770e-01 5.42654097e-01
-1.89189494e-01 -4.81663227e-01 2.31146187e-01 -4.94915210e-02
-4.90269274e-01 8.49998593e-01 1.31231081e+00 -2.56421436e-02
-5.82031667e-01 2.51233608e-01 -7.03041494e-01 7.75392771e-01
1.18231094e+00 -5.93980551e-01 -4.47559118e-01 -3.15377384e-01
4.83820200e-01 6.27841502e-02 9.59353969e-02 -6.11204803e-01
2.50995299e-03 -7.99252689e-01 3.06316763e-01 -4.81427945e-02
9.30151269e-02 -4.84227359e-01 -2.81994253e-01 7.59824097e-01
-6.10322535e-01 1.88009918e-01 2.00137809e-01 3.07831615e-01
2.02291563e-01 -3.75503242e-01 8.34739625e-01 -3.93030703e-01
-4.34907466e-01 1.63604334e-01 -5.38100123e-01 6.50879920e-01
8.32700431e-01 2.90408790e-01 1.92830767e-02 -4.08492208e-01
-4.64516878e-01 7.19378889e-01 5.40129304e-01 -4.42294143e-02
5.52156150e-01 -1.24697268e+00 -8.75752747e-01 -2.13553533e-01
-4.85387087e-01 -5.88631511e-01 -5.45440495e-01 4.86230135e-01
-3.39604229e-01 1.78748190e-01 -3.54217231e-01 -8.79522786e-02
-8.31620336e-01 5.65249443e-01 8.63723338e-01 -6.57412410e-01
-3.31670403e-01 6.00763917e-01 -4.11973298e-01 -4.46655631e-01
1.31029144e-01 -1.21383443e-01 6.70862347e-02 -1.23460233e-01
3.15169305e-01 8.08747232e-01 -3.56312245e-01 1.42455459e-01
-2.91797340e-01 3.54724765e-01 3.07535350e-01 -8.18771422e-01
1.35476601e+00 1.30122051e-01 -3.34984921e-02 2.92055935e-01
1.00889087e+00 -3.15686874e-02 -1.96854258e+00 1.59146190e-01
7.65680373e-02 -4.83832300e-01 1.04618952e-01 -1.05804181e+00
-7.36223936e-01 4.04769897e-01 3.97905797e-01 -5.71788214e-02
9.71045434e-01 -6.27372146e-01 3.74938041e-01 4.16282952e-01
1.73620149e-01 -1.77099574e+00 2.28950679e-01 7.35707045e-01
1.00023401e+00 -8.57034445e-01 1.66048780e-01 3.37696105e-01
-7.23719478e-01 1.34784305e+00 3.81437331e-01 -4.25616801e-01
3.32934886e-01 2.48792365e-01 7.17335641e-02 1.32490918e-01
-8.07759523e-01 -2.23580882e-01 1.37688309e-01 4.89279956e-01
1.28319278e-01 9.02401879e-02 -7.04409659e-01 -5.09210229e-02
-1.09067261e-01 2.80503422e-01 2.62319297e-01 1.07408547e+00
-5.71653962e-01 -1.37965763e+00 -4.81036127e-01 1.86794296e-01
-5.12589991e-01 1.47976503e-01 -1.98859394e-01 4.81779397e-01
-3.00826371e-01 7.81291425e-01 -1.98504716e-01 1.92336276e-01
2.58615673e-01 1.16619207e-01 8.22369695e-01 -1.58621058e-01
-5.50933480e-01 -7.86394849e-02 1.54671401e-01 -9.54184294e-01
-5.81614301e-02 -5.22157609e-01 -1.22065783e+00 -2.08041415e-01
2.12018013e-01 4.26662475e-01 7.09906578e-01 9.12842214e-01
2.80419320e-01 4.04018015e-01 7.98104465e-01 -7.27957726e-01
-1.51853824e+00 -2.02770650e-01 -4.00681376e-01 2.33631283e-01
4.93443221e-01 -6.30652070e-01 -1.60079688e-01 -4.55801547e-01] | [4.2037224769592285, 2.382455348968506] |
a7d7a443-c4bf-4011-b2de-b2932f5a66b2 | a-bayesian-approach-to-graph-partitioning | 2204.12927 | null | https://arxiv.org/abs/2204.12927v1 | https://arxiv.org/pdf/2204.12927v1.pdf | A Bayesian Approach To Graph Partitioning | A new algorithm based on bayesian inference for learning local graph conductance based on Gaussian Process(GP) is given that uses advanced MCMC convergence ideas to create a scalable and fast algorithm for convergence to stationary distribution which is provided to learn the bahavior of conductance when traversing the indirected weighted graph. First metric embedding is used to represent the vertices of the graph. Then, uniform induced conductance is calculated for training points. Finally, in the learning step, a gaussian process is used to approximate the uniform induced conductance. MCMC is used to measure uncertainty of estimated hyper-parameters. | ['Farshad Noravesh'] | 2022-04-24 | null | null | null | null | ['graph-partitioning'] | ['graphs'] | [-7.86733925e-02 8.82051513e-02 -1.89199090e-01 -1.83338553e-01
-8.56384933e-01 -2.21905947e-01 6.27394855e-01 4.14930791e-01
-3.65907520e-01 8.49173725e-01 -8.86740908e-02 -4.38540488e-01
-2.77976871e-01 -1.12542307e+00 -5.53961754e-01 -1.03692245e+00
-4.42890882e-01 6.49447739e-01 3.57822210e-01 5.37803054e-01
6.83471203e-01 2.73836225e-01 -7.40800202e-01 -4.07677919e-01
8.82377088e-01 7.19374299e-01 1.79548189e-01 9.93910551e-01
-3.21899444e-01 4.19403106e-01 -1.59298554e-01 -2.94887125e-01
-5.96768297e-02 -3.48256022e-01 -8.06689382e-01 -2.53513724e-01
-2.10466117e-01 -7.09460005e-02 -2.40024269e-01 1.32824039e+00
2.65339315e-01 4.06431556e-01 1.55354261e+00 -1.05757296e+00
-2.32317343e-01 8.12816560e-01 -8.37218225e-01 7.40061328e-02
2.48801395e-01 -1.51218930e-02 1.18216908e+00 -8.99642348e-01
4.40950304e-01 1.57611239e+00 4.94468212e-01 2.39229664e-01
-1.71881497e+00 -5.12297630e-01 9.77932140e-02 -5.50283752e-02
-1.81439209e+00 2.72923946e-01 6.94421291e-01 -1.61349893e-01
6.36608720e-01 -1.09389886e-01 8.94700110e-01 1.10032475e+00
6.85020030e-01 5.89145601e-01 8.98596525e-01 -4.14219141e-01
9.23911035e-01 -6.82014078e-02 2.66521752e-01 9.57942665e-01
5.33735156e-01 -1.24297449e-02 -4.66445178e-01 -7.41748631e-01
7.67396033e-01 -3.54630142e-01 6.10848367e-02 -4.94513959e-01
-3.54182899e-01 1.17777264e+00 2.90512145e-01 -1.94955692e-01
-4.22922343e-01 8.26329172e-01 -1.34214410e-03 -2.70818155e-02
3.41230512e-01 -2.92425305e-02 -1.12398244e-01 -4.04960185e-01
-7.45188475e-01 2.62113631e-01 1.16339767e+00 6.52900159e-01
8.31072867e-01 -7.58572423e-04 -2.05069110e-01 3.17506760e-01
1.21157324e+00 8.05590212e-01 -2.82326519e-01 -9.54357207e-01
3.14678252e-01 5.40637672e-01 9.72630456e-02 -1.01505899e+00
7.27430452e-03 -1.40717119e-01 -8.27712834e-01 2.18489945e-01
4.74171340e-01 -3.28373849e-01 -9.78806853e-01 1.45766795e+00
5.22037506e-01 7.21818030e-01 -2.33536094e-01 3.44443679e-01
1.49848610e-01 7.96304107e-01 1.86101764e-01 -1.09602824e-01
9.59381104e-01 -3.92989010e-01 -3.11797589e-01 3.75809491e-01
4.07469600e-01 -2.99211860e-01 7.37575054e-01 3.44755083e-01
-1.06453001e+00 -1.70429304e-01 -9.98835266e-01 3.98684353e-01
-2.23778129e-01 -6.31786406e-01 6.08269513e-01 1.11911833e+00
-1.14330280e+00 8.23307216e-01 -1.16047227e+00 -1.87160134e-01
4.38520342e-01 2.69454688e-01 3.97851318e-01 -1.31840810e-01
-1.00972402e+00 7.43265450e-01 6.71585858e-01 2.07681153e-02
-1.37063563e+00 -6.46940410e-01 -6.67107224e-01 -3.07436623e-02
-3.88009213e-02 -7.16386199e-01 5.90230584e-01 -1.95927426e-01
-1.85003722e+00 2.83849776e-01 -1.22899376e-01 -5.14747441e-01
3.27494293e-01 2.76555657e-01 1.41385317e-01 3.19735050e-01
-3.74369711e-01 4.91547406e-01 1.36156595e+00 -1.11958265e+00
-2.72275448e-01 -2.72608459e-01 -4.26886857e-01 2.42851585e-01
7.31460154e-02 -4.14871454e-01 -4.71500605e-01 -6.25386313e-02
5.26014745e-01 -7.57450402e-01 -4.63803381e-01 -2.37870529e-01
-4.48953152e-01 -5.47952294e-01 5.43878615e-01 -5.58225334e-01
1.39928901e+00 -1.88581121e+00 2.50504732e-01 1.19015348e+00
3.90105844e-01 -3.59496802e-01 -1.70584731e-02 6.13489449e-01
4.92954135e-01 1.55373499e-01 -3.45844328e-01 -2.15470269e-01
1.94862500e-01 1.51677787e-01 -9.49074626e-02 7.83944488e-01
-8.20046291e-02 7.23906100e-01 -9.56435919e-01 -5.42197227e-01
1.91898897e-01 6.40136719e-01 -3.74316692e-01 7.92182013e-02
-4.63618264e-02 2.22106352e-01 -7.37716436e-01 3.61339688e-01
1.00217319e+00 -2.66823202e-01 2.05006376e-01 1.12279125e-01
1.23279028e-01 -1.78704277e-01 -1.57820976e+00 1.58786261e+00
-2.35089660e-01 -6.69489726e-02 3.90793607e-02 -8.92676294e-01
1.04844880e+00 3.30890641e-02 5.42412773e-02 1.70464382e-01
4.44096059e-01 1.44814281e-03 -2.30532214e-01 6.22331277e-02
4.16219905e-02 9.67166573e-02 5.61952852e-02 5.93659461e-01
1.21575259e-01 -5.74339926e-01 -1.39274495e-02 6.00345373e-01
1.17761219e+00 1.95548654e-01 3.08048036e-02 -7.79146373e-01
6.59682274e-01 -5.77734470e-01 1.55673906e-01 9.91364777e-01
-7.74429217e-02 1.87493563e-01 5.95072746e-01 -2.29416609e-01
-8.85544240e-01 -1.75380611e+00 -1.97573423e-01 7.11866260e-01
2.52975196e-01 -3.90851289e-01 -9.76512492e-01 -4.87203509e-01
2.78439801e-02 7.65918195e-01 -6.19018316e-01 -1.97017133e-01
1.29319161e-01 -9.64584112e-01 2.14670405e-01 4.57235575e-01
2.93382972e-01 -6.01294816e-01 -1.86676055e-01 3.35171998e-01
2.17121527e-01 -5.03100276e-01 -3.79218698e-01 1.32070735e-01
-1.18849349e+00 -1.10549164e+00 -4.39744294e-01 -4.79461342e-01
9.35033619e-01 -3.42569321e-01 5.94051301e-01 -1.48877218e-01
-3.36722732e-01 5.96584260e-01 1.79409325e-01 -1.13515459e-01
-1.88991576e-01 -6.48474880e-03 -1.41383767e-01 6.13156892e-02
3.10436994e-01 -7.21445680e-01 -7.45520234e-01 -1.21660180e-01
-3.18333507e-01 -2.13446185e-01 3.63173008e-01 5.10980546e-01
5.90107679e-01 2.08405495e-01 1.79628626e-01 -4.96784568e-01
1.10334337e+00 -5.70740402e-01 -9.50520158e-01 3.35513175e-01
-8.54291379e-01 7.39796758e-01 1.32919446e-01 -4.84244227e-01
-1.08707523e+00 -2.44728193e-01 8.91906098e-02 -3.87335159e-02
1.69406176e-01 3.58819366e-01 7.23247789e-03 -1.93735287e-01
4.26686168e-01 1.08487131e-02 -2.62976676e-01 -9.96424258e-02
8.88088107e-01 5.10239840e-01 2.28915527e-01 -1.02507162e+00
7.69191206e-01 5.21475375e-01 5.77323496e-01 -7.11852133e-01
-4.39659983e-01 -3.01368713e-01 -4.86473978e-01 -3.74248952e-01
1.07008398e+00 -6.23162806e-01 -1.10750437e+00 3.94352496e-01
-9.63248193e-01 -3.48240495e-01 -1.78023741e-01 7.23855853e-01
-6.54951394e-01 3.53842974e-01 -6.97885454e-01 -1.46331382e+00
-4.77879047e-01 -7.13340223e-01 8.47694397e-01 3.36619735e-01
-1.96299732e-01 -1.68839848e+00 4.07943517e-01 -2.05198660e-01
2.31004715e-01 2.01570347e-01 1.10863292e+00 -3.29078406e-01
-8.42064440e-01 -4.43832725e-01 -2.84089506e-01 1.41722828e-01
-2.32828513e-01 3.27720344e-01 -5.56692064e-01 -5.35723746e-01
-1.36865795e-01 -5.06473817e-02 6.75988793e-01 8.64092350e-01
8.85881603e-01 8.97771269e-02 -6.72963440e-01 5.44583082e-01
1.77734637e+00 -4.47207056e-02 5.41733027e-01 -1.18773974e-01
5.25944948e-01 6.19740486e-02 1.77017719e-01 4.64174658e-01
3.82082343e-01 -1.67415157e-01 1.06499523e-01 4.59961146e-01
2.57681161e-01 -7.52143443e-01 2.98234791e-01 9.39874589e-01
-6.70356825e-02 -1.53996348e-01 -8.33033979e-01 2.34350830e-01
-1.72230220e+00 -6.19875550e-01 -3.24606925e-01 2.47486591e+00
6.00699842e-01 4.58822250e-01 -6.44229427e-02 -7.32699484e-02
9.53285635e-01 -1.35540366e-01 -5.82806349e-01 -4.10921633e-01
4.27077413e-01 3.85404646e-01 6.68219626e-01 1.12949431e+00
-4.91960645e-01 9.37850833e-01 7.67883062e+00 1.10658753e+00
-3.57915133e-01 2.43429244e-02 5.63265920e-01 3.92219067e-01
-5.14459908e-01 4.68230933e-01 -9.84839857e-01 5.00001252e-01
1.14155591e+00 -1.16289958e-01 5.37157178e-01 5.70299625e-01
2.35654056e-01 -6.88287437e-01 -6.35176957e-01 9.93990242e-01
-2.50705093e-01 -8.55871856e-01 8.92274976e-02 1.63741708e-01
9.94693935e-01 -9.97282416e-02 3.07473373e-02 2.32801467e-01
1.12949872e+00 -8.27366948e-01 5.77517115e-02 9.91724849e-01
4.64924663e-01 -1.31284642e+00 4.58398730e-01 4.08195943e-01
-1.39001596e+00 1.67156998e-02 -8.65270972e-01 1.13457590e-01
2.57089347e-01 8.22203040e-01 -8.40323210e-01 2.14474991e-01
2.43843004e-01 1.12383403e-01 -1.66232958e-01 1.08151186e+00
-6.43909574e-01 8.78127813e-01 -7.09091485e-01 -4.56175089e-01
3.33409399e-01 -9.16196942e-01 5.65503776e-01 8.52316141e-01
4.14828032e-01 -2.46695295e-01 3.05933475e-01 1.10648978e+00
-2.85727084e-02 2.60744542e-01 -4.13266391e-01 3.29764262e-02
7.50274599e-01 1.34466469e+00 -1.22374535e+00 -2.17320010e-01
-7.73709491e-02 8.11819792e-01 5.09556711e-01 7.57679760e-01
-8.42053711e-01 -3.76434833e-01 1.48483410e-01 -1.90296158e-01
3.98161978e-01 -5.46630085e-01 -4.44850661e-02 -7.20027149e-01
-6.56955719e-01 -1.13535896e-01 4.42762226e-01 -3.80644351e-01
-1.31970453e+00 -2.06458359e-03 1.32501811e-01 -3.37557584e-01
-1.71622008e-01 -4.28695768e-01 -1.22124910e+00 1.22572744e+00
-1.09478891e+00 -9.29284513e-01 5.16642295e-02 6.16676092e-01
1.22620374e-01 9.62074008e-03 7.20005214e-01 -5.43713570e-01
-4.47006434e-01 3.02929819e-01 3.49474370e-01 -2.13921309e-01
1.32320926e-01 -1.57055533e+00 4.76728201e-01 8.62611830e-01
9.41272527e-02 6.27789438e-01 7.01659143e-01 -1.01972520e+00
-1.57574797e+00 -8.04108918e-01 4.62989420e-01 -5.59468865e-01
1.10041547e+00 -5.77727616e-01 -7.18714118e-01 3.75193655e-01
-4.16263286e-03 -8.42960477e-02 4.20051426e-01 3.22993129e-01
-1.01427384e-01 8.58141035e-02 -1.31932223e+00 5.92751324e-01
6.50718153e-01 -5.74595571e-01 -3.21686774e-01 9.05119032e-02
4.42793399e-01 -1.05908196e-02 -1.07253575e+00 -4.86425683e-02
3.42537314e-01 -2.87574142e-01 6.75886393e-01 -4.09635633e-01
-5.38521647e-01 -3.93341303e-01 -1.79900855e-01 -1.25304532e+00
-3.74287874e-01 -1.07738912e+00 -6.41757071e-01 1.09008670e+00
4.92336035e-01 -6.87423825e-01 9.07803476e-01 4.80494469e-01
5.52524388e-01 -7.63926983e-01 -1.03767121e+00 -6.34525597e-01
2.02587128e-01 -6.00883603e-01 2.82902300e-01 1.74273223e-01
1.01044364e-01 5.10678768e-01 -5.60311638e-02 4.11832839e-01
1.55920851e+00 -2.44380072e-01 3.73625338e-01 -1.41726327e+00
-1.39024958e-01 -1.13025568e-01 -3.55997235e-01 -1.03908658e+00
1.64565101e-01 -1.04343927e+00 1.16639517e-01 -1.71340644e+00
3.81747574e-01 -9.70344767e-02 -3.35367501e-01 -3.98302019e-01
-3.21011901e-01 -1.70054004e-01 -3.31166148e-01 -2.49166042e-01
-6.88606083e-01 5.51499844e-01 1.00650454e+00 3.14058453e-01
-1.48045748e-01 2.21090868e-01 -2.46360928e-01 6.77906156e-01
9.04927135e-01 -6.39302254e-01 -6.14109516e-01 2.78726608e-01
3.68502647e-01 1.14300326e-02 9.32112411e-02 -9.14544344e-01
4.28080082e-01 4.83205207e-02 4.55417514e-01 -7.95629621e-01
2.17057467e-01 -4.99363065e-01 -1.24443121e-01 6.55098438e-01
-3.76038820e-01 -1.51067361e-01 -3.90357196e-01 1.22429204e+00
3.73138875e-01 -6.61435425e-01 1.02253115e+00 3.39966379e-02
-2.00069875e-01 6.88340604e-01 -6.05569363e-01 2.05901667e-01
8.32119584e-01 -4.87573892e-02 4.41987962e-01 -5.79936683e-01
-8.21831048e-01 3.47983807e-01 9.56435949e-02 -2.93014526e-01
7.99846947e-01 -1.37435186e+00 -5.90374589e-01 2.26739142e-02
-3.84177834e-01 -2.44548261e-01 3.92177217e-02 6.79915130e-01
-4.12783295e-01 -5.18386438e-02 4.65783268e-01 -6.25488162e-01
-8.95190477e-01 3.59509259e-01 3.35710384e-02 -2.51712531e-01
-5.45141459e-01 1.01134002e+00 -5.24190843e-01 -2.81949073e-01
4.15793210e-01 -3.51228237e-01 3.37059438e-01 -1.01178057e-01
5.34760594e-01 7.88312078e-01 -6.26944304e-01 6.39485270e-02
-4.61242385e-02 6.00299120e-01 1.15467757e-01 -6.07620120e-01
1.04428196e+00 -6.14553928e-01 -2.72909135e-01 7.55776644e-01
1.22203326e+00 -3.62256080e-01 -1.70356786e+00 -6.74289316e-02
3.12859386e-01 -2.68561155e-01 3.53941172e-01 -2.78232783e-01
-4.83378738e-01 1.10770690e+00 7.67625988e-01 -3.66058983e-02
3.65690529e-01 -1.22510038e-01 3.42930496e-01 3.98017019e-01
4.52700585e-01 -1.50754547e+00 4.16075438e-02 4.51661378e-01
2.28805050e-01 -7.43472457e-01 8.76639336e-02 -2.45994925e-01
-3.57335240e-01 1.26104927e+00 1.47315726e-01 -4.63335723e-01
1.16662121e+00 3.70341033e-01 -5.00589788e-01 -2.78792888e-01
-6.11103833e-01 1.67019784e-01 1.42089501e-01 7.49180555e-01
6.95978105e-02 -2.67588883e-03 -2.85860956e-01 -1.26313135e-01
1.53913423e-01 -4.40647960e-01 3.62167239e-01 6.19339406e-01
-8.56810272e-01 -8.24262738e-01 -1.46240726e-01 3.00243109e-01
-1.68759853e-01 -2.15237379e-01 1.58440277e-01 4.53040957e-01
-3.96630317e-01 8.74009073e-01 1.71884641e-01 1.57155678e-01
-2.69331366e-01 2.61834800e-01 8.25535834e-01 -3.12794447e-01
2.00281173e-01 1.38650194e-01 -2.21121803e-01 -4.23150957e-01
6.13463707e-02 -6.79850817e-01 -1.39664578e+00 -4.01164621e-01
-5.87966323e-01 6.52131796e-01 8.85142386e-01 7.40009606e-01
-1.62473097e-01 7.30369762e-02 6.77370012e-01 -5.89098036e-01
-6.82560802e-01 -9.00606990e-01 -1.08446848e+00 -7.80865625e-02
-3.47394407e-01 -5.21630347e-01 -8.68774414e-01 -5.15159190e-01] | [6.9614033699035645, 4.152979373931885] |
9ea3741c-f875-4ba3-90af-4479c87d9922 | gps-an-optimised-hybrid-mpnn-transformer-for | 2212.02229 | null | https://arxiv.org/abs/2212.02229v2 | https://arxiv.org/pdf/2212.02229v2.pdf | GPS++: An Optimised Hybrid MPNN/Transformer for Molecular Property Prediction | This technical report presents GPS++, the first-place solution to the Open Graph Benchmark Large-Scale Challenge (OGB-LSC 2022) for the PCQM4Mv2 molecular property prediction task. Our approach implements several key principles from the prior literature. At its core our GPS++ method is a hybrid MPNN/Transformer model that incorporates 3D atom positions and an auxiliary denoising task. The effectiveness of GPS++ is demonstrated by achieving 0.0719 mean absolute error on the independent test-challenge PCQM4Mv2 split. Thanks to Graphcore IPU acceleration, GPS++ scales to deep architectures (16 layers), training at 3 minutes per epoch, and large ensemble (112 models), completing the final predictions in 1 hour 32 minutes, well under the 4 hour inference budget allocated. Our implementation is publicly available at: https://github.com/graphcore/ogb-lsc-pcqm4mv2. | ['Dominique Beaini', 'Ladislav Rampášek', 'Deniz Beker', 'Hatem Helal', 'Adam Sanders', 'Sam Maddrell-Mander', 'Zhiyi Li', 'Kerstin Klaser', 'Josef Dean', 'Dominic Masters'] | 2022-11-18 | null | null | null | null | ['molecular-property-prediction'] | ['miscellaneous'] | [ 1.84761122e-01 2.06577152e-01 -1.49291247e-01 -2.44929567e-01
-9.87693787e-01 -3.71148139e-01 3.74048769e-01 4.50214684e-01
-3.72378170e-01 1.25175250e+00 -1.42850950e-01 -7.62204587e-01
-1.09069012e-01 -6.88261032e-01 -1.20819056e+00 -8.11664641e-01
-3.97240460e-01 7.46403813e-01 -3.85392196e-02 -1.04006179e-01
3.49042982e-01 6.29689634e-01 -8.21798861e-01 2.58747190e-01
7.06898212e-01 1.19950163e+00 2.12958623e-02 8.89812291e-01
5.56869030e-01 7.20417202e-01 -1.43049797e-02 -5.44155896e-01
4.06493068e-01 1.11491203e-01 -1.02558970e+00 -7.74851441e-01
8.38135064e-01 2.61950847e-02 -4.61520165e-01 8.57475102e-01
1.03922975e+00 3.30112070e-01 5.93104959e-01 -1.12431192e+00
-3.75450313e-01 4.84530836e-01 -3.47274631e-01 1.28311232e-01
1.91259161e-01 5.52405298e-01 1.18564296e+00 -8.56391013e-01
8.19295645e-01 1.04182720e+00 9.90839064e-01 3.62266928e-01
-1.67758381e+00 -7.42117822e-01 -9.83886346e-02 5.30733585e-01
-1.57633555e+00 -4.06318545e-01 2.84671813e-01 -2.91739225e-01
2.09898996e+00 1.33803591e-01 4.63156193e-01 1.30856764e+00
6.80481851e-01 4.87130731e-01 8.88989270e-01 2.62036562e-01
2.80330300e-01 -4.12843019e-01 4.08434331e-01 7.86937118e-01
2.68862516e-01 6.08757101e-02 -5.21118283e-01 -6.04172409e-01
2.10772127e-01 -6.18511625e-02 -3.53656799e-01 -1.49410784e-01
-7.97985613e-01 7.05599070e-01 7.93280125e-01 -5.03320873e-01
-5.43777704e-01 6.36110961e-01 5.67879558e-01 3.18959802e-01
6.79234564e-01 6.84907973e-01 -1.06481326e+00 -3.50654960e-01
-6.73030257e-01 6.40591860e-01 8.43101203e-01 1.02175069e+00
6.96245432e-01 -1.44585744e-01 6.83784783e-02 4.43960071e-01
4.41094756e-01 4.74659413e-01 -1.50881574e-01 -9.47476983e-01
4.18988943e-01 2.14181438e-01 -9.69910026e-02 -7.17212081e-01
-8.67600679e-01 -7.15925276e-01 -8.54374945e-01 6.17552809e-02
5.12949377e-02 -1.90213218e-01 -7.91550875e-01 1.59679580e+00
3.80089730e-01 8.25807974e-02 -3.98495570e-02 5.28829396e-01
1.22808886e+00 8.59476030e-01 3.54061842e-01 8.10694247e-02
1.14227724e+00 -1.36814177e+00 -1.76674575e-01 7.44274631e-02
1.21093988e+00 -5.87019742e-01 6.07275307e-01 7.84146249e-01
-1.21898580e+00 -5.24251163e-01 -1.08802867e+00 -5.34601450e-01
-7.02029943e-01 -4.25066143e-01 8.57608616e-01 3.59539747e-01
-1.35081339e+00 1.33505094e+00 -7.69951642e-01 1.34113029e-01
6.28361821e-01 8.41851652e-01 -5.76736212e-01 -6.21752925e-02
-1.26465571e+00 6.96365178e-01 4.81595635e-01 -1.40253454e-01
-1.02014196e+00 -1.40787649e+00 -5.77834785e-01 2.06119403e-01
2.09845051e-01 -8.07137966e-01 1.08212245e+00 -3.09119195e-01
-1.22237241e+00 5.08186340e-01 -1.77565515e-01 -8.95586312e-01
6.13962591e-01 -1.01817258e-01 -1.96882516e-01 -5.81836402e-02
-1.40425324e-01 8.73729885e-01 2.50888973e-01 -6.47564769e-01
-1.39194191e-01 -5.14686227e-01 -3.01147103e-01 4.47003208e-02
2.47085139e-01 -1.35272548e-01 -3.66022706e-01 -3.74587566e-01
-2.98559487e-01 -1.00087130e+00 -4.78999108e-01 -4.84035999e-01
-7.05210924e-01 -2.59357333e-01 3.66010487e-01 -8.89341176e-01
9.24808502e-01 -1.63538027e+00 2.70067096e-01 5.34055650e-01
7.64668882e-01 1.79437459e-01 -4.51005161e-01 7.53719330e-01
-6.78580046e-01 9.31748003e-02 -2.87273914e-01 -7.25104511e-01
2.44645756e-02 -3.48044753e-01 3.89034972e-02 5.90693355e-01
-1.03290416e-01 1.27392817e+00 -6.91011071e-01 1.77053183e-01
2.71900278e-02 8.31868410e-01 -7.36706793e-01 -2.41217688e-01
-6.10715806e-01 4.75205451e-01 -1.97800443e-01 7.32484877e-01
1.02802896e+00 -9.04883146e-01 3.97104353e-01 -2.90949702e-01
-1.18094468e-02 5.90888560e-01 -5.76275170e-01 2.00050664e+00
-5.63262664e-02 3.88450623e-01 8.51038173e-02 -7.47934520e-01
5.97141027e-01 2.92171061e-01 7.26807117e-01 -7.16168642e-01
4.48625311e-02 3.26654404e-01 1.52847946e-01 1.16110303e-01
4.39625233e-01 3.36727679e-01 3.72994512e-01 1.77974522e-01
3.86223257e-01 -1.75908569e-03 3.31506878e-01 3.82469624e-01
1.55854213e+00 4.48825300e-01 1.42836168e-01 -4.94268835e-01
3.31610650e-01 -7.10385740e-02 4.35582131e-01 5.37187278e-01
-1.75343812e-01 3.30288619e-01 7.12678909e-01 -8.05515051e-01
-1.12936783e+00 -5.84648371e-01 -3.12006980e-01 8.52024376e-01
-3.35417718e-01 -1.15666783e+00 -5.88717163e-01 -6.68610215e-01
2.05333024e-01 5.65107107e-01 -5.47748983e-01 -9.23814178e-02
-2.67961115e-01 -1.15241134e+00 5.50754607e-01 1.60584912e-01
2.07005456e-01 -9.77039158e-01 3.03761572e-01 5.58426559e-01
3.42492461e-01 -9.98560667e-01 -1.49224147e-01 5.45250773e-01
-6.87476933e-01 -1.22588968e+00 -4.48135644e-01 -2.26239890e-01
2.76086152e-01 2.40350720e-02 1.40565336e+00 2.25847252e-02
-3.94037068e-01 -2.34335408e-01 -1.68433577e-01 -2.66118169e-01
-1.95319474e-01 4.20702249e-01 3.05234306e-02 -4.19693828e-01
3.60780865e-01 -9.46068823e-01 -1.12687182e+00 -3.34129184e-02
-2.80778706e-01 3.58316272e-01 2.87243694e-01 6.39007926e-01
8.23937833e-01 -5.01874566e-01 4.73483890e-01 -1.06161487e+00
3.14574331e-01 -6.01077855e-01 -9.58778858e-01 -6.20104522e-02
-1.07408285e+00 -2.44185358e-01 7.95060396e-01 2.80678660e-01
-3.51563096e-01 1.04301460e-02 -6.56601429e-01 -3.39522600e-01
4.38438281e-02 6.46850407e-01 -1.35101989e-01 -6.12505436e-01
6.89354539e-01 1.40030280e-01 8.97586793e-02 -5.84414244e-01
2.89575160e-01 3.19459885e-01 1.13679543e-01 -6.26683056e-01
2.46988773e-01 2.29935218e-02 6.08498096e-01 -6.38060749e-01
-5.88770270e-01 -3.33476782e-01 -3.82701427e-01 2.32206047e-01
8.65923285e-01 -1.25454772e+00 -1.56173003e+00 4.53886181e-01
-1.20646083e+00 -9.54591990e-01 1.57677859e-01 2.50759661e-01
-5.12126565e-01 5.62897980e-01 -9.41505909e-01 -2.31021345e-01
-1.05860031e+00 -1.49672818e+00 1.11244845e+00 -2.32094422e-01
-1.58407450e-01 -1.13925898e+00 2.12773189e-01 8.34770679e-01
4.47063357e-01 3.43200088e-01 9.23169255e-01 -9.30182219e-01
-7.48318791e-01 -1.33124948e-01 -2.99175829e-01 2.81614006e-01
-3.04602176e-01 -4.15149294e-02 -1.00297761e+00 -6.44808888e-01
-6.59458160e-01 -5.29347062e-01 1.12560058e+00 6.03824973e-01
1.67415226e+00 -2.15228915e-01 -3.47484887e-01 1.16307819e+00
1.45557845e+00 8.85948539e-02 7.44541764e-01 3.43530476e-02
1.09354186e+00 -1.06920280e-01 1.23894192e-01 2.89030880e-01
2.32858390e-01 6.45729125e-01 7.27011859e-01 -1.64773315e-01
7.79599845e-02 -1.60611957e-01 2.78482616e-01 7.40899026e-01
-5.21395266e-01 -5.36550999e-01 -1.05051363e+00 -1.91016480e-01
-1.85397494e+00 -8.95328879e-01 -5.73057473e-01 2.04922843e+00
8.25008571e-01 1.47461280e-01 -3.32868844e-02 -2.32139841e-01
1.27764583e-01 2.16356948e-01 -8.21065128e-01 -4.64813679e-01
-8.93844292e-02 6.83613837e-01 9.23293233e-01 8.79461050e-01
-1.10877156e+00 1.04276645e+00 5.79184341e+00 1.49254811e+00
-1.11236846e+00 3.87400277e-02 1.10634875e+00 -3.12511116e-01
-2.47081369e-02 -7.57818809e-03 -9.46156621e-01 6.78627551e-01
1.61662078e+00 1.56683624e-01 5.91099858e-01 7.17879176e-01
3.35695505e-01 3.23633492e-01 -1.11447358e+00 8.81692350e-01
-2.28336871e-01 -2.01889539e+00 2.25744005e-02 6.46798551e-01
6.58941984e-01 1.07898200e+00 5.07961623e-02 3.54774177e-01
2.72410244e-01 -1.40756619e+00 2.35058129e-01 5.49807370e-01
1.00076294e+00 -8.27807009e-01 5.42990565e-01 1.09708002e-02
-9.47761059e-01 4.28348154e-01 -5.78092933e-01 -6.49254099e-02
2.25186255e-02 5.09724379e-01 -9.29974973e-01 8.40455294e-01
5.32122731e-01 1.37720180e+00 -5.61693370e-01 8.03884447e-01
-1.22378580e-01 6.96068287e-01 -3.09696645e-01 -8.08794796e-02
3.30204785e-01 -4.41185027e-01 4.43036199e-01 1.02280498e+00
4.66078557e-02 -8.90899077e-02 8.42253268e-02 6.84337020e-01
-5.41592956e-01 -8.70368909e-03 -3.94962549e-01 -4.42599952e-02
4.21113282e-01 1.36527300e+00 -2.26960599e-01 -4.35190558e-01
-2.07180321e-01 8.01678777e-01 5.50887167e-01 2.13011473e-01
-1.11862063e+00 -3.42798412e-01 8.08551967e-01 5.90162836e-02
2.92465389e-01 -5.14711626e-03 -1.19059667e-01 -9.11342800e-01
-2.64266640e-01 -1.15770686e+00 7.43278712e-02 -7.89472938e-01
-1.26547396e+00 5.13424814e-01 -5.34893632e-01 -5.67325950e-01
3.89601141e-01 -1.22107697e+00 -4.66537923e-01 1.03448117e+00
-1.61743855e+00 -1.04955101e+00 -2.95520835e-02 1.40694499e-01
8.04100372e-03 -2.05446810e-01 1.18641818e+00 5.41472495e-01
-9.68339026e-01 7.00833559e-01 5.31464458e-01 -3.44676673e-01
6.54498577e-01 -1.39384615e+00 1.31876862e+00 2.31214315e-01
-3.85351956e-01 8.02334130e-01 6.54496789e-01 -7.16877759e-01
-1.68368042e+00 -1.30507231e+00 7.43321002e-01 -6.71320498e-01
8.55721891e-01 -6.43964708e-01 -8.96303475e-01 5.92463732e-01
1.72426179e-01 2.20297426e-01 1.02866375e+00 2.37185553e-01
-4.60195035e-01 5.19807860e-02 -9.80722129e-01 3.27750117e-01
1.31237245e+00 -4.07649994e-01 2.24073753e-01 1.04065204e+00
9.67323005e-01 -5.80159545e-01 -1.57625270e+00 5.98351300e-01
4.00207371e-01 -8.19842994e-01 1.16429889e+00 -1.04528534e+00
4.28873062e-01 -2.51829717e-02 -2.55785376e-01 -1.19256818e+00
-4.82486635e-01 -1.07272911e+00 -4.35168356e-01 1.84900641e-01
1.08277178e+00 -9.28101301e-01 9.69400942e-01 4.81677771e-01
-5.18821537e-01 -1.29745829e+00 -1.00955725e+00 -5.15158355e-01
2.19215468e-01 -4.32747304e-01 4.90922093e-01 8.07630479e-01
-2.28959262e-01 5.72724521e-01 -3.74184102e-01 -3.11965086e-02
6.98162973e-01 -9.41517651e-02 9.21194792e-01 -1.26168585e+00
-7.28042245e-01 -3.88006806e-01 -3.92812163e-01 -1.02520990e+00
1.68016315e-01 -1.19017410e+00 -6.43790424e-01 -1.35017598e+00
3.46103072e-01 -2.08186209e-01 -4.44869399e-01 8.74813974e-01
-6.68659210e-02 3.38310838e-01 -7.27997115e-03 -6.08806051e-02
-8.88329327e-01 7.17176974e-01 1.06895399e+00 -2.53083944e-01
1.71574652e-01 -2.90161639e-01 -6.33026958e-01 2.22092748e-01
9.44041610e-01 -3.54431063e-01 -8.70491415e-02 -1.01284273e-01
6.59007251e-01 -5.83530851e-02 5.26754320e-01 -9.13038611e-01
-4.26624790e-02 9.63245481e-02 4.42758560e-01 -6.00012958e-01
7.62988269e-01 -3.68063092e-01 4.40025419e-01 8.26667309e-01
1.65268034e-02 8.43255594e-02 4.68141317e-01 5.31880021e-01
2.49612957e-01 2.79195607e-01 5.91779172e-01 -1.16592124e-01
-2.24020809e-01 1.07690156e+00 6.21225461e-02 -1.74777508e-01
6.74165726e-01 9.06663984e-02 -7.71833181e-01 -1.49767831e-01
-8.32863927e-01 5.40119588e-01 5.61406255e-01 -2.55851299e-01
3.19079757e-01 -8.13404679e-01 -5.97759306e-01 1.78722069e-02
-9.55013616e-04 1.13891803e-01 4.98486519e-01 1.04274166e+00
-9.97429967e-01 8.75126183e-01 7.04682544e-02 -2.10643411e-01
-1.19580960e+00 4.84395146e-01 6.63446784e-01 -4.90771294e-01
-4.94256407e-01 1.09556520e+00 -8.56835246e-02 -5.78041673e-01
-5.41718490e-02 -6.78825453e-02 2.65751809e-01 -3.15695107e-01
3.22797686e-01 4.78681564e-01 4.93842483e-01 -3.37928742e-01
-3.37093472e-01 2.48474345e-01 -4.85778689e-01 5.56902111e-01
1.71478033e+00 5.71040392e-01 -3.54992688e-01 -1.66481823e-01
1.69555342e+00 -2.59109288e-01 -1.27197301e+00 6.91467971e-02
-2.56775647e-01 2.64984488e-01 2.37488329e-01 -1.08392859e+00
-8.94987345e-01 8.14237833e-01 4.65929329e-01 -1.75594717e-01
4.84115303e-01 -3.99006337e-01 8.24445367e-01 8.92884374e-01
3.37079614e-01 -7.60884404e-01 -4.86855090e-01 7.17856348e-01
7.74208844e-01 -1.31410968e+00 4.94923234e-01 -3.00026774e-01
-2.11947307e-01 9.01618659e-01 4.85114515e-01 -1.66347802e-01
6.94242954e-01 -1.80014938e-01 -4.46532130e-01 -5.96784830e-01
-1.22917795e+00 3.63893807e-01 3.46833497e-01 1.95689619e-01
7.95232534e-01 3.11596483e-01 1.61084235e-02 2.46481597e-01
-2.46356130e-01 -3.17697167e-01 2.11505711e-01 7.35744715e-01
-1.70268551e-01 -1.22622859e+00 3.39137465e-01 5.39042950e-01
-6.32136285e-01 -7.75300145e-01 -4.99068975e-01 5.38699925e-01
-1.30450010e-01 6.00887060e-01 -2.02879071e-01 -3.49689305e-01
-7.38031138e-03 4.55536172e-02 5.30252934e-01 -4.36810732e-01
-6.34911656e-01 -4.36562523e-02 2.95963377e-01 -1.02717519e+00
-5.30308150e-02 -3.13778967e-01 -1.30410707e+00 -1.00481427e+00
-1.31383345e-01 4.81195331e-01 7.17632771e-01 3.72473747e-01
1.14728749e+00 5.87195933e-01 2.63936490e-01 -1.07920802e+00
-4.97713774e-01 -1.18344104e+00 -4.97720033e-01 -1.06209815e-01
2.46459574e-01 -2.79007554e-01 -2.73818433e-01 -5.94501674e-01] | [5.215849876403809, 5.773880481719971] |
4da10412-63fa-46e0-984c-286acde2013b | what-matters-for-neural-cross-lingual-named | 1909.03598 | null | https://arxiv.org/abs/1909.03598v1 | https://arxiv.org/pdf/1909.03598v1.pdf | What Matters for Neural Cross-Lingual Named Entity Recognition: An Empirical Analysis | Building named entity recognition (NER) models for languages that do not have much training data is a challenging task. While recent work has shown promising results on cross-lingual transfer from high-resource languages to low-resource languages, it is unclear what knowledge is transferred. In this paper, we first propose a simple and efficient neural architecture for cross-lingual NER. Experiments show that our model achieves competitive performance with the state-of-the-art. We further analyze how transfer learning works for cross-lingual NER on two transferable factors: sequential order and multilingual embeddings, and investigate how model performance varies across entity lengths. Finally, we conduct a case-study on a non-Latin language, Bengali, which suggests that leveraging knowledge from Wikipedia will be a promising direction to further improve the model performances. Our results can shed light on future research for improving cross-lingual NER. | ['Xiaolei Huang', 'Nanyun Peng', 'Jonathan May'] | 2019-09-09 | what-matters-for-neural-cross-lingual-named-1 | https://aclanthology.org/D19-1672 | https://aclanthology.org/D19-1672.pdf | ijcnlp-2019-11 | ['cross-lingual-ner'] | ['natural-language-processing'] | [-5.92792451e-01 -1.57376096e-01 -3.64804685e-01 -6.13840878e-01
-1.12402463e+00 -8.40668321e-01 4.71348524e-01 4.74398509e-02
-1.16225135e+00 7.41683125e-01 6.03951633e-01 -5.58060050e-01
4.54634637e-01 -7.95193970e-01 -9.29301739e-01 -4.92248647e-02
-1.16093159e-02 2.73762256e-01 -5.69063202e-02 -2.41613016e-01
-1.81403726e-01 5.24907827e-01 -7.46244371e-01 1.90907091e-01
1.12873793e+00 1.23537809e-01 5.96090816e-02 2.51253694e-01
-3.22936773e-01 5.48837006e-01 -3.56368810e-01 -9.44419205e-01
1.83839530e-01 -2.45296478e-01 -9.77752686e-01 -5.47611892e-01
5.87574303e-01 -8.73401240e-02 -1.26905560e-01 9.86715078e-01
7.21384048e-01 1.56176031e-01 6.29891098e-01 -6.27439737e-01
-1.35538018e+00 9.22655344e-01 -2.81801939e-01 1.39965534e-01
-1.16175421e-01 -1.71772867e-01 1.05560422e+00 -9.84764457e-01
8.96888137e-01 1.07339656e+00 1.21140826e+00 6.92964375e-01
-9.51561451e-01 -7.53021061e-01 1.65253013e-01 1.89539492e-01
-1.44154751e+00 -4.21862632e-01 4.00459379e-01 -1.07121117e-01
1.19135499e+00 -2.60308951e-01 1.90192714e-01 1.05391955e+00
-4.05927189e-02 8.56845379e-01 1.27878010e+00 -6.28023148e-01
-1.33037314e-01 3.47521335e-01 5.98546527e-02 5.67027211e-01
5.59733868e-01 -1.97515134e-02 -2.39162639e-01 1.45922258e-01
5.54030478e-01 -4.69631076e-01 -3.18223953e-01 -9.96966586e-02
-1.11733341e+00 9.09823060e-01 5.01667082e-01 8.55140269e-01
-3.24776262e-01 -1.04798213e-01 5.21756887e-01 3.52235913e-01
6.88960433e-01 8.53847146e-01 -1.18130958e+00 -2.94406146e-01
-8.00885081e-01 -3.25524509e-01 1.18939686e+00 8.92057836e-01
8.49453986e-01 1.31827623e-01 1.99097589e-01 1.23921072e+00
6.30537197e-02 5.43119609e-01 4.03398275e-01 -4.66681451e-01
6.69599712e-01 3.97881061e-01 7.13378266e-02 -5.57441413e-01
-4.49394852e-01 -2.53668278e-01 -5.18923402e-01 -2.35976592e-01
4.67263728e-01 -8.86216462e-01 -6.44195735e-01 1.93501294e+00
7.44327754e-02 -4.73995097e-02 3.14667583e-01 6.94233537e-01
6.82155669e-01 7.10851252e-01 5.75949848e-01 2.45184883e-01
1.49128938e+00 -1.16647494e+00 -4.99757856e-01 -3.20587426e-01
1.24613416e+00 -8.30585957e-01 1.06103551e+00 -2.14610696e-01
-7.93371856e-01 -5.20303249e-01 -7.39468634e-01 -4.61004436e-01
-9.65256631e-01 7.09564865e-01 6.82478964e-01 8.24959815e-01
-9.79970992e-01 4.79173839e-01 -1.05983043e+00 -9.30265665e-01
-1.43780198e-03 9.92505625e-02 -7.33567417e-01 -2.92020828e-01
-1.60301161e+00 1.35847974e+00 6.25334799e-01 -2.02545859e-02
-5.27549148e-01 -9.59569931e-01 -1.02678037e+00 9.80029553e-02
1.36252949e-02 -4.46044505e-01 1.05956531e+00 -6.23728335e-01
-1.29563475e+00 9.07097280e-01 -1.78786665e-02 -2.56659299e-01
1.42755210e-01 -4.53594387e-01 -7.45566428e-01 -4.54059511e-01
2.79928505e-01 7.84071326e-01 -1.63966358e-01 -1.10613358e+00
-7.15429544e-01 -2.50336558e-01 1.34855077e-01 2.48843923e-01
-8.93906474e-01 3.65041763e-01 -4.66938853e-01 -6.40093088e-01
-5.76035142e-01 -1.00292861e+00 -2.15623960e-01 -6.03841603e-01
-1.48242146e-01 -6.18192613e-01 1.26301140e-01 -9.23987210e-01
1.31890607e+00 -1.85375392e+00 -2.14957118e-01 -2.94289500e-01
-4.93991971e-01 4.58885372e-01 -4.77433741e-01 7.79621601e-01
-7.65510201e-02 6.60686493e-01 -2.64239237e-02 -2.96775043e-01
6.79052249e-02 -2.54452433e-02 -4.43504006e-02 2.05500171e-01
4.11131084e-01 1.03029847e+00 -8.21156681e-01 -2.68478155e-01
-1.96351841e-01 7.72673011e-01 -5.42636454e-01 2.34998286e-01
3.35772008e-01 3.49386424e-01 -3.42461348e-01 4.32557106e-01
6.12994254e-01 2.01953761e-02 3.95171374e-01 -4.13798213e-01
-6.32639945e-01 7.49000072e-01 -8.55070889e-01 1.90431249e+00
-9.13267791e-01 5.41449845e-01 -1.43422335e-01 -6.90709472e-01
8.46907437e-01 3.14231664e-01 2.17423830e-02 -7.34705806e-01
-5.49678914e-02 3.83389682e-01 -2.97478829e-02 -4.03808624e-01
6.97889745e-01 -3.38592440e-01 -3.79162997e-01 5.81359684e-01
4.14759636e-01 2.59581238e-01 4.21047539e-01 -2.70498037e-01
8.57270062e-01 3.41932207e-01 4.22048390e-01 -3.24809462e-01
2.80907393e-01 2.18783289e-01 7.55839944e-01 6.62383854e-01
-3.79220784e-01 1.02517731e-01 2.87443455e-02 -3.52055252e-01
-1.12672877e+00 -8.44123244e-01 -3.65902036e-01 1.54489219e+00
-3.12419862e-01 -3.20454776e-01 -8.84140015e-01 -1.10160410e+00
-1.54793650e-01 9.02756393e-01 -5.14259279e-01 1.65774062e-01
-9.46965098e-01 -8.63990605e-01 1.12410867e+00 8.07310522e-01
5.01796484e-01 -1.21829391e+00 2.26534054e-01 2.38884658e-01
-1.93371966e-01 -1.39314735e+00 -6.75806582e-01 2.46240243e-01
-8.33945155e-01 -6.98986530e-01 -1.04276073e+00 -1.32251441e+00
5.53841054e-01 7.38465488e-02 1.34845698e+00 -3.58600587e-01
2.28407443e-01 4.02486563e-01 -4.83566463e-01 -4.36887324e-01
-4.08312261e-01 8.96084189e-01 2.41858497e-01 -4.79164124e-01
9.83176053e-01 -2.64177889e-01 -2.32067481e-01 1.76438794e-01
-6.24454916e-01 -3.26020509e-01 7.20385492e-01 7.18746006e-01
4.27175194e-01 -1.38698831e-01 7.01243043e-01 -1.02099621e+00
6.79835975e-01 -6.31617963e-01 -4.17953491e-01 5.72753727e-01
-4.44643438e-01 3.01404297e-01 9.73805904e-01 -3.14305216e-01
-1.54912567e+00 -1.59061119e-01 -4.04777616e-01 1.52162299e-01
-3.58508408e-01 7.87276566e-01 -2.00574413e-01 1.42648816e-01
6.37708962e-01 -5.92263304e-02 -8.59134197e-01 -9.20294881e-01
7.69618332e-01 7.87509680e-01 3.01732898e-01 -8.87157023e-01
5.82741022e-01 2.22272038e-01 -7.43976355e-01 -8.31268072e-01
-1.02139199e+00 -4.55444247e-01 -9.38171446e-01 3.15516084e-01
1.22562969e+00 -1.37268114e+00 -1.38349533e-01 2.25990415e-01
-1.32652736e+00 -5.06153047e-01 2.46971846e-03 8.94802868e-01
-4.90822010e-02 8.36236477e-02 -1.16881084e+00 -3.35117221e-01
-2.85073400e-01 -8.40020776e-01 6.79758966e-01 3.87083709e-01
-3.25017199e-02 -1.66387427e+00 5.98876595e-01 1.53827190e-01
4.63016272e-01 -4.05095756e-01 9.06345606e-01 -1.16222072e+00
-3.19516093e-01 2.20743995e-02 -2.40027711e-01 5.38127303e-01
1.89366221e-01 -3.04003417e-01 -7.80456901e-01 -4.24903035e-01
-3.80926311e-01 -5.76342463e-01 7.44542062e-01 1.52590275e-02
6.23832464e-01 -6.21738546e-02 -3.08163553e-01 6.85163736e-01
1.52488315e+00 -6.56528026e-02 4.45717156e-01 6.66999817e-01
8.69730413e-01 6.66373909e-01 4.17678505e-01 -6.40714318e-02
1.11420321e+00 3.19361925e-01 -4.49481726e-01 -5.07173300e-01
-3.67690951e-01 -5.49963176e-01 6.34385049e-01 1.66278672e+00
-2.07277626e-01 -2.77292073e-01 -1.15475130e+00 9.74068284e-01
-1.35309064e+00 -6.64605379e-01 6.58015758e-02 2.05013919e+00
1.12167811e+00 -3.05304736e-01 -1.69572085e-01 -7.84847438e-01
8.43789279e-01 4.53335010e-02 -2.51030117e-01 -6.67459548e-01
-2.43859142e-01 3.76582563e-01 7.72398233e-01 2.20902696e-01
-1.36318803e+00 1.54904890e+00 6.14779806e+00 7.29175568e-01
-1.17935705e+00 5.16487718e-01 3.71511966e-01 6.00350916e-01
-2.20045939e-01 7.22405910e-02 -1.34307468e+00 9.36142653e-02
1.39601147e+00 -1.88250348e-01 2.57621944e-01 8.93028259e-01
-1.48083940e-01 5.04561424e-01 -1.09004211e+00 4.71225917e-01
2.08947346e-01 -9.07146275e-01 -2.97841113e-02 -3.58106531e-02
1.06395817e+00 8.02212834e-01 -3.13272566e-01 9.96840656e-01
8.88864756e-01 -7.73377597e-01 1.68524578e-01 2.84255743e-01
8.39723110e-01 -9.20896053e-01 9.75339413e-01 2.67938375e-01
-1.26992083e+00 3.53984326e-01 -6.04826987e-01 2.64529139e-01
3.34398955e-01 1.98542640e-01 -7.20172226e-01 6.19914234e-01
7.75610864e-01 7.84480870e-01 -6.70336008e-01 9.42624867e-01
-5.86972952e-01 8.66220236e-01 -2.41048187e-01 -6.39590696e-02
2.34404504e-01 -5.29918261e-02 7.06717521e-02 1.91987312e+00
4.78896588e-01 -1.79464325e-01 1.58082083e-01 6.78703785e-01
-6.92461073e-01 6.97559595e-01 -7.96650589e-01 -3.83365870e-01
5.66175580e-01 1.30862772e+00 -4.84471291e-01 -1.68157518e-01
-1.00301468e+00 1.18812394e+00 1.13793838e+00 3.64182919e-01
-6.21343851e-01 -6.65075123e-01 6.12105846e-01 -2.47586533e-01
5.72125852e-01 -5.01631260e-01 -2.48889759e-01 -1.63412678e+00
-2.04979613e-01 -6.57339752e-01 5.24584711e-01 -4.39033717e-01
-1.97852290e+00 7.86594152e-01 -3.26583833e-01 -1.01711667e+00
-1.86049528e-02 -9.20490921e-01 -4.28166687e-01 7.54848957e-01
-1.96982527e+00 -1.52357388e+00 2.93733746e-01 3.79713237e-01
3.63750130e-01 -1.10354804e-01 1.24529421e+00 6.86307728e-01
-6.07499540e-01 1.03238249e+00 4.07574683e-01 8.73758256e-01
1.32988703e+00 -1.19345963e+00 7.71973014e-01 9.39027607e-01
4.10817444e-01 1.00518417e+00 -1.39587047e-02 -7.05341697e-01
-1.23560977e+00 -1.26382923e+00 1.53113294e+00 -6.33386016e-01
1.01033521e+00 -3.60601872e-01 -9.90741730e-01 1.05410969e+00
6.20262921e-01 -5.61364926e-02 1.20012236e+00 8.87524486e-01
-6.26023233e-01 1.00426495e-01 -8.19898009e-01 7.11385965e-01
9.17852581e-01 -7.99429536e-01 -8.76683831e-01 -3.24856006e-02
7.17007995e-01 -6.83766529e-02 -1.47399998e+00 2.49650583e-01
3.24783355e-01 -5.72575688e-01 6.49055719e-01 -9.24975216e-01
2.53095120e-01 -1.39973357e-01 -3.13086025e-02 -1.80262744e+00
-4.18227315e-01 -1.23058617e-01 4.62416351e-01 1.71787822e+00
7.72578180e-01 -6.28932595e-01 3.20621997e-01 5.63524008e-01
-2.85496742e-01 -3.93836230e-01 -7.53791809e-01 -1.05900347e+00
1.05012476e+00 -4.77227002e-01 4.70616043e-01 1.67242229e+00
1.95013136e-02 6.70511603e-01 -2.80702800e-01 3.13074172e-01
1.96362168e-01 -3.04202944e-01 5.44019282e-01 -1.04310310e+00
1.24615885e-01 -1.31665021e-01 -3.03313937e-02 -1.01986361e+00
8.10125947e-01 -1.36309695e+00 9.00918022e-02 -1.56375194e+00
3.19519609e-01 -7.75555670e-01 -6.07495129e-01 8.76308799e-01
-3.49910319e-01 2.42743924e-01 3.13336402e-01 2.09954698e-02
-7.30635583e-01 5.85089386e-01 9.65496302e-01 2.06676289e-01
-1.57002822e-01 -6.11478865e-01 -8.29107225e-01 6.71327949e-01
7.64495850e-01 -7.74592280e-01 2.13357508e-01 -1.06736600e+00
2.07923055e-01 -4.06918108e-01 -4.09920394e-01 -8.31970692e-01
2.96574295e-01 -6.45955233e-03 3.25277507e-01 -1.62940040e-01
-1.13032371e-01 -7.30986238e-01 -3.94375145e-01 -2.86805611e-02
-3.04786921e-01 3.47195119e-01 4.04101163e-01 1.92620814e-01
-3.19251567e-01 -3.02905947e-01 5.93771994e-01 -1.84210554e-01
-8.77385318e-01 2.90993512e-01 -3.34950805e-01 6.39235020e-01
5.86662233e-01 3.39392006e-01 -3.55417490e-01 2.24149823e-02
-5.12061059e-01 1.57572344e-01 5.58037162e-01 7.83868611e-01
-1.42440543e-01 -1.59641135e+00 -9.78096664e-01 -1.46915372e-02
3.66419554e-01 -6.57305181e-01 1.01816319e-01 5.11074483e-01
-2.61922747e-01 6.93402410e-01 -1.28423303e-01 -3.58939879e-02
-7.02787817e-01 3.80479902e-01 2.61768878e-01 -6.07128859e-01
-1.01082467e-01 7.96786249e-01 3.56253162e-02 -1.42894077e+00
-1.65530309e-01 -3.34247649e-02 -2.75422394e-01 1.07959643e-01
4.10212219e-01 4.48575646e-01 1.79784864e-01 -8.00958693e-01
-4.09666628e-01 6.59325421e-01 -2.87587374e-01 -3.32523584e-02
1.56748188e+00 -2.13669077e-01 -5.08225001e-02 5.97540915e-01
1.40212452e+00 5.27172744e-01 -7.44651556e-01 -2.71384150e-01
4.07201886e-01 1.86588138e-01 -1.60008162e-01 -1.01294696e+00
-8.31073344e-01 9.06279862e-01 4.56582367e-01 -2.21344665e-01
8.83601069e-01 -4.67009237e-03 9.45096195e-01 7.56287456e-01
6.00410223e-01 -1.29107678e+00 -5.31604707e-01 1.22115541e+00
5.05262971e-01 -1.53675675e+00 -3.07220876e-01 -1.04281893e-02
-7.40075171e-01 1.09427309e+00 8.23468387e-01 -1.22797735e-01
8.01493466e-01 2.96878457e-01 4.17744428e-01 6.50598407e-02
-5.03000855e-01 -4.95952368e-01 3.72222662e-01 5.25396645e-01
1.29877663e+00 2.27756754e-01 -5.84316671e-01 8.58521938e-01
-2.79817581e-01 8.80433172e-02 3.69106174e-01 7.88738728e-01
-7.30039328e-02 -1.62116015e+00 -1.14480838e-01 2.42531560e-02
-9.27840412e-01 -7.13112533e-01 -2.47062951e-01 1.21583080e+00
2.52007604e-01 7.98080087e-01 -4.14011441e-02 -9.66574177e-02
5.30971467e-01 4.37401384e-01 3.80267560e-01 -7.99195468e-01
-7.69756794e-01 -3.22834760e-01 4.82090503e-01 -1.79301947e-01
-4.65928614e-01 -3.96419019e-01 -1.25459301e+00 -1.47693947e-01
-3.72090578e-01 4.02449489e-01 8.45400035e-01 7.79344738e-01
5.65291464e-01 1.48204744e-01 3.08634162e-01 -5.51087797e-01
-3.03324908e-01 -1.07565534e+00 -3.23206902e-01 3.58024210e-01
-2.20262334e-01 -2.31185719e-01 -2.88130522e-01 1.04082398e-01] | [10.216711044311523, 9.763360023498535] |
fad28d7d-925a-4206-9bfd-b6911354bc68 | microscopic-fine-grained-instance | 2010.02818 | null | https://arxiv.org/abs/2010.02818v1 | https://arxiv.org/pdf/2010.02818v1.pdf | Microscopic fine-grained instance classification through deep attention | Fine-grained classification of microscopic image data with limited samples is an open problem in computer vision and biomedical imaging. Deep learning based vision systems mostly deal with high number of low-resolution images, whereas subtle detail in biomedical images require higher resolution. To bridge this gap, we propose a simple yet effective deep network that performs two tasks simultaneously in an end-to-end manner. First, it utilises a gated attention module that can focus on multiple key instances at high resolution without extra annotations or region proposals. Second, the global structural features and local instance features are fused for final image level classification. The result is a robust but lightweight end-to-end trainable deep network that yields state-of-the-art results in two separate fine-grained multi-instance biomedical image classification tasks: a benchmark breast cancer histology dataset and our new fungi species mycology dataset. In addition, we demonstrate the interpretability of the proposed model by visualising the concordance of the learned features with clinically relevant features. | ['Jens Rittscher', 'Yan Xu', 'Eric I-Chao Chang', 'Tapabrata Chakrabort', 'Mengran Fan'] | 2020-10-06 | null | null | null | null | ['deep-attention', 'deep-attention'] | ['computer-vision', 'natural-language-processing'] | [ 4.78458226e-01 6.32316023e-02 1.28997058e-01 -5.65326810e-01
-1.14489830e+00 -4.40105528e-01 7.26753116e-01 5.95773637e-01
-6.86174512e-01 8.81903350e-01 -2.69066811e-01 -1.40810370e-01
-2.47663289e-01 -6.44767642e-01 -7.03980684e-01 -1.17414939e+00
-6.98007829e-03 5.98978877e-01 2.94563740e-01 1.38084814e-01
3.98899257e-01 8.98547947e-01 -1.22971499e+00 8.25133264e-01
3.51170093e-01 1.22887719e+00 4.37927902e-01 1.01604986e+00
1.43832266e-02 7.34638512e-01 -3.35833937e-01 -1.75780326e-01
-7.00037330e-02 1.14846624e-01 -9.97557104e-01 1.27823755e-01
6.11207128e-01 -2.00637564e-01 1.12400353e-01 9.44428742e-01
6.45063579e-01 -3.98820937e-01 9.87899423e-01 -6.84153557e-01
-6.08426750e-01 7.90825412e-02 -8.76268208e-01 6.40585542e-01
-1.16261661e-01 2.58590072e-01 8.44284117e-01 -7.78135598e-01
7.30530441e-01 1.17070615e+00 6.34822369e-01 4.25803125e-01
-1.39921641e+00 -4.51504976e-01 6.83588758e-02 1.57468736e-01
-1.11858010e+00 -4.27362949e-01 4.45430577e-01 -5.52686512e-01
9.76480126e-01 3.38232934e-01 2.08520487e-01 9.88219857e-01
7.63560534e-01 2.49940902e-01 1.46078682e+00 -2.72175282e-01
1.49816722e-01 9.18080658e-02 1.77184734e-02 1.10594213e+00
2.56687135e-01 -4.87986319e-02 -1.79861277e-01 -1.14466920e-01
9.89324868e-01 5.11977851e-01 -1.65213034e-01 -1.88056469e-01
-1.34449971e+00 7.13566542e-01 6.54941976e-01 5.62079668e-01
-3.08446556e-01 1.67970389e-01 4.66407031e-01 7.39588365e-02
6.21054769e-01 4.64973599e-01 -6.83145344e-01 4.24691617e-01
-9.06372070e-01 -1.41112104e-01 4.52764809e-01 2.28309706e-01
8.47053051e-01 -4.77250218e-01 -3.17602724e-01 7.94500291e-01
2.82114506e-01 8.27870443e-02 5.22563517e-01 -4.72367138e-01
-1.96250930e-01 7.32706308e-01 -2.63996899e-01 -8.17620873e-01
-7.61068881e-01 -6.07703388e-01 -1.23732913e+00 5.59091508e-01
4.42290664e-01 4.29496437e-01 -1.13957000e+00 1.34504545e+00
5.26708961e-01 1.83084533e-01 -1.59851432e-01 8.44032228e-01
1.07173967e+00 3.12864274e-01 2.27872223e-01 -2.22691540e-02
1.65998328e+00 -9.39526379e-01 -3.91986936e-01 -1.27960801e-01
5.26137054e-01 -5.45451701e-01 8.11514199e-01 2.37224966e-01
-8.14206600e-01 -4.14386511e-01 -9.27094698e-01 -4.21927452e-01
-7.43874252e-01 2.74554849e-01 6.09259546e-01 1.95210353e-01
-1.08560240e+00 6.28089428e-01 -9.67379510e-01 -5.26121140e-01
1.04750311e+00 5.09454787e-01 -9.77561712e-01 -4.84114848e-02
-4.40637290e-01 7.20675528e-01 2.40469813e-01 1.65196240e-01
-1.10774326e+00 -1.04672039e+00 -5.98429382e-01 1.63486347e-01
-1.98762804e-01 -9.00920570e-01 9.24650311e-01 -7.80695319e-01
-1.29622114e+00 1.63232124e+00 -4.69673909e-02 -3.05608392e-01
5.43959379e-01 2.81536877e-01 1.65069610e-01 3.70113254e-01
2.97614187e-01 8.12269986e-01 6.76521540e-01 -1.20317101e+00
-8.10468197e-01 -6.77462399e-01 -1.15429446e-01 -2.39906341e-01
-1.46923244e-01 -1.08882874e-01 -1.81299031e-01 -5.35710037e-01
-3.35021675e-01 -4.61060196e-01 -4.30343986e-01 4.84870255e-01
-4.26954418e-01 -9.41815525e-02 8.55116010e-01 -5.17074347e-01
4.01221067e-01 -2.03399968e+00 2.58518994e-01 -1.23637520e-01
5.32713115e-01 3.34518403e-02 -1.98551565e-01 6.97203949e-02
-1.54105932e-01 1.62631750e-01 -5.75597435e-02 -3.30699146e-01
-1.78338572e-01 -1.31624848e-01 1.01679526e-01 8.75406384e-01
5.51264286e-01 1.14936602e+00 -7.65458703e-01 -7.40590632e-01
5.40430009e-01 7.05647111e-01 -2.73680896e-01 3.24005693e-01
6.09206967e-02 6.64169431e-01 -2.88596153e-01 1.00124657e+00
6.13521755e-01 -8.56041908e-01 1.53352425e-01 -7.29076266e-01
8.68527666e-02 -3.33185852e-01 -5.41108668e-01 1.72013330e+00
-4.43729967e-01 5.93339920e-01 4.47411597e-01 -1.29833484e+00
6.53612316e-01 1.70145318e-01 3.09851348e-01 -6.40510798e-01
2.44701445e-01 1.92309678e-01 -1.59561485e-01 -5.36292076e-01
-2.15746492e-01 -4.55111027e-01 3.07928659e-02 1.95092767e-01
4.08566952e-01 7.70365372e-02 -2.87620723e-02 -1.41355872e-01
1.30832171e+00 -8.86745937e-03 7.75981784e-01 -5.68210244e-01
6.76067829e-01 -7.99423754e-02 2.22392112e-01 6.03370607e-01
-2.82321006e-01 6.92116797e-01 4.52004969e-01 -9.07289147e-01
-1.03627324e+00 -7.80003846e-01 -4.80159640e-01 1.23949456e+00
-1.85589660e-02 2.01178282e-01 -5.81415594e-01 -9.53866184e-01
1.92658883e-02 -3.20000708e-01 -1.34430945e+00 1.49673089e-01
-3.17509949e-01 -9.33707356e-01 4.03126568e-01 4.38576818e-01
3.08300734e-01 -1.25952315e+00 -7.01658845e-01 2.49725968e-01
2.59704858e-01 -1.08720541e+00 -3.41567397e-02 6.75397038e-01
-6.69890344e-01 -1.28884900e+00 -8.91157627e-01 -1.07426441e+00
9.09935534e-01 1.07882231e-01 1.19604850e+00 1.51093036e-01
-1.20149517e+00 -1.62139490e-01 -9.24797580e-02 -3.37367147e-01
-2.29883537e-01 1.41787559e-01 -4.33639526e-01 7.02213719e-02
1.76858798e-01 -5.18590331e-01 -8.81512225e-01 9.98922214e-02
-9.04732227e-01 9.06078443e-02 1.18065131e+00 1.36210048e+00
1.16665840e+00 -1.90811366e-01 6.01470888e-01 -1.07492173e+00
3.01583350e-01 -3.09989691e-01 -3.65183473e-01 4.04712439e-01
-3.30196209e-02 -2.07997058e-02 8.31565976e-01 -2.22204253e-01
-8.03434968e-01 1.11489177e-01 -2.10516632e-01 -2.31894001e-01
-5.78535974e-01 3.92938823e-01 1.99379370e-01 -5.80835938e-01
6.74089909e-01 2.06423506e-01 2.63766330e-02 -4.07472193e-01
3.58096249e-02 6.56753182e-01 6.05743170e-01 -4.41863507e-01
3.05192709e-01 9.23044026e-01 3.67617100e-01 -6.72991872e-01
-9.67459679e-01 -6.55693114e-01 -7.95693457e-01 1.32009029e-01
1.00012159e+00 -9.15017486e-01 -9.33328450e-01 4.99496907e-01
-9.93864059e-01 -4.31951523e-01 -1.30342424e-01 -4.34460212e-03
-5.86357176e-01 2.70327568e-01 -9.56973851e-01 -3.42376053e-01
-7.35257626e-01 -1.25151467e+00 1.95127487e+00 2.67424226e-01
-2.73899212e-02 -1.21271431e+00 1.00296445e-01 4.24683839e-01
3.07622373e-01 6.74526036e-01 1.19330037e+00 -4.64279234e-01
-5.65324724e-01 -3.40112895e-01 -8.32872927e-01 -7.26986527e-02
4.40977007e-01 2.33783741e-02 -1.26985550e+00 -6.13116622e-01
-2.96213686e-01 -6.81324601e-01 1.19237041e+00 6.24651968e-01
1.61839962e+00 -1.94903970e-01 -6.71212375e-01 9.92686868e-01
1.87085915e+00 -2.29644597e-01 3.48935843e-01 3.81242812e-01
6.65771723e-01 6.10721290e-01 4.61534798e-01 2.48112470e-01
-1.82051503e-03 4.64495152e-01 6.72326386e-01 -7.74149954e-01
-1.96750462e-01 5.03958583e-01 -3.11278641e-01 1.15306854e-01
-5.93660250e-02 7.19311135e-03 -7.37999201e-01 6.99849784e-01
-1.74081290e+00 -7.52273679e-01 1.86623797e-01 1.78166461e+00
8.69380891e-01 -1.75905406e-01 -1.59083799e-01 -1.56295169e-02
6.02592587e-01 -9.74543095e-02 -6.59854591e-01 -2.41131514e-01
1.29036820e-02 4.68208432e-01 3.38442981e-01 3.46765280e-01
-1.36053658e+00 7.46849716e-01 5.83738947e+00 1.09429407e+00
-1.49102759e+00 1.99124038e-01 1.37665164e+00 -4.71307598e-02
1.88998252e-01 -6.54421687e-01 -6.01832926e-01 3.53256792e-01
7.56067097e-01 3.49399656e-01 5.80611825e-03 5.80065489e-01
8.83729681e-02 -7.63540016e-03 -1.33430827e+00 8.77362192e-01
-1.80763945e-01 -1.88494873e+00 2.90411294e-01 3.12574148e-01
5.75113595e-01 6.46795258e-02 1.41239569e-01 -1.22333743e-01
4.10453379e-02 -1.63165152e+00 3.33341539e-01 5.10116875e-01
1.26143754e+00 -6.48842275e-01 1.02598083e+00 1.77785963e-01
-1.10497952e+00 -3.43117565e-02 -4.91210818e-01 2.35880002e-01
-2.74947852e-01 6.51902556e-01 -1.06188011e+00 4.98054981e-01
8.45706701e-01 6.38444483e-01 -8.39695692e-01 1.10372663e+00
3.05973619e-01 4.67537157e-02 9.08307079e-03 5.76836839e-02
3.72569621e-01 3.62267733e-01 -3.41604464e-02 1.78829074e+00
2.43755773e-01 -1.88034728e-01 8.44688937e-02 7.80408621e-01
-1.36131763e-01 -9.07739326e-02 -4.28608149e-01 4.80532320e-03
-1.76162515e-02 2.03916836e+00 -1.16129482e+00 -2.56769776e-01
-1.31932959e-01 9.63480592e-01 8.59716713e-01 8.56035277e-02
-5.53395808e-01 -3.07708800e-01 5.78053117e-01 9.84783098e-02
5.62898755e-01 3.67043614e-01 -3.25180203e-01 -8.59375954e-01
-3.77387583e-01 -7.41864979e-01 3.23021799e-01 -5.46707749e-01
-1.70462477e+00 6.59104943e-01 -6.95077717e-01 -7.88686514e-01
-1.59387104e-02 -1.18261826e+00 -5.13748705e-01 8.41770828e-01
-1.83447206e+00 -1.64822018e+00 -6.20271087e-01 4.92729068e-01
5.23393512e-01 -1.14127481e-02 1.26548064e+00 2.21313313e-01
-5.36957383e-01 5.69123387e-01 2.31839076e-01 2.60968897e-02
7.83537567e-01 -1.53817999e+00 -2.78697852e-02 2.66608566e-01
-2.39636227e-01 5.28221071e-01 5.17667830e-01 -2.51082629e-01
-1.01508582e+00 -1.39578259e+00 6.27831161e-01 -3.88896763e-01
5.13223112e-01 -3.36545348e-01 -7.83898175e-01 3.95994902e-01
2.38863856e-01 9.09849882e-01 8.61633420e-01 -1.01400666e-01
-3.72578382e-01 -1.52267024e-01 -1.63632691e+00 2.24243894e-01
5.19430935e-01 -4.96277750e-01 -7.86166713e-02 5.83000302e-01
3.52457345e-01 -2.55276650e-01 -1.13988495e+00 5.28651476e-01
6.61653101e-01 -1.06380260e+00 1.15335464e+00 -6.41945302e-01
6.69462264e-01 -3.39536279e-01 -1.47337705e-01 -1.07312036e+00
-8.33199263e-01 -1.82106048e-01 1.21673957e-01 8.54105294e-01
2.94590026e-01 -4.02705014e-01 8.63281012e-01 -1.27566189e-01
-3.66749689e-02 -1.32933533e+00 -1.15024602e+00 -2.38643706e-01
1.95663899e-01 4.23523724e-01 2.38290831e-01 8.55118752e-01
-1.91646740e-01 3.24866176e-01 -1.34236775e-02 7.21626580e-02
8.89863968e-01 3.61682177e-01 3.89427453e-01 -1.38085222e+00
-3.38071764e-01 -6.11567974e-01 -8.46044302e-01 -3.26847792e-01
1.06413454e-01 -8.17609668e-01 -2.19719810e-03 -1.67494786e+00
8.43649566e-01 -3.06499273e-01 -6.22559369e-01 4.47442293e-01
-2.79784501e-01 9.30180192e-01 -3.28357607e-01 1.01760477e-01
-8.53995264e-01 -9.00346041e-02 1.26947463e+00 -5.04164994e-01
3.82031620e-01 -4.32312667e-01 -8.49418819e-01 4.99798983e-01
5.13119817e-01 -3.01989168e-01 8.56641382e-02 -2.00707301e-01
-1.60249814e-01 -1.40141383e-01 7.44246125e-01 -8.84627700e-01
9.57475975e-02 -1.19193137e-01 1.06037879e+00 -3.21334064e-01
3.50011230e-01 -7.05248713e-01 -7.39021227e-02 5.62460780e-01
-3.76210123e-01 -4.36104089e-01 3.05714786e-01 7.03289270e-01
-1.84727073e-01 1.51434794e-01 1.37565565e+00 -4.67426866e-01
-4.61291552e-01 5.37298381e-01 -2.25758955e-01 -3.77731979e-01
1.15592909e+00 -3.75263870e-01 -7.37875044e-01 2.83416748e-01
-6.68537557e-01 -2.10486755e-01 5.03759921e-01 -4.39844839e-02
4.86979485e-01 -1.19876719e+00 -8.69574547e-01 1.78265974e-01
3.45158130e-01 2.75864214e-01 5.56421816e-01 1.01144779e+00
-7.54552603e-01 6.84737921e-01 -6.06717587e-01 -1.00193751e+00
-1.39646828e+00 5.01362801e-01 5.94434679e-01 -8.22503984e-01
-4.45625931e-01 1.28803396e+00 8.63797069e-01 -5.39025664e-01
6.01319708e-02 -4.01424944e-01 -4.12333131e-01 -9.19292718e-02
6.99437082e-01 -4.75711375e-02 3.33276451e-01 -4.44989324e-01
-6.35207415e-01 7.40504444e-01 -6.16153955e-01 4.66912836e-01
1.75765157e+00 -1.55142136e-02 -3.01313728e-01 3.40296030e-01
1.48473239e+00 -4.46760148e-01 -1.49516010e+00 -4.79719937e-02
-2.13105887e-01 -3.74839842e-01 1.57556638e-01 -1.09185815e+00
-1.01291418e+00 1.06131148e+00 8.41305792e-01 1.94073901e-01
1.07229805e+00 1.65824518e-01 3.53767663e-01 2.86235720e-01
2.01237917e-01 -5.47266543e-01 1.63782775e-01 1.39816061e-01
7.32030034e-01 -1.60327685e+00 1.29430562e-01 -2.95493901e-01
-8.72506797e-02 1.23236549e+00 6.06417596e-01 -1.53130159e-01
4.68883574e-01 5.49424231e-01 1.53479815e-01 -5.17705977e-01
-1.06589246e+00 3.27932648e-02 2.45304167e-01 8.06183219e-01
7.23334849e-01 -7.51320273e-02 4.55313139e-02 4.41849709e-01
3.17938864e-01 4.78673801e-02 2.56942600e-01 7.91888118e-01
-5.87064445e-01 -7.28123665e-01 -8.00165758e-02 6.74654007e-01
-1.09899509e+00 -6.26979992e-02 -4.75348204e-01 5.13916910e-01
1.56409785e-01 5.70040286e-01 1.66129082e-01 5.54871485e-02
-1.64749071e-01 -4.18975085e-01 7.76191473e-01 -6.25303924e-01
-7.48350739e-01 2.29870796e-01 -2.74605453e-01 -6.33299232e-01
-4.10662770e-01 -1.41556188e-01 -1.13838398e+00 -9.46099982e-02
-2.15050340e-01 -1.56087771e-01 5.36646485e-01 9.57010925e-01
4.79323745e-01 9.82859313e-01 4.45682734e-01 -1.30150092e+00
-2.11327940e-01 -1.04237437e+00 -6.71307147e-01 3.32952589e-01
8.31822932e-01 -3.68729234e-01 -2.21449286e-01 2.99547404e-01] | [15.055379867553711, -2.9617836475372314] |
4b9a3b21-03d4-4664-bf4d-197f12b4e2a7 | multi-view-gradient-consistency-for-svbrdf | 2202.13017 | null | https://arxiv.org/abs/2202.13017v1 | https://arxiv.org/pdf/2202.13017v1.pdf | Multi-view Gradient Consistency for SVBRDF Estimation of Complex Scenes under Natural Illumination | This paper presents a process for estimating the spatially varying surface reflectance of complex scenes observed under natural illumination. In contrast to previous methods, our process is not limited to scenes viewed under controlled lighting conditions but can handle complex indoor and outdoor scenes viewed under arbitrary illumination conditions. An end-to-end process uses a model of the scene's geometry and several images capturing the scene's surfaces from arbitrary viewpoints and under various natural illumination conditions. We develop a differentiable path tracer that leverages least-square conformal mapping for handling multiple disjoint objects appearing in the scene. We follow a two-step optimization process and introduce a multi-view gradient consistency loss which results in up to 30-50% improvement in the image reconstruction loss and can further achieve better disentanglement of the diffuse and specular BRDFs compared to other state-of-the-art. We demonstrate the process in real-world indoor and outdoor scenes from images in the wild and show that we can produce realistic renders consistent with actual images using the estimated reflectance properties. Experiments show that our technique produces realistic results for arbitrary outdoor scenes with complex geometry. The source code is publicly available at: https://gitlab.com/alen.joy/multi-view-gradient-consistency-for-svbrdf-estimation-of-complex-scenes-under-natural-illumination | ['Charalambos Poullis', 'Alen Joy'] | 2022-02-25 | null | null | null | null | ['svbrdf-estimation'] | ['computer-vision'] | [ 4.88707334e-01 -3.70772183e-01 6.87786996e-01 -4.34799224e-01
-1.03534877e+00 -6.87055528e-01 2.33611122e-01 -5.01679301e-01
3.05769350e-02 5.10813713e-01 1.42677464e-02 -1.50157496e-01
5.65687977e-02 -6.28299415e-01 -7.34201550e-01 -6.98255956e-01
2.92222261e-01 3.03930849e-01 1.21679120e-01 6.25966266e-02
4.36992571e-02 6.14379525e-01 -1.54414463e+00 1.61963478e-01
6.79471314e-01 7.66254127e-01 3.95300806e-01 1.10836220e+00
2.32135311e-01 6.06861770e-01 -2.72435453e-02 -2.27770731e-01
6.63727701e-01 -2.79822677e-01 -5.33070385e-01 6.01676047e-01
1.11794567e+00 -6.83733046e-01 -2.32708771e-02 1.05781996e+00
3.46975356e-01 2.08410680e-01 3.86134326e-01 -7.58374810e-01
-4.16272759e-01 -8.06171834e-01 -8.84517550e-01 -1.22059964e-01
7.52268195e-01 2.33508497e-01 8.81429017e-01 -1.14030457e+00
4.75823075e-01 1.25167477e+00 7.11653411e-01 1.58001155e-01
-1.62917638e+00 -2.05090076e-01 3.68941337e-01 -1.12301096e-01
-1.34436905e+00 -6.84114754e-01 7.76620686e-01 -3.71164888e-01
7.29144931e-01 4.46448028e-01 6.31725907e-01 8.36415768e-01
2.36223474e-01 4.30298716e-01 1.52272820e+00 -4.15228426e-01
-6.84073567e-02 1.85602471e-01 -1.51365325e-01 7.22745478e-01
1.29389567e-02 3.32895845e-01 -3.94319117e-01 -1.99547321e-01
9.36045349e-01 1.38899818e-01 -6.16211891e-01 -4.89713579e-01
-1.16618085e+00 3.53717536e-01 4.17202860e-01 -3.10682327e-01
-3.08363050e-01 8.78436342e-02 -1.83097973e-01 1.28420547e-01
8.61653984e-01 2.33428761e-01 -5.28574765e-01 2.41458789e-01
-5.29660583e-01 3.76397789e-01 6.16047919e-01 9.99869049e-01
8.80566895e-01 1.44146476e-02 4.39808547e-01 9.15389419e-01
5.64762831e-01 1.14792728e+00 -4.21852529e-01 -1.59412599e+00
2.77977347e-01 -4.84073088e-02 6.17715418e-01 -9.49204326e-01
-1.33206502e-01 -4.40886587e-01 -4.46218431e-01 7.44791925e-01
4.86462742e-01 -8.05186853e-02 -7.85763741e-01 1.32873583e+00
8.32205355e-01 2.23225772e-01 -1.31921753e-01 1.14481318e+00
5.22489369e-01 6.44922018e-01 -7.26892054e-01 -2.27820173e-01
1.23234570e+00 -1.10350990e+00 -5.20564795e-01 -3.48005474e-01
-7.60437176e-02 -1.20443380e+00 1.28709686e+00 7.65706122e-01
-1.32707500e+00 -4.16999042e-01 -8.56592655e-01 -3.33189219e-01
3.06666493e-01 -2.22097361e-03 3.91972542e-01 5.19935906e-01
-1.13057864e+00 2.94568479e-01 -8.32112730e-01 -3.12495202e-01
1.75338522e-01 -1.30889341e-01 -2.84948885e-01 -7.06374705e-01
-1.90583974e-01 6.12015069e-01 -5.78074276e-01 1.88796744e-01
-9.57276523e-01 -9.93523061e-01 -8.70649397e-01 -2.21929505e-01
4.31895375e-01 -9.91909206e-01 1.24349725e+00 -1.18323720e+00
-1.56322467e+00 8.63592505e-01 -6.32779121e-01 3.44134480e-01
5.01847446e-01 -5.16345441e-01 -1.91912830e-01 3.30585152e-01
5.03425188e-02 3.70589178e-03 7.20434248e-01 -2.02372146e+00
-1.90891847e-01 -3.20024520e-01 1.25795782e-01 6.70189083e-01
3.64022553e-01 1.49633050e-01 -5.18920362e-01 -2.74006903e-01
2.34358802e-01 -9.73131001e-01 -2.89428920e-01 6.07077420e-01
-5.46174288e-01 8.74598265e-01 4.84194726e-01 -6.60112500e-01
4.33102727e-01 -2.10452509e+00 -8.61327723e-02 1.28215235e-02
4.34949845e-02 -3.12169313e-01 -2.54174799e-01 4.55799937e-01
1.12740941e-01 -3.71184289e-01 -4.14708406e-01 -8.81645262e-01
-3.31518620e-01 -5.66075556e-02 -2.43367150e-01 8.81084323e-01
-1.92371711e-01 3.48581225e-01 -9.98780072e-01 -1.31291777e-01
5.28892279e-01 8.92960846e-01 -6.14511430e-01 5.04612207e-01
-2.02464879e-01 9.52694654e-01 -2.49446079e-01 7.54607975e-01
1.11964571e+00 -2.10556284e-01 1.37138665e-01 -3.99388969e-01
-2.97893226e-01 -1.19579518e-02 -1.35810876e+00 1.69435334e+00
-9.40593719e-01 6.28379464e-01 7.02552021e-01 -1.93004504e-01
5.67289591e-01 2.12287344e-02 3.77736837e-01 -6.58363819e-01
-1.39295995e-01 2.79591888e-01 -4.55424130e-01 -4.46804374e-01
2.98200846e-01 -3.32992256e-01 6.26867592e-01 3.27495337e-01
-4.61900324e-01 -6.28643692e-01 -3.27877849e-01 2.37520598e-02
9.22942102e-01 5.79727709e-01 6.40228167e-02 -2.25464061e-01
4.85279262e-01 -2.43036747e-01 3.65812719e-01 4.47053522e-01
1.52628541e-01 1.15666115e+00 -1.98133767e-01 -3.26428592e-01
-9.61133063e-01 -1.57728493e+00 -4.37112629e-01 6.16383076e-01
3.60921800e-01 -6.84280694e-02 -5.03064871e-01 -1.60456613e-01
-1.61004160e-02 8.49933326e-01 -2.88141072e-01 5.74845552e-01
-3.05454046e-01 -6.58522725e-01 -2.75940955e-01 1.06982984e-01
5.23845077e-01 -4.18256849e-01 -5.21561742e-01 -2.01181531e-01
-3.06909442e-01 -1.65053451e+00 -5.06817520e-01 -4.30239022e-01
-6.46640182e-01 -1.27912092e+00 -4.89594519e-01 -2.17666432e-01
1.00452709e+00 9.66541409e-01 1.36847115e+00 -8.38168722e-04
-5.86431682e-01 1.11078262e+00 -9.49973091e-02 -2.75905758e-01
-1.68019295e-01 -7.83077180e-01 -2.12455273e-01 4.06059891e-01
-3.67282152e-01 -7.55343318e-01 -1.05007041e+00 6.42981410e-01
-6.99612677e-01 4.27553862e-01 -5.71066774e-02 5.79233408e-01
8.15519154e-01 -1.52166769e-01 -3.24821293e-01 -7.68433273e-01
-6.56719431e-02 -3.40003490e-01 -1.05462420e+00 -2.07523163e-02
-3.81369025e-01 -4.36491072e-01 6.49005711e-01 -1.87128484e-01
-1.63266253e+00 -4.38345820e-02 -1.56019302e-03 -4.87530410e-01
-2.99471110e-01 -1.51625887e-01 -2.22510412e-01 -2.56872505e-01
5.59696257e-01 2.42935475e-02 -2.17613131e-01 -5.58547974e-01
2.98629642e-01 2.58308172e-01 3.99264365e-01 -7.76034415e-01
9.37306583e-01 1.31821692e+00 2.73432583e-01 -1.13856494e+00
-1.11264181e+00 -6.68196201e-01 -4.34412628e-01 -4.31256711e-01
7.64004409e-01 -1.08503842e+00 -6.79326117e-01 6.46448851e-01
-1.15950978e+00 -8.43969822e-01 -2.38887712e-01 5.40513277e-01
-5.90810895e-01 3.93200874e-01 -4.56423014e-01 -1.04423642e+00
-3.92592549e-02 -1.05740499e+00 1.58937371e+00 7.11333230e-02
2.68784225e-01 -1.26395869e+00 1.61979169e-01 6.67173445e-01
4.62629408e-01 3.71761084e-01 5.43093145e-01 5.94691873e-01
-1.14726245e+00 3.38983446e-01 -4.45571005e-01 6.56571686e-01
2.73968995e-01 2.19372109e-01 -1.51148903e+00 -4.80218172e-01
2.86752731e-01 -1.93246603e-01 4.50845718e-01 6.00671232e-01
1.00607574e+00 -1.40747011e-01 -1.10940449e-02 1.26920974e+00
2.14158773e+00 -1.78965151e-01 6.99597836e-01 1.34689897e-01
9.43161070e-01 8.50714564e-01 8.35082233e-01 3.21573168e-01
5.45882702e-01 9.61367726e-01 7.28024006e-01 -6.28544152e-01
-3.67295802e-01 1.93696558e-01 3.68199825e-01 4.16450471e-01
-2.21755773e-01 -4.74666536e-01 -5.97389519e-01 4.31356043e-01
-1.40547013e+00 -8.18822980e-01 -6.16101742e-01 2.57652164e+00
5.66172183e-01 -4.14452136e-01 -2.29170740e-01 -3.49704385e-01
3.45421761e-01 2.96787858e-01 -6.68640673e-01 -2.86034644e-01
-1.26655877e-01 -1.30469687e-02 6.50880933e-01 1.31694376e+00
-5.82969844e-01 6.29411280e-01 5.81213760e+00 1.89870819e-01
-1.01262069e+00 2.92682409e-01 6.77210271e-01 -2.64137387e-01
-7.18305051e-01 1.41112760e-01 -6.42790496e-01 1.02943093e-01
6.09050393e-01 3.46271515e-01 8.68997991e-01 3.27669352e-01
5.87474704e-01 -4.47781593e-01 -7.93235719e-01 8.66126120e-01
2.48795107e-01 -8.07158589e-01 -3.92616093e-01 1.03010885e-01
9.70825851e-01 4.70294952e-01 8.52228105e-02 -6.19151771e-01
4.76369530e-01 -8.06262553e-01 6.99922562e-01 8.19331229e-01
1.09015262e+00 -2.37090066e-01 1.21246919e-01 1.51898041e-01
-1.08196664e+00 2.31408283e-01 -3.48953068e-01 7.63386935e-02
5.01192987e-01 9.92372930e-01 -5.18748879e-01 6.43494487e-01
8.58277798e-01 6.94906414e-01 -1.26524478e-01 9.06111956e-01
-3.06584030e-01 4.03163791e-01 -3.22539300e-01 5.22512555e-01
-2.57831693e-01 -7.50654161e-01 7.86151409e-01 1.03638232e+00
4.47856516e-01 2.07014441e-01 2.47509494e-01 9.12166059e-01
2.45958358e-01 3.06978747e-02 -7.17987657e-01 7.58102000e-01
3.28001902e-02 1.43465793e+00 -4.51050878e-01 3.53865288e-02
-6.81074381e-01 1.29395616e+00 1.24248505e-01 1.08143747e+00
-7.40880132e-01 9.92708951e-02 9.04661417e-01 5.69429696e-01
1.31851703e-01 -5.48438132e-01 -1.78908989e-01 -1.31547439e+00
3.53166550e-01 -7.94932425e-01 -2.12716147e-01 -1.53353000e+00
-1.28174233e+00 3.19511384e-01 9.13641006e-02 -1.05509555e+00
3.53960097e-01 -8.51098180e-01 -5.49739301e-01 1.28168130e+00
-1.99060369e+00 -1.24478960e+00 -7.54414618e-01 6.29959941e-01
7.03240871e-01 5.57426214e-01 8.50091934e-01 1.88850731e-01
-1.83690682e-01 -1.40824810e-01 6.24499857e-01 -4.07363117e-01
7.80686617e-01 -1.30469310e+00 3.71232092e-01 1.02620625e+00
-1.10398196e-01 6.04752421e-01 7.83437729e-01 -3.18441451e-01
-1.62236619e+00 -8.31092060e-01 1.86140493e-01 -5.88974595e-01
4.07973737e-01 -5.93042552e-01 -7.51732647e-01 7.03210354e-01
4.03499484e-01 4.56797898e-01 5.91016829e-01 -1.19641349e-01
-5.70891559e-01 -3.81124318e-01 -1.23117101e+00 5.32879710e-01
1.31092989e+00 -4.84243929e-01 2.03491881e-01 5.86587787e-01
4.75702584e-01 -7.41327226e-01 -6.34626269e-01 3.22078437e-01
9.07596052e-01 -1.44029343e+00 1.28987789e+00 -1.35353893e-01
4.35730994e-01 -5.59431911e-01 -7.04675257e-01 -1.46102107e+00
-1.37523547e-01 -6.81038201e-01 1.31311506e-01 9.88804936e-01
2.48271629e-01 -1.03883612e+00 2.66033828e-01 5.93427598e-01
-2.53286511e-01 -5.27783096e-01 -4.94543463e-01 -7.22786367e-01
-3.44487667e-01 -5.58586895e-01 1.57054871e-01 7.32404828e-01
-1.00842845e+00 1.96131125e-01 -2.43972868e-01 7.60291278e-01
1.24408114e+00 4.56059128e-01 1.18084347e+00 -9.42427993e-01
-6.77647650e-01 1.83085695e-01 -9.45544988e-03 -1.19231462e+00
6.07953630e-02 -5.53565562e-01 2.11767271e-01 -1.73465383e+00
2.01494440e-01 -5.53281307e-01 2.34966516e-01 -6.67639002e-02
-1.23179734e-01 3.49727064e-01 -3.02254558e-02 1.01477250e-01
-3.43196541e-01 4.68868852e-01 1.50630856e+00 1.80864811e-01
5.18617369e-02 -2.69552926e-03 -5.62472582e-01 8.04507136e-01
4.60697740e-01 -2.45604143e-01 -6.53602540e-01 -8.80782604e-01
4.12832528e-01 -4.75580730e-02 7.14028776e-01 -7.49917328e-01
-2.32359126e-01 -4.55754936e-01 4.14732456e-01 -2.34315097e-01
8.16661596e-01 -1.04025996e+00 4.98483151e-01 -5.95201645e-03
6.35575280e-02 -1.83841176e-02 2.11492509e-01 6.32866561e-01
3.18239421e-01 8.17821026e-02 9.80785251e-01 -2.81292498e-01
-1.95448726e-01 1.96224615e-01 3.22411992e-02 7.07786307e-02
7.09273756e-01 -2.26045862e-01 -5.48020244e-01 -5.68728566e-01
-4.00237650e-01 -5.91688827e-02 1.27384305e+00 -9.31940079e-02
7.09545314e-01 -9.43391442e-01 -9.51299071e-01 2.75950193e-01
4.33851629e-02 2.93798566e-01 4.93732631e-01 9.36611772e-01
-9.87046659e-01 -1.65874884e-01 3.13984156e-01 -9.03095126e-01
-1.58066893e+00 1.87665522e-01 7.43550003e-01 -6.48489501e-03
-7.37386644e-01 7.00399637e-01 8.49910021e-01 -6.22964025e-01
-2.19732568e-01 -2.92962104e-01 5.81625760e-01 -6.70001328e-01
4.65083659e-01 5.03067791e-01 2.45165396e-02 -7.32990921e-01
-2.06675008e-01 1.06580341e+00 2.44591057e-01 -2.66052365e-01
1.47390068e+00 -6.37426138e-01 -1.60692915e-01 6.35132253e-01
1.37737119e+00 8.43579650e-01 -1.75385809e+00 -9.54989716e-02
-9.91394460e-01 -1.21163988e+00 2.49756724e-01 -8.24330032e-01
-1.09740305e+00 7.86116600e-01 5.05525231e-01 -1.66076630e-01
1.25718725e+00 -2.56528646e-01 5.48222780e-01 1.66840926e-01
5.70335329e-01 -5.10264575e-01 1.03106655e-01 2.53446281e-01
1.04820895e+00 -1.29025078e+00 5.40816426e-01 -8.96921098e-01
-4.58880216e-01 1.02429712e+00 3.55926484e-01 -6.31926581e-02
6.41772926e-01 5.05296946e-01 4.44514871e-01 -3.59231353e-01
-5.56188226e-01 -3.07280030e-02 3.91098231e-01 7.07854629e-01
3.93299103e-01 -1.09537691e-01 4.56912577e-01 -5.08782208e-01
1.72327518e-01 -4.26348239e-01 7.58641422e-01 6.50015533e-01
-1.08548597e-01 -8.27025771e-01 -7.51538754e-01 1.66913584e-01
-3.87613118e-01 -1.95400700e-01 -1.30883828e-02 4.58183259e-01
-1.61652222e-01 1.17731845e+00 -1.47168443e-01 2.38115147e-01
4.85156685e-01 -4.41247314e-01 9.05854940e-01 -7.86963761e-01
-1.50768384e-01 4.02734160e-01 3.09992999e-01 -9.48269069e-01
-7.22380877e-01 -1.00999224e+00 -9.49228644e-01 -1.13807596e-01
-4.61375594e-01 -4.10747528e-01 8.78638268e-01 4.07215297e-01
3.04561555e-01 2.72407204e-01 9.63408530e-01 -1.32604969e+00
1.38332155e-02 -4.32372600e-01 -6.89032972e-01 3.18979442e-01
8.60949934e-01 -5.97580373e-01 -8.19238186e-01 2.13167340e-01] | [9.759852409362793, -3.0328726768493652] |
74bbbdac-b62e-4d00-95ee-cc529a3d9705 | infocse-information-aggregated-contrastive | 2210.06432 | null | https://arxiv.org/abs/2210.06432v3 | https://arxiv.org/pdf/2210.06432v3.pdf | InfoCSE: Information-aggregated Contrastive Learning of Sentence Embeddings | Contrastive learning has been extensively studied in sentence embedding learning, which assumes that the embeddings of different views of the same sentence are closer. The constraint brought by this assumption is weak, and a good sentence representation should also be able to reconstruct the original sentence fragments. Therefore, this paper proposes an information-aggregated contrastive learning framework for learning unsupervised sentence embeddings, termed InfoCSE. InfoCSE forces the representation of [CLS] positions to aggregate denser sentence information by introducing an additional Masked language model task and a well-designed network. We evaluate the proposed InfoCSE on several benchmark datasets w.r.t the semantic text similarity (STS) task. Experimental results show that InfoCSE outperforms SimCSE by an average Spearman correlation of 2.60% on BERT-base, and 1.77% on BERT-large, achieving state-of-the-art results among unsupervised sentence representation learning methods. Our code are available at https://github.com/caskcsg/sentemb/tree/main/InfoCSE. | ['Songlin Hu', 'Zhongyuan Wang', 'Jizhong Han', 'Zijia Lin', 'Chaochen Gao', 'Xing Wu'] | 2022-10-08 | null | null | null | null | ['sentence-embeddings', 'sentence-embeddings'] | ['methodology', 'natural-language-processing'] | [ 9.87985730e-02 1.92482740e-01 -1.76740453e-01 -6.37635767e-01
-7.42458344e-01 -3.42440993e-01 7.77636051e-01 7.20510483e-01
-7.04440653e-01 4.56644654e-01 8.17677557e-01 -6.30927384e-02
1.30743369e-01 -6.68343306e-01 -6.15042746e-01 -5.30313075e-01
1.25571892e-01 1.48925886e-01 1.83805361e-01 -3.49428862e-01
3.87408972e-01 3.72915752e-02 -1.22758234e+00 7.15846539e-01
7.27596521e-01 7.72104919e-01 5.07065237e-01 7.03152537e-01
-4.99428421e-01 8.09452593e-01 -6.18593752e-01 -7.52893925e-01
-1.05168812e-01 -4.45396066e-01 -8.23637068e-01 -2.14770973e-01
5.51238537e-01 5.99345639e-02 -6.34246886e-01 1.16927123e+00
5.32852113e-01 2.60745406e-01 6.09107614e-01 -1.05454481e+00
-1.10202336e+00 9.13357258e-01 -3.64461780e-01 4.67239022e-01
3.72536778e-01 -2.87921697e-01 1.55284345e+00 -1.47346735e+00
5.21273494e-01 1.25095475e+00 4.58175272e-01 4.63186622e-01
-1.28582132e+00 -3.34585696e-01 3.20775449e-01 3.69562656e-01
-1.28567886e+00 -4.50674295e-01 1.01314056e+00 -2.12815106e-01
1.14975750e+00 4.48058814e-01 3.41442436e-01 1.23060775e+00
4.13336039e-01 9.82644141e-01 1.00463331e+00 -5.24463236e-01
2.27708682e-01 5.46884775e-01 5.12109220e-01 6.19175673e-01
3.14816028e-01 -3.41030061e-01 -7.79488444e-01 1.08723357e-01
1.45821676e-01 3.59145969e-01 -2.72206128e-01 -2.60943741e-01
-9.58024919e-01 1.03072214e+00 7.54830420e-01 6.31472170e-01
-9.66126099e-02 -1.10445693e-01 8.06509316e-01 4.74405646e-01
9.18920755e-01 4.70498651e-01 -3.62782717e-01 -1.19756274e-01
-7.11305976e-01 2.22580414e-03 5.45386195e-01 7.31254041e-01
5.29150128e-01 -1.53409019e-01 -1.40385360e-01 9.35883820e-01
1.99400619e-01 3.54199290e-01 6.82011127e-01 -4.96111274e-01
9.63890910e-01 5.52209318e-01 -2.99018830e-01 -1.29681563e+00
-2.33197406e-01 -5.58543086e-01 -9.80221987e-01 -2.31768787e-01
-2.10504815e-01 1.62813529e-01 -2.58447289e-01 1.54297078e+00
-4.90819626e-02 -2.91435849e-02 2.51748502e-01 6.32799029e-01
1.22258508e+00 8.70541275e-01 -1.19690545e-01 -9.03821439e-02
1.35445154e+00 -1.24037683e+00 -8.17026973e-01 -4.81233239e-01
8.61930132e-01 -5.92248917e-01 1.35978293e+00 4.50067334e-02
-9.41940427e-01 -7.88842678e-01 -1.16978943e+00 -3.85735065e-01
-5.14088094e-01 2.29983293e-02 3.37723494e-01 4.21472579e-01
-1.02932942e+00 5.15429020e-01 -6.32560730e-01 -4.28966016e-01
5.86831689e-01 -8.72941911e-02 -6.33622229e-01 -3.10439855e-01
-1.28812301e+00 9.55966949e-01 6.10046268e-01 -4.92240489e-02
-2.58614928e-01 -6.40354991e-01 -1.20414591e+00 3.28548431e-01
1.39154807e-01 -5.60201168e-01 9.10697222e-01 -8.17885101e-01
-1.11997795e+00 9.08813059e-01 -4.11021203e-01 -5.86155951e-01
2.20990181e-01 -3.54802847e-01 -5.98723173e-01 3.68924856e-01
1.78877339e-01 6.01700366e-01 5.47820151e-01 -1.28539443e+00
-4.97464687e-02 -4.17816758e-01 3.16031337e-01 2.98084795e-01
-9.93473351e-01 2.64470540e-02 -1.97345868e-01 -7.78752923e-01
-6.38866052e-02 -5.07539511e-01 9.82007850e-03 2.15328723e-01
-2.81528026e-01 -4.48085725e-01 7.05655694e-01 -8.63274455e-01
1.39240491e+00 -2.16333818e+00 3.09208930e-01 -4.33647215e-01
2.36613065e-01 2.72482306e-01 -5.51514626e-01 9.42850769e-01
-3.23456526e-01 1.33641466e-01 -4.89992529e-01 -9.84653175e-01
1.13542944e-01 1.43279091e-01 -3.84567529e-01 3.94824803e-01
2.83492684e-01 1.04936492e+00 -1.05996370e+00 -5.60742497e-01
2.41241843e-01 4.17901963e-01 -4.81147349e-01 2.67377347e-01
1.34704590e-01 -9.96890739e-02 -1.32356375e-01 1.26190320e-01
7.55007803e-01 -2.84832716e-01 4.79100347e-01 -2.67730087e-01
1.45417809e-01 6.92422211e-01 -7.81316280e-01 2.04794812e+00
-5.94149470e-01 8.15993845e-01 -2.92922646e-01 -1.32498419e+00
1.07760108e+00 1.67491332e-01 1.66811734e-01 -8.70475650e-01
1.16113566e-01 -1.13770418e-01 -2.29939148e-01 -6.31851196e-01
7.93204844e-01 -2.75982767e-01 -2.46293738e-01 4.66602832e-01
2.55191624e-01 -8.01851079e-02 1.59948513e-01 7.43211389e-01
9.61153924e-01 -1.59592062e-01 4.07747418e-01 -3.54663432e-01
6.45814002e-01 -5.18365502e-01 4.37302381e-01 5.49914479e-01
-1.84610680e-01 5.69606423e-01 6.30975842e-01 -1.48157224e-01
-8.92210245e-01 -1.20256114e+00 -1.41120806e-01 1.00148106e+00
1.84622586e-01 -8.21601212e-01 -4.40547138e-01 -1.12655997e+00
6.46338239e-02 1.13040876e+00 -6.90218627e-01 -3.91610205e-01
-4.08446431e-01 -3.49522054e-01 2.20761701e-01 7.91970193e-01
3.00000727e-01 -9.22359049e-01 -2.59932727e-02 -5.79946563e-02
-3.26278895e-01 -9.99256670e-01 -6.25234246e-01 -4.78071012e-02
-8.30814660e-01 -7.20959961e-01 -5.46756208e-01 -1.05275321e+00
8.58391523e-01 5.14684975e-01 1.15611410e+00 3.13630812e-02
-1.08371578e-01 2.97178835e-01 -7.37265706e-01 -3.84103358e-02
-3.95988733e-01 4.48055789e-02 1.00759879e-01 6.49165586e-02
4.59466577e-01 -4.91351932e-01 -3.88310879e-01 -2.75387853e-01
-1.12656832e+00 -6.91245645e-02 3.96858275e-01 1.11571300e+00
3.56097281e-01 -1.45322025e-01 7.48986423e-01 -9.31372702e-01
7.41261899e-01 -6.12438500e-01 -1.17054634e-01 2.77554035e-01
-5.46458602e-01 1.03987463e-01 7.81914830e-01 -1.33434385e-01
-8.97475064e-01 -4.51446682e-01 -4.03769046e-01 -3.35075557e-01
8.52016080e-03 7.31237650e-01 -1.02674641e-01 5.22691309e-01
4.67624068e-01 5.32501519e-01 6.41880110e-02 -6.68158293e-01
5.08343875e-01 8.95597756e-01 2.35485733e-01 -1.81356996e-01
7.12637961e-01 3.98633450e-01 -4.17428970e-01 -9.60023642e-01
-1.13182044e+00 -5.93130469e-01 -9.03015554e-01 -1.07271299e-02
7.23012626e-01 -8.74995351e-01 -2.03482449e-01 4.70719412e-02
-1.39730239e+00 1.13190047e-01 -4.94814754e-01 4.41848397e-01
-1.66891396e-01 8.49658251e-01 -5.58795631e-01 -5.71888506e-01
-4.90037411e-01 -7.38431990e-01 8.40017676e-01 -9.44299400e-02
-2.31529236e-01 -1.40930009e+00 3.31223816e-01 5.64511657e-01
3.22221130e-01 -1.62591532e-01 7.50883937e-01 -1.00607896e+00
-4.12641354e-02 -2.43685082e-01 -2.82318592e-01 8.54863882e-01
3.19353163e-01 -3.46814483e-01 -1.04577863e+00 -6.97024465e-01
1.62326992e-01 -4.52278912e-01 1.32744741e+00 9.74985212e-02
1.21233058e+00 -4.72967029e-01 -1.24972805e-01 2.10261807e-01
1.55889726e+00 -3.69689673e-01 5.94311953e-01 2.26100251e-01
6.35470510e-01 6.54596567e-01 4.78721946e-01 3.40604037e-01
5.32134712e-01 6.09676898e-01 4.19414490e-01 8.24675635e-02
-2.83752501e-01 -3.50719661e-01 6.74681485e-01 1.75638866e+00
4.33106810e-01 -4.52140361e-01 -6.44705951e-01 6.67378724e-01
-1.71751547e+00 -1.11741149e+00 -4.61700708e-02 1.93977141e+00
8.54688406e-01 3.32970500e-01 -2.15812385e-01 5.61542176e-02
7.02074289e-01 8.52957428e-01 -2.57858515e-01 -7.06795394e-01
-3.03811401e-01 2.87780404e-01 -1.19982651e-02 6.80588782e-01
-1.24616921e+00 7.41317332e-01 4.73607302e+00 9.13748682e-01
-8.06980252e-01 4.26700443e-01 4.18898702e-01 -1.08051032e-01
-6.64509296e-01 -5.68967871e-02 -5.67549944e-01 6.45392478e-01
1.01436794e+00 -3.37129086e-01 -8.25557709e-02 5.92983127e-01
6.25240132e-02 1.95828155e-01 -9.03619409e-01 9.34688985e-01
7.44929612e-01 -1.58929360e+00 1.43216982e-01 -3.35316867e-01
6.69910789e-01 5.83212636e-02 4.74447496e-02 5.14522016e-01
-1.67020485e-01 -7.76921391e-01 5.64735830e-01 5.65783679e-01
6.48634732e-01 -6.39976919e-01 1.04256725e+00 2.71905273e-01
-1.29541326e+00 3.73763330e-02 -6.60678148e-01 -1.56565741e-01
1.88183889e-01 7.25451410e-01 -5.00421882e-01 9.18880224e-01
5.41322649e-01 1.31577587e+00 -1.00559461e+00 7.03624845e-01
-4.87727910e-01 4.50115353e-01 2.30181485e-01 -3.62236798e-01
1.32189900e-01 -7.81332999e-02 5.07125616e-01 1.55377090e+00
3.28555666e-02 -3.71061265e-01 5.77995442e-02 7.00566351e-01
-4.12583530e-01 3.22259218e-01 -6.93155766e-01 -2.73760915e-01
5.86496770e-01 1.23903000e+00 -4.18684930e-01 -4.83567625e-01
-5.98034799e-01 1.31310320e+00 6.74702406e-01 1.29217088e-01
-7.20342338e-01 -7.44043887e-01 5.78104019e-01 -1.76208794e-01
5.31037867e-01 -2.34811366e-01 -1.83745638e-01 -1.50158477e+00
4.90469426e-01 -5.04300416e-01 3.42805028e-01 -6.96601570e-01
-1.72813392e+00 7.67194808e-01 -2.17128977e-01 -1.38160694e+00
7.47515783e-02 -6.58096552e-01 -7.74801195e-01 6.74800038e-01
-1.60166144e+00 -9.48928714e-01 -9.07560065e-02 1.91438004e-01
9.62380469e-01 -2.57087946e-01 1.08376563e+00 1.88807786e-01
-5.31303525e-01 7.72497535e-01 3.71450841e-01 3.44511271e-01
6.17578506e-01 -1.30297935e+00 6.38122916e-01 8.76336992e-01
5.73914587e-01 6.38419449e-01 5.15076518e-01 -4.28414524e-01
-1.27678680e+00 -1.14545119e+00 1.52915680e+00 -5.24286985e-01
8.93216610e-01 -7.54450619e-01 -1.15402222e+00 6.12678111e-01
8.67633820e-01 9.41423699e-02 9.58966732e-01 1.45058230e-01
-7.75228739e-01 -2.69136876e-01 -8.67048204e-01 5.73527634e-01
9.30898190e-01 -9.83716905e-01 -1.24360502e+00 5.30443549e-01
1.13919580e+00 9.68147218e-02 -9.29321289e-01 1.35011571e-02
1.56249925e-01 -9.24525797e-01 9.30630088e-01 -8.71527374e-01
8.47812653e-01 -3.53103876e-02 -4.99919325e-01 -1.43193138e+00
-2.90725142e-01 2.36485489e-02 -2.08769485e-01 1.39913273e+00
4.65307951e-01 -8.26969564e-01 4.52624768e-01 -6.18512975e-03
-3.00598711e-01 -9.61450160e-01 -1.04293716e+00 -1.13947904e+00
3.31152409e-01 -2.95400500e-01 2.61590719e-01 1.24030280e+00
3.05887014e-01 6.83335185e-01 -1.46026269e-01 8.15188065e-02
5.72176099e-01 4.78247814e-02 3.47797036e-01 -9.89676058e-01
-2.72052884e-01 -3.95846695e-01 -5.61907470e-01 -1.18664408e+00
5.41797876e-01 -1.59043026e+00 -1.87319681e-01 -2.01479650e+00
5.89942455e-01 1.52447119e-01 -5.08545101e-01 2.11114526e-01
-4.33977723e-01 5.05068116e-02 3.62864941e-01 6.09444082e-02
-8.01817000e-01 1.20331192e+00 1.01858425e+00 -4.11261499e-01
3.33060026e-01 -3.03664237e-01 -7.93072283e-01 5.36351621e-01
1.17725575e+00 -6.21392190e-01 -3.96887004e-01 -7.00874627e-01
1.40190303e-01 -4.12096351e-01 3.44362766e-01 -7.77477026e-01
2.68750906e-01 3.28684241e-01 1.44291073e-01 -6.43580377e-01
6.01799250e-01 -6.37507975e-01 -6.15796745e-01 5.85958242e-01
-7.88717389e-01 2.88846731e-01 1.11504160e-01 6.64074957e-01
-5.17529786e-01 -5.29676437e-01 5.24378657e-01 -3.08062676e-02
-5.78866720e-01 3.23762484e-02 -2.17165977e-01 3.14717472e-01
6.48019552e-01 1.73142515e-02 -5.70161581e-01 -2.71728933e-01
-4.01756138e-01 1.46952689e-01 1.81374460e-01 8.14341068e-01
1.08082807e+00 -1.55035162e+00 -8.46905649e-01 1.18991040e-01
5.23798048e-01 -4.52953070e-01 4.62307692e-01 6.77757382e-01
-2.71412462e-01 4.44567353e-01 1.17557101e-01 -3.80450279e-01
-1.43229961e+00 6.59825921e-01 -1.24163911e-01 -1.69492990e-01
-7.95219719e-01 1.04474020e+00 1.96951367e-02 -7.61293709e-01
-6.77588815e-03 -2.43866101e-01 -3.10865909e-01 3.26197237e-01
6.45275235e-01 2.49060318e-01 7.73052648e-02 -6.44130051e-01
-4.85139132e-01 3.08233440e-01 -4.65042889e-01 7.36832842e-02
1.46608865e+00 -1.86824307e-01 -4.41389650e-01 7.10908175e-01
1.84417200e+00 4.26727571e-02 -8.00880790e-01 -6.44791365e-01
1.26097709e-01 -6.05396569e-01 7.60156512e-02 -4.23411131e-01
-7.94712722e-01 1.23517239e+00 3.61165166e-01 3.62324715e-01
8.43821049e-01 2.12375253e-01 7.37211704e-01 4.54687327e-01
8.18757191e-02 -1.05482054e+00 5.19752204e-01 6.13735497e-01
1.24547887e+00 -1.27556336e+00 1.40314475e-01 -1.90457344e-01
-9.88099694e-01 1.09397733e+00 4.14182812e-01 -2.50426978e-01
7.94542074e-01 -6.35670647e-02 -1.18427038e-01 -2.30335653e-01
-8.88107240e-01 3.06344684e-03 2.93710291e-01 1.89957738e-01
5.38717568e-01 1.60589710e-01 -3.91497076e-01 7.24441230e-01
-1.66730985e-01 -5.56048512e-01 5.04464626e-01 1.01765740e+00
-5.06882131e-01 -1.20505321e+00 1.48232162e-01 3.99040669e-01
-1.16556786e-01 -4.91580516e-01 -4.28160697e-01 5.51805019e-01
-3.34377795e-01 9.61035013e-01 3.84271950e-01 -4.44298863e-01
3.78673553e-01 1.97462618e-01 3.04833382e-01 -9.92886841e-01
-3.68021518e-01 -3.34610164e-01 2.23869041e-01 -3.83278012e-01
-4.89397466e-01 -5.65674603e-01 -1.16727662e+00 -1.73485339e-01
-2.09333628e-01 3.12393606e-01 5.47365665e-01 7.62637019e-01
6.16667986e-01 6.90769613e-01 1.00785565e+00 -5.31818986e-01
-6.46684587e-01 -1.21744335e+00 -6.61314785e-01 4.74926919e-01
1.84343249e-01 -3.91801149e-01 -6.00899637e-01 -1.59636810e-01] | [10.955759048461914, 8.65303897857666] |
6668c651-f722-46f5-8c99-3aa045180b5e | exploring-fine-grained-audiovisual | 2207.10664 | null | https://arxiv.org/abs/2207.10664v1 | https://arxiv.org/pdf/2207.10664v1.pdf | Exploring Fine-Grained Audiovisual Categorization with the SSW60 Dataset | We present a new benchmark dataset, Sapsucker Woods 60 (SSW60), for advancing research on audiovisual fine-grained categorization. While our community has made great strides in fine-grained visual categorization on images, the counterparts in audio and video fine-grained categorization are relatively unexplored. To encourage advancements in this space, we have carefully constructed the SSW60 dataset to enable researchers to experiment with classifying the same set of categories in three different modalities: images, audio, and video. The dataset covers 60 species of birds and is comprised of images from existing datasets, and brand new, expert-curated audio and video datasets. We thoroughly benchmark audiovisual classification performance and modality fusion experiments through the use of state-of-the-art transformer methods. Our findings show that performance of audiovisual fusion methods is better than using exclusively image or audio based methods for the task of video classification. We also present interesting modality transfer experiments, enabled by the unique construction of SSW60 to encompass three different modalities. We hope the SSW60 dataset and accompanying baselines spur research in this fascinating area. | ['Serge Belongie', 'Oisin Mac Aodha', 'Hartwig Adam', 'Kimberly Wilber', 'Rui Qian', 'Grant van Horn'] | 2022-07-21 | null | null | null | null | ['video-classification', 'fine-grained-visual-categorization'] | ['computer-vision', 'computer-vision'] | [ 3.36563140e-01 -5.91758132e-01 -8.39322731e-02 -2.18344525e-01
-9.81391549e-01 -9.13355947e-01 8.96736860e-01 6.90132007e-02
-4.80081081e-01 3.92058790e-01 5.73258519e-01 -1.07532591e-01
-8.11907873e-02 -3.01878095e-01 -4.44152772e-01 -5.62910557e-01
-2.14580283e-01 -1.18000478e-01 3.43463987e-01 -2.69327372e-01
2.50579476e-01 1.98566377e-01 -2.18777585e+00 8.72324646e-01
7.43838996e-02 1.38691795e+00 -5.33587299e-02 9.76726472e-01
2.25009218e-01 8.11121821e-01 -4.26416337e-01 -3.43953460e-01
2.69270152e-01 -2.91352570e-01 -9.37249660e-01 4.72379439e-02
1.09202445e+00 -1.22026101e-01 -3.14825445e-01 8.26924980e-01
5.73880553e-01 4.04706001e-01 8.61591518e-01 -1.80487394e+00
-5.79863310e-01 4.93675262e-01 -6.40082479e-01 4.94527072e-01
6.79135263e-01 8.69008303e-02 1.15299654e+00 -8.39962840e-01
6.28341556e-01 1.45991445e+00 9.59592760e-01 4.84739274e-01
-1.21699595e+00 -7.57174373e-01 2.68255770e-01 5.47434092e-01
-1.63239062e+00 -7.11361051e-01 3.66376668e-01 -7.68751919e-01
7.17990041e-01 4.15864378e-01 5.97139895e-01 1.20532727e+00
-4.64258827e-02 6.26182675e-01 1.35313189e+00 -3.55350554e-01
1.64775416e-01 -2.46893559e-02 5.69058619e-02 5.62857807e-01
-3.17822754e-01 1.75110385e-01 -1.00657237e+00 -1.32377639e-01
3.97072643e-01 -7.93590397e-03 -2.73087800e-01 -2.91411281e-01
-1.67925715e+00 7.74681926e-01 3.64273399e-01 3.66098613e-01
2.11347453e-02 1.95952073e-01 6.88455939e-01 7.48170137e-01
2.78383017e-01 2.17386708e-01 -1.47120491e-01 -3.10288519e-01
-9.95090902e-01 3.13789696e-01 6.23774469e-01 7.60212779e-01
5.58103621e-01 4.37996686e-02 -2.47988924e-01 1.12047350e+00
2.46551499e-01 3.19843650e-01 5.27254760e-01 -1.38179624e+00
1.74726397e-01 2.17147246e-02 -2.08529294e-01 -8.64037693e-01
-3.37912679e-01 -8.56698677e-02 -7.18564093e-01 2.78164983e-01
3.23317498e-01 2.96094060e-01 -9.36407566e-01 1.65374255e+00
1.84296057e-01 2.43364722e-01 -2.30359048e-01 1.01507640e+00
1.36970830e+00 6.18230581e-01 4.11558300e-01 1.27195910e-01
1.49038827e+00 -9.60876822e-01 -1.82064325e-01 1.30333543e-01
7.94698298e-02 -8.76153231e-01 1.14668632e+00 4.42322642e-01
-8.41209650e-01 -8.11359763e-01 -1.01771688e+00 1.23587884e-01
-6.11254990e-01 -2.94971287e-01 6.47460163e-01 5.44323921e-01
-1.32433259e+00 3.11840743e-01 -3.53948116e-01 -7.67276704e-01
3.63630950e-01 -1.18325173e-03 -8.76282394e-01 -1.00287721e-01
-1.03072369e+00 6.64670467e-01 1.78877890e-01 -2.67597854e-01
-1.44393122e+00 -8.90087008e-01 -8.89701903e-01 -6.31392226e-02
2.17379212e-01 -6.88507318e-01 1.40671599e+00 -9.08426464e-01
-9.34159636e-01 1.23853838e+00 1.65032759e-01 -4.25176203e-01
1.89813063e-01 4.14468974e-01 -5.95900953e-01 5.75403094e-01
1.36501998e-01 1.21437442e+00 1.35083795e+00 -1.29831040e+00
-1.18341064e+00 -1.40103981e-01 3.43089551e-01 9.54917744e-02
-4.94835556e-01 2.75300354e-01 -3.10628206e-01 -1.14721346e+00
-4.32037026e-01 -9.66441154e-01 4.18558598e-01 2.54165232e-01
1.17059667e-02 -1.66723862e-01 8.46166313e-01 -3.70084077e-01
1.02071381e+00 -2.53728247e+00 3.06059241e-01 -2.68522084e-01
5.35947978e-01 -7.38025829e-02 -5.77190518e-01 6.07218623e-01
-9.62533727e-02 1.72717556e-01 1.85867343e-02 -4.08048511e-01
3.72171432e-01 -5.27740493e-02 -4.56017375e-01 4.23986614e-01
2.34942641e-02 6.68824971e-01 -7.11688042e-01 -7.56052077e-01
3.16881835e-01 4.50483382e-01 -6.58542156e-01 -3.18663078e-03
1.47709563e-01 1.14850506e-01 -4.58506914e-03 1.10316539e+00
4.36032504e-01 1.11946128e-02 -3.43146473e-01 -5.13211370e-01
7.34253451e-02 -3.17269892e-01 -9.16686773e-01 1.86321831e+00
-3.78224373e-01 9.89453375e-01 4.11864281e-01 -9.12211239e-01
3.16748917e-01 3.91992658e-01 3.89118820e-01 -3.88244301e-01
1.57707110e-01 -1.30050331e-01 -1.70983061e-01 -2.79204816e-01
6.97485089e-01 -3.79609406e-01 -3.67913961e-01 3.28460932e-01
7.00511515e-01 -4.84988958e-01 4.43727076e-01 4.57211375e-01
1.11692798e+00 -1.55991111e-02 2.24360138e-01 -3.43583137e-01
2.09741607e-01 7.26819932e-02 1.17145963e-01 7.97761321e-01
-6.49238944e-01 6.47735357e-01 -1.04082957e-01 -2.20695198e-01
-6.59396648e-01 -1.41260684e+00 -3.15510482e-01 1.99803996e+00
1.55353546e-01 -8.07151854e-01 -6.00452244e-01 -4.99146283e-01
2.98861235e-01 2.43629306e-03 -1.12068951e+00 -2.18365684e-01
1.61359981e-01 -3.74588400e-01 8.38774443e-01 5.49966514e-01
4.79030699e-01 -9.29497480e-01 -3.68536055e-01 -2.53723115e-01
-3.92691910e-01 -1.03987765e+00 -5.40257871e-01 3.97275276e-02
-3.72301936e-01 -1.12877834e+00 -9.11092401e-01 -7.77799964e-01
4.15668264e-02 7.44118512e-01 1.17724955e+00 -1.32697448e-01
-5.46576500e-01 1.12169254e+00 -7.25539625e-01 -1.72360182e-01
-2.83741117e-01 -2.03201175e-01 2.44038150e-01 7.59484544e-02
2.45347485e-01 -4.55117255e-01 -4.35485125e-01 6.40120804e-01
-1.05333543e+00 -1.58017024e-01 1.32811725e-01 8.20165575e-01
4.17838633e-01 5.85918017e-02 5.09842277e-01 -1.71477929e-01
5.31480849e-01 -5.56978285e-01 -9.56253856e-02 1.84136599e-01
7.09476620e-02 -2.41938069e-01 2.74902105e-01 -5.93446374e-01
-8.54931355e-01 -2.14430526e-01 -1.79497823e-01 -6.23357475e-01
-5.32108009e-01 3.15493107e-01 2.82633632e-01 -5.56036770e-01
7.64326453e-01 -1.07824625e-02 -2.75652766e-01 -4.49544549e-01
5.53391755e-01 9.31768179e-01 9.92253304e-01 -6.01540565e-01
6.55919969e-01 4.75461423e-01 -1.67752475e-01 -1.11270308e+00
-4.71644402e-01 -5.13731658e-01 -4.11932170e-01 -5.32510817e-01
9.46241736e-01 -1.21508253e+00 -7.34738767e-01 5.42258739e-01
-5.44815838e-01 -2.08967745e-01 -3.52456510e-01 3.42734158e-01
-5.76410174e-01 3.73569548e-01 -5.99648595e-01 -5.06872356e-01
1.14471965e-01 -1.08820367e+00 1.52423632e+00 1.73906311e-02
-4.21586752e-01 -8.88718307e-01 1.25288414e-02 6.43027723e-01
4.56444561e-01 2.21843481e-01 6.81459606e-01 -2.82263130e-01
-2.82650948e-01 -5.01478799e-02 -3.42184991e-01 1.62784040e-01
1.10416310e-02 2.85461158e-01 -1.36359358e+00 -5.02972960e-01
-4.47476327e-01 -9.25532222e-01 1.49714196e+00 1.92844540e-01
1.08241749e+00 2.16653615e-01 -2.12953866e-01 6.03012323e-01
9.95670736e-01 7.57165551e-02 1.44004762e-01 2.57206500e-01
5.41294694e-01 5.56918859e-01 6.02714121e-01 4.40492898e-01
6.82266712e-01 7.96502173e-01 4.45090443e-01 4.02119979e-02
-5.96529782e-01 -3.08025658e-01 2.27028087e-01 6.39123678e-01
-3.22692871e-01 -2.48696998e-01 -7.39946306e-01 6.88724637e-01
-1.57391965e+00 -1.18224013e+00 4.79057193e-01 1.86560524e+00
6.50735199e-01 -2.22506389e-01 5.10600984e-01 5.27371824e-01
6.05913222e-01 2.70371407e-01 -1.19809307e-01 -1.27898186e-01
-2.76274949e-01 7.24252015e-02 -4.30322718e-03 2.36013114e-01
-1.52328861e+00 6.97598934e-01 7.28825235e+00 1.29743469e+00
-1.11206436e+00 2.03719571e-01 2.69841284e-01 -2.70757705e-01
-2.00067565e-01 -4.02140945e-01 -6.07570291e-01 3.90850484e-01
9.37560618e-01 2.83047929e-02 6.44119799e-01 4.38046336e-01
-2.68630296e-01 -1.46970868e-01 -1.20275772e+00 1.49022818e+00
3.80363137e-01 -1.31929350e+00 7.53301457e-02 -2.41979599e-01
5.59160709e-01 6.75894618e-02 2.08430812e-01 4.74846810e-01
3.05702776e-01 -1.04651153e+00 1.16176915e+00 3.03234398e-01
1.11197293e+00 -3.79183024e-01 3.21735024e-01 -1.75229639e-01
-1.66596782e+00 -2.71184504e-01 -1.52815133e-01 -6.20119832e-02
-8.91291127e-02 -2.72565149e-02 -3.38774145e-01 3.51675391e-01
1.45389128e+00 1.07799196e+00 -9.49107826e-01 1.00706005e+00
2.94672221e-01 6.01353943e-01 -2.16385946e-01 2.58025795e-01
1.99901089e-01 4.21967328e-01 3.53320241e-01 1.47342515e+00
1.56890422e-01 -1.04953915e-01 2.46685028e-01 4.39840332e-02
-1.93957537e-01 -1.44915864e-01 -6.61911130e-01 -2.53229022e-01
5.13789594e-01 1.47145629e+00 -8.10233235e-01 -3.30227464e-01
-5.39873064e-01 6.58783793e-01 -1.25605613e-02 1.69784665e-01
-7.63904929e-01 -4.16563392e-01 8.24380875e-01 -1.06050834e-01
3.83887082e-01 1.03787472e-02 2.24535257e-01 -1.28546107e+00
-3.94505382e-01 -1.07891250e+00 9.25761878e-01 -1.13460684e+00
-1.55288005e+00 7.98413157e-01 2.98224688e-01 -1.40962911e+00
-2.91203201e-01 -5.57379127e-01 -1.26370266e-01 3.18529963e-01
-1.19977045e+00 -1.32836092e+00 -6.65761590e-01 1.07828343e+00
7.52986729e-01 -4.37321007e-01 8.03284347e-01 5.32550633e-01
-9.50156078e-02 6.87147617e-01 -2.80236676e-02 -1.20674573e-01
1.14635968e+00 -9.74371493e-01 6.02776967e-02 4.31257218e-01
5.37801027e-01 1.90188527e-01 6.41472220e-01 -1.11686438e-01
-1.45263481e+00 -1.01631725e+00 2.23336250e-01 -5.05840719e-01
1.01038682e+00 -4.65995759e-01 -4.97380406e-01 4.89020586e-01
5.33442140e-01 1.24209262e-01 9.01129603e-01 6.34318069e-02
-1.00269389e+00 -1.84549451e-01 -1.19957411e+00 3.81452978e-01
1.22361827e+00 -1.09677744e+00 -7.86269069e-01 1.07812285e-01
7.30400264e-01 2.17403956e-02 -1.19353056e+00 3.99402946e-01
9.63995159e-01 -7.74573445e-01 1.25689864e+00 -7.01308131e-01
4.65306103e-01 -5.11528969e-01 -8.66570234e-01 -1.69446635e+00
-4.56181169e-01 -3.62130404e-01 1.08975537e-01 1.35449755e+00
-1.22747170e-02 -3.16797495e-01 2.76725411e-01 -1.37247577e-01
-1.86500356e-01 -8.53980258e-02 -9.09925103e-01 -7.77843237e-01
-1.73977353e-02 -6.11805737e-01 3.73132080e-01 9.14950967e-01
1.39512539e-01 3.33290577e-01 -4.05179411e-01 -2.38287643e-01
6.54627264e-01 3.74738336e-01 6.64894104e-01 -1.20618486e+00
-3.40517849e-01 -6.53234720e-01 -9.63082194e-01 -5.89319527e-01
1.78454623e-01 -9.02503133e-01 8.87132660e-02 -1.22399950e+00
3.94226462e-01 -1.04184687e-01 -4.63155538e-01 7.60579765e-01
6.98550120e-02 1.36596954e+00 6.71743095e-01 1.49598762e-01
-1.07172704e+00 3.58695596e-01 9.19022560e-01 -5.46366096e-01
3.43249768e-01 -3.02408248e-01 -9.29381490e-01 7.10277915e-01
4.27749813e-01 -5.58535242e-03 -3.58878016e-01 -2.70434678e-01
-9.57982838e-02 6.79704249e-02 6.39591515e-01 -1.17035103e+00
1.23461001e-02 -5.03388681e-02 3.34165692e-01 -4.21900809e-01
7.97447562e-01 -8.06569755e-01 2.90423691e-01 5.41531593e-02
-4.60469514e-01 -1.52004883e-01 4.58926737e-01 5.60512662e-01
-6.96967900e-01 1.81299195e-01 9.46269691e-01 2.66537443e-02
-1.37965703e+00 2.38187477e-01 -6.05839610e-01 3.84426296e-01
1.04804599e+00 -1.91482782e-01 -7.08110988e-01 -5.10213733e-01
-1.02301860e+00 9.09043849e-02 5.94158530e-01 8.33397329e-01
5.37648857e-01 -1.62207830e+00 -7.75344849e-01 5.06617688e-02
7.02201009e-01 -9.93163526e-01 5.00487149e-01 8.11666965e-01
-2.20673740e-01 4.38463449e-01 -7.51741827e-01 -8.03557932e-01
-1.71497786e+00 7.72455871e-01 7.69618386e-03 3.47960770e-01
-1.83009565e-01 9.57499027e-01 4.10669655e-01 -2.94425488e-01
4.25335824e-01 -2.21584171e-01 -1.96454078e-01 5.71299791e-01
8.38282168e-01 5.06951034e-01 1.71104103e-01 -9.46626365e-01
-5.89827240e-01 7.70417988e-01 2.15961605e-01 -1.78937703e-01
1.17898309e+00 -3.17684412e-01 1.69781730e-01 6.13247752e-01
1.24954927e+00 -7.56958202e-02 -1.20898771e+00 -1.89767212e-01
-5.68414032e-01 -6.10283375e-01 9.90223661e-02 -9.14177775e-01
-1.00425076e+00 1.10041559e+00 8.29386592e-01 6.62043273e-01
1.47368693e+00 3.15781146e-01 2.85629869e-01 1.80588633e-01
5.77736914e-01 -7.22998440e-01 1.12282922e-02 3.31911713e-01
9.16499913e-01 -1.33067632e+00 -1.46915138e-01 -1.69407815e-01
-8.48791599e-01 8.06795895e-01 2.47701034e-01 1.42876461e-01
6.82941794e-01 3.40372622e-01 1.09460779e-01 3.24231759e-02
-9.51648176e-01 -4.59442675e-01 6.07703567e-01 9.76716995e-01
3.84451240e-01 9.12696347e-02 2.48614475e-01 4.37480748e-01
-1.89327389e-01 3.48965935e-02 2.66205728e-01 9.61013973e-01
-4.84534681e-01 -8.23709667e-01 -5.99217296e-01 5.20185292e-01
-3.55379462e-01 -9.97470841e-02 -5.65770149e-01 7.96690881e-01
2.21358806e-01 1.28090000e+00 3.23348157e-02 -7.83063471e-01
1.47145703e-01 -9.61378217e-02 7.72567749e-01 -3.00364733e-01
-6.26304030e-01 -9.65273380e-02 2.68112242e-01 -6.41850948e-01
-8.60055149e-01 -7.18421876e-01 -5.71741045e-01 -5.66742897e-01
1.38820127e-01 2.08501250e-01 5.58224738e-01 6.36909544e-01
1.37858719e-01 4.98802185e-01 4.93135273e-01 -1.46852827e+00
-1.06812410e-01 -8.40857685e-01 -8.00696969e-01 5.44327259e-01
6.73850179e-01 -1.07864869e+00 -4.75882888e-01 4.57017362e-01] | [10.025888442993164, 1.1515223979949951] |
5e27b29a-c386-4f46-9a99-4b03c0e0f2b2 | unexpected-effects-of-online-k-means | 1908.06818 | null | https://arxiv.org/abs/1908.06818v2 | https://arxiv.org/pdf/1908.06818v2.pdf | Unexpected Effects of Online no-Substitution k-means Clustering | Offline k-means clustering was studied extensively, and algorithms with a constant approximation are available. However, online clustering is still uncharted. New factors come into play: the ordering of the dataset and whether the number of points, n, is known in advance or not. Their exact effects are unknown. In this paper we focus on the online setting where the decisions are irreversible: after a point arrives, the algorithm needs to decide whether to take the point as a center or not, and this decision is final. How many centers are needed and sufficient to achieve constant approximation in this setting? We show upper and lower bounds for all the different cases. These bounds are exactly the same up to a constant, thus achieving optimal bounds. For example, for k-means cost with constant k>1 and random order, Theta(log n) centers are enough to achieve a constant approximation, while the mere a priori knowledge of n reduces the number of centers to a constant. These bounds hold for any distance function that obeys a triangle-type inequality. | ['Michal Moshkovitz'] | 2019-08-09 | null | null | null | null | ['online-clustering'] | ['computer-vision'] | [-3.30247641e-01 -1.89169779e-01 -1.63180158e-01 -1.93451107e-01
-5.16628027e-01 -1.16418386e+00 -1.32878810e-01 9.01574314e-01
-7.25051880e-01 4.05200899e-01 -3.60579431e-01 -4.60462898e-01
-4.58700210e-01 -8.63775313e-01 -8.92447352e-01 -1.20755410e+00
-3.87158483e-01 9.42682505e-01 5.31160831e-01 3.66661549e-02
4.57025051e-01 6.66992605e-01 -1.32963967e+00 -1.58625200e-01
5.96823633e-01 1.01868784e+00 6.59884000e-03 1.10365212e+00
-3.05206686e-01 1.16660468e-01 -4.95788574e-01 -1.64379403e-01
6.13747418e-01 -4.87381160e-01 -9.21313405e-01 2.73998886e-01
-1.07892647e-01 -2.59762585e-01 -1.68878019e-01 1.03079593e+00
2.41638616e-01 1.92390189e-01 5.85203648e-01 -1.48722553e+00
-5.01660407e-01 9.09395039e-01 -8.80851865e-01 1.72503158e-01
6.58606514e-02 -3.75888526e-01 1.00066400e+00 -2.94948429e-01
2.75087327e-01 5.87118804e-01 4.82484281e-01 2.28744835e-01
-1.29303789e+00 -4.15018976e-01 2.55192608e-01 4.57133949e-01
-1.59607613e+00 -3.49940926e-01 5.14952123e-01 -2.37774506e-01
3.87624115e-01 4.22184885e-01 6.33787453e-01 -1.39797881e-01
-3.08710814e-01 3.87078136e-01 7.02159107e-01 -7.85929263e-01
7.61100054e-01 7.63175339e-02 3.01860303e-01 3.27769876e-01
7.51038730e-01 -3.72550100e-01 -2.89635956e-01 -2.85788566e-01
5.43108940e-01 3.97502512e-01 -3.24812293e-01 -6.62528336e-01
-9.87249672e-01 7.58236945e-01 4.36119318e-01 5.49069405e-01
-2.14357793e-01 2.91505933e-01 2.02391461e-01 4.73794907e-01
4.51704524e-02 1.80079639e-01 -6.11078858e-01 -1.85197860e-01
-1.00947428e+00 -3.29735596e-03 9.85935509e-01 9.78663325e-01
1.00014436e+00 -7.58107722e-01 2.52434552e-01 4.97228742e-01
-4.03224915e-01 6.49437010e-01 -1.96439236e-01 -1.07380009e+00
3.69787335e-01 4.03937936e-01 5.45758247e-01 -1.17025805e+00
-3.33375245e-01 2.28948593e-02 -6.50490046e-01 1.74184158e-01
1.25343311e+00 -1.47857308e-01 -5.00010371e-01 1.68431842e+00
5.92771113e-01 -6.24979995e-02 -3.28430325e-01 9.40636098e-01
-3.99238199e-01 6.79861248e-01 -5.57038903e-01 -5.36089718e-01
1.23071063e+00 -5.72096050e-01 -4.42391366e-01 1.53580114e-01
9.14171159e-01 -7.25057185e-01 7.08411157e-01 6.52443230e-01
-1.12006879e+00 1.60195194e-02 -8.60028625e-01 1.63976669e-01
-3.71283263e-01 -9.04653594e-02 4.09464568e-01 7.86059082e-01
-1.18859780e+00 6.74646258e-01 -1.00549734e+00 -3.40788037e-01
1.34374797e-01 4.74653006e-01 -1.98077783e-01 -2.31548429e-01
-4.78498131e-01 2.53908962e-01 2.27893069e-01 1.87122062e-01
-2.80810565e-01 -4.30517524e-01 -2.31516197e-01 2.31477022e-01
7.76947320e-01 -3.98700505e-01 1.02183509e+00 -8.01329136e-01
-9.35434520e-01 7.07064331e-01 -4.21628088e-01 -5.56917429e-01
6.49297416e-01 2.22859114e-01 1.95489809e-01 4.78353977e-01
1.88940875e-02 7.47240931e-02 3.30311149e-01 -1.17869914e+00
-8.52719426e-01 -9.16909099e-01 4.76092100e-01 2.16161549e-01
-5.10414124e-01 -4.71872352e-02 -6.60673738e-01 -1.85430441e-02
5.09805918e-01 -1.26657856e+00 -6.02393270e-01 3.19182605e-01
-1.53507233e-01 -3.76561373e-01 3.07044268e-01 -1.80829212e-01
1.10005820e+00 -2.19063687e+00 -3.33594978e-01 5.81556261e-01
4.10538435e-01 -2.96752125e-01 3.87728363e-01 7.37453461e-01
2.79646099e-01 2.62136459e-01 -4.68697362e-02 -1.03296570e-01
1.30308524e-01 2.39830941e-01 9.89544019e-02 9.96467531e-01
-7.38548279e-01 2.73026347e-01 -7.70351887e-01 -3.03251952e-01
1.92871206e-02 1.08402386e-01 -8.07580769e-01 -6.10524602e-02
1.14570007e-01 -1.01430982e-01 -4.66798037e-01 4.57776189e-02
1.06597674e+00 -5.34766138e-01 3.66921037e-01 2.24792585e-01
-1.65539905e-01 -1.45959213e-01 -1.73207521e+00 1.12819278e+00
-4.65572923e-01 3.38982254e-01 6.02927089e-01 -1.08721566e+00
3.75473678e-01 1.44494936e-01 6.80753291e-01 -2.22321495e-01
1.72104642e-01 4.35864389e-01 3.76629233e-02 -2.22568095e-01
3.24597985e-01 -1.23429805e-01 1.15487829e-01 6.30216837e-01
-7.48930275e-01 5.48993826e-01 5.10942996e-01 3.77181828e-01
1.40500343e+00 -6.72957659e-01 -1.26059026e-01 -2.63336509e-01
2.30810270e-01 1.34753421e-01 5.37391245e-01 8.42254639e-01
-1.20256126e-01 5.99075794e-01 8.14960420e-01 -1.87064767e-01
-1.07422197e+00 -6.75479650e-01 1.10215480e-02 9.72135007e-01
6.04073048e-01 -2.87532330e-01 -8.84468317e-01 -2.67371148e-01
8.10796693e-02 3.45907509e-01 -9.86935437e-01 1.49441272e-01
-3.93147886e-01 -3.45274031e-01 -2.55834490e-01 5.08169055e-01
5.22156022e-02 -4.32974547e-01 -7.45216668e-01 2.20384270e-01
7.03061093e-03 -1.09421742e+00 -8.15724194e-01 3.81990314e-01
-1.05382097e+00 -1.37479687e+00 -7.60312378e-01 -5.30206203e-01
1.24217582e+00 9.34609771e-01 4.86928552e-01 2.54966080e-01
8.32865760e-02 3.21981579e-01 -5.42397678e-01 -4.77606207e-02
-1.30033940e-02 2.16776967e-01 -9.48958844e-02 -6.49700463e-02
3.02408963e-01 -5.13216972e-01 -9.95146394e-01 4.55673873e-01
-8.85210454e-01 -5.02120972e-01 4.20582741e-01 3.19081038e-01
5.92355669e-01 7.81829417e-01 1.28502205e-01 -9.92010713e-01
-4.01474722e-03 -4.38234001e-01 -1.04082930e+00 2.67517209e-01
-5.82282722e-01 9.03005078e-02 1.08363509e+00 -3.39950919e-01
-3.64167839e-01 2.20184177e-01 2.67021477e-01 -3.89146566e-01
-3.76638211e-02 1.92513898e-01 -2.62568712e-01 -7.46118426e-02
4.00370330e-01 1.33572966e-01 -1.61881283e-01 -4.89618123e-01
3.65707815e-01 5.37218034e-01 4.78338122e-01 -5.54579198e-01
7.71411121e-01 8.34051073e-01 1.90711170e-01 -6.75807476e-01
-4.77825284e-01 -9.53566074e-01 -8.74382436e-01 5.18062264e-02
3.65013242e-01 -4.17100966e-01 -1.26431155e+00 1.47741735e-01
-9.39732075e-01 -3.91801983e-01 -1.66379035e-01 1.06416628e-01
-4.16526377e-01 4.52928662e-01 -3.75998914e-01 -1.21599042e+00
4.33276929e-02 -8.68223846e-01 5.01303554e-01 1.03854693e-01
2.19429076e-01 -8.08206379e-01 -2.65956163e-01 7.49284700e-02
3.79600734e-01 9.63106304e-02 8.77487481e-01 -8.94938409e-01
-6.06762648e-01 -4.38248754e-01 -1.14858888e-01 -2.30751753e-01
2.10891381e-01 -2.05182238e-03 -2.96784550e-01 -3.12968105e-01
-7.38100708e-02 4.02526021e-01 4.61796314e-01 4.41719562e-01
1.54355776e+00 -8.62139285e-01 -6.04581714e-01 3.72032136e-01
1.67749929e+00 3.21221471e-01 3.13620508e-01 2.37115681e-01
4.94764209e-01 3.50610375e-01 4.87412363e-01 8.88493538e-01
4.51924980e-01 5.59304714e-01 3.23602825e-01 1.91128269e-01
4.57501382e-01 4.11394164e-02 -1.15863793e-01 6.63161099e-01
5.75903244e-03 -3.74993533e-01 -9.43870425e-01 8.74380887e-01
-1.76260126e+00 -7.53542364e-01 -4.37829345e-01 2.93768358e+00
7.75696814e-01 2.05106840e-01 3.82260382e-01 7.03694463e-01
1.00957191e+00 -2.97398984e-01 -7.46893406e-01 -4.40389454e-01
6.71633780e-02 -1.08279981e-01 1.18866539e+00 5.10180831e-01
-5.98828077e-01 4.66804147e-01 5.83304310e+00 8.20331633e-01
-8.63397539e-01 9.98151004e-02 7.47993231e-01 -2.33616546e-01
-2.52183646e-01 4.72400516e-01 -6.01896703e-01 6.62291527e-01
1.01675963e+00 -5.97381175e-01 7.82332301e-01 9.75770473e-01
2.81100214e-01 -5.51864624e-01 -1.05691409e+00 1.10564816e+00
-1.86299518e-01 -1.09899187e+00 -3.96132022e-01 5.75135410e-01
7.41037905e-01 -4.44792897e-01 -3.22728723e-01 -3.46108019e-01
3.60863954e-01 -4.57270205e-01 5.36262512e-01 3.81468572e-02
4.55936134e-01 -1.32801151e+00 6.28866076e-01 5.76494813e-01
-1.16737914e+00 -2.74057597e-01 -5.40794253e-01 1.35842353e-01
6.41308278e-02 1.11013639e+00 -5.18019855e-01 4.52199310e-01
7.82591283e-01 -2.08687130e-02 -1.67537078e-01 1.38831949e+00
1.66441992e-01 6.30587459e-01 -1.04916430e+00 -1.71773151e-01
2.67827392e-01 -4.70806152e-01 7.96364471e-02 7.82656372e-01
2.62214780e-01 6.67523563e-01 2.62558132e-01 1.59397051e-01
-1.09581470e-01 3.38952541e-01 -1.35418922e-01 7.85144418e-02
9.44195509e-01 1.19081199e+00 -1.29485607e+00 -3.48399192e-01
-1.87568843e-01 1.12374973e+00 2.47933313e-01 2.17783377e-01
-7.40514100e-01 -8.87788713e-01 5.53839803e-01 5.95131278e-01
6.85394168e-01 -6.78415537e-01 -4.64678138e-01 -6.42322600e-01
3.04366231e-01 -2.42098719e-01 6.11794949e-01 -2.16721013e-01
-1.07334983e+00 2.06266835e-01 -6.11320883e-02 -8.21497798e-01
4.48371097e-02 -3.85152310e-01 -4.06202525e-01 3.89083922e-01
-1.12353945e+00 -3.68759215e-01 -9.88973379e-02 5.33243835e-01
1.10717595e-03 6.81293011e-01 4.02666062e-01 3.83617699e-01
-3.09609473e-01 7.16584682e-01 7.02430010e-01 9.86657143e-02
6.13438129e-01 -1.46688724e+00 -2.54551768e-01 8.29196274e-01
2.44540442e-02 5.76628268e-01 9.33958232e-01 -9.24165174e-02
-1.69225359e+00 -5.58609068e-01 9.00032043e-01 -2.51629770e-01
6.27364516e-01 -3.42589825e-01 -8.96578670e-01 3.49019974e-01
-1.72293693e-01 2.18026400e-01 7.42824316e-01 2.58088171e-01
-1.46316469e-01 -3.69834691e-01 -1.14692795e+00 5.08884192e-01
1.10604095e+00 -1.28369436e-01 9.85310823e-02 3.75130624e-01
4.50994164e-01 -1.41518146e-01 -7.48753846e-01 -9.47132036e-02
3.02152097e-01 -9.34770405e-01 5.87475657e-01 -3.12690794e-01
2.74098068e-02 -5.84708571e-01 -6.43357858e-02 -9.23053861e-01
-3.34018320e-01 -7.91188955e-01 -2.04045922e-01 1.03656292e+00
5.18987596e-01 -7.85395503e-01 1.02843559e+00 9.01055813e-01
3.48521084e-01 -1.00348234e+00 -1.04575467e+00 -1.03771651e+00
2.31755331e-01 -1.44567519e-01 7.21584082e-01 9.49229121e-01
1.93430156e-01 5.24274632e-02 -5.64486533e-03 3.87422323e-01
6.63785458e-01 5.98693788e-01 9.15747285e-01 -1.15452147e+00
-3.19507539e-01 -6.18274808e-01 -2.40466893e-01 -1.41122913e+00
-3.76097649e-01 -6.06957853e-01 -1.68534547e-01 -1.56035006e+00
2.92566180e-01 -1.22923195e+00 -1.44794181e-01 4.43343699e-01
-2.25654412e-02 -1.16416804e-01 1.00931615e-01 2.75581032e-01
-8.70069623e-01 1.70971721e-01 8.30896497e-01 3.59691978e-01
-3.57135415e-01 3.41817170e-01 -8.41430545e-01 5.27390838e-01
7.87258625e-01 -6.04745567e-01 -3.24239701e-01 -3.88104826e-01
2.90678948e-01 3.29867303e-01 -2.14081511e-01 -7.95335174e-01
9.26768124e-01 -2.51293421e-01 1.32586241e-01 -8.70477021e-01
1.07426241e-01 -1.28931522e+00 1.55465409e-01 3.86572510e-01
-3.47467810e-01 2.41888195e-01 -2.04349890e-01 9.12056267e-01
3.06886315e-01 -3.04488927e-01 8.11230838e-01 2.08116457e-01
-4.25892067e-04 6.78533614e-01 -1.43268704e-01 -2.31710207e-02
1.30538392e+00 -6.93631887e-01 -6.87804669e-02 -5.09135842e-01
-8.23256850e-01 4.78190005e-01 7.55777299e-01 -1.10590614e-01
1.32282674e-01 -1.18164432e+00 -4.24341440e-01 -1.69783711e-01
4.38898876e-02 3.19266349e-01 4.78055805e-01 1.05249059e+00
-6.68484092e-01 2.91470081e-01 3.34269404e-01 -5.22840977e-01
-1.25811303e+00 1.18939388e+00 5.42757213e-02 7.21246004e-02
-4.66712266e-01 4.48563784e-01 -5.54163866e-02 7.12249205e-02
3.56726527e-01 -2.60496318e-01 3.16420764e-01 -2.62697265e-02
6.62840068e-01 6.77124321e-01 2.56743938e-01 -2.05587566e-01
-3.53553712e-01 5.31306267e-01 -1.89134389e-01 -1.90353915e-01
1.42093062e+00 -5.50474107e-01 -1.81900918e-01 5.36559403e-01
1.25906432e+00 3.03030550e-01 -1.05857539e+00 -3.16186428e-01
1.11624720e-02 -7.13240445e-01 -3.50127012e-01 -2.71409839e-01
-1.28014994e+00 8.00949514e-01 3.80156457e-01 7.92314827e-01
1.26273215e+00 1.32370889e-01 8.52749944e-01 5.35462916e-01
8.92941952e-01 -1.31434977e+00 -3.00171316e-01 2.66817987e-01
2.39481255e-01 -8.06501806e-01 -9.06068832e-03 -4.47422534e-01
-2.17775464e-01 1.17264819e+00 2.83562183e-01 -2.18607545e-01
7.82578826e-01 2.47513831e-01 -3.66889805e-01 1.20855510e-01
-7.09182322e-01 -2.13895649e-01 -4.03348744e-01 4.25847173e-02
1.94237642e-02 1.66215360e-01 -4.62508500e-01 3.91488165e-01
-2.95348942e-01 -2.20528841e-01 5.93442023e-01 7.98710704e-01
-9.22052205e-01 -1.09478211e+00 -7.28172600e-01 4.25571859e-01
-5.77878416e-01 2.85383075e-01 -1.73792034e-01 4.39306587e-01
-2.08010867e-01 1.22018790e+00 2.37186149e-01 -5.07413223e-02
1.00422241e-01 -2.93388337e-01 5.22235811e-01 -3.07085365e-01
-1.73840210e-01 -3.01763806e-02 -3.31018209e-01 -2.51625031e-01
-9.71161500e-02 -6.00701690e-01 -1.60458231e+00 -9.90729690e-01
-6.79613769e-01 6.68050230e-01 8.16884875e-01 8.89723003e-01
4.59666491e-01 -1.63234964e-01 1.23317873e+00 -4.46605206e-01
-4.56483513e-01 -3.90961498e-01 -8.12552810e-01 -4.30240445e-02
1.66738436e-01 -1.60514981e-01 -8.14853728e-01 7.95293152e-02] | [6.7162604331970215, 4.95934534072876] |
61a322d8-01f8-42b9-922a-0ee46363f88a | to-adapt-or-to-annotate-challenges-and | 2212.10381 | null | https://arxiv.org/abs/2212.10381v1 | https://arxiv.org/pdf/2212.10381v1.pdf | To Adapt or to Annotate: Challenges and Interventions for Domain Adaptation in Open-Domain Question Answering | Recent advances in open-domain question answering (ODQA) have demonstrated impressive accuracy on standard Wikipedia style benchmarks. However, it is less clear how robust these models are and how well they perform when applied to real-world applications in drastically different domains. While there has been some work investigating how well ODQA models perform when tested for out-of-domain (OOD) generalization, these studies have been conducted only under conservative shifts in data distribution and typically focus on a single component (ie. retrieval) rather than an end-to-end system. In response, we propose a more realistic and challenging domain shift evaluation setting and, through extensive experiments, study end-to-end model performance. We find that not only do models fail to generalize, but high retrieval scores often still yield poor answer prediction accuracy. We then categorize different types of shifts and propose techniques that, when presented with a new dataset, predict if intervention methods are likely to be successful. Finally, using insights from this analysis, we propose and evaluate several intervention methods which improve end-to-end answer F1 score by up to 24 points. | ['Pat Verga', 'Sameer Singh', 'Emma Strubell', 'Dheeru Dua'] | 2022-12-20 | null | null | null | null | ['open-domain-question-answering'] | ['natural-language-processing'] | [ 9.69004110e-02 1.21355392e-02 -1.51928857e-01 -5.44019520e-01
-1.43194044e+00 -1.03158677e+00 5.44426858e-01 3.72071743e-01
-4.84800041e-01 7.96660662e-01 4.18278873e-01 -4.62977797e-01
-3.91514510e-01 -6.78970635e-01 -7.42253065e-01 3.20713315e-03
2.44334519e-01 1.06431258e+00 5.63979208e-01 -5.69876134e-01
4.70611513e-01 -1.06792726e-01 -1.63060749e+00 5.48409700e-01
1.36575460e+00 7.96591222e-01 -2.37415791e-01 8.63579154e-01
-2.76408702e-01 1.02193677e+00 -8.99731517e-01 -6.46304727e-01
2.42401168e-01 -3.68513852e-01 -1.47995543e+00 -4.77994472e-01
9.14287031e-01 -4.49729890e-01 -1.44368187e-01 6.68861687e-01
8.57378781e-01 2.84237802e-01 7.07126319e-01 -1.01242816e+00
-9.81704295e-01 2.82137632e-01 -1.38051286e-02 5.90427637e-01
1.01543367e+00 3.75810266e-01 1.24411142e+00 -6.57693744e-01
8.64198208e-01 1.19566417e+00 7.06137419e-01 5.44316828e-01
-1.52930391e+00 -3.36795479e-01 5.05742952e-02 2.67257690e-01
-7.00543463e-01 -3.92199904e-01 3.71509045e-01 -2.40670606e-01
1.06350148e+00 2.23408535e-01 -2.27012724e-01 1.02964711e+00
-6.64320365e-02 8.76081705e-01 1.11612809e+00 -3.62268865e-01
2.05193207e-01 2.60612853e-02 4.90964770e-01 2.58477688e-01
1.00663356e-01 -3.16693962e-01 -6.53709471e-01 -4.30480808e-01
-1.01469263e-01 -4.59306955e-01 -3.53003412e-01 -4.94439244e-01
-1.06582808e+00 9.31778133e-01 4.10274029e-01 3.38546522e-02
-4.04787987e-01 -2.65131474e-01 4.57570195e-01 9.27351832e-01
6.11746788e-01 9.80818748e-01 -7.33497262e-01 -5.97503364e-01
-6.64278984e-01 1.14653373e+00 1.29651153e+00 7.43023276e-01
7.23114848e-01 -6.49804592e-01 -4.54804063e-01 1.14384961e+00
-2.76010036e-01 3.41352493e-01 4.70832914e-01 -1.20457780e+00
7.39561319e-01 6.84330463e-01 4.46780533e-01 -8.38361919e-01
-3.98057938e-01 -2.76189655e-01 -4.60267300e-03 -1.87767670e-01
9.29860711e-01 -6.86262995e-02 -6.85465395e-01 1.82989442e+00
2.46271119e-01 -2.57424980e-01 1.87144548e-01 8.90398443e-01
9.45985913e-01 5.42780459e-01 3.04317445e-01 2.84018159e-01
1.39058292e+00 -1.01050758e+00 -3.55644763e-01 -5.17406404e-01
1.10144353e+00 -9.01017785e-01 1.79531527e+00 3.79677653e-01
-1.27803612e+00 -4.64843929e-01 -8.74490082e-01 -4.01464045e-01
-4.83681828e-01 -5.39581239e-01 1.99058965e-01 6.28935158e-01
-9.47346210e-01 4.95595038e-01 -2.82076240e-01 -6.60542905e-01
-1.18383532e-02 1.81963474e-01 -1.94253832e-01 -5.15460312e-01
-1.41429865e+00 1.27880716e+00 -1.32326996e-02 -7.41360724e-01
-6.64498687e-01 -1.04306161e+00 -2.95491368e-01 -2.58285161e-02
3.49893659e-01 -1.07627535e+00 1.96305275e+00 -8.08270514e-01
-1.21591496e+00 1.03419280e+00 -2.09624976e-01 -7.00505614e-01
3.24296892e-01 -4.50740665e-01 -2.93301016e-01 1.95393249e-01
2.81007677e-01 7.57848918e-01 3.70937437e-01 -1.16984415e+00
-8.13506246e-01 -3.92066181e-01 7.10681140e-01 4.20702964e-01
-3.93209726e-01 7.27191046e-02 -1.61317974e-01 -4.05787498e-01
-1.62561655e-01 -8.30598474e-01 8.67362842e-02 -3.03413689e-01
2.19311073e-01 -6.74598753e-01 6.85778975e-01 -7.79222667e-01
1.44367814e+00 -1.76198137e+00 -6.98711872e-02 -2.33851761e-01
3.16934735e-01 3.73732567e-01 -4.01824176e-01 6.56028032e-01
1.17153890e-01 1.10642642e-01 -4.21064973e-01 7.77646974e-02
2.96792060e-01 7.92918820e-03 -4.65015888e-01 -6.31764233e-02
3.58125955e-01 8.64694118e-01 -1.03010166e+00 -3.60945165e-01
-2.82281995e-01 -1.40753567e-01 -9.83518839e-01 2.20965058e-01
-8.20095658e-01 2.58034110e-01 -4.42999691e-01 5.51602602e-01
5.17636299e-01 -3.60241115e-01 -2.08043337e-01 2.01850176e-01
3.49634856e-01 7.71394849e-01 -8.87338936e-01 1.71807563e+00
-4.90929753e-01 5.19157767e-01 -1.67559519e-01 -9.55718040e-01
9.54532027e-01 6.52723238e-02 2.58956343e-01 -1.28661585e+00
-2.72232473e-01 5.52222490e-01 2.58655787e-01 -8.17714453e-01
7.39740491e-01 -2.55960803e-02 -1.86350718e-01 6.03542984e-01
-2.71840617e-02 -2.04297200e-01 3.72806042e-01 3.18612039e-01
1.58436549e+00 5.27228229e-03 -7.99849257e-02 -3.04392874e-01
4.02728707e-01 6.57935858e-01 5.29002175e-02 9.13688421e-01
-5.10636032e-01 5.68036139e-01 6.16062105e-01 -2.72877574e-01
-1.06696010e+00 -1.11923444e+00 -1.19668394e-01 1.66315210e+00
2.42364854e-01 -1.28814965e-01 -7.89762378e-01 -8.65679920e-01
2.79343277e-01 9.69743371e-01 -3.71562332e-01 -4.06814426e-01
-6.04243934e-01 -5.07768452e-01 9.59380805e-01 4.43284899e-01
3.40007573e-01 -9.46736217e-01 -4.38871205e-01 4.07817483e-01
-6.08243585e-01 -9.85433042e-01 -2.81865269e-01 6.27038255e-02
-9.99923110e-01 -1.15475595e+00 -9.36498404e-01 -8.93080533e-01
-2.29729735e-03 3.24893594e-01 1.97544992e+00 -1.22969057e-02
1.77445099e-01 7.53106534e-01 -6.03267312e-01 -4.67928112e-01
-4.57526535e-01 5.37232101e-01 -1.58804491e-01 -4.84009266e-01
9.72617149e-01 -2.58673728e-01 -9.06640351e-01 6.17721617e-01
-9.36446786e-01 -6.81465864e-01 4.06315684e-01 9.15596962e-01
1.19272873e-01 -5.31818271e-01 1.28543663e+00 -1.14391446e+00
1.46344054e+00 -8.87912273e-01 -7.41881952e-02 3.93520266e-01
-8.97461236e-01 2.28308588e-01 6.11141145e-01 -3.12021673e-01
-1.14791453e+00 -5.74025154e-01 -2.60399848e-01 1.89009011e-02
-2.08842516e-01 6.26250565e-01 3.60584825e-01 1.77200660e-01
1.54937685e+00 -1.36336848e-01 1.52356863e-01 -4.67057943e-01
4.24731016e-01 9.01607454e-01 4.64314610e-01 -1.09536004e+00
5.18831134e-01 9.85582322e-02 -6.63338959e-01 -5.13922393e-01
-9.67550159e-01 -7.34381974e-01 -1.75684854e-01 9.04257670e-02
6.24830246e-01 -8.59479904e-01 -6.06431246e-01 2.28113413e-01
-8.80425513e-01 -5.07073343e-01 -1.29430592e-01 1.19130187e-01
-5.72437823e-01 3.66483569e-01 -4.17244196e-01 -4.91632193e-01
-4.12562370e-01 -9.17672992e-01 1.01148283e+00 2.15831280e-01
-6.95432365e-01 -1.09556806e+00 3.41714114e-01 8.98500562e-01
6.51667237e-01 -1.15888990e-01 1.31989467e+00 -1.07445824e+00
-3.99404168e-01 -3.23588520e-01 -2.40070462e-01 4.71484631e-01
-3.28144282e-01 -4.02020156e-01 -8.49180341e-01 -2.44315892e-01
-2.64565676e-01 -8.01894128e-01 6.94203496e-01 5.83593473e-02
9.14349318e-01 -5.09432741e-02 -1.10230371e-01 -4.13923003e-02
1.21308815e+00 -3.47847715e-02 6.92263305e-01 6.41362488e-01
5.53609990e-02 9.38872993e-01 1.04142225e+00 -2.03726925e-02
7.64744401e-01 7.42668211e-01 3.23015392e-01 3.49478692e-01
-3.05577219e-01 -3.11038733e-01 3.73274356e-01 3.94973963e-01
3.49115580e-01 -5.15854776e-01 -1.24185705e+00 9.91714120e-01
-1.65886402e+00 -7.31721401e-01 -2.24861309e-01 2.25642610e+00
9.30179119e-01 3.42949480e-01 6.03518605e-01 -1.71963498e-01
3.73190433e-01 1.34391114e-01 -7.94169307e-01 -6.03154540e-01
-6.47623762e-02 6.06975913e-01 2.87497669e-01 3.77001107e-01
-7.65200853e-01 8.49497914e-01 6.77246189e+00 6.11963630e-01
-7.54726946e-01 2.11169664e-02 4.99528408e-01 7.40399770e-03
-4.79175866e-01 1.10136241e-01 -6.18601143e-01 4.25686359e-01
1.20796049e+00 -1.69779897e-01 3.41569394e-01 8.79539847e-01
-2.82159507e-01 -1.82118997e-01 -1.39662123e+00 6.69867039e-01
6.84989616e-03 -1.00354004e+00 1.06059454e-01 -3.03833693e-01
7.64491677e-01 2.17749462e-01 1.05553329e-01 9.87805903e-01
4.64295566e-01 -9.91151690e-01 3.90974551e-01 4.15573329e-01
3.31843108e-01 -4.57741231e-01 7.26632774e-01 6.17051601e-01
-4.75386083e-01 -3.49556595e-01 -3.73613864e-01 -3.01013738e-01
-8.77448693e-02 9.73510221e-02 -1.01677704e+00 4.50096756e-01
8.40935767e-01 2.13308632e-01 -8.55865300e-01 1.08298469e+00
2.26400401e-02 8.16423535e-01 -2.13860869e-01 -3.41690391e-01
3.67746621e-01 2.80521542e-01 3.44984740e-01 1.07259810e+00
7.51691163e-02 1.21593624e-01 -7.15351179e-02 5.38745344e-01
-3.28345984e-01 1.75520629e-01 -6.78610086e-01 4.47099283e-02
6.86426520e-01 6.58416390e-01 -2.68971175e-02 -2.49655470e-01
-5.69450796e-01 7.40473032e-01 5.51855981e-01 4.68661815e-01
-6.60437763e-01 -5.56406140e-01 9.02540863e-01 3.50925565e-01
1.02636084e-01 2.37690136e-02 -5.31552434e-01 -1.10379314e+00
4.63951468e-01 -1.60750306e+00 8.63059878e-01 -7.83393264e-01
-1.68615055e+00 2.10154712e-01 -4.62467298e-02 -1.01212621e+00
-4.84046698e-01 -6.81688607e-01 -3.14000279e-01 9.16754484e-01
-1.62128496e+00 -5.53875029e-01 -3.12203228e-01 4.49625105e-01
6.31593704e-01 6.10308303e-03 1.00411212e+00 5.87848425e-01
-1.31751195e-01 7.96259940e-01 4.22155857e-01 -1.27676576e-02
1.35319674e+00 -1.42680299e+00 4.65828121e-01 5.04387140e-01
-7.03372732e-02 6.74951077e-01 9.95814800e-01 -4.12290394e-01
-1.32120204e+00 -6.04576051e-01 1.00196445e+00 -1.19144809e+00
6.05871141e-01 -5.84765337e-02 -1.22452056e+00 5.63058794e-01
2.29910567e-01 -2.59477794e-01 5.17449915e-01 7.16467202e-01
-5.60236931e-01 -1.32887185e-01 -1.26410508e+00 4.95795578e-01
1.03269148e+00 -6.21064305e-01 -1.01501524e+00 3.89225185e-01
8.52077961e-01 -6.17422104e-01 -1.09543288e+00 5.08243859e-01
5.24172723e-01 -9.64037359e-01 1.21890831e+00 -1.20747077e+00
8.20627093e-01 -7.99458772e-02 -3.48297715e-01 -1.37895656e+00
-1.72963187e-01 -1.49735868e-01 -9.62233841e-02 1.09785473e+00
6.47505879e-01 -6.72708750e-01 8.72958302e-01 7.81047642e-01
-9.66167897e-02 -8.57328713e-01 -6.89827144e-01 -8.09798121e-01
7.44302869e-01 -2.99155682e-01 5.02210915e-01 9.68750179e-01
-9.61533263e-02 7.41486430e-01 1.15231887e-01 4.89539420e-03
2.31429920e-01 1.05669148e-01 1.24893713e+00 -1.28821146e+00
-2.03902319e-01 -6.03044808e-01 -2.42731199e-01 -1.54673970e+00
-4.45880629e-02 -7.95059264e-01 -7.24556074e-02 -1.67474389e+00
-4.89096269e-02 -5.04049778e-01 -1.88281357e-01 3.98634113e-02
-5.33624411e-01 8.63219574e-02 3.32589522e-02 2.52973080e-01
-1.01118338e+00 3.31995398e-01 1.04335642e+00 -1.31433934e-01
-1.70207068e-01 -5.18730551e-04 -1.06888556e+00 3.62246960e-01
5.66422641e-01 -3.90443891e-01 -5.41344643e-01 -8.56113076e-01
3.80314887e-01 1.07898757e-01 3.40039760e-01 -9.91017342e-01
1.69871420e-01 8.42659473e-02 -7.20336288e-02 -3.15970600e-01
1.42135218e-01 -4.45979059e-01 -5.34918070e-01 3.81293088e-01
-6.23368323e-01 1.85511798e-01 1.24387540e-01 5.19204438e-01
-4.07959044e-01 -4.23361689e-01 6.48781538e-01 3.79549526e-02
-7.61286557e-01 -7.24526774e-03 -5.83572909e-02 9.17839885e-01
8.48456144e-01 -2.05293193e-01 -8.14663529e-01 -7.85240650e-01
-5.12153208e-01 6.74271226e-01 4.00074840e-01 7.33023942e-01
1.71039999e-01 -1.05652761e+00 -1.06003881e+00 -3.13959032e-01
7.56896019e-01 -1.83647126e-02 3.76592338e-01 5.15817583e-01
-7.81347930e-01 6.75291538e-01 7.80707449e-02 -7.10046589e-01
-9.49814439e-01 4.95440513e-01 4.10731047e-01 -5.94345152e-01
-1.75730363e-01 8.50346148e-01 -2.00052988e-02 -1.08044076e+00
4.01752144e-01 -2.05261573e-01 -2.04164023e-03 1.50888637e-01
2.89590210e-01 4.76603895e-01 4.75900173e-01 -1.10934310e-01
-2.53474236e-01 3.07696223e-01 -3.08642834e-01 -3.13365944e-02
1.12035871e+00 -4.88310419e-02 3.19523513e-01 2.41914779e-01
1.16599810e+00 -2.05607682e-01 -9.25404310e-01 -6.55136704e-01
3.71395975e-01 -5.01455605e-01 -4.67752635e-01 -1.23151708e+00
-2.67224789e-01 9.13621664e-01 5.61646938e-01 5.49265563e-01
1.13943481e+00 1.33765675e-02 1.15220869e+00 8.48556697e-01
2.79216349e-01 -1.22457874e+00 3.59381109e-01 8.11814904e-01
8.89639795e-01 -1.43514919e+00 -2.13507399e-01 4.11914214e-02
-7.35785067e-01 7.57829487e-01 9.10696983e-01 -1.29423141e-01
3.07057410e-01 -4.48924839e-01 3.22110415e-01 -1.97528347e-01
-1.07256973e+00 -1.43909752e-01 1.23497300e-01 6.69256151e-01
6.31165087e-01 -1.89627856e-01 -3.84823233e-01 4.35916722e-01
-4.40097153e-01 -2.74085961e-02 3.22830677e-01 9.68528569e-01
-6.49714649e-01 -1.09364963e+00 -4.49618101e-01 6.95299566e-01
-5.45374811e-01 4.70624082e-02 -5.92117608e-01 8.44645977e-01
-3.01308006e-01 1.25191665e+00 -9.72856134e-02 -2.77031153e-01
9.75149155e-01 5.75199068e-01 3.20918202e-01 -6.95280492e-01
-7.85535216e-01 -8.00953388e-01 4.51116592e-01 -3.54016989e-01
-1.60303712e-01 -7.35430837e-01 -1.01360571e+00 -6.65687323e-01
-1.44845605e-01 2.06921563e-01 3.32634747e-01 8.69120955e-01
6.60913289e-01 3.49916965e-01 3.39433044e-01 2.51338277e-02
-1.13332880e+00 -1.16019964e+00 -6.35142028e-02 8.36749673e-01
2.64661491e-01 -5.42684078e-01 -1.46767199e-01 -2.36995384e-01] | [11.340867042541504, 8.011509895324707] |
ea759863-23db-49e1-8831-82fbccc463eb | assessing-cross-cultural-alignment-between | 2303.17466 | null | https://arxiv.org/abs/2303.17466v2 | https://arxiv.org/pdf/2303.17466v2.pdf | Assessing Cross-Cultural Alignment between ChatGPT and Human Societies: An Empirical Study | The recent release of ChatGPT has garnered widespread recognition for its exceptional ability to generate human-like responses in dialogue. Given its usage by users from various nations and its training on a vast multilingual corpus that incorporates diverse cultural and societal norms, it is crucial to evaluate its effectiveness in cultural adaptation. In this paper, we investigate the underlying cultural background of ChatGPT by analyzing its responses to questions designed to quantify human cultural differences. Our findings suggest that, when prompted with American context, ChatGPT exhibits a strong alignment with American culture, but it adapts less effectively to other cultural contexts. Furthermore, by using different prompts to probe the model, we show that English prompts reduce the variance in model responses, flattening out cultural differences and biasing them towards American culture. This study provides valuable insights into the cultural implications of ChatGPT and highlights the necessity of greater diversity and cultural awareness in language technologies. | ['Daniel Hershcovich', 'Min Chen', 'Laura Cabello', 'Seolhwa Lee', 'Li Zhou', 'Yong Cao'] | 2023-03-30 | null | null | null | null | ['culture'] | ['speech'] | [-2.43424729e-01 4.54039797e-02 -4.80632186e-02 -2.90334195e-01
-4.07609522e-01 -8.39620948e-01 7.04025447e-01 7.06394538e-02
-4.83182043e-01 7.49473393e-01 9.59577441e-01 -4.54681486e-01
2.66019344e-01 -3.58251303e-01 -7.63961524e-02 -1.58896789e-01
4.68949258e-01 2.84136474e-01 -1.91559672e-01 -7.99884200e-01
5.27072012e-01 -1.26532555e-01 -9.68722284e-01 4.26151663e-01
1.23275471e+00 -1.45341098e-01 2.83124357e-01 6.76180899e-01
-3.80543143e-01 1.06858623e+00 -9.90790963e-01 -7.47382939e-01
-1.75028577e-01 -8.07782531e-01 -1.02293205e+00 -2.26914868e-01
3.69401723e-01 -4.09550667e-01 1.30717829e-01 7.13444293e-01
6.28938198e-01 1.78619564e-01 4.31769192e-01 -8.22904408e-01
-1.14055824e+00 7.64994144e-01 -2.05175709e-02 6.49425536e-02
9.31913495e-01 1.02167673e-01 7.55525887e-01 -6.07893944e-01
1.10341251e+00 1.39265835e+00 9.20435846e-01 7.29455113e-01
-1.21969116e+00 -5.51251829e-01 1.82112470e-01 -4.22290832e-01
-1.06086814e+00 -6.03485644e-01 3.34478498e-01 -5.74179292e-01
9.19639170e-01 3.80846739e-01 8.90591264e-01 1.49316227e+00
-4.73923236e-02 2.50260502e-01 1.39854407e+00 -6.19146585e-01
-2.52196342e-02 6.94172442e-01 -3.29429060e-01 2.05587029e-01
-2.07171123e-03 -4.37920064e-01 -7.63294518e-01 -4.79293227e-01
5.41571140e-01 -5.40217340e-01 -3.69010389e-01 3.19234043e-01
-1.24701154e+00 8.08005571e-01 -6.66296408e-02 6.42096639e-01
-1.10743307e-01 -3.33044887e-01 4.71674234e-01 4.20603186e-01
5.10099471e-01 8.17027032e-01 -4.10428256e-01 -1.09168923e+00
-1.90829560e-01 2.60969937e-01 1.41192853e+00 9.43060994e-01
3.51383358e-01 -8.49846303e-02 2.01080889e-01 1.50020587e+00
5.08561730e-02 4.35242832e-01 5.39762795e-01 -1.26726604e+00
3.30953449e-01 5.44745088e-01 4.18488532e-01 -1.03499508e+00
-3.20820719e-01 -6.88114688e-02 -4.36705817e-03 -3.43819320e-01
8.17131758e-01 -7.95244515e-01 -4.34497669e-02 1.86055696e+00
2.09577993e-01 -6.46946311e-01 1.15677126e-01 9.08130765e-01
2.93087393e-01 4.81145471e-01 3.62585008e-01 -3.30334529e-02
1.00047088e+00 -4.78536099e-01 -4.57500190e-01 -4.01797175e-01
1.16362715e+00 -1.23691237e+00 1.62459862e+00 1.12717360e-01
-7.90483236e-01 -2.00440541e-01 -6.21358812e-01 -6.16560504e-02
-2.14760855e-01 -2.71459073e-01 5.31991720e-01 1.30658698e+00
-1.24343979e+00 8.35019350e-02 -4.21919972e-01 -1.40189314e+00
-5.20117998e-01 -1.30433857e-01 -3.26623440e-01 -9.71168652e-02
-1.20128608e+00 1.18419325e+00 -8.27384088e-03 -8.49553049e-02
2.08003953e-01 -3.89402390e-01 -6.29365623e-01 -4.08578992e-01
1.26263052e-01 -3.38449270e-01 1.31290984e+00 -1.37154067e+00
-1.78751075e+00 5.75098336e-01 7.12874010e-02 9.76278931e-02
3.75535905e-01 -1.70640975e-01 -6.93601072e-01 1.38605505e-01
2.37466037e-01 5.94952285e-01 1.13149047e-01 -9.95925188e-01
-5.79102993e-01 -4.99077253e-02 5.76155633e-02 4.87202108e-01
-6.58869982e-01 5.27083814e-01 -1.90830931e-01 -6.08745158e-01
-2.48189062e-01 -1.09183025e+00 3.54040787e-02 -5.42061031e-01
1.32590979e-01 2.01579779e-01 4.81044263e-01 -1.04918659e+00
1.32881320e+00 -2.08869624e+00 -1.10491075e-01 3.09856266e-01
8.26426968e-02 -2.78726709e-03 -8.82725269e-02 1.18472111e+00
6.89867139e-01 6.19541049e-01 2.82377094e-01 1.69804171e-01
8.53201188e-03 2.15150133e-01 1.32520631e-01 1.30175054e-01
6.24450892e-02 5.47119856e-01 -1.08531344e+00 -4.70313460e-01
-1.75973967e-01 4.43830937e-01 -8.70878339e-01 -1.03196524e-01
-1.52312275e-02 6.53904557e-01 -2.44305074e-01 4.37279314e-01
3.30102742e-01 -1.42730484e-02 8.69593382e-01 6.40041113e-01
-6.54143214e-01 4.35338259e-01 -4.17418331e-01 1.34589601e+00
-6.10873699e-01 7.92593181e-01 3.40512961e-01 -1.31904364e-01
1.06659091e+00 1.96371466e-01 1.72284931e-01 -9.02094126e-01
1.02929637e-01 4.39337552e-01 5.70208371e-01 -7.24730790e-01
1.02861583e+00 -1.50514811e-01 -2.44228929e-01 7.00351477e-01
-2.75399059e-01 -3.27807963e-01 1.40971228e-01 3.51105720e-01
6.57025695e-01 4.29095402e-02 8.78671706e-02 -6.92348719e-01
9.82420594e-02 3.11740488e-01 4.39877898e-01 7.13964701e-01
-3.54747951e-01 3.09014887e-01 5.14834702e-01 -6.37063310e-02
-1.00859952e+00 -5.68940222e-01 1.36430770e-01 1.25880313e+00
-1.92602292e-01 -5.65631866e-01 -9.03748989e-01 -3.90533358e-01
-8.11677426e-02 1.11305606e+00 -5.00345469e-01 -2.33105332e-01
-5.32202125e-01 -4.09281254e-01 8.15337300e-01 2.18523622e-01
5.48942685e-01 -6.43503606e-01 -6.21634722e-01 2.90710598e-01
-6.55170798e-01 -1.07709062e+00 -7.45664895e-01 -4.30536151e-01
-5.38922608e-01 -9.07277107e-01 -9.55748677e-01 -8.45031261e-01
3.69693726e-01 2.83285290e-01 9.53404665e-01 1.28674969e-01
2.87735969e-01 9.05525327e-01 -7.55424857e-01 -3.13242882e-01
-1.06227779e+00 5.59343696e-01 -3.15441974e-02 -3.94637406e-01
6.20193303e-01 -2.17058614e-01 -1.79072142e-01 4.28814411e-01
-6.21993542e-01 1.16463695e-02 2.41947383e-01 6.67851746e-01
-7.22909987e-01 -7.48611689e-01 7.35329270e-01 -1.09030795e+00
1.20854616e+00 -6.99235678e-01 7.18440562e-02 3.03546727e-01
-4.64637637e-01 -3.88965249e-01 6.16051435e-01 -5.92302859e-01
-1.54976916e+00 -7.90953279e-01 -1.45201497e-02 6.48871660e-01
3.94489467e-02 7.65239418e-01 3.79754931e-01 -1.69166222e-01
1.01205730e+00 -1.18289500e-01 2.92464763e-01 -2.68213898e-01
1.61101550e-01 1.02923584e+00 1.78238705e-01 -1.04255164e+00
2.90386289e-01 -2.12600250e-02 -1.00507867e+00 -1.53453755e+00
-5.07850312e-02 -1.38887987e-01 -3.64935011e-01 -6.46994591e-01
8.59728992e-01 -9.15380299e-01 -5.56454837e-01 4.08666253e-01
-7.39886999e-01 -8.57947111e-01 3.19064766e-01 8.16913724e-01
-9.41818580e-02 2.99516976e-01 -8.93639445e-01 -9.54135001e-01
2.21928544e-02 -8.55807662e-01 4.44944441e-01 2.00611323e-01
-1.30178249e+00 -1.29136097e+00 3.59573275e-01 5.24241924e-01
6.51278555e-01 -2.25828532e-02 1.20644259e+00 -7.02114880e-01
1.26232222e-01 2.56250631e-02 4.06368338e-02 1.44953609e-01
4.20665354e-01 2.69909531e-01 -5.20739913e-01 -2.01161295e-01
-1.24202207e-01 -4.79408860e-01 -2.03450561e-01 -2.70969927e-01
-1.09395847e-01 -4.91418779e-01 2.10911199e-01 9.91943479e-02
9.34380770e-01 3.97910744e-01 2.73550540e-01 6.86182559e-01
3.77905786e-01 8.80486071e-01 4.84628111e-01 4.90527838e-01
7.71692753e-01 4.28512692e-01 -4.60325927e-01 2.73615181e-01
2.52892375e-01 -4.24858779e-01 5.32723963e-01 1.38717544e+00
-2.84203961e-02 -1.07633069e-01 -1.10256398e+00 5.10240316e-01
-1.49172974e+00 -7.55134881e-01 -1.43914565e-01 2.16975307e+00
8.77408624e-01 -1.83262780e-01 4.31787878e-01 -5.85137725e-01
5.91351032e-01 6.60591424e-02 -1.23894043e-01 -1.03008974e+00
-3.34517747e-01 -1.89818069e-01 2.63664573e-01 6.06083632e-01
-5.60314134e-02 9.75121558e-01 7.52614498e+00 -1.44923985e-01
-1.23825586e+00 -1.24257959e-01 6.78222179e-01 -2.49548946e-02
-6.16407752e-01 4.72398549e-02 -2.13001028e-01 4.24945176e-01
9.54854488e-01 -5.06761730e-01 5.41057110e-01 4.87301528e-01
4.90044624e-01 -3.46062869e-01 -7.57190347e-01 3.61050189e-01
2.23940089e-01 -8.79831612e-01 -2.63468385e-01 -6.93113208e-02
8.11860740e-01 -5.70035120e-03 -1.17331361e-02 3.90868366e-01
6.38290346e-01 -7.99972057e-01 8.73601854e-01 4.69856448e-02
5.25368035e-01 -4.83782291e-01 5.15447319e-01 2.64383256e-01
-4.25508440e-01 -4.80729453e-02 -1.03637300e-01 -7.48081803e-01
5.03754951e-02 -3.47646147e-01 -1.26916814e+00 -9.12297610e-03
6.35490596e-01 1.74814656e-01 -5.54370880e-01 4.20277029e-01
1.72717184e-01 8.50802124e-01 -2.39529759e-01 -4.70225334e-01
2.96224773e-01 -6.00423872e-01 2.76882440e-01 1.40875018e+00
5.02996147e-01 1.08880095e-01 7.26886243e-02 4.46449876e-01
1.83198050e-01 6.43836558e-01 -7.14763820e-01 -5.88522792e-01
9.00394797e-01 7.86058784e-01 -4.49567795e-01 -1.67935014e-01
-7.60079622e-01 9.44609165e-01 3.40387821e-01 6.50802135e-01
-4.00430590e-01 -1.93832159e-01 7.57650852e-01 8.47089216e-02
-2.94951946e-01 -5.34895957e-01 -4.14431661e-01 -9.98881161e-01
-1.50038496e-01 -1.41009033e+00 1.79375261e-01 -7.85316885e-01
-1.02229834e+00 2.84013510e-01 -1.72090560e-01 -5.97292602e-01
-4.61824000e-01 -3.36559534e-01 -3.37877661e-01 1.19295299e+00
-4.57320124e-01 -9.50878561e-01 -1.35077149e-01 3.36016625e-01
3.17231894e-01 3.80970575e-02 7.89784729e-01 1.90068871e-01
-5.02229750e-01 7.39947915e-01 1.45420015e-01 5.02544567e-02
1.46685338e+00 -9.19089973e-01 4.35293049e-01 5.68550467e-01
-4.08612072e-01 1.15880585e+00 8.36023867e-01 -9.34334099e-01
-1.15859497e+00 -4.34213400e-01 1.10625792e+00 -5.61736643e-01
9.29335356e-01 -3.73459011e-01 -8.21040094e-01 7.45584786e-01
7.92548537e-01 -1.20692730e+00 9.94955063e-01 4.80159134e-01
-3.76365542e-01 3.80741745e-01 -1.08856893e+00 1.34102607e+00
1.01307189e+00 -8.03596199e-01 -2.80155331e-01 3.93103994e-02
6.98692143e-01 -3.41158748e-01 -1.15829384e+00 -4.02766883e-01
8.88755381e-01 -1.08803165e+00 2.75748730e-01 -5.06435037e-01
4.21122313e-01 3.34096342e-01 -1.80283546e-01 -1.58569300e+00
-3.37935925e-01 -1.08440030e+00 8.14332724e-01 1.53468490e+00
6.19757116e-01 -1.12618554e+00 4.22319204e-01 1.31982911e+00
-1.13746904e-01 -2.09673032e-01 -5.45089602e-01 -2.81192631e-01
5.54236829e-01 -4.38106358e-02 4.81500864e-01 1.54628694e+00
6.16952300e-01 4.00654882e-01 -4.90225345e-01 -1.55415431e-01
-1.87106907e-01 -5.51116288e-01 1.08222902e+00 -9.00361717e-01
-1.48163393e-01 -4.42031324e-01 -7.28033192e-04 -5.58880866e-01
-2.71681659e-02 -4.15864021e-01 -1.31470457e-01 -1.21870494e+00
-1.48244798e-01 -3.67416620e-01 5.81917346e-01 3.43438610e-02
-2.83853501e-01 -1.36128729e-02 4.37113166e-01 1.74017549e-01
-1.26471967e-01 1.74998820e-01 1.07282305e+00 3.64173293e-01
-6.08631730e-01 -3.10488492e-01 -1.31691504e+00 3.90027761e-01
1.06458855e+00 -1.02598608e-01 -4.87139672e-01 -6.92698419e-01
5.29215395e-01 -1.10298291e-01 -1.96061268e-01 -6.98074102e-01
8.49912539e-02 -4.86328006e-01 1.16966471e-01 3.30908179e-01
1.37766123e-01 -3.92912298e-01 1.57482609e-01 3.15333486e-01
-4.34921861e-01 6.05934322e-01 2.73096859e-01 -1.46957580e-02
-1.10976689e-01 -1.50601387e-01 4.44593877e-01 -2.92573422e-01
-5.25417805e-01 -5.63359797e-01 -1.21823895e+00 5.26322365e-01
5.70461988e-01 -5.00466466e-01 -4.71790850e-01 -9.36066806e-01
-1.71385869e-01 2.70817369e-01 1.31170940e+00 6.85989618e-01
4.31764983e-02 -1.09801686e+00 -7.27747440e-01 -3.07013970e-02
3.27699482e-01 -7.14728594e-01 3.78667563e-01 8.76401246e-01
-8.23061049e-01 3.78449738e-01 -2.94184476e-01 -1.31444618e-01
-1.10014701e+00 -5.20980209e-02 2.44273469e-01 4.62401778e-01
-3.25375438e-01 5.87936580e-01 -1.96673721e-01 -7.76074350e-01
-3.37110490e-01 -8.61046985e-02 -3.55900601e-02 6.69733658e-02
2.29012713e-01 6.25017047e-01 -3.03422421e-01 -7.72151053e-01
-7.27853552e-02 1.57848708e-02 -1.63984165e-01 -8.35543036e-01
7.35643506e-01 -4.42518979e-01 -2.51582116e-01 7.85252988e-01
1.06082690e+00 7.94922113e-01 -8.47019911e-01 1.56059131e-01
1.55687615e-01 -8.04229558e-01 -7.86789656e-01 -1.00613189e+00
-3.03214878e-01 4.32793200e-01 9.01153237e-02 3.39338005e-01
6.14638865e-01 -3.00207257e-01 5.52425861e-01 5.03698826e-01
4.69157457e-01 -1.73266959e+00 -1.18913911e-01 8.91750991e-01
7.76623547e-01 -8.05073798e-01 -3.29686970e-01 -2.27779791e-01
-1.19611514e+00 9.14979696e-01 9.70289946e-01 5.37449896e-01
1.50482491e-01 7.33091906e-02 9.58350599e-01 2.57276118e-01
-8.58899772e-01 3.27744544e-01 -4.79236335e-01 8.88146758e-01
1.16051388e+00 1.94474846e-01 -8.08791161e-01 2.31138319e-01
-7.77664125e-01 -1.03183582e-01 9.37111676e-01 9.84156787e-01
-2.45861396e-01 -1.29749084e+00 -5.90786278e-01 3.24113846e-01
-4.49097276e-01 -2.28666157e-01 -1.19321501e+00 1.17843795e+00
-3.18573713e-01 1.31343603e+00 -5.75563423e-02 -5.51058948e-01
1.59367561e-01 4.46364015e-01 2.35106498e-01 -6.00121081e-01
-1.18772125e+00 9.20646638e-02 9.14961934e-01 -9.44381356e-02
-9.76992995e-02 -1.06556773e+00 -7.43192971e-01 -7.33165860e-01
-7.80778676e-02 4.90656197e-01 4.71729487e-01 8.00415933e-01
4.57168996e-01 -1.37437776e-01 4.45381641e-01 -2.21268535e-01
-3.55088949e-01 -1.31225121e+00 -3.24179828e-01 4.18877572e-01
-1.92964181e-01 -1.02767184e-01 -6.29651174e-02 -2.76876003e-01] | [9.737759590148926, 9.973832130432129] |
d7f0f984-73a5-4394-bc88-5b8d80bbe987 | neural-preset-for-color-style-transfer | 2303.13511 | null | https://arxiv.org/abs/2303.13511v2 | https://arxiv.org/pdf/2303.13511v2.pdf | Neural Preset for Color Style Transfer | In this paper, we present a Neural Preset technique to address the limitations of existing color style transfer methods, including visual artifacts, vast memory requirement, and slow style switching speed. Our method is based on two core designs. First, we propose Deterministic Neural Color Mapping (DNCM) to consistently operate on each pixel via an image-adaptive color mapping matrix, avoiding artifacts and supporting high-resolution inputs with a small memory footprint. Second, we develop a two-stage pipeline by dividing the task into color normalization and stylization, which allows efficient style switching by extracting color styles as presets and reusing them on normalized input images. Due to the unavailability of pairwise datasets, we describe how to train Neural Preset via a self-supervised strategy. Various advantages of Neural Preset over existing methods are demonstrated through comprehensive evaluations. Notably, Neural Preset enables stable 4K color style transfer in real-time without artifacts. Besides, we show that our trained model can naturally support multiple applications without fine-tuning, including low-light image enhancement, underwater image correction, image dehazing, and image harmonization. Project page with demos: https://zhkkke.github.io/NeuralPreset . | ['Rynson W. H. Lau', 'Nanxuan Zhao', 'Lei Zhu', 'Yuhao Liu', 'Zhanghan Ke'] | 2023-03-23 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Ke_Neural_Preset_for_Color_Style_Transfer_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Ke_Neural_Preset_for_Color_Style_Transfer_CVPR_2023_paper.pdf | cvpr-2023-1 | ['image-dehazing', 'image-enhancement', 'low-light-image-enhancement', 'image-harmonization'] | ['computer-vision', 'computer-vision', 'computer-vision', 'computer-vision'] | [ 5.41849196e-01 -4.60603327e-01 3.07840675e-01 -3.18587482e-01
-5.12917280e-01 -6.42410219e-01 1.79831520e-01 -4.42366511e-01
-5.55176735e-01 6.70131624e-01 -6.84947744e-02 -2.56515682e-01
1.31953776e-01 -6.89813256e-01 -9.80318010e-01 -5.74203372e-01
4.87853527e-01 -1.68864056e-01 9.02249739e-02 -4.40905541e-01
3.46793562e-01 4.05472398e-01 -1.52250981e+00 1.75820693e-01
1.28561401e+00 1.11449134e+00 2.85857737e-01 7.48103201e-01
-2.05891445e-01 4.99950349e-01 -6.53438032e-01 -5.31825483e-01
4.92457420e-01 -6.51073158e-01 -6.10515296e-01 -1.08670726e-01
8.33876014e-01 -6.85949862e-01 -2.25217611e-01 1.24470925e+00
7.25140989e-01 1.86377931e-02 3.03069532e-01 -1.24988723e+00
-1.26885533e+00 2.54525930e-01 -6.57683015e-01 -1.98214903e-01
-5.37671074e-02 3.03603351e-01 6.76101685e-01 -9.51543152e-01
4.86114413e-01 9.74716723e-01 8.02579343e-01 8.59049320e-01
-1.37733042e+00 -1.16201115e+00 -5.48321530e-02 1.28307432e-01
-1.32614350e+00 -4.34249043e-01 9.30893600e-01 -1.61554933e-01
4.75338519e-01 4.00758684e-01 7.72446513e-01 1.01037788e+00
-3.71838477e-03 7.40659773e-01 1.37144542e+00 -4.92249131e-01
2.65486062e-01 6.92890286e-02 -2.42152959e-01 5.85589349e-01
1.67116344e-01 4.34526354e-02 -7.87302315e-01 1.49618939e-01
1.15934753e+00 -1.33733019e-01 -4.85248804e-01 -2.48016179e-01
-1.09984601e+00 4.78179991e-01 4.59071219e-01 -4.67700586e-02
4.17152122e-02 3.85879219e-01 3.51773679e-01 3.12496394e-01
2.72801965e-01 4.44195062e-01 -3.04053456e-01 -6.89905137e-02
-9.55147862e-01 -1.02205865e-01 3.80965501e-01 1.28761721e+00
9.86386776e-01 2.69760311e-01 -1.59027874e-01 1.06299222e+00
7.68614002e-03 7.69862056e-01 4.72832888e-01 -1.33592081e+00
3.38611096e-01 3.47522467e-01 -7.82326907e-02 -8.93336177e-01
-1.31360874e-01 -4.13865857e-02 -1.06084692e+00 6.64200962e-01
2.64498353e-01 -2.57727176e-01 -1.02015948e+00 1.80873811e+00
2.87085753e-02 6.73413947e-02 -5.17705493e-02 7.67377973e-01
7.02404797e-01 5.93985438e-01 -2.46915296e-02 3.23176607e-02
1.12652540e+00 -9.89996433e-01 -7.64282048e-01 -1.57416120e-01
2.24960089e-01 -9.11378086e-01 1.68077457e+00 4.08784479e-01
-1.17767191e+00 -5.69225013e-01 -1.25062692e+00 -3.21596563e-01
-2.74360448e-01 4.35054600e-01 5.31220198e-01 6.84958220e-01
-1.40729690e+00 6.62609994e-01 -6.45964921e-01 -3.68854702e-01
4.56983417e-01 3.52311760e-01 -2.02927932e-01 9.92200300e-02
-1.06065249e+00 5.86842239e-01 3.60974342e-01 2.55860478e-01
-4.51656550e-01 -8.70554030e-01 -7.71709502e-01 -1.59800574e-01
1.31395161e-01 -6.32679999e-01 1.11728454e+00 -1.42702222e+00
-2.10371995e+00 7.20774651e-01 -2.05347706e-02 7.05350982e-03
7.40371764e-01 -3.99977058e-01 -3.97758782e-01 4.33829017e-02
-7.69503042e-02 9.33183372e-01 9.12131488e-01 -1.52271211e+00
-6.37642562e-01 6.83572441e-02 -1.98636830e-01 2.58755565e-01
-1.01264679e+00 -6.84690550e-02 -1.04545343e+00 -1.04583383e+00
-9.20199454e-02 -8.93179893e-01 -8.21901113e-03 6.36448562e-01
-4.00519013e-01 3.59684259e-01 8.98090184e-01 -6.47557199e-01
1.20355201e+00 -2.36169243e+00 -1.94204301e-02 1.97578475e-01
1.57650232e-01 3.75102371e-01 -3.84373695e-01 5.32491095e-02
6.67707548e-02 7.64673017e-03 -5.24926066e-01 -4.88910556e-01
-5.04214969e-03 1.75364628e-01 -2.90082484e-01 2.29626149e-01
2.52951980e-01 9.52115238e-01 -6.94419682e-01 -5.04781306e-01
2.64941156e-01 5.57440996e-01 -6.47212684e-01 3.26126605e-01
6.50220290e-02 3.60113263e-01 5.78820892e-02 6.41706049e-01
1.11153400e+00 -1.72942474e-01 1.37453720e-01 -7.49024570e-01
-2.25960568e-01 -2.51571089e-01 -1.29084897e+00 1.94231081e+00
-5.39819360e-01 7.22514570e-01 1.93817377e-01 -4.22319025e-01
9.08702075e-01 -1.66817099e-01 1.70348883e-01 -9.87774312e-01
2.64941841e-01 2.50300884e-01 -5.24587810e-01 -1.89608037e-01
7.89537072e-01 1.40438497e-01 2.42299363e-01 5.28205395e-01
5.75747825e-02 -9.62762237e-02 2.35357031e-01 1.24617681e-01
5.16334176e-01 4.09049630e-01 -1.64588183e-01 -4.06144530e-01
2.39375889e-01 -2.57607102e-01 6.36510551e-01 5.95040321e-01
-6.64703995e-02 1.06860793e+00 2.08702907e-01 -2.51226515e-01
-1.25061262e+00 -1.13264215e+00 -4.59928438e-02 1.17622542e+00
5.44998288e-01 -2.51583606e-01 -9.32017744e-01 -2.72002459e-01
-2.49103919e-01 4.80595946e-01 -7.23102272e-01 -1.45048991e-01
-6.91977143e-01 -6.51050806e-01 6.56620145e-01 6.38877630e-01
8.68496597e-01 -9.74592805e-01 -5.32921433e-01 2.14347783e-02
-2.56491918e-02 -9.55616057e-01 -1.04098046e+00 2.28586718e-02
-7.75764346e-01 -7.65240431e-01 -9.91078198e-01 -9.85120535e-01
8.79320204e-01 3.77058238e-01 1.01826894e+00 1.23211198e-01
-2.60828882e-01 2.41491556e-01 -1.22409128e-01 -3.07980895e-01
-2.93867916e-01 -1.95304111e-01 8.21378827e-02 -2.29697879e-02
-4.84650284e-02 -6.73403203e-01 -1.00942826e+00 4.11835700e-01
-1.13182700e+00 5.13253868e-01 6.41533971e-01 9.93826091e-01
5.77207625e-01 -2.39529729e-01 1.24015346e-01 -7.48739839e-01
5.79840541e-01 1.66118026e-01 -7.76064456e-01 5.17349124e-01
-7.16179788e-01 6.98965266e-02 7.21660078e-01 -6.27738237e-01
-1.28688920e+00 1.04233369e-01 8.03715810e-02 -4.44212645e-01
3.68011110e-02 -7.26824552e-02 -2.17938974e-01 -4.74404991e-01
6.71946526e-01 4.31080043e-01 3.07031155e-01 -4.00262028e-01
5.69095075e-01 5.57200789e-01 9.13639724e-01 -7.68093228e-01
1.12739336e+00 5.61605334e-01 -3.08242679e-01 -6.51109159e-01
-3.87128681e-01 1.36455238e-01 -5.70868492e-01 -2.93785989e-01
7.94118822e-01 -1.08765423e+00 -7.03618705e-01 9.62342441e-01
-9.91833031e-01 -8.83747220e-01 -1.46016762e-01 1.81273967e-01
-2.39184111e-01 5.51284909e-01 -7.79711485e-01 -4.08135116e-01
-7.30110168e-01 -1.05191505e+00 7.38096833e-01 5.75424552e-01
3.51884216e-02 -7.91502357e-01 -1.40641168e-01 3.46773267e-02
8.21521521e-01 1.41947210e-01 6.47373736e-01 2.52918124e-01
-5.71978867e-01 2.12531462e-01 -7.01535523e-01 6.07103944e-01
4.02183294e-01 1.97526634e-01 -1.08353674e+00 -5.55042148e-01
-4.93551999e-01 -3.95360976e-01 6.82736218e-01 1.30672976e-01
1.39537191e+00 -1.76898465e-01 1.31913200e-01 1.25356090e+00
1.41771972e+00 6.76969290e-02 6.57901049e-01 5.97595155e-01
1.01583457e+00 3.46009940e-01 1.82390481e-01 3.15470606e-01
2.23117769e-01 4.99940068e-01 1.54822424e-01 -7.16038525e-01
-4.22564685e-01 -2.29596287e-01 2.95221299e-01 8.15405607e-01
-1.90495595e-01 -6.33590147e-02 -5.13901591e-01 2.77329028e-01
-1.52839470e+00 -6.22996390e-01 1.65664315e-01 2.13606906e+00
1.15383732e+00 -2.62304712e-02 -4.01984006e-02 -1.74298912e-01
7.62266517e-01 -1.11790031e-01 -7.49432445e-01 -1.52228788e-01
-4.71494079e-01 2.41107374e-01 8.00912559e-01 3.45668077e-01
-9.27369356e-01 1.01890671e+00 6.03157473e+00 8.32668185e-01
-1.44748259e+00 -8.26260895e-02 7.77297139e-01 -1.98545069e-01
-5.39627314e-01 -2.88905114e-01 -5.14743805e-01 5.60432315e-01
3.44706655e-01 -2.24575642e-02 7.81980336e-01 6.17703438e-01
1.83427885e-01 1.72810420e-01 -7.64322817e-01 1.23148406e+00
2.40063086e-01 -1.49170458e+00 2.89143503e-01 -2.56488442e-01
9.17299986e-01 -1.78751811e-01 2.37119138e-01 8.56442086e-04
3.53918672e-01 -7.17030644e-01 1.06394207e+00 3.62682939e-01
1.53406751e+00 -6.48828149e-01 3.16787243e-01 -4.68659669e-01
-1.07639730e+00 -3.36829922e-03 -2.74907082e-01 2.25858271e-01
1.29843637e-01 3.08405012e-01 -5.12769930e-02 3.91014934e-01
1.08973038e+00 6.74094558e-01 -7.46678233e-01 1.00163758e+00
-2.18825951e-01 4.20455575e-01 -2.66134351e-01 1.30465284e-01
-6.56007156e-02 -4.36451554e-01 1.48568138e-01 1.32498240e+00
5.09499788e-01 1.06742553e-01 -2.44323134e-01 9.95575011e-01
-2.39893451e-01 8.52412581e-02 -2.25415394e-01 3.04109931e-01
6.08924091e-01 1.30750680e+00 -7.86452532e-01 -2.22582385e-01
-4.05794978e-01 1.59894836e+00 2.25649983e-01 6.05522513e-01
-9.37698483e-01 -9.17005897e-01 8.26263785e-01 -2.70571023e-01
2.01750413e-01 -1.92912966e-01 -7.66164005e-01 -1.14332986e+00
9.75135341e-02 -8.74008119e-01 3.75740305e-02 -9.88737404e-01
-1.20515621e+00 7.83617496e-01 -2.33103856e-01 -1.54615450e+00
4.56594169e-01 -8.57344747e-01 -8.35311472e-01 8.68774652e-01
-1.55950737e+00 -1.34423161e+00 -9.24344063e-01 6.46780372e-01
2.53660858e-01 -1.14391826e-01 6.39434338e-01 5.75706959e-01
-7.72248864e-01 1.16854501e+00 3.46789956e-01 2.95730114e-01
1.20652008e+00 -1.26281750e+00 5.14186323e-01 1.10719359e+00
-3.36579472e-01 6.43552601e-01 4.74642426e-01 -5.22403240e-01
-1.44274461e+00 -1.19067681e+00 1.32653460e-01 -1.86269596e-01
5.46304464e-01 -5.06440520e-01 -9.85106945e-01 2.96602935e-01
3.82478595e-01 -1.07963033e-01 6.38503373e-01 -3.50301534e-01
-4.50231522e-01 -5.14600575e-01 -8.22745204e-01 1.04304624e+00
1.06278360e+00 -4.65842098e-01 4.40236852e-02 -5.06999306e-02
7.90654600e-01 -5.90250611e-01 -7.30673075e-01 2.53827959e-01
7.13596225e-01 -9.41276193e-01 9.25721884e-01 -1.19049773e-01
5.99519074e-01 -6.49644136e-01 -3.25815864e-02 -1.21885371e+00
-4.33253169e-01 -9.52806711e-01 2.71930963e-01 1.48706996e+00
5.43260992e-01 -5.29121637e-01 7.40336716e-01 8.87569427e-01
-2.40187988e-01 -3.62931669e-01 -5.82259595e-01 -6.52943671e-01
3.67969796e-02 -2.39309713e-01 7.40795851e-01 9.21697199e-01
-3.66008639e-01 -3.64880147e-03 -8.20761502e-01 1.24773622e-01
8.21728945e-01 1.39845297e-01 8.85776222e-01 -7.25804150e-01
-3.38684618e-01 -6.51391208e-01 2.29746588e-02 -1.02834451e+00
-1.93457410e-01 -4.68431413e-01 1.69969231e-01 -1.34910011e+00
2.47593641e-01 -4.86487627e-01 -3.65220517e-01 7.29007363e-01
-2.95442551e-01 9.30953026e-01 3.73236477e-01 2.18577743e-01
-4.49398100e-01 6.67818546e-01 1.45007372e+00 -1.33095309e-01
-3.80472183e-01 -4.56036270e-01 -8.86201739e-01 5.19498765e-01
8.68739009e-01 -5.66007160e-02 -3.79500777e-01 -9.93681312e-01
1.27067566e-01 -4.88961548e-01 3.19852114e-01 -1.09418929e+00
2.44039357e-01 -3.24361712e-01 6.72671378e-01 -1.78001821e-01
2.48417586e-01 -6.94924474e-01 2.09993884e-01 2.97282696e-01
-2.29329452e-01 2.16110095e-01 4.88662720e-01 3.52453500e-01
-8.44429433e-02 9.98020098e-02 1.13142514e+00 1.79146811e-01
-1.03754747e+00 2.33458102e-01 -1.14764139e-01 -7.60364234e-02
8.00931633e-01 -5.11011660e-01 -3.49951118e-01 -3.04631948e-01
-1.59522012e-01 1.17878534e-01 7.99463332e-01 3.62481624e-01
6.56491399e-01 -1.49497902e+00 -4.59353894e-01 3.74420196e-01
2.40612417e-01 -4.01021801e-02 5.33801138e-01 5.32044232e-01
-9.16899800e-01 -3.51440728e-01 -6.96082354e-01 -3.87946606e-01
-1.20469224e+00 3.05047721e-01 3.14923942e-01 4.15794015e-01
-7.46845782e-01 8.84174228e-01 3.58189464e-01 -3.35320175e-01
2.25632772e-01 -2.24644288e-01 1.20057225e-01 -2.43234470e-01
6.79829895e-01 3.49819601e-01 -2.04536654e-02 -2.56383032e-01
-5.27344048e-02 9.41315770e-01 -7.94141442e-02 -4.64803986e-02
1.31607759e+00 -3.68247747e-01 -2.29041025e-01 1.66477904e-01
1.20093429e+00 9.16288979e-03 -1.82957983e+00 -2.10024402e-01
-5.21932006e-01 -5.35709679e-01 8.38991776e-02 -8.96470249e-01
-1.34384131e+00 6.24670625e-01 9.74837899e-01 -3.17699194e-01
1.68208110e+00 -5.00489235e-01 1.00613368e+00 3.45449477e-01
1.86140891e-02 -1.38309228e+00 1.76702842e-01 4.07386631e-01
8.31092060e-01 -1.22008550e+00 -1.05782084e-01 -2.57341951e-01
-7.71123469e-01 1.22764134e+00 9.58684504e-01 8.17783996e-02
3.92818451e-01 4.41186428e-01 7.37132132e-01 2.11398154e-01
-1.30535394e-01 8.54329318e-02 3.11477214e-01 5.64448595e-01
2.90064991e-01 -8.12204853e-02 -3.51486504e-02 3.22086513e-01
-2.26634130e-01 1.92737542e-02 5.98354816e-01 9.20261323e-01
-1.99074700e-01 -1.03225148e+00 -3.36029381e-01 2.84926087e-01
-1.36114880e-01 -3.36675793e-01 -1.89046681e-01 5.24219096e-01
8.33989978e-02 5.77742815e-01 1.44564971e-01 -6.10442758e-01
4.36531067e-01 -3.55887324e-01 2.41119519e-01 1.34156621e-03
-3.46689254e-01 7.19969943e-02 -3.37460369e-01 -6.55796826e-01
-2.73241490e-01 -2.48923585e-01 -8.49059343e-01 -4.57970381e-01
-1.22985750e-01 -9.99664888e-02 5.98811984e-01 5.90562880e-01
5.35059392e-01 5.04248142e-01 6.17520809e-01 -1.13672411e+00
-1.89288124e-01 -7.69580543e-01 -4.85595822e-01 6.83588207e-01
2.36575991e-01 -4.02088761e-01 -2.02527508e-01 4.18112814e-01] | [11.269197463989258, -1.0695786476135254] |
e99ddfd5-6d88-478e-a040-08924c00eced | thousand-to-one-semantic-prior-modeling-for | 2103.07131 | null | https://arxiv.org/abs/2103.07131v2 | https://arxiv.org/pdf/2103.07131v2.pdf | Thousand to One: Semantic Prior Modeling for Conceptual Coding | Conceptual coding has been an emerging research topic recently, which encodes natural images into disentangled conceptual representations for compression. However, the compression performance of the existing methods is still sub-optimal due to the lack of comprehensive consideration of rate constraint and reconstruction quality. To this end, we propose a novel end-to-end semantic prior modeling-based conceptual coding scheme towards extremely low bitrate image compression, which leverages semantic-wise deep representations as a unified prior for entropy estimation and texture synthesis. Specifically, we employ semantic segmentation maps as structural guidance for extracting deep semantic prior, which provides fine-grained texture distribution modeling for better detail construction and higher flexibility in subsequent high-level vision tasks. Moreover, a cross-channel entropy model is proposed to further exploit the inter-channel correlation of the spatially independent semantic prior, leading to more accurate entropy estimation for rate-constrained training. The proposed scheme achieves an ultra-high 1000x compression ratio, while still enjoying high visual reconstruction quality and versatility towards visual processing and analysis tasks. | ['Siwei Ma', 'Jian Zhang', 'Chuanmin Jia', 'Lingbo Yang', 'Zhenghui Zhao', 'Jianhui Chang'] | 2021-03-12 | null | null | null | null | ['texture-synthesis'] | ['computer-vision'] | [ 5.87531567e-01 6.23094104e-02 -3.71375322e-01 -3.80213052e-01
-8.08648944e-01 -1.52399406e-01 4.41320240e-01 3.31458412e-02
-4.23650518e-02 6.09565914e-01 6.49450064e-01 1.33490656e-02
-2.83593297e-01 -8.23078036e-01 -5.40989399e-01 -9.12120521e-01
2.64199108e-01 1.72933284e-02 -1.30827427e-01 1.81070536e-01
2.39424616e-01 8.68994221e-02 -1.55419981e+00 2.61788070e-01
8.79779935e-01 1.37332141e+00 6.19073868e-01 6.30594790e-01
1.32726952e-01 7.12250829e-01 2.84638479e-02 -5.56540549e-01
4.09497879e-02 -5.29276550e-01 -5.89693308e-01 2.40494683e-01
-1.95919517e-02 -6.24954820e-01 -8.02061737e-01 1.17000747e+00
2.30791733e-01 -1.09977931e-01 6.23774350e-01 -5.88385642e-01
-5.92803597e-01 2.88581222e-01 -6.98017538e-01 -1.24574527e-01
-1.32453432e-02 2.73335934e-01 1.13212013e+00 -5.17683625e-01
4.52492595e-01 1.13357151e+00 6.99554458e-02 3.29257727e-01
-1.26064217e+00 -5.66428542e-01 -1.16251610e-01 2.47134089e-01
-1.20954406e+00 -6.05973423e-01 9.98355389e-01 -1.05032891e-01
5.95491529e-01 3.94318402e-01 6.73000216e-01 9.60758507e-01
7.76432976e-02 8.37481916e-01 1.09690547e+00 -1.87737539e-01
2.63093203e-01 -6.06702268e-02 -4.90492821e-01 7.98452079e-01
3.01007956e-01 3.61515768e-02 -7.28107989e-01 3.23144644e-01
1.11992621e+00 1.07690074e-01 -4.71349359e-01 -2.40160748e-01
-1.18018305e+00 6.91305399e-01 4.42562699e-01 1.07446788e-02
-4.34790969e-01 2.97785193e-01 4.64559048e-01 -1.97773650e-01
4.49168205e-01 1.32837996e-01 -2.23931313e-01 -2.37565935e-01
-1.32286000e+00 6.40808791e-02 3.17164093e-01 9.05675590e-01
4.83470738e-01 1.96423039e-01 -3.74893636e-01 8.80888581e-01
5.19155145e-01 4.56402123e-01 3.58396322e-01 -1.21522176e+00
6.05143845e-01 3.65378648e-01 -1.96941301e-01 -1.16068196e+00
2.01366767e-01 -7.85856485e-01 -1.25862873e+00 -1.63012370e-01
-1.60776988e-01 4.42665458e-01 -7.84760237e-01 1.79404020e+00
-2.51788516e-02 1.21150129e-01 1.75708860e-01 1.16044772e+00
4.07920510e-01 6.02087080e-01 2.31786996e-01 -3.33207041e-01
1.69573951e+00 -7.39767432e-01 -8.04863751e-01 -1.71313450e-01
1.09147497e-01 -5.65024495e-01 8.21390092e-01 5.01053035e-01
-1.35228586e+00 -3.93128306e-01 -1.41400325e+00 -5.08447587e-01
2.98026353e-01 3.29199672e-01 8.67540061e-01 5.24328053e-01
-6.48850262e-01 4.03594315e-01 -1.06639671e+00 1.35888711e-01
9.66318548e-01 3.94167006e-02 -7.68513232e-02 -5.66807151e-01
-1.04515707e+00 3.01379383e-01 5.45866787e-01 -7.88034499e-02
-8.39519024e-01 -6.54858291e-01 -9.67026412e-01 4.64387089e-01
2.31967434e-01 -9.60495353e-01 7.82928169e-01 -3.32586408e-01
-1.68182421e+00 6.89731300e-01 -2.19234243e-01 -5.16216278e-01
3.36401612e-01 -4.71908078e-02 -1.67404301e-02 7.51758337e-01
-9.61757302e-02 7.57793546e-01 1.00005496e+00 -1.18928897e+00
-2.51422465e-01 -4.65027511e-01 -2.44211331e-01 4.44616646e-01
-4.27563399e-01 -4.66502070e-01 -7.79194951e-01 -1.05012119e+00
5.25836647e-01 -4.16870743e-01 -8.03033561e-02 3.12567055e-01
-3.45798194e-01 4.56454843e-01 7.78944969e-01 -1.00749254e+00
1.24722075e+00 -2.22509670e+00 5.86081088e-01 -2.06829254e-02
6.02767229e-01 3.32958512e-02 1.32939175e-01 4.53575375e-03
2.72644162e-01 1.12855375e-01 -5.06959856e-01 -5.87930202e-01
-2.48648273e-03 1.41780272e-01 -3.80988955e-01 3.50511819e-01
3.18467051e-01 1.05846000e+00 -7.84415483e-01 -4.41581607e-01
4.73237395e-01 8.25979292e-01 -9.30110514e-01 3.03575933e-01
-2.55700588e-01 5.34434557e-01 -7.33768284e-01 7.14968204e-01
8.67068589e-01 -3.99578691e-01 3.21153641e-01 -5.99298060e-01
2.81098515e-01 6.11984842e-02 -5.64386129e-01 2.29702806e+00
-7.68577933e-01 6.63143277e-01 2.54483908e-01 -1.18952608e+00
8.30063760e-01 1.67942926e-01 5.66721618e-01 -1.02007186e+00
2.33391896e-01 1.67883500e-01 -3.65695655e-01 -3.49971861e-01
6.60777569e-01 -2.29063317e-01 -1.55468695e-02 1.90126508e-01
3.53091070e-03 -3.26724827e-01 -1.42058924e-01 2.41928205e-01
7.37003505e-01 2.08123624e-01 1.92891404e-01 -1.44421190e-01
4.20314997e-01 -7.29594409e-01 4.64920402e-01 1.10165387e-01
7.50113651e-02 8.60535026e-01 3.27045351e-01 -1.60445590e-02
-1.44826615e+00 -1.22217107e+00 -2.88858950e-01 4.80293661e-01
4.31649446e-01 -5.48927546e-01 -7.31883228e-01 9.80947241e-02
-3.29018712e-01 5.63115776e-01 -2.60618865e-01 -5.15655756e-01
-2.47808471e-01 -6.97629273e-01 3.89121383e-01 2.66748697e-01
1.05322742e+00 -5.80891371e-01 -9.18156326e-01 1.84778154e-01
-7.53447771e-01 -1.40328062e+00 -2.58616239e-01 -8.00825357e-02
-1.10117042e+00 -7.47677863e-01 -8.72150719e-01 -3.50499719e-01
5.33465028e-01 2.90832192e-01 8.21620226e-01 -1.34825483e-02
-6.02671623e-01 1.62896082e-01 -3.02119344e-01 1.40116483e-01
-1.55095577e-01 -1.28086492e-01 -4.64630842e-01 1.44157052e-01
-9.97432694e-02 -8.47358823e-01 -1.26860523e+00 4.88107800e-02
-1.24048841e+00 6.09887838e-01 1.01286483e+00 9.64847088e-01
8.19824219e-01 2.59556323e-01 2.62994260e-01 -4.82355207e-01
2.93802679e-01 -4.53399330e-01 -4.06915575e-01 6.16437756e-02
-5.46774685e-01 5.44210613e-01 5.70356369e-01 1.85268015e-01
-1.41617918e+00 -2.48177886e-01 -2.16387838e-01 -5.97820997e-01
8.43035653e-02 4.57970351e-01 -4.42876637e-01 1.29472941e-01
5.90204038e-02 7.79325724e-01 9.64403674e-02 -4.32078481e-01
4.67428774e-01 5.45877397e-01 6.76636636e-01 -7.54093289e-01
4.23141778e-01 6.90714538e-01 2.01162308e-01 -7.95314074e-01
-7.93035746e-01 -1.96600050e-01 -3.54800075e-01 6.99549019e-02
1.02576053e+00 -1.34276760e+00 -6.99527264e-01 4.15341973e-01
-9.58440483e-01 2.07761228e-02 -1.55938983e-01 5.63125849e-01
-9.13447618e-01 7.09007323e-01 -7.40010321e-01 -7.57701397e-01
-5.34220338e-01 -1.40765643e+00 1.42772770e+00 5.77191263e-02
2.04842448e-01 -7.58944988e-01 -5.52976310e-01 8.03720593e-01
4.70805883e-01 2.83295959e-01 1.08887422e+00 2.67126888e-01
-1.21300030e+00 8.41893256e-02 -8.09982240e-01 3.61244917e-01
-2.73841292e-01 -5.15941441e-01 -1.04463947e+00 -2.81285197e-01
1.55786246e-01 -5.60310304e-01 1.28268588e+00 5.13918400e-01
1.79418159e+00 -3.95795912e-01 -1.50243387e-01 1.18024826e+00
1.59369290e+00 -1.51270449e-01 1.10358465e+00 -1.05102219e-01
7.53089845e-01 4.48520750e-01 3.61181736e-01 7.86378682e-01
4.62460816e-01 6.28704429e-01 4.84768301e-01 -2.13607345e-02
-4.38666612e-01 -4.23197329e-01 -8.86224508e-02 1.01946044e+00
-1.47962840e-02 -4.18708533e-01 -3.99358928e-01 3.01950485e-01
-1.43875837e+00 -8.87043655e-01 3.58198017e-01 2.24203610e+00
7.51979113e-01 1.32147044e-01 -4.23750818e-01 3.07573199e-01
3.75955909e-01 5.35189927e-01 -6.82943523e-01 -1.73742194e-02
-6.51333332e-02 2.44514316e-01 4.70025182e-01 3.01799983e-01
-8.75691414e-01 7.15680838e-01 5.15027189e+00 1.42634892e+00
-8.85075927e-01 8.03739205e-02 9.97908771e-01 -6.11830838e-02
-7.42815733e-01 1.41501492e-02 -2.74661243e-01 6.24973476e-01
7.93190837e-01 6.44368455e-02 5.84985912e-01 5.36145866e-01
1.27973348e-01 -3.41612518e-01 -6.68746889e-01 1.48892689e+00
8.17574188e-03 -1.42669082e+00 4.14585322e-01 3.62995982e-01
5.06635666e-01 -3.53626460e-01 4.26289618e-01 -1.95301548e-01
-1.28045350e-01 -1.05696833e+00 7.36921608e-01 5.40503740e-01
1.46120441e+00 -9.51352060e-01 2.86558181e-01 2.07190663e-01
-1.32088864e+00 -1.51010990e-01 -4.65159357e-01 2.46971235e-01
2.98120677e-01 8.54738533e-01 -1.07170820e-01 9.49683547e-01
4.27095264e-01 9.70270932e-01 -1.35871455e-01 6.50489986e-01
2.26717517e-02 5.08291662e-01 -4.78866622e-02 3.87307972e-01
6.39551803e-02 -2.12222338e-01 4.43609655e-01 1.03729522e+00
4.42946374e-01 4.36419994e-01 -1.11444704e-01 1.13741696e+00
-2.16290593e-01 -2.13957712e-01 -2.61510909e-01 -2.46633813e-01
3.93752843e-01 1.09806335e+00 -8.55004728e-01 -1.91403031e-01
-3.36311221e-01 1.40003526e+00 2.21179068e-01 4.13762003e-01
-7.64537156e-01 -2.48503074e-01 8.56673241e-01 3.05178966e-02
3.92503321e-01 -4.55885231e-01 -6.27426267e-01 -1.54179430e+00
3.05559691e-02 -5.84601343e-01 -9.37913656e-02 -7.79373527e-01
-7.32014120e-01 3.33763808e-01 -1.06304072e-01 -1.24779630e+00
9.53958929e-02 -3.79999876e-01 -1.20414816e-01 9.66153026e-01
-1.80734313e+00 -1.17886448e+00 -4.70608950e-01 3.97417963e-01
8.25424731e-01 -1.45307943e-01 6.71929121e-01 3.79040599e-01
-4.04283911e-01 6.82850301e-01 1.66889727e-01 -1.13655828e-01
1.93979844e-01 -7.21565187e-01 1.14736803e-01 8.67452979e-01
-3.98914292e-02 4.93866771e-01 4.50913131e-01 -4.88964379e-01
-1.65977359e+00 -1.13628411e+00 2.37324730e-01 1.16393864e-01
1.88126475e-01 -2.98477054e-01 -8.14788282e-01 8.96395445e-02
4.15922180e-02 -9.40029044e-03 7.54115105e-01 -4.04218912e-01
-4.39004630e-01 2.84925047e-02 -1.10904109e+00 5.18168867e-01
1.03713059e+00 -7.91495144e-01 5.45890220e-02 -2.71358564e-02
9.03224111e-01 -3.24928224e-01 -8.60290229e-01 4.38729256e-01
7.75209129e-01 -1.19750655e+00 1.14584219e+00 7.68560693e-02
1.21608222e+00 -5.02830073e-02 -5.58150649e-01 -8.17541242e-01
-3.20993125e-01 -4.47093874e-01 -3.52377355e-01 1.01038122e+00
-1.18573055e-01 -2.55920708e-01 9.00153756e-01 3.67620438e-01
-6.10753745e-02 -1.02401614e+00 -8.48735332e-01 -3.66709948e-01
-4.11881834e-01 -6.26000345e-01 4.37316030e-01 6.12753391e-01
-1.32767349e-01 1.36490047e-01 -7.13615894e-01 -8.67650937e-03
1.04229927e+00 1.09696664e-01 2.37812147e-01 -9.00246024e-01
-5.76273859e-01 -5.77302396e-01 -6.49235487e-01 -1.61375356e+00
-2.23319549e-02 -1.03540254e+00 -1.32839173e-01 -1.39277017e+00
5.93520045e-01 -4.61902380e-01 -1.91489860e-01 -1.23551525e-01
-1.11238830e-01 4.70658869e-01 2.11027965e-01 3.94971907e-01
-5.35602152e-01 1.26373613e+00 1.57915163e+00 -1.40864281e-02
2.67184526e-01 -4.68843311e-01 -8.80344808e-01 3.38791341e-01
5.23860097e-01 -1.30266085e-01 -8.50091219e-01 -6.93942904e-01
1.14552919e-02 6.24613762e-01 6.20120823e-01 -1.08772063e+00
-4.28230055e-02 -2.70106308e-02 5.36056757e-01 -4.25183237e-01
6.12869322e-01 -7.31217444e-01 6.10310249e-02 3.27316552e-01
-4.32561845e-01 -5.67116499e-01 -4.33232524e-02 1.12743258e+00
-6.09513164e-01 2.06015378e-01 9.39529777e-01 -1.16729639e-01
-5.54338396e-01 6.80647194e-01 1.25109836e-01 -5.61557487e-02
7.88381636e-01 -3.27559710e-01 7.25508034e-02 -3.53718311e-01
-4.14754868e-01 -8.45100731e-02 5.29134870e-01 2.38213152e-01
1.07095921e+00 -1.27490187e+00 -5.67350328e-01 5.78299880e-01
1.79332588e-02 1.44326761e-01 8.47836137e-01 6.37481093e-01
-6.39166892e-01 5.69262862e-01 -2.99054027e-01 -6.43476248e-01
-7.95113087e-01 3.93413424e-01 -1.37209564e-01 -2.90462375e-01
-7.45387316e-01 8.41937840e-01 5.20011485e-01 3.05221051e-01
-6.85546696e-02 -1.94101766e-01 8.76369923e-02 -3.43936890e-01
5.05030572e-01 1.16568141e-01 -1.18668020e-01 -6.11799181e-01
2.32888963e-02 5.96441627e-01 -2.39653923e-02 -1.42345935e-01
1.28243053e+00 -5.76517701e-01 5.72410747e-02 -5.79626560e-02
1.57134080e+00 -2.90532529e-01 -1.82647133e+00 -3.40344489e-01
-4.28121388e-01 -9.89369154e-01 5.09739399e-01 -5.58137536e-01
-1.33292782e+00 1.27814424e+00 5.39511919e-01 -3.48550349e-01
1.54257774e+00 -6.50393292e-02 1.15467417e+00 -2.23228320e-01
5.14102101e-01 -8.83997262e-01 3.44939381e-01 5.64855477e-03
7.70729005e-01 -1.20282459e+00 3.13840240e-01 -6.17761791e-01
-6.52944982e-01 1.11274576e+00 1.70708299e-01 6.62108809e-02
4.88503039e-01 3.47405635e-02 -7.09001780e-01 -1.62541702e-01
-7.02964246e-01 8.56711119e-02 3.65078360e-01 4.31356728e-01
3.22904497e-01 2.33524993e-01 -2.39494905e-01 6.44648552e-01
-9.54464823e-03 1.51731269e-02 7.90813863e-02 5.13841689e-01
-3.16312551e-01 -7.68979669e-01 1.42433137e-01 4.82669741e-01
-4.81535107e-01 -3.16282272e-01 3.37328672e-01 2.22108170e-01
-9.69160721e-02 5.59005737e-01 -6.91552386e-02 -4.58479643e-01
-1.19333662e-01 -2.66676724e-01 6.78586841e-01 -3.14871252e-01
3.92370939e-01 2.89801717e-01 -1.73611879e-01 -7.24064589e-01
-3.14333379e-01 -4.01302904e-01 -1.02856815e+00 -3.10778052e-01
1.05829291e-01 -1.66120216e-01 6.84414804e-01 7.87332773e-01
5.32120347e-01 6.52788460e-01 5.58542192e-01 -9.46921408e-01
-2.91375309e-01 -5.86933613e-01 -6.68806434e-01 4.15056884e-01
3.20005149e-01 -7.30423748e-01 -1.34005874e-01 2.60073543e-01] | [11.290245056152344, -1.6645078659057617] |
e1b5e413-1cfe-4902-98c4-b4f0bfc14d0a | combining-stereo-disparity-and-optical-flow | 1801.0472 | null | http://arxiv.org/abs/1801.04720v1 | http://arxiv.org/pdf/1801.04720v1.pdf | Combining Stereo Disparity and Optical Flow for Basic Scene Flow | Scene flow is a description of real world motion in 3D that contains more
information than optical flow. Because of its complexity there exists no
applicable variant for real-time scene flow estimation in an automotive or
commercial vehicle context that is sufficiently robust and accurate. Therefore,
many applications estimate the 2D optical flow instead. In this paper, we
examine the combination of top-performing state-of-the-art optical flow and
stereo disparity algorithms in order to achieve a basic scene flow. On the
public KITTI Scene Flow Benchmark we demonstrate the reasonable accuracy of the
combination approach and show its speed in computation. | ['Oliver Wasenmüller', 'René Schuster', 'Didier Stricker', 'Christian Bailer'] | 2018-01-15 | null | null | null | null | ['scene-flow-estimation'] | ['computer-vision'] | [-2.03697145e-01 -7.37656355e-01 -4.35207337e-02 -4.23027277e-01
-2.30331883e-01 -5.29959023e-01 6.49736643e-01 -5.09554386e-01
-3.89810920e-01 9.66163695e-01 -1.18769594e-01 -5.39191425e-01
1.09217905e-01 -5.79301953e-01 -4.13048655e-01 -3.45246047e-01
1.83739841e-01 2.35276207e-01 7.04508424e-01 -3.80858570e-01
6.55676186e-01 8.19945395e-01 -1.76178432e+00 6.44482002e-02
4.86457825e-01 7.99563408e-01 9.31888819e-02 1.07979870e+00
-3.35067987e-01 1.12654591e+00 -3.59529912e-01 -3.93433332e-01
6.75825536e-01 -6.05392218e-01 -8.39039266e-01 2.28404969e-01
1.19696450e+00 -7.19548821e-01 -6.71085954e-01 1.01646495e+00
2.32875094e-01 1.39922246e-01 4.29259956e-01 -1.45328081e+00
2.77981795e-02 -3.81269634e-01 -4.48875934e-01 5.76040566e-01
9.28460300e-01 5.19232333e-01 6.30630374e-01 -8.41046810e-01
1.07253850e+00 1.30479252e+00 4.51104850e-01 4.75426555e-01
-9.53735232e-01 -5.05102634e-01 -1.24375828e-01 6.45467699e-01
-1.03974998e+00 -5.09297192e-01 8.57075810e-01 -7.15544701e-01
9.73857760e-01 1.31213635e-01 9.61468935e-01 5.41782200e-01
4.73544836e-01 6.28003836e-01 8.86996746e-01 -1.23102754e-01
1.14758946e-01 -3.37660089e-02 2.47145221e-01 7.49215364e-01
3.61728162e-01 4.95342344e-01 -5.97653210e-01 1.71629861e-01
7.25869060e-01 -2.30912313e-01 -3.37537110e-01 -5.49943745e-01
-1.19959724e+00 5.92422307e-01 3.60887438e-01 5.48808053e-02
-7.78749436e-02 4.24526155e-01 4.29813147e-01 2.46891901e-01
5.29645264e-01 1.12150058e-01 -3.14015970e-02 -5.93792379e-01
-1.03294182e+00 6.70450628e-01 8.60178649e-01 9.11954999e-01
1.29891491e+00 3.12403917e-01 1.16880193e-01 1.76152691e-01
2.31504023e-01 6.61412656e-01 4.80694883e-02 -1.62583554e+00
3.24239075e-01 3.02824795e-01 2.81202048e-01 -1.09297597e+00
-3.11561972e-01 -1.13724507e-02 -4.16599810e-01 7.79197693e-01
7.04959691e-01 9.06710401e-02 -5.93063474e-01 1.25324261e+00
5.63202500e-01 7.76687384e-01 7.13025555e-02 1.27785730e+00
7.01605260e-01 6.97628617e-01 -3.44385982e-01 -2.55416334e-01
8.36096168e-01 -8.84349465e-01 -8.71135890e-01 -2.76209176e-01
7.04280734e-01 -1.24058211e+00 4.10992205e-01 3.57735932e-01
-1.05750299e+00 -8.72596145e-01 -1.16994071e+00 -2.96251953e-01
-2.54459560e-01 -3.82608771e-01 7.24797070e-01 9.03739154e-01
-1.14273226e+00 4.10903841e-01 -6.66275263e-01 -2.29902953e-01
1.91366851e-01 2.08294034e-01 -6.72396660e-01 -3.64051849e-01
-9.47261512e-01 1.06458104e+00 2.08128422e-01 3.32809001e-01
-6.07471526e-01 -1.01562119e+00 -1.09484708e+00 -4.17128444e-01
1.65391698e-01 -9.50636566e-01 1.24180377e+00 -7.49202788e-01
-1.77162218e+00 8.19565892e-01 -6.56162322e-01 -3.59593421e-01
9.46532130e-01 -2.20753968e-01 -2.04672769e-01 3.11151713e-01
7.03071663e-03 7.69271255e-01 6.48433745e-01 -1.06429207e+00
-8.83972943e-01 -2.03924835e-01 3.60465169e-01 6.72925413e-02
4.32558417e-01 -1.76152915e-01 -2.44719237e-01 3.39399790e-03
-1.94689095e-01 -9.77158844e-01 -2.16719866e-01 2.54273564e-01
6.11479767e-03 1.36611402e-01 1.30797744e+00 -2.13498875e-01
1.04340136e+00 -1.92603743e+00 -3.22958231e-01 -1.91933900e-01
2.40570441e-01 4.81135815e-01 3.44646350e-02 2.56225526e-01
9.63231456e-03 -5.24034858e-01 -1.48314938e-01 -1.94524959e-01
-2.61748761e-01 2.56976575e-01 -2.58872956e-01 1.03504717e+00
4.57581542e-02 8.06093931e-01 -1.20325136e+00 -5.89707196e-01
1.10289490e+00 6.64756775e-01 -8.23855817e-01 8.36495087e-02
2.38163218e-01 6.02462411e-01 -3.89926165e-01 1.91112190e-01
1.13070703e+00 3.27564925e-01 -2.54227519e-01 -3.50688070e-01
-5.58233440e-01 2.05823258e-01 -1.39670038e+00 1.83208716e+00
-4.71869260e-01 1.50099528e+00 -2.03472823e-02 -7.07467020e-01
8.52546871e-01 7.11776838e-02 7.91951299e-01 -6.89133644e-01
1.03720605e-01 2.48525605e-01 1.01887241e-01 -5.57654858e-01
8.03796887e-01 -7.94452056e-02 4.38914746e-01 1.36855736e-01
-3.17054242e-02 -6.66599512e-01 8.32206130e-01 2.11817384e-01
1.10042989e+00 3.41095060e-01 2.13509202e-01 -5.62386811e-01
1.22976506e+00 3.97116184e-01 5.04679024e-01 4.91985083e-01
-7.40064144e-01 7.24128962e-01 2.84733444e-01 -7.45938182e-01
-9.52658117e-01 -8.81531656e-01 -1.06488012e-01 2.26765439e-01
6.89003110e-01 -3.87456149e-01 -6.47782624e-01 -3.72975916e-01
1.19289987e-01 3.91701400e-01 -3.32532912e-01 1.43513188e-01
-1.00425327e+00 -3.03796351e-01 1.91121683e-01 2.05247492e-01
8.06424439e-01 -6.67677522e-01 -9.91582036e-01 3.73870611e-01
-1.96819589e-01 -1.64215183e+00 -6.42249465e-01 -6.94898427e-01
-7.13561535e-01 -1.41566038e+00 -5.34889221e-01 -4.80984181e-01
3.00675303e-01 9.30322886e-01 1.20754182e+00 2.59647723e-02
-3.61726761e-01 3.63633126e-01 -3.90316024e-02 -8.21462087e-03
-6.68181896e-01 -3.95201951e-01 -1.44066110e-01 2.25761443e-01
3.90914530e-01 -1.55919254e-01 -8.06309700e-01 4.38245058e-01
-7.82429576e-01 1.23120137e-02 -5.66122197e-02 4.50024664e-01
-5.53192059e-03 -1.80629283e-01 6.48191273e-02 -7.31650829e-01
1.94113344e-01 3.64833362e-02 -1.08221865e+00 -3.12592208e-01
-2.38860339e-01 -1.19933136e-01 4.95076507e-01 4.24379818e-02
-1.31510055e+00 4.00302917e-01 -3.59980613e-01 -5.02586842e-01
-2.82798797e-01 -7.73917586e-02 2.08838060e-01 -5.02061069e-01
5.21053255e-01 -3.75843272e-02 1.33690134e-01 -1.17548071e-02
3.83184940e-01 3.23245496e-01 7.64084339e-01 -9.79333520e-02
9.13039923e-01 1.02251017e+00 5.05118906e-01 -1.08375049e+00
-4.60424960e-01 -1.00986791e+00 -8.32770407e-01 -8.07791352e-01
9.46266949e-01 -8.19136739e-01 -9.90510643e-01 7.54112184e-01
-1.64465737e+00 -8.63431543e-02 -1.74857661e-01 9.37292874e-01
-9.68944728e-01 5.92044294e-01 -5.58716953e-01 -7.30996430e-01
2.17220217e-01 -1.50888753e+00 1.11937714e+00 -4.43310710e-03
-2.68189088e-02 -1.19357777e+00 4.48486090e-01 2.81551600e-01
4.50051367e-01 2.32536137e-01 6.48117810e-02 4.01172340e-01
-9.80400205e-01 -9.87125486e-02 -3.79818261e-01 3.08458239e-01
3.04662913e-01 5.06508946e-01 -1.09970045e+00 -7.82054290e-02
2.92803198e-02 3.18851322e-01 8.26806724e-01 6.89423382e-01
3.56889993e-01 3.06974053e-01 -1.48112088e-01 7.91645169e-01
1.72972822e+00 2.73829520e-01 9.34925139e-01 1.43155843e-01
7.69511461e-01 7.65746295e-01 8.39515924e-01 2.34129637e-01
2.57674396e-01 8.60801101e-01 4.04827178e-01 1.55288177e-02
-5.96559346e-01 4.12622653e-02 3.62785250e-01 5.65689981e-01
-2.26012081e-01 -3.58321820e-03 -7.82817781e-01 5.00230968e-01
-1.75933576e+00 -1.37526989e+00 -7.44067848e-01 1.96403706e+00
3.65406394e-01 3.04322720e-01 -1.09478831e-03 3.92754227e-01
6.41603827e-01 2.40913838e-01 -1.14736594e-01 -7.02769279e-01
2.13115104e-02 -1.90353647e-01 8.38332534e-01 1.11880124e+00
-9.33731556e-01 8.94434392e-01 7.23367023e+00 4.30784762e-01
-1.31879604e+00 2.80852290e-03 1.91376105e-01 1.95715234e-01
-2.41772503e-01 1.44963026e-01 -9.64086235e-01 2.67679006e-01
8.08102906e-01 -4.09003437e-01 1.39236823e-01 5.54687917e-01
5.20408034e-01 -4.93007541e-01 -9.90153730e-01 1.24978626e+00
-5.32867312e-02 -1.61538899e+00 -1.03583828e-01 1.82337835e-01
8.87813509e-01 -1.15353942e-01 -2.80453414e-01 -1.61975428e-01
-2.08980925e-02 -4.16205615e-01 8.03924680e-01 3.23671281e-01
4.81528550e-01 -5.17782032e-01 6.51634574e-01 1.57074094e-01
-1.30748582e+00 2.67222613e-01 -2.37969488e-01 -3.70386332e-01
8.04422617e-01 7.21300960e-01 -7.36190021e-01 7.23951697e-01
3.92809600e-01 1.22772574e+00 -3.83181959e-01 1.40473485e+00
1.32370412e-01 1.32101685e-01 -1.97049439e-01 1.65991113e-01
5.52230418e-01 -4.39989507e-01 6.56747937e-01 1.39526010e+00
3.36641818e-01 -2.17407763e-01 4.32009250e-02 6.99490905e-01
4.28936899e-01 -1.51183471e-01 -1.08097363e+00 5.01265705e-01
-1.43747449e-01 1.07048142e+00 -5.05614400e-01 -4.42034751e-01
-6.95826948e-01 7.39862263e-01 -2.84567565e-01 4.82913911e-01
-8.39613020e-01 -1.65511012e-01 1.37455547e+00 1.85352907e-01
4.65889759e-02 -7.06214547e-01 -1.40343070e-01 -1.20272791e+00
-1.54315084e-01 -1.28313392e-01 -1.67773031e-02 -9.16254938e-01
-9.14157093e-01 6.04045331e-01 1.76232770e-01 -1.73697448e+00
-8.57565939e-01 -1.05036557e+00 -4.01235998e-01 8.97280335e-01
-2.00359321e+00 -6.78684533e-01 -7.03021049e-01 7.92287529e-01
7.71207094e-01 8.34771469e-02 1.65194839e-01 5.59413731e-01
-1.66918337e-01 -1.72480255e-01 -1.10759266e-01 -6.10105544e-02
7.13187039e-01 -1.05717766e+00 5.53994954e-01 1.24054098e+00
-5.56519888e-02 1.08332478e-01 1.09236896e+00 -3.75881016e-01
-1.69545579e+00 -8.23080599e-01 9.51835215e-01 -6.72775269e-01
7.49374270e-01 -1.29938573e-01 -6.88936293e-01 6.03240848e-01
3.02576035e-01 5.49908280e-01 -7.55542368e-02 -7.40282714e-01
-4.04044986e-02 -4.12686586e-01 -1.02181208e+00 4.42384511e-01
1.12764311e+00 -5.03452480e-01 -4.68042314e-01 -1.09215081e-01
3.84485900e-01 -5.76928198e-01 -4.22400266e-01 4.37120348e-01
6.23511791e-01 -1.68707097e+00 1.07269990e+00 -1.16109945e-01
2.27080360e-01 -6.98448777e-01 -4.13788296e-02 -1.08927262e+00
-1.48757715e-02 -8.63603175e-01 4.06382568e-02 7.52053380e-01
-1.79303423e-01 -7.75768518e-01 9.48089957e-01 3.71746570e-01
-3.52427810e-01 5.86500764e-02 -1.11767650e+00 -8.40658307e-01
-1.85332492e-01 -8.76869798e-01 2.78872371e-01 6.34979129e-01
-1.92358434e-01 1.98401347e-01 -2.79636830e-01 -1.73439011e-01
7.95019448e-01 1.82458386e-01 1.18211555e+00 -1.03741133e+00
1.78358406e-01 -5.63281298e-01 -1.26041615e+00 -1.45223153e+00
5.44733942e-01 -4.53573763e-01 2.33462378e-01 -1.34603596e+00
-3.68810624e-01 -8.23859721e-02 1.16739728e-01 -4.98679370e-01
-1.20151632e-01 5.16639411e-01 2.88685769e-01 -4.67601530e-02
-3.88950169e-01 2.99008876e-01 1.62728405e+00 -1.26129687e-01
-2.86932774e-02 -1.60522491e-01 1.24578536e-01 5.76606512e-01
5.68422854e-01 -1.29013747e-01 -5.29596746e-01 -3.99611235e-01
-9.19553563e-02 1.72209531e-01 5.43439627e-01 -1.21674562e+00
3.59257609e-01 -1.90622658e-01 -9.78048658e-04 -7.83028543e-01
5.37396669e-01 -8.77609730e-01 1.65244028e-01 6.27177775e-01
1.58490226e-01 2.84985036e-01 2.35942587e-01 2.81022042e-01
-6.03968799e-01 -2.38409698e-01 8.17565739e-01 -9.08880681e-02
-1.34695232e+00 4.31228608e-01 -5.02846658e-01 6.35280609e-02
1.04809642e+00 -7.69238949e-01 -5.45732677e-01 -4.65359360e-01
-5.40919080e-02 -1.82160154e-01 6.02889895e-01 5.20774126e-01
7.23497927e-01 -1.34934247e+00 -8.31559300e-01 5.07531285e-01
-6.60874397e-02 -3.84834588e-01 2.42945924e-01 8.52709889e-01
-1.46004725e+00 8.62702668e-01 -5.63601911e-01 -9.78083134e-01
-1.11220813e+00 6.02079809e-01 5.80606818e-01 1.29970834e-01
-5.40367126e-01 2.07295403e-01 4.29205298e-01 5.38569503e-02
-3.08310270e-01 -2.43128732e-01 -5.48235551e-02 -3.16055655e-01
7.41551518e-01 8.21192622e-01 1.95708632e-01 -1.14157057e+00
-5.63556910e-01 1.03511000e+00 5.91405928e-01 -2.06016630e-01
6.13118470e-01 -4.48203295e-01 -7.00516477e-02 3.05883050e-01
1.55911803e+00 -1.35501429e-01 -1.68726468e+00 3.84883940e-01
-1.78572074e-01 -1.18967652e+00 2.92765468e-01 1.64865583e-01
-1.41954815e+00 1.00495255e+00 5.66676021e-01 3.69662315e-01
1.08019876e+00 -4.79971290e-01 8.59741330e-01 1.72099918e-01
5.21173179e-01 -7.43706286e-01 -4.55524743e-01 6.15617573e-01
4.23069656e-01 -1.26293576e+00 2.14834288e-02 -9.67053175e-01
-1.01751208e-01 1.48498416e+00 5.70739269e-01 -4.11451519e-01
8.89503360e-01 4.00611132e-01 3.97444457e-01 1.44215569e-01
-7.75415540e-01 -5.86239159e-01 2.18294516e-01 6.86393559e-01
3.91389400e-01 -4.82540250e-01 -4.47966397e-01 -9.32057917e-01
-2.98922565e-02 3.43711287e-01 9.31674898e-01 8.64323020e-01
-3.61513287e-01 -9.61240947e-01 -2.99389333e-01 -2.22759396e-01
-3.53221595e-01 2.38730446e-01 9.65676308e-02 9.77925181e-01
-7.95610920e-02 1.14581573e+00 2.61878937e-01 -1.37547210e-01
5.56087315e-01 -3.64039630e-01 8.76356542e-01 -4.33381759e-02
-3.28885227e-01 -1.79602534e-01 1.49431437e-01 -1.16593409e+00
-1.10640407e+00 -6.24365807e-01 -1.13549030e+00 -8.54226470e-01
5.00006638e-02 -5.00230007e-02 7.55346179e-01 8.85924399e-01
4.73299846e-02 1.80147275e-01 7.06762850e-01 -1.26294804e+00
2.80412823e-01 -4.48618740e-01 -5.14076412e-01 7.10274696e-01
7.98203290e-01 -7.79387176e-01 -5.65201819e-01 4.06963110e-01] | [8.706781387329102, -1.7970738410949707] |
26003976-4508-453c-a70e-7fc7e6de1d2c | 2305-14387 | 2305.14387 | null | https://arxiv.org/abs/2305.14387v1 | https://arxiv.org/pdf/2305.14387v1.pdf | AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback | Large language models (LLMs) such as ChatGPT have seen widespread adoption due to their ability to follow user instructions well. Developing these LLMs involves a complex yet poorly understood workflow requiring training with human feedback. Replicating and understanding this instruction-following process faces three major challenges: the high cost of data collection, the lack of trustworthy evaluation, and the absence of reference method implementations. We address these challenges with AlpacaFarm, a simulator that enables research and development for learning from feedback at a low cost. First, we design LLM prompts to simulate human feedback that are 45x cheaper than crowdworkers and display high agreement with humans. Second, we propose an automatic evaluation and validate it against human instructions obtained on real-world interactions. Third, we contribute reference implementations for several methods (PPO, best-of-n, expert iteration, and more) that learn from pairwise feedback. Finally, as an end-to-end validation of AlpacaFarm, we train and evaluate eleven models on 10k pairs of real human feedback and show that rankings of models trained in AlpacaFarm match rankings of models trained on human data. As a demonstration of the research possible in AlpacaFarm, we find that methods that use a reward model can substantially improve over supervised fine-tuning and that our reference PPO implementation leads to a +10% improvement in win-rate against Davinci003. We release all components of AlpacaFarm at https://github.com/tatsu-lab/alpaca_farm. | ['Tatsunori B. Hashimoto', 'Percy Liang', 'Carlos Guestrin', 'Jimmy Ba', 'Ishaan Gulrajani', 'Tianyi Zhang', 'Rohan Taori', 'Xuechen Li', 'Yann Dubois'] | 2023-05-22 | null | null | null | null | ['instruction-following'] | ['natural-language-processing'] | [-3.50969672e-01 1.45698816e-01 2.16672912e-01 -6.58390284e-01
-1.01731181e+00 -7.05093384e-01 5.93497217e-01 2.24104747e-01
-6.72128081e-01 7.32896626e-01 3.29921275e-01 -5.99804521e-01
1.03976861e-01 -1.38100952e-01 -8.57773364e-01 3.17734741e-02
3.45403031e-02 8.38828802e-01 4.22798753e-01 -4.96228039e-01
3.80711198e-01 -3.18154544e-02 -1.44259286e+00 7.38998652e-01
7.90183067e-01 3.96096319e-01 1.88383490e-01 1.24195087e+00
3.42301905e-01 1.03289366e+00 -8.19196403e-01 -5.22896290e-01
3.52509946e-01 -2.03775942e-01 -1.13790751e+00 -4.41559315e-01
7.18873382e-01 -6.92998648e-01 1.65362597e-01 4.45563465e-01
7.01080322e-01 2.28298992e-01 3.48168582e-01 -1.42800522e+00
-3.61938536e-01 7.74043322e-01 -1.41042605e-01 -4.23108414e-02
7.06733942e-01 5.66563129e-01 9.05633152e-01 -9.29933369e-01
6.56054795e-01 1.23590267e+00 8.53918850e-01 5.81739008e-01
-1.07703948e+00 -8.38465512e-01 -9.24638808e-02 -1.53389582e-02
-9.80147779e-01 -5.23448467e-01 -1.13644749e-01 -7.18426049e-01
1.08500838e+00 3.28416020e-01 2.44796410e-01 1.34144640e+00
-1.97040271e-02 7.58940220e-01 1.23861301e+00 -4.41966802e-01
8.05836916e-02 4.96658772e-01 3.08913857e-01 9.51560974e-01
-8.41266662e-02 1.24002412e-01 -8.67065907e-01 -3.57533455e-01
3.55153412e-01 -2.31941730e-01 -1.82037666e-01 -6.14071973e-02
-1.27179039e+00 5.92147708e-01 2.51510322e-01 1.32675976e-01
-9.72569138e-02 2.39798844e-01 3.82603765e-01 6.32380247e-01
2.45089725e-01 8.27958941e-01 -5.69004118e-01 -8.37635219e-01
-7.28230000e-01 5.61979413e-01 1.30004418e+00 9.12676692e-01
6.73254967e-01 -5.55934250e-01 -1.94660395e-01 7.14922667e-01
2.81383514e-01 3.94517362e-01 4.81638879e-01 -1.41775250e+00
6.45863354e-01 4.26063865e-01 5.50052226e-01 -8.50112259e-01
-4.73189592e-01 -9.98409614e-02 -2.74132192e-01 3.46498728e-01
7.27371156e-01 -3.70060712e-01 -2.20910743e-01 1.49371886e+00
3.13020349e-01 -3.46973948e-02 -2.08167136e-01 8.89205039e-01
7.14112520e-01 4.84035134e-01 -9.44726095e-02 1.27456665e-01
8.52482498e-01 -1.23000562e+00 -3.11690420e-01 -1.55554608e-01
1.28344619e+00 -9.47234988e-01 1.72176516e+00 6.45568073e-01
-1.12359285e+00 -6.26757920e-01 -7.80608892e-01 -9.41120908e-02
-1.99424431e-01 7.47083053e-02 4.71267939e-01 4.63299185e-01
-1.41674364e+00 7.32627153e-01 -8.67593408e-01 -5.88337779e-01
-8.64512697e-02 4.36753869e-01 -4.77969885e-01 8.64899680e-02
-9.42456424e-01 1.01016617e+00 2.90306304e-02 -7.72489235e-02
-8.65739346e-01 -8.62192214e-01 -6.23845041e-01 -2.28591368e-01
3.34282964e-01 -2.58990616e-01 2.21814680e+00 -7.62901247e-01
-1.72570860e+00 7.27522910e-01 -9.71123204e-02 -3.11255574e-01
1.00926292e+00 -5.73724151e-01 2.28269637e-01 -2.54527003e-01
1.97356328e-01 7.42456615e-01 7.30555952e-02 -1.17461550e+00
-5.41771472e-01 1.93668261e-01 2.45748326e-01 2.87221760e-01
-3.69162291e-01 2.97465384e-01 -1.46001935e-01 1.06564924e-01
-7.42885888e-01 -1.00937080e+00 -2.80845046e-01 -3.45579565e-01
-1.00464687e-01 -3.74782354e-01 4.68247384e-01 -6.73210263e-01
1.19336402e+00 -1.88500166e+00 -3.37813407e-01 1.47369534e-01
3.54013205e-01 6.26873910e-01 -4.78089541e-01 8.98440897e-01
3.87283921e-01 4.28674072e-01 2.20527813e-01 -6.06916726e-01
2.46580437e-01 1.11124091e-01 1.27682500e-02 1.21328518e-01
-6.57556877e-02 8.99886668e-01 -1.27420807e+00 -4.71689373e-01
9.20053571e-02 2.09732056e-01 -9.34359312e-01 6.85969174e-01
-2.10565045e-01 4.22513932e-01 -4.80370410e-02 1.32299572e-01
2.64480650e-01 -5.52799582e-01 2.59153694e-01 4.09511060e-01
-2.58894145e-01 6.73567057e-01 -1.12191045e+00 1.56312239e+00
-7.49722362e-01 6.21836901e-01 2.32160345e-01 -2.61948615e-01
7.43344367e-01 2.93491572e-01 -2.57237144e-02 -5.01701117e-01
2.24307626e-02 4.98712927e-01 1.94189906e-01 -5.52856922e-01
7.25125670e-01 4.00136709e-01 7.96994492e-02 9.50449407e-01
8.30051601e-02 -2.99180835e-01 3.90222132e-01 6.23997092e-01
1.38586724e+00 5.42619899e-02 1.30320698e-01 -1.02927484e-01
1.03124149e-01 8.96175951e-02 1.17851473e-01 1.08245826e+00
-3.45131367e-01 5.63827574e-01 4.22741592e-01 -3.95062685e-01
-7.82265484e-01 -6.93526387e-01 3.50279123e-01 1.70809245e+00
-2.80743688e-01 -8.47129583e-01 -9.74762857e-01 -7.49562562e-01
-3.51020023e-02 7.12317765e-01 -5.77064276e-01 2.29988262e-01
-5.09631157e-01 -1.32895485e-01 6.56400144e-01 4.23277646e-01
3.81849200e-01 -1.12783182e+00 -7.41853774e-01 1.10528357e-01
-3.96541089e-01 -1.02889311e+00 -7.69490242e-01 5.94072789e-02
-3.81862998e-01 -1.14143288e+00 -2.90037304e-01 -5.07518589e-01
5.37810504e-01 2.78956443e-01 1.55629146e+00 7.65343189e-01
1.03256077e-01 5.02001524e-01 -4.49124098e-01 -5.29341221e-01
-9.52555716e-01 3.05757403e-01 1.64429426e-01 -4.94347274e-01
4.40966219e-01 -4.60122824e-01 -5.84998786e-01 7.49002099e-01
-3.83295894e-01 2.62646914e-01 4.44687665e-01 8.63435864e-01
-1.25589117e-01 -7.50962973e-01 4.05497223e-01 -1.25900447e+00
1.19647777e+00 -4.07407194e-01 -6.07124150e-01 1.77844629e-01
-7.06054091e-01 -1.07158564e-01 6.07003987e-01 -1.91332713e-01
-9.11824644e-01 -1.54035226e-01 -4.13658395e-02 -4.86423112e-02
-2.61413097e-01 4.23630834e-01 4.79006529e-01 3.65195833e-02
1.27196097e+00 -4.78991985e-01 1.44625276e-01 -3.72585505e-01
3.98694605e-01 1.04965389e+00 2.94715822e-01 -9.39273596e-01
5.37943423e-01 -1.11900583e-01 -6.44618630e-01 -4.18016136e-01
-7.00625837e-01 -6.13152325e-01 -5.32613575e-01 -3.59089822e-01
5.80788374e-01 -9.04324472e-01 -1.36118090e+00 1.80655360e-01
-1.34834015e+00 -1.34581363e+00 8.47167447e-02 4.17165071e-01
-4.29742336e-01 9.29066688e-02 -8.76356542e-01 -7.74282098e-01
-3.59948337e-01 -1.21243620e+00 9.51672256e-01 2.54041880e-01
-1.00675559e+00 -9.70460355e-01 3.54014546e-01 8.24090958e-01
5.38279414e-01 -2.15221003e-01 3.78009677e-01 -1.05018950e+00
-4.68458235e-01 -1.91193908e-01 -5.20819835e-02 4.25606489e-01
-2.34670386e-01 3.43826622e-01 -1.02488279e+00 -3.75060052e-01
-4.55776930e-01 -9.83868420e-01 1.74993530e-01 -1.59540594e-01
6.52386844e-01 -4.36872602e-01 -1.00112066e-01 1.04857743e-01
8.22279990e-01 -2.66309112e-01 1.06142171e-01 3.52356344e-01
5.02105057e-01 8.24335217e-01 7.51234174e-01 3.29140812e-01
6.90957248e-01 5.45890868e-01 1.52180597e-01 1.40315726e-01
4.04048041e-02 -5.97372413e-01 7.66868472e-01 1.24063063e+00
-4.64425236e-02 -1.69703260e-01 -1.24826646e+00 5.51888883e-01
-2.08096004e+00 -7.44458497e-01 -3.16062510e-01 2.31272721e+00
1.05064166e+00 1.61119401e-01 3.23111504e-01 -3.49778235e-01
2.92766035e-01 -2.44909912e-01 -1.22029960e-01 -8.68175387e-01
4.25068200e-01 1.92139745e-01 2.58298397e-01 1.09987950e+00
-5.61629236e-01 8.52133691e-01 6.47661448e+00 4.71306950e-01
-8.39798987e-01 3.25783491e-01 6.73160017e-01 -2.87547469e-01
-8.92707855e-02 1.62656736e-02 -7.98314989e-01 3.03246737e-01
1.48059881e+00 -9.35582146e-02 7.00022101e-01 8.48350883e-01
6.41297042e-01 -2.53468215e-01 -1.41704679e+00 6.59423232e-01
-1.89839482e-01 -1.15462863e+00 -3.99546862e-01 1.29175615e-02
9.96176481e-01 5.73322713e-01 -2.78463304e-01 7.28936255e-01
1.17046499e+00 -1.17043948e+00 6.52106225e-01 3.06959271e-01
4.29798573e-01 -4.38011914e-01 9.17493522e-01 8.76843750e-01
-6.18209124e-01 2.86165047e-02 -1.80384457e-01 -6.41900897e-01
-6.73843771e-02 1.29190460e-01 -1.59617567e+00 1.75132006e-01
8.22412312e-01 4.27952856e-01 -6.38966024e-01 8.25703919e-01
-4.89290118e-01 9.66144204e-01 -3.61920983e-01 -4.66484338e-01
2.46601209e-01 2.64736060e-02 1.48087546e-01 1.45850182e+00
-3.92277213e-03 -8.62183794e-02 5.87723017e-01 6.39242709e-01
-2.32872307e-01 2.34502688e-01 -5.48974395e-01 9.79804844e-02
6.83224082e-01 1.41353154e+00 -1.91510633e-01 -4.06131148e-01
-2.46212333e-01 6.10931456e-01 7.66779542e-01 2.48718143e-01
-5.65698028e-01 -1.85665324e-01 5.98699570e-01 3.63596469e-01
-2.96660006e-01 -2.24939376e-01 -1.80948317e-01 -8.29363942e-01
1.89328641e-01 -1.58744526e+00 6.48438409e-02 -8.87360573e-01
-1.17706597e+00 5.84331572e-01 1.01916611e-01 -9.20319259e-01
-7.47680187e-01 -5.63617885e-01 -6.33860886e-01 9.46558893e-01
-1.11761999e+00 -8.59611511e-01 -5.80888212e-01 2.28282407e-01
4.67243880e-01 9.88292173e-02 8.34481359e-01 2.49531582e-01
-2.47867554e-01 7.60020256e-01 -6.76791817e-02 1.34775713e-01
1.23146009e+00 -1.47001445e+00 6.62723064e-01 4.35473204e-01
7.56841749e-02 1.00461674e+00 8.25496435e-01 -6.05068147e-01
-8.24606478e-01 -7.62828827e-01 1.07209766e+00 -1.29523480e+00
7.65446961e-01 -6.72125936e-01 -9.14508343e-01 9.32313740e-01
5.18160582e-01 -1.87292144e-01 6.37223184e-01 3.91755521e-01
-3.15582365e-01 1.53395921e-01 -8.31437349e-01 7.46482074e-01
1.02613997e+00 -6.04526579e-01 -3.64145398e-01 6.92905188e-01
7.22867846e-01 -7.03652442e-01 -8.35495830e-01 -9.91851389e-02
6.52506173e-01 -1.34996259e+00 3.38173687e-01 -6.50317550e-01
4.05630976e-01 -1.65155739e-01 1.43589024e-02 -1.59019780e+00
5.99694885e-02 -1.22261524e+00 3.66360664e-01 1.26468563e+00
6.55830026e-01 -6.94287062e-01 6.85049713e-01 9.44219768e-01
-1.36536479e-01 -8.09206307e-01 -3.23861450e-01 -6.78279519e-01
1.95447385e-01 -3.98591489e-01 3.21928829e-01 7.32470453e-01
4.20379430e-01 5.67363262e-01 -3.25888395e-01 -1.49093106e-01
2.57522464e-01 -4.38595057e-01 1.55033302e+00 -1.10272014e+00
-6.33041322e-01 -2.56356418e-01 1.33870885e-01 -1.16147351e+00
1.36531163e-02 -8.44515741e-01 4.08144504e-01 -1.58770847e+00
2.59492517e-01 -5.36064029e-01 -1.00320242e-02 6.90271378e-01
-1.97860166e-01 5.01754023e-02 3.90607178e-01 2.93556273e-01
-1.01493549e+00 1.43461511e-01 9.94692743e-01 3.22155267e-01
-3.44771117e-01 -6.64992556e-02 -5.74287415e-01 6.93602026e-01
8.10604990e-01 -5.46409607e-01 -4.14364964e-01 -6.63638830e-01
4.81018066e-01 -1.46711871e-01 2.86068887e-01 -1.12027621e+00
4.35678542e-01 -9.96571630e-02 -9.15520713e-02 -1.07669190e-01
1.80434838e-01 -3.54332864e-01 -1.39617696e-01 3.60880703e-01
-7.64643192e-01 5.18263578e-01 1.32397175e-01 1.21943921e-01
-1.21203270e-02 -2.58889586e-01 3.59763682e-01 -3.00092399e-01
-3.78566682e-01 -2.02848628e-01 -4.82344180e-01 2.57749170e-01
7.32428491e-01 1.27207220e-01 -6.84962690e-01 -8.89088154e-01
-1.31662890e-01 6.59822047e-01 5.16384721e-01 4.97478575e-01
2.12510362e-01 -8.48307192e-01 -9.04570460e-01 -1.85523499e-02
1.50992483e-01 -9.18206796e-02 -1.72955826e-01 1.03093898e+00
-7.03985989e-01 3.94614577e-01 1.35172922e-02 -5.91706872e-01
-1.54332078e+00 2.84219645e-02 3.88479769e-01 -6.61066949e-01
-8.68247375e-02 9.63503122e-01 -1.25427023e-01 -1.36730337e+00
3.42192233e-01 -4.93662894e-01 3.24902177e-01 -2.87946731e-01
6.70918226e-01 4.46454525e-01 3.47705960e-01 -2.78988808e-01
-2.62130141e-01 3.46949883e-02 -2.33551800e-01 -4.32896107e-01
1.15250123e+00 1.26603439e-01 1.07307896e-01 6.05888724e-01
1.00869620e+00 2.60719419e-01 -1.33378422e+00 -7.48886243e-02
1.33222163e-01 -4.28196013e-01 -5.55637896e-01 -1.23966372e+00
-2.50672996e-01 9.86735880e-01 3.49506766e-01 7.97649622e-02
3.17697227e-01 -2.68401504e-01 5.63769639e-01 9.25021112e-01
5.54829061e-01 -1.19238770e+00 4.76461887e-01 7.36134648e-01
9.04576063e-01 -1.65877593e+00 -1.85248256e-01 3.59885511e-03
-7.74362803e-01 8.47568452e-01 1.00645006e+00 1.33368179e-01
3.27458471e-01 2.54037589e-01 7.80792058e-01 -7.59611577e-02
-1.44765759e+00 2.88284808e-01 2.35558581e-02 5.52909613e-01
1.05369759e+00 1.94255695e-01 -2.60394484e-01 4.34856296e-01
-6.56840563e-01 3.27274531e-01 7.15641737e-01 1.02424705e+00
-3.23355377e-01 -1.15469623e+00 -3.19239646e-01 3.18744808e-01
-2.67121196e-01 -5.64517193e-02 -6.52819932e-01 8.48337054e-01
-2.69117177e-01 1.44788277e+00 -3.20293993e-01 -6.83358371e-01
5.57069898e-01 2.26417650e-02 1.45718098e-01 -9.55005825e-01
-1.44906950e+00 -4.98153210e-01 5.05886793e-01 -8.80298018e-01
6.12887647e-03 -5.03944397e-01 -1.30730951e+00 -6.94483399e-01
-2.05546647e-01 5.94110787e-01 6.58226550e-01 8.62046599e-01
5.45169592e-01 1.29351735e-01 3.88720125e-01 -9.44860816e-01
-1.08181143e+00 -1.36478543e+00 6.26942366e-02 6.94780409e-01
5.63281663e-02 -3.12924683e-01 -3.94897491e-01 -1.75398126e-01] | [12.487785339355469, 8.075278282165527] |
6572aa5c-adec-4b60-ad1e-325e448c7b8a | visual-analysis-of-ontology-matching-results | 2004.12628 | null | https://arxiv.org/abs/2004.12628v1 | https://arxiv.org/pdf/2004.12628v1.pdf | Visual Analysis of Ontology Matching Results with the MELT Dashboard | In this demo, we introduce MELT Dashboard, an interactive Web user interface for ontology alignment evaluation which is created with the existing Matching EvaLuation Toolkit (MELT). Compared to existing, static evaluation interfaces in the ontology matching domain, our dashboard allows for interactive self-service analyses such as a drill down into the matcher performance for data type properties or into the performance of matchers within a certain confidence threshold. In addition, the dashboard offers detailed group evaluation capabilities that allow for the application in broad evaluation campaigns such as the Ontology Alignment Evaluation Initiative (OAEI). | ['Sven Hertling', 'Jan Portisch', 'Heiko Paulheim'] | 2020-04-27 | null | null | null | null | ['ontology-matching'] | ['knowledge-base'] | [-1.21224783e-01 4.64734137e-01 -1.24090470e-01 -6.27986729e-01
-3.59847128e-01 -3.90357524e-01 5.45227170e-01 7.84705162e-01
-1.45793065e-01 1.57584786e-01 6.39737666e-01 -4.43772703e-01
-7.36842930e-01 -1.04506767e+00 -2.94197481e-02 1.93657964e-01
-6.31858930e-02 9.79608774e-01 6.09407365e-01 -6.88765705e-01
1.12689368e-01 2.49783501e-01 -2.18576288e+00 6.28276944e-01
9.28243041e-01 8.27930391e-01 -3.27520192e-01 2.41282701e-01
-4.93573040e-01 5.55229247e-01 -5.28209090e-01 -5.93541205e-01
1.71334356e-01 1.13976978e-01 -1.02956641e+00 -6.52939975e-01
6.46040022e-01 -1.82073653e-01 1.63998127e-01 1.20294905e+00
6.13109350e-01 -8.57677162e-02 -8.88633579e-02 -1.81142509e+00
-2.02895656e-01 8.58468592e-01 3.23763728e-01 1.39607742e-01
1.24781144e+00 -2.56756842e-02 1.17390501e+00 -7.66354144e-01
1.21218634e+00 1.30327582e+00 6.91954017e-01 2.15870127e-01
-9.85117316e-01 -8.79740119e-01 -3.89044434e-01 8.05481434e-01
-1.33838308e+00 -6.15413785e-01 5.08673489e-03 -6.65876508e-01
1.46551275e+00 8.73154581e-01 5.57491779e-01 4.28472340e-01
-4.54534730e-03 2.21241355e-01 6.71183765e-01 -6.17961109e-01
2.59086192e-01 5.26503548e-02 4.04632956e-01 3.88874143e-01
3.13152462e-01 -8.15723911e-02 -8.39683235e-01 -6.51050925e-01
-3.40425000e-02 -4.77536827e-01 3.57141405e-01 -3.34196627e-01
-8.98025095e-01 2.30413005e-02 -2.05676053e-02 3.50320488e-01
-3.72874826e-01 -2.59557247e-01 5.18057883e-01 7.56334603e-01
3.24654073e-01 4.60106790e-01 -2.41937265e-01 -5.09391367e-01
-5.40695250e-01 7.72324860e-01 1.02592504e+00 1.25539422e+00
9.59355950e-01 -5.19977212e-01 -1.70205787e-01 7.88896441e-01
5.74523807e-01 -9.84819904e-02 -3.24723050e-02 -1.15224957e+00
4.85071659e-01 1.48150373e+00 3.51118177e-01 -4.83625293e-01
-4.81873721e-01 -1.93200763e-02 1.80406779e-01 6.25676453e-01
1.60848930e-01 3.60695720e-01 -3.36776525e-01 1.31365800e+00
5.73732257e-01 -3.51057321e-01 2.76403964e-01 6.75838351e-01
1.23156714e+00 -2.47054636e-01 4.39811319e-01 2.28955463e-01
1.62054229e+00 -4.97202903e-01 -9.65979695e-01 1.95579141e-01
1.09124088e+00 -9.97880340e-01 1.13989890e+00 -2.39975248e-02
-1.16461277e+00 -2.72492737e-01 -1.21785092e+00 -5.31456620e-02
-8.65290105e-01 -8.89539957e-01 7.22735941e-01 7.21008182e-01
-9.44365680e-01 5.31484663e-01 -6.88763976e-01 -1.10511220e+00
1.32834300e-01 2.53688484e-01 -6.06772423e-01 -6.51894808e-02
-1.44584930e+00 1.38840711e+00 6.96941137e-01 -6.35887086e-01
1.59468167e-02 -1.12538791e+00 -7.38768876e-01 9.43803042e-02
2.25369766e-01 -7.23764718e-01 1.32927597e+00 -4.51595575e-01
-1.08789039e+00 8.88779998e-01 1.01567470e-01 -1.91266209e-01
4.62841928e-01 -2.60896623e-01 -1.14181185e+00 -2.26621702e-01
2.28072539e-01 3.03228348e-01 -5.17098129e-01 -6.44164145e-01
-9.24756944e-01 -3.52560848e-01 5.36530435e-01 3.22922736e-01
-1.35265887e-01 1.09311521e+00 -3.91781271e-01 -2.31645897e-01
6.80904761e-02 -3.25803995e-01 -5.83345108e-02 -1.95317656e-01
3.02718848e-01 -3.19070011e-01 6.67992413e-01 -8.08650017e-01
1.88351822e+00 -1.88025498e+00 -9.39708799e-02 4.99331713e-01
-6.06150515e-02 3.40292999e-03 -4.37848642e-03 1.21435821e+00
-1.92132294e-01 2.56930679e-01 1.69828027e-01 2.06964135e-01
8.25616360e-01 1.18335463e-01 2.03332350e-01 -1.20405160e-01
-1.79383233e-01 4.33456540e-01 -9.86602664e-01 -6.09492004e-01
2.52584845e-01 -1.29766434e-01 -7.15523839e-01 1.09808668e-01
-3.53586584e-01 1.15213484e-01 -1.75761193e-01 9.42951322e-01
6.40256405e-01 6.26975819e-02 6.71963811e-01 -1.86785668e-01
-3.97716552e-01 8.18712413e-01 -1.51580179e+00 1.84642410e+00
-2.29241759e-01 1.24410138e-01 -1.15918450e-01 -3.07965934e-01
1.01641655e+00 7.85512507e-01 8.25446904e-01 -8.54599416e-01
-3.47129375e-01 5.88984847e-01 1.24062076e-01 -7.64114797e-01
6.61572158e-01 4.32013184e-01 -6.85914829e-02 7.31797338e-01
9.49594527e-02 2.73938894e-01 6.56397343e-01 1.38145909e-01
1.41014898e+00 4.22046304e-01 4.94785339e-01 -4.58747923e-01
4.54511523e-01 2.23517433e-01 6.64668262e-01 3.58895332e-01
1.91368118e-01 -4.64953529e-03 1.08828194e-01 -6.86825752e-01
-1.12002897e+00 -1.00158966e+00 -6.25644326e-01 1.33557010e+00
1.22006297e-01 -1.43937969e+00 -5.76207161e-01 -4.33537215e-01
2.10148871e-01 8.18933487e-01 -1.03968203e-01 -1.45030953e-02
-1.56957760e-01 -4.79426414e-01 5.34992099e-01 4.23537999e-01
5.15377402e-01 -1.05837369e+00 -6.02126300e-01 2.79045016e-01
-2.12064072e-01 -1.17909086e+00 9.70084667e-02 -3.04265261e-01
-4.94546920e-01 -1.16621017e+00 5.26854396e-01 -5.37887454e-01
1.56331673e-01 -4.66809005e-01 1.44364190e+00 2.93921769e-01
-8.26742649e-02 4.09494311e-01 -6.53345048e-01 -5.32288492e-01
-6.85581982e-01 1.52978405e-01 1.55809581e-01 -5.97534060e-01
1.19995153e+00 -9.24414456e-01 -3.57885391e-01 9.04271066e-01
-9.19187665e-01 1.56244218e-01 -1.72979146e-01 -1.20455958e-02
1.80538505e-01 -8.02114010e-02 5.17267942e-01 -6.66865945e-01
6.78012252e-01 -7.16880620e-01 -7.40583003e-01 7.01177120e-01
-1.10161400e+00 -1.46618873e-01 -2.38786504e-01 1.84538454e-01
-8.05063665e-01 -5.19905984e-01 -4.43821192e-01 3.64757121e-01
-1.45289749e-01 1.09029496e+00 -5.09992778e-01 -7.38811344e-02
7.77602732e-01 -6.08568609e-01 -3.46176773e-02 -9.08122122e-01
1.25198856e-01 1.11792278e+00 7.32422411e-01 -8.80714118e-01
6.16696954e-01 1.36709362e-01 -4.62280393e-01 9.31627757e-04
-1.27705336e-01 -6.55765235e-01 -5.52133024e-01 -5.17664194e-01
5.04534125e-01 -7.54467070e-01 -8.41941953e-01 -2.31344942e-02
-7.45258272e-01 -1.96788490e-01 -3.47415894e-01 2.80731618e-01
-4.07861948e-01 1.84681803e-01 1.89854875e-02 -6.46371186e-01
-4.65542197e-01 -1.02045476e+00 7.19167531e-01 1.77296102e-01
-1.07386804e+00 -8.33436608e-01 2.59544313e-01 5.24208307e-01
6.46482110e-01 3.90251100e-01 1.00241232e+00 -1.00370336e+00
-3.64983767e-01 -6.04383528e-01 -3.79251502e-02 -3.04498017e-01
-7.04906508e-02 2.36780569e-01 -6.49726808e-01 -6.24736473e-02
-9.02818322e-01 1.94003269e-01 -4.00214881e-01 -5.74908972e-01
5.44955134e-01 -1.82245627e-01 -4.02637482e-01 4.47132736e-01
1.17339230e+00 1.75222769e-01 1.00803757e+00 1.30057681e+00
1.19556263e-01 8.29038918e-01 1.00119066e+00 4.77965713e-01
5.36806583e-01 1.50446558e+00 5.02345204e-01 2.13544760e-02
-1.18102230e-01 2.00094618e-02 3.92145440e-02 6.03770912e-01
-2.72761196e-01 1.25986561e-01 -1.47668326e+00 2.20853180e-01
-2.29884744e+00 -1.06282330e+00 -2.52614319e-01 2.33779836e+00
6.04051709e-01 5.45316450e-02 2.46156096e-01 -5.91219077e-03
5.89424074e-01 -1.98718995e-01 -1.73278823e-01 -6.81591272e-01
-2.59882241e-01 5.02621233e-01 1.56723484e-01 6.77087247e-01
-4.40107405e-01 7.93993950e-01 7.12686777e+00 3.87100101e-01
-3.10007155e-01 4.29880291e-01 -5.18740594e-01 1.15083516e-01
-6.80156410e-01 6.83450282e-01 -7.30724156e-01 2.49529719e-01
1.10532689e+00 -9.07202721e-01 3.51895213e-01 7.09862351e-01
3.04467022e-01 -1.32903188e-01 -1.17466640e+00 4.52464700e-01
-5.95643401e-01 -1.64142418e+00 1.85935482e-01 2.80249119e-01
1.62060708e-01 3.55321974e-01 -7.23346829e-01 1.56841338e-01
7.88158953e-01 -6.82441890e-01 7.01609433e-01 7.65800357e-01
8.86729598e-01 -5.37385225e-01 9.73345757e-01 -1.91674262e-01
-1.09730923e+00 5.14734387e-02 -7.12648481e-02 -2.78463513e-01
3.26594919e-01 3.25978249e-01 -6.45755470e-01 1.16802847e+00
1.00635219e+00 3.91595662e-01 -5.89883983e-01 1.45022273e+00
1.85579091e-01 3.33767459e-02 -5.48341393e-01 4.44963634e-01
-4.59133565e-01 -4.40203637e-01 8.22934389e-01 1.32129037e+00
3.13019723e-01 -6.81906566e-02 2.10341603e-01 4.30105031e-01
2.68247068e-01 4.56560403e-01 -1.23783223e-01 1.20503947e-01
1.10119867e+00 9.78817642e-01 1.03533836e-02 -4.31177735e-01
-4.11704302e-01 3.96716386e-01 1.33882836e-01 2.01169729e-01
-4.76704121e-01 -7.58256853e-01 1.39846277e+00 4.36236590e-01
-3.08499992e-01 8.66621286e-02 -2.92887121e-01 -6.91819668e-01
3.44372094e-01 -1.30784702e+00 9.90768731e-01 -1.02144992e+00
-8.80680621e-01 4.53411222e-01 5.05331099e-01 -1.23235106e+00
-4.10801291e-01 -2.94696659e-01 -6.70312226e-01 9.84868407e-01
-7.35119402e-01 -1.10645676e+00 -6.33628368e-01 1.53424934e-01
-1.43881217e-01 -3.69041830e-01 1.46132720e+00 1.05514657e+00
-5.08380771e-01 5.80131829e-01 -2.82851636e-01 -1.61284924e-01
6.16518617e-01 -1.23439741e+00 7.71902740e-01 7.50844002e-01
-1.75669283e-01 7.90265858e-01 1.01836145e+00 -8.30489039e-01
-8.42846751e-01 -5.40079594e-01 1.24605584e+00 -5.20625412e-01
8.90913725e-01 -1.29428223e-01 -9.75138187e-01 8.13596249e-01
3.52672487e-01 -2.68589675e-01 1.12959647e+00 5.19294798e-01
-6.43480361e-01 -2.57671297e-01 -1.21868730e+00 5.17483830e-01
1.48948455e+00 -5.84355533e-01 -6.03001893e-01 4.65169013e-01
4.32119191e-01 -5.42526841e-01 -1.86220515e+00 9.08874750e-01
1.11103380e+00 -1.05234933e+00 8.73310149e-01 -1.06907248e+00
-1.53560445e-01 -7.23736346e-01 -6.51479483e-01 -7.79653966e-01
-2.92082220e-01 -9.15703356e-01 -7.14120939e-02 1.48464215e+00
5.59280455e-01 -7.86769748e-01 4.55478370e-01 1.01225376e+00
-3.92447650e-01 -9.48921591e-02 -9.79536295e-01 -7.66501069e-01
-5.80947697e-01 -7.52588511e-01 1.63758659e+00 1.27982152e+00
1.03740716e+00 -2.22718865e-01 3.26002538e-01 6.13250136e-01
3.29287469e-01 -2.25881040e-01 9.79014397e-01 -1.54744518e+00
-1.56113550e-01 -6.00246787e-01 -1.04092824e+00 1.26110524e-01
-3.38060498e-01 -1.27242577e+00 -7.23976135e-01 -2.08636284e+00
9.66525525e-02 -7.58636892e-01 -3.95392179e-01 6.53194964e-01
-3.29224840e-02 3.49258780e-02 -2.89265476e-02 4.21811104e-01
-5.94899178e-01 -2.55042404e-01 2.23800734e-01 1.56558365e-01
-3.93544398e-02 -3.17239344e-01 -5.00771523e-01 3.00905406e-01
6.90973043e-01 -7.27698624e-01 -1.55741796e-01 -4.25226331e-01
9.81824040e-01 -4.07838166e-01 -3.24117467e-02 -1.32544458e+00
2.76993603e-01 -3.35527658e-01 -5.45502007e-01 -4.60807145e-01
-1.28367528e-01 -7.45357752e-01 1.36926377e+00 2.67602891e-01
-2.40537167e-01 4.00602937e-01 3.04146349e-01 -2.88989663e-01
-1.92442656e-01 -3.89100254e-01 1.21147886e-01 2.17917040e-01
-7.80521333e-01 -2.42069294e-03 -4.02767628e-01 -1.89740464e-01
7.49122083e-01 -5.81411302e-01 -8.42316985e-01 -4.61320542e-02
-9.69955921e-01 6.44035518e-01 8.08509409e-01 6.98726475e-01
-1.34375989e-01 -1.70096648e+00 -6.15757823e-01 -2.87702642e-02
1.12321687e+00 -4.34860259e-01 -9.46839377e-02 7.40393341e-01
-6.50181949e-01 5.57005033e-02 -6.81033909e-01 -2.43742555e-01
-1.50990534e+00 2.89631158e-01 5.05251110e-01 -7.42264614e-02
-8.14015210e-01 2.24447384e-01 -5.25530815e-01 -9.31592643e-01
1.42981857e-01 1.02291204e-01 -3.72022241e-01 -4.81731780e-02
9.19630289e-01 6.62714005e-01 6.22246563e-01 -5.21761417e-01
-7.81653166e-01 2.65016496e-01 3.05812746e-01 -3.06659222e-01
1.36774313e+00 -1.24942325e-01 -4.96444046e-01 3.71022284e-01
5.94305158e-01 1.86521530e-01 -3.43247503e-01 -2.58237571e-01
8.57096970e-01 -4.18378115e-01 -2.85243422e-01 -1.12034059e+00
-2.74218589e-01 -3.38278413e-02 8.46247733e-01 4.14615989e-01
6.85703337e-01 1.45140160e-02 2.24497914e-01 3.08990866e-01
2.99704909e-01 -1.29460156e+00 -8.66149366e-01 1.89694896e-01
9.03158963e-01 -7.08219826e-01 1.89310282e-01 -6.85477793e-01
-1.80786401e-01 1.19927692e+00 7.27707982e-01 6.38063848e-01
5.49379766e-01 6.10415757e-01 4.47025955e-01 -6.82756722e-01
-1.00971150e+00 -4.81697142e-01 2.68026680e-01 8.69183898e-01
5.78660488e-01 2.55891271e-02 -7.51079738e-01 2.51971394e-01
-5.43615937e-01 2.90043682e-01 3.15245867e-01 1.05476809e+00
-4.87465203e-01 -1.71631300e+00 -3.95511270e-01 3.38707566e-01
-3.96767080e-01 -8.85093063e-02 -3.58221322e-01 6.27111197e-01
3.69216979e-01 8.84468019e-01 4.34429318e-01 -6.39012575e-01
1.02888751e+00 4.93746430e-01 3.73107791e-01 -6.97235703e-01
-1.12816370e+00 -7.11548507e-01 1.27566576e+00 -9.20945287e-01
-4.25038636e-01 -8.83202314e-01 -1.14652586e+00 -5.35923839e-01
-2.20652834e-01 4.56336707e-01 9.39668596e-01 9.05224025e-01
6.85324252e-01 4.05105382e-01 -2.31289729e-01 -1.00560911e-01
4.88157645e-02 -1.09254313e+00 -1.14116050e-01 6.16369545e-01
-5.64535439e-01 -7.26590931e-01 2.43816376e-01 -1.06653079e-01] | [9.207497596740723, 8.023167610168457] |
43120b82-65ef-4049-a0e6-36a4a01bc083 | a-closed-loop-sleep-modulation-system-with | 2211.13128 | null | https://arxiv.org/abs/2211.13128v1 | https://arxiv.org/pdf/2211.13128v1.pdf | A Closed-loop Sleep Modulation System with FPGA-Accelerated Deep Learning | Closed-loop sleep modulation is an emerging research paradigm to treat sleep disorders and enhance sleep benefits. However, two major barriers hinder the widespread application of this research paradigm. First, subjects often need to be wire-connected to rack-mount instrumentation for data acquisition, which negatively affects sleep quality. Second, conventional real-time sleep stage classification algorithms give limited performance. In this work, we conquer these two limitations by developing a sleep modulation system that supports closed-loop operations on the device. Sleep stage classification is performed using a lightweight deep learning (DL) model accelerated by a low-power field-programmable gate array (FPGA) device. The DL model uses a single channel electroencephalogram (EEG) as input. Two convolutional neural networks (CNNs) are used to capture general and detailed features, and a bidirectional long-short-term memory (LSTM) network is used to capture time-variant sequence features. An 8-bit quantization is used to reduce the computational cost without compromising performance. The DL model has been validated using a public sleep database containing 81 subjects, achieving a state-of-the-art classification accuracy of 85.8% and a F1-score of 79%. The developed model has also shown the potential to be generalized to different channels and input data lengths. Closed-loop in-phase auditory stimulation has been demonstrated on the test bench. | ['Xilin Liu', 'Yuhan Hou', 'Yaqian Xu', 'Naize Yang', 'Aaron Zhou', 'Mingzhe Sun'] | 2022-11-19 | null | null | null | null | ['sleep-quality-prediction'] | ['medical'] | [ 3.15020651e-01 -4.99164045e-01 -2.02208564e-01 -4.45278466e-01
-3.18861067e-01 -9.71038640e-02 -2.23428339e-01 2.67051369e-01
-7.85280585e-01 7.55940020e-01 -3.60338449e-01 -3.35626513e-01
1.44516647e-01 -4.88047719e-01 -1.01708487e-01 -6.20589197e-01
-1.96305946e-01 -1.42655000e-01 1.61190182e-01 -6.84663504e-02
2.44134530e-01 3.76882315e-01 -1.80141771e+00 3.78972083e-01
6.99072361e-01 1.44812143e+00 4.12969708e-01 5.79595983e-01
2.67363667e-01 2.09604815e-01 -1.02042925e+00 2.88541198e-01
1.42802726e-02 -3.00135225e-01 -4.04769808e-01 -4.21236813e-01
-8.20255205e-02 -1.89758480e-01 -1.14239119e-01 8.23485136e-01
9.32068408e-01 -7.52917603e-02 9.14704055e-02 -1.08077610e+00
-1.37094632e-01 7.52905086e-02 -2.74398248e-03 8.69087040e-01
3.56280684e-01 2.71014899e-01 3.22312713e-01 -4.56269473e-01
-2.81782091e-01 5.38024545e-01 6.79926336e-01 6.31875753e-01
-1.39666927e+00 -1.18235111e+00 -7.34238625e-01 4.25417721e-01
-1.66881323e+00 -4.91020769e-01 6.50151968e-01 -1.54728994e-01
1.72396946e+00 1.28810301e-01 1.25127733e+00 9.53299999e-01
1.23807895e+00 1.27998404e-02 1.33573794e+00 -2.50747234e-01
7.08943486e-01 1.82891443e-01 2.29297861e-01 3.62094074e-01
3.41119736e-01 7.37731978e-02 -1.01823199e+00 1.42433420e-01
4.33289617e-01 2.34406933e-01 -1.21666953e-01 2.70923942e-01
-6.20686054e-01 6.86364949e-01 4.03154880e-01 5.76298594e-01
-3.50359321e-01 6.33978397e-02 6.40824735e-01 3.75960916e-01
2.77475595e-01 5.27207553e-01 -4.12021965e-01 -8.00194263e-01
-1.44291782e+00 -3.14250290e-01 7.41834223e-01 4.80818987e-01
4.86936718e-01 3.51634592e-01 -1.22457612e-02 5.95818639e-01
3.13729614e-01 5.45036793e-01 1.19774497e+00 -4.71115112e-01
1.14392839e-01 6.78626895e-01 -2.36308634e-01 -6.47988141e-01
-1.03264308e+00 -5.42245388e-01 -9.11093712e-01 2.17474148e-01
-1.80564418e-01 1.19155362e-01 -7.09257603e-01 1.31264436e+00
-3.05278659e-01 8.66651535e-02 -5.89860082e-02 6.85426891e-01
6.46904171e-01 5.16799629e-01 -6.45206347e-02 -3.20891023e-01
1.54999435e+00 -5.59951305e-01 -8.78104687e-01 -3.96406919e-01
2.61105031e-01 -5.05014598e-01 1.19688678e+00 7.41288900e-01
-9.74827290e-01 -9.51020598e-01 -1.62412179e+00 -1.37785330e-01
-3.82648528e-01 3.46348912e-01 3.25318187e-01 1.25815153e+00
-1.30725324e+00 4.86109197e-01 -1.39870489e+00 -3.31142783e-01
3.53568345e-01 1.23470378e+00 -1.80296928e-01 5.20621598e-01
-1.04024076e+00 7.87520170e-01 4.77971975e-03 2.75946498e-01
-6.91104531e-01 -5.66693246e-01 -6.87229931e-01 2.53427148e-01
-5.81259251e-01 -4.99464899e-01 1.03514278e+00 -6.54813647e-01
-1.85092199e+00 6.18971288e-01 -3.40835750e-01 -8.67523730e-01
-4.48394954e-01 -2.38293111e-01 -9.98538196e-01 3.23805243e-01
-3.79834138e-02 4.40096289e-01 8.41989577e-01 -1.16265878e-01
-4.20492709e-01 -4.96848047e-01 -3.37519020e-01 -2.19479308e-01
-8.54759932e-01 -1.26020446e-01 1.85588658e-01 -3.98585916e-01
-2.16473445e-01 -1.01330662e+00 1.50446311e-01 -1.52236849e-01
5.15066311e-02 1.03418127e-01 7.68006682e-01 -3.36288780e-01
1.62978792e+00 -2.26772952e+00 -4.31379586e-01 4.86301556e-02
-5.93305565e-03 6.29654646e-01 2.51349002e-01 2.28327885e-01
-2.19474398e-02 -2.75923282e-01 -7.70066604e-02 -4.74475831e-01
-3.08865935e-01 2.82562315e-01 -2.90569384e-02 7.02567279e-01
-6.02224953e-02 7.15883434e-01 -3.94604743e-01 3.53145525e-02
3.90613347e-01 5.68409562e-01 -4.05496299e-01 1.52645856e-01
4.97666508e-01 3.84970546e-01 4.14062440e-02 4.62509096e-01
3.12949836e-01 -1.28547281e-01 -1.47028849e-01 -2.39012599e-01
-3.71990532e-01 7.69044399e-01 -8.56601954e-01 1.93202209e+00
-7.50917196e-01 8.31703067e-01 -8.44708532e-02 -7.44236708e-01
9.67055559e-01 3.47837299e-01 2.64480561e-01 -1.20603037e+00
5.33515334e-01 2.85264432e-01 1.29815578e-01 -6.25705302e-01
1.99777275e-01 -3.62001032e-01 5.79351969e-02 3.24610323e-01
7.30092451e-02 -9.70391333e-02 -1.15020290e-01 -3.63482267e-01
1.20813358e+00 -3.94200861e-01 3.79402488e-01 -5.80571115e-01
5.04081786e-01 -3.42875838e-01 5.40575683e-01 2.39012554e-01
-3.04760009e-01 1.38839006e-01 -5.40733784e-02 -4.73175108e-01
-5.06437600e-01 -9.67904449e-01 -3.13339889e-01 6.20827198e-01
8.63192305e-02 -6.63607359e-01 -7.02217281e-01 3.39065380e-02
-4.08550471e-01 7.17476010e-01 -2.93842971e-01 -6.89293325e-01
-2.14262769e-01 -6.28333628e-01 7.41402149e-01 5.85758269e-01
5.41630983e-01 -1.00482345e+00 -1.70920992e+00 4.78952706e-01
2.19679937e-01 -8.50094616e-01 -2.05282211e-01 8.44068110e-01
-1.08454633e+00 -6.85319543e-01 -3.91484015e-02 -6.98964596e-01
3.28688800e-01 8.27408358e-02 6.89847469e-01 -2.32211530e-01
-6.65735543e-01 9.85364988e-02 -1.36445820e-01 -4.79012012e-01
1.62889183e-01 1.18243255e-01 5.94286978e-01 -1.37547031e-01
9.83746588e-01 -1.04230869e+00 -1.02417433e+00 1.17533281e-01
-6.71311677e-01 -2.45083764e-01 7.30248690e-01 7.92341173e-01
6.17673814e-01 2.30774641e-01 6.93343103e-01 -1.20763227e-01
6.53063178e-01 -1.68335333e-01 -4.65949059e-01 -3.38670462e-01
-9.92526710e-01 -4.87056002e-02 9.32639718e-01 -3.70621651e-01
-4.67089355e-01 3.68203260e-02 -3.76680315e-01 -1.57878846e-01
-1.55030221e-01 2.17133895e-01 8.16759467e-02 -2.00629070e-01
5.38743019e-01 5.14782488e-01 1.73837721e-01 -2.99196064e-01
-4.10187513e-01 1.31781840e+00 4.59721506e-01 1.77892104e-01
1.85945436e-01 3.83599222e-01 5.08534946e-02 -1.38396013e+00
-4.51982886e-01 -4.40523982e-01 -4.28858429e-01 4.73703109e-02
1.05668747e+00 -1.19921267e+00 -9.50292230e-01 4.67436910e-01
-6.24497831e-01 -5.64822793e-01 -1.02816828e-01 8.33734155e-01
-3.92126381e-01 -1.30090162e-01 -6.26989305e-01 -7.16495275e-01
-1.14342821e+00 -1.27832973e+00 8.17620397e-01 4.74161834e-01
-6.31985247e-01 -5.90443909e-01 -4.63839509e-02 2.21718758e-01
7.49778748e-01 -2.37582251e-01 7.29965448e-01 -4.46800590e-01
-4.58911695e-02 -2.53267556e-01 3.94351065e-01 6.93219006e-01
3.60178143e-01 -5.58193386e-01 -1.26967847e+00 -6.78000629e-01
7.37669945e-01 -1.73454374e-01 2.47438267e-01 5.24484634e-01
1.16626084e+00 8.98341760e-02 -3.22530627e-01 7.38680005e-01
1.34066546e+00 6.15735948e-01 6.66472733e-01 2.48677954e-01
2.20629871e-01 -2.00099006e-01 2.86648661e-01 4.15786862e-01
2.14407757e-01 5.44544220e-01 1.49674401e-01 7.65636563e-02
-1.02790602e-01 1.65773213e-01 6.42205775e-01 1.01092172e+00
4.57703114e-01 1.98326781e-02 -6.73955202e-01 3.04871768e-01
-8.59522760e-01 -6.67624772e-01 -1.02393650e-01 2.36083579e+00
7.42520571e-01 4.55710322e-01 3.78239043e-02 6.33662581e-01
2.49488071e-01 -3.66218328e-01 -5.67677021e-01 -9.67342675e-01
3.95406246e-01 1.18692601e+00 4.26810592e-01 5.90189323e-02
-6.39894009e-01 4.71996665e-01 6.32399750e+00 6.31776810e-01
-1.92607379e+00 2.97293574e-01 1.63136631e-01 -8.03831756e-01
4.20627236e-01 -3.72634351e-01 -8.45021188e-01 9.64274943e-01
1.94276679e+00 9.41607580e-02 5.15446663e-01 8.38846445e-01
6.53025091e-01 -4.07962799e-01 -9.81659174e-01 1.44640565e+00
1.17203481e-01 -1.04155707e+00 -5.05767345e-01 1.22664489e-01
4.59393822e-02 1.60337135e-01 1.31553963e-01 2.43283510e-01
-9.94834304e-01 -1.02030480e+00 6.02432430e-01 2.99676001e-01
1.38220227e+00 -9.07533288e-01 7.70056725e-01 1.70945659e-01
-1.25787747e+00 -4.87028658e-01 -2.22053245e-01 -6.89614117e-01
-6.01378793e-04 5.51913559e-01 -7.91187942e-01 -4.90305200e-02
1.08454633e+00 4.37822908e-01 -8.45585406e-01 9.51036572e-01
-6.62406534e-02 1.07310498e+00 -4.66371149e-01 -4.59422082e-01
-7.49958009e-02 -2.33734902e-02 1.27885625e-01 1.04682744e+00
3.44765455e-01 -5.27499802e-03 -3.09308082e-01 5.58864713e-01
3.05707216e-01 -4.13480580e-01 -2.86314070e-01 1.67339686e-02
3.49279463e-01 1.28195369e+00 -8.88537228e-01 1.99044384e-02
-4.99171376e-01 1.10807002e+00 -2.08942071e-01 -1.25363618e-01
-6.19328320e-01 -9.10136223e-01 7.35811591e-01 3.38875771e-01
1.94067270e-01 -3.62457216e-01 -5.33363044e-01 -6.87391818e-01
-9.39107835e-02 -6.33873641e-01 2.68165451e-02 -7.60433614e-01
-8.71024966e-01 8.61918151e-01 -3.14887583e-01 -1.31735718e+00
-3.70535962e-02 -4.71797705e-01 -5.97532630e-01 9.08062816e-01
-1.27923560e+00 -6.44756675e-01 -3.76498401e-01 6.92161262e-01
5.61751306e-01 -1.96370527e-01 1.18449295e+00 6.49136066e-01
-6.67031229e-01 7.77830362e-01 -8.41296613e-02 -3.76069009e-01
4.48851377e-01 -9.52743471e-01 1.45861134e-01 7.46131897e-01
-2.19939753e-01 1.02272701e+00 4.94269252e-01 -3.46981645e-01
-1.65425467e+00 -1.10000598e+00 7.75723159e-01 7.14002103e-02
3.54293704e-01 -7.46946156e-01 -6.70896769e-01 2.64770985e-01
2.39315510e-01 -7.94413164e-02 1.26295710e+00 -3.93912762e-01
2.93051779e-01 -6.82479203e-01 -1.30550694e+00 3.23699892e-01
4.62471247e-01 -7.52245545e-01 -6.30533874e-01 -2.03252628e-01
3.74441117e-01 -2.10372433e-01 -7.47411728e-01 2.37044916e-02
7.03008473e-01 -9.38955009e-01 4.29583877e-01 2.58874953e-01
-1.29867077e-01 -3.84282827e-01 -5.14107719e-02 -1.16418374e+00
-8.89399275e-02 -8.41855705e-01 -1.61559314e-01 8.35439086e-01
2.25625619e-01 -7.91639745e-01 7.04377770e-01 3.72156560e-01
-4.88550007e-01 -9.67375815e-01 -1.30967832e+00 -8.60764682e-01
-4.54656780e-01 -4.88793045e-01 3.95066410e-01 -5.58704920e-02
4.28196281e-01 8.38841319e-01 -5.31913787e-02 9.74500775e-02
3.88758332e-02 -1.03133537e-01 1.87913269e-01 -1.03449619e+00
-2.92234449e-03 -1.07200496e-01 -9.14182484e-01 -8.00823689e-01
-9.69326422e-02 -8.10068309e-01 6.83182105e-03 -1.21323287e+00
-1.37999535e-01 -2.33263984e-01 -5.78491449e-01 4.40402120e-01
3.90317708e-01 6.35487080e-01 -3.09124231e-01 -2.57882118e-01
-3.51325959e-01 6.31532609e-01 4.55821604e-01 5.83017953e-02
-5.20269990e-01 1.83604807e-01 -4.05577779e-01 4.53321666e-01
1.07384944e+00 -6.85344100e-01 -6.61772907e-01 -1.78569779e-01
1.26761824e-01 -6.41612560e-02 2.44709253e-01 -1.96752095e+00
5.44504583e-01 5.75709105e-01 6.35336697e-01 -5.47427833e-01
7.80918837e-01 -8.98947656e-01 2.44082764e-01 1.09272110e+00
-3.27195674e-02 5.17979980e-01 6.29886210e-01 3.00503284e-01
-3.91160846e-02 -4.08565961e-02 9.55939174e-01 3.78741413e-01
-4.51165140e-01 -3.66596552e-03 -1.00952113e+00 -3.85748327e-01
9.34690177e-01 -6.06258690e-01 -2.88196616e-02 8.18238035e-02
-4.40745533e-01 -1.64749548e-01 2.86462009e-01 3.21997792e-01
7.54478216e-01 -9.88898814e-01 1.65962651e-01 1.07667243e+00
3.93267497e-02 -4.61131334e-01 4.38656002e-01 1.02386844e+00
-6.11377835e-01 8.40925038e-01 -6.18053019e-01 -8.29996824e-01
-1.40161300e+00 3.25301260e-01 3.14231783e-01 2.74695843e-01
-7.08145857e-01 7.74878085e-01 -6.13160312e-01 3.37521404e-01
1.45818129e-01 -7.97332108e-01 -1.72407433e-01 -4.67672460e-02
8.33853245e-01 4.60298061e-01 7.65943348e-01 -2.63222754e-01
-7.34108746e-01 4.44567442e-01 2.64395475e-01 6.48972113e-03
1.29957843e+00 -1.47928208e-01 -1.41533628e-01 8.12126875e-01
1.27398312e+00 -2.14069963e-01 -7.17205286e-01 4.12742436e-01
-2.75112569e-01 2.69991755e-02 4.22179669e-01 -7.63491690e-01
-8.83518815e-01 1.18495882e+00 1.58055282e+00 5.32049015e-02
1.67067933e+00 -6.23950422e-01 1.24329615e+00 4.09381181e-01
5.34599662e-01 -1.15090191e+00 4.39551435e-02 1.58681676e-01
3.60054255e-01 -7.10833549e-01 -7.65676573e-02 3.28297049e-01
-3.57235014e-01 1.32174361e+00 4.37640965e-01 -1.26855925e-01
8.82314265e-01 6.09564781e-01 3.98690812e-02 -2.96867788e-01
-7.11235106e-01 1.27041504e-01 -5.65134175e-02 5.41257799e-01
3.44723672e-01 1.51404515e-01 -4.80927348e-01 9.17060971e-01
-5.75243592e-01 5.24204075e-01 4.58478689e-01 1.06245255e+00
-4.29900557e-01 -8.82461488e-01 -9.91568044e-02 8.08478236e-01
-8.02030504e-01 -2.07139298e-01 2.73102194e-01 2.80148238e-01
4.42205518e-01 1.47789955e+00 3.54886502e-01 -8.23033690e-01
1.52515858e-01 8.90730023e-02 3.86402786e-01 -8.43415141e-01
-9.11558092e-01 -7.28921890e-02 -4.76871014e-01 -8.47427428e-01
-1.47133380e-01 -2.51794457e-01 -1.28420293e+00 -5.58707416e-02
-1.94648147e-01 1.81970581e-01 9.72790599e-01 9.62969840e-01
8.34323347e-01 8.79558921e-01 4.30709660e-01 -6.41501486e-01
-2.11669177e-01 -1.11829925e+00 -7.82907665e-01 -3.97680849e-01
6.39685929e-01 -6.86004758e-01 -2.11057872e-01 -1.80212185e-02] | [13.533016204833984, 3.5119614601135254] |
11a2314e-fe13-4643-8141-a6a17424848f | xcodeeval-a-large-scale-multilingual | 2303.03004 | null | https://arxiv.org/abs/2303.03004v3 | https://arxiv.org/pdf/2303.03004v3.pdf | xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code Understanding, Generation, Translation and Retrieval | AI systems that can create codes as solutions to problems or assist developers in writing codes can increase productivity and make programming more accessible. Recently, pre-trained large language models have shown impressive abilities in generating codes from natural language descriptions, repairing buggy codes, translating codes between languages, and retrieving relevant code segments. However, the evaluation of these models has often been performed in a scattered way on only one or two specific tasks, in a few languages, at a partial granularity (e.g., function) level, and in many cases without proper training data. Even more concerning is that in most cases the evaluation of generated codes has been done in terms of mere lexical overlap with a reference code rather than actual execution. We introduce xCodeEval, the largest executable multilingual multitask benchmark to date consisting of 25M document-level coding examples (16.5B tokens) from about 7.5K unique problems covering up to 11 programming languages with execution-level parallelism. It features a total of seven tasks involving code understanding, generation, translation and retrieval. xCodeEval adopts an execution-based evaluation and offers a multilingual code execution engine, ExecEval that supports unit test based execution in all the 11 languages. To address the challenge of balancing the distributions of text-code samples over multiple attributes in validation/test sets, we further propose a novel data splitting and a data selection schema based on the geometric mean and graph-theoretic principle. Experimental results on all the tasks and languages show xCodeEval is a promising yet challenging benchmark as per the current advancements in language models. | ['Shafiq Joty', 'Md Rizwan Parvez', 'Weishi Wang', 'Xuan Long Do', 'M Saiful Bari', 'Mohammad Abdullah Matin Khan'] | 2023-03-06 | null | null | null | null | ['program-repair', 'program-synthesis', 'program-repair'] | ['computer-code', 'computer-code', 'reasoning'] | [-1.93724018e-02 -2.06426084e-01 -2.90916443e-01 -2.10734919e-01
-1.15825903e+00 -6.36340201e-01 4.82759297e-01 5.28865039e-01
1.01937070e-01 4.88788754e-01 3.97720095e-03 -8.21111977e-01
-3.79294194e-02 -5.36495090e-01 -9.47880208e-01 -1.06615700e-01
-3.09805840e-01 6.34161890e-01 7.86138773e-02 -3.15567434e-01
5.96104264e-01 -1.55139297e-01 -1.55431890e+00 7.85837829e-01
1.27873075e+00 3.69609654e-01 5.57805300e-01 8.43803763e-01
-5.87808311e-01 1.03456628e+00 -8.19958925e-01 -4.92345363e-01
-9.61096212e-03 -1.67514935e-01 -1.16359448e+00 -2.09965289e-01
3.11217993e-01 1.90064177e-01 2.25078672e-01 1.04661119e+00
2.75572747e-01 -3.98425668e-01 4.80210721e-01 -1.36584282e+00
-9.53513980e-01 1.02027512e+00 -6.22179925e-01 -1.04252975e-02
7.12273180e-01 -9.91818234e-02 9.92793322e-01 -8.66372764e-01
6.32138371e-01 9.53933358e-01 7.06473768e-01 5.06634891e-01
-1.41267407e+00 -4.64780360e-01 -3.12066406e-01 -1.09374389e-01
-1.52628660e+00 -2.30209112e-01 2.27780610e-01 -1.08314002e+00
1.72676408e+00 1.10654898e-01 1.01336092e-01 9.43848014e-01
6.97091103e-01 6.00192487e-01 9.17607129e-01 -7.22460628e-01
1.20681524e-01 3.26782465e-01 9.44536850e-02 1.04547703e+00
2.20696673e-01 -3.34675163e-01 -3.05044204e-01 -4.64323163e-01
-1.06974192e-01 -3.09150070e-01 -1.82122260e-01 -4.33398962e-01
-1.46039033e+00 7.77059793e-01 -7.45399809e-03 5.55634081e-01
2.00513467e-01 2.46556580e-01 1.01124609e+00 6.55330300e-01
3.04362744e-01 7.65082657e-01 -7.83047318e-01 -4.12262797e-01
-9.84247565e-01 2.62468517e-01 9.59366322e-01 1.51549459e+00
7.84765720e-01 1.59011990e-01 -1.16648994e-01 7.94219971e-01
2.19047993e-01 4.35289353e-01 9.32385743e-01 -3.39552492e-01
1.10077310e+00 8.66496265e-01 -3.86317670e-01 -8.00440013e-01
-3.32683653e-01 -3.89094144e-01 -3.97474408e-01 4.61184010e-02
6.41045868e-02 6.41525611e-02 -5.25029242e-01 1.51176763e+00
-2.35030845e-01 -4.50247020e-01 2.75654346e-01 4.94781882e-01
5.80857098e-01 6.51752889e-01 -1.51406661e-01 1.93188325e-01
1.27306092e+00 -1.20809376e+00 -2.26432890e-01 -4.44208771e-01
1.35559237e+00 -1.13272107e+00 1.28257596e+00 5.04370093e-01
-8.28166604e-01 -5.35341144e-01 -1.11665773e+00 -2.04461366e-01
-5.98416150e-01 5.11430740e-01 6.55017734e-01 6.56087399e-01
-1.22678614e+00 2.80654877e-01 -5.40510774e-01 -3.50741684e-01
-1.24945402e-01 1.34195298e-01 -2.92186350e-01 -1.39747024e-01
-8.54008496e-01 7.88893580e-01 5.85489511e-01 -5.28347790e-01
-1.04323149e+00 -8.27193439e-01 -9.16708887e-01 6.61844909e-02
3.16731542e-01 -3.68586272e-01 1.10488629e+00 -9.24610376e-01
-9.49798048e-01 9.89996433e-01 7.89783299e-02 -4.83118743e-01
2.39365488e-01 -2.91692056e-02 -5.89095533e-01 -5.06064832e-01
5.00100493e-01 3.06998581e-01 6.09314084e-01 -9.62232411e-01
-5.68988204e-01 1.46398757e-04 8.71866047e-02 -1.96553037e-01
-3.16423625e-01 4.39277470e-01 -3.94026965e-01 -6.20211542e-01
-4.85320210e-01 -9.97633457e-01 1.66700318e-01 -6.42349601e-01
-3.35444510e-01 -2.31990442e-01 3.71850491e-01 -7.59845793e-01
1.40220094e+00 -2.22199512e+00 5.40307879e-01 4.86219600e-02
3.35632801e-01 6.56569675e-02 -3.13799232e-01 6.44515276e-01
-2.33747765e-01 4.46465909e-01 -2.72774547e-01 -2.16018349e-01
1.77934006e-01 -2.50924025e-02 -4.47310656e-01 2.40906328e-01
2.27591664e-01 6.77307904e-01 -8.42353523e-01 -4.42412108e-01
-2.81321138e-01 -8.86763930e-02 -7.27711737e-01 1.74596936e-01
-4.69278961e-01 -1.11071095e-01 -3.41679573e-01 7.93934464e-01
3.21525425e-01 -3.47341359e-01 1.88322544e-01 4.87972677e-01
-3.46117914e-01 2.67536104e-01 -7.67101884e-01 2.30002689e+00
-1.01361072e+00 7.64796972e-01 -2.67736733e-01 -8.83853316e-01
1.00505674e+00 3.25951457e-01 1.71758577e-01 -6.83714449e-01
-3.17712963e-01 6.93498969e-01 2.27680087e-01 -6.63834572e-01
7.36520112e-01 4.85199153e-01 -6.86016381e-01 5.46033025e-01
1.17587715e-01 -3.34890604e-01 7.02560544e-01 3.83115649e-01
1.37212241e+00 3.22289735e-01 2.86728531e-01 -5.75447857e-01
6.32193387e-01 5.42822480e-01 1.73968732e-01 6.85143352e-01
3.25533628e-01 4.76899564e-01 7.15090930e-01 -3.44947308e-01
-1.32756877e+00 -6.24621391e-01 -1.61078632e-01 1.40972567e+00
-2.79364020e-01 -1.05140030e+00 -8.29744101e-01 -5.97594857e-01
-3.04530584e-03 8.81417811e-01 -3.51464063e-01 -2.99176306e-01
-4.22340214e-01 -6.46729231e-01 1.05872226e+00 2.98657924e-01
5.67807145e-02 -8.38574886e-01 -5.40344238e-01 2.95629531e-01
-1.26385599e-01 -9.11266685e-01 -5.06914198e-01 4.59705770e-01
-4.41141099e-01 -9.61408257e-01 -3.46073568e-01 -8.29132438e-01
7.48217285e-01 4.24332581e-02 1.67923033e+00 3.88575464e-01
-5.23904800e-01 7.08411559e-02 -6.49995685e-01 -2.05325633e-01
-1.12141907e+00 4.25863892e-01 -1.54862389e-01 -7.23323941e-01
2.82198727e-01 -1.86359748e-01 2.95261562e-01 1.36561990e-01
-7.71835744e-01 1.84149534e-01 7.93754756e-01 1.00809860e+00
7.68201351e-02 3.24930400e-02 3.17382991e-01 -9.40947950e-01
9.66950953e-01 -8.98000538e-01 -8.26094091e-01 7.19385982e-01
-8.97440791e-01 4.31532770e-01 9.67735171e-01 -3.30774933e-01
-8.31244409e-01 -1.92577705e-01 1.86201647e-01 -1.22304223e-01
2.88922433e-02 1.11881101e+00 4.07766223e-01 -6.76383525e-02
1.11643004e+00 3.27169299e-01 -3.02618086e-01 -2.33684778e-01
9.94284153e-02 7.88416743e-01 2.52468377e-01 -1.36633134e+00
6.06008351e-01 -3.82454187e-01 -3.15569431e-01 -4.85835314e-01
-1.41963080e-01 -3.68784010e-01 -4.55140710e-01 8.10980052e-02
6.84722722e-01 -1.05187762e+00 -3.53758574e-01 2.09469527e-01
-1.26027393e+00 -4.65428025e-01 2.48706013e-01 1.78971708e-01
-5.58121026e-01 1.56686321e-01 -5.50314844e-01 -3.08647424e-01
-2.85614401e-01 -1.84351230e+00 1.26027584e+00 -3.44951212e-01
-3.68251801e-01 -9.60580528e-01 2.05362231e-01 3.47284615e-01
4.75444049e-01 5.22441231e-02 1.66102242e+00 -6.58185601e-01
-6.46756470e-01 -2.08566025e-01 -2.64307082e-01 1.35256097e-01
-9.92222503e-02 3.55695635e-01 -4.70123768e-01 -5.97821534e-01
-3.89379650e-01 -8.35276186e-01 4.79623675e-01 -2.54148304e-01
1.03047335e+00 5.67181036e-03 -3.00105184e-01 5.42090833e-01
1.70815814e+00 1.59291372e-01 4.85342801e-01 3.56999725e-01
7.56647587e-01 4.02111769e-01 4.90784258e-01 3.88670027e-01
4.55555230e-01 7.16767848e-01 3.17058623e-01 2.82020926e-01
-2.69429889e-02 -5.21539040e-02 7.91206062e-01 1.39437842e+00
1.75006106e-01 -1.25910819e-01 -1.73902118e+00 6.99582279e-01
-1.73670697e+00 -4.82955754e-01 -4.11100596e-01 2.15243959e+00
1.03937685e+00 6.15816899e-02 -2.88544655e-01 -2.74698138e-01
4.91029710e-01 -4.35539097e-01 -2.23273754e-01 -8.76149118e-01
1.79889962e-01 1.13691725e-02 5.67621112e-01 2.33897924e-01
-7.58618057e-01 7.97814846e-01 5.64987612e+00 9.95894730e-01
-1.15131044e+00 2.81207323e-01 2.56008536e-01 2.79300213e-01
-3.55627298e-01 2.83037722e-01 -7.03245401e-01 4.14468706e-01
1.25875366e+00 -5.88615775e-01 7.97376275e-01 1.26648343e+00
-2.42848620e-01 -1.58068746e-01 -1.36557293e+00 7.36129582e-01
2.90240973e-01 -1.27158535e+00 -1.24482214e-01 -4.03006226e-02
1.00062454e+00 4.72327620e-01 -9.73750725e-02 7.57702947e-01
4.26401913e-01 -1.18055844e+00 1.29525256e+00 3.08360189e-01
1.02471852e+00 -6.48486018e-01 8.01480353e-01 5.27397037e-01
-1.34791017e+00 -1.42649114e-01 -4.56991971e-01 2.11661030e-02
-5.70318997e-01 2.54051775e-01 -1.04122448e+00 8.29683840e-01
6.09814346e-01 4.84157890e-01 -9.95867431e-01 7.42268026e-01
1.42012119e-01 2.32859343e-01 3.72816712e-01 -1.63301587e-01
2.13103071e-01 1.38374478e-01 2.72701502e-01 1.59207213e+00
7.15542793e-01 -5.79520464e-01 5.34272254e-01 1.19223166e+00
-4.01572250e-02 4.27079469e-01 -7.88519382e-01 -3.39767367e-01
3.35839212e-01 1.20254230e+00 -5.99435151e-01 -3.85265857e-01
-8.88556421e-01 6.39308155e-01 5.67319870e-01 9.77875665e-02
-9.42546904e-01 -6.39090896e-01 3.62511963e-01 -1.09248810e-01
-5.99379055e-02 -3.50356907e-01 -8.42969194e-02 -1.27312756e+00
3.37182105e-01 -1.46614468e+00 7.19839483e-02 -7.26686954e-01
-8.55205119e-01 9.21412885e-01 1.58586308e-01 -1.16375697e+00
-5.98040104e-01 -6.84722424e-01 -2.83539325e-01 1.06613410e+00
-1.13156283e+00 -9.74352777e-01 -1.25809103e-01 3.64747077e-01
7.86798239e-01 -7.25057423e-01 9.63298678e-01 6.84097648e-01
-4.55404341e-01 6.13358319e-01 3.71687502e-01 9.33318958e-02
7.86853313e-01 -1.48199725e+00 6.18884921e-01 9.10452843e-01
-1.74669586e-02 1.09137034e+00 6.27758265e-01 -6.89978659e-01
-1.66926444e+00 -1.20582485e+00 9.24490273e-01 -5.27458072e-01
1.02762091e+00 -7.73486078e-01 -9.98368442e-01 5.89593589e-01
3.34303468e-01 -1.38977528e-01 4.68885869e-01 8.47865418e-02
-4.81045425e-01 4.98694442e-02 -6.81003809e-01 2.90544778e-01
7.56139874e-01 -8.23945761e-01 -3.75495404e-01 6.96808338e-01
6.72876239e-01 -7.22088933e-01 -1.10790908e+00 -1.47087751e-02
8.11045617e-02 -7.87711263e-01 5.29206991e-01 -6.63351178e-01
1.08031213e+00 -4.13560838e-01 -2.36326784e-01 -1.36070669e+00
-7.63577744e-02 -3.88345540e-01 2.77437776e-01 1.45314276e+00
8.29620719e-01 -3.54231983e-01 2.13166043e-01 5.22366881e-01
-6.67265832e-01 -5.22473991e-01 -5.10870278e-01 -9.79163647e-01
9.27749798e-02 -6.28174007e-01 7.63789117e-01 1.09455979e+00
3.50302607e-01 1.38846308e-01 -3.27228695e-01 -1.27986327e-01
1.42115623e-01 3.82916093e-01 8.62608194e-01 -9.80338752e-01
-5.37151694e-01 -4.62296814e-01 -3.42316836e-01 -4.00792450e-01
5.87886691e-01 -1.58701837e+00 1.95711270e-01 -1.22165954e+00
4.58756953e-01 -4.93987054e-01 2.35489413e-01 6.29151821e-01
1.74663186e-01 -2.78859407e-01 -3.93615253e-02 3.72125983e-01
-5.43602109e-01 -6.88548759e-02 6.69969380e-01 -4.20516580e-01
1.80240184e-01 -3.19855243e-01 -4.68987584e-01 3.91301662e-01
6.48078740e-01 -6.59833431e-01 -5.36452115e-01 -8.08569252e-01
8.44187796e-01 2.99583703e-01 -2.40060817e-02 -1.10933077e+00
2.75731653e-01 -9.17431638e-02 -2.50639677e-01 2.32911147e-02
-4.78595883e-01 -5.91702104e-01 3.74888748e-01 5.12949228e-01
-5.75020850e-01 6.83742285e-01 3.78360212e-01 2.75857300e-01
-3.66895407e-01 -7.42119193e-01 4.39931810e-01 -3.09608281e-01
-1.00108159e+00 -1.14033595e-01 -4.33753878e-01 4.06674266e-01
1.04901683e+00 7.25060329e-02 -7.76483178e-01 3.46315801e-01
-1.14071690e-01 1.91931084e-01 7.43150532e-01 8.93268526e-01
3.56037080e-01 -1.20381856e+00 -8.11274111e-01 2.31659859e-01
8.70934546e-01 -3.37733328e-01 -1.64091364e-01 7.45968044e-01
-8.96849811e-01 7.71012485e-01 -2.38520309e-01 -6.10324740e-01
-1.30892634e+00 8.56539607e-01 1.70647919e-01 -4.50756580e-01
-2.25151300e-01 5.47595084e-01 -5.43681830e-02 -6.21651649e-01
-1.48496106e-01 -5.66923440e-01 8.26686099e-02 -1.90376490e-01
2.65894115e-01 1.27055228e-01 6.75601184e-01 -5.44055343e-01
-4.40337002e-01 3.40374738e-01 -1.44525036e-01 3.17215562e-01
1.15040457e+00 3.29455197e-01 -8.53827417e-01 5.34493566e-01
1.24753547e+00 2.17342496e-01 -5.15920162e-01 -9.35454816e-02
5.61699569e-01 -5.01163542e-01 -2.23485619e-01 -7.88222730e-01
-8.22231531e-01 8.17589343e-01 2.21848458e-01 3.21984738e-01
7.17159331e-01 4.69715409e-02 2.93070853e-01 5.87335587e-01
8.43816280e-01 -1.10288835e+00 1.33760288e-01 7.20126390e-01
1.00368786e+00 -1.14495778e+00 -1.61382273e-01 -4.33646478e-02
-4.39121425e-01 1.40241468e+00 8.55206549e-01 3.52029741e-01
2.88005639e-02 6.55187845e-01 -2.40175083e-01 -1.28058642e-01
-1.14201462e+00 2.39007413e-01 3.52261841e-01 4.05651242e-01
1.12369347e+00 1.40432149e-01 -3.09782654e-01 3.03874880e-01
-1.15851484e-01 -2.24237695e-01 8.02865505e-01 1.05852354e+00
-1.98758706e-01 -1.35861421e+00 -4.70510036e-01 6.25352621e-01
-4.44985658e-01 -5.41140258e-01 -1.84084266e-01 7.86908567e-01
2.38661215e-01 7.25336254e-01 -1.45875335e-01 -4.37447995e-01
1.15606062e-01 1.20735556e-01 3.02735925e-01 -1.09171450e+00
-7.75072396e-01 -4.14194703e-01 2.09420115e-01 -4.22812104e-01
-1.55940112e-02 -5.81540167e-01 -1.33625793e+00 -4.68081534e-01
-3.65710735e-01 3.37364823e-01 8.89468551e-01 8.09651315e-01
5.66621125e-01 9.37716663e-01 1.04566716e-01 -3.52216125e-01
-6.39583051e-01 -7.56115019e-01 -3.40642214e-01 3.59967679e-01
1.18592896e-01 -4.27926004e-01 -8.82871971e-02 2.69155592e-01] | [7.601531982421875, 7.955700874328613] |
3f4b3794-bbac-4798-9e8a-5602b4489676 | the-importance-of-open-endedness-for-the-sake | 2006.03079 | null | https://arxiv.org/abs/2006.03079v1 | https://arxiv.org/pdf/2006.03079v1.pdf | The Importance of Open-Endedness (for the Sake of Open-Endedness) | A paper in the recent Artificial Life journal special issue on open-ended evolution (OEE) presents a simple evolving computational system that, it is claimed, satisfies all proposed requirements for OEE (Hintze, 2019). Analysis and discussion of the system are used to support the further claims that complexity and diversity are the crucial features of open-endedness, and that we should concentrate on providing proper definitions for those terms rather than engaging in "the quest for open-endedness for the sake of open-endedness" (Hintze, 2019, p. 205). While I wholeheartedly support the pursuit of precise definitions of complexity and diversity in relation to OEE research, I emphatically reject the suggestion that OEE is not a worthy research topic in its own right. In the same issue of the journal, I presented a "high-level conceptual framework to help orient the discussion and implementation of open-endedness in evolutionary systems" (Taylor, 2019). In the current brief contribution I apply my framework to Hinzte's model to understand its limitations. In so doing, I demonstrate the importance of studying open-endedness for the sake of open-endedness. | ['Tim Taylor'] | 2020-06-04 | null | null | null | null | ['artificial-life'] | ['miscellaneous'] | [-6.16644956e-02 3.42268646e-01 -1.32133946e-01 -3.56581546e-02
2.35363424e-01 -7.54120767e-01 5.45640349e-01 1.38881817e-01
-3.10388416e-01 6.63225770e-01 2.97015250e-01 -5.54940999e-01
-8.14541876e-01 -3.37690026e-01 -2.41363376e-01 -3.10953438e-01
1.18715316e-01 -1.71955582e-02 -2.99326897e-01 -8.83949816e-01
7.07717419e-01 1.99033216e-01 -1.94448566e+00 -5.43354750e-01
1.16368711e+00 2.23335862e-01 1.30042464e-01 6.28580570e-01
-2.38819756e-02 6.21228337e-01 -5.88410795e-01 -5.60513198e-01
-3.37600037e-02 -9.18492317e-01 -1.01007044e+00 -1.82817683e-01
-2.78219789e-01 2.14256048e-01 -2.21153442e-02 8.23131084e-01
7.19196141e-01 -5.41345105e-02 5.05900979e-01 -1.26170421e+00
-9.60864663e-01 5.02283454e-01 3.05162668e-01 3.91541392e-01
4.70274568e-01 3.67677689e-01 1.06771100e+00 -5.34841955e-01
9.98972535e-01 5.31096041e-01 1.14533114e+00 7.36588478e-01
-7.75964797e-01 -2.48875648e-01 6.50705025e-02 -1.41903952e-01
-1.43468523e+00 -5.68911672e-01 3.59027892e-01 -6.26778066e-01
1.05685091e+00 8.52073610e-01 1.55285430e+00 8.59979987e-01
7.48785734e-01 5.88502474e-02 8.61774385e-01 -6.57158196e-01
3.44942182e-01 2.58789659e-01 1.16237655e-01 2.57824033e-01
7.75537670e-01 3.92703742e-01 -4.00651872e-01 -1.16390869e-01
5.42734087e-01 -6.50110304e-01 -3.66179347e-01 -5.86328655e-02
-1.09284413e+00 6.76486254e-01 6.09482341e-02 1.07479644e+00
-2.02502668e-01 -1.34249240e-01 4.45320129e-01 5.87794244e-01
2.93165028e-01 1.12981260e+00 -2.57424295e-01 -9.27233458e-01
-5.21520078e-01 2.56435931e-01 1.16092110e+00 6.95275843e-01
3.96764241e-02 1.08692676e-01 4.12671745e-01 5.73102415e-01
6.34959459e-01 -8.04692507e-02 7.70472944e-01 -9.90661025e-01
-5.34080148e-01 6.83461428e-01 1.57218836e-02 -7.52160430e-01
-4.17559475e-01 -7.27016807e-01 -3.02122116e-01 1.95043579e-01
1.59576595e-01 -2.17536047e-01 -1.31078064e-01 1.94629955e+00
2.73752004e-01 -5.81192434e-01 2.03857720e-01 7.94238508e-01
9.02065158e-01 5.45283020e-01 -6.15258999e-02 -4.99751538e-01
9.74833846e-01 -7.10939229e-01 -8.34369004e-01 -2.43072435e-02
5.86636782e-01 -6.51479661e-01 1.03706312e+00 1.74322888e-01
-1.11613452e+00 -1.05358280e-01 -1.26043034e+00 3.20435427e-02
-3.36228967e-01 -6.86705172e-01 7.67029822e-01 1.12464297e+00
-1.06506252e+00 4.87746090e-01 -5.25331914e-01 -1.06045425e+00
-2.20774606e-01 -2.99119726e-02 3.73906270e-02 8.04349303e-01
-9.91873264e-01 1.27970374e+00 2.37867996e-01 1.06566645e-01
-1.42739788e-01 -4.41071391e-01 -3.46668631e-01 -9.26443115e-02
3.29231918e-01 -1.04313684e+00 8.92828047e-01 -1.34644282e+00
-1.36784804e+00 1.16613042e+00 3.45815212e-01 -1.67725503e-01
4.42114145e-01 4.96068820e-02 -6.68379486e-01 -1.94030479e-01
-5.02247550e-02 1.47496417e-01 5.70973307e-02 -1.18495667e+00
-3.79944384e-01 -2.98007190e-01 2.16103435e-01 4.21230912e-01
-4.70891237e-01 4.62938696e-01 2.70839006e-01 -7.41043866e-01
2.07906142e-01 -7.62073636e-01 -1.42074283e-02 -4.23325859e-02
3.88845913e-02 -3.39311242e-01 2.14855030e-01 -3.51534009e-01
1.90928209e+00 -2.12584209e+00 1.28628924e-01 -2.39315882e-01
5.95592797e-01 1.27686784e-01 1.60193413e-01 9.94334340e-01
-3.74201797e-02 5.85896671e-01 -3.42804641e-01 4.68168259e-01
4.08865809e-01 2.35137284e-01 -2.43187640e-02 4.84776765e-01
-1.17536172e-01 1.01191843e+00 -9.38222885e-01 -2.84149110e-01
-1.54861152e-01 4.61680800e-01 -4.45826739e-01 -1.83461457e-01
1.73930183e-01 3.13301325e-01 -2.46121995e-02 7.16808021e-01
1.39481455e-01 -2.38440320e-01 2.08050564e-01 3.70248199e-01
-8.79944384e-01 8.89985859e-02 -8.86396468e-01 1.66864586e+00
-2.81849764e-02 1.11451507e+00 -1.00238770e-01 -4.99710768e-01
1.01198590e+00 4.89135474e-01 4.20336127e-01 -5.37650883e-01
5.13916552e-01 7.94945478e-01 8.47836912e-01 -7.35740364e-01
7.33219028e-01 -2.35651940e-01 -1.55850857e-01 6.17136598e-01
-8.50598142e-02 -4.49450344e-01 9.62915272e-02 -1.21030688e-01
6.26343727e-01 7.73959577e-01 6.22248232e-01 -9.49823380e-01
3.23158413e-01 1.78480670e-02 8.01277697e-01 3.82564217e-01
-6.85446739e-01 2.99378842e-01 1.10788219e-01 -4.76003617e-01
-1.19481778e+00 -6.95206642e-01 -6.55482888e-01 7.34919190e-01
1.05436698e-01 -7.19667852e-01 -8.62015247e-01 1.79641113e-01
-3.57589483e-01 1.04619217e+00 -8.17750335e-01 -1.31113157e-01
-1.12465553e-01 -4.88721788e-01 8.32661569e-01 -3.54661405e-01
2.40732417e-01 -9.35851395e-01 -1.90084743e+00 1.66707650e-01
-3.14590961e-01 -6.33985028e-02 5.96925132e-02 2.90706098e-01
-5.99953353e-01 -8.63889217e-01 -6.26573324e-01 -6.83544338e-01
1.60408109e-01 6.38715774e-02 8.98037195e-01 3.99630904e-01
-3.69942844e-01 6.05733633e-01 -6.80283785e-01 -5.30633569e-01
-7.10453272e-01 -1.81989104e-03 -1.05515607e-01 -6.48648262e-01
3.11783940e-01 -7.06712425e-01 -1.86215237e-01 1.61245838e-01
-1.00531340e+00 -5.45355156e-02 4.91887778e-02 1.05126977e+00
2.39221621e-02 -1.17230423e-01 9.44992781e-01 -3.17533761e-01
9.10765529e-01 -5.61937809e-01 -1.41310105e-02 5.73810399e-01
-1.08580601e+00 -2.07015917e-01 9.77887884e-02 -2.70336330e-01
-9.18384552e-01 -1.13446009e+00 -3.71487170e-01 3.60243082e-01
8.69928300e-02 5.93125820e-01 9.63884890e-02 -3.23814303e-01
8.11911941e-01 2.82950431e-01 3.05328161e-01 4.02724557e-03
1.51657477e-01 7.82521367e-01 3.65146011e-01 -4.99636889e-01
4.96557385e-01 -4.73536439e-02 -3.14730376e-01 -1.12858307e+00
-4.68399636e-02 1.13988481e-01 -3.46935958e-01 -5.29423237e-01
5.91529727e-01 -5.30106544e-01 -6.03327692e-01 1.20865345e-01
-6.64879322e-01 -2.27889925e-01 -9.56232786e-01 5.54226756e-01
-1.01589346e+00 3.61083299e-01 -2.50430316e-01 -1.12054074e+00
-4.03525203e-01 -6.95717752e-01 1.76027730e-01 4.96658534e-01
-8.41606617e-01 -1.32089591e+00 5.02300084e-01 2.45077252e-01
6.25397325e-01 6.68495953e-01 7.15689719e-01 -6.60808444e-01
1.40442982e-01 5.66022331e-03 6.62091196e-01 -1.85063541e-01
3.20906848e-01 6.58676088e-01 -5.66416800e-01 -2.35558432e-02
7.20841944e-01 -8.88227075e-02 -2.27662876e-01 1.71772651e-02
1.16261721e-01 -3.75622153e-01 7.66228735e-02 7.92726457e-01
1.73062885e+00 6.56985521e-01 5.78444302e-01 9.23806727e-01
-6.44297972e-02 1.16049552e+00 7.48252332e-01 8.18208396e-01
5.18568516e-01 3.44774812e-01 8.27679858e-02 3.13732475e-01
1.13749653e-01 -1.76144093e-01 1.08501822e-01 1.15009236e+00
-6.28537610e-02 -3.61626744e-01 -1.02776980e+00 5.74630678e-01
-1.73657322e+00 -1.05107462e+00 -3.73908281e-01 2.11896038e+00
6.32854581e-01 -8.36879984e-02 1.61494583e-01 5.55816432e-03
6.47164524e-01 -8.12021717e-02 -6.63686275e-01 -1.14516628e+00
-4.78587598e-01 -1.52916566e-01 -1.86203569e-01 4.05223519e-01
-2.53737777e-01 7.15721071e-01 7.18321896e+00 2.88431257e-01
-9.33278799e-01 -5.35495393e-02 4.59832937e-01 -1.09507017e-01
-1.04800034e+00 4.21468884e-01 -2.33929351e-01 6.57927215e-01
1.03287685e+00 -1.03797030e+00 1.92844301e-01 3.22773188e-01
2.37432003e-01 -1.84105441e-01 -7.96547353e-01 7.01589644e-01
9.94229913e-02 -1.11756074e+00 -4.25399482e-01 2.10045844e-01
5.52408338e-01 -4.37381119e-01 -4.48632091e-02 1.15100686e-02
5.44224642e-02 -1.09379876e+00 1.11079347e+00 3.91543359e-01
4.76154774e-01 -6.68757379e-01 5.35045326e-01 4.75134164e-01
-5.89938283e-01 -2.14287356e-01 -1.19447589e-01 -6.60047889e-01
4.47876483e-01 6.21394143e-02 -2.46619880e-02 6.78581953e-01
7.57768631e-01 2.16140926e-01 -4.23933446e-01 1.07369959e+00
6.00088499e-02 3.24340940e-01 -2.57684052e-01 -3.97302687e-01
1.47423595e-01 -4.02936310e-01 1.01929176e+00 6.47155881e-01
5.16743004e-01 4.14980441e-01 -7.85536706e-01 9.35855985e-01
9.52629566e-01 3.81001830e-01 -8.59907508e-01 -7.00404346e-01
6.69820905e-01 8.42496276e-01 -8.12345684e-01 6.05470389e-02
-3.84127975e-01 7.57906437e-01 -3.15109134e-01 -1.53241649e-01
-8.10790420e-01 -6.98875129e-01 5.62838078e-01 4.04281244e-02
-3.56042050e-02 -5.66805266e-02 -6.53186202e-01 -9.71758723e-01
-2.03628138e-01 -1.02417707e+00 7.79984817e-02 -6.81195140e-01
-9.09725964e-01 6.75435126e-01 -6.29715994e-02 -9.48579609e-01
-2.06150845e-01 -2.31628135e-01 -4.52443451e-01 7.76185930e-01
-5.93272865e-01 -9.75845277e-01 -1.05894558e-01 1.16367504e-01
2.41778910e-01 2.22960502e-01 8.58802080e-01 -1.26305446e-01
-7.87777305e-01 6.37323976e-01 5.00988722e-01 -7.08027780e-01
4.35443699e-01 -8.53681982e-01 5.55232644e-01 8.16258013e-01
-2.22472712e-01 1.12043619e+00 1.09769499e+00 -7.06523836e-01
-1.51921821e+00 -2.69121584e-03 1.43874705e+00 -3.37597013e-01
5.80448389e-01 -1.42559409e-02 -4.72685277e-01 5.32823086e-01
7.47273922e-01 -8.93840194e-01 1.31199288e+00 -1.05818361e-01
3.41753393e-01 4.71631676e-01 -1.24794948e+00 9.83887970e-01
1.37333012e+00 -2.37697214e-01 -1.17237926e+00 6.19770661e-02
9.99042094e-01 3.67820710e-02 -1.23948491e+00 1.52947009e-01
1.01541376e+00 -1.39251614e+00 6.54153526e-01 -2.57743001e-01
8.41104910e-02 -2.28381202e-01 -2.16302320e-01 -9.19860363e-01
-5.59892297e-01 -1.08464766e+00 4.66535747e-01 1.40535772e+00
1.50791332e-01 -1.47057486e+00 1.43308252e-01 6.00186765e-01
-4.70666170e-01 -9.18310642e-01 -1.12539089e+00 -7.85739183e-01
5.58969736e-01 -1.18818551e-01 7.82031357e-01 1.30710757e+00
9.46024418e-01 1.73009992e-01 -4.21034247e-02 -4.71216232e-01
2.96673834e-01 -1.38773918e-01 6.75074697e-01 -1.49242985e+00
-2.04360649e-01 -8.49152625e-01 -5.35742998e-01 -2.85130888e-01
-4.22082752e-01 -4.49280560e-01 -6.35501072e-02 -1.61084950e+00
-3.62697095e-02 -4.12691921e-01 8.91865715e-02 -4.02906835e-01
1.12356339e-02 7.49850348e-02 2.62803346e-01 4.87689912e-01
-9.85310301e-02 5.74808657e-01 1.00953627e+00 5.70451796e-01
-3.20350647e-01 -4.73230422e-01 -1.54626739e+00 5.55059075e-01
9.19838488e-01 -4.77032699e-02 -6.54383302e-01 -6.54685721e-02
8.24192584e-01 8.70314166e-02 1.60093173e-01 -9.90144908e-01
1.68784782e-01 -5.32926917e-01 -1.14842549e-01 4.14372748e-03
9.18278396e-02 -6.87944353e-01 1.05154967e+00 1.11549139e+00
-2.48548195e-01 4.32532042e-01 2.71453798e-01 -3.84442024e-02
6.94286004e-02 -7.31392503e-01 3.50537300e-01 -1.80534363e-01
-6.52966917e-01 -2.65485525e-01 -8.07003140e-01 5.30237034e-02
1.53281963e+00 -1.28913462e+00 -4.53204453e-01 -1.34845719e-01
-7.39292204e-01 9.75773633e-02 1.36743295e+00 4.26591992e-01
2.96403050e-01 -9.86790657e-01 -5.42208493e-01 -7.94855505e-02
3.71474475e-01 -5.34391582e-01 2.54145980e-01 8.72968674e-01
-1.04513073e+00 4.46949631e-01 -7.03403294e-01 -6.88880682e-02
-9.87893760e-01 7.20914721e-01 4.17958528e-01 4.08692092e-01
-6.79084301e-01 9.50965285e-01 -4.78721559e-02 -4.09627229e-01
-4.74463999e-02 2.79594034e-01 -1.72503859e-01 1.34102017e-01
1.08293667e-01 6.73843026e-01 -4.70836610e-01 -8.20777833e-01
-4.81948107e-01 6.05370760e-01 5.59677660e-01 -4.88711536e-01
1.29876935e+00 -7.33304977e-01 -5.60338318e-01 1.03379130e+00
5.88735461e-01 2.88349413e-03 -6.72063172e-01 3.20945114e-01
-7.89135620e-02 -5.55028260e-01 -4.92733121e-01 -1.02881813e+00
1.16240298e-02 6.23626411e-01 6.19559109e-01 2.82659173e-01
1.23381460e+00 -3.56185675e-01 1.04074925e-01 1.89667044e-03
3.94311249e-01 -1.32219791e+00 -2.96669483e-01 1.86427444e-01
1.02962375e+00 -5.12794018e-01 8.73807371e-02 -1.09830260e-01
-6.04455590e-01 1.18772936e+00 6.51170015e-01 1.50780097e-01
4.53415096e-01 1.78508207e-01 -3.73956077e-02 -1.67561278e-01
-1.11254311e+00 -2.06347555e-02 -3.68273675e-01 7.32225657e-01
1.01198113e+00 2.30703666e-03 -1.71881199e+00 4.11490887e-01
-7.55217016e-01 -3.35187688e-02 6.48068786e-01 1.18806267e+00
-7.96951652e-01 -1.06612861e+00 -5.33947229e-01 5.92943579e-02
-4.39446837e-01 4.18123379e-02 -8.98509920e-01 9.59572971e-01
4.81464952e-01 1.09598100e+00 1.23559803e-01 -4.58050758e-01
-2.11241469e-01 9.34081599e-02 5.30262053e-01 -9.11822766e-02
-1.41390657e+00 -1.26826793e-01 1.96055338e-01 -8.99616815e-03
-2.62601823e-01 -7.64524996e-01 -7.38608181e-01 -7.98682630e-01
-5.62263668e-01 6.95080280e-01 8.15420151e-01 5.94829798e-01
4.17580396e-01 5.62745631e-01 2.87335902e-01 -9.05582905e-02
-6.99526250e-01 -7.83824444e-01 -3.97780806e-01 -1.68395713e-01
-1.59023050e-02 -4.41755444e-01 -3.47076416e-01 -2.50802547e-01] | [5.563313007354736, 4.185122966766357] |
8a5b151b-2e99-4c6e-8aa7-c8c635344c97 | semicontour-a-semi-supervised-learning | 1605.04996 | null | http://arxiv.org/abs/1605.04996v1 | http://arxiv.org/pdf/1605.04996v1.pdf | SemiContour: A Semi-supervised Learning Approach for Contour Detection | Supervised contour detection methods usually require many labeled training
images to obtain satisfactory performance. However, a large set of annotated
data might be unavailable or extremely labor intensive. In this paper, we
investigate the usage of semi-supervised learning (SSL) to obtain competitive
detection accuracy with very limited training data (three labeled images).
Specifically, we propose a semi-supervised structured ensemble learning
approach for contour detection built on structured random forests (SRF). To
allow SRF to be applicable to unlabeled data, we present an effective sparse
representation approach to capture inherent structure in image patches by
finding a compact and discriminative low-dimensional subspace representation in
an unsupervised manner, enabling the incorporation of abundant unlabeled
patches with their estimated structured labels to help SRF perform better node
splitting. We re-examine the role of sparsity and propose a novel and fast
sparse coding algorithm to boost the overall learning efficiency. To the best
of our knowledge, this is the first attempt to apply SSL for contour detection.
Extensive experiments on the BSDS500 segmentation dataset and the NYU Depth
dataset demonstrate the superiority of the proposed method. | ['Zizhao Zhang', 'Fuyong Xing', 'Xiaoshuang Shi', 'Lin Yang'] | 2016-05-17 | semicontour-a-semi-supervised-learning-1 | http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_SemiContour_A_Semi-Supervised_CVPR_2016_paper.html | http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_SemiContour_A_Semi-Supervised_CVPR_2016_paper.pdf | cvpr-2016-6 | ['contour-detection'] | ['computer-vision'] | [ 7.28976071e-01 2.36414634e-02 -4.63870764e-01 -4.53855693e-01
-9.18519318e-01 -4.43159133e-01 1.45269707e-01 -8.31396133e-02
-1.50293916e-01 6.30588353e-01 1.82877406e-02 -2.13674828e-01
7.21932799e-02 -7.09693789e-01 -5.09976447e-01 -8.93860817e-01
1.82165474e-01 3.49815845e-01 5.06303251e-01 2.91457444e-01
3.47964466e-01 5.93749583e-01 -1.54695547e+00 1.83228374e-01
1.10031569e+00 9.24616992e-01 5.50279021e-01 1.99663490e-01
-3.29949945e-01 8.54011357e-01 -9.97201130e-02 1.46057859e-01
2.80383468e-01 -4.70176101e-01 -7.49970794e-01 9.77025270e-01
5.25727451e-01 -1.77827835e-01 1.76937938e-01 1.10352612e+00
4.51845646e-01 -3.12616527e-02 7.93217480e-01 -7.84659088e-01
-1.46332756e-01 3.59047294e-01 -1.10151863e+00 1.21321924e-01
6.62033781e-02 -4.80214864e-01 8.20348918e-01 -1.21151984e+00
8.14886987e-01 8.31439078e-01 6.13408804e-01 3.11627686e-01
-1.29341650e+00 -5.25832832e-01 1.85680836e-01 -9.13003236e-02
-1.49231839e+00 -4.76539701e-01 1.28896916e+00 -4.36531216e-01
2.05893472e-01 3.98731343e-02 4.69974697e-01 4.77919281e-01
-3.35257083e-01 1.21298635e+00 1.32585919e+00 -7.62801349e-01
4.46978629e-01 9.95849371e-02 2.76044786e-01 1.10934055e+00
3.65327597e-01 -3.09562385e-02 -4.76001054e-01 -1.29600301e-01
9.51933384e-01 -2.93970723e-02 -2.78098792e-01 -9.45667565e-01
-9.19096708e-01 9.62905765e-01 3.85813743e-01 3.68281960e-01
-3.97253841e-01 -3.20896298e-01 1.19986102e-01 -9.27940533e-02
6.01966262e-01 -7.86610693e-02 -2.18553618e-01 4.42900598e-01
-1.37928998e+00 -3.95684332e-01 5.67922890e-01 7.74310291e-01
1.01154983e+00 2.21780464e-01 2.83048928e-01 1.13883960e+00
3.77628058e-01 4.23033357e-01 3.62489551e-01 -1.05581737e+00
2.60260105e-01 6.50498688e-01 -1.69421166e-01 -9.91869152e-01
-2.57163763e-01 -6.53669655e-01 -8.80325198e-01 1.95028201e-01
4.89614457e-01 -7.85738602e-02 -1.17091036e+00 1.13547194e+00
5.07119060e-01 3.51758301e-01 1.18465595e-01 8.82990599e-01
7.30684817e-01 6.37407362e-01 -1.11256652e-01 -5.87050498e-01
9.91682291e-01 -9.84096885e-01 -5.59518754e-01 -3.83200198e-01
7.74012208e-01 -8.49238336e-01 6.48551643e-01 4.45579171e-01
-7.50689983e-01 -5.00023305e-01 -9.95144367e-01 2.90913671e-01
1.51617154e-01 7.38313437e-01 9.09973860e-01 6.29867375e-01
-6.99568450e-01 3.26147527e-01 -9.76303697e-01 -2.36342624e-01
7.15839028e-01 3.13271672e-01 -3.93167734e-01 -4.94142503e-01
-5.29895782e-01 3.48548472e-01 5.19321740e-01 2.99317837e-01
-6.65687263e-01 -8.02967474e-02 -9.75681722e-01 -3.02065700e-01
5.18458247e-01 -1.59502462e-01 8.81566465e-01 -1.12090623e+00
-1.15526462e+00 8.13544333e-01 -3.43306422e-01 -4.28758115e-01
5.17960861e-02 1.16144709e-01 4.02565971e-02 5.88155508e-01
3.22958589e-01 6.99423313e-01 1.01279986e+00 -1.60803390e+00
-5.26442409e-01 -6.05784357e-01 -4.73956645e-01 2.95698553e-01
-4.55054849e-01 -2.43762612e-01 -4.53105479e-01 -9.20913637e-01
9.61662173e-01 -9.31241333e-01 -5.43751180e-01 -7.41076237e-03
-3.08761358e-01 2.84464750e-02 9.04307961e-01 -6.61032498e-01
1.11279607e+00 -2.18065858e+00 8.63698870e-02 4.71329302e-01
-2.41816919e-02 1.82147667e-01 3.21773104e-02 9.13320556e-02
1.03980534e-01 -3.24912816e-01 -8.32435131e-01 -2.76928306e-01
-6.76612437e-01 4.59083587e-01 2.00677570e-02 6.21649146e-01
1.04422979e-01 5.34683168e-01 -6.62521422e-01 -1.23029149e+00
1.07362039e-01 2.12382868e-01 -3.65276307e-01 1.53650254e-01
-6.31407194e-04 3.87437731e-01 -6.63570762e-01 1.23389924e+00
8.14646900e-01 -3.59670192e-01 2.18323678e-01 -2.48284429e-01
-2.24909484e-01 -3.37914586e-01 -1.55158889e+00 1.84833372e+00
-3.01740021e-01 2.98242599e-01 3.53496075e-01 -1.32841313e+00
1.20384741e+00 1.66419446e-01 6.77592874e-01 -3.47427368e-01
-2.16286331e-02 4.63058740e-01 -3.23308706e-01 -2.60753155e-01
9.62614417e-02 -3.34423751e-01 2.75945067e-01 4.12290484e-01
2.16405779e-01 -8.45205486e-02 2.02643797e-01 2.09190547e-01
6.84518695e-01 1.90406024e-01 4.53065157e-01 -3.42268437e-01
6.64405525e-01 2.12400645e-01 7.48811245e-01 4.59027320e-01
-2.60467261e-01 7.92345226e-01 -1.21819094e-01 -3.28426927e-01
-5.37567079e-01 -7.79537559e-01 -3.27794522e-01 1.02365506e+00
2.27136895e-01 -5.97731620e-02 -6.41664386e-01 -8.62186611e-01
-2.49323756e-01 3.82639438e-01 -3.79539222e-01 2.58739829e-01
-5.96498251e-01 -9.13885355e-01 1.39022321e-01 7.04532921e-01
5.51068902e-01 -1.02915347e+00 -4.34379935e-01 2.48780161e-01
-2.43927941e-01 -9.31328833e-01 -4.59792316e-01 5.73837578e-01
-1.35051608e+00 -9.02036071e-01 -9.62323248e-01 -1.47694278e+00
1.13130057e+00 7.74085283e-01 6.72905862e-01 4.62581478e-02
-2.94992894e-01 1.25476837e-01 -5.55809736e-01 -4.07020338e-02
-7.43460730e-02 5.04664518e-02 -2.94047207e-01 2.61988550e-01
-2.29755677e-02 -3.95030886e-01 -4.95595425e-01 3.98866087e-01
-8.22543204e-01 5.47160469e-02 9.42097008e-01 1.03831160e+00
1.02803874e+00 3.04048926e-01 5.09368539e-01 -1.22536981e+00
-4.46712412e-02 -2.34245643e-01 -4.96384799e-01 2.74107754e-01
-6.28092825e-01 6.31189998e-03 2.64425218e-01 -2.80250609e-01
-1.38706136e+00 1.00231707e+00 -3.21188122e-02 -3.82343709e-01
-3.31474930e-01 5.66666782e-01 -1.24026939e-01 -4.33147907e-01
5.23545802e-01 5.96480966e-01 4.03712392e-02 -6.14462912e-01
3.37057084e-01 8.01809847e-01 4.91332233e-01 -4.78660226e-01
7.31554091e-01 7.83427179e-01 -1.01160623e-01 -9.37657833e-01
-1.04950726e+00 -9.83120739e-01 -9.18256283e-01 -2.68102944e-01
5.77220976e-01 -1.08660102e+00 3.34322363e-01 3.91530186e-01
-6.32447004e-01 -1.94603041e-01 -1.94923684e-01 4.26231951e-01
-4.79630291e-01 8.88302684e-01 -5.18078387e-01 -9.80636477e-01
-3.28663915e-01 -8.79549325e-01 1.23430216e+00 1.37081936e-01
2.14514807e-01 -8.34401906e-01 8.69134068e-02 6.80876434e-01
-1.75448004e-02 1.02028795e-01 4.45139825e-01 -4.59569156e-01
-4.07565802e-01 -1.09880410e-01 -2.23521590e-01 3.79376858e-01
3.07627529e-01 -1.77684814e-01 -6.95747077e-01 -3.66650045e-01
-4.24828986e-03 -6.17580473e-01 1.26581860e+00 5.10391474e-01
1.02950072e+00 7.51703456e-02 -5.06548464e-01 3.96762043e-01
1.43473983e+00 1.34574547e-01 2.63543457e-01 1.15182772e-01
7.42676735e-01 7.24615455e-01 1.03565621e+00 4.01158839e-01
1.65747032e-01 3.08243155e-01 8.46552178e-02 -4.21487838e-01
-2.00370014e-01 -3.05917919e-01 6.79020509e-02 9.16884124e-01
-6.02965876e-02 6.76960126e-02 -8.09156895e-01 6.13155007e-01
-1.63241220e+00 -7.30698407e-01 -1.83834255e-01 1.95355654e+00
7.36192048e-01 1.35716110e-01 8.74061435e-02 4.89228129e-01
8.52659345e-01 1.82261616e-01 -4.27704275e-01 2.01493710e-01
-1.77069545e-01 1.88270107e-01 4.68813658e-01 4.00441080e-01
-1.45732760e+00 1.07730746e+00 5.65343666e+00 1.14891851e+00
-9.01586235e-01 -4.87774611e-03 7.08982170e-01 4.82079446e-01
-1.99833676e-01 1.61463991e-01 -7.58179426e-01 2.25297838e-01
2.64679372e-01 3.31171691e-01 2.65270881e-02 9.88174975e-01
-1.66875385e-02 -2.90699184e-01 -4.44297403e-01 9.66196001e-01
1.44257024e-01 -1.21668911e+00 -1.32554606e-01 -3.66724133e-02
9.32954133e-01 -2.37200379e-01 -3.51376414e-01 -9.89282206e-02
-1.65894385e-02 -6.25139117e-01 4.44051921e-01 1.96892783e-01
7.23236382e-01 -6.12582564e-01 6.09440982e-01 7.32547581e-01
-1.35682786e+00 -1.91734973e-02 -5.50255835e-01 1.47737488e-01
1.58545673e-01 8.03422213e-01 -7.75198340e-01 3.74173194e-01
4.19230729e-01 9.26153064e-01 -5.78805566e-01 1.00440037e+00
-1.25613227e-01 9.70264733e-01 -4.75356847e-01 1.23912022e-01
2.19269976e-01 -3.04376513e-01 2.84062982e-01 1.07608783e+00
1.72937796e-01 4.26989615e-01 6.56791091e-01 3.52189153e-01
1.47118434e-01 5.78862488e-01 -5.69698036e-01 1.07017972e-01
3.74100238e-01 1.38696682e+00 -1.42428946e+00 -1.34234384e-01
-5.13587236e-01 9.28177238e-01 4.07403499e-01 2.19742730e-01
-3.06243837e-01 1.09530553e-01 -3.80325735e-01 1.31486282e-01
5.94009101e-01 -3.77542257e-01 -3.82625937e-01 -1.14763892e+00
-1.81511149e-01 -6.25647366e-01 5.42694986e-01 -3.94835234e-01
-1.14282954e+00 4.28986073e-01 -3.08501512e-01 -1.46541107e+00
2.49708407e-02 -1.58741340e-01 -4.19657469e-01 2.15390086e-01
-1.47146082e+00 -1.33114266e+00 -1.95928529e-01 6.38417959e-01
8.31671000e-01 -2.19895974e-01 7.32780159e-01 7.51169920e-02
-5.55024326e-01 2.61968285e-01 1.46020934e-01 2.36495242e-01
4.78032887e-01 -1.20273077e+00 -3.70787114e-01 9.84015465e-01
7.08015621e-01 3.74722928e-01 3.47921312e-01 -8.37959349e-01
-1.11415184e+00 -1.06261504e+00 6.04950070e-01 3.13228339e-01
2.64450103e-01 -9.75718722e-02 -9.15460825e-01 3.86462599e-01
-1.02106303e-01 2.90645033e-01 9.87836361e-01 -6.50059208e-02
-1.90019459e-02 -4.17191721e-02 -1.05970371e+00 9.03775990e-02
9.49262977e-01 -2.93456376e-01 -6.12179935e-01 3.54641736e-01
1.79103017e-01 -1.15577184e-01 -7.47506559e-01 7.00970232e-01
3.81385297e-01 -9.01698053e-01 8.87754142e-01 1.54235614e-02
1.67381644e-01 -5.65943956e-01 -3.72230113e-01 -8.59081209e-01
-2.76755661e-01 -3.67650688e-02 -1.87991746e-02 1.24172616e+00
2.95654923e-01 -1.88381538e-01 1.33221710e+00 6.61001727e-02
4.12611477e-02 -8.76871288e-01 -8.57805729e-01 -4.87615496e-01
-1.79435909e-01 -2.86430657e-01 -1.58340156e-01 8.89236033e-01
-1.73118353e-01 3.22369069e-01 -4.91438568e-01 3.68595541e-01
1.07798409e+00 9.02820230e-01 3.76448989e-01 -1.35677791e+00
-2.77756721e-01 1.62419572e-01 -3.13506246e-01 -1.23299038e+00
2.48944297e-01 -8.66884828e-01 2.76989669e-01 -1.42196620e+00
4.76854146e-01 -7.28222013e-01 -2.80582339e-01 5.11325896e-01
-2.27956697e-01 6.58220172e-01 3.76430713e-02 5.69975257e-01
-8.14933240e-01 6.27531409e-01 1.22222924e+00 -1.25219747e-01
-1.93792641e-01 3.00760090e-01 -6.89388692e-01 8.73077989e-01
8.20330560e-01 -5.18710136e-01 -5.12122393e-01 -2.09203407e-01
-4.43888515e-01 3.30240756e-01 1.18251696e-01 -9.08520758e-01
4.59379107e-01 8.36820714e-03 4.74965453e-01 -9.88510549e-01
8.95947218e-02 -8.78451526e-01 -1.67113423e-01 4.34848756e-01
-1.43508688e-01 -8.07571292e-01 -1.34393781e-01 8.79852653e-01
-5.64613163e-01 -5.34950495e-01 9.09345567e-01 -3.09476256e-01
-9.95970666e-01 1.26275599e-01 -3.81244183e-01 -2.68364608e-01
1.12530529e+00 -4.79116410e-01 3.62646550e-01 -1.87037870e-01
-9.40394163e-01 1.82467028e-01 5.39353549e-01 -1.16553836e-01
9.42474425e-01 -1.07663965e+00 -5.78468442e-01 4.14745599e-01
1.11948565e-01 2.11403146e-01 2.34006494e-01 6.06450975e-01
-4.74879742e-01 2.56840646e-01 -6.72893673e-02 -7.30851948e-01
-1.23962045e+00 5.28241217e-01 -2.06062794e-02 -1.96581751e-01
-6.32938325e-01 9.99302506e-01 9.96913835e-02 -4.78813559e-01
1.94058225e-01 7.76816085e-02 -4.60062176e-01 2.54754931e-01
1.72525629e-01 2.33788282e-01 2.66429000e-02 -7.84020185e-01
-4.10576850e-01 9.03581083e-01 -5.90508617e-02 7.39990547e-02
1.27007329e+00 -1.84739307e-01 -4.09668721e-02 1.60888359e-01
1.10789835e+00 8.81656855e-02 -1.36231470e+00 -3.87576222e-01
2.10414484e-01 -3.71828049e-01 4.27116960e-01 -4.44201380e-01
-1.39705777e+00 7.55788207e-01 6.76150799e-01 -2.29606077e-01
1.47060561e+00 1.10585384e-01 7.25545824e-01 2.42715418e-01
7.81235039e-01 -1.02681005e+00 1.89826012e-01 -3.21037434e-02
4.84703451e-01 -1.45717824e+00 2.76617080e-01 -1.09467208e+00
-6.99436128e-01 1.14255464e+00 4.14863408e-01 -1.58011347e-01
7.14517534e-01 3.23009759e-01 1.44765824e-01 -1.70101032e-01
-3.09068412e-01 -6.22796476e-01 1.60191074e-01 4.61859226e-01
3.73057932e-01 -6.19119331e-02 -4.95710552e-01 3.82904738e-01
3.71199727e-01 9.18592364e-02 3.33634496e-01 1.25721824e+00
-8.21799278e-01 -1.24406672e+00 -5.07826090e-01 5.94855249e-01
-3.43783975e-01 6.51184320e-02 -3.68474901e-01 4.48680103e-01
1.43292442e-01 9.06504691e-01 -2.35856265e-01 -2.75415741e-02
-6.39283285e-02 -3.87924984e-02 4.03199762e-01 -8.38173747e-01
4.16931510e-02 8.25951993e-01 -9.33002681e-02 -3.14497918e-01
-1.01012003e+00 -9.34514821e-01 -1.29571867e+00 5.41428149e-01
-7.52110302e-01 2.41619736e-01 3.55295449e-01 7.43863523e-01
2.16497239e-02 2.91490108e-02 8.28423560e-01 -8.56458962e-01
-4.04034376e-01 -6.83366477e-01 -9.83593285e-01 8.74116868e-02
4.12096940e-02 -7.73693979e-01 -3.47431600e-01 3.57554704e-01] | [14.753399848937988, -2.110962152481079] |
ab3a62a6-69b1-4a5d-b1f5-176c0f5d5f6e | 3d-gan-inversion-for-controllable-portrait | 2203.13441 | null | https://arxiv.org/abs/2203.13441v1 | https://arxiv.org/pdf/2203.13441v1.pdf | 3D GAN Inversion for Controllable Portrait Image Animation | Millions of images of human faces are captured every single day; but these photographs portray the likeness of an individual with a fixed pose, expression, and appearance. Portrait image animation enables the post-capture adjustment of these attributes from a single image while maintaining a photorealistic reconstruction of the subject's likeness or identity. Still, current methods for portrait image animation are typically based on 2D warping operations or manipulations of a 2D generative adversarial network (GAN) and lack explicit mechanisms to enforce multi-view consistency. Thus these methods may significantly alter the identity of the subject, especially when the viewpoint relative to the camera is changed. In this work, we leverage newly developed 3D GANs, which allow explicit control over the pose of the image subject with multi-view consistency. We propose a supervision strategy to flexibly manipulate expressions with 3D morphable models, and we show that the proposed method also supports editing appearance attributes, such as age or hairstyle, by interpolating within the latent space of the GAN. The proposed technique for portrait image animation outperforms previous methods in terms of image quality, identity preservation, and pose transfer while also supporting attribute editing. | ['Gordon Wetzstein', 'Eric R. Chan', 'David B. Lindell', 'Connor Z. Lin'] | 2022-03-25 | null | null | null | null | ['pose-transfer', 'image-animation'] | ['computer-vision', 'computer-vision'] | [ 4.72723752e-01 3.38328809e-01 2.36993865e-03 -4.08951610e-01
-2.04302460e-01 -8.56984854e-01 6.71191037e-01 -4.24934119e-01
-1.06092617e-01 5.47279775e-01 -1.28088519e-01 3.21026564e-01
3.59675795e-01 -8.11053634e-01 -8.88609946e-01 -6.94942653e-01
4.39557046e-01 3.95076245e-01 -2.24789843e-01 -2.19749019e-01
-6.68229833e-02 7.56803811e-01 -1.38706601e+00 -2.27055550e-01
6.49884760e-01 1.02128696e+00 -4.25075084e-01 7.60536969e-01
2.35198632e-01 3.22176635e-01 -7.16141045e-01 -8.13784599e-01
6.46473289e-01 -5.55226266e-01 -2.55126268e-01 5.65110207e-01
1.09278345e+00 -5.30476570e-01 -3.60077620e-01 9.97085869e-01
3.52768630e-01 -1.96505170e-02 5.72957993e-01 -1.56612742e+00
-9.77311909e-01 -9.48983654e-02 -8.14067125e-01 -4.58464205e-01
6.19483352e-01 1.12802334e-01 6.46054506e-01 -4.60131168e-01
9.29575086e-01 1.29654908e+00 6.75087452e-01 9.10315096e-01
-1.36703622e+00 -8.42323184e-01 2.66901881e-01 -2.02658296e-01
-1.40920734e+00 -5.35350561e-01 1.21732557e+00 -3.10112178e-01
-4.12205234e-02 6.16349161e-01 1.12991130e+00 1.33525181e+00
1.80558205e-01 2.29819000e-01 1.27542257e+00 -3.40683758e-01
1.04175940e-01 2.07127512e-01 -5.75449944e-01 8.42575908e-01
-4.79217842e-02 -1.60733357e-01 -4.03548449e-01 -2.13852435e-01
1.33703864e+00 7.30315596e-02 -1.78866595e-01 -5.18034399e-01
-1.00919139e+00 6.51148558e-01 2.41505936e-01 -1.82561144e-01
-2.91495562e-01 2.74526834e-01 7.09495693e-02 1.95290267e-01
5.86949825e-01 3.30835342e-01 -4.51411903e-02 1.80743709e-01
-6.69411182e-01 2.38228008e-01 5.00586748e-01 1.14264750e+00
8.60289156e-01 2.90530801e-01 -1.27814040e-01 5.93989015e-01
4.52561788e-02 6.99272871e-01 1.81040540e-01 -1.21800506e+00
4.62839603e-02 6.77044034e-01 1.42283797e-01 -1.33420420e+00
1.83328316e-01 4.08138856e-02 -9.53723192e-01 4.54999477e-01
1.77425176e-01 -1.26544386e-01 -1.07296181e+00 2.06345201e+00
7.52730489e-01 1.24155581e-01 -2.44691342e-01 7.27185667e-01
5.17162800e-01 4.20586407e-01 -3.16218985e-03 -9.19742808e-02
1.28235376e+00 -5.65780520e-01 -9.06644583e-01 -2.31593519e-01
-1.50655046e-01 -7.55632460e-01 1.15083826e+00 7.11554289e-02
-1.37396443e+00 -4.61914182e-01 -9.61606979e-01 -2.82244593e-01
-5.99965528e-02 -2.07520742e-02 3.72673571e-01 8.24280262e-01
-1.07102180e+00 4.71237242e-01 -6.94273770e-01 -2.65661985e-01
3.34501833e-01 6.07849777e-01 -7.56981075e-01 1.67611450e-01
-1.03259349e+00 7.34467626e-01 -2.29563326e-01 1.39280498e-01
-6.74536645e-01 -7.23808646e-01 -9.52100754e-01 -1.85383812e-01
6.63041845e-02 -1.08047104e+00 6.84687972e-01 -1.48669934e+00
-2.02178502e+00 1.36642385e+00 1.71133056e-01 -1.53889954e-02
9.09669459e-01 -4.39429656e-03 -2.77888417e-01 2.17704684e-01
-1.60267651e-01 1.01403749e+00 1.47704673e+00 -1.40332186e+00
8.51589590e-02 -6.44142389e-01 2.78507322e-01 3.46994758e-01
-4.84803855e-01 -8.50077644e-02 -5.33600330e-01 -8.50727499e-01
-1.58217266e-01 -1.23876083e+00 2.41986271e-02 8.70587587e-01
-5.97826123e-01 4.24229294e-01 1.27628100e+00 -7.69418180e-01
6.42192423e-01 -2.19478822e+00 4.60602045e-01 5.98185062e-02
2.06535667e-01 4.20674086e-02 -9.47040841e-02 1.56625226e-01
-4.87213545e-02 8.94321054e-02 -2.21740708e-01 -7.06698179e-01
-1.81323051e-01 3.76080751e-01 -1.47030294e-01 7.75355101e-01
1.10042132e-01 7.30084717e-01 -5.58253765e-01 -5.40877640e-01
1.71492115e-01 9.34732974e-01 -7.59359956e-01 4.23790574e-01
-2.24150345e-01 9.36842024e-01 -3.80834460e-01 4.98528272e-01
8.26000571e-01 9.13059935e-02 1.78453669e-01 -3.44925374e-01
1.59075171e-01 -2.90055454e-01 -9.34973240e-01 1.67382467e+00
-5.63779533e-01 3.84273678e-01 4.20408785e-01 -3.80368084e-01
1.07822120e+00 2.47189790e-01 5.81588447e-01 -2.13448569e-01
2.33001053e-01 -2.75447875e-01 -2.53833055e-01 -1.52715936e-01
4.18004543e-01 -2.76757270e-01 -1.29294977e-01 3.62626642e-01
-3.33944649e-01 -5.46742320e-01 -4.71698582e-01 -7.49961138e-02
5.36395729e-01 2.10100278e-01 1.97467253e-01 4.45552729e-02
3.11764300e-01 -4.01252896e-01 4.78050590e-01 2.81301178e-02
1.20848544e-01 7.77419209e-01 3.89771104e-01 -5.98236918e-01
-1.45191193e+00 -9.59941745e-01 1.45208374e-01 5.53752840e-01
2.29681909e-01 -7.57154748e-02 -9.83649373e-01 -5.26244819e-01
-2.36219913e-02 4.94183630e-01 -9.87350285e-01 -2.59245664e-01
-6.60457432e-01 -3.44735473e-01 5.88736057e-01 3.10981005e-01
6.48249030e-01 -6.25406921e-01 -4.35542911e-01 -1.92108139e-01
9.81697217e-02 -1.31571209e+00 -1.06492329e+00 -7.03881085e-01
-6.52047217e-01 -8.72303247e-01 -7.65782535e-01 -5.92942894e-01
1.22458732e+00 -9.17941108e-02 5.70006430e-01 2.11063437e-02
-1.41941816e-01 6.07833028e-01 2.83396151e-03 -1.48970157e-01
-6.78653538e-01 -3.03479910e-01 2.63422847e-01 6.28362358e-01
-4.78162050e-01 -1.07359910e+00 -8.08047831e-01 3.39317977e-01
-1.00265455e+00 3.06419700e-01 8.11997876e-02 6.57653689e-01
6.69510186e-01 -2.67984003e-01 1.41310185e-01 -1.06022859e+00
3.02523375e-01 9.77956206e-02 -5.18457949e-01 1.85370356e-01
-4.24723506e-01 -2.86649734e-01 8.11839879e-01 -8.95047605e-01
-1.02044475e+00 2.68665612e-01 -1.33303730e-02 -9.49748993e-01
-7.07049295e-02 -4.16370958e-01 -5.96556425e-01 -5.58953166e-01
2.18700424e-01 1.85488537e-01 3.67529064e-01 -2.75083631e-01
5.50773144e-01 3.25372905e-01 7.48945594e-01 -5.67756176e-01
1.13935423e+00 8.21858704e-01 1.82152137e-01 -5.43470263e-01
-3.85690868e-01 3.70251149e-01 -8.63587916e-01 -3.29263628e-01
8.28885615e-01 -8.26232076e-01 -8.22305620e-01 8.35839927e-01
-1.12794530e+00 -1.44914508e-01 -3.25876176e-01 -1.15646295e-01
-6.29099548e-01 3.44804168e-01 -4.76544917e-01 -4.06757385e-01
-4.74965751e-01 -9.91426945e-01 1.38777196e+00 2.22936943e-01
-3.24054807e-01 -1.02941358e+00 -7.93404579e-02 4.56105351e-01
2.76074290e-01 1.03618050e+00 9.68604565e-01 5.10416329e-02
-4.13646758e-01 -4.24847692e-01 2.29967907e-01 3.30769092e-01
6.09150708e-01 3.00037175e-01 -8.40418696e-01 -4.31359291e-01
1.12620639e-02 -6.21537827e-02 4.27112766e-02 1.39363438e-01
1.02764642e+00 -8.15995216e-01 -1.42948717e-01 1.02537930e+00
1.13626659e+00 1.63420483e-01 7.17760623e-01 3.52395624e-02
1.09281433e+00 5.47154903e-01 2.49822497e-01 5.49839199e-01
2.70231664e-01 1.00562239e+00 5.85434377e-01 -3.11158031e-01
-1.98142797e-01 -6.63539946e-01 3.58419001e-01 5.39729357e-01
-2.51624137e-01 -2.11062044e-01 -3.11912388e-01 1.13280028e-01
-1.24405956e+00 -7.56944835e-01 2.68016368e-01 2.21862292e+00
8.66915047e-01 -2.67538399e-01 9.48683023e-02 -6.63040355e-02
9.09330904e-01 2.21893936e-01 -8.88211966e-01 -5.06180108e-01
-7.23873544e-03 1.28419744e-02 4.71873969e-01 5.77405155e-01
-7.63517797e-01 7.95422435e-01 6.41579628e+00 3.62028837e-01
-1.45016265e+00 -3.66369002e-02 7.41236508e-01 -1.69657081e-01
-7.31451869e-01 -1.33436192e-02 -4.84356195e-01 4.25797075e-01
2.38559172e-01 -1.65490165e-01 4.96269315e-01 6.80868387e-01
1.37658954e-01 3.43845397e-01 -1.04606473e+00 9.24715042e-01
4.23780203e-01 -1.14494264e+00 4.27401274e-01 2.95039833e-01
7.59354293e-01 -1.02495575e+00 6.09525561e-01 -2.90292829e-01
2.91562602e-02 -8.82082045e-01 8.16547751e-01 5.21953344e-01
1.47899354e+00 -8.00343871e-01 -1.02361888e-02 8.21245387e-02
-7.44436085e-01 2.94055462e-01 1.36902034e-01 1.77958325e-01
2.05031306e-01 -2.71805190e-02 -6.64114833e-01 2.80821085e-01
3.47943842e-01 4.62346464e-01 -5.22616029e-01 1.86854452e-01
-2.87335187e-01 -1.38478540e-02 -2.81824380e-01 4.23152030e-01
-1.00953780e-01 -5.17745912e-01 8.17259252e-01 5.27948976e-01
4.22186315e-01 1.68200150e-01 -3.46335545e-02 8.49829376e-01
-4.15406346e-01 -7.16677979e-02 -7.99467444e-01 1.00885369e-01
4.72690850e-01 1.18552852e+00 -3.17369878e-01 -5.43125458e-02
-1.87505409e-02 1.47523487e+00 6.83899522e-02 1.20536625e-01
-9.98852491e-01 7.35338628e-02 9.60088253e-01 6.29700720e-01
7.54280537e-02 -2.20243797e-01 -2.67957032e-01 -1.11206210e+00
1.17862873e-01 -1.09263706e+00 9.13459435e-03 -9.72500682e-01
-1.05253625e+00 7.80208230e-01 -4.87273000e-02 -1.16298473e+00
-2.08549410e-01 -1.79150298e-01 -6.93905175e-01 6.52452528e-01
-1.01258636e+00 -1.80066872e+00 -4.57318157e-01 7.60455966e-01
3.43383610e-01 -3.37459333e-02 9.74052906e-01 1.28446400e-01
-5.97350121e-01 9.74231482e-01 -2.26910621e-01 8.53407457e-02
9.06402946e-01 -9.08204138e-01 4.14537311e-01 6.02730811e-01
-9.06868950e-02 5.41880846e-01 8.58645856e-01 -5.96643329e-01
-1.73658180e+00 -1.07646966e+00 2.73881048e-01 -3.78669769e-01
2.91927963e-01 -5.43546379e-01 -6.75285578e-01 9.66294289e-01
3.75463456e-01 1.32221386e-01 5.73824883e-01 -3.25741053e-01
-3.50730181e-01 -2.84148514e-01 -1.60712695e+00 7.87948728e-01
9.68854368e-01 -4.73712236e-01 8.42756778e-02 3.22914273e-01
6.20505154e-01 -7.40389645e-01 -1.12745702e+00 2.28947178e-01
7.78073609e-01 -7.65103102e-01 1.07895637e+00 -4.86013591e-01
3.40951502e-01 -2.76428699e-01 -2.88680606e-02 -1.31192553e+00
-1.46370128e-01 -1.04723990e+00 1.43055484e-01 1.51253474e+00
-1.66313484e-01 -4.93946016e-01 8.98994088e-01 1.03413069e+00
1.93476230e-01 -5.58795869e-01 -9.62078691e-01 -5.89480281e-01
-5.84426299e-02 2.90985227e-01 8.07469249e-01 1.09471154e+00
-5.39092720e-01 1.80553988e-01 -9.44484353e-01 3.98206621e-01
6.39801979e-01 9.12453458e-02 1.15331817e+00 -9.32243466e-01
-2.86790580e-01 -7.64591396e-02 -6.79213643e-01 -6.42028987e-01
4.16119695e-01 -5.33302069e-01 -3.78526419e-01 -7.86678374e-01
5.20831905e-02 -4.79259938e-01 3.76843333e-01 5.00362456e-01
-2.95892619e-02 4.99601483e-01 3.01705122e-01 1.95462570e-01
8.93235207e-02 7.50239134e-01 1.83312011e+00 -6.12605847e-02
-7.34564885e-02 2.06703171e-02 -5.92008591e-01 7.90120125e-01
5.71869671e-01 -3.65779966e-01 -4.57060963e-01 -6.22581124e-01
5.26989400e-02 2.02450231e-01 5.91592968e-01 -6.02567852e-01
6.93757460e-02 -3.01495165e-01 5.39988399e-01 7.51373768e-02
9.84889627e-01 -9.67595994e-01 8.43729079e-01 2.78716803e-01
-2.82187790e-01 4.57696170e-01 2.19669282e-01 6.85616136e-01
-3.05750463e-02 1.80879608e-01 1.16289735e+00 -8.72683376e-02
-1.20704979e-01 6.60264134e-01 5.50465956e-02 -1.15796186e-01
1.25025427e+00 -4.34147835e-01 5.75560294e-02 -7.61260688e-01
-5.39004922e-01 -2.59671152e-01 1.32524252e+00 3.51679295e-01
5.38237989e-01 -1.54070759e+00 -6.78420067e-01 5.31210363e-01
-1.59791037e-01 6.75669089e-02 3.26242089e-01 4.22975630e-01
-6.08311057e-01 -3.98545057e-01 -7.20213234e-01 -3.87487084e-01
-1.52673995e+00 5.20968199e-01 4.28505868e-01 7.97262043e-02
-6.81877613e-01 5.23833096e-01 3.58953744e-01 -2.05715254e-01
-9.91730690e-02 1.29079133e-01 3.03708017e-02 -1.06802784e-01
1.83704898e-01 8.59628394e-02 -3.44838887e-01 -9.14153874e-01
-1.74292520e-01 1.04082143e+00 -4.75861467e-02 -1.41550139e-01
1.25261199e+00 -2.15465114e-01 -1.58428565e-01 1.34969041e-01
1.09785128e+00 3.74552965e-01 -1.63732529e+00 1.53876603e-01
-9.77843225e-01 -9.12265420e-01 -1.42300919e-01 -4.23970819e-01
-1.43499148e+00 5.97530544e-01 4.20726120e-01 -1.45900130e-01
1.30312622e+00 -3.76360118e-01 9.76726592e-01 -1.75815687e-01
3.41419101e-01 -7.37242877e-01 1.77332014e-01 -2.33056173e-01
1.15074325e+00 -9.29373443e-01 5.56163564e-02 -6.04387045e-01
-7.44215965e-01 9.28566456e-01 7.05332696e-01 -3.53627056e-01
4.17781770e-01 2.28811696e-01 6.07271306e-02 2.19975822e-02
-3.89018297e-01 6.63458526e-01 2.26568162e-01 7.48549700e-01
6.14661351e-02 5.81120886e-02 1.55273661e-01 -6.00132998e-03
-3.55265021e-01 -4.01961416e-01 5.25076091e-01 5.95276356e-01
3.20688456e-01 -1.30180871e+00 -5.41952908e-01 -7.46833608e-02
-3.87172192e-01 1.91154987e-01 -6.49856925e-01 8.96171749e-01
2.94227004e-01 4.03328598e-01 1.92092985e-01 -2.54146636e-01
3.87290984e-01 -1.06865183e-01 9.63253081e-01 -4.79145616e-01
-5.36697567e-01 -3.71244960e-02 -1.22331247e-01 -3.15542430e-01
-4.34894204e-01 -7.37600565e-01 -6.57805264e-01 -6.85607016e-01
-2.63606524e-03 -3.22487235e-01 5.75916946e-01 5.18245757e-01
5.09016275e-01 1.18262127e-01 9.94384706e-01 -8.39667499e-01
-2.85669804e-01 -6.34356499e-01 -6.24582291e-01 6.59730315e-01
2.97407955e-01 -6.12010062e-01 -2.40346521e-01 5.26682794e-01] | [12.667744636535645, -0.3598661422729492] |
cf56adba-11cf-4e3d-9a3e-edc7480d9479 | look-ma-only-400-samples-revisiting-the | 2210.02675 | null | https://arxiv.org/abs/2210.02675v2 | https://arxiv.org/pdf/2210.02675v2.pdf | Look Ma, Only 400 Samples! Revisiting the Effectiveness of Automatic N-Gram Rule Generation for Spelling Normalization in Filipino | With 84.75 million Filipinos online, the ability for models to process online text is crucial for developing Filipino NLP applications. To this end, spelling correction is a crucial preprocessing step for downstream processing. However, the lack of data prevents the use of language models for this task. In this paper, we propose an N-Gram + Damerau Levenshtein distance model with automatic rule extraction. We train the model on 300 samples, and show that despite limited training data, it achieves good performance and outperforms other deep learning approaches in terms of accuracy and edit distance. Moreover, the model (1) requires little compute power, (2) trains in little time, thus allowing for retraining, and (3) is easily interpretable, allowing for direct troubleshooting, highlighting the success of traditional approaches over more complex deep learning models in settings where data is unavailable. | ['Dragomir Radev', 'Lorenzo Jaime Yu Flores'] | 2022-10-06 | null | null | null | null | ['spelling-correction'] | ['natural-language-processing'] | [-1.33843437e-01 -1.09037690e-01 -3.25679451e-01 -1.38462558e-01
-8.21894169e-01 -1.04766941e+00 7.46159434e-01 6.29670322e-01
-7.67647922e-01 8.49863648e-01 -3.54103558e-03 -1.11897790e+00
-1.35961518e-01 -6.69848204e-01 -6.67124212e-01 -2.64377624e-01
5.09164073e-02 6.59129143e-01 -1.78446025e-01 -2.76689380e-02
2.95553297e-01 8.23263586e-01 -9.18657660e-01 9.68104675e-02
1.26920605e+00 6.51590288e-01 3.73177491e-02 7.23120153e-01
-7.36624449e-02 8.21500719e-01 -5.88149190e-01 -7.91579545e-01
3.48636806e-01 -1.18105307e-01 -7.23482192e-01 -3.98741633e-01
4.69930559e-01 -6.39155567e-01 -4.51681703e-01 9.91334021e-01
3.07014704e-01 2.77081162e-01 7.83766687e-01 -6.56311035e-01
-9.14647281e-01 5.81017494e-01 -9.88989100e-02 4.23042923e-01
6.96155131e-02 1.58131108e-01 1.40125573e+00 -1.05471766e+00
5.96558452e-01 9.43600178e-01 6.88487828e-01 2.81532943e-01
-1.05953765e+00 -3.78152311e-01 5.62507473e-02 1.38706192e-01
-1.17258036e+00 -4.73924100e-01 1.78009883e-01 -4.78995770e-01
1.27164400e+00 7.75795523e-03 5.56816459e-01 9.18264329e-01
5.43121509e-02 9.25101578e-01 8.01232040e-01 -4.69112158e-01
1.00791320e-01 1.25925153e-01 1.18305892e-01 7.29128778e-01
5.85462093e-01 -2.03307405e-01 -2.77888298e-01 3.16707604e-02
4.07672584e-01 7.49171823e-02 8.88467059e-02 1.71761096e-01
-8.30276668e-01 8.58028233e-01 1.75081827e-02 5.15812516e-01
-2.46087670e-01 -1.45077124e-01 3.37974310e-01 5.02481043e-01
6.53349280e-01 7.66143024e-01 -6.71468556e-01 -5.00386775e-01
-1.47235322e+00 3.18866730e-01 1.11161852e+00 8.39345038e-01
3.26479524e-01 1.20243594e-01 -1.77453589e-02 8.04224253e-01
-5.71761839e-02 5.76202393e-01 4.09524471e-01 -6.77740574e-01
9.07007158e-01 4.91520315e-01 2.13384748e-01 -9.26318884e-01
-3.38450611e-01 -4.18565422e-01 -7.51754522e-01 -2.27650404e-02
9.09806967e-01 -4.84798938e-01 -7.07204759e-01 1.35253298e+00
-8.07783380e-02 -2.37161681e-01 -1.71559796e-01 4.53554600e-01
1.79554448e-01 6.94896638e-01 -5.83550557e-02 -2.53853142e-01
1.00816953e+00 -9.29802835e-01 -6.07007086e-01 -3.51339012e-01
1.03221226e+00 -8.24197710e-01 1.06975400e+00 7.46097386e-01
-1.18302286e+00 -2.64280349e-01 -9.54940021e-01 -6.02542698e-01
-5.38434744e-01 3.41594875e-01 7.72534728e-01 6.90490544e-01
-9.42951381e-01 1.00035572e+00 -7.94861972e-01 -2.39332944e-01
6.36942983e-01 4.29071814e-01 -2.70955443e-01 -1.85052022e-01
-1.14614618e+00 9.61050689e-01 3.70279729e-01 3.22518907e-02
-3.14389199e-01 -7.61396408e-01 -6.91550136e-01 4.03107762e-01
2.56784052e-01 -2.97814548e-01 1.39933658e+00 -8.33216310e-01
-1.56171966e+00 4.31731969e-01 -3.39262962e-01 -5.81280351e-01
8.64508748e-01 -4.93991017e-01 -3.87561291e-01 9.07998905e-02
-2.16582134e-01 1.86245635e-01 7.61823237e-01 -5.52948713e-01
-7.96123087e-01 -2.27929369e-01 -1.08111938e-02 3.97450030e-02
-5.51758707e-01 2.94103622e-01 -3.99127126e-01 -7.67984569e-01
-4.47392911e-01 -6.78576827e-01 -4.05586362e-02 -2.62838781e-01
-1.89656541e-01 -5.37634134e-01 3.31511468e-01 -1.48707449e+00
1.58671701e+00 -2.00325084e+00 -3.59795451e-01 4.56452459e-01
3.08224678e-01 9.41580892e-01 3.59035959e-03 4.50383723e-01
1.70900181e-01 5.26308715e-01 -1.50145069e-01 -3.99981469e-01
1.42444864e-01 -2.10689008e-01 -3.24083954e-01 3.12018961e-01
4.47703481e-01 9.97134387e-01 -9.72227097e-01 -2.43130684e-01
2.64220148e-01 2.92513818e-01 -7.76713014e-01 -9.79255512e-02
-5.53675927e-02 9.53082442e-02 -1.30627364e-01 5.11075974e-01
3.34514856e-01 -2.54890740e-01 4.03481811e-01 3.81249458e-01
-1.45525396e-01 8.94461155e-01 -9.21082675e-01 1.14357889e+00
-6.72508299e-01 1.07224727e+00 5.40725626e-02 -8.42108846e-01
7.89757252e-01 1.09309256e-01 3.37650687e-01 -7.31356919e-01
1.41606957e-01 4.18711782e-01 2.14534268e-01 -3.02749872e-01
5.84613919e-01 1.20393947e-01 2.35157296e-01 6.58396900e-01
-2.23342497e-02 4.39049155e-02 7.41207123e-01 2.41138190e-01
1.08201611e+00 -1.85753539e-01 3.99255931e-01 -3.75028998e-02
3.20762426e-01 -1.78172499e-01 6.12731755e-01 9.24550235e-01
-2.33391404e-01 2.23903030e-01 5.52200258e-01 -4.75538075e-01
-1.35701573e+00 -7.44699419e-01 5.49692474e-02 1.08256221e+00
-5.47732592e-01 -3.80643755e-01 -7.32969642e-01 -7.61273503e-01
2.79756844e-01 8.99336278e-01 -1.20404460e-01 2.18849760e-02
-8.72304320e-01 -5.29201329e-01 7.37645626e-01 5.69717765e-01
1.99124053e-01 -7.62391686e-01 -4.90882359e-02 3.83171588e-01
-5.30083217e-02 -1.00666010e+00 -5.34310043e-01 -6.25832006e-02
-9.24429178e-01 -9.91285563e-01 -4.63660955e-01 -6.52482629e-01
4.36323464e-01 8.95496923e-03 9.23277676e-01 1.30348295e-01
-3.96479368e-02 -1.69449419e-01 -1.27746433e-01 -4.75394368e-01
-5.05386412e-01 4.70171809e-01 2.85649747e-01 -2.73890823e-01
8.14092577e-01 -4.28115010e-01 -3.13907385e-01 -4.07343686e-01
-5.32564640e-01 -2.21281961e-01 7.48539984e-01 7.09043503e-01
2.72641093e-01 -7.15770945e-02 8.03678751e-01 -1.14320254e+00
8.16276193e-01 -3.76009971e-01 -8.27793777e-01 3.17229927e-01
-8.74236405e-01 -2.90765502e-02 1.05777764e+00 -2.85987049e-01
-1.00558126e+00 -1.92459047e-01 -1.87020510e-01 -2.04081722e-02
-5.66520914e-02 5.88590026e-01 2.00085472e-02 1.56539127e-01
5.47682285e-01 -1.13532364e-01 -3.16905268e-02 -7.43442535e-01
4.25507158e-01 9.64433432e-01 3.04704309e-01 -2.93661416e-01
8.14226389e-01 2.51292408e-01 -2.79829264e-01 -9.00340259e-01
-8.77521515e-01 -2.88198233e-01 -8.56017590e-01 2.41252154e-01
4.22703296e-01 -6.88163340e-01 -8.35510731e-01 2.72964716e-01
-1.19606793e+00 -4.39654917e-01 1.41519597e-02 7.06983089e-01
-2.93561429e-01 5.72061718e-01 -1.09095669e+00 -8.28643143e-01
-5.25144935e-01 -7.39004552e-01 4.39828873e-01 2.11810336e-01
-5.40975809e-01 -1.36133885e+00 -1.99834555e-01 5.47253966e-01
2.36546680e-01 -3.19520086e-01 1.18837285e+00 -1.30626118e+00
-3.26258212e-01 -5.87184727e-01 -3.94830376e-01 6.12327456e-01
2.56228209e-01 2.52164692e-01 -8.85253429e-01 -2.47905567e-01
-2.12250963e-01 -7.11100474e-02 7.30594575e-01 2.33224973e-01
1.36930323e+00 -6.50423646e-01 6.71751276e-02 5.76044977e-01
9.66223836e-01 1.12038322e-01 2.02398255e-01 2.70997971e-01
7.45956779e-01 4.56816286e-01 4.19595212e-01 2.93749124e-01
3.86522830e-01 2.45679840e-01 -1.28915876e-01 6.35478720e-02
-2.23835558e-02 -5.37940681e-01 4.58576709e-01 1.11101067e+00
-1.28216911e-02 -3.30791235e-01 -1.13703358e+00 7.14691520e-01
-1.74266315e+00 -9.47091281e-01 -2.91059334e-02 2.16949606e+00
9.61541057e-01 2.88154215e-01 5.98349683e-02 1.88713431e-01
5.87317586e-01 -1.25624433e-01 -6.42960429e-01 -7.73726344e-01
-1.29769370e-01 5.74462235e-01 7.10996270e-01 7.94766068e-01
-1.07317066e+00 1.20200658e+00 6.19833755e+00 8.74339700e-01
-1.07152545e+00 3.53109613e-02 6.26382113e-01 -3.85040700e-01
-1.79180399e-01 -7.23188967e-02 -9.47045863e-01 5.77077389e-01
1.18399060e+00 -3.15238982e-01 8.43270123e-01 7.01227427e-01
4.79775876e-01 1.07037880e-01 -1.38292122e+00 9.81509686e-01
4.39821780e-02 -1.36033642e+00 1.50048465e-01 9.41196606e-02
7.05707550e-01 1.08314760e-01 -2.19019540e-02 4.88479376e-01
6.16930664e-01 -1.22193813e+00 5.96536100e-01 2.93699980e-01
7.00335622e-01 -9.48584437e-01 6.97851539e-01 6.16364419e-01
-6.57540917e-01 -3.42688829e-01 -3.33756894e-01 -2.12711170e-01
1.65808529e-01 9.34806406e-01 -9.57979858e-01 5.02029359e-01
1.84902191e-01 7.67314553e-01 -4.57383871e-01 9.46696341e-01
-4.54798579e-01 1.04553473e+00 -4.37448919e-01 -1.38845220e-01
3.28717262e-01 -3.72471035e-01 2.21225321e-01 1.42662740e+00
4.32354897e-01 -2.75983512e-01 -5.87932430e-02 6.85661495e-01
-5.47112763e-01 4.00518209e-01 -6.43681049e-01 -5.99673867e-01
8.75585198e-01 1.01825607e+00 -3.46140951e-01 -4.70367968e-01
-4.29769307e-01 8.56343806e-01 7.94759750e-01 4.58055615e-01
-4.58788961e-01 -7.13445604e-01 5.66051841e-01 -3.25325243e-02
2.86384284e-01 -6.02406144e-01 -6.74491644e-01 -1.31122351e+00
2.21443906e-01 -1.08351171e+00 4.26307917e-01 -2.29495630e-01
-1.29706204e+00 4.45685238e-02 -5.90862036e-01 -7.04255819e-01
-4.80082810e-01 -1.11783099e+00 -4.32480693e-01 8.99716079e-01
-1.72743726e+00 -8.83612096e-01 3.67881596e-01 2.45909750e-01
5.65203488e-01 -2.23034382e-01 4.62578893e-01 5.72169662e-01
-7.30234206e-01 8.55427921e-01 6.36878133e-01 5.38021028e-01
9.16505158e-01 -1.24989390e+00 5.66162586e-01 1.07552743e+00
4.18007106e-01 1.02199745e+00 3.79201353e-01 -6.82836354e-01
-1.29779792e+00 -1.14684904e+00 1.76388121e+00 -6.61564529e-01
9.51166391e-01 -3.53696585e-01 -8.62575889e-01 8.28807235e-01
-9.91547629e-02 -4.13720131e-01 7.92374074e-01 4.82849777e-01
-3.47105056e-01 -1.48458585e-01 -8.83899510e-01 7.94878066e-01
8.30280483e-01 -7.71647096e-01 -6.62515461e-01 5.62623620e-01
3.55324298e-01 -1.50714383e-01 -8.86201203e-01 -1.44116625e-01
4.64581788e-01 -5.54662585e-01 5.75216711e-01 -1.03157043e+00
4.12465066e-01 1.35483935e-01 2.74524122e-01 -1.15328503e+00
-3.89816314e-01 -8.95699203e-01 -4.43921208e-01 1.27630448e+00
8.72852147e-01 -6.49481237e-01 4.89231765e-01 9.39211071e-01
-1.12071801e-02 -6.23698831e-01 -6.88023388e-01 -9.09602463e-01
6.34914160e-01 -6.19697511e-01 5.57281137e-01 1.20187831e+00
1.56485274e-01 2.56804019e-01 -2.96914399e-01 -3.14705670e-02
1.74242973e-01 -8.31221938e-02 4.97039080e-01 -1.45411766e+00
-2.70940453e-01 -7.50963449e-01 1.40826315e-01 -1.17656934e+00
3.81919771e-01 -1.15736139e+00 -4.13316816e-01 -1.57073796e+00
-7.68818557e-02 -4.72603679e-01 -1.97340012e-01 6.25057697e-01
-2.75220215e-01 -2.25000251e-02 2.89544433e-01 1.37451410e-01
-4.15974498e-01 2.81140625e-01 7.67011404e-01 -3.30622569e-02
-3.11316699e-01 3.35028209e-02 -8.17813396e-01 8.82486105e-01
1.21158326e+00 -2.55369931e-01 -1.56093717e-01 -7.34599471e-01
6.63487315e-01 -5.14037669e-01 1.80034172e-02 -5.55666983e-01
2.84113079e-01 -1.65444687e-01 3.84904742e-01 -3.48529905e-01
-4.54480480e-03 -5.95719516e-01 -5.97964585e-01 4.24737275e-01
-3.09195161e-01 1.77055895e-01 5.44888489e-02 3.27145576e-01
-1.20005244e-02 -4.53124702e-01 6.06105626e-01 2.43138075e-02
-2.27245525e-01 3.88599306e-01 -6.77615583e-01 2.74137318e-01
6.27756894e-01 -5.38123287e-02 -2.39630446e-01 -3.04546565e-01
-5.44018924e-01 2.01748937e-01 4.51955587e-01 3.28041792e-01
1.24652565e-01 -1.11397982e+00 -6.08849227e-01 2.40100488e-01
-2.65287787e-01 -6.12217672e-02 -1.68438271e-01 7.96881497e-01
-8.14004481e-01 7.49694645e-01 2.22093090e-01 7.70552158e-02
-1.02069342e+00 4.34979230e-01 7.03780651e-02 -6.15423679e-01
-5.01196742e-01 5.59132457e-01 -3.84632498e-01 -4.85112727e-01
1.69999808e-01 -4.13066328e-01 -1.85275450e-01 2.69101888e-01
7.99508393e-01 7.00761735e-01 4.89893049e-01 -7.05082417e-02
-8.64262227e-03 -5.07211797e-02 -5.53821921e-01 -5.84483966e-02
1.37799299e+00 -3.40957171e-03 -1.16309807e-01 3.63527119e-01
8.17157984e-01 3.17577451e-01 -1.12472951e+00 -2.88624436e-01
3.85575920e-01 -3.44479591e-01 -1.60307623e-02 -7.33001292e-01
-5.78823686e-01 1.27789080e+00 -5.51312342e-02 7.01803938e-02
5.42327404e-01 -5.22431195e-01 1.03385127e+00 9.03709054e-01
-4.20353003e-02 -1.70711446e+00 -3.93213481e-01 1.14407647e+00
2.81665742e-01 -1.12276649e+00 -1.94430605e-01 -2.40952503e-02
-3.86166692e-01 1.21493411e+00 2.06408411e-01 7.97203034e-02
5.12293756e-01 2.26578996e-01 -1.67613581e-01 2.35442445e-01
-8.34390581e-01 -3.65568362e-02 1.74022511e-01 4.74923998e-01
5.74285984e-01 2.77210362e-02 -4.61979002e-01 6.52668178e-01
-4.87370163e-01 8.27743709e-02 3.88605207e-01 5.44174552e-01
-4.70220536e-01 -1.09621096e+00 1.15480445e-01 8.25439632e-01
-8.61546814e-01 -6.34957910e-01 -6.30755901e-01 6.71736419e-01
-1.80818766e-01 1.16499722e+00 1.55247480e-01 1.12206228e-01
4.33855206e-02 4.49199289e-01 2.57193357e-01 -6.55045986e-01
-7.74432242e-01 -3.74899983e-01 3.70884687e-01 -3.26418787e-01
4.30284828e-01 -7.56307006e-01 -1.08146250e+00 -8.03192496e-01
-1.33110851e-01 3.69477645e-02 5.77650130e-01 1.32102072e+00
6.60996139e-01 5.38914241e-02 4.46071178e-01 -4.25316423e-01
-9.60437298e-01 -1.02075875e+00 -4.28735435e-01 3.91077220e-01
3.70577246e-01 -1.64526984e-01 -2.28585139e-01 1.44958943e-01] | [11.00686264038086, 9.053417205810547] |
8d9ae447-3263-442e-be48-e91abe5eb284 | accelerating-and-compressing-deep-neural | 2304.01914 | null | https://arxiv.org/abs/2304.01914v1 | https://arxiv.org/pdf/2304.01914v1.pdf | Accelerating and Compressing Deep Neural Networks for Massive MIMO CSI Feedback | The recent advances in machine learning and deep neural networks have made them attractive candidates for wireless communications functions such as channel estimation, decoding, and downlink channel state information (CSI) compression. However, most of these neural networks are large and inefficient making it a barrier for deployment in practical wireless systems that require low-latency and low memory footprints for individual network functions. To mitigate these limitations, we propose accelerated and compressed efficient neural networks for massive MIMO CSI feedback. Specifically, we have thoroughly investigated the adoption of network pruning, post-training dynamic range quantization, and weight clustering to optimize CSI feedback compression for massive MIMO systems. Furthermore, we have deployed the proposed model compression techniques on commodity hardware and demonstrated that in order to achieve inference gains, specialized libraries that accelerate computations for sparse neural networks are required. Our findings indicate that there is remarkable value in applying these model compression techniques and the proposed joint pruning and quantization approach reduced model size by 86.5% and inference time by 76.2% with minimal impact to model accuracy. These compression methods are crucial to pave the way for practical adoption and deployments of deep learning-based techniques in commercial wireless systems. | ['Hatem Abou-zeid', 'Omar Erak'] | 2023-01-20 | null | null | null | null | ['model-compression'] | ['methodology'] | [ 2.08936185e-01 -1.89064413e-01 -3.85640204e-01 -4.60670412e-01
-4.36256140e-01 -3.03285997e-02 -3.70803173e-03 1.32425666e-01
-6.06479228e-01 7.65097022e-01 -8.73059686e-03 -8.44606459e-01
-3.06909174e-01 -6.98467016e-01 -8.54679644e-01 -6.30550921e-01
-6.25699341e-01 6.19303137e-02 -8.47640336e-02 -9.14306119e-02
3.54413167e-02 6.27124965e-01 -1.33298910e+00 4.94915359e-02
3.04230183e-01 1.64657223e+00 3.63779306e-01 7.39671350e-01
9.60134938e-02 8.97357523e-01 -6.36637986e-01 -4.66613084e-01
4.60949600e-01 4.69972678e-02 -1.16638593e-01 -5.46531558e-01
2.53691018e-01 -9.82823730e-01 -1.18411851e+00 8.50976884e-01
9.98754919e-01 -1.69415757e-01 3.04029226e-01 -9.77868617e-01
6.64430261e-02 1.10814714e+00 -3.05001289e-01 1.85420528e-01
-2.94006407e-01 -4.31425154e-01 6.63395464e-01 -6.94026828e-01
5.52511066e-02 9.99130249e-01 1.02094817e+00 3.56319547e-01
-6.37148380e-01 -1.20367849e+00 -2.58370966e-01 4.79939491e-01
-1.64981711e+00 -1.22116876e+00 5.18454790e-01 3.03994089e-01
1.30227268e+00 3.59551191e-01 6.65306687e-01 6.09922409e-01
1.58076331e-01 7.69469082e-01 2.78060734e-01 -6.11468732e-01
5.23111463e-01 -5.95824569e-02 -1.53142348e-01 6.86538517e-01
6.12043560e-01 1.59564361e-01 -5.84076703e-01 -1.06133625e-01
8.80391419e-01 4.11982648e-02 -1.34567739e-02 9.71410982e-03
-6.91958189e-01 5.02534568e-01 5.22389829e-01 2.49458533e-02
-3.68024826e-01 1.04260540e+00 5.96209168e-01 4.62808788e-01
1.46973938e-01 8.03131610e-03 -3.92794698e-01 -3.30855131e-01
-1.31381869e+00 1.74701378e-01 1.03738832e+00 1.29021358e+00
5.15065372e-01 5.15891790e-01 1.41643718e-01 7.74761617e-01
2.07875907e-01 6.55435741e-01 2.98236609e-01 -1.18858600e+00
8.56886089e-01 2.01353207e-02 -3.72692674e-01 -1.24671030e+00
-4.41247493e-01 -1.18582201e+00 -1.48601425e+00 -4.48580712e-01
-3.52326304e-01 -4.60451424e-01 -6.97641015e-01 1.47854328e+00
-6.17491715e-02 5.48770070e-01 2.42235675e-01 5.24477661e-01
5.18344700e-01 5.04275560e-01 -2.47901022e-01 -1.26452073e-01
5.89118361e-01 -8.12063396e-01 -8.24596167e-01 -1.94840774e-01
1.00180316e+00 -6.36134684e-01 4.38531339e-01 4.05689865e-01
-1.45547009e+00 -2.91968435e-01 -1.60671568e+00 1.57782525e-01
1.59880146e-02 3.50162506e-01 1.12964177e+00 9.56920207e-01
-1.19089878e+00 8.35092723e-01 -1.16573453e+00 1.95136502e-01
7.66523719e-01 1.02829373e+00 9.93838310e-02 -2.36783490e-01
-1.20383871e+00 4.28859174e-01 5.25725126e-01 2.32119471e-01
-7.13236451e-01 -6.18409395e-01 -7.02303469e-01 8.22852671e-01
-6.11125603e-02 -4.64075208e-01 1.39923596e+00 -6.10701621e-01
-1.29724360e+00 -1.62800819e-01 -2.81598687e-01 -1.27885079e+00
-2.90436990e-04 -1.38173014e-01 -4.58438694e-01 2.24431977e-01
-7.15939879e-01 4.77733821e-01 6.20040178e-01 -7.22426176e-01
-6.21411026e-01 -2.01999009e-01 -1.84257403e-01 1.77604139e-01
-1.19339740e+00 -1.59752563e-01 -7.33045816e-01 -5.47296047e-01
3.70475441e-01 -7.55615890e-01 -4.96265680e-01 1.86346218e-01
1.28377946e-02 4.96677339e-01 9.33880091e-01 -7.07422197e-01
1.73443389e+00 -1.99762380e+00 -6.17860973e-01 6.74199045e-01
3.48948061e-01 5.84143817e-01 1.06801428e-01 2.70523638e-01
4.78767484e-01 1.58143900e-02 2.25956157e-01 -5.08027971e-01
-1.81354091e-01 4.08386558e-01 -1.27486214e-01 3.43123615e-01
-3.34525496e-01 7.58185208e-01 -3.98092657e-01 -3.38516921e-01
1.42039165e-01 5.63779354e-01 -9.39032495e-01 -7.37823471e-02
8.93425122e-02 -1.84943050e-01 -2.72603631e-01 7.08405018e-01
7.53552258e-01 -3.56213272e-01 4.07887876e-01 -4.46451187e-01
1.82961762e-01 5.89298785e-01 -1.06935775e+00 1.44514680e+00
-6.64659977e-01 8.21786284e-01 3.42396438e-01 -1.38474810e+00
7.01362252e-01 5.53386867e-01 4.36845899e-01 -1.09211457e+00
4.54299808e-01 2.76448607e-01 7.58636594e-02 -5.50530255e-02
5.78979075e-01 3.17488074e-01 2.23241597e-02 1.36145517e-01
8.60591233e-02 2.17809558e-01 1.65125579e-01 3.79056096e-01
1.11740065e+00 -5.76548874e-01 8.31384957e-02 4.49251048e-02
1.03200369e-01 -3.17245096e-01 5.09810209e-01 1.04198432e+00
-2.36088037e-02 6.55913875e-02 7.69510865e-02 -3.21582556e-01
-1.24161160e+00 -6.40710950e-01 -5.31336963e-02 1.08697355e+00
4.65044081e-02 -5.32240093e-01 -6.34124577e-01 3.70650828e-01
-1.49161279e-01 2.84409165e-01 7.86090717e-02 -3.53503406e-01
-4.67989266e-01 -7.25934327e-01 1.06248319e+00 6.43406987e-01
7.62556016e-01 -2.21623361e-01 -5.03484905e-01 4.69526410e-01
1.84721217e-01 -1.37207425e+00 6.46305010e-02 7.82612562e-01
-1.22514188e+00 -3.11675519e-01 -5.07303596e-01 -7.67202854e-01
4.94054466e-01 4.26923364e-01 8.38925958e-01 3.78562391e-01
-8.18343647e-03 -8.88830572e-02 -2.30960876e-01 -4.96173978e-01
-2.73225993e-01 3.50052088e-01 3.11897874e-01 -5.80345333e-01
6.35448620e-02 -1.05543780e+00 -5.78819215e-01 -1.12590678e-01
-6.87950909e-01 2.83443421e-01 1.01159942e+00 7.39040494e-01
5.24941504e-01 2.02564612e-01 4.07008350e-01 -5.27277887e-01
6.24663115e-01 -4.65865105e-01 -6.74336314e-01 3.09436679e-01
-7.73299754e-01 1.49064451e-01 7.78107524e-01 -2.08376229e-01
-7.85771310e-01 3.59921157e-02 -5.92859149e-01 -3.20829630e-01
3.09371024e-01 9.23853636e-01 8.08181539e-02 -7.37267017e-01
5.67823887e-01 1.29371226e-01 -7.77786672e-02 -3.54319543e-01
-1.16452269e-01 1.08808160e+00 5.35884142e-01 -3.96856695e-01
4.18323159e-01 2.90571988e-01 4.44560945e-01 -1.00441086e+00
-5.38901687e-01 -3.15112025e-01 -3.03719819e-01 2.06316292e-01
-3.83314379e-02 -1.48228741e+00 -7.24263072e-01 2.48064145e-01
-8.18644941e-01 -4.23437178e-01 3.11707079e-01 5.74909270e-01
-1.68537661e-01 4.21550542e-01 -8.33240390e-01 -8.17376375e-01
-9.26697254e-01 -9.86422718e-01 5.30420959e-01 1.26976758e-01
1.85123771e-01 -7.48823225e-01 -5.84113955e-01 -3.07772644e-02
1.12692654e+00 -3.36871147e-01 7.83027768e-01 -4.25774992e-01
-7.14574635e-01 -6.32194579e-01 -3.98277223e-01 4.74349380e-01
-2.35976160e-01 -4.38712358e-01 -1.00075877e+00 -4.72869337e-01
-3.18432927e-01 -4.38220382e-01 7.36838639e-01 5.54034591e-01
1.81221509e+00 -5.28832555e-01 -3.15021843e-01 1.25942230e+00
1.39418578e+00 2.53752917e-01 4.20242935e-01 -1.17302887e-01
5.56709707e-01 -3.84584635e-01 1.46556363e-01 9.80367839e-01
1.41977832e-01 4.88319337e-01 5.00401437e-01 -1.22741491e-01
-6.62093088e-02 -1.38781250e-01 9.21012089e-02 1.49364638e+00
1.47087276e-01 -8.64600837e-02 -5.99812806e-01 2.94323027e-01
-1.59023392e+00 -7.67823160e-01 3.80443960e-01 2.15406013e+00
8.28991592e-01 5.23608506e-01 -5.11280000e-01 5.75898528e-01
1.66741535e-01 -1.21801361e-01 -6.02005899e-01 -5.56706488e-01
-3.59325819e-02 6.20343029e-01 1.37063015e+00 2.72462875e-01
-9.64106977e-01 7.95962274e-01 6.19657230e+00 1.09577036e+00
-1.36541593e+00 3.58924493e-02 7.59333849e-01 -4.57184762e-01
-1.19694106e-01 -1.81237713e-01 -1.08644605e+00 1.30385339e-01
1.73229766e+00 5.58843948e-02 6.60021305e-01 1.05324602e+00
4.18470770e-01 1.13897026e-01 -7.38633633e-01 1.34736943e+00
-3.49420667e-01 -1.86734140e+00 -1.61217432e-02 9.30652115e-03
7.43263125e-01 4.31530714e-01 -1.52362213e-02 3.11259180e-01
3.60517949e-02 -1.07018435e+00 5.99334955e-01 1.24591641e-01
1.09414089e+00 -1.03027773e+00 8.86606097e-01 3.27119291e-01
-1.27806330e+00 -4.65434521e-01 -8.38316023e-01 -5.83589613e-01
1.87939540e-01 7.48523057e-01 -1.15263975e+00 2.20048770e-01
5.93036890e-01 4.48066711e-01 -2.59629071e-01 1.25045729e+00
3.85766208e-01 9.68684494e-01 -7.18229294e-01 -1.88525006e-01
1.31331444e-01 3.35729659e-01 -2.27662653e-01 1.29484034e+00
5.94700754e-01 -1.55620277e-01 3.79556641e-02 9.11264494e-02
-4.64154661e-01 -3.34921479e-01 -2.78893292e-01 -1.64044380e-01
1.20246840e+00 7.69986689e-01 -3.37581038e-01 -5.45494556e-01
-4.44043517e-01 6.82737708e-01 1.52579442e-01 4.01011288e-01
-7.31018484e-01 -6.10286713e-01 7.34651089e-01 -1.28239810e-01
3.94887865e-01 -6.40409529e-01 -7.75553465e-01 -7.87788212e-01
-5.43093346e-02 -6.60652936e-01 -1.61294416e-01 -2.13579193e-01
-1.90875158e-01 2.84310997e-01 -2.03400970e-01 -8.29012632e-01
-4.06127304e-01 -3.90225112e-01 -1.15825810e-01 6.80019200e-01
-1.67770565e+00 -7.52869725e-01 -3.82867277e-01 6.99353993e-01
2.16382787e-01 -3.30394924e-01 9.68141377e-01 1.00213110e+00
-5.26998580e-01 1.42424774e+00 7.87706733e-01 1.06279962e-01
1.91832818e-02 -4.51030970e-01 5.93230009e-01 8.60143483e-01
5.26648201e-02 8.14497650e-01 4.94722605e-01 -3.74746591e-01
-1.99539745e+00 -1.15175021e+00 6.60693526e-01 7.83523917e-01
4.24965352e-01 -4.49919522e-01 -4.72385615e-01 4.76597339e-01
-1.97028935e-01 1.10548325e-01 8.06491792e-01 -4.65006717e-02
5.68218008e-02 -5.98544061e-01 -9.91690278e-01 5.82138717e-01
1.08206952e+00 -3.74656290e-01 4.20231640e-01 2.63591319e-01
8.27519536e-01 -6.79948092e-01 -9.39263821e-01 4.39385712e-01
9.35644090e-01 -7.32848227e-01 1.13363516e+00 -9.95862260e-02
1.26377478e-01 2.75277674e-01 -6.67350769e-01 -7.44545877e-01
-1.41135052e-01 -6.11799777e-01 -9.43541288e-01 6.05808377e-01
5.21759808e-01 -2.31435016e-01 1.23741567e+00 5.25780141e-01
-4.91601259e-01 -1.02027583e+00 -8.65566492e-01 -5.55043399e-01
-3.27135086e-01 -9.32239711e-01 6.05709195e-01 3.33593428e-01
-1.92776650e-01 -6.97803497e-02 -7.08497822e-01 2.24125504e-01
6.45718455e-01 -4.75746423e-01 7.38820851e-01 -9.36645985e-01
-5.99313378e-01 -1.76720455e-01 -3.52295369e-01 -1.61284673e+00
-2.18822166e-01 -6.46485031e-01 -2.94279009e-01 -1.23658335e+00
-1.82777181e-01 -1.03748500e+00 -4.85646218e-01 3.24684471e-01
4.95451629e-01 2.93719977e-01 1.14744958e-02 1.69034988e-01
-6.80979371e-01 4.22571599e-01 7.99862981e-01 1.04947396e-01
-7.14113265e-02 2.57738918e-01 -7.18750775e-01 4.19121504e-01
9.86752152e-01 -2.93741643e-01 -5.97355664e-01 -7.75299609e-01
3.88050020e-01 3.39428395e-01 7.15062534e-03 -1.61552513e+00
7.94084668e-01 2.21402958e-01 6.51631057e-01 -5.73383570e-01
6.59303308e-01 -9.74425256e-01 -5.89876436e-02 8.28736424e-01
-3.22793096e-01 -4.98266183e-02 2.90976346e-01 3.98315966e-01
-1.83573574e-01 -1.79326609e-02 5.74373722e-01 3.12509164e-02
-8.08538914e-01 5.09132206e-01 -4.29116279e-01 -3.78149956e-01
4.29072767e-01 -3.15903991e-01 1.89392224e-01 -7.24575162e-01
-3.87797594e-01 4.68500331e-02 -1.37250587e-01 -1.16745062e-01
9.43099797e-01 -1.05379796e+00 -2.18197003e-01 4.35026348e-01
-4.92366105e-01 3.99738438e-02 1.40626088e-01 7.31405199e-01
-9.36541259e-01 1.08143258e+00 -1.53473496e-01 -3.95757616e-01
-1.35796916e+00 -1.03571951e-01 2.43873343e-01 -9.35299173e-02
-3.39923322e-01 1.11820853e+00 -5.97547472e-01 -4.62589934e-02
1.22023523e+00 -5.87664127e-01 3.05379599e-01 -7.61900961e-01
7.88626075e-01 4.30069059e-01 5.35718322e-01 -3.81693132e-02
-7.63464496e-02 -1.34171143e-01 -8.48891512e-02 1.03256278e-01
1.30505264e+00 -2.77763546e-01 1.44896880e-01 -1.66006520e-01
1.41317201e+00 -4.79934245e-01 -1.20659399e+00 -4.35143352e-01
-1.05891049e-01 -2.24295288e-01 8.05679560e-01 -5.47067225e-01
-1.33121443e+00 1.06957221e+00 8.82595479e-01 -2.51462519e-01
1.47694504e+00 -4.84463185e-01 1.26156580e+00 1.18857992e+00
6.89941823e-01 -1.07465088e+00 -4.46651191e-01 7.16095567e-01
1.41249463e-01 -7.72216082e-01 1.97263584e-01 -1.67174444e-01
1.02010362e-01 1.11532867e+00 1.81513846e-01 4.63123992e-02
1.00014043e+00 9.84376073e-01 -3.17957580e-01 1.24862142e-01
-9.13431346e-01 3.00646871e-01 -8.44672173e-02 4.97529358e-01
5.52926123e-01 1.30215451e-01 -1.14567526e-01 5.04734814e-01
-4.49742824e-01 2.34619021e-01 2.71544516e-01 1.12053788e+00
-8.09677064e-01 -1.00924790e+00 -1.28469020e-01 1.03055477e+00
-6.37404859e-01 -5.70224345e-01 2.79164106e-01 3.06869715e-01
-2.06886917e-01 8.21386337e-01 8.80606249e-02 -8.17722559e-01
-2.37409979e-01 -5.08561015e-01 5.08722425e-01 -1.74723133e-01
-3.59870940e-01 8.68142769e-03 2.50007987e-01 -5.28448880e-01
7.76732862e-02 -4.63605896e-02 -1.26709616e+00 -7.60133564e-01
-4.16845858e-01 -4.12328169e-02 1.34743237e+00 1.09355974e+00
6.65135324e-01 6.24824405e-01 3.73192698e-01 -9.23639119e-01
-9.27524030e-01 -7.71489620e-01 -4.45866674e-01 -5.27868629e-01
3.65933418e-01 -3.52192849e-01 6.77086785e-02 -2.13424325e-01] | [8.490293502807617, 2.9368550777435303] |
76bdd3cd-1ad7-4aa1-8a63-43fb6fe46c6f | entitybert-entity-centric-masking-strategy | null | null | https://aclanthology.org/2021.bionlp-1.21 | https://aclanthology.org/2021.bionlp-1.21.pdf | EntityBERT: Entity-centric Masking Strategy for Model Pretraining for the Clinical Domain | Transformer-based neural language models have led to breakthroughs for a variety of natural language processing (NLP) tasks. However, most models are pretrained on general domain data. We propose a methodology to produce a model focused on the clinical domain: continued pretraining of a model with a broad representation of biomedical terminology (PubMedBERT) on a clinical corpus along with a novel entity-centric masking strategy to infuse domain knowledge in the learning process. We show that such a model achieves superior results on clinical extraction tasks by comparing our entity-centric masking strategy with classic random masking on three clinical NLP tasks: cross-domain negation detection, document time relation (DocTimeRel) classification, and temporal relation extraction. We also evaluate our models on the PubMedQA dataset to measure the models’ performance on a non-entity-centric task in the biomedical domain. The language addressed in this work is English. | ['Guergana Savova', 'Steven Bethard', 'Dmitriy Dligach', 'Timothy Miller', 'Chen Lin'] | null | null | null | null | naacl-bionlp-2021-6 | ['temporal-relation-extraction', 'negation-detection'] | ['natural-language-processing', 'natural-language-processing'] | [ 5.29877007e-01 4.76847649e-01 -4.12866563e-01 -4.38739151e-01
-9.88565743e-01 -3.77273798e-01 5.06491601e-01 6.92203343e-01
-8.78048301e-01 9.26550567e-01 3.65080804e-01 -7.81080663e-01
-1.90158516e-01 -5.56597054e-01 -6.00640595e-01 -3.07326347e-01
-1.81248203e-01 7.33404160e-01 1.95730194e-01 -1.56664833e-01
-2.04257265e-01 5.10763049e-01 -6.50360525e-01 1.04073036e+00
8.89065504e-01 7.56353080e-01 -1.49966225e-01 2.48058975e-01
2.93574519e-02 1.04133356e+00 -6.57661736e-01 -5.57699621e-01
-6.72509000e-02 -3.76889050e-01 -1.05851412e+00 -5.57257354e-01
-1.41235888e-01 2.63760209e-01 -1.42263249e-01 8.37349653e-01
3.98477972e-01 -3.93990457e-01 6.05264068e-01 -9.18450952e-01
-4.29489434e-01 9.28815961e-01 -1.78239807e-01 4.94332850e-01
2.39278704e-01 -2.31594108e-02 8.96654785e-01 -6.95238173e-01
1.14323497e+00 8.40741873e-01 8.78415346e-01 5.64645946e-01
-1.30068183e+00 -7.60630310e-01 1.19815588e-01 2.56645232e-01
-1.40914750e+00 -2.12676510e-01 4.76962209e-01 -3.42851251e-01
1.76469016e+00 1.90455556e-01 3.24179053e-01 1.35305405e+00
9.80923474e-01 6.69806600e-01 9.88991022e-01 -5.74748099e-01
2.38667399e-01 2.70039499e-01 2.28577927e-01 7.53016174e-01
1.72526568e-01 1.99312910e-01 -5.19788325e-01 -4.80182648e-01
1.53851688e-01 -1.85965672e-01 -2.06973657e-01 1.35192405e-02
-1.28550863e+00 8.36549580e-01 2.41562337e-01 7.82078326e-01
-7.26240039e-01 -2.42531031e-01 7.66108990e-01 4.49416786e-01
5.75151324e-01 7.58008718e-01 -1.09732318e+00 3.44816059e-01
-1.29080999e+00 1.75075635e-01 9.80428159e-01 8.23931038e-01
4.80047846e-03 -3.13492060e-01 -3.95642668e-01 6.89146817e-01
4.18998748e-02 1.25819743e-01 9.15211737e-01 -3.91472369e-01
6.04271591e-01 6.04211926e-01 -2.14699566e-01 -6.47341013e-01
-7.81833768e-01 -6.92014813e-01 -8.68412495e-01 -3.00643921e-01
1.43111706e-01 -2.51445204e-01 -1.33636343e+00 1.87232363e+00
-6.10670336e-02 8.92511979e-02 4.17351097e-01 2.76261270e-01
9.38386798e-01 3.12149793e-01 6.44983113e-01 -3.90094519e-01
1.78439939e+00 -5.88334620e-01 -1.20435190e+00 -2.57138163e-01
1.19717574e+00 -4.47532654e-01 3.22125524e-01 5.20292878e-01
-1.05390191e+00 -7.37329423e-02 -1.02457476e+00 -1.60449192e-01
-8.34454715e-01 2.32716635e-01 6.00881279e-01 2.76326090e-01
-9.77791250e-01 4.72935140e-01 -1.02138972e+00 -3.85098338e-01
4.32778746e-01 6.21121407e-01 -5.33160448e-01 -2.69098897e-02
-1.80958331e+00 1.56706762e+00 7.41120040e-01 -3.41673046e-02
-6.23482287e-01 -9.65654492e-01 -9.34312582e-01 6.94455430e-02
3.16418439e-01 -1.12844050e+00 1.35263324e+00 -6.32392526e-01
-1.01223719e+00 1.23951900e+00 -2.49372795e-01 -1.03487253e+00
3.65342677e-01 2.08755415e-02 -7.73999751e-01 9.52229649e-02
2.40445614e-01 5.86217165e-01 4.01898265e-01 -5.95588088e-01
-5.01977921e-01 -2.47522190e-01 -3.27903509e-01 -8.70523974e-02
-1.73009858e-01 1.67074591e-01 -1.80415928e-01 -9.02813315e-01
-1.55564606e-01 -6.35024130e-01 -5.56474566e-01 -3.70768487e-01
-5.87217212e-01 -3.14409256e-01 3.77141058e-01 -8.65019441e-01
1.46704793e+00 -1.97120869e+00 1.39594629e-01 1.23461038e-01
2.24297017e-01 2.96097964e-01 -1.29863143e-01 4.84953642e-01
-8.10876429e-01 2.28301018e-01 -4.48717207e-01 -3.54946584e-01
-3.34654152e-01 3.34040552e-01 -2.68397659e-01 3.10571969e-01
6.57654941e-01 1.02033806e+00 -8.50149572e-01 -7.33570218e-01
-3.72866958e-01 3.79952788e-01 -7.16506720e-01 -1.16739333e-01
-3.33198458e-01 2.02907547e-01 -2.95944870e-01 7.07683623e-01
3.54402781e-01 -3.35676610e-01 4.14731354e-01 -3.05928260e-01
1.93404645e-01 7.60234714e-01 -5.13912737e-01 1.72825277e+00
-4.22063202e-01 2.39523098e-01 -1.60546556e-01 -1.05425489e+00
3.67297113e-01 8.83696258e-01 8.44597936e-01 -6.57873988e-01
1.05169453e-01 2.71893173e-01 3.23083788e-01 -6.62803531e-01
1.62584156e-01 -6.91489577e-01 -2.56390460e-02 1.44749627e-01
4.07388300e-01 2.12934598e-01 2.23329157e-01 2.10807323e-01
1.51005626e+00 -5.16118370e-02 7.21741736e-01 -3.24782312e-01
6.35604739e-01 4.25857782e-01 6.31760538e-01 5.01395285e-01
-1.20112821e-01 2.73101062e-01 5.25337934e-01 -3.39076757e-01
-5.96344352e-01 -7.49100983e-01 -5.58000565e-01 6.20367408e-01
-6.00814342e-01 -7.21378267e-01 -4.09370542e-01 -1.10581481e+00
4.92304750e-03 8.29617977e-01 -7.90074110e-01 -3.84231567e-01
-7.80716300e-01 -1.28322589e+00 9.91485178e-01 5.23585498e-01
1.19921286e-02 -1.19392836e+00 -5.31350315e-01 6.54679596e-01
-2.85665423e-01 -1.49561775e+00 -2.57677913e-01 9.52064335e-01
-1.13611007e+00 -1.21995187e+00 -5.56394815e-01 -9.41613793e-01
4.66559470e-01 -7.15733349e-01 1.31658065e+00 -2.82316774e-01
-3.53881925e-01 4.13883999e-02 -7.91318640e-02 -7.05547690e-01
-6.95605874e-01 2.51536757e-01 -1.81330696e-01 -5.02017677e-01
9.42585289e-01 -2.83487707e-01 -3.21391433e-01 -1.02838673e-01
-1.11703634e+00 -6.92449212e-02 8.13798070e-01 1.14494157e+00
6.04047120e-01 1.24533981e-01 7.05305517e-01 -1.24314392e+00
8.14675272e-01 -7.21539915e-01 -2.00560287e-01 2.34757498e-01
-8.12774003e-01 2.65902132e-01 5.11489391e-01 -4.49159265e-01
-8.76393735e-01 1.72738776e-01 -4.24186528e-01 -1.43811837e-01
-1.15848973e-01 1.12832844e+00 5.34848347e-02 4.09926534e-01
8.89032245e-01 2.15295687e-01 -2.21875817e-01 -4.52643126e-01
2.49017000e-01 4.00499910e-01 4.45319176e-01 -3.58609587e-01
3.52372408e-01 3.97023022e-01 5.27211018e-02 -4.45254982e-01
-8.76264155e-01 -4.47787166e-01 -5.26082575e-01 7.64314234e-01
9.83771563e-01 -9.41153228e-01 -3.81833285e-01 2.27221418e-02
-1.30840290e+00 -9.40805227e-02 -2.85706758e-01 7.39559889e-01
-3.34676564e-01 7.69965500e-02 -8.38044941e-01 -3.25711370e-01
-5.98249912e-01 -9.25112724e-01 1.05177677e+00 -3.68573189e-01
-5.84683001e-01 -1.18947673e+00 3.35270166e-01 -4.99155894e-02
9.90934446e-02 1.65308774e-01 1.57575774e+00 -1.34372044e+00
-1.09151103e-01 -2.08944663e-01 -4.71982807e-02 2.69377470e-01
2.83583432e-01 -4.37351853e-01 -8.21915030e-01 -1.03942111e-01
2.80377775e-01 -7.40199760e-02 1.00135183e+00 3.87970388e-01
1.00751460e+00 -3.54975879e-01 -9.13209498e-01 4.77449805e-01
1.29439616e+00 4.90632862e-01 4.00865614e-01 3.11924487e-01
2.67652661e-01 4.54452753e-01 4.58010674e-01 -6.08411012e-03
2.95084029e-01 4.24898863e-01 1.06916294e-01 -4.14697230e-01
-1.10635990e-02 -6.42733183e-03 9.21422765e-02 5.78923404e-01
1.32118151e-01 -3.30754936e-01 -1.37099206e+00 8.73345971e-01
-1.63908732e+00 -6.55171275e-01 1.62173167e-01 1.67524207e+00
1.53421104e+00 3.56766075e-01 -1.97565794e-01 7.12222829e-02
2.90199697e-01 -4.01561081e-01 -3.60664815e-01 -5.01200914e-01
-1.69240206e-01 7.53463268e-01 4.95058209e-01 3.34677339e-01
-1.22984195e+00 9.04156864e-01 6.71946526e+00 5.76261461e-01
-1.26610696e+00 3.40182096e-01 5.09812653e-01 -1.84005312e-05
-1.06268659e-01 -3.12029302e-01 -9.07848895e-01 3.01539212e-01
1.35717165e+00 -9.10972357e-02 -2.79610664e-01 4.77120101e-01
1.38586745e-01 6.09790944e-02 -1.75173247e+00 6.89810395e-01
-5.28343022e-02 -1.63248765e+00 4.87058200e-02 5.95530532e-02
3.73296976e-01 1.79980323e-01 -2.68876888e-02 5.34561992e-01
3.15341651e-01 -1.39166772e+00 2.43773922e-01 4.58634973e-01
7.75474787e-01 -4.66781646e-01 1.07148993e+00 2.57949948e-01
-7.06881285e-01 3.49293947e-02 1.31402925e-01 3.88995588e-01
1.01676241e-01 7.05110431e-01 -1.40287304e+00 9.12053287e-01
5.87618113e-01 7.65465200e-01 -4.91008937e-01 8.96030486e-01
-1.81994319e-01 5.70104361e-01 -2.43388101e-01 2.90383786e-01
2.67283380e-01 3.99493515e-01 5.34696341e-01 1.72053564e+00
-1.54711083e-02 2.30867669e-01 2.22714996e-04 6.80934310e-01
-2.94725835e-01 3.02361846e-01 -7.70266652e-01 -2.54982829e-01
2.16002598e-01 8.66543531e-01 -6.15744412e-01 -5.18454254e-01
-4.55751389e-01 7.43662000e-01 1.22609600e-01 2.73148775e-01
-8.97297680e-01 -3.49886417e-01 2.71911651e-01 9.95191336e-02
2.85330206e-01 2.28279114e-01 -3.47130805e-01 -1.15496886e+00
-7.83380494e-03 -1.16258299e+00 9.52771723e-01 -5.19221187e-01
-1.30914974e+00 9.60455775e-01 1.83392555e-01 -1.07190478e+00
-6.01899147e-01 -7.35897243e-01 -1.19810559e-01 1.17325926e+00
-1.75669515e+00 -1.15727031e+00 5.40264845e-01 7.36947894e-01
7.44813234e-02 -2.38068536e-01 1.23832119e+00 7.37878442e-01
-2.12175220e-01 6.32336915e-01 -4.01629865e-01 3.88601154e-01
9.73459363e-01 -1.14878583e+00 1.12451985e-01 6.14374697e-01
-6.27363846e-02 1.14533174e+00 6.14311159e-01 -7.94958770e-01
-8.00387561e-01 -1.36201155e+00 1.74269807e+00 -6.30049706e-01
7.43611991e-01 -1.50801003e-01 -9.57714379e-01 1.08130813e+00
3.27479750e-01 -1.31693631e-01 1.00952327e+00 2.42177963e-01
-3.56759429e-01 1.46786392e-01 -1.35668409e+00 4.50429022e-01
8.36026669e-01 -7.44690180e-01 -1.24845636e+00 6.20904803e-01
7.81756580e-01 -4.55461234e-01 -1.15301657e+00 8.00863504e-01
1.77811906e-01 -2.54939757e-02 1.00108874e+00 -1.32086921e+00
4.93451685e-01 -1.31395385e-01 8.60828161e-02 -1.26105785e+00
-1.87168792e-01 -4.26818937e-01 -2.11913481e-01 6.45266533e-01
9.63416636e-01 -7.06631958e-01 5.59553623e-01 2.28158683e-01
-1.57809034e-01 -9.21123385e-01 -1.07691336e+00 -6.91345572e-01
4.50239331e-01 -3.22057605e-01 1.45485699e-01 1.23786175e+00
4.07099247e-01 6.10618412e-01 2.54887585e-02 2.37710640e-01
9.61758122e-02 -9.97922122e-02 -1.65251762e-01 -1.25243282e+00
-2.31787071e-01 -2.39127234e-01 -3.21821153e-01 -3.50080758e-01
2.31070668e-01 -1.31880534e+00 8.08427390e-03 -1.62779272e+00
2.21146956e-01 -1.66274205e-01 -7.20701993e-01 1.16041708e+00
-3.84158976e-02 2.61183046e-02 -2.90335327e-01 -9.62814391e-02
-2.15220168e-01 2.53238827e-02 9.46301997e-01 -4.51804787e-01
-2.54859656e-01 -1.64191231e-01 -7.51637101e-01 6.38921082e-01
5.85251331e-01 -1.08820093e+00 -3.98047894e-01 -2.81967849e-01
3.86609226e-01 2.69227803e-01 1.72646970e-01 -7.02133536e-01
4.35642213e-01 1.93396211e-01 2.74269581e-01 -6.88251853e-01
1.56260759e-01 -7.78826296e-01 -6.34757942e-03 1.01489687e+00
-5.41137099e-01 2.90601104e-01 6.98584676e-01 3.08581173e-01
-4.88379776e-01 -3.48367654e-02 7.25373983e-01 -1.72162190e-01
-3.09237719e-01 -1.35324551e-02 -5.30087352e-01 2.22988337e-01
8.01867902e-01 1.68541446e-01 -1.95081040e-01 7.99520761e-02
-1.47199416e+00 1.19002618e-01 -1.52910084e-01 3.84785235e-01
4.85618144e-01 -8.82423997e-01 -8.74212205e-01 8.30620155e-02
1.75737262e-01 -2.19770372e-01 -1.18917800e-01 1.18452060e+00
-2.78852731e-01 1.14587510e+00 -2.14407526e-04 -5.61850667e-01
-1.39961839e+00 1.01153171e+00 5.50027788e-01 -1.22983253e+00
-5.68009794e-01 8.82651567e-01 2.18085989e-01 -3.64268631e-01
3.43327850e-01 -9.76054013e-01 -3.46713006e-01 7.96652287e-02
3.09545606e-01 -4.73006368e-01 7.67653704e-01 -1.73191279e-01
-8.57014418e-01 1.87362283e-02 -5.10651767e-01 -1.69096172e-01
1.44379926e+00 5.82508862e-01 -1.65171385e-01 1.89557418e-01
1.08804619e+00 -1.36167388e-02 -7.46804029e-02 -3.96745414e-01
6.30348802e-01 5.46387076e-01 1.57624539e-02 -1.51424563e+00
-7.42883027e-01 6.51279747e-01 4.91326392e-01 -1.56343311e-01
1.32381022e+00 -9.61965546e-02 5.70875645e-01 5.89193106e-01
1.95262089e-01 -8.57049525e-01 -3.16812158e-01 6.93524241e-01
8.02404106e-01 -9.53617573e-01 1.44270718e-01 -5.07081211e-01
-5.25342822e-01 8.96375895e-01 1.98966056e-01 1.63368389e-01
1.06598437e+00 6.99604571e-01 1.50260612e-01 -5.31476557e-01
-1.09327352e+00 -8.21164101e-02 3.52007329e-01 3.96800637e-01
7.72959292e-01 -2.01985061e-01 -7.48582304e-01 1.03728652e+00
7.38994032e-02 6.33702636e-01 2.69468248e-01 1.11103332e+00
3.00374657e-01 -1.49010575e+00 -5.79945594e-02 3.10531735e-01
-1.14087713e+00 -8.66115868e-01 -3.57259899e-01 9.53191757e-01
4.53938603e-01 6.38391793e-01 -2.72670329e-01 -1.28263757e-01
3.94575864e-01 5.84378779e-01 4.25322473e-01 -1.05826843e+00
-1.11820054e+00 8.04345608e-02 5.00928164e-01 -5.71029186e-01
-4.75499064e-01 -5.03618777e-01 -1.37644076e+00 3.67399275e-01
-7.46342540e-02 4.43642318e-01 5.08311987e-01 1.07532918e+00
5.91753125e-01 1.09492028e+00 -1.76912203e-01 9.56496671e-02
-3.56960833e-01 -9.23505247e-01 -7.54404664e-02 1.68812737e-01
4.41619664e-01 -3.88444930e-01 4.65789922e-02 1.85554013e-01] | [8.514509201049805, 8.832256317138672] |