paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
178a31b6-8df8-494e-9c56-be13052a4a0a | teaser-towards-efficient-aspect-based | null | null | https://aclanthology.org/2021.ranlp-main.13 | https://aclanthology.org/2021.ranlp-main.13.pdf | TEASER: Towards Efficient Aspect-based SEntiment Analysis and Recognition | Sentiment analysis aims to detect the overall sentiment, i.e., the polarity of a sentence, paragraph, or text span, without considering the entities mentioned and their aspects. Aspect-based sentiment analysis aims to extract the aspects of the given target entities and their respective sentiments. Prior works formulate this as a sequence tagging problem or solve this task using a span-based extract-then-classify framework where first all the opinion targets are extracted from the sentence, and then with the help of span representations, the targets are classified as positive, negative, or neutral. The sequence tagging problem suffers from issues like sentiment inconsistency and colossal search space. Whereas, Span-based extract-then-classify framework suffers from issues such as half-word coverage and overlapping spans. To overcome this, we propose a similar span-based extract-then-classify framework with a novel and improved heuristic. Experiments on the three benchmark datasets (Restaurant14, Laptop14, Restaurant15) show our model consistently outperforms the current state-of-the-art. Moreover, we also present a novel supervised movie reviews dataset (Movie20) and a pseudo-labeled movie reviews dataset (moviesLarge) made explicitly for this task and report the results on the novel Movie20 dataset as well. | ['Radhika Mamidi', 'Srinath Nair', 'Ishan Upadhyay', 'Kartikey Pant', 'Vaibhav Bajaj'] | null | null | https://aclanthology.org/2021.ranlp-1.13 | https://aclanthology.org/2021.ranlp-1.13.pdf | ranlp-2021-9 | ['aspect-based-sentiment-analysis'] | ['natural-language-processing'] | [ 3.13783944e-01 -3.80063243e-02 -5.00291526e-01 -6.33007407e-01
-8.14219713e-01 -1.01958048e+00 5.47994852e-01 5.58097720e-01
-4.73852426e-01 8.68423939e-01 4.46421266e-01 -2.06460461e-01
3.06615114e-01 -6.42349005e-01 -3.72204959e-01 -4.58883494e-01
3.38172555e-01 1.12610646e-01 2.51741081e-01 -4.90295351e-01
8.66937280e-01 -1.40210465e-01 -1.32339990e+00 6.97200239e-01
8.09819400e-01 1.32481420e+00 -2.05339730e-01 3.93229216e-01
-5.27347982e-01 9.92358088e-01 -6.48812652e-01 -8.77419889e-01
-6.84622349e-03 -3.06692600e-01 -6.85600817e-01 4.69705403e-01
2.51558870e-01 3.10459763e-01 5.56938350e-01 1.15202904e+00
3.44191670e-01 1.79045454e-01 8.16885948e-01 -9.69710946e-01
-5.57731628e-01 5.34137726e-01 -8.28752100e-01 1.36719659e-01
4.92741406e-01 -4.06471401e-01 1.55675042e+00 -1.13505363e+00
7.27620304e-01 7.03718245e-01 4.62741047e-01 2.96197057e-01
-6.27931595e-01 -2.61291116e-01 7.85055876e-01 2.63815485e-02
-7.86266446e-01 -1.14852287e-01 8.10226321e-01 -3.53850543e-01
1.11203659e+00 2.52878904e-01 6.40135348e-01 8.35337818e-01
3.46819609e-01 9.26219106e-01 1.12787712e+00 -2.76899606e-01
4.87471819e-01 6.02235019e-01 8.38523328e-01 4.07148451e-01
1.91766515e-01 -7.26637900e-01 -6.07389629e-01 -1.11245662e-01
-2.79272646e-01 -1.56729773e-01 -1.47126466e-01 -1.45890430e-01
-1.03776526e+00 9.38734591e-01 -1.46520957e-01 2.60009289e-01
-4.22766209e-01 -5.23099661e-01 8.72303724e-01 2.16021329e-01
8.86763155e-01 6.15875661e-01 -1.16780114e+00 -1.42630994e-01
-8.37757289e-01 2.44299084e-01 1.10786808e+00 1.15931761e+00
6.75379574e-01 -1.90390363e-01 -2.16959879e-01 6.81521237e-01
1.91794142e-01 3.31972778e-01 5.75732231e-01 -2.21782938e-01
7.64916420e-01 8.81566167e-01 2.70695418e-01 -1.33429801e+00
-4.89421517e-01 -4.17703509e-01 -4.81248140e-01 -3.40466410e-01
-1.06313512e-01 -4.72838700e-01 -8.47170889e-01 1.38971138e+00
5.45521855e-01 -2.26731986e-01 2.72585124e-01 7.61717618e-01
1.02882183e+00 8.26525271e-01 -1.60162318e-02 -6.01913750e-01
1.85524774e+00 -1.40984404e+00 -8.60522866e-01 -6.42011583e-01
5.87894499e-01 -1.05725062e+00 8.77507210e-01 6.96573734e-01
-8.78303826e-01 -4.13633257e-01 -1.23500216e+00 3.49862911e-02
-8.17308009e-01 5.16281426e-01 6.48646951e-01 5.38847625e-01
-5.90629995e-01 2.49505505e-01 -2.88280070e-01 -9.43040326e-02
-8.51482674e-02 1.73322365e-01 -3.89537513e-01 2.69121557e-01
-1.26909947e+00 8.05135489e-01 1.73828661e-01 -2.77198553e-02
-1.27353534e-01 -5.27803421e-01 -1.09058130e+00 -2.37772003e-01
4.41542178e-01 -4.05249596e-01 1.03484261e+00 -1.30169022e+00
-1.19913137e+00 8.43823314e-01 -5.00701427e-01 -1.33530617e-01
-1.28908634e-01 -3.33957970e-01 -8.62517476e-01 1.44324899e-01
4.73028213e-01 1.61165461e-01 8.06723654e-01 -9.80428755e-01
-1.00629890e+00 -4.87149566e-01 4.66200709e-01 2.97123969e-01
-5.83221316e-01 2.71579534e-01 -5.18275559e-01 -7.28131711e-01
-7.10380375e-02 -9.97905850e-01 -4.15218234e-01 -7.29431629e-01
-6.70726895e-01 -3.31209987e-01 4.49922830e-01 -5.21262825e-01
1.61989498e+00 -2.03112793e+00 6.80731013e-02 4.97365110e-02
-1.03653163e-01 3.46221998e-02 -2.08866373e-01 5.08433521e-01
-3.38498503e-01 2.65314311e-01 -2.12996736e-01 -4.29089010e-01
-9.83699188e-02 -2.33062059e-01 -5.74643254e-01 1.94139689e-01
4.42731708e-01 4.00120378e-01 -9.20849442e-01 -5.31268895e-01
-3.96220535e-01 6.40114471e-02 -4.11568969e-01 7.44978860e-02
-2.74712592e-01 9.46751535e-02 -5.84989071e-01 8.19349408e-01
5.97616673e-01 -1.30816981e-01 2.40150571e-01 -5.93994498e-01
-2.94887632e-01 6.83792710e-01 -1.12075114e+00 1.30031371e+00
-6.23864472e-01 2.58106142e-01 -2.32424766e-01 -9.16460514e-01
1.06557834e+00 1.92135230e-01 2.82605886e-01 -4.95593876e-01
1.56274751e-01 2.19521001e-01 -3.13580394e-01 -5.21070361e-01
1.20493484e+00 -2.51525670e-01 -6.06855333e-01 3.18881840e-01
1.99207719e-02 -1.24778382e-01 9.56569731e-01 4.36882824e-01
8.72142315e-01 1.05591841e-01 6.24424517e-01 -2.98328489e-01
8.83409560e-01 2.99124509e-01 5.87737203e-01 3.10631067e-01
7.94800296e-02 6.25558496e-01 1.05922961e+00 -4.21037346e-01
-8.12876225e-01 -4.21019942e-01 6.64802343e-02 9.60838735e-01
2.00331077e-01 -1.01926517e+00 -3.98932487e-01 -1.45899212e+00
-3.88404042e-01 8.02430570e-01 -9.50734615e-01 1.76742837e-01
-2.64304489e-01 -8.72426510e-01 -1.30438849e-01 4.22710806e-01
9.57047865e-02 -9.67948258e-01 -2.65607029e-01 2.38519683e-01
-3.72191936e-01 -1.19748199e+00 -7.09082067e-01 3.60305846e-01
-4.34509397e-01 -9.85504448e-01 -4.20848519e-01 -8.91807735e-01
8.41958880e-01 1.23826310e-01 1.31343174e+00 -3.99574280e-01
1.43986002e-01 3.21314260e-02 -7.73525119e-01 -3.82461548e-01
7.93834701e-02 1.55598387e-01 -1.27032161e-01 2.16570720e-01
7.12909579e-01 -1.75055742e-01 -6.43741608e-01 2.12635934e-01
-8.66412342e-01 -3.13050330e-01 4.80328292e-01 7.77629972e-01
7.38651693e-01 1.29119873e-01 8.63427639e-01 -1.36716092e+00
9.28617835e-01 -6.32713437e-01 -1.55695289e-01 2.38238215e-01
-6.97979033e-01 -1.78116351e-01 8.60211790e-01 -4.11908001e-01
-9.28485751e-01 4.34587859e-02 -2.73832530e-01 3.39797646e-01
1.72352239e-01 9.20702100e-01 -1.70606524e-01 7.10175335e-01
3.01571935e-01 2.39607677e-01 -5.22343218e-01 -1.33102447e-01
2.79134333e-01 7.35876083e-01 -6.82602152e-02 -2.07808271e-01
3.39156568e-01 4.19965297e-01 -3.17847431e-01 -6.26710534e-01
-1.60086513e+00 -9.13927019e-01 -3.27363819e-01 -1.41018346e-01
8.09410095e-01 -1.09480095e+00 -3.25763881e-01 2.17528701e-01
-1.21690667e+00 5.24720848e-01 -2.05760181e-01 3.00528854e-01
-1.64077550e-01 4.90670681e-01 -4.97396767e-01 -8.12971056e-01
-7.66392231e-01 -1.06134176e+00 1.17427719e+00 2.52303898e-01
-7.32846737e-01 -8.89192462e-01 1.85434490e-01 3.58088464e-01
3.30092013e-02 1.52940586e-01 1.03905439e+00 -1.19242871e+00
1.90867975e-01 -4.76949811e-01 6.17090911e-02 6.48658872e-01
2.97192395e-01 1.41867340e-01 -5.67742884e-01 9.71835703e-02
2.00526506e-01 -2.77894378e-01 8.90706480e-01 -1.15682865e-02
5.75764179e-01 -6.12138331e-01 -5.22043668e-02 -1.58491060e-01
1.39331055e+00 1.82827890e-01 4.74303484e-01 4.62227881e-01
4.12630796e-01 8.95220459e-01 1.26378405e+00 5.18748999e-01
5.91356814e-01 3.68752003e-01 2.05999285e-01 1.42945483e-01
3.54196131e-01 -4.85496111e-02 6.79207921e-01 1.26902533e+00
3.74079406e-01 -4.80219483e-01 -2.93698043e-01 8.33290219e-01
-1.66854799e+00 -6.76467538e-01 -3.35752755e-01 1.73276269e+00
1.00678098e+00 5.60523927e-01 1.66542590e-01 3.71462733e-01
5.39574444e-01 5.17677426e-01 -3.60701799e-01 -8.77468824e-01
-2.39253297e-01 1.48470346e-02 1.22526899e-01 2.72068799e-01
-1.32918727e+00 8.98931444e-01 5.03668737e+00 8.86406958e-01
-1.01460516e+00 -3.62524986e-02 8.16185772e-01 3.93826850e-02
-6.18955135e-01 1.18947364e-01 -1.30403805e+00 4.35112029e-01
5.55893362e-01 -5.68905920e-02 -2.10785568e-01 1.20100296e+00
6.61028847e-02 -3.47233474e-01 -7.94952929e-01 5.72135985e-01
6.63498580e-01 -9.54698861e-01 1.77450582e-01 -4.49688047e-01
9.25664127e-01 -3.81010175e-01 7.14157820e-02 5.16663671e-01
-2.33933344e-01 -3.63363683e-01 8.48708630e-01 2.29080901e-01
3.97772312e-01 -1.01371527e+00 1.11946535e+00 1.23923890e-01
-1.31116748e+00 1.53402030e-01 -3.53049308e-01 -7.12205172e-02
2.73277372e-01 1.10536265e+00 -5.32726645e-01 6.79535806e-01
5.97124338e-01 1.21704578e+00 -5.61881185e-01 4.18455392e-01
-5.54208159e-01 4.97621864e-01 1.99853390e-01 -7.47789443e-01
4.42421734e-01 -4.23927695e-01 5.15646100e-01 1.34461796e+00
2.48187304e-01 -4.64853197e-02 6.88908696e-02 1.76362455e-01
-2.42086314e-02 7.66056716e-01 -3.67444605e-01 -2.97056615e-01
-4.81969118e-02 1.88542020e+00 -1.08235228e+00 -5.22543907e-01
-5.73525071e-01 8.25259745e-01 1.73263684e-01 2.24080801e-01
-5.85125446e-01 -7.79309511e-01 5.16393840e-01 -2.59398758e-01
7.63429046e-01 1.09778151e-01 -4.44706142e-01 -1.42634773e+00
3.82931143e-01 -1.12643826e+00 2.76507556e-01 -5.63253641e-01
-1.41737938e+00 1.10190570e+00 -5.55349708e-01 -1.61652696e+00
-1.22566789e-01 -5.73124230e-01 -6.01220727e-01 4.78882760e-01
-1.68266714e+00 -9.18627977e-01 2.56810427e-01 3.03128123e-01
9.79086280e-01 2.89643500e-02 6.63852990e-01 8.42670575e-02
-4.35515374e-01 3.76100928e-01 -2.01588616e-01 6.41559437e-02
8.65159154e-01 -1.29861832e+00 2.29968339e-01 7.79550135e-01
-6.59678727e-02 8.44522476e-01 7.85068512e-01 -7.17204213e-01
-1.24454451e+00 -1.07671726e+00 1.45821548e+00 -5.48069715e-01
9.51059222e-01 -3.66467565e-01 -3.83802712e-01 3.51836234e-01
4.63955104e-01 -3.58881772e-01 1.02944303e+00 3.34288955e-01
-3.91025424e-01 -1.74324706e-01 -8.97868633e-01 5.51660597e-01
5.93918622e-01 -2.88220406e-01 -8.07062805e-01 3.30151677e-01
9.26367939e-01 -2.15070769e-01 -6.70790553e-01 5.01884341e-01
5.86743116e-01 -1.00987875e+00 4.02495205e-01 -7.18275011e-01
1.12286377e+00 -4.60862696e-01 -2.31852740e-01 -1.40919542e+00
3.29034813e-02 -2.71155924e-01 -6.53284118e-02 1.59499145e+00
1.19440854e+00 -3.10249478e-01 4.74497557e-01 3.61335367e-01
-8.89565721e-02 -1.27260149e+00 -4.71761525e-01 -3.39394838e-01
-3.41919869e-01 -4.27339613e-01 4.14229870e-01 7.75498092e-01
4.92495835e-01 1.09264529e+00 -4.80557561e-01 -3.03112622e-03
3.37785929e-02 6.90787911e-01 4.41303372e-01 -6.53830826e-01
-1.24359570e-01 -1.84949875e-01 -1.52348876e-01 -1.05429554e+00
9.74424407e-02 -4.83712107e-01 7.38110319e-02 -1.57552052e+00
2.12893113e-01 1.70052182e-02 -2.99350798e-01 2.11764991e-01
-4.74901527e-01 2.00875282e-01 5.07764779e-02 -2.38641903e-01
-1.09989393e+00 3.67808461e-01 1.07947254e+00 -3.00270528e-01
-1.21686448e-04 2.65738577e-01 -1.25345135e+00 8.49715054e-01
6.94221437e-01 -5.38959265e-01 -4.21145827e-01 3.91782373e-02
1.24247479e+00 -1.71911061e-01 -5.81831396e-01 -4.08231735e-01
1.61111251e-01 -2.24128962e-02 2.23842993e-01 -1.01961160e+00
2.50562638e-01 -7.28588402e-01 -5.24105608e-01 1.05993569e-01
-5.48246562e-01 4.03146058e-01 3.72240394e-02 5.49935460e-01
-6.13232374e-01 -5.24887145e-01 3.47014040e-01 -1.89910248e-01
-6.11425638e-01 1.03733473e-01 -5.67884266e-01 3.37876052e-01
1.00829601e+00 2.21373737e-01 -2.96264052e-01 -3.03843141e-01
-5.57229936e-01 2.38664478e-01 1.83059454e-01 6.66788876e-01
5.50425708e-01 -9.89037931e-01 -5.82004368e-01 -7.51937404e-02
4.52139020e-01 -3.11584711e-01 2.69948542e-01 8.38385522e-01
3.41851525e-02 4.29190665e-01 3.57037216e-01 -7.41594061e-02
-1.31202579e+00 7.88919091e-01 -2.44013205e-01 -8.34132016e-01
2.08364442e-01 7.53660917e-01 1.46246329e-01 -5.04493952e-01
-1.02240987e-01 -3.43901247e-01 -1.08154857e+00 8.80381465e-01
6.27490342e-01 1.51787521e-02 2.29144529e-01 -6.69885457e-01
-5.32481432e-01 7.58190393e-01 -3.84131074e-01 -1.99248381e-02
1.20871019e+00 -3.71874869e-01 -4.74423528e-01 6.50026977e-01
1.13571262e+00 6.36131346e-01 -4.54059035e-01 2.43312214e-02
2.13217407e-01 2.22022813e-02 -3.41203719e-01 -8.61550987e-01
-1.08173978e+00 5.59724867e-01 -8.54227915e-02 5.70529282e-01
1.18652058e+00 -8.38192701e-02 8.08599234e-01 2.57588416e-01
9.74660069e-02 -1.36325836e+00 1.11045979e-01 7.85959482e-01
7.08521307e-01 -1.29589438e+00 2.37839609e-01 -5.61706781e-01
-1.24375200e+00 9.95041072e-01 6.50316596e-01 -1.57679901e-01
8.41598570e-01 1.65605336e-01 1.52210861e-01 -2.56890714e-01
-1.02571905e+00 -7.68145248e-02 3.95059824e-01 4.02743034e-02
6.50969863e-01 -2.08743677e-01 -1.00897658e+00 1.24192023e+00
-2.37292603e-01 -2.93839216e-01 6.16814435e-01 1.00000715e+00
-3.01242322e-01 -1.05897617e+00 1.48133427e-01 4.74321812e-01
-1.04772890e+00 -5.76153636e-01 -5.52385151e-01 3.05035859e-01
1.49472356e-01 1.39806890e+00 -3.09309214e-01 -4.39883947e-01
5.85394740e-01 -3.48966047e-02 -1.47718310e-01 -8.04071188e-01
-1.01485109e+00 2.50712842e-01 6.89618826e-01 -2.63537973e-01
-7.91508973e-01 -4.63396847e-01 -1.03455174e+00 2.97172338e-01
-6.27693415e-01 7.41586745e-01 9.84371066e-01 1.01120973e+00
4.49982047e-01 5.29768407e-01 1.21334541e+00 -2.55392432e-01
-4.38458741e-01 -1.08054364e+00 -6.88599944e-01 3.29392582e-01
2.65060127e-01 -2.32517973e-01 -5.73084235e-01 1.06623143e-01] | [11.468026161193848, 6.637418270111084] |
c872439d-526c-4cc4-af14-816f73880102 | tensors-learning-and-kolmogorov-extension-for | 1712.00205 | null | http://arxiv.org/abs/1712.00205v2 | http://arxiv.org/pdf/1712.00205v2.pdf | Tensors, Learning, and 'Kolmogorov Extension' for Finite-alphabet Random Vectors | Estimating the joint probability mass function (PMF) of a set of random
variables lies at the heart of statistical learning and signal processing.
Without structural assumptions, such as modeling the variables as a Markov
chain, tree, or other graphical model, joint PMF estimation is often considered
mission impossible - the number of unknowns grows exponentially with the number
of variables. But who gives us the structural model? Is there a generic,
`non-parametric' way to control joint PMF complexity without relying on a
priori structural assumptions regarding the underlying probability model? Is it
possible to discover the operational structure without biasing the analysis up
front? What if we only observe random subsets of the variables, can we still
reliably estimate the joint PMF of all? This paper shows, perhaps surprisingly,
that if the joint PMF of any three variables can be estimated, then the joint
PMF of all the variables can be provably recovered under relatively mild
conditions. The result is reminiscent of Kolmogorov's extension theorem -
consistent specification of lower-dimensional distributions induces a unique
probability measure for the entire process. The difference is that for
processes of limited complexity (rank of the high-dimensional PMF) it is
possible to obtain complete characterization from only three-dimensional
distributions. In fact not all three-dimensional PMFs are needed; and under
more stringent conditions even two-dimensional will do. Exploiting multilinear
algebra, this paper proves that such higher-dimensional PMF completion can be
guaranteed - several pertinent identifiability results are derived. It also
provides a practical and efficient algorithm to carry out the recovery task.
Judiciously designed simulations and real-data experiments on movie
recommendation and data classification are presented to showcase the
effectiveness of the approach. | ['Nikos Kargas', 'Xiao Fu', 'Nicholas D. Sidiropoulos'] | 2017-12-01 | null | null | null | null | ['movie-recommendation'] | ['miscellaneous'] | [ 3.49347889e-01 1.84952512e-01 1.53926492e-03 -2.51076072e-02
-7.92197406e-01 -7.52377629e-01 3.55654627e-01 -2.63893837e-03
-3.20865899e-01 7.76501477e-01 -8.47875327e-02 -4.57754165e-01
-7.64868617e-01 -4.42225188e-01 -6.96694970e-01 -1.11875165e+00
-3.83503884e-01 7.88468838e-01 -2.79337615e-01 2.19869092e-01
2.21996848e-02 5.35616696e-01 -1.32092381e+00 -3.78946424e-01
5.01718104e-01 7.53467441e-01 2.94503927e-01 9.94356394e-01
2.66470257e-02 3.32920462e-01 -2.89281249e-01 -2.97746092e-01
4.44132656e-01 -3.29403192e-01 -4.43211555e-01 5.28668582e-01
-1.60177201e-02 3.00236251e-02 -1.39484435e-01 1.18125200e+00
9.24507827e-02 -1.42112523e-01 9.97373879e-01 -1.33018398e+00
-3.07924896e-01 3.75352204e-01 -5.53647101e-01 7.36091509e-02
3.42722476e-01 -2.53122866e-01 1.09100997e+00 -6.01942956e-01
3.08286011e-01 1.10317457e+00 6.74123466e-01 -4.21865396e-02
-1.75321412e+00 -4.28604513e-01 -5.24742790e-02 -3.91472578e-01
-1.55969012e+00 -2.63381392e-01 5.34681380e-01 -6.54998243e-01
1.77886292e-01 3.60044688e-01 4.29147065e-01 8.67081702e-01
2.72684991e-01 4.24500704e-01 1.25184000e+00 -4.86821771e-01
2.28038386e-01 2.31499091e-01 2.92964816e-01 7.76200175e-01
7.31081188e-01 9.25486684e-02 -3.23532850e-01 -4.96170789e-01
9.79774177e-01 1.21114209e-01 -3.78809839e-01 -6.05065644e-01
-1.37608755e+00 7.17898011e-01 -6.38370216e-01 2.67186314e-01
-4.91990328e-01 -1.13175139e-02 -1.92783829e-02 6.35334730e-01
2.02144176e-01 4.09965038e-01 -5.50971806e-01 -1.60605818e-01
-7.94925928e-01 1.86172038e-01 1.44172251e+00 1.09409988e+00
7.89643109e-01 -4.03761715e-02 1.48441177e-02 3.30319822e-01
1.96051285e-01 1.00440192e+00 -1.23187646e-01 -1.14020658e+00
3.92003864e-01 -1.49084032e-01 6.11348808e-01 -1.02265549e+00
-3.91147465e-01 -6.27664566e-01 -1.06427979e+00 -6.71602860e-02
1.05107665e+00 -4.30213034e-01 -5.11770666e-01 2.02217150e+00
-6.33773357e-02 1.63199365e-01 -1.47304550e-01 6.67318225e-01
-2.00709820e-01 5.64347684e-01 -2.92908698e-01 -7.82342970e-01
1.30443704e+00 5.23492880e-02 -8.17281604e-01 8.31857100e-02
2.76482224e-01 -6.74754202e-01 6.65049255e-01 7.43321955e-01
-1.04013562e+00 -2.97292531e-01 -9.14889574e-01 5.35495102e-01
2.54545212e-01 1.74277335e-01 8.05287123e-01 8.24811339e-01
-8.24953854e-01 6.67641282e-01 -8.59267950e-01 -2.01243177e-01
-1.06908873e-01 4.22946662e-01 -5.18052757e-01 -6.24276139e-02
-9.73604262e-01 7.14775801e-01 5.68970330e-02 2.21758544e-01
-1.00942612e+00 -5.11288226e-01 -4.24589247e-01 1.99309394e-01
4.31880474e-01 -7.47058094e-01 9.95632648e-01 -7.57201791e-01
-1.26550305e+00 3.25877637e-01 -3.87371659e-01 -1.82002142e-01
5.56905627e-01 -5.40447086e-02 -2.75920361e-01 1.45810649e-01
3.78292650e-02 -1.82900786e-01 1.44533980e+00 -1.11812460e+00
-4.46895182e-01 -4.08916265e-01 -2.53578052e-02 8.52912292e-02
3.02595664e-02 -1.49055824e-01 -2.59004027e-01 -2.47140989e-01
6.13355279e-01 -1.13992262e+00 -4.04059559e-01 -1.35448560e-01
-4.85071152e-01 1.91166043e-01 2.91735888e-01 -5.80160022e-01
9.72223103e-01 -2.22940922e+00 3.55892241e-01 4.51690584e-01
2.63322264e-01 -2.74687916e-01 1.74408089e-02 6.24519885e-01
-2.90191263e-01 1.47827134e-01 -2.90571451e-01 -4.37157571e-01
2.44919419e-01 3.46643090e-01 -4.63969260e-01 1.11518538e+00
1.19963624e-01 3.15533340e-01 -7.48125076e-01 -1.87774390e-01
9.11606327e-02 3.07350755e-01 -4.70109761e-01 -5.38585102e-03
1.15127377e-01 4.65051144e-01 -3.88964742e-01 2.59859771e-01
6.58332407e-01 -3.44042480e-01 3.85430068e-01 1.03579648e-02
1.55319661e-01 -1.25728622e-01 -2.00208187e+00 1.21412313e+00
-3.79629880e-01 4.52710360e-01 4.52052385e-01 -1.21029651e+00
6.59308910e-01 4.80325639e-01 7.26573884e-01 -3.47751714e-02
1.21968158e-01 5.54144271e-02 5.86900115e-02 -3.79522175e-01
2.37346709e-01 -6.20515227e-01 -3.06516200e-01 6.10724688e-01
1.30864859e-01 1.14008583e-01 1.39275178e-01 1.94444984e-01
1.20352077e+00 -1.43819436e-01 2.52595305e-01 -5.27826190e-01
4.53807265e-01 -4.19030219e-01 6.54115975e-01 9.96983469e-01
3.75904515e-02 4.40951139e-01 9.30004537e-01 1.86341256e-01
-1.21353304e+00 -1.47999108e+00 -3.98882955e-01 5.48796833e-01
-8.91510621e-02 -3.53973746e-01 -4.54842269e-01 -1.45411789e-01
1.31215870e-01 5.39893270e-01 -5.43630421e-01 1.67056292e-01
3.17381918e-02 -1.00251555e+00 2.67519206e-01 3.67968120e-02
6.87899143e-02 -1.94372252e-01 -1.06835917e-01 2.71838218e-01
-3.93717252e-02 -1.21240187e+00 -2.62250751e-01 4.64439631e-01
-8.85126352e-01 -1.08620358e+00 -5.32688797e-01 -3.09763134e-01
7.17272818e-01 2.96779424e-01 7.61665404e-01 -4.63326454e-01
8.44059214e-02 6.67728662e-01 1.31981790e-01 -3.28465253e-01
-5.40756822e-01 -4.64647204e-01 3.69689256e-01 3.31534296e-01
1.28197625e-01 -9.22881484e-01 -1.19651906e-01 3.65699768e-01
-7.72988915e-01 -2.92126685e-01 7.27716446e-01 5.68670988e-01
5.64409316e-01 7.62457192e-01 4.77758080e-01 -8.74153852e-01
6.81349874e-01 -4.50655282e-01 -7.69693494e-01 1.22939728e-01
-4.53997284e-01 3.91460121e-01 6.54049456e-01 -5.72563171e-01
-7.57791102e-01 1.15093760e-01 3.70693654e-01 -4.90909994e-01
-1.60901621e-01 6.20437384e-01 -3.59403580e-01 4.37737763e-01
3.61014247e-01 2.42080003e-01 1.19689301e-01 -6.93131506e-01
4.91606683e-01 4.15157318e-01 5.30954599e-01 -7.06776202e-01
9.94510353e-01 7.62524784e-01 7.08011448e-01 -1.13359284e+00
-7.69406974e-01 -5.42185843e-01 -7.20580816e-01 -7.34714791e-02
7.54839480e-01 -1.01382542e+00 -9.13360059e-01 1.37821257e-01
-1.00720370e+00 1.76518485e-01 -3.22091222e-01 8.52101386e-01
-8.01535845e-01 4.84631866e-01 -3.59214753e-01 -1.39963269e+00
3.13084066e-01 -8.02404225e-01 8.84179413e-01 -3.86712879e-01
-2.92475104e-01 -1.07178509e+00 1.20171413e-01 1.51379546e-02
8.68045613e-02 -2.40500048e-02 9.40745473e-01 -6.24298990e-01
-5.37844300e-01 -6.13988578e-01 -4.31498811e-02 5.07228494e-01
8.52049440e-02 -5.58692925e-02 -5.90946198e-01 -3.77788156e-01
4.01445657e-01 3.34256262e-01 4.80100602e-01 5.73446214e-01
8.49225938e-01 -3.76015037e-01 -2.78254360e-01 2.82435328e-01
1.41057956e+00 -1.46903932e-01 3.78397673e-01 -2.74700880e-01
6.23352647e-01 7.28255630e-01 3.15243661e-01 6.74581051e-01
1.45110667e-01 4.24105525e-01 5.03787659e-02 4.14620131e-01
3.80867958e-01 -1.85806781e-01 4.68187332e-01 9.21878159e-01
-1.15891054e-01 -1.47017732e-01 -5.97851872e-01 3.04237187e-01
-1.59304416e+00 -1.16681218e+00 -4.26330924e-01 2.79116488e+00
6.34079754e-01 9.20620263e-02 1.16254069e-01 4.57470536e-01
8.26489627e-01 -2.90327907e-01 -1.90808594e-01 -9.89376232e-02
-9.32267755e-02 1.13606617e-01 9.17067468e-01 8.81736517e-01
-1.06895733e+00 8.00318867e-02 6.67420340e+00 6.37574196e-01
-6.08244956e-01 1.12438478e-01 5.03277890e-02 1.89123526e-02
-2.81035662e-01 4.15079564e-01 -8.20518315e-01 4.95400995e-01
1.14877117e+00 -2.92428404e-01 4.58226651e-01 6.28888845e-01
4.20802802e-01 -2.57642031e-01 -1.21983719e+00 1.09269321e+00
-1.84890345e-01 -7.26368189e-01 -3.74364406e-01 6.75533652e-01
5.31022608e-01 -4.20652002e-01 -4.70517874e-02 9.58924219e-02
5.03510416e-01 -9.40858960e-01 6.14562333e-01 8.95575225e-01
6.43777907e-01 -7.33324409e-01 4.36031252e-01 7.45216191e-01
-8.80562842e-01 -2.75053084e-01 -4.96874124e-01 -2.59028494e-01
2.70157844e-01 1.21461833e+00 -6.16583347e-01 7.29052663e-01
1.47854924e-01 5.63748896e-01 -1.19687840e-01 1.00693870e+00
-1.63917601e-01 8.40828180e-01 -6.29442453e-01 2.85007119e-01
-1.89285100e-01 -7.67491996e-01 9.48359013e-01 1.00914657e+00
5.33568799e-01 2.40867864e-02 1.71920359e-01 5.93289733e-01
3.84811521e-01 -7.65828118e-02 -5.96324682e-01 -3.64896059e-01
3.22435945e-01 1.21320307e+00 -6.66022360e-01 -8.74764174e-02
-3.92234325e-01 7.77054667e-01 -1.92994084e-02 5.18333018e-01
-6.30320311e-01 -3.43797319e-02 6.35733545e-01 8.71454850e-02
4.49984998e-01 -7.07288325e-01 -2.73196071e-01 -1.33017993e+00
3.34689789e-03 -7.57324576e-01 2.57624894e-01 -3.22739184e-01
-1.50528193e+00 2.69934739e-04 1.20863445e-01 -1.06609643e+00
-4.65029240e-01 -4.54885304e-01 -2.42396727e-01 1.24371076e+00
-8.77861202e-01 -6.16438985e-01 3.13506126e-01 6.33625746e-01
-5.03882691e-02 -5.26405945e-02 8.59483719e-01 1.46249563e-01
-5.42199373e-01 1.88355409e-02 5.31784296e-01 -2.18220845e-01
4.31226343e-01 -1.50306427e+00 -2.74986565e-01 9.20792401e-01
2.79325902e-01 6.85569525e-01 1.22504914e+00 -5.95730364e-01
-1.96241474e+00 -7.00252891e-01 8.07779491e-01 -7.02573538e-01
1.07253218e+00 -6.29646063e-01 -7.48023689e-01 7.95234382e-01
-2.95670748e-01 -2.44965136e-01 6.59201562e-01 4.62170154e-01
-1.81159675e-01 -1.14387292e-02 -7.50327826e-01 3.44931751e-01
7.18797088e-01 -5.24318099e-01 -5.40211499e-01 4.95123237e-01
3.15446019e-01 1.85401961e-01 -9.56733227e-01 1.46933794e-01
5.89811087e-01 -7.96542645e-01 8.79147887e-01 -6.86904311e-01
4.19943780e-02 -5.36877334e-01 -6.14865363e-01 -9.67606604e-01
-4.44267750e-01 -9.66982961e-01 -1.69233561e-01 1.21774447e+00
3.10440898e-01 -5.76551020e-01 5.50878644e-01 6.81802750e-01
3.64172667e-01 -3.94467950e-01 -9.55281734e-01 -1.19324541e+00
5.24006262e-02 -8.71040165e-01 1.74155682e-01 8.31920326e-01
-7.80897737e-02 6.77948058e-01 -5.52629352e-01 6.38296247e-01
9.45603609e-01 9.44299996e-02 8.41151297e-01 -1.53372645e+00
-9.50182557e-01 -2.12672904e-01 -4.19700116e-01 -1.07266009e+00
2.78434724e-01 -7.95856059e-01 -1.87793486e-02 -1.17167807e+00
2.77143657e-01 -5.24770141e-01 -7.05729797e-02 -3.86393182e-02
1.71585411e-01 -3.58052075e-01 2.45350689e-01 4.27252859e-01
-3.41028243e-01 2.37399653e-01 1.22058797e+00 3.03863883e-01
-6.13913834e-02 4.61199850e-01 -7.28761673e-01 7.08461523e-01
4.76925999e-01 -5.00639498e-01 -6.12464905e-01 1.92567274e-01
4.03936148e-01 7.13585615e-01 4.93152440e-01 -8.18978190e-01
1.53215542e-01 -1.90400872e-02 3.23193431e-01 -4.38213050e-01
4.64810133e-01 -9.96630847e-01 6.12310708e-01 1.96247086e-01
-3.25688094e-01 -1.87064216e-01 -2.36199781e-01 1.12458229e+00
1.61478937e-01 -4.94934171e-01 5.77127993e-01 8.79665464e-02
4.26092520e-02 3.21828991e-01 -7.32237637e-01 -1.35087475e-01
8.19696307e-01 1.76305398e-01 1.74821123e-01 -9.58917856e-01
-1.02486718e+00 -1.40705585e-01 2.80252248e-01 -2.38977090e-01
2.35907599e-01 -1.08631480e+00 -6.38080359e-01 1.37128666e-01
-3.82652879e-01 -3.23062629e-01 1.52575225e-01 1.21180654e+00
1.59004003e-01 4.98446912e-01 2.52376974e-01 -5.89816213e-01
-1.00041521e+00 8.10122550e-01 1.39490843e-01 -2.72775590e-01
-4.64323699e-01 3.98297966e-01 2.20714137e-01 -1.76158901e-02
-8.70326441e-03 -1.90717921e-01 1.77413806e-01 1.50018379e-01
5.06977975e-01 3.55570197e-01 -2.05522448e-01 -5.14234900e-01
-8.62126201e-02 3.42168748e-01 3.22022215e-02 -5.54292619e-01
1.09112251e+00 -6.27882123e-01 -1.61773011e-01 7.11586356e-01
1.29652441e+00 2.66730636e-01 -1.30633652e+00 -3.20516050e-01
-6.04364835e-03 -4.16298777e-01 -3.20128128e-02 -3.47642779e-01
-7.76041150e-01 8.42956543e-01 1.88747808e-01 5.78322172e-01
8.78511369e-01 2.59917043e-02 7.89709315e-02 5.00768483e-01
5.50835848e-01 -7.07241714e-01 -2.98980802e-01 3.30649942e-01
8.10233235e-01 -7.35676110e-01 3.17781046e-02 -6.21612966e-01
-4.54236060e-01 1.06493783e+00 -3.11087161e-01 -2.67128140e-01
1.02565086e+00 2.11673334e-01 -4.61843997e-01 -1.55773893e-01
-7.65887380e-01 -1.52954876e-01 1.14459120e-01 6.04731262e-01
8.01936388e-02 2.92654663e-01 -1.91247389e-01 7.47319221e-01
-2.85362810e-01 -2.78508276e-01 9.54557359e-01 6.39514804e-01
-4.81979162e-01 -1.11643946e+00 -6.03142977e-01 6.71992719e-01
-5.55349052e-01 -9.12980139e-02 1.79758653e-01 7.89846420e-01
-2.76620924e-01 1.08405209e+00 -1.32696047e-01 -1.46452576e-01
1.47596538e-01 2.18182236e-01 6.50813341e-01 -5.63321471e-01
4.38652724e-01 3.93217504e-01 9.61113870e-02 -3.37205112e-01
-2.95542330e-01 -1.29916155e+00 -7.74280667e-01 -4.80437338e-01
-3.35992306e-01 2.14212015e-01 7.81309783e-01 1.12213194e+00
1.63594738e-03 1.44548923e-01 6.82772458e-01 -5.44360101e-01
-1.01022875e+00 -7.33008981e-01 -1.35039723e+00 1.08678252e-01
4.17964160e-01 -6.66269839e-01 -8.37172329e-01 1.63065210e-01] | [7.021578788757324, 4.432036876678467] |
7838c60e-8658-4b8c-8d09-ecd9453fca4a | towards-universal-vision-language-omni | 2303.06547 | null | https://arxiv.org/abs/2303.06547v1 | https://arxiv.org/pdf/2303.06547v1.pdf | Towards Universal Vision-language Omni-supervised Segmentation | Existing open-world universal segmentation approaches usually leverage CLIP and pre-computed proposal masks to treat open-world segmentation tasks as proposal classification. However, 1) these works cannot handle universal segmentation in an end-to-end manner, and 2) the limited scale of panoptic datasets restricts the open-world segmentation ability on things classes. In this paper, we present Vision-Language Omni-Supervised Segmentation (VLOSS). VLOSS starts from a Mask2Former universal segmentation framework with CLIP text encoder. To improve the open-world segmentation ability, we leverage omni-supervised data (i.e., panoptic segmentation data, object detection data, and image-text pairs data) into training, thus enriching the open-world segmentation ability and achieving better segmentation accuracy. To better improve the training efficiency and fully release the power of omni-supervised data, we propose several advanced techniques, i.e., FPN-style encoder, switchable training technique, and positive classification loss. Benefiting from the end-to-end training manner with proposed techniques, VLOSS can be applied to various open-world segmentation tasks without further adaptation. Experimental results on different open-world panoptic and instance segmentation benchmarks demonstrate the effectiveness of VLOSS. Notably, with fewer parameters, our VLOSS with Swin-Tiny backbone surpasses MaskCLIP by ~2% in terms of mask AP on LVIS v1 dataset. | ['WangMeng Zuo', 'Hang Xu', 'Jianhua Han', 'Jiaxi Gu', 'Bowen Dong'] | 2023-03-12 | null | null | null | null | ['panoptic-segmentation'] | ['computer-vision'] | [ 9.86623764e-02 -1.17498092e-01 -7.06077576e-01 -4.65962172e-01
-6.78537786e-01 -7.61290789e-01 1.92876205e-01 -3.53940785e-01
-4.66774434e-01 4.04861033e-01 -2.59553760e-01 -5.16389549e-01
2.09774241e-01 -8.89828444e-01 -6.83419883e-01 -5.15604973e-01
-1.13519104e-02 6.21437788e-01 6.93099916e-01 1.76491722e-01
3.33170034e-02 4.94590029e-02 -1.23785520e+00 -1.70743585e-01
1.44713867e+00 1.26317167e+00 5.58288991e-01 5.70402324e-01
-4.52834666e-01 1.87761828e-01 -3.01183492e-01 -3.47480029e-01
9.35407221e-01 -4.73957509e-02 -6.24548137e-01 1.56295851e-01
8.52592647e-01 -4.68086064e-01 -4.95048165e-02 1.17365205e+00
4.05680418e-01 -1.78696290e-01 3.40863854e-01 -1.05034482e+00
-5.11706352e-01 7.50379562e-01 -8.28157783e-01 2.90687472e-01
-3.28038394e-01 5.75425267e-01 1.33856916e+00 -6.78951383e-01
6.36896253e-01 1.14241040e+00 7.89551795e-01 2.28857875e-01
-1.00588810e+00 -9.67690349e-01 3.76850367e-01 -3.62058342e-01
-1.40075397e+00 -8.89094993e-02 5.18029571e-01 -2.44263142e-01
6.08158946e-01 2.48791531e-01 5.26224732e-01 7.90916979e-01
1.01426251e-01 1.18077815e+00 1.03125370e+00 1.39979795e-01
1.17676221e-01 -2.75751930e-02 2.54416317e-01 8.39038730e-01
2.59026408e-01 -4.37938888e-03 6.90960325e-03 4.04478252e-01
8.56732130e-01 9.82512012e-02 -1.15380257e-01 -3.38025063e-01
-1.45522559e+00 7.34705925e-01 8.40585649e-01 -5.70019670e-02
-2.44308114e-02 -3.46553251e-02 4.67718124e-01 3.13050568e-01
6.71839058e-01 4.20717776e-01 -8.26299310e-01 -2.31443290e-02
-1.31195390e+00 5.59603572e-02 7.88263977e-01 1.15230751e+00
1.05336094e+00 2.08862931e-01 -1.80457503e-01 8.81176829e-01
2.95039922e-01 9.79756534e-01 5.59931099e-01 -7.57219136e-01
8.02689612e-01 5.93346834e-01 -2.30006605e-01 -5.43758035e-01
-3.86380464e-01 -7.93729424e-01 -5.89760184e-01 -1.14648186e-01
2.20685497e-01 -3.51825535e-01 -1.56904721e+00 1.45494092e+00
4.12319750e-01 3.40173870e-01 -2.84971725e-02 1.03508246e+00
9.39155221e-01 8.92912865e-01 1.14901057e-02 3.65366489e-02
1.26252913e+00 -1.50893295e+00 -2.97488660e-01 -3.24323326e-01
5.56267500e-01 -6.36634886e-01 1.27412581e+00 2.54323810e-01
-6.04452610e-01 -7.08094597e-01 -1.05378056e+00 -1.12593092e-01
-4.05882627e-01 2.73984615e-02 8.69527400e-01 7.28190422e-01
-5.98241031e-01 2.53715843e-01 -8.89138281e-01 -3.97655606e-01
8.67909431e-01 2.97962189e-01 -2.76500229e-02 1.84287801e-02
-8.27700615e-01 1.66321084e-01 7.83012807e-01 -2.32162625e-01
-9.80951428e-01 -9.02940333e-01 -7.26194024e-01 7.83933699e-02
7.78694570e-01 -4.46319163e-01 1.10140693e+00 -9.70313609e-01
-1.45024908e+00 7.84276247e-01 3.39728266e-01 -7.35795975e-01
5.97963870e-01 -3.25181723e-01 -3.28389555e-01 3.59998733e-01
5.30396760e-01 1.56527078e+00 8.21254373e-01 -1.17891502e+00
-1.01161087e+00 -2.24401116e-01 1.57846659e-01 1.36631116e-01
-2.04303592e-01 -3.05651754e-01 -9.69073296e-01 -8.09082210e-01
3.81677926e-01 -1.06577718e+00 -4.19392824e-01 3.70263785e-01
-6.66016400e-01 -1.56489864e-01 1.22517276e+00 -4.20961320e-01
8.90985668e-01 -2.28674197e+00 -2.93690354e-01 3.11609334e-03
1.85957760e-01 4.42750484e-01 -3.16778272e-01 -2.81579405e-01
4.57589746e-01 2.79251486e-01 -7.90521085e-01 -3.22138876e-01
4.60702553e-02 6.72545493e-01 -5.01143634e-01 2.82909393e-01
1.00932203e-01 1.02301061e+00 -8.00614595e-01 -9.15168524e-01
5.80227256e-01 -1.08114116e-01 -7.64082134e-01 2.49564081e-01
-6.56954706e-01 4.43708301e-01 -6.25242472e-01 1.11146581e+00
1.03155255e+00 -1.02026582e-01 -3.25977147e-01 -7.11506233e-02
-2.45470956e-01 5.70128560e-02 -1.21337974e+00 1.99831784e+00
-5.88697314e-01 4.36024308e-01 1.64779380e-01 -9.71159339e-01
8.34658802e-01 -7.79373869e-02 3.64030272e-01 -6.91904008e-01
5.15515469e-02 5.32841206e-01 -8.84390250e-02 -2.79345363e-01
5.05144298e-01 1.16614476e-01 -1.31312042e-01 8.54370743e-02
3.81276041e-01 -5.08718848e-01 3.84749740e-01 1.22908717e-02
4.35813963e-01 3.71054947e-01 3.36842798e-02 -5.17858982e-01
2.19358057e-01 7.62427896e-02 9.32484686e-01 9.19431090e-01
-5.19659460e-01 7.91963935e-01 1.87981427e-01 -3.53150576e-01
-7.75408864e-01 -1.39665973e+00 -7.25437105e-01 1.11905503e+00
6.38289392e-01 -1.77369446e-01 -7.33892262e-01 -9.12126064e-01
-1.48210987e-01 4.10471231e-01 -2.13257909e-01 3.55485111e-01
-5.55508018e-01 -9.47696745e-01 7.99347520e-01 5.52475154e-01
1.15409565e+00 -9.19279873e-01 -7.77762651e-01 2.78337181e-01
-2.20045641e-01 -1.58256745e+00 -6.69394135e-01 2.71159381e-01
-1.17382777e+00 -7.74912477e-01 -8.07590723e-01 -8.29985023e-01
3.32639843e-01 6.04641974e-01 9.43705499e-01 -3.59452397e-01
-2.37703502e-01 2.00920664e-02 -3.25382233e-01 -3.83723885e-01
3.35200503e-02 5.66066504e-01 -2.24072918e-01 3.83433960e-02
9.20156389e-02 -5.79483807e-01 -8.39385092e-01 5.81078827e-01
-9.46075559e-01 2.68984586e-01 6.41648293e-01 4.51232433e-01
8.74281347e-01 -1.97675765e-01 4.34834719e-01 -8.95200133e-01
-2.03895003e-01 -5.29127538e-01 -8.31925988e-01 1.79157451e-01
-5.83232760e-01 -1.18205696e-01 6.50362015e-01 -4.02163357e-01
-1.00580561e+00 -4.22818884e-02 -3.36535394e-01 -5.03098905e-01
-4.82516028e-02 3.27659488e-01 -1.84569433e-01 -1.06186017e-01
4.57748562e-01 9.58667099e-02 -3.83175343e-01 -5.87593853e-01
7.70578146e-01 8.62773538e-01 8.30029309e-01 -4.95239049e-01
8.53916526e-01 7.33128488e-01 -5.12579322e-01 -8.86327624e-01
-1.03415918e+00 -6.93695009e-01 -4.25578982e-01 2.28790849e-01
1.11748028e+00 -1.30337548e+00 -1.15674689e-01 4.26633090e-01
-7.18283713e-01 -5.40398359e-01 -3.90042871e-01 3.40917289e-01
-2.92187572e-01 4.87541735e-01 -6.00556254e-01 -4.98788774e-01
-7.72581637e-01 -1.35140395e+00 1.28137958e+00 6.16019785e-01
3.41043264e-01 -7.11810410e-01 -2.70800322e-01 5.51341712e-01
3.05232674e-01 5.42381406e-02 4.10157859e-01 -5.03869355e-01
-9.28414702e-01 -4.38897423e-02 -7.30944514e-01 5.11366308e-01
-1.02511838e-01 1.01917781e-01 -9.28219736e-01 -1.71937242e-01
-1.39746234e-01 -5.21841466e-01 1.19579327e+00 5.00698388e-01
1.53656709e+00 -9.74603277e-03 -4.35361177e-01 1.26218021e+00
1.42560256e+00 7.94174001e-02 4.50811297e-01 2.00789258e-01
1.09157598e+00 2.30202481e-01 7.15209126e-01 2.53702670e-01
5.23618162e-01 5.33738196e-01 5.67559779e-01 -3.75845432e-01
-2.30176002e-01 -4.13349092e-01 2.39873290e-01 7.34125674e-01
2.86794603e-01 -4.30957586e-01 -8.54938388e-01 7.80494094e-01
-1.67459309e+00 -4.23666686e-01 -1.30967334e-01 1.98353052e+00
8.73348176e-01 5.17370641e-01 -6.07262962e-02 -2.74934173e-01
5.05570590e-01 5.80954194e-01 -8.42931509e-01 -9.21985358e-02
-2.44074464e-01 2.90722102e-01 1.01615560e+00 3.15693259e-01
-1.57295263e+00 1.53550553e+00 5.11276865e+00 1.26110756e+00
-1.51443052e+00 4.12140071e-01 6.61799192e-01 8.78255069e-02
-1.59413964e-01 2.98050698e-02 -9.95130539e-01 6.37709677e-01
6.42753124e-01 3.10604960e-01 1.81379408e-01 8.90337408e-01
-1.96220167e-02 -8.42941459e-03 -6.65190637e-01 9.87660468e-01
-2.62900859e-01 -1.23603332e+00 1.81252390e-01 -1.04947165e-01
9.53682840e-01 9.33949113e-01 8.65258723e-02 5.59679866e-01
4.43654925e-01 -6.16730988e-01 8.31119418e-01 -3.26325923e-01
1.00190687e+00 -3.77280861e-01 5.56903303e-01 3.48722547e-01
-1.42449617e+00 -1.98208750e-03 -3.72378886e-01 1.74879000e-01
3.63910854e-01 6.82802260e-01 -4.20064837e-01 8.22365284e-01
8.10395658e-01 9.20783043e-01 -6.89836204e-01 1.18477654e+00
-2.04772994e-01 1.11852777e+00 -9.12407756e-01 3.01523983e-01
9.45096672e-01 -4.32219535e-01 6.94730282e-01 1.35156500e+00
3.72562595e-02 -1.11715600e-01 8.61696899e-01 9.87977743e-01
-2.83006489e-01 9.78757814e-02 -3.72950077e-01 8.81120637e-02
2.18847588e-01 1.34469724e+00 -1.08608627e+00 -3.41004938e-01
-4.48238999e-01 9.24352884e-01 -8.49927887e-02 3.17674965e-01
-1.14513886e+00 -3.77604395e-01 5.50137758e-01 -1.42702922e-01
6.07252300e-01 -2.39419773e-01 -6.42071187e-01 -1.45540941e+00
6.63798079e-02 -6.59102142e-01 3.45781177e-01 -4.69304562e-01
-1.10753369e+00 5.08262157e-01 -2.32597673e-03 -1.35177219e+00
4.94331867e-01 -4.78055775e-01 -6.57468855e-01 2.63076305e-01
-1.74546671e+00 -1.49476957e+00 -2.58146167e-01 1.77940145e-01
1.13653278e+00 7.53107145e-02 2.60895610e-01 4.22955811e-01
-8.00757349e-01 5.27306855e-01 1.57877252e-01 2.80460209e-01
4.98266429e-01 -1.20881462e+00 6.95350707e-01 1.05920100e+00
4.69726980e-01 2.69593447e-01 2.64230549e-01 -5.57556987e-01
-1.03315699e+00 -1.56855774e+00 2.32783109e-01 -2.00212121e-01
7.55120933e-01 -4.50683385e-01 -7.63055384e-01 6.37673855e-01
5.52538186e-02 4.50943917e-01 3.56802493e-01 -6.48009032e-02
-3.17655832e-01 -4.51556951e-01 -1.06219447e+00 7.57361531e-01
1.32483518e+00 -3.30912977e-01 -5.08882463e-01 4.73285556e-01
1.28158069e+00 -5.71354747e-01 -6.14220858e-01 6.22553766e-01
3.96841824e-01 -6.42888725e-01 1.00146985e+00 -1.32129371e-01
4.31175560e-01 -4.71921682e-01 -2.81771868e-01 -8.26526940e-01
1.79009050e-01 -6.63637340e-01 1.91842824e-01 1.17909777e+00
4.86620814e-01 -8.59206975e-01 6.79293692e-01 3.28232422e-02
-5.07929981e-01 -8.02163303e-01 -1.18760920e+00 -9.40162718e-01
2.68671364e-01 -6.31687462e-01 4.94878143e-01 8.94924104e-01
-6.71928227e-01 2.51451433e-01 -2.49847755e-01 2.77205765e-01
6.14118159e-01 5.41960001e-01 8.02909255e-01 -1.13696778e+00
-2.59133458e-01 -3.77617568e-01 -2.73141831e-01 -1.93390000e+00
6.94083096e-03 -1.04654562e+00 1.97799638e-01 -1.18639052e+00
5.50687425e-02 -1.04593778e+00 -2.51327485e-01 5.05660832e-01
-2.29155585e-01 6.34890854e-01 4.96002823e-01 4.30293620e-01
-9.16656673e-01 6.07645214e-01 1.41620111e+00 -4.16128516e-01
-3.72750401e-01 -1.17202409e-01 -4.84851152e-01 8.57496560e-01
7.96808720e-01 -4.87344593e-01 -5.64045370e-01 -8.78314137e-01
-3.30112606e-01 -2.23594457e-01 3.51906002e-01 -1.30800283e+00
-5.99425249e-02 -1.07324697e-01 -1.19988374e-01 -8.51350844e-01
-5.08853756e-02 -6.86379611e-01 -3.66387069e-01 4.57498848e-01
1.03146218e-01 -4.60685551e-01 1.74362242e-01 6.68989599e-01
-2.13901982e-01 -1.94432050e-01 9.27637935e-01 -7.21405372e-02
-1.07182145e+00 7.63959885e-01 1.28207192e-01 4.84809220e-01
9.32497621e-01 -4.45667267e-01 -3.65307659e-01 3.20043236e-01
-2.86170870e-01 7.72452950e-01 4.18726534e-01 6.22717440e-01
2.07161829e-01 -7.25834846e-01 -4.92219567e-01 2.98070908e-01
2.66815573e-01 6.68291926e-01 9.87142846e-02 9.12867427e-01
-1.01577294e+00 4.63083148e-01 -1.32338673e-01 -1.18522668e+00
-6.23100698e-01 3.81352901e-01 3.42154890e-01 -3.09610844e-01
-1.02705550e+00 8.50563586e-01 7.41480827e-01 -8.71702254e-01
1.87654346e-01 -9.18626487e-01 1.31393045e-01 -2.08297029e-01
1.32008165e-01 1.22760246e-02 -2.67129004e-01 -3.64696771e-01
-2.04227924e-01 8.39657128e-01 -2.12239191e-01 1.79541074e-02
1.02036262e+00 -1.71307668e-01 2.44738638e-01 3.71469259e-01
1.05032122e+00 -1.81657866e-01 -1.68807483e+00 -2.96964377e-01
-3.36050779e-01 -4.46207821e-01 2.78520823e-01 -7.64897943e-01
-1.43937361e+00 1.00670648e+00 7.99569607e-01 -5.99855334e-02
9.38553214e-01 -1.06023498e-01 1.44815981e+00 3.16826105e-01
6.22841120e-01 -1.15095770e+00 -2.99788088e-01 3.56092632e-01
3.79564613e-01 -1.65810144e+00 -6.69895634e-02 -8.77881348e-01
-6.78835630e-01 7.35184371e-01 8.28615487e-01 -9.00853127e-02
6.27540231e-01 1.13574028e-01 2.81732827e-01 1.90240704e-02
-2.79650360e-01 -5.54324210e-01 5.94054796e-02 4.04702157e-01
-2.35577598e-02 3.91651303e-01 -2.09471017e-01 4.33296084e-01
-5.31997792e-02 -1.07080480e-02 2.53760338e-01 4.82527435e-01
-5.96444845e-01 -6.41948164e-01 -1.60357222e-01 6.74357176e-01
-2.94442177e-01 -2.60376394e-01 1.01417258e-01 6.65538490e-01
6.31322145e-01 8.87767375e-01 3.36363614e-01 -9.33314264e-02
1.05099782e-01 -3.03112328e-01 -3.86760533e-02 -5.56150377e-01
-4.63364750e-01 1.39498919e-01 -3.07872035e-02 -4.32053030e-01
-4.55054283e-01 -3.01257998e-01 -1.37822294e+00 -1.29310235e-01
-6.34424686e-01 -1.40447468e-01 4.18375224e-01 9.49088573e-01
2.82689273e-01 3.25147033e-01 5.56976080e-01 -8.04610372e-01
-6.41451120e-01 -8.57639432e-01 -4.62472349e-01 2.06769750e-01
1.08437389e-01 -5.36047220e-01 -9.95101258e-02 2.75728235e-04] | [9.527199745178223, 0.29990172386169434] |
0f6d98cc-5139-4590-8541-077465f50767 | pairwise-learning-for-neural-link-prediction | 2112.02936 | null | https://arxiv.org/abs/2112.02936v6 | https://arxiv.org/pdf/2112.02936v6.pdf | Pairwise Learning for Neural Link Prediction | In this paper, we aim at providing an effective Pairwise Learning Neural Link Prediction (PLNLP) framework. The framework treats link prediction as a pairwise learning to rank problem and consists of four main components, i.e., neighborhood encoder, link predictor, negative sampler and objective function. The framework is flexible that any generic graph neural convolution or link prediction specific neural architecture could be employed as neighborhood encoder. For link predictor, we design different scoring functions, which could be selected based on different types of graphs. In negative sampler, we provide several sampling strategies, which are problem specific. As for objective function, we propose to use an effective ranking loss, which approximately maximizes the standard ranking metric AUC. We evaluate the proposed PLNLP framework on 4 link property prediction datasets of Open Graph Benchmark, including ogbl-ddi, ogbl-collab, ogbl-ppa and ogbl-ciation2. PLNLP achieves top 1 performance on ogbl-ddi and ogbl-collab, and top 2 performance on ogbl-ciation2 only with basic neural architecture. The performance demonstrates the effectiveness of PLNLP. | ['Shouzhi Chen', 'Hanjing Su', 'Yuanhang Zou', 'Litao Hong', 'Yong Zhou', 'Zhitao Wang'] | 2021-12-06 | null | null | null | null | ['link-property-prediction'] | ['graphs'] | [-2.85192043e-01 1.98462293e-01 -9.64093983e-01 -5.10958016e-01
-6.57308519e-01 -3.62413287e-01 3.77082944e-01 2.50574708e-01
4.26218696e-02 1.28885961e+00 1.16469003e-01 -4.50523913e-01
-7.12224245e-01 -1.22582996e+00 -9.84503210e-01 -3.79378945e-01
-6.57198370e-01 8.66011262e-01 5.21690965e-01 -1.28069520e-01
-1.55973420e-01 3.24350148e-01 -9.95075762e-01 1.39762744e-01
1.01845181e+00 9.73438799e-01 5.80724999e-02 6.20728612e-01
-6.27367198e-02 7.98629642e-01 -1.16241194e-01 -7.70249724e-01
1.40880689e-01 -1.03677280e-01 -8.90816033e-01 -9.35994089e-01
7.62802541e-01 -9.74126607e-02 -7.36855030e-01 1.13152528e+00
7.00594425e-01 -1.16853513e-01 9.09522176e-01 -1.75798011e+00
-8.33234370e-01 1.18159509e+00 -5.17740786e-01 8.68865475e-02
2.61477023e-01 -3.46782386e-01 1.71398604e+00 -6.94805801e-01
7.23313689e-01 1.51540589e+00 1.00549507e+00 1.30903482e-01
-1.44498658e+00 -8.16236377e-01 6.30464852e-02 5.92618227e-01
-1.46713936e+00 -2.21501142e-02 6.51014149e-01 -3.42773646e-01
7.49856174e-01 2.22798601e-01 5.40863633e-01 1.12336397e+00
4.36074406e-01 7.78136313e-01 6.80149376e-01 1.55313117e-02
-2.84611285e-01 -1.50571600e-01 5.77088296e-01 8.14112484e-01
7.47531712e-01 3.17893595e-01 -6.41800702e-01 -5.87742150e-01
5.87379456e-01 -3.39745015e-01 -5.84186435e-01 -8.82051170e-01
-1.04631424e+00 7.45713592e-01 8.01547825e-01 -3.73478174e-01
1.25691131e-01 3.95131826e-01 5.99967003e-01 5.56036413e-01
4.63272035e-01 -1.22766428e-01 -6.59254134e-01 4.39769655e-01
-4.44996268e-01 2.11751983e-01 9.74823117e-01 1.23009408e+00
6.74504757e-01 -5.36348760e-01 -4.37920660e-01 1.01415515e+00
7.56761312e-01 3.53790611e-01 -9.65429842e-02 -6.61156535e-01
6.89659357e-01 3.62890780e-01 -2.48399466e-01 -1.12659442e+00
-5.83149314e-01 -7.04765022e-01 -9.58075762e-01 -7.22674131e-02
-1.67805821e-01 7.01797605e-02 -6.50011718e-01 2.01479936e+00
6.00020662e-02 3.45146030e-01 1.05242670e-01 6.20603383e-01
1.49698019e+00 6.55206919e-01 4.08975482e-02 -1.61423966e-01
7.79731989e-01 -1.26030660e+00 -5.18869877e-01 2.84879237e-01
9.36768115e-01 -3.34214598e-01 7.62210667e-01 6.05079122e-02
-9.07369673e-01 -5.59782028e-01 -1.30142462e+00 -8.18498582e-02
-4.47360873e-01 2.66269773e-01 9.08124566e-01 1.36698827e-01
-1.43562376e+00 7.49662876e-01 -2.74959415e-01 -4.57990795e-01
2.64190763e-01 6.22578084e-01 -5.35749853e-01 -7.63640180e-02
-1.74384487e+00 5.32027364e-01 9.54380155e-01 1.64460875e-02
-7.16374516e-01 -8.02215040e-01 -6.99857295e-01 2.20964745e-01
2.06023678e-01 -9.04731274e-01 5.40229142e-01 -3.31241876e-01
-9.64117050e-01 5.82462430e-01 1.90973654e-01 -5.25709987e-01
4.30871546e-01 -4.34867330e-02 -7.15009630e-01 -2.45461345e-01
2.37537190e-01 7.91895092e-01 7.08221421e-02 -1.46938193e+00
-3.87970090e-01 -9.23582241e-02 -5.53324781e-02 1.65288508e-01
-3.35833699e-01 -3.77276838e-01 -5.06737888e-01 -3.32579136e-01
4.53904569e-02 -8.49608481e-01 1.94771171e-01 -1.58527330e-01
-8.52386057e-01 -6.40456498e-01 7.92696595e-01 -4.60989207e-01
1.30075765e+00 -1.81645310e+00 -1.44336283e-01 6.56814754e-01
4.56732869e-01 2.99604356e-01 -6.42605662e-01 6.78599179e-01
-3.22651386e-01 1.78246722e-01 2.97776192e-01 -5.91686703e-02
2.50259899e-02 -3.33452388e-03 -8.72426629e-02 1.98207960e-01
-4.67330068e-02 1.15348649e+00 -1.13142931e+00 -6.84822261e-01
-3.81974667e-01 3.71034026e-01 -4.10868853e-01 1.25521719e-01
-2.76145160e-01 -2.32537881e-01 -2.68006265e-01 7.24382818e-01
8.46450269e-01 -6.27413929e-01 5.42742550e-01 -6.25224948e-01
3.46561670e-01 4.98115808e-01 -1.00219369e+00 1.56742799e+00
5.73655963e-02 6.09642088e-01 -2.04984128e-01 -7.15211749e-01
1.12952650e+00 -4.42829654e-02 3.61588359e-01 -3.17100525e-01
-2.80732185e-01 3.01304579e-01 1.58582330e-01 -1.90810829e-01
3.25318724e-01 6.66789174e-01 3.58258307e-01 2.15202495e-01
3.56405824e-01 8.52520883e-01 4.51244801e-01 6.49400830e-01
1.45973432e+00 2.51394838e-01 6.91705421e-02 -4.56084043e-01
7.49251008e-01 -2.45959014e-01 7.10947871e-01 6.36940479e-01
-1.26819670e-01 2.43628994e-01 1.04009342e+00 -3.86411160e-01
-5.98282278e-01 -1.47814631e+00 -2.40004405e-01 1.08903527e+00
4.35590476e-01 -6.58147037e-01 -1.66004281e-02 -1.13895988e+00
2.82304257e-01 1.99952915e-01 -4.34679180e-01 -3.90128434e-01
-3.21782112e-01 -8.87927234e-01 5.36411881e-01 4.43526685e-01
5.42820990e-01 -8.93173695e-01 9.30960655e-01 -1.43494941e-02
-2.41688956e-02 -7.95285881e-01 -4.48062599e-01 3.09196860e-01
-8.41784477e-01 -1.31730366e+00 -1.30577251e-01 -1.17340064e+00
5.14039457e-01 2.43507341e-01 1.63382268e+00 4.50820513e-02
9.04588103e-02 -7.82343298e-02 -1.29199937e-01 2.78338581e-01
7.84642324e-02 5.64794660e-01 6.50772303e-02 -3.50502372e-01
1.82465121e-01 -8.69883597e-01 -5.43293595e-01 3.21210772e-01
-1.62401602e-01 4.88545746e-03 8.13708723e-01 1.07238400e+00
7.14487731e-01 -1.47701092e-02 8.72876406e-01 -1.15826333e+00
9.63888407e-01 -5.88319063e-01 -5.48117876e-01 8.43493521e-01
-9.92098510e-01 4.51456830e-02 4.04582351e-01 -1.03176169e-01
-6.16675079e-01 -3.30618858e-01 1.53362736e-01 -2.41472393e-01
5.06464064e-01 9.23766673e-01 -4.94106740e-01 -3.38025212e-01
5.34383655e-01 -1.27541184e-01 -2.00769663e-01 -3.77576232e-01
3.46457452e-01 4.53479409e-01 4.38884825e-01 -7.23495722e-01
8.39672923e-01 -9.55261141e-02 2.82057077e-01 -1.99294165e-01
-8.42662871e-01 -1.60310119e-01 -5.34573078e-01 -3.07593197e-01
4.62510258e-01 -1.01633549e+00 -1.03903079e+00 3.39452885e-02
-1.19780505e+00 -4.83098179e-01 2.65570521e-01 4.52593476e-01
-3.11683565e-01 3.36291075e-01 -8.48536611e-01 -3.22444320e-01
-6.66861892e-01 -8.79170239e-01 6.72829807e-01 1.15816733e-02
1.23479113e-01 -1.12520802e+00 3.27493787e-01 2.18389645e-01
9.35958847e-02 1.49274871e-01 1.42823839e+00 -9.18283582e-01
-8.22902083e-01 -8.88558477e-02 -8.89511347e-01 3.19318593e-01
-7.49880970e-02 1.64246067e-01 -4.93603498e-01 -5.18846393e-01
-1.40665770e+00 -6.96722984e-01 1.08355498e+00 2.03694105e-01
1.22234082e+00 -2.63872564e-01 -8.29390943e-01 7.88168907e-01
1.65809608e+00 -4.81921621e-02 6.28704369e-01 1.27011284e-01
1.01511693e+00 3.96782845e-01 5.46824336e-01 -1.88326508e-01
6.84893608e-01 5.90662479e-01 6.10020697e-01 1.33966645e-02
-3.92704815e-01 -6.13279283e-01 4.44920003e-01 9.93406773e-01
4.41606343e-02 -7.46909440e-01 -7.83174574e-01 2.62160033e-01
-2.35862327e+00 -8.50878775e-01 -6.46789432e-01 2.13076019e+00
7.81241715e-01 3.04140002e-01 8.06385502e-02 -3.54332298e-01
8.53540778e-01 2.63313532e-01 -5.37587345e-01 -4.95282039e-02
-1.00073889e-01 -3.13346386e-01 7.16948926e-01 6.13169134e-01
-1.13179135e+00 8.37566793e-01 5.67691517e+00 1.11110985e+00
-5.73742986e-01 -1.35866925e-01 6.14298046e-01 1.84450671e-02
-4.97095168e-01 2.75380202e-02 -9.72955704e-01 5.29334724e-01
8.03709626e-01 -1.77355558e-02 3.95616770e-01 5.72673380e-01
-9.63573605e-02 4.16234702e-01 -1.34264433e+00 7.80086815e-01
-1.06212504e-01 -1.39866376e+00 3.28958124e-01 1.35126323e-01
7.99739480e-01 5.35726428e-01 -2.44138926e-01 6.75720513e-01
7.53385782e-01 -1.04346621e+00 -9.94125661e-03 8.42154622e-01
6.88354492e-01 -1.06596076e+00 9.99464989e-01 -3.36944908e-02
-1.31596208e+00 1.56395614e-01 -6.70196295e-01 4.67722058e-01
-2.95136366e-02 8.17996621e-01 -6.30565345e-01 1.03569770e+00
7.65203953e-01 1.19546497e+00 -6.13048077e-01 1.37295222e+00
-3.37079585e-01 5.73619723e-01 -1.16463311e-01 -8.22857022e-02
-4.86095697e-02 -3.26647043e-01 3.79863173e-01 9.86741185e-01
3.11820388e-01 -3.40352565e-01 4.97576654e-01 6.91809773e-01
-6.44848824e-01 2.62412608e-01 -7.23916054e-01 7.26626813e-02
7.98649728e-01 1.33210015e+00 -1.47463366e-01 5.05742989e-02
-3.29769105e-01 5.14820933e-01 9.39005136e-01 4.60050374e-01
-9.69359457e-01 -4.71559644e-01 5.70657432e-01 9.95771438e-02
6.06807806e-02 1.75377026e-01 2.30762154e-01 -8.73054087e-01
-8.43596160e-02 -4.25076455e-01 6.37381852e-01 -9.36550677e-01
-1.77828252e+00 5.75271785e-01 5.72599508e-02 -1.10742056e+00
1.62317932e-01 -7.62457609e-01 -7.18627810e-01 8.15731704e-01
-1.62707770e+00 -1.41370738e+00 -3.64246607e-01 3.08725119e-01
-2.72695392e-01 -4.58276868e-01 6.31038427e-01 6.43378437e-01
-7.85290599e-01 9.66966271e-01 3.41161877e-01 4.00629967e-01
9.96109426e-01 -1.34044552e+00 1.24897867e-01 2.68549293e-01
1.59398139e-01 5.66226900e-01 1.09739318e-01 -9.26402569e-01
-1.13070107e+00 -1.53585088e+00 9.56106484e-01 4.96339537e-02
9.95712399e-01 -3.71472865e-01 -7.43657410e-01 7.88902164e-01
1.33765459e-01 3.92729223e-01 7.91940987e-01 6.47166848e-01
-5.01519203e-01 -6.67393982e-01 -9.75790560e-01 5.10467291e-01
1.67741847e+00 -4.68347937e-01 7.66353533e-02 6.50106072e-01
1.03858209e+00 -5.47067039e-02 -1.37632918e+00 9.96746004e-01
5.53942502e-01 -8.07707429e-01 1.30624008e+00 -7.66515255e-01
3.55250627e-01 -4.24609125e-01 -1.20418511e-01 -1.41477776e+00
-7.94774711e-01 -3.26256186e-01 -5.73486745e-01 1.50987625e+00
9.34315860e-01 -9.17972267e-01 9.68009531e-01 -2.04340219e-01
-8.56770650e-02 -1.11222613e+00 -6.59918427e-01 -8.53384733e-01
-1.90519691e-01 -9.59121436e-03 6.06134176e-01 9.88314092e-01
-1.48022905e-01 7.29240894e-01 -4.62707490e-01 3.56506228e-01
9.43247259e-01 1.05763339e-01 7.32389033e-01 -1.69802201e+00
-5.51822603e-01 -4.53050405e-01 -6.40232205e-01 -1.08640742e+00
6.06795192e-01 -1.55273938e+00 -1.54732093e-01 -1.87215388e+00
5.74837446e-01 -7.46041179e-01 -8.39066446e-01 4.92343754e-01
-1.23725124e-01 2.84789354e-01 -2.79385656e-01 2.12351575e-01
-9.29577649e-01 6.23762608e-01 1.26226521e+00 -5.44248402e-01
2.21408810e-02 -5.61470948e-02 -4.52081740e-01 3.24202687e-01
7.66487420e-01 -2.86008954e-01 -9.42713559e-01 -2.56948292e-01
7.71221995e-01 1.41330764e-01 4.32224333e-01 -9.72589672e-01
2.87893385e-01 1.24281481e-01 4.33805883e-01 -1.23443723e+00
6.05466776e-02 -5.89116931e-01 2.47552589e-01 4.40042406e-01
-5.91761649e-01 -4.88894284e-02 -2.35334963e-01 1.03762662e+00
-1.67567715e-01 -2.67342944e-02 2.33625188e-01 4.00898606e-01
-7.48995423e-01 8.39489937e-01 4.94021565e-01 -7.51807690e-02
7.91674495e-01 1.69966549e-01 -9.19958234e-01 -2.89121389e-01
-6.79307103e-01 8.71864617e-01 1.34110954e-02 2.80515790e-01
5.91050148e-01 -2.06007004e+00 -9.61526215e-01 -6.42368710e-03
4.53835011e-01 -1.59450740e-01 -1.60396889e-01 8.37260723e-01
-5.78240395e-01 5.06567061e-01 1.00284085e-01 -3.99631262e-01
-1.18512249e+00 4.12320703e-01 3.74199182e-01 -7.02696800e-01
-2.43755460e-01 9.84759986e-01 -1.71147287e-02 -9.71265137e-01
5.63144505e-01 1.37590021e-01 -3.52165818e-01 -8.99333432e-02
2.85179671e-02 4.58813727e-01 -2.11539958e-03 -2.86123037e-01
-3.02802205e-01 2.05767840e-01 -2.36854032e-01 6.29190207e-01
1.28291261e+00 5.37481643e-02 -6.74735725e-01 2.60393530e-01
1.41831696e+00 -1.23160876e-01 -8.22525918e-01 -1.92052677e-01
2.24031463e-01 -2.55434774e-02 1.64668914e-02 -1.10656369e+00
-1.16867244e+00 3.76292109e-01 6.00505412e-01 2.43952304e-01
5.93138993e-01 1.40906706e-01 8.77091765e-01 6.11073554e-01
6.65330946e-01 -7.66642511e-01 -1.73452646e-01 6.73303068e-01
8.07651639e-01 -1.27048683e+00 2.48748258e-01 -7.89274216e-01
-4.31039110e-02 9.84150946e-01 1.04095089e+00 -1.68846026e-01
9.93805766e-01 -1.75213277e-01 -4.35497135e-01 -3.46162200e-01
-1.05213058e+00 -1.33910850e-01 7.31902659e-01 6.29619718e-01
7.40683913e-01 3.03580076e-01 -6.90499723e-01 3.68124992e-01
-5.37289269e-02 -2.96087712e-01 5.83675392e-02 1.29348189e-01
-3.39416444e-01 -1.48486233e+00 2.10706919e-01 9.59752023e-01
9.21927020e-02 -3.30184489e-01 -6.08545184e-01 9.45362568e-01
5.00574373e-02 5.74498475e-01 -4.08484787e-02 -8.63377154e-01
-6.10940568e-02 -1.40868858e-01 2.82044470e-01 -3.91950130e-01
-2.34075338e-01 -4.38555926e-01 7.58223593e-01 -5.15242100e-01
-1.51723579e-01 -3.95516604e-01 -1.10615098e+00 -6.24569774e-01
-4.96122748e-01 3.84039998e-01 1.56339690e-01 3.59402061e-01
3.60588193e-01 6.14628732e-01 4.53438461e-01 -2.11436361e-01
-2.98391908e-01 -1.02950478e+00 -6.77381098e-01 1.73699185e-02
-1.21879745e-02 -7.45519161e-01 -4.92774844e-02 -8.18636656e-01] | [7.306596279144287, 6.334572792053223] |
258016df-94df-4e7a-924a-898dac6f0b1e | probabilistic-bilevel-coreset-selection | 2301.0988 | null | https://arxiv.org/abs/2301.09880v1 | https://arxiv.org/pdf/2301.09880v1.pdf | Probabilistic Bilevel Coreset Selection | The goal of coreset selection in supervised learning is to produce a weighted subset of data, so that training only on the subset achieves similar performance as training on the entire dataset. Existing methods achieved promising results in resource-constrained scenarios such as continual learning and streaming. However, most of the existing algorithms are limited to traditional machine learning models. A few algorithms that can handle large models adopt greedy search approaches due to the difficulty in solving the discrete subset selection problem, which is computationally costly when coreset becomes larger and often produces suboptimal results. In this work, for the first time we propose a continuous probabilistic bilevel formulation of coreset selection by learning a probablistic weight for each training sample. The overall objective is posed as a bilevel optimization problem, where 1) the inner loop samples coresets and train the model to convergence and 2) the outer loop updates the sample probability progressively according to the model's performance. Importantly, we develop an efficient solver to the bilevel optimization problem via unbiased policy gradient without trouble of implicit differentiation. We provide the convergence property of our training procedure and demonstrate the superiority of our algorithm against various coreset selection methods in various tasks, especially in more challenging label-noise and class-imbalance scenarios. | ['Tong Zhang', 'Yong Lin', 'Weizhong Zhang', 'Renjie Pi', 'Xiao Zhou'] | 2023-01-24 | null | null | null | null | ['bilevel-optimization'] | ['methodology'] | [ 2.91006386e-01 -2.06477582e-01 -6.07819259e-01 -4.50010300e-01
-9.47844923e-01 -7.03374222e-02 8.28585327e-02 2.85077631e-01
-6.16143048e-01 9.25207496e-01 -2.62220621e-01 -2.86142621e-02
-3.90445679e-01 -6.11786902e-01 -5.63232303e-01 -9.07146096e-01
1.66769460e-01 9.57680821e-01 1.34629318e-02 1.96965396e-01
2.24060088e-01 1.08085431e-01 -1.52586222e+00 8.68777931e-02
1.22221017e+00 1.22816050e+00 3.05968314e-01 3.91998470e-01
-4.10733595e-02 6.53617382e-01 -4.03712422e-01 -1.74691323e-02
2.62688428e-01 -2.35806778e-01 -7.92281806e-01 2.54389048e-01
2.90082246e-01 -9.89239067e-02 1.38075471e-01 1.01713240e+00
5.21696389e-01 1.66859731e-01 5.04040956e-01 -1.44108808e+00
1.63130481e-02 7.23593473e-01 -8.34638059e-01 1.28916532e-01
-2.03652799e-01 1.53871616e-02 1.07642984e+00 -8.03296685e-01
1.55581638e-01 9.46401358e-01 7.35867560e-01 4.32876498e-01
-1.51294065e+00 -5.43923616e-01 3.90625983e-01 1.79691449e-01
-1.27650619e+00 -2.73537189e-01 5.11754334e-01 -3.66678089e-01
6.38262689e-01 4.45751458e-01 6.75282359e-01 6.17367387e-01
-1.56340629e-01 1.17320502e+00 1.02939785e+00 -3.39698136e-01
5.44646621e-01 3.56207788e-01 4.78329569e-01 4.52376366e-01
2.30543867e-01 1.41383326e-02 -7.00869024e-01 -6.46692693e-01
2.83842117e-01 2.44063720e-01 -8.31204429e-02 -4.44529802e-01
-1.01645148e+00 1.09450257e+00 1.50246769e-01 -5.32159209e-02
-4.73518491e-01 2.06298485e-01 5.24276435e-01 2.26617128e-01
7.66695440e-01 3.79339188e-01 -6.93937242e-01 -7.40226638e-03
-1.37944305e+00 4.78651702e-01 8.68861258e-01 6.83360040e-01
6.76543355e-01 -6.72551757e-03 -3.10347438e-01 1.15129292e+00
3.04321468e-01 4.88366336e-01 4.45157349e-01 -8.58553231e-01
3.97740632e-01 4.69001502e-01 1.02575786e-01 -5.99076867e-01
-4.20676380e-01 -9.32492197e-01 -9.29108024e-01 -3.65031846e-02
4.69348282e-01 -3.50541681e-01 -5.98717213e-01 1.72363043e+00
7.07480669e-01 2.06718102e-01 -2.81694949e-01 9.97668982e-01
2.56815463e-01 7.56601095e-01 1.73222303e-01 -6.59741580e-01
1.09791780e+00 -9.12071407e-01 -4.84749764e-01 -3.12531799e-01
6.73731327e-01 -6.69969022e-01 1.08322895e+00 5.15631497e-01
-1.05943310e+00 -2.01216519e-01 -8.35711241e-01 4.01386738e-01
2.04636618e-01 4.07348216e-01 7.22167850e-01 4.32764947e-01
-7.33574450e-01 6.13100946e-01 -7.54114807e-01 7.84776136e-02
6.24554098e-01 4.83469397e-01 3.37435305e-01 -8.72503873e-03
-9.87284839e-01 5.64697742e-01 3.68612587e-01 2.90466528e-02
-8.89799595e-01 -1.15335584e+00 -5.52870691e-01 1.58545956e-01
6.31435513e-01 -8.33275616e-01 1.32580817e+00 -1.17668426e+00
-1.37859941e+00 5.46403527e-01 -2.32656151e-01 -4.32132453e-01
7.80692577e-01 -2.18721285e-01 3.28748196e-01 -2.09911540e-01
1.86923504e-01 3.35651338e-01 1.01823318e+00 -1.11494660e+00
-9.74278033e-01 -4.16535944e-01 -3.11835885e-01 4.27823901e-01
-7.91853964e-01 -8.48673284e-02 -3.66983712e-01 -6.60521209e-01
-9.09780934e-02 -8.87030065e-01 -6.38370275e-01 -3.93157303e-02
-2.98316330e-01 -3.62223595e-01 7.14696169e-01 -2.88423777e-01
1.42397618e+00 -2.03510761e+00 1.78579554e-01 2.74239242e-01
7.69442841e-02 2.20957920e-01 7.97649696e-02 9.79071781e-02
2.14779541e-01 -1.91828758e-01 -3.00336838e-01 -5.01384139e-01
8.13942403e-02 8.73186365e-02 -3.69261771e-01 5.36639810e-01
-1.09633848e-01 4.43690360e-01 -9.71534133e-01 -5.45779705e-01
-7.74612129e-02 2.05723107e-01 -7.31846452e-01 2.26901233e-01
-4.85585868e-01 -2.24450212e-02 -6.59196913e-01 3.97065222e-01
6.40940726e-01 -7.47924089e-01 2.09352985e-01 -4.42732126e-02
-2.36141589e-02 1.18802145e-01 -1.52857995e+00 1.20142388e+00
-5.76376140e-01 1.90714151e-01 2.80443281e-01 -1.30677676e+00
6.35490477e-01 9.67459083e-02 6.53369248e-01 -2.83407182e-01
-2.76694261e-02 3.67327332e-01 -2.65773892e-01 -3.41412812e-01
2.37923622e-01 -5.19957662e-01 6.23688940e-03 7.36576378e-01
-2.62960225e-01 -1.69013515e-01 3.16817880e-01 1.29127413e-01
8.49405468e-01 -2.06176654e-01 6.50666207e-02 -3.16302836e-01
3.21831942e-01 3.13612550e-01 7.08196819e-01 9.20086920e-01
6.02413863e-02 3.73349845e-01 5.25903583e-01 -5.38176358e-01
-9.30521488e-01 -7.93215573e-01 -3.95474106e-01 1.31309342e+00
-8.81910603e-03 -1.25733376e-01 -6.62755370e-01 -7.20983326e-01
2.30296224e-01 6.82882905e-01 -4.39523965e-01 -8.37190151e-02
-4.84305948e-01 -1.46006072e+00 -2.13460196e-02 3.63489836e-01
3.32689226e-01 -8.13336968e-01 -6.20455325e-01 2.06754074e-01
1.12152081e-02 -7.97254205e-01 -7.94841349e-01 3.86430621e-01
-1.20157051e+00 -1.01505101e+00 -6.48769617e-01 -7.93217897e-01
8.64225566e-01 1.57617450e-01 1.02058733e+00 1.82456762e-01
-4.24819261e-01 9.93016884e-02 9.54740774e-03 -4.13746595e-01
2.27144584e-02 3.36621821e-01 8.52499828e-02 1.52341083e-01
3.00709993e-01 -1.31593421e-01 -5.78254044e-01 4.05669034e-01
-7.19646335e-01 2.04357043e-01 4.29519296e-01 1.18981957e+00
9.53237772e-01 1.42579556e-01 8.23212087e-01 -1.28868079e+00
6.08211756e-01 -5.51897705e-01 -6.27279401e-01 3.17475468e-01
-8.92435491e-01 5.59624052e-03 8.51699173e-01 -5.93451798e-01
-9.94936764e-01 2.30973810e-01 1.42450765e-01 -3.95531952e-01
4.07870680e-01 5.63992739e-01 1.95233151e-01 2.04719394e-01
5.17825484e-01 3.55258018e-01 1.72115490e-01 -3.43066633e-01
-5.95174469e-02 6.19902313e-01 -5.45262024e-02 -8.73248696e-01
5.92317104e-01 5.15999019e-01 -8.64869431e-02 -6.37184680e-01
-1.25095665e+00 -5.79062998e-01 -2.93666780e-01 -1.28553346e-01
2.36506149e-01 -9.11298990e-01 -8.60961318e-01 3.92621279e-01
-5.77102363e-01 -6.79334044e-01 -5.92996955e-01 5.11358500e-01
-5.22306085e-01 1.99197635e-01 -5.29155076e-01 -8.06246579e-01
-6.92348480e-01 -1.00153148e+00 1.01652133e+00 1.57447889e-01
-1.30629644e-01 -1.12598610e+00 1.01162024e-01 4.24776196e-01
3.50291818e-01 2.54236069e-03 8.92440856e-01 -5.27702510e-01
-3.29824179e-01 -3.91576409e-01 -1.30826369e-01 3.07984442e-01
-1.31830662e-01 -2.09650517e-01 -7.55049288e-01 -6.51979148e-01
2.02593550e-01 -6.59790397e-01 9.74022090e-01 6.99597716e-01
1.60755837e+00 -3.58298033e-01 -4.36307549e-01 7.23381281e-01
1.53413045e+00 -8.49928483e-02 -2.19638590e-02 3.46726269e-01
4.86066163e-01 5.16622663e-01 9.56665516e-01 8.97339821e-01
1.50357902e-01 4.28152919e-01 2.01470658e-01 -1.18834957e-01
3.49321425e-01 -5.03509976e-02 1.36385545e-01 8.00601602e-01
3.53169650e-01 4.66978326e-02 -7.18610525e-01 5.31641364e-01
-2.13003135e+00 -7.69660771e-01 -4.59337533e-02 2.41750646e+00
1.26877141e+00 1.03949994e-01 2.68149674e-01 1.08169265e-01
6.86054170e-01 -3.53285894e-02 -9.90820110e-01 -1.58858776e-01
1.24402501e-01 6.27247803e-03 4.73627359e-01 3.55129123e-01
-1.12375057e+00 6.14947677e-01 6.56099892e+00 1.23239493e+00
-1.11841381e+00 1.79608420e-01 1.21629071e+00 -8.47820461e-01
-2.88137406e-01 -1.26018897e-01 -1.08764350e+00 7.42392302e-01
6.77704692e-01 -2.85665661e-01 4.67745066e-01 1.03415453e+00
5.50201178e-01 -2.70188272e-01 -1.05039990e+00 9.50717568e-01
-1.21577010e-01 -1.21309042e+00 -2.96717256e-01 -1.54852778e-01
1.01315796e+00 7.08078369e-02 9.63448212e-02 3.63569349e-01
4.51502919e-01 -9.80470002e-01 6.40226781e-01 2.00996280e-01
6.70538962e-01 -6.59882545e-01 5.70909739e-01 7.01474667e-01
-8.58848512e-01 -3.11273396e-01 -4.79504853e-01 -4.90249880e-03
2.01854020e-01 1.24365520e+00 -5.84983468e-01 5.63724004e-02
6.47719443e-01 6.59723103e-01 -1.77236751e-01 1.37697351e+00
1.28324330e-01 7.89356768e-01 -6.28177345e-01 -2.57800549e-01
1.85277775e-01 -3.17679286e-01 3.54695976e-01 1.10011601e+00
2.61446178e-01 -1.53168425e-01 5.13240516e-01 7.03017175e-01
-1.43981904e-01 2.65176117e-01 8.34691990e-03 2.33660102e-01
6.00008905e-01 1.27212906e+00 -6.68317080e-01 -4.05559987e-01
-2.82571763e-01 4.68918920e-01 6.88839912e-01 2.87142336e-01
-7.17493415e-01 -4.04125750e-02 5.36577046e-01 1.23358712e-01
1.98900983e-01 1.37462258e-01 -7.89976299e-01 -1.06599593e+00
-2.53318585e-02 -9.71935451e-01 8.09222102e-01 -1.12381034e-01
-1.43452442e+00 2.89552093e-01 -4.60321046e-02 -1.06083834e+00
9.66901630e-02 -3.58956814e-01 -6.14903927e-01 7.48758376e-01
-1.56497669e+00 -5.24819911e-01 -1.11307502e-01 4.05300498e-01
6.01506174e-01 -1.28296867e-01 4.98461753e-01 3.94843578e-01
-9.00244415e-01 6.86708331e-01 5.73996425e-01 -3.70641589e-01
6.20186448e-01 -1.31625915e+00 -3.70711654e-01 3.98168027e-01
-4.35288519e-01 3.42640132e-01 6.93150282e-01 -5.82108736e-01
-1.35391665e+00 -1.21333289e+00 7.99899817e-01 7.63132051e-02
6.42644525e-01 -1.60638645e-01 -7.30758488e-01 4.29973334e-01
-3.78935605e-01 2.25999549e-01 7.41151035e-01 1.86532214e-01
9.58176851e-02 -3.68843228e-01 -1.10046434e+00 2.54769385e-01
6.69320822e-01 6.25148341e-02 -5.73537871e-02 7.46973634e-01
3.54546517e-01 -4.48634267e-01 -8.96485627e-01 3.76012325e-01
2.90972859e-01 -4.74570125e-01 9.07197058e-01 -6.59481406e-01
4.13815588e-01 -2.07413897e-01 4.92578596e-02 -1.42203820e+00
-1.07711196e-01 -5.98487794e-01 -3.26992542e-01 9.34088767e-01
5.04401445e-01 -5.63362479e-01 1.11634731e+00 8.03627789e-01
1.53656960e-01 -1.32771420e+00 -9.45960224e-01 -5.71786523e-01
3.87853123e-02 -4.19623435e-01 3.68970931e-01 8.64164174e-01
-2.28178743e-02 2.88681448e-01 -4.86950070e-01 -1.45722806e-01
1.10713732e+00 4.72083747e-01 5.51145196e-01 -1.17175972e+00
-6.79858983e-01 -3.61324251e-01 2.72836387e-01 -1.05434346e+00
9.95656997e-02 -9.17001784e-01 1.79769710e-01 -1.31372476e+00
8.28068972e-01 -1.12007892e+00 -1.41770199e-01 4.54228073e-01
-6.77662194e-01 5.04953451e-02 1.42388985e-01 4.06046361e-01
-8.52731645e-01 6.71110213e-01 1.25110495e+00 -2.12999642e-01
-2.87501812e-01 4.37316090e-01 -7.93464243e-01 5.45976639e-01
7.68247724e-01 -6.83552206e-01 -5.15045047e-01 -4.42546576e-01
3.93675178e-01 -4.23243642e-02 1.17697537e-01 -6.25045657e-01
3.15742463e-01 -4.76667792e-01 3.53153527e-01 -3.53691429e-01
1.61665976e-01 -6.19689107e-01 4.68648896e-02 7.11884558e-01
-6.05640709e-01 -3.36852849e-01 -1.08291067e-01 5.99098027e-01
-8.90536681e-02 -5.36717236e-01 9.87511039e-01 -4.18667542e-03
-2.39934132e-01 6.56333148e-01 -2.20146298e-01 5.67848325e-01
1.10367954e+00 1.10138170e-01 -1.04779959e-01 -7.22921416e-02
-7.34267414e-01 7.99026608e-01 3.19186032e-01 -8.00625235e-02
4.52500284e-01 -1.29096818e+00 -8.37504148e-01 4.76584211e-02
-2.43833661e-01 4.15010422e-01 1.13166258e-01 1.08190179e+00
-3.61720204e-01 1.43244699e-01 4.16253358e-01 -8.02830696e-01
-1.25454819e+00 3.36458832e-01 4.00747389e-01 -6.39813483e-01
-3.55600029e-01 9.07673120e-01 5.81801012e-02 -4.29488838e-01
4.83803123e-01 9.67035219e-02 -1.54683039e-01 3.10549319e-01
5.39221823e-01 5.80259860e-01 1.59498844e-02 -6.75744638e-02
-2.24516481e-01 3.12054276e-01 -2.66586512e-01 1.32299438e-01
1.64810610e+00 1.05151184e-01 -3.11780781e-01 4.26293075e-01
1.25918543e+00 -4.94011372e-01 -1.50910246e+00 -5.91219008e-01
-1.25895053e-01 -6.49743080e-01 3.07954282e-01 -4.98843789e-01
-1.21352553e+00 4.98428822e-01 4.70710427e-01 1.67670026e-01
1.02350855e+00 -1.65290728e-01 9.11961675e-01 2.17140362e-01
3.06840956e-01 -1.65567505e+00 8.07673261e-02 4.90108818e-01
4.70768303e-01 -1.39421558e+00 3.69951963e-01 -2.33157203e-01
-6.32978201e-01 1.09862518e+00 6.40042245e-01 -1.51335180e-01
8.74009728e-01 4.31155413e-01 -1.51198968e-01 -1.04033351e-01
-1.12025988e+00 1.72414646e-01 1.07343778e-01 5.05485088e-02
3.68975967e-01 1.55482307e-01 -5.68106890e-01 5.70424318e-01
-1.23474404e-01 2.40994215e-01 5.58463708e-02 8.34569573e-01
-4.72105175e-01 -9.13550735e-01 -4.67013329e-01 1.13634908e+00
-5.19979239e-01 -3.63515057e-02 1.47009477e-01 2.83855349e-01
-5.78908436e-02 7.35902965e-01 1.72153711e-01 2.13371608e-02
1.49384022e-01 -1.46097451e-01 2.58079678e-01 -7.08369493e-01
-6.68576658e-01 1.95279285e-01 -8.10945034e-02 -3.20319295e-01
-3.09752405e-01 -9.85308051e-01 -1.15170968e+00 -3.13424706e-01
-6.09293461e-01 3.81127387e-01 5.88929772e-01 9.91651058e-01
1.29997209e-01 5.62305391e-01 8.79146218e-01 -8.50150585e-01
-1.30834246e+00 -6.26799107e-01 -7.24308550e-01 4.96713907e-01
1.55964121e-01 -4.39781219e-01 -4.52045739e-01 -1.88437492e-01] | [8.452035903930664, 4.138492107391357] |
7a9ba174-637b-47cd-9d22-195464de271f | building-a-tocfl-learner-corpus-for-chinese | null | null | https://aclanthology.org/L18-1363 | https://aclanthology.org/L18-1363.pdf | Building a TOCFL Learner Corpus for Chinese Grammatical Error Diagnosis | null | ['Li-Ping Chang', 'Yuen-Hsien Tseng', 'Lung-Hao Lee'] | 2018-05-01 | building-a-tocfl-learner-corpus-for-chinese-1 | https://aclanthology.org/L18-1363 | https://aclanthology.org/L18-1363.pdf | lrec-2018-5 | ['grammatical-error-detection'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.229593276977539, 3.7639360427856445] |
68ff7c56-6f04-4de3-b70e-1ed138e1d9a7 | plug-and-play-priors-for-bright-field | 1512.07331 | null | http://arxiv.org/abs/1512.07331v1 | http://arxiv.org/pdf/1512.07331v1.pdf | Plug-and-Play Priors for Bright Field Electron Tomography and Sparse Interpolation | Many material and biological samples in scientific imaging are characterized
by non-local repeating structures. These are studied using scanning electron
microscopy and electron tomography. Sparse sampling of individual pixels in a
2D image acquisition geometry, or sparse sampling of projection images with
large tilt increments in a tomography experiment, can enable high speed data
acquisition and minimize sample damage caused by the electron beam.
In this paper, we present an algorithm for electron tomographic
reconstruction and sparse image interpolation that exploits the non-local
redundancy in images. We adapt a framework, termed plug-and-play (P&P) priors,
to solve these imaging problems in a regularized inversion setting. The power
of the P&P approach is that it allows a wide array of modern denoising
algorithms to be used as a "prior model" for tomography and image
interpolation. We also present sufficient mathematical conditions that ensure
convergence of the P&P approach, and we use these insights to design a new
non-local means denoising algorithm. Finally, we demonstrate that the algorithm
produces higher quality reconstructions on both simulated and real electron
microscope data, along with improved convergence properties compared to other
methods. | ['Charles A. Bouman', 'Lawrence F. Drummy', 'S. V. Venkatakrishnan', 'Suhas Sreehari', 'Jeffrey P. Simmons', 'Brendt Wohlberg'] | 2015-12-23 | null | null | null | null | ['electron-tomography'] | ['medical'] | [ 6.27263963e-01 -2.83237875e-01 2.93363333e-01 -3.10544729e-01
-6.94567978e-01 -4.40573618e-02 3.83092076e-01 -3.62606436e-01
-5.46260834e-01 9.72819984e-01 -8.48188549e-02 -4.94472980e-02
-2.70088375e-01 -4.41421837e-01 -5.84948242e-01 -1.10993564e+00
2.13636994e-01 6.35184050e-01 2.34324172e-01 2.23794907e-01
4.66897815e-01 6.75493121e-01 -1.16186523e+00 7.21228197e-02
5.40403366e-01 7.82397985e-01 8.76530707e-01 4.79063660e-01
1.98435038e-01 5.16285419e-01 9.58056003e-02 1.08348079e-01
2.06271306e-01 -7.20191896e-01 -8.54017615e-01 3.42811525e-01
2.82721613e-02 -3.68659824e-01 -4.42651808e-02 1.13264596e+00
5.65395296e-01 1.80426002e-01 7.17206001e-01 -4.11866456e-01
-3.59607577e-01 -8.79823230e-03 -8.06957841e-01 2.22978994e-01
2.15248883e-01 4.45754407e-03 3.91761869e-01 -1.07736385e+00
1.01875603e+00 1.06859112e+00 9.37351584e-01 5.03947616e-01
-1.83859050e+00 -1.11265726e-01 -5.66308916e-01 2.94554383e-01
-1.18503499e+00 -6.66676819e-01 8.68248224e-01 -4.77959186e-01
5.76651156e-01 2.81834990e-01 7.11300611e-01 7.09325850e-01
7.18295217e-01 3.05964142e-01 1.54963422e+00 -7.00700819e-01
2.80600876e-01 -1.17807515e-01 1.34886906e-01 6.50878251e-01
2.64627993e-01 -4.98488098e-02 -5.20170033e-01 -4.04721200e-01
1.32746696e+00 1.58942878e-01 -5.86486876e-01 -2.80489057e-01
-1.30398095e+00 5.36938667e-01 8.45978335e-02 3.73669654e-01
-6.34918153e-01 3.50871831e-02 1.79443151e-01 1.09637745e-01
4.91411448e-01 4.97539967e-01 1.14763856e-01 2.03754976e-01
-1.09952378e+00 1.51176855e-01 5.27749717e-01 5.04643321e-01
9.64443028e-01 -9.73594859e-02 2.32289389e-01 7.06100404e-01
2.47676164e-01 5.44418931e-01 3.42292309e-01 -1.47796023e+00
-2.30272934e-01 -2.71581382e-01 2.37897024e-01 -7.05582142e-01
-3.37349564e-01 -2.65192855e-02 -1.09799600e+00 3.76546085e-01
3.95513386e-01 3.37458640e-01 -7.44860649e-01 1.51744771e+00
4.84586746e-01 2.21082181e-01 -2.32351065e-01 8.26964378e-01
3.18262130e-01 7.42572606e-01 -4.74515676e-01 -9.04251814e-01
1.29453361e+00 -4.34592247e-01 -1.03406739e+00 1.59098178e-01
1.61427185e-01 -9.06381726e-01 8.76212895e-01 5.91065943e-01
-1.48661113e+00 -2.23213866e-01 -7.81479836e-01 -2.50101864e-01
4.22720611e-01 -2.36955598e-01 2.94490248e-01 1.48997769e-01
-1.00633097e+00 1.08589399e+00 -1.21150184e+00 -3.34013671e-01
3.48289520e-01 2.60006845e-01 -3.77456933e-01 -1.83057010e-01
-4.65999901e-01 9.44569111e-01 -2.06337467e-01 1.00424811e-01
-8.39047670e-01 -8.54866445e-01 -4.57163781e-01 -2.99176455e-01
-1.05293706e-01 -9.48036790e-01 9.09388602e-01 -5.40198863e-01
-1.58124352e+00 1.08251882e+00 -7.37227678e-01 -2.70218343e-01
3.90723467e-01 8.42211694e-02 1.38370693e-01 7.54373252e-01
1.44514546e-01 2.27559835e-01 1.00359368e+00 -1.54573298e+00
8.97733644e-02 -6.08376324e-01 -7.94871807e-01 2.45715603e-02
2.01839492e-01 2.14285731e-01 -1.69691056e-01 -3.01686257e-01
7.36805916e-01 -6.81975603e-01 -5.80466509e-01 1.94775194e-01
-3.97415847e-01 5.06438673e-01 8.65586936e-01 -7.47145414e-01
5.35527647e-01 -2.00388598e+00 4.27578956e-01 3.08836073e-01
3.74265313e-01 -2.11723939e-01 2.44679973e-01 5.44764757e-01
-5.90674626e-03 -3.72294635e-01 -6.47374213e-01 -7.75800943e-01
-4.73224133e-01 4.18463379e-01 -1.15851283e-01 1.08048236e+00
-1.54876560e-01 6.34723842e-01 -6.85401082e-01 -4.87309605e-01
3.11533600e-01 8.03281128e-01 -5.51405728e-01 2.16969997e-01
2.79227257e-01 1.16776419e+00 -4.61276919e-01 4.75269943e-01
8.42009127e-01 -4.98939157e-01 2.33260661e-01 -3.90121639e-01
-4.94835079e-01 1.47420511e-01 -9.53575432e-01 1.49889231e+00
-2.09051624e-01 5.29639184e-01 1.06326616e+00 -1.15824449e+00
5.85232913e-01 4.78459775e-01 6.54234469e-01 -5.15754879e-01
2.38396619e-02 3.74094158e-01 -3.21687132e-01 -6.47425473e-01
2.99388677e-01 -9.62373316e-01 7.15488672e-01 5.59047759e-01
-1.80790663e-01 -6.27496004e-01 -2.62888540e-02 3.81136350e-02
1.05656826e+00 -1.23292901e-01 2.82530397e-01 -1.04716957e+00
4.19547558e-01 -1.54833019e-01 5.54783404e-01 6.80754244e-01
3.94973019e-03 9.37872052e-01 1.69794291e-01 -5.26960790e-01
-1.61388516e+00 -7.87581384e-01 -8.51105869e-01 3.70709062e-01
1.21863514e-01 2.09439900e-02 -7.28375971e-01 3.64404678e-01
-3.11271876e-01 1.88976839e-01 -4.90181476e-01 2.18199313e-01
-6.97681487e-01 -1.23195720e+00 6.18503094e-02 7.42892101e-02
2.92624176e-01 -8.84061158e-01 -8.20573568e-01 2.95547694e-01
-3.04624528e-01 -9.75301325e-01 -1.59354076e-01 4.58340764e-01
-1.25043130e+00 -8.59462917e-01 -8.11405718e-01 -6.43482387e-01
1.10241938e+00 3.91484380e-01 1.00782204e+00 1.09855339e-01
-3.08407515e-01 4.70153958e-01 -4.32028063e-02 1.32283628e-01
-4.42822605e-01 -6.14023864e-01 3.06176245e-01 7.35368580e-02
-1.80493236e-01 -1.21004260e+00 -6.79187238e-01 3.60779077e-01
-1.11227500e+00 2.68455803e-01 3.01340997e-01 1.27995801e+00
1.14161086e+00 4.32282127e-02 1.45663798e-01 -1.06208766e+00
3.37266147e-01 -2.66074985e-01 -6.83767378e-01 -2.52536535e-01
-5.67442954e-01 -1.00472281e-02 7.11413622e-01 -1.05111659e-01
-1.14648020e+00 -3.10749132e-02 -4.96050090e-01 -3.56066048e-01
9.55360681e-02 4.43286508e-01 -4.76154722e-02 -6.16077662e-01
5.01661062e-01 4.86131132e-01 4.68527704e-01 -7.68960297e-01
-3.54175389e-01 2.14023501e-01 7.75392354e-01 -7.52538264e-01
5.88105619e-01 1.19604135e+00 5.76252043e-01 -1.32820702e+00
-4.84843403e-01 -4.91924852e-01 -6.60513639e-01 -1.37350827e-01
8.42732489e-01 -5.99667311e-01 -5.80912173e-01 4.54938769e-01
-1.11200464e+00 -3.33627045e-01 -3.64626676e-01 6.47734106e-01
-9.12799656e-01 8.62448514e-01 -9.40187812e-01 -8.76694441e-01
-1.94885164e-01 -1.46644664e+00 1.07274139e+00 -7.89240375e-02
-9.02496353e-02 -1.07943857e+00 7.88798332e-02 2.08609000e-01
4.49750096e-01 1.71801999e-01 8.80690992e-01 2.18191862e-01
-7.19382882e-01 1.15817010e-01 -1.54635429e-01 3.19509476e-01
-9.69869718e-02 -9.74782184e-02 -8.55915248e-01 -5.31993628e-01
1.14727461e+00 -2.08258897e-01 8.58589470e-01 1.01943088e+00
1.32237637e+00 -6.52318448e-02 -3.41919214e-01 1.21035254e+00
1.74733758e+00 5.20618558e-02 9.81548369e-01 1.65448904e-01
5.76763391e-01 6.10704839e-01 5.96704930e-02 5.27171195e-01
-2.28366196e-01 6.69992030e-01 3.35667789e-01 -3.13104354e-02
-2.74948571e-02 2.29528874e-01 -1.51518397e-02 1.09829116e+00
-5.25750935e-01 2.49772027e-01 -7.04083145e-01 4.93652552e-01
-1.49060917e+00 -1.05109024e+00 -6.11622155e-01 2.33997822e+00
9.52683091e-01 -3.52407634e-01 -2.90097922e-01 2.15572372e-01
6.41512811e-01 -2.11740375e-01 -4.46348280e-01 9.56610739e-02
-1.91709816e-01 4.19420511e-01 4.93264258e-01 7.78299749e-01
-5.63344359e-01 2.16047511e-01 7.70853901e+00 7.10922897e-01
-9.48457003e-01 3.92314285e-01 6.27947509e-01 1.21629104e-01
-4.84901786e-01 9.90889072e-02 -6.06662571e-01 5.54443955e-01
7.73801744e-01 -3.47113051e-03 5.21155834e-01 3.55605662e-01
5.78190267e-01 -4.39743370e-01 -1.05721951e+00 1.13217235e+00
-1.67751089e-01 -1.51774859e+00 -7.80334473e-02 4.26511079e-01
7.63202012e-01 -2.81756483e-02 -8.82157981e-02 -7.83245027e-01
-1.10006146e-02 -8.82794738e-01 3.96804750e-01 6.01370394e-01
8.60451579e-01 -4.68365401e-01 4.52206641e-01 3.69148284e-01
-7.20506966e-01 3.90307277e-01 -6.61308885e-01 -9.29368958e-02
7.69603014e-01 1.24170661e+00 -3.06012958e-01 5.75406671e-01
6.63025081e-01 7.91506588e-01 1.49642944e-01 8.92297804e-01
2.35333830e-01 4.36726481e-01 -5.34710109e-01 4.58161503e-01
-1.70730650e-02 -9.16718125e-01 8.54750991e-01 9.04528618e-01
5.69138467e-01 4.95654136e-01 -1.55120850e-01 9.73198056e-01
1.38264805e-01 -2.92695463e-01 -6.23529196e-01 3.98923874e-01
2.91216403e-01 1.18368769e+00 -8.90652716e-01 -3.02548587e-01
-2.23791525e-01 7.72097230e-01 6.36902452e-03 4.48315769e-01
-2.31212363e-01 4.84924726e-02 3.46759439e-01 6.91768825e-01
2.71411717e-01 -2.81016946e-01 -4.25722092e-01 -1.29275966e+00
-6.81114569e-02 -6.96371615e-01 -1.32180810e-01 -8.41188550e-01
-1.42540491e+00 3.81076008e-01 5.86962067e-02 -8.55853379e-01
4.39970121e-02 -6.27487302e-01 -7.06625521e-01 9.10848141e-01
-1.37215257e+00 -7.88711190e-01 -7.73586482e-02 6.62530005e-01
1.29947916e-01 2.67251045e-01 6.79936588e-01 2.44061843e-01
-3.05746645e-01 -1.95730045e-01 7.54999101e-01 -4.38593715e-01
3.55522096e-01 -1.17843056e+00 -8.75869989e-02 9.58776116e-01
-4.95897979e-01 7.99474359e-01 1.09772086e+00 -5.95594108e-01
-1.76636469e+00 -5.56873441e-01 6.39188766e-01 -2.17680648e-01
4.90728915e-01 4.54323776e-02 -1.17565048e+00 8.30403090e-01
3.01468581e-01 6.42713457e-02 5.76337457e-01 -2.75923163e-01
2.69361198e-01 1.11035034e-01 -1.54237092e+00 2.64871597e-01
6.82823837e-01 -5.44099629e-01 -5.14344633e-01 4.89035398e-01
2.66892351e-02 -2.06706315e-01 -9.46533322e-01 2.36806050e-01
5.24627328e-01 -1.17251337e+00 1.17810857e+00 1.33244544e-02
6.78862691e-01 -3.17216188e-01 -1.95719317e-01 -1.14952290e+00
-4.62085336e-01 -9.58042204e-01 3.01889658e-01 6.61222994e-01
-1.61157072e-01 -7.92195797e-01 6.78723693e-01 3.64258230e-01
-5.12773395e-01 -5.61459363e-01 -1.31152689e+00 -6.33616626e-01
8.57794005e-03 -1.27156258e-01 -6.26850873e-02 8.76408517e-01
2.28089094e-02 1.70574903e-01 -5.50123572e-01 -7.35865757e-02
1.45534706e+00 1.25627564e-02 3.24821115e-01 -1.16566372e+00
-4.57655311e-01 -3.67935672e-02 -2.00754240e-01 -1.26221788e+00
-7.41373077e-02 -6.95511937e-01 2.85626918e-01 -1.18601441e+00
6.12964034e-01 -3.48574609e-01 2.36569166e-01 -1.73497468e-01
8.55575055e-02 5.68240106e-01 -1.94067493e-01 7.53233314e-01
-1.62057921e-01 5.55224776e-01 1.62832928e+00 3.19587201e-01
1.53575331e-01 -2.22334757e-01 -2.28551850e-01 8.12276483e-01
2.49984220e-01 -5.18008530e-01 -3.97526212e-02 -5.57977438e-01
3.06418419e-01 2.74243832e-01 5.65658152e-01 -9.53462362e-01
3.25473458e-01 -3.30496170e-02 4.27590400e-01 -5.73550344e-01
6.77616894e-01 -8.62728179e-01 7.84745395e-01 5.92257440e-01
4.88081685e-04 -9.84965414e-02 -2.12215647e-01 4.52883065e-01
-1.61977604e-01 -7.21060932e-01 1.44986761e+00 -5.85774541e-01
-2.21104082e-02 5.53722344e-02 -6.07268453e-01 -3.03744346e-01
5.91199696e-01 -1.38731733e-01 -2.62321234e-02 -2.60559320e-01
-7.35836744e-01 -2.43211821e-01 9.80338454e-01 -1.02854633e+00
7.35703766e-01 -1.33359778e+00 -5.93225062e-01 4.83229518e-01
-4.83422488e-01 1.97712943e-01 4.40365821e-01 1.41725111e+00
-1.01513755e+00 4.66914214e-02 -3.70936126e-01 -9.56762731e-01
-1.10965908e+00 2.62982666e-01 3.30939353e-01 -3.32024187e-01
-1.03602266e+00 8.41818988e-01 2.87771404e-01 -1.93157122e-01
-3.73814285e-01 -1.35484785e-01 3.18861365e-01 -3.84576440e-01
9.31905091e-01 4.06936496e-01 4.29097787e-02 -4.89538163e-01
-9.22981650e-02 7.92817831e-01 -2.62131002e-02 -3.24593574e-01
1.79681802e+00 -4.89124864e-01 -7.38056242e-01 4.95432109e-01
1.03845596e+00 -2.89171492e-03 -1.40716016e+00 -2.86303639e-01
-4.06805277e-01 -6.91958785e-01 3.44992280e-01 -4.64795753e-02
-9.10493135e-01 8.09982121e-01 1.03555858e-01 3.60134453e-01
1.16991091e+00 6.46514073e-02 7.99058259e-01 2.95131713e-01
4.72511292e-01 -8.51950765e-01 -2.19761670e-01 3.14623982e-01
7.12859631e-01 -1.01091087e+00 3.95780653e-01 -5.35334468e-01
-3.10497414e-02 9.96949732e-01 -1.91665947e-01 -2.98806995e-01
6.86589241e-01 4.88878012e-01 -3.01452577e-01 -4.53437239e-01
-6.52697027e-01 2.48582289e-01 -2.88061261e-01 6.53322577e-01
3.25592786e-01 -2.70191997e-01 -4.34781373e-01 3.45789529e-02
1.56345800e-01 2.24494129e-01 8.04710329e-01 1.12938511e+00
-5.70834756e-01 -1.06291533e+00 -8.50080848e-01 5.00475883e-01
-6.29813194e-01 -7.81179816e-02 1.95728153e-01 4.43584621e-01
-2.84806877e-01 4.13962334e-01 8.06743279e-03 1.27459586e-01
-6.36084229e-02 9.83940624e-03 9.34055269e-01 -4.22210962e-01
-1.63274288e-01 5.31800330e-01 -1.87042400e-01 -4.82077777e-01
-8.86386812e-01 -8.85657489e-01 -1.11562479e+00 -6.81108356e-01
-2.57778019e-01 2.63069510e-01 6.27063215e-01 1.00172508e+00
1.35283813e-01 3.99970442e-01 6.10907376e-01 -1.47447634e+00
-5.19253731e-01 -9.19474065e-01 -1.18702412e+00 3.83920193e-01
3.83045495e-01 -5.54641247e-01 -6.11476183e-01 4.68539476e-01] | [12.857656478881836, -2.7907793521881104] |
faad786a-8596-43cc-b16c-4e05e2c4ef64 | finegym-a-hierarchical-video-dataset-for-fine | 2004.06704 | null | https://arxiv.org/abs/2004.06704v1 | https://arxiv.org/pdf/2004.06704v1.pdf | FineGym: A Hierarchical Video Dataset for Fine-grained Action Understanding | On public benchmarks, current action recognition techniques have achieved great success. However, when used in real-world applications, e.g. sport analysis, which requires the capability of parsing an activity into phases and differentiating between subtly different actions, their performances remain far from being satisfactory. To take action recognition to a new level, we develop FineGym, a new dataset built on top of gymnastic videos. Compared to existing action recognition datasets, FineGym is distinguished in richness, quality, and diversity. In particular, it provides temporal annotations at both action and sub-action levels with a three-level semantic hierarchy. For example, a "balance beam" event will be annotated as a sequence of elementary sub-actions derived from five sets: "leap-jump-hop", "beam-turns", "flight-salto", "flight-handspring", and "dismount", where the sub-action in each set will be further annotated with finely defined class labels. This new level of granularity presents significant challenges for action recognition, e.g. how to parse the temporal structures from a coherent action, and how to distinguish between subtly different action classes. We systematically investigate representative methods on this dataset and obtain a number of interesting findings. We hope this dataset could advance research towards action understanding. | ['Dahua Lin', 'Dian Shao', 'Bo Dai', 'Yue Zhao'] | 2020-04-14 | finegym-a-hierarchical-video-dataset-for-fine-1 | http://openaccess.thecvf.com/content_CVPR_2020/html/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fine-Grained_Action_Understanding_CVPR_2020_paper.html | http://openaccess.thecvf.com/content_CVPR_2020/papers/Shao_FineGym_A_Hierarchical_Video_Dataset_for_Fine-Grained_Action_Understanding_CVPR_2020_paper.pdf | cvpr-2020-6 | ['action-understanding'] | ['computer-vision'] | [ 4.04777497e-01 -8.60670954e-02 -5.35291135e-01 -4.94553834e-01
-6.13329291e-01 -7.17036843e-01 7.32006669e-01 2.01276109e-01
-1.87670380e-01 6.93833709e-01 6.78606033e-01 2.00605039e-02
-3.06565106e-01 -7.27443814e-01 -3.30100387e-01 -6.02388024e-01
-1.72306567e-01 3.82178336e-01 5.24869978e-01 -4.49601710e-01
2.73150504e-01 3.46519351e-01 -1.97209561e+00 8.75562429e-01
3.47305506e-01 9.33771372e-01 -1.72483653e-01 5.02340496e-01
-7.57207125e-02 9.83058751e-01 -6.05408847e-01 -2.73733974e-01
8.84110257e-02 -8.93947423e-01 -1.37353849e+00 3.59563798e-01
4.83879536e-01 -1.45160943e-01 -1.12831756e-01 7.06567347e-01
8.88595730e-02 4.36384588e-01 3.10602218e-01 -1.25735676e+00
6.34100568e-03 5.39314687e-01 -2.72607118e-01 3.31882715e-01
7.92941749e-01 2.14916646e-01 1.13163364e+00 -2.99275964e-01
9.06029165e-01 1.19309902e+00 5.90791166e-01 5.09440422e-01
-1.04988623e+00 -4.32123721e-01 3.56349081e-01 6.10803425e-01
-8.96095335e-01 -2.87488431e-01 4.95999753e-01 -6.97183371e-01
9.41336334e-01 5.05901814e-01 1.03826106e+00 1.30356336e+00
9.35460255e-02 1.12089956e+00 1.14675510e+00 -1.61336213e-01
2.77956784e-01 -5.45534968e-01 3.20025831e-01 4.04305667e-01
-8.96186661e-03 -7.89880455e-02 -9.45876300e-01 3.29840541e-01
5.32859206e-01 -4.25723419e-02 -2.98805162e-02 -2.23175794e-01
-1.39671111e+00 4.72037643e-01 1.05432309e-01 5.42987108e-01
-3.25389713e-01 1.54845983e-01 6.44024909e-01 7.01871747e-03
1.39738396e-01 2.49511242e-01 -4.40761983e-01 -9.95548546e-01
-8.19179177e-01 3.96240771e-01 7.29713857e-01 6.38516724e-01
6.16697967e-01 -2.57939368e-01 -4.07778829e-01 6.59934580e-01
-2.55136162e-01 -1.80572614e-01 4.84409422e-01 -1.26798105e+00
4.31038678e-01 9.92781341e-01 2.21913546e-01 -8.40631843e-01
-7.97325313e-01 -8.53105038e-02 -4.36298341e-01 1.13983333e-01
7.25905359e-01 2.50014812e-01 -7.45393217e-01 1.63187230e+00
4.02015686e-01 3.01497072e-01 -9.37308148e-02 9.31114614e-01
8.69159460e-01 3.02072108e-01 2.94101417e-01 1.81957446e-02
1.77945542e+00 -9.35746014e-01 -5.52902341e-01 -3.38619620e-01
8.98452103e-01 -4.04269755e-01 1.10897100e+00 4.90004659e-01
-9.38337564e-01 -7.64376700e-01 -8.44756961e-01 -8.93342216e-03
-4.80515420e-01 6.50993139e-02 8.35647225e-01 3.56652319e-01
-4.26743507e-01 7.40462840e-01 -1.14063704e+00 -5.43548942e-01
3.38006228e-01 -2.56331638e-02 -6.88983798e-01 2.33778074e-01
-1.07984710e+00 7.13094831e-01 6.31795168e-01 3.59533131e-02
-9.25122023e-01 -4.91558373e-01 -9.88169849e-01 -1.03825904e-01
8.27158928e-01 -2.50385135e-01 1.39316869e+00 -9.38269854e-01
-1.37875867e+00 1.03216732e+00 1.74880996e-02 -5.10578156e-01
3.55861813e-01 -2.32881948e-01 -6.25837922e-01 2.16380402e-01
4.15428370e-01 5.58690190e-01 2.76254863e-01 -6.66535318e-01
-1.15075946e+00 -4.74671960e-01 5.85765839e-01 2.43028566e-01
3.63380648e-02 3.53730291e-01 -4.59384620e-01 -6.43804967e-01
1.83173522e-01 -1.07516801e+00 1.19744288e-02 -3.04085642e-01
-3.39205444e-01 -4.09625798e-01 5.56717634e-01 -4.68457848e-01
1.53412068e+00 -2.23141718e+00 2.84518301e-01 -3.44639391e-01
4.09861170e-02 1.61938876e-01 1.01805143e-01 6.80520475e-01
-1.55002952e-01 7.71247000e-02 -1.59058407e-01 1.35057688e-01
1.07893005e-01 5.80265105e-01 6.41300753e-02 2.77909219e-01
1.07926473e-01 8.29786956e-01 -1.37713242e+00 -5.14975011e-01
2.96811342e-01 5.98369120e-03 -5.13400018e-01 -1.38008833e-01
-1.18029326e-01 6.96373284e-01 -5.41210353e-01 7.85673499e-01
-4.85057570e-02 -1.06005490e-01 2.96616554e-01 -2.92219549e-01
-2.91007161e-01 5.81634879e-01 -1.34659123e+00 1.79870892e+00
-1.19476154e-01 6.70015395e-01 -2.00392142e-01 -1.09791398e+00
6.17663443e-01 2.72193462e-01 9.04779375e-01 -8.25471520e-01
6.66880608e-02 -5.14392089e-03 1.46162137e-01 -7.22319603e-01
7.83693075e-01 -1.63368315e-01 -6.35518372e-01 1.67428777e-01
1.07408874e-03 1.70549050e-01 1.02254224e+00 1.61911473e-02
1.38260019e+00 6.31856143e-01 4.65683430e-01 7.35338777e-03
4.53219950e-01 2.45318025e-01 8.96453977e-01 5.54741204e-01
-5.39299548e-01 4.92369264e-01 8.42949629e-01 -6.89235687e-01
-5.43791056e-01 -1.03307343e+00 1.35845125e-01 1.45639038e+00
2.91929394e-01 -9.08050418e-01 -6.24735475e-01 -7.52314210e-01
-1.97873607e-01 4.09276634e-01 -7.32228994e-01 -2.21070081e-01
-9.47529793e-01 -3.91875625e-01 7.07374275e-01 8.69959414e-01
7.78285444e-01 -1.28200531e+00 -1.04959774e+00 3.89593810e-01
-5.88245571e-01 -1.24088526e+00 -2.99645036e-01 1.12363093e-01
-6.65163636e-01 -1.42182970e+00 -1.10841028e-01 -4.32777166e-01
1.53849199e-01 1.24907918e-01 1.43574095e+00 -3.85292172e-02
-3.90205473e-01 3.02576721e-01 -8.03648651e-01 -1.75870076e-01
-2.91125715e-01 -1.24665767e-01 6.24010824e-02 2.44692415e-01
5.26018679e-01 -4.69249874e-01 -6.90332472e-01 6.57189131e-01
-8.53314459e-01 1.38972789e-01 4.38789546e-01 4.81811076e-01
7.40094066e-01 1.63045034e-01 1.98501423e-01 -6.65858924e-01
2.37895742e-01 -3.74430299e-01 -5.12871630e-02 1.50522053e-01
-5.54388426e-02 -1.64630920e-01 3.28193456e-01 -4.25701350e-01
-9.66486573e-01 1.14990389e-02 -9.85618606e-02 9.06923935e-02
-4.29764301e-01 4.80223596e-01 -2.19857678e-01 4.76596028e-01
7.19511688e-01 3.47488463e-01 -2.49321654e-01 -6.05647027e-01
2.79756427e-01 4.06142712e-01 8.57924283e-01 -8.36577058e-01
3.10096592e-01 6.51223183e-01 4.58667167e-02 -7.21710682e-01
-1.07114768e+00 -6.27466440e-01 -9.77820754e-01 -6.64598882e-01
1.22585440e+00 -6.96574330e-01 -8.84241939e-01 6.08961582e-01
-5.96957922e-01 -4.77034509e-01 -5.62249959e-01 4.87870663e-01
-8.15182924e-01 5.71371257e-01 -7.17760801e-01 -5.42407632e-01
2.96787798e-01 -9.62942779e-01 1.16486132e+00 3.57136011e-01
-7.37387717e-01 -7.26098716e-01 1.03904366e-01 8.24303925e-01
-2.07510531e-01 5.80077648e-01 6.03150845e-01 -4.87174362e-01
-2.00133950e-01 -5.60063347e-02 2.42932007e-01 4.07890618e-01
3.01221728e-01 4.58109938e-02 -3.38355362e-01 -9.75755230e-03
-3.69470567e-01 -3.63474935e-01 6.42612159e-01 9.49866623e-02
1.06659412e+00 -5.60564213e-02 -3.29062551e-01 3.00640136e-01
8.34213257e-01 3.75452429e-01 8.84235203e-01 6.19968474e-01
4.99790609e-01 6.48066938e-01 1.07664251e+00 4.16145116e-01
3.33393276e-01 1.11634612e+00 3.76439393e-01 3.02047014e-01
-3.35161924e-01 -2.37268150e-01 4.91982013e-01 3.16672862e-01
-4.85856712e-01 5.06116785e-02 -8.79745483e-01 5.53888798e-01
-2.03033590e+00 -1.49564648e+00 -3.05107504e-01 2.00241733e+00
7.69764364e-01 3.56622249e-01 5.13827443e-01 4.63962197e-01
4.06716138e-01 4.75402057e-01 -3.50729555e-01 -3.60662252e-01
7.19581768e-02 2.02463627e-01 2.04354808e-01 6.64242208e-02
-1.29068244e+00 1.02208197e+00 6.11548471e+00 8.21374178e-01
-8.38949084e-01 -1.06956713e-01 1.05297014e-01 -4.48079892e-02
2.42650837e-01 3.53728563e-01 -9.27599609e-01 6.21308684e-01
7.16585517e-01 1.29930526e-01 -1.04479268e-02 6.54916823e-01
3.32589358e-01 -4.65491503e-01 -1.39726317e+00 9.28441703e-01
-1.71336681e-01 -1.25077820e+00 -2.45328341e-02 -1.36223286e-01
3.21309060e-01 -3.33720267e-01 -5.76078057e-01 6.79250300e-01
3.13178688e-01 -8.35609913e-01 1.04549599e+00 5.32231212e-01
4.52642649e-01 -3.56724143e-01 3.36949646e-01 4.24217671e-01
-1.65369284e+00 -1.73778638e-01 2.40707070e-01 -5.40486753e-01
3.88627589e-01 2.24297181e-01 -1.40001938e-01 8.41879129e-01
8.93882275e-01 1.05574417e+00 -5.78844368e-01 7.87671387e-01
-3.12326074e-01 6.01328850e-01 -6.38847649e-02 1.76041797e-01
4.24402654e-01 -4.36383277e-01 4.35146034e-01 1.19544864e+00
1.50048599e-01 3.31673890e-01 5.41565061e-01 3.05299014e-01
4.10533696e-01 -1.75595686e-01 -3.32647353e-01 -3.53100777e-01
1.87162668e-01 1.16129160e+00 -1.09095049e+00 -5.32999098e-01
-3.35145205e-01 9.26570535e-01 9.74171460e-02 -2.47084778e-02
-1.06747544e+00 -2.00971782e-01 1.11133862e+00 2.79114962e-01
1.15493245e-01 -3.02994400e-01 -3.20719555e-02 -1.21766329e+00
2.80863672e-01 -9.68953371e-01 8.44374359e-01 -8.25290442e-01
-7.48118162e-01 2.98718035e-01 2.96299905e-01 -1.60351145e+00
-4.08126801e-01 -4.64617014e-01 -3.69979233e-01 2.23382816e-01
-7.83013582e-01 -9.77927744e-01 -6.17257893e-01 4.98713523e-01
9.23990250e-01 2.14503124e-01 6.80186808e-01 4.23048943e-01
-6.31018341e-01 2.42172241e-01 -4.68219727e-01 4.11305040e-01
3.97092432e-01 -1.11194181e+00 1.80714607e-01 7.60289550e-01
4.68960047e-01 1.48274511e-01 6.90465450e-01 -6.82757497e-01
-1.00605428e+00 -8.83758307e-01 7.85400748e-01 -6.95770025e-01
8.12915385e-01 -1.57925904e-01 -8.38524997e-01 8.67150068e-01
-2.33703107e-01 -1.08691365e-01 7.25829840e-01 2.90891200e-01
-4.39806342e-01 -1.21537037e-01 -6.41229987e-01 6.80752814e-01
1.54916751e+00 -4.67193604e-01 -9.35679197e-01 3.07013005e-01
1.82975486e-01 -5.97209811e-01 -1.00887287e+00 6.04026675e-01
7.52679110e-01 -1.35085595e+00 1.02815568e+00 -1.08047783e+00
5.79639077e-01 -3.92873138e-01 -4.98661865e-03 -1.04478717e+00
-2.99285382e-01 -4.22849834e-01 -3.16781327e-02 1.15782225e+00
-1.00187942e-01 -1.64662331e-01 9.57319736e-01 2.85449743e-01
-5.50731122e-01 -7.00462580e-01 -9.65718746e-01 -1.15143704e+00
-3.11711401e-01 -7.25438833e-01 4.75117207e-01 8.15003514e-01
3.34621519e-01 2.28248462e-01 -4.92293805e-01 -3.99915278e-01
2.93038219e-01 3.02956730e-01 8.52277875e-01 -1.22100234e+00
-3.59763592e-01 -7.77958810e-01 -7.86436737e-01 -1.13125718e+00
1.76100491e-03 -8.87552619e-01 -6.15466163e-02 -1.70434165e+00
1.29649580e-01 2.56689955e-02 -2.22749904e-01 8.24146271e-01
6.26398027e-02 4.00138736e-01 1.81053415e-01 8.92034397e-02
-9.12274480e-01 1.34068817e-01 1.15333903e+00 -1.59640700e-01
-8.08911547e-02 1.18035085e-01 -4.72228795e-01 1.04851818e+00
6.16875112e-01 -2.79815942e-01 -4.17368442e-01 -1.82164997e-01
2.40522623e-01 2.36395225e-01 3.31824511e-01 -1.30809474e+00
-2.96642557e-02 -6.30302310e-01 -3.60909291e-02 -4.16300982e-01
5.03356278e-01 -4.57499355e-01 4.51436520e-01 5.79560339e-01
-3.08138490e-01 -2.58463234e-01 -1.01198569e-01 5.12683034e-01
-5.04532933e-01 -2.60823630e-02 5.88583946e-01 -3.50337744e-01
-1.29384220e+00 8.55393410e-02 -6.09363139e-01 2.02866882e-01
1.33746541e+00 -7.13134766e-01 -2.72282064e-01 -1.54653028e-01
-1.22015381e+00 2.33960733e-01 1.96103737e-01 8.21275234e-01
1.72012225e-01 -1.49930179e+00 -5.12052774e-01 -8.13650787e-02
4.86077964e-01 -1.66815266e-01 4.69290912e-01 1.06369185e+00
-3.42659980e-01 1.68786809e-01 -5.68828821e-01 -6.15969121e-01
-1.46348989e+00 2.57030010e-01 1.73027486e-01 -5.17346621e-01
-9.72404540e-01 4.78089839e-01 -3.96961346e-02 2.19411310e-02
2.63280421e-01 -5.91074705e-01 -5.21438181e-01 4.84081626e-01
4.80797589e-01 6.42657638e-01 7.94287119e-03 -9.04375136e-01
-6.20389938e-01 5.52199960e-01 2.83734441e-01 1.70280188e-01
1.10153091e+00 1.06584420e-02 -7.66238645e-02 7.56083429e-01
7.35739648e-01 -1.24024764e-01 -1.33750379e+00 3.88904698e-02
4.68919516e-01 -4.46245223e-01 -6.62201166e-01 -7.53407359e-01
-7.93461800e-01 6.15606308e-01 3.20614129e-01 5.12946010e-01
1.14664507e+00 2.35207766e-01 7.99102247e-01 1.31892189e-01
7.19385743e-01 -1.37713706e+00 4.07385707e-01 6.43429756e-01
7.21498072e-01 -1.00740743e+00 3.41974734e-03 -3.81690562e-01
-7.67810702e-01 9.58467484e-01 6.32356882e-01 7.13384971e-02
3.52904111e-01 1.51535779e-01 -1.55564547e-01 -4.34921652e-01
-6.11136973e-01 -6.23862922e-01 3.76425117e-01 3.50693583e-01
3.39161336e-01 3.63151491e-01 -7.63115704e-01 7.51646399e-01
-2.73259342e-01 1.66926667e-01 5.43046176e-01 1.17329884e+00
-5.52524269e-01 -1.22965944e+00 -1.18903935e-01 4.39809978e-01
-4.46952790e-01 4.73431498e-01 -4.68882442e-01 1.04340291e+00
5.36403358e-01 8.96705687e-01 1.52642876e-01 -6.19107962e-01
6.74377859e-01 2.59576887e-01 6.92104161e-01 -8.17185700e-01
-6.88748896e-01 -2.73495018e-01 5.94909608e-01 -1.10365880e+00
-8.18192780e-01 -9.13824141e-01 -1.52576995e+00 -1.53941065e-01
4.38790500e-01 7.17443749e-02 1.91579774e-01 1.21220112e+00
1.69889867e-01 6.30200803e-01 1.54418886e-01 -8.27739596e-01
-2.11832061e-01 -8.61567497e-01 -6.30643725e-01 1.03370464e+00
-2.36903608e-01 -1.08634019e+00 -2.28121653e-01 2.49404401e-01] | [8.212789535522461, 0.562946081161499] |
537a8738-1fa3-414c-b14f-ce24b02b09cf | counterfactual-reasoning-testing-language | 2305.16572 | null | https://arxiv.org/abs/2305.16572v1 | https://arxiv.org/pdf/2305.16572v1.pdf | Counterfactual reasoning: Testing language models' understanding of hypothetical scenarios | Current pre-trained language models have enabled remarkable improvements in downstream tasks, but it remains difficult to distinguish effects of statistical correlation from more systematic logical reasoning grounded on the understanding of real world. We tease these factors apart by leveraging counterfactual conditionals, which force language models to predict unusual consequences based on hypothetical propositions. We introduce a set of tests from psycholinguistic experiments, as well as larger-scale controlled datasets, to probe counterfactual predictions from five pre-trained language models. We find that models are consistently able to override real-world knowledge in counterfactual scenarios, and that this effect is more robust in case of stronger baseline world knowledge -- however, we also find that for most models this effect appears largely to be driven by simple lexical cues. When we mitigate effects of both world knowledge and lexical cues to test knowledge of linguistic nuances of counterfactuals, we find that only GPT-3 shows sensitivity to these nuances, though this sensitivity is also non-trivially impacted by lexical associative factors. | ['Allyson Ettinger', 'Lang Yu', 'Jiaxuan Li'] | 2023-05-26 | null | null | null | null | ['logical-reasoning'] | ['reasoning'] | [ 8.32511634e-02 5.91213107e-01 -2.22424686e-01 -3.38560551e-01
-6.22247517e-01 -6.76489234e-01 1.21795559e+00 3.09852839e-01
-5.83106399e-01 1.28257859e+00 9.90870297e-01 -9.30694282e-01
-2.75936782e-01 -1.09932673e+00 -1.04302597e+00 -1.59902334e-01
-3.54809880e-01 2.36255527e-01 1.27470434e-01 -4.27086860e-01
5.35505891e-01 2.68533826e-01 -1.21397281e+00 4.59548414e-01
6.82212591e-01 1.69348836e-01 -1.04578048e-01 2.24170566e-01
7.59260878e-02 1.13366640e+00 -3.13663006e-01 -7.30212092e-01
2.42112935e-01 -4.53329444e-01 -8.89627099e-01 -6.27736390e-01
2.90371150e-01 -2.85341471e-01 -3.35629135e-01 9.47305024e-01
5.24628699e-01 5.80857545e-02 7.20131695e-01 -9.18098330e-01
-9.36109364e-01 1.40770888e+00 -2.39414096e-01 5.44689894e-01
7.16802061e-01 9.13259089e-01 1.22467971e+00 -4.94327843e-01
9.71615374e-01 1.84507048e+00 7.58761942e-01 1.29628941e-01
-1.63950670e+00 -6.62808239e-01 4.49430048e-01 1.76595464e-01
-9.99506652e-01 -7.08078384e-01 6.04108989e-01 -3.54178846e-01
1.30160940e+00 -4.11844021e-03 6.44220650e-01 1.55248618e+00
6.59502923e-01 2.81861037e-01 1.85862446e+00 -5.54042518e-01
1.82373151e-01 3.49238254e-02 7.98292235e-02 3.45894039e-01
7.33786702e-01 8.84795010e-01 -8.39193761e-01 -3.25006962e-01
6.73865795e-01 -6.87930644e-01 -5.78009486e-01 -2.70644009e-01
-1.58386147e+00 6.82113707e-01 2.98406512e-01 3.35440546e-01
-5.94025731e-01 4.81660403e-02 3.83408457e-01 4.04913306e-01
2.46270329e-01 1.06268775e+00 -8.79010797e-01 1.21756814e-01
-6.59701228e-01 6.66036010e-01 9.49657857e-01 4.10486877e-01
4.93658066e-01 3.67115662e-02 -4.07842338e-01 3.84056211e-01
3.73417258e-01 4.10913974e-01 7.77066171e-01 -8.85237277e-01
5.73641598e-01 9.51119587e-02 4.77256387e-01 -9.34961736e-01
-5.20665824e-01 -1.81265265e-01 1.00733541e-01 1.07398480e-01
7.14224160e-01 -2.72541523e-01 -5.89990318e-01 2.36422300e+00
4.82941791e-02 4.28786613e-02 2.58557796e-01 6.56906843e-01
2.81073123e-01 2.07384855e-01 6.89922035e-01 -6.56547248e-01
1.20512497e+00 8.26745033e-02 -5.38804591e-01 -6.00648403e-01
1.04981887e+00 -4.38439816e-01 1.40924489e+00 2.66436618e-02
-1.08971107e+00 -1.50255784e-01 -1.20846105e+00 -8.65923166e-02
-3.25564265e-01 -6.78802729e-01 1.17908216e+00 6.97756410e-01
-1.06895149e+00 6.97246969e-01 -4.99410272e-01 -3.62609863e-01
2.92345136e-01 -5.48200123e-02 -1.81928590e-01 3.19718234e-02
-1.81634867e+00 1.63214111e+00 9.11213875e-01 -7.29926080e-02
-8.90446067e-01 -7.26594627e-01 -9.54429448e-01 8.90542939e-03
6.68065071e-01 -8.09153914e-01 1.11690223e+00 -9.52889264e-01
-1.28656638e+00 1.02389479e+00 -1.97225094e-01 -7.89743245e-01
6.03098273e-01 -1.12077612e-02 -6.28778636e-01 -2.87052363e-01
4.62413490e-01 5.18845379e-01 4.18658823e-01 -1.14490914e+00
-4.36737090e-02 -4.53320086e-01 3.69449466e-01 4.00572598e-01
3.22994292e-01 1.47476226e-01 7.24459171e-01 -5.17764151e-01
-5.87426051e-02 -7.13422596e-01 -5.96686415e-02 -2.40356207e-01
-5.30623496e-01 -1.57205403e-01 -3.55661884e-02 -3.88684541e-01
9.83127892e-01 -1.71454620e+00 -6.48117840e-01 3.62938568e-02
-1.52047589e-01 -1.25399828e-01 -7.23560229e-02 3.06283891e-01
-8.69200885e-01 5.73430479e-01 -9.29923207e-02 5.43395579e-01
4.26745743e-01 -5.56286722e-02 -8.06628764e-01 3.58122557e-01
4.44995433e-01 1.30316341e+00 -8.15188169e-01 -4.44869936e-01
1.12326361e-01 -1.78831339e-01 -6.32090509e-01 -3.54544193e-01
-5.32519817e-01 -1.23216167e-01 -8.99136588e-02 1.77791312e-01
5.65293789e-01 9.25740153e-02 6.01760805e-01 1.91045851e-02
-2.98893929e-01 1.43433142e+00 -1.00694251e+00 1.22538722e+00
-3.61927122e-01 4.54723984e-01 -2.88001448e-01 -9.11817670e-01
3.83501381e-01 2.51344085e-01 -6.19754016e-01 -7.70984292e-01
3.84812467e-02 2.01917112e-01 1.01736271e+00 -6.49525702e-01
2.35183492e-01 -1.23202872e+00 -8.35923180e-02 7.33005643e-01
-6.11282624e-02 -3.54025662e-01 1.23862252e-01 2.49857426e-01
8.39799225e-01 5.41419625e-01 8.28957200e-01 -8.13837767e-01
9.67660546e-02 2.49895215e-01 6.90952241e-01 1.13851190e+00
-2.59721667e-01 -2.83692703e-02 7.21065819e-01 -3.58452827e-01
-8.65405381e-01 -1.15558994e+00 -4.43242699e-01 8.91507864e-01
-6.96818158e-02 -9.20395702e-02 -2.31733724e-01 -5.76816857e-01
1.48221448e-01 2.03111863e+00 -7.28817999e-01 -4.94964659e-01
-3.46373349e-01 -1.26323855e+00 6.48801029e-01 4.31173086e-01
1.48873299e-01 -1.23950398e+00 -8.43266845e-01 1.69959784e-01
-4.66421060e-02 -8.44518840e-01 2.54827410e-01 -7.00033009e-02
-9.18554783e-01 -8.59664679e-01 8.97070169e-02 5.35490876e-03
-1.26487359e-01 -1.03537552e-01 1.38795114e+00 7.33573809e-02
1.42666593e-01 9.08296108e-02 1.13415495e-01 -7.85339653e-01
-6.19311273e-01 -6.01216674e-01 2.25871876e-01 -6.72888458e-01
6.68432951e-01 -8.45036805e-01 -2.36600071e-01 -1.31970868e-01
-6.83757424e-01 7.02374876e-02 6.10503256e-01 7.56417274e-01
5.07615693e-02 -1.48359522e-01 7.82270432e-01 -1.04424918e+00
9.81080472e-01 -7.91678429e-01 -3.83772492e-01 2.72093594e-01
-5.14869392e-01 4.61350143e-01 5.83419919e-01 -4.24237788e-01
-1.61437201e+00 -8.07339191e-01 1.54104695e-01 4.40294087e-01
-5.45771003e-01 7.92603910e-01 -2.31386304e-01 5.03388762e-01
1.01901257e+00 -7.52065703e-02 -2.22581655e-01 5.82335703e-02
5.80865920e-01 8.90651271e-02 2.42175430e-01 -1.30099308e+00
6.37526691e-01 4.51259166e-01 -1.41257569e-01 -5.22996724e-01
-1.13421285e+00 6.55127645e-01 -4.22431558e-01 2.24555343e-01
6.73150957e-01 -1.07238626e+00 -6.82076395e-01 -1.10059045e-01
-1.06034350e+00 -7.43760586e-01 -2.77208179e-01 8.63625407e-01
-7.79962182e-01 1.96922407e-01 -5.02197683e-01 -8.38236511e-01
3.04396510e-01 -8.70852351e-01 4.11164403e-01 -3.30931634e-01
-8.08302164e-01 -1.23703730e+00 -1.05632700e-01 1.98645368e-02
2.39248231e-01 2.80519396e-01 1.43024814e+00 -1.09962654e+00
-5.04457533e-01 4.99490127e-02 -2.65233099e-01 -1.87832505e-01
-3.25940698e-02 -3.60402763e-02 -1.06431592e+00 3.02989274e-01
4.08795834e-01 -6.13279521e-01 9.83178914e-01 3.86760622e-01
5.93952775e-01 -5.11012077e-01 -3.35745543e-01 5.94583564e-02
1.40236819e+00 -1.14240283e-02 7.05116451e-01 2.93684065e-01
1.45309776e-01 9.02308583e-01 4.59446996e-01 -1.07879760e-02
5.71238160e-01 4.21771020e-01 -3.04536819e-02 4.86369550e-01
9.42498818e-03 -6.36750579e-01 6.56799793e-01 -1.61660865e-01
5.25842421e-02 -1.09021604e-01 -1.12550759e+00 8.30852687e-01
-1.42423356e+00 -1.47167182e+00 -2.40413070e-01 2.34529734e+00
1.17696047e+00 8.35059524e-01 -1.86141565e-01 -1.13003030e-01
4.56981719e-01 3.43015522e-01 -4.48184103e-01 -5.44439614e-01
-4.43109989e-01 1.84302419e-01 3.72596502e-01 8.00101936e-01
-5.58859527e-01 1.18135047e+00 7.63243628e+00 5.58926046e-01
-9.62245464e-01 -6.77727461e-02 7.12590218e-01 -3.18942368e-01
-9.29535210e-01 3.23407441e-01 -2.44597614e-01 3.08255821e-01
1.26234472e+00 -5.90636075e-01 1.51433110e-01 4.26802456e-01
4.34265763e-01 -4.96193111e-01 -1.59503317e+00 9.04269665e-02
-2.56934673e-01 -1.24512005e+00 3.40405226e-01 -1.17630385e-01
5.38642585e-01 1.00827925e-01 -2.81278286e-02 4.69130397e-01
1.01382959e+00 -1.26153040e+00 1.11260796e+00 2.06925273e-01
4.87942368e-01 -4.13126439e-01 7.23337948e-01 5.73993802e-01
-1.76654577e-01 -1.26599103e-01 -4.60880727e-01 -9.50588405e-01
2.76370704e-01 6.16395652e-01 -8.34051251e-01 2.92626590e-01
1.44622147e-01 1.98446155e-01 -3.53459209e-01 3.78405303e-01
-6.98705137e-01 7.49539137e-01 -1.97110832e-01 -1.12313896e-01
4.96618487e-02 2.00998873e-01 4.94804531e-01 1.21296632e+00
-5.02108745e-02 4.00938988e-01 -4.64797914e-01 1.37812364e+00
6.73196688e-02 -9.59992595e-03 -1.12481332e+00 3.38056199e-02
6.22324884e-01 5.72511494e-01 -5.65497518e-01 -4.47185636e-01
-5.49044430e-01 5.01681089e-01 5.88207543e-01 4.41804618e-01
-8.01937640e-01 2.01506808e-01 5.95200181e-01 -1.05291475e-02
-7.55779818e-02 -8.31144601e-02 -6.59578025e-01 -1.51048648e+00
3.19591053e-02 -8.97472501e-01 2.09678650e-01 -1.07087219e+00
-1.33406222e+00 -1.32198855e-01 3.80944282e-01 -3.22719187e-01
-4.96109962e-01 -8.88696492e-01 -7.38237441e-01 1.14543974e+00
-1.32775950e+00 -8.21691990e-01 7.85338342e-01 3.55076641e-01
1.25050321e-01 4.39837098e-01 8.97460163e-01 -6.33209825e-01
-2.72233903e-01 1.63328946e-01 -5.80305696e-01 -6.96006417e-02
1.00170994e+00 -1.16177559e+00 5.42707205e-01 1.08221614e+00
1.71470568e-01 1.42104399e+00 1.11579192e+00 -8.76980007e-01
-9.19606090e-01 -4.44620430e-01 1.18530285e+00 -1.04265928e+00
1.04181600e+00 -2.56665766e-01 -9.05255139e-01 1.22590899e+00
3.09826016e-01 -2.30030164e-01 7.81569481e-01 7.47603655e-01
-9.78658974e-01 4.75538284e-01 -1.08030832e+00 1.30808079e+00
1.57570577e+00 -7.07022548e-01 -1.64504015e+00 1.95861459e-01
9.14396763e-01 -1.11871749e-01 -5.09214997e-01 3.96174759e-01
5.34990489e-01 -1.23245823e+00 8.93985629e-01 -1.29158199e+00
8.41234446e-01 -1.03508957e-01 -1.99357882e-01 -1.60320497e+00
-3.77736390e-01 -3.83252263e-01 4.95991290e-01 1.05618143e+00
9.87589896e-01 -1.04343128e+00 7.82749653e-02 1.25355852e+00
2.22928375e-02 -3.21529150e-01 -9.25593853e-01 -6.73055589e-01
5.49440742e-01 -8.74527931e-01 6.42358720e-01 1.32825065e+00
6.34070933e-01 5.26670396e-01 2.96297938e-01 8.16561356e-02
5.35208523e-01 1.77701473e-01 3.31899524e-01 -8.45712364e-01
-4.72911954e-01 -4.76899058e-01 -5.33263572e-02 -5.69573581e-01
6.34720504e-01 -9.48015571e-01 -7.90065303e-02 -1.29421592e+00
4.22500163e-01 -2.01555774e-01 -5.38500249e-02 3.51842433e-01
-4.64364141e-01 -2.59231657e-01 2.62631267e-01 -2.21624732e-01
-2.02217132e-01 4.69583929e-01 1.12303698e+00 3.86665016e-01
-7.72830844e-02 -4.94287133e-01 -1.39508212e+00 1.19057667e+00
7.32230842e-01 -3.24900120e-01 -5.37186265e-01 -4.86749828e-01
6.01335108e-01 1.41083077e-01 7.23382890e-01 -4.54859942e-01
-2.30533615e-01 -7.40327954e-01 6.19417727e-01 1.80120602e-01
8.24113637e-02 -3.23066682e-01 -8.71050507e-02 5.19175053e-01
-7.42407680e-01 -3.70796695e-02 7.49209821e-01 4.17470425e-01
2.29784414e-01 5.96872456e-02 3.77541095e-01 -4.74583417e-01
-6.89510882e-01 -4.78642046e-01 -5.63061237e-01 4.68547016e-01
6.97095335e-01 -8.94252211e-02 -6.46023333e-01 -3.48892152e-01
-5.75688243e-01 -1.17113478e-02 5.49692333e-01 3.10867667e-01
2.41031036e-01 -9.89650011e-01 -1.03459883e+00 -1.54387414e-01
-8.05640593e-02 -7.58859932e-01 1.31900519e-01 8.73367786e-01
-1.88279718e-01 7.54973054e-01 -8.23750943e-02 2.21477523e-01
-4.68966514e-01 9.53044176e-01 3.62579823e-01 -1.75257891e-01
-1.66041374e-01 8.82624924e-01 4.98628169e-01 -3.82093161e-01
-6.60417438e-01 -5.76822340e-01 1.36089278e-02 -7.89254718e-03
4.97070163e-01 1.97453201e-02 -2.85572052e-01 -4.52759236e-01
-4.85210836e-01 -3.19468156e-02 -1.32439345e-01 -5.69576621e-01
1.08924806e+00 -8.70297030e-02 -1.72681764e-01 7.33639657e-01
4.85822111e-01 4.18487728e-01 -9.57370281e-01 2.33222451e-02
2.33546808e-01 -3.24548513e-01 -2.95092195e-01 -1.37586522e+00
9.07833781e-03 6.12205923e-01 -1.89505398e-01 1.28226742e-01
6.00934923e-01 2.47804578e-02 -1.25378668e-02 4.08863783e-01
6.41897202e-01 -9.23579574e-01 -5.27237415e-01 4.45207596e-01
1.12116241e+00 -1.07458007e+00 2.07680926e-01 -3.02059531e-01
-5.98252654e-01 6.68652952e-01 6.39650881e-01 -2.01701492e-01
3.44044209e-01 1.85601100e-01 -5.08766770e-02 -1.33428723e-01
-1.31695735e+00 -1.39770210e-01 -1.86961949e-01 5.82091033e-01
9.70139921e-01 3.21557254e-01 -7.52898753e-01 7.31779635e-01
-9.44065452e-01 -1.48176342e-01 6.82823896e-01 3.76668930e-01
-7.17224404e-02 -6.71976447e-01 -5.89153826e-01 6.38158083e-01
-7.27247179e-01 -7.47811496e-01 -6.24741077e-01 1.31275296e+00
7.31106400e-02 7.82374799e-01 1.50853664e-01 1.02247521e-01
1.29179448e-01 5.63550115e-01 6.73175693e-01 -8.14524591e-01
-2.41504237e-01 -3.39202017e-01 7.29587674e-01 -6.73267663e-01
-4.08983380e-01 -9.06051695e-01 -1.17641950e+00 -3.65053475e-01
-2.18925998e-01 -7.43730664e-02 4.35503684e-02 1.28172755e+00
2.90541381e-01 2.28359386e-01 -2.68773109e-01 -4.46754843e-01
-9.39194024e-01 -1.12023973e+00 -5.46300948e-01 5.06685078e-01
2.23347634e-01 -7.30544567e-01 -5.66147089e-01 -1.53226882e-01] | [9.908065795898438, 7.8842973709106445] |
7a50ba8c-0eb9-4fe3-ad32-216fc323596d | finsbd-2020-the-2nd-shared-task-on-sentence | null | null | https://aclanthology.org/2020.finnlp-1.8 | https://aclanthology.org/2020.finnlp-1.8.pdf | FinSBD-2020: The 2nd Shared Task on Sentence Boundary Detection in Unstructured Text in the Financial Domain | null | ['Dialekti Valsamou-Stanislawski', 'Abderrahim Ait Azzi', 'Bianca Chong', 'Willy Au'] | null | null | null | null | finnlp-coling-2020-1 | ['boundary-detection'] | ['computer-vision'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.475850582122803, 3.6605305671691895] |
613bde6b-68e8-41f8-8958-9c8f269dde24 | celldefectnet-a-machine-designed-attention | 2204.11766 | null | https://arxiv.org/abs/2204.11766v1 | https://arxiv.org/pdf/2204.11766v1.pdf | CellDefectNet: A Machine-designed Attention Condenser Network for Electroluminescence-based Photovoltaic Cell Defect Inspection | Photovoltaic cells are electronic devices that convert light energy to electricity, forming the backbone of solar energy harvesting systems. An essential step in the manufacturing process for photovoltaic cells is visual quality inspection using electroluminescence imaging to identify defects such as cracks, finger interruptions, and broken cells. A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors, which is extremely time consuming, laborious, and prone to human error. While deep learning approaches holds great potential to automating this inspection, the hardware resource-constrained manufacturing scenario makes it challenging for deploying complex deep neural network architectures. In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration specifically for electroluminesence-based photovoltaic cell defect detection on the edge. We demonstrate the efficacy of CellDefectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery, achieving an accuracy of ~86.3% while possessing just 410K parameters (~13$\times$ lower than EfficientNet-B0, respectively) and ~115M FLOPs (~12$\times$ lower than EfficientNet-B0) and ~13$\times$ faster on an ARM Cortex A-72 embedded processor when compared to EfficientNet-B0. | ['Alexander Wong', 'Mohammad Javad Shafiee', 'Saeejith Nair', 'Gautam Bathla', 'Mahmoud Famouri', 'Carol Xu'] | 2022-04-25 | null | null | null | null | ['defect-detection'] | ['computer-vision'] | [ 3.42448235e-01 -3.05338204e-01 3.60559851e-01 3.21813405e-01
-2.91690588e-01 -6.33860171e-01 -9.44436714e-02 1.74733941e-02
-2.81641781e-01 8.86410832e-01 -6.10002816e-01 -5.20510733e-01
1.56962201e-01 -8.98180604e-01 -7.64663279e-01 -1.04091394e+00
4.41121608e-01 1.84328616e-01 -2.47627825e-01 3.60242315e-02
4.89568323e-01 6.75844371e-01 -1.77221811e+00 -9.22736749e-02
1.18004870e+00 1.49606013e+00 4.76146609e-01 8.13154042e-01
2.39978939e-01 3.34668487e-01 -8.25961947e-01 1.41973188e-02
-4.38892795e-03 -1.12434655e-01 -2.77419060e-01 -1.64863691e-01
5.95836699e-01 -2.61874855e-01 -7.24229068e-02 1.06849456e+00
8.07566285e-01 -5.04635394e-01 7.88866222e-01 -1.26676726e+00
-9.72477496e-01 -2.15975255e-01 -2.23398209e-01 1.32759139e-01
1.68306485e-01 6.40569389e-01 6.72651529e-01 -8.96562755e-01
3.04557294e-01 4.57656592e-01 8.09941709e-01 4.75493342e-01
-8.83147240e-01 -7.57569551e-01 -6.33656800e-01 1.17640376e-01
-1.13032234e+00 -5.92674732e-01 8.00854802e-01 -2.97646284e-01
1.80978632e+00 -6.90756068e-02 1.09368479e+00 9.02318239e-01
7.97456682e-01 3.25262249e-01 1.09606016e+00 -4.13218856e-01
5.25209904e-01 -1.85340092e-01 3.01884953e-02 1.10667884e+00
7.93282270e-01 1.26717314e-01 -4.10444200e-01 2.21936390e-01
5.84670424e-01 1.38193443e-01 -5.55408359e-01 5.90435788e-03
-6.17763579e-01 3.63438427e-01 7.52174377e-01 1.48739904e-01
-4.14839566e-01 6.00273609e-01 3.82663906e-02 1.72167271e-01
-7.26057068e-02 6.57579720e-01 -3.55502099e-01 -1.13039590e-01
-6.83963299e-01 -3.38871598e-01 7.41260290e-01 1.00917172e+00
7.10131764e-01 4.83220607e-01 -9.50299427e-02 4.98008221e-01
1.16267070e-01 8.22474360e-01 1.12498254e-01 -9.50814664e-01
-2.37674043e-02 9.79026794e-01 1.68076560e-01 -4.92686301e-01
-4.22277212e-01 -4.61812854e-01 -1.30500889e+00 6.90264583e-01
3.94583866e-02 -3.57491434e-01 -1.12181938e+00 1.09910858e+00
-1.26785085e-01 -5.79092026e-01 2.36948933e-02 6.27812386e-01
7.35340178e-01 8.02006602e-01 -1.81695193e-01 -2.48251215e-01
1.28888535e+00 -8.98924232e-01 -4.56266254e-01 7.41500966e-03
3.41951132e-01 -3.44462067e-01 1.01850140e+00 5.77611208e-01
-1.16546452e+00 -4.27379847e-01 -1.53565276e+00 -3.74882042e-01
-7.59911180e-01 4.32759762e-01 5.60667098e-01 8.74021053e-01
-1.20126081e+00 5.83415806e-01 -7.48522103e-01 -2.97811121e-01
9.97452497e-01 8.00079346e-01 4.35281731e-02 -1.31939843e-01
-2.71092355e-01 6.90688074e-01 4.64303456e-02 1.47039890e-01
-8.44287932e-01 -7.99830258e-01 -4.96822685e-01 6.30436778e-01
1.17049314e-01 -8.66916299e-01 9.38280880e-01 -2.91338027e-01
-1.67941535e+00 4.53844488e-01 -2.68034428e-01 -3.06063980e-01
-9.40222517e-02 1.35967955e-01 -2.84688115e-01 1.76899537e-01
-4.02650505e-01 8.15773606e-01 6.04110539e-01 -1.14060569e+00
-4.98536021e-01 -3.42769712e-01 -4.57688421e-01 -2.45249569e-01
-6.93013787e-01 -2.91616797e-01 -2.01717198e-01 -3.77261117e-02
-2.90227264e-01 -8.18154991e-01 2.64127970e-01 3.71414512e-01
-4.54303622e-01 -7.53204644e-01 1.21775544e+00 -4.76656765e-01
5.76304376e-01 -1.71471560e+00 -4.43735898e-01 4.31848830e-03
1.63549274e-01 5.04054546e-01 6.92559630e-02 2.57784247e-01
3.44913632e-01 5.57664409e-02 -3.17119390e-01 -2.14904889e-01
4.08780500e-02 -7.10656345e-02 1.13409467e-01 3.43317688e-01
3.55359465e-01 1.30708647e+00 -5.33602834e-01 -6.26515672e-02
1.29728109e-01 5.82908630e-01 -3.69053572e-01 -9.56542045e-02
-3.02850425e-01 -2.02782694e-02 -3.42500843e-02 1.65838587e+00
6.45693243e-01 -6.60934746e-01 9.07706842e-02 -5.78993082e-01
-5.65089643e-01 -6.50370419e-02 -3.40077311e-01 1.52413070e+00
-2.48285756e-01 1.06908715e+00 3.68134677e-01 -8.63941252e-01
9.47081745e-01 1.29448161e-01 3.87369275e-01 -1.15897560e+00
4.11921382e-01 4.43769157e-01 -3.06206822e-01 -5.83990097e-01
3.45913291e-01 -2.04156972e-02 2.69410145e-02 5.83944432e-02
-1.08186319e-01 -3.76705706e-01 1.49769738e-01 -3.96634907e-01
1.43085992e+00 -1.36200786e-01 -1.68262705e-01 -5.03587425e-01
-3.72727308e-03 1.00305662e-01 5.95594883e-01 6.10317886e-01
-9.73671079e-02 2.62767792e-01 1.63773879e-01 -2.63910055e-01
-1.13852358e+00 -1.06885147e+00 -1.94800273e-01 3.71840417e-01
2.21849784e-01 2.52478123e-01 -7.51752853e-01 -2.70368338e-01
1.32913426e-01 5.86684883e-01 -4.58556935e-02 -1.51659682e-01
-2.38873467e-01 -6.98431790e-01 5.40751934e-01 8.87638509e-01
8.67751300e-01 -1.15178156e+00 -1.23760664e+00 2.58791864e-01
3.52711946e-01 -8.63837004e-01 -1.37648612e-01 5.99482536e-01
-7.19744265e-01 -1.20989966e+00 -6.82809770e-01 -1.11864781e+00
8.51899028e-01 9.55888629e-02 1.21749341e+00 3.09546530e-01
-1.05665982e+00 3.46446306e-01 1.97375074e-01 -7.78648496e-01
-1.76541448e-01 5.15712798e-02 -3.12739983e-02 -7.95632243e-01
4.12327915e-01 -5.82387388e-01 -1.14163852e+00 -3.06148622e-02
-5.12030840e-01 -7.95469806e-02 8.91128957e-01 9.35708940e-01
6.01528823e-01 5.96555233e-01 7.91824639e-01 -3.83602798e-01
4.78654742e-01 -1.16183155e-03 -1.08152413e+00 3.30070347e-01
-1.09292543e+00 -4.58886355e-01 8.18926036e-01 -1.58640400e-01
-7.35157192e-01 9.22645926e-02 -9.46149826e-02 -4.51081663e-01
-1.21635243e-01 2.16471314e-01 -2.20609814e-01 -5.44847250e-01
3.63849521e-01 1.65652350e-01 -1.36598140e-01 -1.39630795e-01
-4.36408341e-01 6.61835015e-01 6.78150535e-01 -1.88666910e-01
5.63303471e-01 4.46124375e-01 3.66817713e-01 -1.21126270e+00
-1.33383557e-01 3.08079440e-02 -1.45877786e-02 -3.48015010e-01
8.67193937e-01 -1.01407564e+00 -1.57897699e+00 9.43991244e-01
-1.04711485e+00 -4.39097345e-01 -1.27764642e-01 -2.02894151e-01
-2.78161522e-02 2.01447815e-01 -4.93384898e-01 -7.76058495e-01
-1.16610181e+00 -9.80794013e-01 1.03797007e+00 9.33175206e-01
2.11281776e-01 -7.70888567e-01 -3.42673302e-01 6.67442560e-01
7.46073246e-01 5.04216731e-01 1.54800534e+00 3.14047098e-01
-1.11468160e+00 -3.03175420e-01 -5.15160382e-01 4.91305858e-01
3.70507121e-01 4.48571295e-02 -1.10350609e+00 -6.69220209e-01
-1.39499083e-01 -5.88617802e-01 9.41616952e-01 4.77662265e-01
1.41069484e+00 9.62740332e-02 -6.49277568e-01 4.39287573e-01
1.96960056e+00 6.12875283e-01 7.82998860e-01 -3.06230843e-01
6.97761714e-01 -3.90272886e-02 -1.17340349e-01 7.83535391e-02
2.43965834e-01 1.47349298e-01 8.39767635e-01 -2.70292908e-01
-6.83727711e-02 1.24952771e-01 2.38908276e-01 7.22967386e-01
5.82306013e-02 -1.00913155e+00 -7.84523189e-01 8.09441328e-01
-9.96871889e-01 -6.20733202e-01 2.60959342e-02 1.91236806e+00
5.25968492e-01 2.21097674e-02 -4.14565474e-01 1.55713007e-01
5.92319906e-01 -4.07247633e-01 -1.17513442e+00 -4.78917450e-01
-2.11527467e-01 6.24883652e-01 4.90213364e-01 -1.87428951e-01
-4.53806102e-01 4.40256149e-01 5.17459774e+00 3.59782934e-01
-1.43863928e+00 -1.01742253e-01 4.13395405e-01 -2.75278211e-01
-2.30110571e-01 -3.28516692e-01 -5.79194367e-01 8.10692430e-01
6.77000523e-01 4.66118544e-01 5.51870465e-01 4.99902040e-01
-1.29078507e-01 -5.62112868e-01 -1.18464005e+00 1.21937883e+00
4.90410477e-02 -1.81668389e+00 -2.93872237e-01 4.59854573e-01
9.04159904e-01 3.41419190e-01 1.17635831e-01 8.46835896e-02
-1.41502604e-01 -1.14895463e+00 2.33302563e-01 5.93584299e-01
1.26166689e+00 -5.98548114e-01 4.86105263e-01 1.09291092e-01
-9.68638897e-01 -5.09189785e-01 -5.78129768e-01 3.70354541e-02
4.60761227e-02 8.79385650e-01 -7.15836585e-01 1.13310993e-01
1.25190771e+00 4.23442781e-01 -1.32914484e-01 1.15709686e+00
2.08661124e-01 4.28691119e-01 -4.85262305e-01 -5.05032301e-01
-1.54696733e-01 -1.32311225e-01 2.41058156e-01 9.52948213e-01
1.03441083e+00 -1.20281277e-03 -3.04768473e-01 1.15893495e+00
-7.84122884e-01 -7.99232483e-01 -7.04591334e-01 -2.72717774e-01
5.94931126e-01 1.43747509e+00 -7.89334238e-01 -1.26729691e-02
-1.47266105e-01 1.09046650e+00 1.44031122e-02 2.57030666e-01
-6.12995863e-01 -8.28719378e-01 6.28930330e-01 -1.16257906e-01
7.31707156e-01 -1.41598970e-01 -4.54681665e-01 -5.43709219e-01
1.00518979e-01 -4.38032985e-01 -1.81551576e-01 -1.33778441e+00
-1.12941062e+00 1.00826554e-01 -8.54633331e-01 -6.41751707e-01
5.49712896e-01 -1.31491637e+00 -9.04517531e-01 7.67538249e-01
-1.84262514e+00 -8.55471253e-01 -1.01953590e+00 2.00209677e-01
4.26895916e-01 4.73494194e-02 8.73379052e-01 2.04334661e-01
-8.62959087e-01 4.55798060e-01 3.83744687e-01 -9.95424241e-02
2.26751551e-01 -1.30124509e+00 2.99070060e-01 6.01806343e-01
-2.95736730e-01 2.63925970e-01 3.38250279e-01 -5.57500303e-01
-2.19756794e+00 -1.03756809e+00 4.64291334e-01 -2.01007158e-01
4.59813960e-02 -2.46341035e-01 -7.40120351e-01 -5.84942549e-02
8.06775749e-01 -1.40409976e-01 5.60220599e-01 -4.81540680e-01
2.01340064e-01 -4.02811497e-01 -1.43924618e+00 4.35498804e-01
1.08797133e+00 -5.34277737e-01 2.35481989e-02 4.98673141e-01
4.21496332e-01 -3.27308744e-01 -9.08227563e-01 5.83490252e-01
6.46624923e-01 -8.71149480e-01 5.23818076e-01 2.62197077e-01
3.17325681e-01 -3.86486650e-01 8.65027159e-02 -1.05833089e+00
-1.67723522e-01 -6.45345211e-01 -3.51112515e-01 1.12074053e+00
3.33619744e-01 -6.91617608e-01 1.14283335e+00 3.83439779e-01
-6.68934882e-01 -1.08013415e+00 -1.14526284e+00 -6.82617307e-01
-3.22401314e-03 1.11014649e-01 4.55162138e-01 4.10766125e-01
-5.19214988e-01 2.85089344e-01 2.38102108e-01 4.13611561e-01
6.44380689e-01 2.22025529e-01 2.57650912e-01 -1.54973423e+00
2.21388355e-01 -5.09255052e-01 -1.01334900e-01 -8.33647609e-01
5.95809985e-03 -4.88939613e-01 1.91485614e-01 -1.93840885e+00
6.05636388e-02 -3.77926975e-01 -3.95345330e-01 7.08909094e-01
4.20751333e-01 5.56577981e-01 -1.53292477e-01 -1.47889838e-01
-3.09075505e-01 7.19619632e-01 1.03072393e+00 -7.37114072e-01
-5.17736077e-02 -2.96853721e-01 -6.66363299e-01 3.29624653e-01
6.94002748e-01 -2.48823330e-01 -2.22201034e-01 -7.87293553e-01
6.48540318e-01 -2.62274474e-01 7.68058717e-01 -1.72982883e+00
7.35526979e-01 3.22341383e-01 8.70793998e-01 -8.44837964e-01
4.87521797e-01 -8.79591107e-01 6.71271160e-02 6.67196035e-01
5.76992989e-01 3.51091512e-02 3.67280304e-01 5.08612812e-01
2.57821798e-01 -1.80161968e-01 6.85276031e-01 -2.33641658e-02
-5.80102444e-01 9.78120714e-02 -5.90763986e-01 -3.94884080e-01
8.82564127e-01 -8.60411823e-01 -1.08242822e+00 1.66383952e-01
8.91557932e-02 4.38578933e-01 8.92109811e-01 -1.14337340e-01
8.67521524e-01 -8.64057958e-01 -3.94648835e-02 2.80130178e-01
5.25309369e-02 2.14055598e-01 4.64393377e-01 5.77139854e-01
-6.60049617e-01 4.92222428e-01 -3.95057440e-01 -7.96232879e-01
-1.15930355e+00 1.34462610e-01 5.35051286e-01 1.25013381e-01
-4.49231595e-01 9.29478347e-01 -5.04332900e-01 4.45287861e-02
5.47454655e-02 -6.61658585e-01 1.40486285e-01 -1.48341909e-01
-2.36157805e-01 8.44021261e-01 4.52336043e-01 2.06035942e-01
-4.33795840e-01 7.67659247e-01 2.42046535e-01 6.25037551e-01
1.36666989e+00 1.98603645e-01 -3.13261360e-01 -9.45935696e-02
1.08501184e+00 -3.29424292e-01 -1.51398790e+00 3.86902720e-01
-3.06569099e-01 3.56490940e-01 4.93049264e-01 -1.29916561e+00
-1.18605840e+00 9.23163354e-01 1.17691576e+00 2.54785240e-01
1.61715865e+00 -3.06440353e-01 1.12901402e+00 1.11812866e+00
4.55932498e-01 -1.65192342e+00 2.02001989e-01 2.42732093e-01
6.10475779e-01 -1.17941880e+00 -1.51300682e-02 3.00489236e-02
9.31910127e-02 1.06394506e+00 8.45455050e-01 8.31527337e-02
5.29484272e-01 4.34967250e-01 -2.17393309e-01 -7.07708836e-01
-7.58343995e-01 2.97821969e-01 -1.48937732e-01 6.17696404e-01
-5.57147227e-02 -1.58469826e-01 4.47003007e-01 7.44010806e-02
1.61481410e-01 3.54762435e-01 3.52441549e-01 1.26846147e+00
-5.59040964e-01 -5.15967071e-01 1.85542554e-02 8.39131594e-01
-1.33546442e-01 -1.66964997e-02 -2.90708482e-01 4.08956826e-01
4.98836517e-01 1.09095776e+00 4.51243281e-01 1.35964397e-02
2.80737668e-01 -1.98001061e-02 6.85025275e-01 -3.34802240e-01
-4.93296951e-01 -3.47124428e-01 -1.46723568e-01 -2.55235881e-01
-2.95011967e-01 -1.45175710e-01 -1.24719501e+00 -6.03913143e-03
-5.65687716e-01 -2.72110283e-01 1.14145565e+00 8.76256108e-01
7.90874898e-01 7.78174758e-01 5.20546317e-01 -9.25001681e-01
-1.95393190e-01 -7.63278902e-01 -3.80851358e-01 -3.58895451e-01
3.67496699e-01 -4.89708781e-01 -1.81188539e-01 -9.00584534e-02] | [7.316662788391113, 1.9077208042144775] |
ac98383b-1d08-4d7d-9496-062674cccc8b | e-vfia-event-based-video-frame-interpolation | 2209.09359 | null | https://arxiv.org/abs/2209.09359v3 | https://arxiv.org/pdf/2209.09359v3.pdf | E-VFIA : Event-Based Video Frame Interpolation with Attention | Video frame interpolation (VFI) is a fundamental vision task that aims to synthesize several frames between two consecutive original video images. Most algorithms aim to accomplish VFI by using only keyframes, which is an ill-posed problem since the keyframes usually do not yield any accurate precision about the trajectories of the objects in the scene. On the other hand, event-based cameras provide more precise information between the keyframes of a video. Some recent state-of-the-art event-based methods approach this problem by utilizing event data for better optical flow estimation to interpolate for video frame by warping. Nonetheless, those methods heavily suffer from the ghosting effect. On the other hand, some of kernel-based VFI methods that only use frames as input, have shown that deformable convolutions, when backed up with transformers, can be a reliable way of dealing with long-range dependencies. We propose event-based video frame interpolation with attention (E-VFIA), as a lightweight kernel-based method. E-VFIA fuses event information with standard video frames by deformable convolutions to generate high quality interpolated frames. The proposed method represents events with high temporal resolution and uses a multi-head self-attention mechanism to better encode event-based information, while being less vulnerable to blurring and ghosting artifacts; thus, generating crispier frames. The simulation results show that the proposed technique outperforms current state-of-the-art methods (both frame and event-based) with a significantly smaller model size. | ['A. Aydin Alatan', 'Ahmet Akman', 'Onur Selim Kılıç'] | 2022-09-19 | null | null | null | null | ['video-frame-interpolation'] | ['computer-vision'] | [ 2.04215217e-02 -4.49096590e-01 1.65565044e-01 -8.00337270e-02
-3.64698112e-01 -3.79505269e-02 6.12473428e-01 -6.89844266e-02
-4.44975734e-01 9.59831834e-01 9.50061753e-02 2.92913616e-02
3.79592702e-02 -7.63413668e-01 -9.05633688e-01 -6.99046612e-01
-3.38681787e-02 -1.95893079e-01 6.06837273e-01 7.05187842e-02
2.81868994e-01 4.75057930e-01 -1.76382720e+00 5.19758344e-01
9.64312911e-01 1.00758636e+00 3.76255780e-01 7.00278580e-01
-2.28825614e-01 1.17924452e+00 -5.46410859e-01 -2.91696131e-01
1.03061832e-01 -5.93313932e-01 -5.43030560e-01 9.03279614e-03
5.51899135e-01 -8.13274980e-01 -6.38417125e-01 9.37622070e-01
1.38987869e-01 3.96042019e-01 3.23550791e-01 -1.28922844e+00
-6.69165015e-01 1.16011642e-01 -5.00812709e-01 5.16143620e-01
5.83457172e-01 2.82461286e-01 2.77989119e-01 -1.01614189e+00
6.99737549e-01 1.31441677e+00 6.27494693e-01 5.50938249e-01
-1.04098511e+00 -7.11411178e-01 -2.21741442e-02 7.66486645e-01
-1.27618515e+00 -4.98650670e-01 7.63993800e-01 -4.09301281e-01
7.09460318e-01 3.53468180e-01 8.92093956e-01 9.05225873e-01
4.56708968e-01 5.75698197e-01 9.39279437e-01 -2.60796070e-01
1.51022270e-01 -1.74206614e-01 -3.55572775e-02 4.65151608e-01
7.45806172e-02 3.54033530e-01 -6.16442561e-01 -3.78339551e-02
1.30124176e+00 3.10218811e-01 -9.48960245e-01 1.90757200e-01
-1.61252975e+00 5.57126939e-01 3.62860620e-01 3.49177539e-01
-7.53270566e-01 2.22865477e-01 3.98236692e-01 4.35002893e-02
4.42068785e-01 -1.07342429e-01 8.16703811e-02 -3.67289074e-02
-1.27259934e+00 4.78073329e-01 4.44238037e-01 8.47487330e-01
8.35062265e-01 4.07591552e-01 -6.32160008e-01 1.96727380e-01
3.20494682e-01 2.45730281e-01 5.14853179e-01 -1.14522529e+00
2.12357685e-01 9.83766168e-02 5.39113343e-01 -9.58807230e-01
-1.17830979e-02 9.32683647e-02 -8.79808187e-01 6.49357498e-01
7.23390281e-01 7.51215145e-02 -7.70746887e-01 1.50078773e+00
3.94127339e-01 1.12964523e+00 -2.18480788e-02 1.13580060e+00
9.37584519e-01 1.14153314e+00 1.96173161e-01 -6.74463630e-01
1.18361413e+00 -8.68960559e-01 -1.08616936e+00 2.56860375e-01
-1.04927026e-01 -9.75195289e-01 8.34205806e-01 4.67519909e-01
-1.38467443e+00 -1.08722234e+00 -9.31256413e-01 -1.01769470e-01
5.75539581e-02 -2.29487047e-01 4.15972769e-01 3.38317662e-01
-1.09447134e+00 7.41830289e-01 -8.82028461e-01 -5.72277941e-02
1.60608783e-01 1.14925705e-01 -3.18645000e-01 -5.23978621e-02
-1.22113097e+00 8.80366623e-01 4.54619080e-01 5.64012602e-02
-8.53260338e-01 -1.05433512e+00 -8.83540034e-01 5.26425280e-02
1.49846390e-01 -6.98874831e-01 9.94657099e-01 -1.26541162e+00
-1.54540336e+00 2.69624919e-01 -5.89005351e-01 -6.97329223e-01
6.00739896e-01 -2.49142960e-01 -4.87978756e-01 4.22026694e-01
-2.39933357e-01 7.14783430e-01 1.27974939e+00 -1.00274086e+00
-7.01420307e-01 1.40818104e-01 1.90346271e-01 1.56217605e-01
2.88781449e-02 1.28431484e-01 -3.34573209e-01 -9.02137339e-01
-3.50551486e-01 -5.74766994e-01 4.61235866e-02 4.53166664e-01
1.36351421e-01 -2.43805498e-01 1.33240664e+00 -7.88868070e-01
1.36443782e+00 -2.15783739e+00 -2.95391083e-02 -5.23180664e-01
1.68670535e-01 7.92339683e-01 1.22837313e-01 1.31819114e-01
-2.20686063e-01 -2.62511313e-01 -1.54371366e-01 -2.30553359e-01
-6.99875593e-01 3.07092160e-01 -3.67514759e-01 5.55610240e-01
2.91750342e-01 6.15311325e-01 -1.08716583e+00 -6.77325368e-01
9.54052091e-01 1.12022150e+00 -4.82610554e-01 3.97082627e-01
-1.24573804e-01 9.60910201e-01 -7.35085160e-02 1.29840195e-01
8.24062228e-01 -5.15891276e-02 -3.86698395e-01 -7.36647010e-01
-5.26636779e-01 -1.79137573e-01 -1.35374653e+00 1.80074215e+00
-4.06049103e-01 9.13277447e-01 -1.31091386e-01 -6.99377120e-01
5.02060890e-01 6.72151923e-01 7.18689084e-01 -3.72239292e-01
5.26665375e-02 3.41673866e-02 -9.75587517e-02 -6.55851305e-01
5.97482622e-01 9.47738811e-02 6.59991145e-01 4.05174829e-02
-5.87302484e-02 2.19893008e-01 2.94329852e-01 -1.74714085e-02
7.85928845e-01 5.84971964e-01 3.36187840e-01 -1.17273303e-02
8.84683490e-01 -3.54229808e-01 7.07015157e-01 4.37721550e-01
-2.59596884e-01 9.38969851e-01 -1.70151532e-01 -7.53337681e-01
-1.18033481e+00 -9.60092187e-01 -2.68398076e-01 2.66245157e-01
4.12064612e-01 -3.43026102e-01 -9.30419624e-01 -2.28937045e-01
-3.18325967e-01 8.25044096e-01 -4.54328984e-01 1.34318814e-01
-7.77437627e-01 -4.47398901e-01 2.39864543e-01 4.37530607e-01
8.78066599e-01 -1.05028105e+00 -1.04888213e+00 6.34102941e-01
-5.79637587e-01 -1.21642661e+00 -7.37400472e-01 -5.45498312e-01
-7.74660885e-01 -1.05497158e+00 -1.20285881e+00 -4.65631425e-01
6.04190648e-01 4.41743523e-01 9.29403841e-01 1.19710028e-01
-1.68741733e-01 2.15217695e-01 -4.53239828e-01 -1.50250748e-01
-4.81772989e-01 -8.53334308e-01 -5.82070164e-02 5.63381374e-01
1.33405492e-01 -5.44670701e-01 -9.71496403e-01 3.35567892e-01
-1.19097674e+00 4.66386467e-01 1.53156161e-01 8.82949054e-01
5.93546450e-01 -3.92065346e-02 2.92413950e-01 -4.93362337e-01
2.04119101e-01 -3.23033988e-01 -6.95949495e-01 1.47763774e-01
-1.83319941e-01 -5.43697067e-02 8.71250629e-01 -5.87919593e-01
-1.42036951e+00 -4.94958758e-02 -1.25502199e-01 -9.95906949e-01
-2.42258757e-01 -1.81857741e-03 1.36672944e-01 -2.81022280e-01
5.91858864e-01 3.88032794e-01 -2.32227333e-02 -1.08823374e-01
2.07233399e-01 4.96833712e-01 8.70377004e-01 -3.85368198e-01
4.85973835e-01 7.11579323e-01 1.91166885e-02 -9.09091771e-01
-3.75549257e-01 -2.98243731e-01 -4.78936464e-01 -5.87703764e-01
1.17996621e+00 -1.00064850e+00 -8.59933734e-01 7.48742819e-01
-1.68728125e+00 -2.55446285e-01 -2.66813606e-01 7.86133111e-01
-6.65477097e-01 7.21452653e-01 -6.75352216e-01 -8.20903957e-01
-2.89150476e-01 -1.36656439e+00 7.72181392e-01 5.51283121e-01
5.45937605e-02 -8.27429235e-01 -2.37361863e-01 -5.18463925e-02
5.25374711e-01 4.82830733e-01 3.95205528e-01 7.70518109e-02
-9.52720165e-01 2.61261284e-01 -3.82405490e-01 2.84321100e-01
3.18155229e-01 2.79949397e-01 -9.51087356e-01 -2.34499514e-01
2.40909308e-01 3.95918131e-01 5.30054927e-01 7.93558955e-01
1.14448857e+00 -2.51695931e-01 -4.14737687e-02 7.94031799e-01
1.59521902e+00 5.60233653e-01 1.22261894e+00 1.09857634e-01
7.68466771e-01 1.62614107e-01 7.42426932e-01 5.79683781e-01
3.61373246e-01 7.63942778e-01 4.37695026e-01 -1.10284269e-01
-5.83020329e-01 3.89614282e-03 3.68271232e-01 4.74993378e-01
-6.88437521e-01 -3.12311232e-01 -3.87279153e-01 5.26518524e-01
-2.05624008e+00 -1.49416912e+00 -5.02067864e-01 2.43809462e+00
8.38272870e-01 -1.30120009e-01 -3.19303991e-03 3.95507485e-01
9.03672814e-01 7.98852220e-02 -4.80117500e-01 -4.89678271e-02
1.60381421e-02 2.16147110e-01 4.89571095e-01 5.64631224e-01
-9.34893668e-01 5.60703397e-01 5.31612110e+00 7.61116385e-01
-1.31170106e+00 2.37938121e-01 5.46396792e-01 1.25951156e-01
-1.22015536e-01 9.64622796e-02 -6.57164693e-01 8.99237394e-01
9.78381157e-01 -2.02247396e-01 5.42503953e-01 3.83514911e-01
7.12818265e-01 -4.20284897e-01 -9.98414278e-01 1.41237891e+00
1.16280532e-02 -1.68546176e+00 8.44339281e-02 -3.84478986e-01
6.36422753e-01 -4.58819032e-01 -2.25742146e-01 -2.00568765e-01
-2.63479024e-01 -7.33873248e-01 1.02797389e+00 9.05877650e-01
8.32961619e-01 -6.84342980e-01 5.02150893e-01 1.18662603e-01
-1.44607353e+00 2.14937374e-01 -3.54775369e-01 -1.44249752e-01
6.52804911e-01 6.09223187e-01 -2.60606915e-01 6.46160424e-01
9.18031752e-01 8.64481091e-01 -2.01612443e-01 1.42598093e+00
2.26526689e-02 5.05543053e-01 -1.07856981e-01 4.42478389e-01
9.34958309e-02 -2.49923974e-01 6.83895767e-01 1.05253625e+00
5.45110047e-01 4.00167316e-01 -2.78958268e-02 9.44628179e-01
3.83741379e-01 -1.31343424e-01 -4.72899705e-01 4.57124412e-01
2.91787654e-01 9.84843791e-01 -5.48905671e-01 -6.17527604e-01
-9.29280221e-01 1.36117423e+00 -2.38556013e-01 5.76215267e-01
-1.28567958e+00 -3.62753242e-01 7.22388029e-01 3.10613245e-01
3.47996980e-01 -4.09390092e-01 1.69260606e-01 -1.34788609e+00
-1.03060916e-01 -6.20760083e-01 1.16430089e-01 -1.17707777e+00
-8.77504587e-01 6.58713698e-01 1.69603452e-01 -1.57646632e+00
-3.68133128e-01 -3.72264236e-01 -5.01203120e-01 1.06129813e+00
-1.75134277e+00 -1.07331824e+00 -6.86858535e-01 1.08626044e+00
9.23775613e-01 2.61124402e-01 5.54443657e-01 6.65559113e-01
-1.69171065e-01 2.61184931e-01 -3.77878472e-02 2.36587767e-02
8.38634372e-01 -8.04020345e-01 3.21240067e-01 1.19840193e+00
3.13993320e-02 4.01342154e-01 7.53354967e-01 -6.98204935e-01
-1.40336049e+00 -1.22434080e+00 6.41584635e-01 3.56326625e-02
1.24229737e-01 2.60776043e-01 -1.22920716e+00 6.09673917e-01
4.02766436e-01 5.54753602e-01 8.35123882e-02 -9.11553085e-01
1.37901306e-01 -1.90519705e-01 -1.23127496e+00 5.48175633e-01
8.17435741e-01 -3.69403005e-01 -4.04966652e-01 -2.60402206e-02
7.23736048e-01 -6.80810392e-01 -9.06804681e-01 1.88621163e-01
4.01858687e-01 -1.47469127e+00 1.19859016e+00 4.90839556e-02
3.49642873e-01 -8.91415298e-01 1.42026007e-01 -1.05527198e+00
-3.47970307e-01 -8.21723282e-01 -3.37096304e-01 1.18681204e+00
-3.81663442e-01 -5.23745894e-01 4.25632775e-01 7.09729433e-01
-1.57175139e-01 -3.52810889e-01 -9.01385963e-01 -6.27586544e-01
-5.07097781e-01 -3.88702124e-01 4.82766271e-01 7.88653374e-01
-4.21783447e-01 -2.09914789e-01 -6.86027348e-01 1.71431780e-01
8.62983108e-01 -1.15600429e-01 5.64552784e-01 -1.01764870e+00
-1.60556331e-01 -1.37852624e-01 -5.73141217e-01 -8.59103739e-01
-1.07271718e-02 -2.84548968e-01 -1.31153494e-01 -1.35374820e+00
-2.22313643e-01 -1.78855360e-01 -1.48981195e-02 1.31364122e-01
-3.89264256e-01 3.68834287e-01 3.81538928e-01 2.99625099e-01
-1.17652647e-01 3.23647141e-01 1.40560114e+00 4.08472531e-02
-1.74822882e-01 -2.17766225e-01 1.10863023e-01 8.05027425e-01
3.19419533e-01 -1.22406602e-01 -5.23739278e-01 -4.70796674e-01
-2.48582035e-01 5.60945094e-01 7.84356713e-01 -1.40074623e+00
4.40459430e-01 -3.01736295e-01 5.51602304e-01 -6.68862045e-01
4.26199496e-01 -9.43045199e-01 9.11273301e-01 4.38356161e-01
7.48391636e-03 2.39446938e-01 2.29245305e-01 6.20790422e-01
-3.90565395e-01 -2.63185382e-01 1.03698456e+00 -2.89573103e-01
-1.09590030e+00 5.52608609e-01 -3.88666421e-01 -1.57279059e-01
1.25520408e+00 -4.13177103e-01 -5.85205369e-02 -4.34443116e-01
-5.35757124e-01 -3.11848611e-01 5.08957028e-01 1.42264009e-01
9.16922927e-01 -1.43383706e+00 -7.73498654e-01 3.41602802e-01
-3.51863801e-01 1.14186749e-01 5.70448577e-01 8.38029325e-01
-9.27153468e-01 1.52900860e-01 -4.84719902e-01 -7.78557181e-01
-1.19253623e+00 8.66717815e-01 1.33828551e-01 1.10504679e-01
-1.00729346e+00 5.78867495e-01 3.16054702e-01 6.85143471e-01
6.69733435e-02 -6.44985378e-01 -2.29043961e-01 -5.15655130e-02
1.09499264e+00 5.33498824e-01 -5.59704117e-02 -8.20241749e-01
-8.08079988e-02 6.32190526e-01 1.37824699e-01 -7.41946399e-02
9.09571350e-01 -3.45948875e-01 1.00265585e-01 2.55698830e-01
9.39395010e-01 -1.35326311e-01 -1.73308098e+00 -1.40867189e-01
-5.06520987e-01 -9.76994216e-01 2.27916226e-01 -3.18388462e-01
-1.10904372e+00 7.95844436e-01 6.58164859e-01 1.13876954e-01
1.43222654e+00 -6.17413342e-01 1.15429878e+00 -3.97252828e-01
5.06026745e-01 -6.10803962e-01 -1.90753192e-01 1.04551025e-01
7.86672473e-01 -1.08242798e+00 -1.37611888e-02 -5.15181899e-01
-3.20380330e-01 1.53071594e+00 5.16497791e-01 -2.05646321e-01
4.23660576e-01 2.74031371e-01 -1.58475131e-01 4.73640233e-01
-5.24270415e-01 -1.45439833e-01 1.87759876e-01 7.70825088e-01
4.61709052e-01 -4.00362194e-01 -5.36287069e-01 1.29809543e-01
3.95044804e-01 5.91970325e-01 7.27163017e-01 6.11892819e-01
-1.36068344e-01 -9.30523038e-01 -8.29137743e-01 4.63315845e-02
-4.82093424e-01 -2.40255505e-01 6.95835590e-01 5.79584002e-01
2.23878711e-01 9.02472258e-01 2.36340210e-01 -3.80646139e-02
1.20029718e-01 -1.22718051e-01 7.49825597e-01 4.44401912e-02
-5.72466612e-01 2.06130948e-02 -3.12785566e-01 -7.76661694e-01
-9.58036482e-01 -6.59681439e-01 -1.29847848e+00 -5.68746448e-01
-1.80834770e-01 -1.49726003e-01 2.86954880e-01 7.32227504e-01
3.75741720e-01 7.77950764e-01 3.46072137e-01 -1.35036230e+00
6.99877590e-02 -6.61991000e-01 -1.77118883e-01 7.36912668e-01
6.56572700e-01 -6.86566949e-01 -2.37815291e-01 7.19217658e-01] | [10.765256881713867, -1.533995270729065] |
554ee5bb-ca5e-4bc6-850d-85985289930d | brouhaha-multi-task-training-for-voice | 2210.13248 | null | https://arxiv.org/abs/2210.13248v3 | https://arxiv.org/pdf/2210.13248v3.pdf | Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation | Most automatic speech processing systems register degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a neural network jointly trained to extract speech/non-speech segments, speech-to-noise ratios, and C50room acoustics from single-channel recordings. Brouhaha is trained using a data-driven approach in which noisy and reverberant audio segments are synthesized. We first evaluate its performance and demonstrate that the proposed multi-task regime is beneficial. We then present two scenarios illustrating how Brouhaha can be used on naturally noisy and reverberant data: 1) to investigate the errors made by a speaker diarization model (pyannote.audio); and 2) to assess the reliability of an automatic speech recognition model (Whisper from OpenAI). Both our pipeline and a pretrained model are open source and shared with the speech community. | ['Hervé Bredin', 'Emmanuel Dupoux', 'Alejandrina Cristia', 'Elika Bergelson', 'Morgane Rivière', 'Jade Copet', 'Alodie Boissonnet', 'Hadrien Titeux', 'Marianne Métais', 'Marvin Lavechin'] | 2022-10-24 | null | null | null | null | ['activity-detection'] | ['computer-vision'] | [ 3.00376415e-01 -1.04300067e-01 7.97796428e-01 -4.54064846e-01
-1.62273347e+00 -5.48927307e-01 4.21333045e-01 -1.55694753e-01
-3.63685876e-01 3.77949744e-01 5.75404346e-01 -5.63516855e-01
2.12825209e-01 -1.15014814e-01 -6.20469928e-01 -8.39450836e-01
7.88646713e-02 1.99847668e-01 4.84664738e-02 -8.83045420e-02
-2.06593424e-01 2.51177758e-01 -1.64710808e+00 5.38937807e-01
4.86179650e-01 9.10272360e-01 4.82715040e-01 1.51827598e+00
3.35947484e-01 5.15786469e-01 -1.30318177e+00 -5.05670672e-04
1.83143169e-01 -5.56758046e-01 -5.26600242e-01 -1.16410442e-01
4.05787975e-01 -3.57515782e-01 -4.42938283e-02 9.10108387e-01
1.27941120e+00 2.58255392e-01 3.97591144e-01 -7.45054007e-01
-2.78644860e-01 1.15107036e+00 1.55129239e-01 6.23998165e-01
3.62920582e-01 4.14235234e-01 7.32776523e-01 -9.52552974e-01
8.32304657e-02 1.40603626e+00 7.26046205e-01 2.71378309e-01
-1.23243666e+00 -7.46772408e-01 -1.25186564e-02 9.75593552e-02
-1.24364734e+00 -1.44023728e+00 4.94194388e-01 -2.28158474e-01
1.27643883e+00 6.40491366e-01 8.08821470e-02 1.72801030e+00
-3.50283474e-01 6.99504793e-01 1.04501784e+00 -5.54178715e-01
2.31856659e-01 -5.82640804e-02 1.59134179e-01 -1.20385960e-01
-4.06242400e-01 4.41905230e-01 -7.22550750e-01 -1.99257597e-01
1.09723948e-01 -9.39208448e-01 -6.22631848e-01 6.74575210e-01
-1.08856237e+00 4.07132417e-01 1.38241380e-01 5.21201611e-01
-3.08176696e-01 4.03529368e-02 5.30350447e-01 5.81527293e-01
5.69416225e-01 5.39717913e-01 -5.84595680e-01 -3.32007110e-01
-1.12526131e+00 1.55752063e-01 8.77961040e-01 7.59644508e-01
1.62449419e-01 7.11093366e-01 -1.68180421e-01 1.45927155e+00
4.57586467e-01 6.73633575e-01 5.85537910e-01 -6.49872422e-01
3.84177119e-01 -7.98389554e-01 -5.91250323e-02 -3.89754593e-01
-3.73371542e-01 -4.90117192e-01 -4.23582524e-01 1.41188130e-01
3.37096989e-01 -4.83593702e-01 -9.22849178e-01 1.37061155e+00
1.95981618e-02 2.73061544e-01 3.62495005e-01 9.62941408e-01
1.01239634e+00 8.75889480e-01 -1.31085098e-01 -2.17090487e-01
1.11895132e+00 -1.15861893e+00 -9.48708653e-01 -3.99533719e-01
1.60453588e-01 -1.18784726e+00 1.12414038e+00 7.02154934e-01
-1.18801248e+00 -8.55164528e-01 -1.07525325e+00 3.05348504e-02
-1.44557610e-01 1.20400466e-01 -1.62348449e-01 1.13147092e+00
-1.30349672e+00 4.54072505e-01 -8.16257715e-01 1.40098706e-02
-3.42218280e-02 -5.63444495e-02 -1.17497943e-01 3.13767284e-01
-1.21845603e+00 7.18444824e-01 1.12158433e-01 2.76833713e-01
-1.39456689e+00 -5.15695870e-01 -9.11598921e-01 1.76064119e-01
1.96807131e-01 -2.23871738e-01 1.88307643e+00 -1.03817296e+00
-1.86631846e+00 5.17869532e-01 -2.13438630e-01 -7.59861350e-01
4.69259888e-01 -3.76445472e-01 -1.09628415e+00 2.34681964e-02
-1.94199070e-01 1.07503958e-01 1.11909926e+00 -1.18454814e+00
-4.84730452e-01 -1.25554934e-01 -7.93280125e-01 1.74958706e-01
1.58707842e-01 5.18693566e-01 -5.00110872e-02 -8.33086908e-01
2.74955593e-02 -5.90224385e-01 5.56699932e-02 -5.20875871e-01
-8.06098282e-01 3.13007608e-02 7.40830541e-01 -1.14130712e+00
9.27084506e-01 -2.42541528e+00 -4.33550030e-01 9.52621996e-02
-2.91628033e-01 6.49569452e-01 -4.20606971e-01 2.38571599e-01
-1.19584173e-01 1.01627275e-01 -1.58765376e-01 -7.04573035e-01
3.70177254e-02 -2.18015939e-01 -3.80451739e-01 2.62317240e-01
2.90826142e-01 2.73952276e-01 -7.96837807e-01 9.21645015e-02
3.18293750e-01 8.29331815e-01 -3.22900444e-01 5.10346413e-01
2.07839385e-01 6.22232676e-01 3.37661594e-01 4.87035424e-01
6.92816436e-01 6.63449228e-01 -2.08153278e-01 2.62932363e-03
-3.24911058e-01 1.02100074e+00 -1.14965641e+00 1.28276253e+00
-6.99019551e-01 1.02036774e+00 8.01961064e-01 -4.62009341e-01
1.18689215e+00 8.05621624e-01 -3.21143150e-01 -4.85250026e-01
2.99674988e-01 6.49342656e-01 3.11606258e-01 -6.57361627e-01
4.18578833e-01 -1.28279120e-01 3.80555868e-01 1.47259235e-01
3.09232712e-01 -6.16696954e-01 -2.38827154e-01 -2.48776510e-01
1.25761735e+00 -2.89816082e-01 3.50990929e-02 -1.42395020e-01
3.18744838e-01 -6.24443650e-01 1.67870462e-01 1.03376317e+00
-4.83286977e-01 1.17726207e+00 9.93168652e-02 2.37328678e-01
-9.95777905e-01 -1.28903794e+00 -3.42684180e-01 1.31648028e+00
-5.52259207e-01 -1.64047584e-01 -9.30117369e-01 -5.33386357e-02
-3.99369091e-01 1.06151772e+00 -1.08658612e-01 4.10074880e-03
-4.10623044e-01 -4.35176641e-01 1.02854335e+00 2.45727032e-01
1.31161109e-01 -1.21724653e+00 -8.51790756e-02 3.45176339e-01
-2.54293442e-01 -1.13635778e+00 -6.58014297e-01 5.90664864e-01
-3.88810709e-02 -4.87939745e-01 -7.80864477e-01 -7.28250563e-01
-1.82105973e-01 1.77145466e-01 9.08145487e-01 -3.01596910e-01
2.97569726e-02 1.30070224e-01 -5.25616109e-01 -7.67959237e-01
-1.19338059e+00 -4.73203743e-03 3.58997256e-01 1.76041767e-01
1.35447830e-01 -6.93391621e-01 -4.65943545e-01 4.79635626e-01
-6.02985501e-01 -3.52600336e-01 3.79266500e-01 6.05560660e-01
2.77444959e-01 5.78509495e-02 1.07102621e+00 -5.13902605e-01
8.36359918e-01 -4.35113132e-01 -5.34215927e-01 -1.86292157e-01
-7.29274526e-02 -4.37415421e-01 6.42305195e-01 -5.05861402e-01
-1.10764825e+00 -1.58965290e-01 -1.13413656e+00 -3.38651150e-01
-6.92265928e-01 2.81368077e-01 -4.32609320e-01 5.19182920e-01
1.03605604e+00 -4.79584523e-02 -2.21480817e-01 -7.59907663e-01
1.83079824e-01 1.54537618e+00 8.44976723e-01 -1.58616289e-01
3.90363127e-01 -6.96038753e-02 -9.08065259e-01 -1.41634905e+00
-5.72973967e-01 -6.66828275e-01 -1.58982441e-01 -9.27483737e-02
5.90893805e-01 -1.03427005e+00 -4.54208076e-01 7.60220885e-01
-1.24011397e+00 -6.75691187e-01 -7.08062053e-02 6.47938132e-01
-5.00427008e-01 1.24479517e-01 -7.24467039e-01 -1.36725903e+00
-4.97771353e-01 -1.36395955e+00 1.05769157e+00 -5.19305691e-02
-2.84653366e-01 -4.09726024e-01 9.37354565e-02 5.54546177e-01
7.10958421e-01 -3.39606822e-01 3.96669179e-01 -1.20183265e+00
5.43399081e-02 3.57978195e-02 7.73446560e-02 9.31558549e-01
2.21135214e-01 6.47764802e-02 -2.03629708e+00 -2.81104118e-01
3.01017404e-01 -3.42454851e-01 5.81102729e-01 5.46126664e-01
9.29323673e-01 -3.68644208e-01 3.14995378e-01 3.88013035e-01
6.11331522e-01 4.04825628e-01 5.99564731e-01 -3.19984220e-02
2.93141514e-01 6.25294626e-01 6.65052328e-03 7.96847269e-02
-8.69278461e-02 5.78479528e-01 1.07713595e-01 -8.39435160e-02
-6.06544197e-01 -1.68392166e-01 7.77398884e-01 1.42642558e+00
4.92860436e-01 -4.94452536e-01 -9.76549327e-01 7.83799052e-01
-1.02518737e+00 -8.32660317e-01 -3.50410968e-01 2.20283461e+00
9.25771952e-01 2.42637902e-01 1.81534007e-01 5.14996946e-01
8.37469339e-01 1.63245708e-01 -2.66415507e-01 -8.07294071e-01
-3.49303633e-01 4.08340603e-01 1.47957817e-01 8.23193550e-01
-1.01347280e+00 6.27721667e-01 6.92301559e+00 8.35854292e-01
-1.30847073e+00 2.90701032e-01 7.34284937e-01 -2.49763921e-01
-1.09864391e-01 -4.48932618e-01 -5.12637675e-01 3.44378024e-01
1.73419595e+00 1.51141778e-01 5.61063051e-01 7.48034894e-01
7.45415688e-01 -1.13738649e-01 -1.10711336e+00 9.17049825e-01
1.52477473e-01 -7.95142949e-01 -4.38172191e-01 -3.83915365e-01
4.68273252e-01 6.04408205e-01 2.12163657e-01 5.48299789e-01
2.52004802e-01 -1.01005673e+00 1.16644084e+00 2.37255573e-01
6.00990653e-01 -5.72548032e-01 6.07438743e-01 3.62756670e-01
-8.31155717e-01 1.43910035e-01 -1.28582463e-01 1.81816444e-01
2.86104679e-01 6.45862281e-01 -1.44387090e+00 3.57622147e-01
8.92930150e-01 -9.00411140e-03 -2.91846097e-01 1.31998992e+00
-3.07784617e-01 1.29301000e+00 -3.94873053e-01 1.34584635e-01
1.25105437e-02 3.06542218e-01 9.53918993e-01 1.63472354e+00
3.18130016e-01 -2.32789204e-01 -1.58337504e-01 6.58630073e-01
2.42503788e-02 -8.83203559e-03 -3.87826413e-01 -6.58370256e-02
6.60723507e-01 9.69992697e-01 -3.22747976e-01 -1.60813615e-01
-1.29188135e-01 8.64248693e-01 -2.11744294e-01 6.99366987e-01
-5.04914105e-01 -6.50872946e-01 7.37494588e-01 -1.95675686e-01
3.93566728e-01 -1.16497271e-01 -1.37082160e-01 -7.00288475e-01
-2.61430833e-02 -1.21245134e+00 -7.31449425e-02 -1.15565276e+00
-1.22307849e+00 1.23669600e+00 -3.64371836e-01 -8.87616694e-01
-4.95238602e-01 -6.02869928e-01 -6.58056796e-01 1.36147249e+00
-1.50366831e+00 -6.80706918e-01 3.09910458e-02 2.64767259e-01
1.07690191e+00 -6.59546405e-02 9.05139029e-01 4.72106546e-01
-5.66010594e-01 6.41051412e-01 2.14740112e-01 1.09068781e-01
8.21970999e-01 -1.19685817e+00 9.73729014e-01 1.00295985e+00
2.19448268e-01 3.61951649e-01 1.05948436e+00 -2.21788034e-01
-8.07097614e-01 -1.04671741e+00 8.59308064e-01 -4.45495307e-01
5.69296062e-01 -7.12762773e-01 -1.19889295e+00 3.96382451e-01
3.20886016e-01 2.24544723e-02 6.88773692e-01 1.44449517e-01
-3.71248960e-01 -1.24172926e-01 -9.65852320e-01 4.49977428e-01
5.86107552e-01 -9.01222527e-01 -6.58804953e-01 1.22849807e-01
1.06538236e+00 -4.73720789e-01 -4.13357645e-01 2.99808104e-02
2.65250534e-01 -1.08377850e+00 7.09076107e-01 -1.85980007e-01
-1.35157615e-01 -3.56757462e-01 -4.16222423e-01 -1.91856790e+00
2.85119832e-01 -1.12458622e+00 3.02042186e-01 1.46602988e+00
9.48436856e-01 -5.78308702e-01 -1.16662748e-01 1.66877165e-01
-7.09344685e-01 -2.25638524e-02 -1.06953514e+00 -1.05925381e+00
6.28809631e-02 -1.12673163e+00 5.40464163e-01 6.73289657e-01
-2.40255818e-01 4.68059987e-01 -2.67054915e-01 4.81568843e-01
1.13040380e-01 -7.03176379e-01 6.68476522e-01 -7.47206867e-01
-4.63339627e-01 -3.18259567e-01 5.99495545e-02 -9.12567616e-01
-6.58507496e-02 -5.38978636e-01 9.19276536e-01 -1.17088282e+00
-6.83497369e-01 -3.60128611e-01 -1.15331292e-01 2.03247443e-01
-1.43349707e-01 4.75709289e-02 1.48706868e-01 -3.35501693e-02
-6.36751801e-02 6.02676451e-01 6.87340915e-01 -9.60254967e-02
-3.65534663e-01 4.59121704e-01 -4.68427241e-01 6.52857423e-01
6.91695154e-01 -4.25309509e-01 -2.09081039e-01 -6.37652516e-01
-2.03045085e-01 1.06148794e-01 2.67410934e-01 -1.23895109e+00
1.03407659e-01 5.19246697e-01 -9.54847187e-02 -4.09072489e-01
5.30462205e-01 -5.61065495e-01 7.48782679e-02 -9.64407772e-02
-5.89090824e-01 -3.14251959e-01 4.13153201e-01 3.33838642e-01
-2.73602515e-01 -2.98317105e-01 9.19265747e-01 3.07260621e-02
5.65881878e-02 -3.24143648e-01 -9.77405012e-01 -1.08476996e-01
1.58209130e-01 1.54538766e-01 -3.96192819e-01 -5.86459219e-01
-9.09428000e-01 -2.61493713e-01 -2.37039670e-01 5.73535502e-01
3.54818910e-01 -9.69738781e-01 -1.09483862e+00 4.46622670e-01
2.45993752e-02 -1.50543928e-01 3.75889421e-01 6.71238601e-01
-2.85698891e-01 3.06805342e-01 4.50353235e-01 -6.61934316e-01
-1.27798522e+00 2.55429506e-01 7.47892559e-01 3.67220730e-01
-3.82708758e-01 1.16944444e+00 4.05390412e-02 -5.68712592e-01
6.10625267e-01 -6.48091793e-01 7.04580843e-02 -1.72414668e-02
9.27151978e-01 4.09950078e-01 8.50062966e-01 -7.98285484e-01
-2.39460841e-01 -3.32896829e-01 -3.17979697e-03 -7.58562446e-01
1.06771731e+00 -3.61901075e-01 3.73805434e-01 1.01793182e+00
1.31586373e+00 3.18873942e-01 -1.23471570e+00 -1.92714408e-01
-8.32263231e-02 -2.49365985e-01 4.51686412e-01 -1.16802084e+00
-5.38478196e-01 9.92632568e-01 7.71283627e-01 6.77599728e-01
1.07122970e+00 -1.04955226e-01 6.98540807e-01 2.98597008e-01
6.19332865e-02 -1.14743793e+00 -1.12957813e-01 7.42349088e-01
1.35311007e+00 -1.12631857e+00 -7.08810389e-01 -1.17725298e-01
-6.22617722e-01 9.68776822e-01 3.00077736e-01 2.21075460e-01
7.41312027e-01 5.83459675e-01 8.69975686e-01 1.84179038e-01
-7.16551006e-01 -3.71210784e-01 1.66188821e-01 8.51905346e-01
5.58494508e-01 1.02245621e-01 4.89409328e-01 7.76455939e-01
-9.98763323e-01 -5.77693701e-01 4.64881122e-01 5.57569861e-01
-4.56037730e-01 -6.96074843e-01 -9.51340735e-01 2.14424402e-01
-5.35149813e-01 -4.34058458e-01 -5.11955440e-01 5.12471311e-02
-1.42901674e-01 1.75761044e+00 2.00814247e-01 -3.20148557e-01
7.25689113e-01 2.87317991e-01 -1.19997181e-01 -7.62500823e-01
-1.04542065e+00 7.64318645e-01 4.82948661e-01 -1.40307307e-01
-7.28208423e-02 -7.61227190e-01 -8.31323326e-01 1.23505123e-01
-6.63172245e-01 1.14544056e-01 1.17625809e+00 9.12124395e-01
1.95683673e-01 1.00346744e+00 7.56107986e-01 -1.04485941e+00
-4.49838012e-01 -1.58816099e+00 -4.73330885e-01 -6.96016848e-02
1.05261004e+00 5.59701771e-02 -9.27323997e-01 8.76048859e-03] | [14.837136268615723, 6.092375755310059] |
133586ac-b660-405c-9d12-a8181c06a7b9 | high-resolution-cloud-removal-with-multi | 2301.03432 | null | https://arxiv.org/abs/2301.03432v1 | https://arxiv.org/pdf/2301.03432v1.pdf | High-Resolution Cloud Removal with Multi-Modal and Multi-Resolution Data Fusion: A New Baseline and Benchmark | In this paper, we introduce Planet-CR, a benchmark dataset for high-resolution cloud removal with multi-modal and multi-resolution data fusion. Planet-CR is the first public dataset for cloud removal to feature globally sampled high resolution optical observations, in combination with paired radar measurements as well as pixel-level land cover annotations. It provides solid basis for exhaustive evaluation in terms of generating visually pleasing textures and semantically meaningful structures. With this dataset, we consider the problem of cloud removal in high resolution optical remote sensing imagery by integrating multi-modal and multi-resolution information. Existing multi-modal data fusion based methods, which assume the image pairs are aligned pixel-to-pixel, are hence not appropriate for this problem. To this end, we design a new baseline named Align-CR to perform the low-resolution SAR image guided high-resolution optical image cloud removal. It implicitly aligns the multi-modal and multi-resolution data during the reconstruction process to promote the cloud removal performance. The experimental results demonstrate that the proposed Align-CR method gives the best performance in both visual recovery quality and semantic recovery quality. The project is available at https://github.com/zhu-xlab/Planet-CR, and hope this will inspire future research. | ['Xiao Xiang Zhu', 'Wen Yang', 'Patrick Ebel', 'Yilei Shi', 'Fang Xu'] | 2023-01-09 | null | null | null | null | ['cloud-removal'] | ['computer-vision'] | [ 4.34545487e-01 -8.57589662e-01 9.25383121e-02 -1.44989714e-01
-1.38365507e+00 -7.15019882e-01 4.88627166e-01 -1.20396987e-01
4.48415689e-02 6.64960921e-01 -1.37266787e-02 -1.80534005e-01
-2.49005765e-01 -1.18520749e+00 -3.45822513e-01 -9.14406300e-01
1.24957316e-01 1.48813546e-01 -3.78638902e-03 -3.41006428e-01
1.07596569e-01 8.91948700e-01 -1.90169597e+00 4.23997551e-01
1.38900435e+00 7.21341074e-01 8.18637490e-01 4.73780185e-01
2.12899432e-01 4.93395537e-01 3.17188613e-02 2.15896040e-01
5.65565646e-01 -2.62062430e-01 -4.54499006e-01 2.95271426e-01
8.96146894e-01 -2.45685801e-01 5.53901419e-02 1.47060227e+00
5.69745481e-01 -1.25836618e-02 5.17386913e-01 -7.93355107e-01
-7.58449912e-01 2.14459258e-03 -1.07391942e+00 2.63045549e-01
1.17749581e-02 7.60114938e-02 8.57173979e-01 -1.26690722e+00
4.98360664e-01 1.14277315e+00 5.87907135e-01 -4.92854528e-02
-1.19228685e+00 -8.96402717e-01 1.48306131e-01 8.52833167e-02
-1.98730445e+00 -5.90596080e-01 4.67792183e-01 -6.37096405e-01
5.94872594e-01 7.06736863e-01 6.18777394e-01 3.12868476e-01
8.36978331e-02 4.73259836e-01 1.62210321e+00 -4.36758161e-01
-1.65659174e-01 -2.28934482e-01 1.85355753e-01 3.53486687e-01
7.50985086e-01 4.66219038e-01 -2.92080641e-01 -2.58433759e-01
6.50781095e-01 3.25570315e-01 -5.45937419e-01 -1.81302417e-03
-1.00842333e+00 7.87960827e-01 6.09949768e-01 3.08099121e-01
-7.06269979e-01 -1.22736968e-01 -2.28539661e-01 1.71054393e-01
8.44693303e-01 3.31990421e-01 -1.06609553e-01 7.78063238e-01
-1.26208973e+00 6.58901989e-01 -9.32037383e-02 9.86552119e-01
8.58651996e-01 2.82030970e-01 -5.69682606e-02 8.51015747e-01
4.95949239e-01 1.28958118e+00 -7.51098543e-02 -9.42921340e-01
2.20635980e-01 1.93881914e-01 4.99674082e-01 -1.12193930e+00
-1.55854464e-01 -6.01439416e-01 -1.27262568e+00 4.32771057e-01
-3.29104424e-01 1.68694019e-01 -9.17861819e-01 1.06791019e+00
3.07839274e-01 4.46894467e-01 5.20719051e-01 1.35602164e+00
9.19771135e-01 6.40873075e-01 -1.42647579e-01 -3.94834429e-01
1.60285282e+00 -7.93772161e-01 -9.75246012e-01 -3.74506921e-01
9.42831114e-02 -1.13101900e+00 6.67409837e-01 1.76893637e-01
-6.52929246e-01 -5.32301128e-01 -9.88300562e-01 2.90861070e-01
-4.88044590e-01 3.55610847e-01 4.88689691e-01 2.71712333e-01
-8.52345765e-01 3.02054316e-01 -5.43572545e-01 -2.06755474e-01
3.83483469e-01 -4.53684956e-01 -1.93124428e-01 -6.22360587e-01
-1.11546087e+00 9.16672409e-01 3.97057593e-01 6.11054182e-01
-8.92848790e-01 -5.60502529e-01 -7.26123333e-01 -3.05771798e-01
3.13631028e-01 -6.17620528e-01 5.88310957e-01 -7.31144011e-01
-4.57783252e-01 9.13346410e-01 -4.13834959e-01 -3.09806019e-01
1.67166963e-01 -3.79779160e-01 -8.64205539e-01 2.82780617e-01
4.26407605e-01 3.49493742e-01 1.08118832e+00 -1.99635017e+00
-8.26713860e-01 -5.92980206e-01 -4.70514774e-01 3.31292480e-01
3.65143955e-01 5.77784702e-02 -3.00593674e-01 -8.71575594e-01
5.05212963e-01 -8.46431196e-01 -3.37626487e-01 -2.65920222e-01
-2.01715410e-01 5.85011005e-01 9.54462349e-01 -7.62417734e-01
8.95184815e-01 -2.22189593e+00 -1.10372432e-01 1.13339499e-01
2.90359348e-01 3.85982543e-01 -4.41159219e-01 2.17140794e-01
-1.80905253e-01 2.02853322e-01 -6.29420757e-01 -2.00516745e-01
-4.83328789e-01 3.52107361e-02 -7.00225413e-01 7.51675904e-01
4.24126953e-01 7.59593546e-01 -7.17863858e-01 -3.22184622e-01
4.77227002e-01 6.27996445e-01 -4.22468111e-02 1.89214334e-01
-4.58766334e-02 7.90535808e-01 -4.89864737e-01 1.16686869e+00
1.68508804e+00 -1.36659488e-01 -1.42075703e-01 -3.78801912e-01
-5.27248442e-01 -4.51784194e-01 -1.35707390e+00 1.30742061e+00
-2.37758949e-01 4.43533570e-01 5.03197491e-01 -3.80841851e-01
9.93750632e-01 2.17615917e-01 3.76079202e-01 -9.19875979e-01
-3.23417366e-01 3.59378427e-01 -3.50179136e-01 -4.39271301e-01
9.97519970e-01 -3.79102081e-01 2.29962125e-01 1.49130821e-02
-7.02508628e-01 -6.40090644e-01 -2.49867946e-01 8.65898877e-02
3.89298081e-01 6.36204854e-02 1.77104220e-01 -2.00935379e-01
5.98252356e-01 5.99526405e-01 6.32402480e-01 7.26167858e-01
-9.89666507e-02 1.03357935e+00 -5.56446791e-01 -1.89359799e-01
-1.13705575e+00 -1.08071625e+00 -5.06166160e-01 5.60910940e-01
4.03147340e-01 -7.12355003e-02 -1.84703559e-01 9.53032747e-02
1.81208462e-01 4.79822487e-01 -2.46505305e-01 2.01864898e-01
-1.66724622e-01 -1.16043627e+00 4.27713335e-01 -2.78988350e-02
8.35439682e-01 -7.50405192e-01 -1.92269862e-01 1.89952608e-02
-7.25097418e-01 -1.37146485e+00 3.33863646e-02 -3.25557858e-01
-9.51587439e-01 -1.18140161e+00 -4.91054654e-01 -4.17310566e-01
4.69129562e-01 1.13143742e+00 1.05274105e+00 2.31997102e-01
-5.19388855e-01 1.20717995e-01 -8.07407677e-01 -2.06386283e-01
2.47263387e-02 -3.81369710e-01 -3.47466655e-02 2.30022833e-01
2.38200560e-01 -4.06788707e-01 -5.55019379e-01 2.37484679e-01
-1.10578835e+00 2.64070690e-01 7.22090900e-01 6.99265182e-01
1.24690783e+00 4.60028321e-01 2.70723224e-01 -6.56922281e-01
2.62368351e-01 -2.91195095e-01 -9.36782539e-01 2.12090075e-01
-5.29129565e-01 -5.18261909e-01 5.90584353e-02 2.64401257e-01
-1.09772193e+00 2.99566835e-01 1.50832325e-01 -6.49456382e-01
-3.23954523e-01 8.27138186e-01 -1.05132617e-01 -4.05317396e-01
5.71799874e-01 6.21377826e-01 -3.28416109e-01 -7.50310957e-01
4.40923065e-01 9.58645761e-01 8.40030909e-01 -3.60212654e-01
1.27542174e+00 1.07123983e+00 -3.51343751e-02 -1.09592521e+00
-1.04329586e+00 -9.72845018e-01 -6.88265502e-01 -1.70381695e-01
9.02560890e-01 -1.78822374e+00 -3.21494788e-02 6.67553782e-01
-9.28601325e-01 -2.70270854e-02 1.04553021e-01 5.24666429e-01
-2.47573972e-01 5.60799241e-01 7.40637910e-03 -1.17793000e+00
-7.12068439e-01 -9.26830053e-01 1.41410565e+00 -1.75050441e-02
5.25808692e-01 -3.80672157e-01 -3.89376618e-02 7.55263507e-01
6.06787026e-01 6.26394331e-01 3.84390593e-01 2.24354953e-01
-1.13337755e+00 1.40036777e-01 -8.13596070e-01 4.35858369e-01
3.28819126e-01 1.61346316e-01 -1.05530369e+00 -7.29149997e-01
-1.83638036e-01 2.04081181e-02 1.35012615e+00 4.10158873e-01
9.81096029e-01 1.51501214e-02 -1.40286952e-01 9.58189189e-01
2.13063097e+00 -1.38404399e-01 8.95638466e-01 4.40391809e-01
9.11677659e-01 3.57881844e-01 1.42237508e+00 5.19808352e-01
2.92090923e-01 6.26942337e-01 8.93996239e-01 -4.54831779e-01
-2.43951261e-01 3.21710408e-01 -3.48663032e-02 5.57418168e-01
-3.55603844e-01 -8.13590959e-02 -1.00975692e+00 8.13513756e-01
-1.93116653e+00 -1.22488093e+00 -7.46943176e-01 2.15965605e+00
4.31971043e-01 -6.09073937e-01 -4.64574993e-01 -1.91465989e-01
8.47698152e-01 5.40372849e-01 -2.83372849e-01 4.99167532e-01
-7.71397471e-01 3.12461942e-01 1.03531480e+00 8.20009232e-01
-1.23752928e+00 1.23582184e+00 5.16927147e+00 9.03563559e-01
-1.08118534e+00 4.75146502e-01 2.80549992e-02 1.68770462e-01
-3.99642438e-01 1.28035679e-01 -8.90509248e-01 2.40048021e-01
6.26531005e-01 1.04107022e-01 5.24745107e-01 2.47741073e-01
7.36612439e-01 -3.74254674e-01 -1.34568587e-01 1.08135617e+00
-6.06282614e-03 -1.51225221e+00 2.06800669e-01 9.61969495e-02
9.26283419e-01 5.05885243e-01 -1.32006756e-03 -1.34422481e-01
4.12151366e-01 -1.10367560e+00 6.35968924e-01 9.02085721e-01
9.80065644e-01 -7.68386126e-01 6.63165987e-01 2.80451566e-01
-1.73536587e+00 8.86968523e-02 -5.08697569e-01 6.67122379e-02
-1.41055901e-02 9.87566113e-01 -2.02987030e-01 1.44232821e+00
8.69211555e-01 1.07596242e+00 -5.96977115e-01 1.22049296e+00
-4.02751043e-02 2.12071121e-01 -6.44160435e-02 1.06948221e+00
9.79726017e-02 -5.94506145e-01 6.41530812e-01 1.07352185e+00
6.39246821e-01 5.47359884e-01 4.38294530e-01 8.08095336e-01
3.00850779e-01 -3.62277031e-03 -8.64903986e-01 6.27892017e-02
6.86296761e-01 1.41445196e+00 -2.20450655e-01 -3.86391044e-01
-2.58620560e-01 7.35279858e-01 -2.42182150e-01 4.28783685e-01
-6.53756380e-01 -3.92530784e-02 1.03556466e+00 1.83176070e-01
4.79032069e-01 -4.15618867e-01 -3.86030227e-01 -1.36534023e+00
3.54652256e-02 -1.08589649e+00 1.51255712e-01 -1.37106049e+00
-1.30377030e+00 6.41472459e-01 -4.03055698e-02 -1.77674925e+00
2.78440207e-01 -3.06653470e-01 -1.93484008e-01 1.50561225e+00
-2.55463171e+00 -1.67684817e+00 -1.05689681e+00 7.68322825e-01
2.30927020e-01 -8.66804346e-02 9.59576368e-01 3.99067104e-01
-3.72246534e-01 -3.13188642e-01 4.68509436e-01 -1.09038986e-01
7.48979270e-01 -8.23358059e-01 1.90327451e-01 1.38700104e+00
-2.19984457e-01 2.32812896e-01 6.96459830e-01 -8.94030809e-01
-1.38441408e+00 -1.90598845e+00 4.84190792e-01 -3.12197953e-02
2.77496934e-01 5.17970063e-02 -1.08170199e+00 4.63441312e-01
-9.16106335e-04 4.28795546e-01 4.63690072e-01 -3.92168254e-01
-2.98212349e-01 -3.76519889e-01 -1.29572451e+00 2.06274673e-01
7.19251335e-01 -6.80331349e-01 -3.00787270e-01 6.22147799e-01
7.30511487e-01 -3.84981722e-01 -1.16069007e+00 9.28341091e-01
2.84701139e-01 -9.90536273e-01 1.19135749e+00 9.67028663e-02
3.09553117e-01 -1.13152444e+00 -8.34335566e-01 -1.18780661e+00
-7.75827408e-01 1.00350425e-01 3.86703759e-01 1.10764623e+00
7.70061612e-02 -6.26783252e-01 1.49666771e-01 -2.70323336e-01
-1.34673774e-01 7.81378299e-02 -7.50588238e-01 -8.12090099e-01
3.08261570e-02 -3.10831368e-01 8.34080517e-01 1.37016928e+00
-1.11858952e+00 -2.87827337e-03 -5.24355829e-01 1.29074109e+00
1.09157813e+00 1.03850818e+00 8.17989230e-01 -1.42059708e+00
6.73611462e-02 -1.47229314e-01 -3.35382707e-02 -4.16558802e-01
-1.95488576e-02 -7.18025446e-01 1.64872427e-02 -1.63437307e+00
4.17316467e-01 -5.50778568e-01 -5.13012297e-02 4.80651200e-01
-2.54414558e-01 7.37837791e-01 3.03780407e-01 7.30374813e-01
-2.95626372e-01 6.53022826e-01 1.42737675e+00 -3.40828031e-01
1.42766424e-02 -1.70714095e-01 -6.11075640e-01 4.77295190e-01
8.90563905e-01 -5.03239095e-01 1.21020034e-01 -6.35059118e-01
-4.33019772e-02 1.74268082e-01 7.79756188e-01 -9.99892890e-01
-1.21268466e-01 -5.66377282e-01 3.69679987e-01 -1.22501123e+00
4.39101577e-01 -1.12230396e+00 7.15456128e-01 1.79658011e-01
2.52328247e-01 -1.70224667e-01 3.26541692e-01 5.78529954e-01
-6.31971419e-01 6.30410537e-02 1.16047883e+00 -3.12531412e-01
-1.09701097e+00 5.28850675e-01 -1.74443662e-01 -3.34002554e-01
8.08991432e-01 -8.92501697e-02 -7.27255046e-01 -3.73996682e-02
-7.56327271e-01 3.67607474e-01 8.15769732e-01 3.25780064e-01
9.02916729e-01 -1.40268922e+00 -1.37567282e+00 3.67693216e-01
8.07370782e-01 2.14476898e-01 5.86999297e-01 8.34179759e-01
-6.15095019e-01 2.61566341e-01 -2.88641900e-01 -8.00995409e-01
-1.59746218e+00 3.16712588e-01 6.02119625e-01 -1.58432931e-01
-7.42794693e-01 3.03226739e-01 -8.14559590e-03 -5.56600451e-01
-6.26007617e-01 -9.59791988e-02 -3.10481608e-01 9.13944021e-02
7.29421616e-01 7.80637283e-03 3.52422267e-01 -1.15371954e+00
-4.11439091e-01 9.82764184e-01 2.35622391e-01 -6.34132773e-02
1.53281891e+00 -5.63812375e-01 -5.59038401e-01 2.13764057e-01
6.52490735e-01 2.45186344e-01 -9.43700135e-01 -6.87849700e-01
-3.19398612e-01 -1.28448677e+00 6.39334321e-01 -8.26258242e-01
-1.41241634e+00 6.02684200e-01 1.01330376e+00 -2.01399215e-02
1.48633885e+00 -3.39177251e-01 3.63780171e-01 1.68348625e-01
4.26932007e-01 -6.42095029e-01 -3.33838940e-01 5.69054544e-01
1.11191344e+00 -1.60467780e+00 5.17285407e-01 -8.07202458e-01
-5.52152514e-01 6.69141114e-01 4.16978896e-01 -1.42934352e-01
4.87008274e-01 1.42615452e-01 2.38141522e-01 -5.24974465e-01
-4.83504355e-01 -9.56571460e-01 1.74413264e-01 8.86518836e-01
1.53443933e-01 5.23720980e-01 7.29923844e-02 1.99518502e-02
1.87103510e-01 6.32083863e-02 5.64346492e-01 7.54089355e-01
-8.36107135e-01 -8.32359493e-01 -1.20518994e+00 4.97059226e-01
4.37941216e-03 -5.58135629e-01 -8.12882558e-02 4.85630274e-01
2.12498203e-01 1.18739390e+00 1.25913605e-01 -1.68136686e-01
2.38111898e-01 -3.86928201e-01 2.54238635e-01 -6.97205305e-01
-1.68885887e-01 4.09899652e-01 3.76113653e-02 -4.84998465e-01
-8.66052806e-01 -7.62866795e-01 -8.38027060e-01 -5.44807255e-01
-4.83925283e-01 -5.29310480e-02 4.79478359e-01 5.10952294e-01
4.26888496e-01 4.83664721e-01 7.91117787e-01 -1.10234606e+00
-9.84081402e-02 -9.76007044e-01 -1.15901887e+00 4.08037677e-02
8.41620088e-01 -6.30750000e-01 -3.54520649e-01 -1.01278469e-01] | [9.895493507385254, -1.8516641855239868] |
08253bbc-fb10-457c-b5e8-f956ae46fbb8 | graph-community-detection-from-coarse | 2102.13135 | null | https://arxiv.org/abs/2102.13135v1 | https://arxiv.org/pdf/2102.13135v1.pdf | Graph Community Detection from Coarse Measurements: Recovery Conditions for the Coarsened Weighted Stochastic Block Model | We study the problem of community recovery from coarse measurements of a graph. In contrast to the problem of community recovery of a fully observed graph, one often encounters situations when measurements of a graph are made at low-resolution, each measurement integrating across multiple graph nodes. Such low-resolution measurements effectively induce a coarse graph with its own communities. Our objective is to develop conditions on the graph structure, the quantity, and properties of measurements, under which we can recover the community organization in this coarse graph. In this paper, we build on the stochastic block model by mathematically formalizing the coarsening process, and characterizing its impact on the community members and connections. Through this novel setup and modeling, we characterize an error bound for community recovery. The error bound yields simple and closed-form asymptotic conditions to achieve the perfect recovery of the coarse graph communities. | ['Stark C. Draper', 'Gautam Dasarathy', 'Nafiseh Ghoroghchian'] | 2021-02-25 | null | null | null | null | ['stochastic-block-model'] | ['graphs'] | [ 4.05496001e-01 3.52161348e-01 1.49921298e-01 2.32365847e-01
-5.79354942e-01 -8.03743005e-01 4.00065601e-01 4.84784126e-01
6.28985241e-02 7.20341325e-01 1.98372364e-01 1.49497427e-02
-3.71617317e-01 -1.08464646e+00 -7.32975066e-01 -8.19448411e-01
-4.42519337e-01 6.55420840e-01 1.18359715e-01 1.34890079e-01
1.24574326e-01 4.43953037e-01 -6.35262191e-01 -3.08784813e-01
6.37866914e-01 2.29323223e-01 1.05789408e-01 1.14416552e+00
3.04276049e-01 6.08383536e-01 -5.63905716e-01 -1.18392192e-01
3.77857625e-01 -3.67543429e-01 -7.07566738e-01 7.97809899e-01
1.97322443e-01 -1.43095076e-01 -6.13137305e-01 1.49441504e+00
2.65670538e-01 -3.95859987e-01 6.88095927e-01 -1.25152206e+00
-5.60328245e-01 1.05622756e+00 -9.45413232e-01 1.54459298e-01
6.75436914e-01 -3.84147227e-01 1.10515964e+00 -5.67771614e-01
8.00037324e-01 1.00939572e+00 8.78129482e-01 7.98247978e-02
-1.89667594e+00 -6.22998834e-01 -6.66864887e-02 -3.19042504e-01
-1.92946172e+00 -4.24276650e-01 6.99339867e-01 -8.10933173e-01
2.31390163e-01 2.68974975e-02 7.18255520e-01 8.59282434e-01
9.63559449e-02 1.21179730e-01 1.06459355e+00 -4.70821619e-01
1.85467914e-01 -1.93411365e-01 4.05021816e-01 5.52055538e-01
1.23073196e+00 -3.69541459e-02 -3.29153299e-01 -6.31699979e-01
8.95205975e-01 2.25487113e-01 -4.77972150e-01 -7.11933792e-01
-1.15007937e+00 6.89280152e-01 4.56053883e-01 2.95976311e-01
-4.14992601e-01 2.75611103e-01 -1.57226875e-01 4.88209635e-01
2.27519408e-01 1.94342583e-01 2.52098441e-01 3.48053247e-01
-8.75330925e-01 -9.87966433e-02 1.26259768e+00 1.17404532e+00
1.10033894e+00 -2.50155330e-01 3.48505497e-01 2.16874834e-02
1.33967921e-01 8.69769096e-01 -6.66861892e-01 -9.26489532e-01
4.64192659e-01 4.89896655e-01 1.69776127e-01 -1.25194919e+00
-2.00115293e-01 -7.07182944e-01 -1.29410315e+00 -2.83649683e-01
5.02591729e-01 -1.14160344e-01 -4.39419657e-01 1.79030943e+00
2.23494098e-01 4.46433753e-01 -2.12617949e-01 6.67021453e-01
1.66424468e-01 1.90766945e-01 -6.68092906e-01 -6.29687786e-01
6.16062284e-01 -3.21707278e-01 -5.66031039e-01 -3.27023901e-02
3.09903383e-01 -4.38103884e-01 3.78016800e-01 1.42514274e-01
-1.08488417e+00 9.80853476e-03 -1.16561091e+00 4.65756953e-01
2.85446435e-01 -4.27385032e-01 9.12896320e-02 5.17215192e-01
-1.30761313e+00 6.54465556e-01 -8.62117827e-01 -6.58322155e-01
-1.37045041e-01 2.04005346e-01 -5.59778631e-01 -4.23321038e-01
-5.14541984e-01 3.45304340e-01 -3.27474624e-02 2.83218771e-01
-1.15645385e+00 -3.95391405e-01 -5.89046955e-01 1.44265637e-01
5.86472392e-01 -6.38120592e-01 6.62510693e-01 -4.33747500e-01
-6.71586275e-01 7.34322608e-01 -2.19184920e-01 -4.06340301e-01
3.61419350e-01 3.82389009e-01 -1.25615343e-01 4.52134341e-01
4.89541262e-01 -3.27332079e-01 7.14610696e-01 -1.47066534e+00
-1.12606160e-01 -5.25487006e-01 -1.63032655e-02 -2.69393116e-01
-6.07297011e-02 -3.55722755e-01 -1.80697322e-01 -4.53410223e-02
6.24141097e-01 -1.17178512e+00 -4.71312225e-01 -2.63211042e-01
-8.88884246e-01 5.88859916e-01 3.55538368e-01 -3.58399004e-01
1.07200897e+00 -2.02595425e+00 3.62373561e-01 8.73230457e-01
1.23685229e+00 -3.79881322e-01 -1.70283005e-01 1.07645679e+00
1.27693698e-01 3.86077285e-01 -2.73836285e-01 -4.31382567e-01
-2.91836113e-01 2.63402194e-01 -1.39128432e-01 1.19624162e+00
-1.65567890e-01 5.38254142e-01 -9.98225868e-01 -2.02889740e-01
-1.37163281e-01 1.60356283e-01 -5.86963773e-01 3.56929787e-02
4.66060102e-01 6.83815539e-01 -6.75259948e-01 4.75408047e-01
8.71185780e-01 -8.97971094e-01 8.13692451e-01 1.43319607e-01
1.40817940e-01 -5.18982597e-02 -1.61223733e+00 1.17969751e+00
5.88887893e-02 3.70369017e-01 1.05936456e+00 -1.08820939e+00
7.60209501e-01 3.96540701e-01 5.74941754e-01 1.75850794e-01
2.69950088e-02 1.21996395e-01 1.30053490e-01 -5.74648287e-03
1.73898354e-01 -2.10497469e-01 -2.94984132e-01 9.04206216e-01
-2.39749908e-01 4.78924587e-02 2.25410461e-01 8.66081893e-01
1.81615174e+00 -7.35067010e-01 5.41479111e-01 -5.18797219e-01
1.64113685e-01 -2.16498077e-01 4.98659819e-01 1.04627895e+00
-2.83385426e-01 4.04577851e-01 6.40638113e-01 1.76917180e-01
-1.36236262e+00 -1.29857361e+00 9.66093838e-02 2.87834972e-01
3.42031717e-01 -6.93623245e-01 -7.98489571e-01 -1.25232982e-02
2.80663878e-01 -2.72771418e-01 -7.68218458e-01 -8.85147452e-02
-2.74180144e-01 -6.20519459e-01 3.84077281e-01 3.32051069e-02
3.43704909e-01 -2.71995842e-01 2.67809987e-01 2.50791788e-01
-6.19448602e-01 -1.38851082e+00 -5.70362210e-01 -1.12270333e-01
-9.78522539e-01 -1.65607083e+00 -2.61490911e-01 -4.51937675e-01
9.74608839e-01 8.20481956e-01 1.15026414e+00 5.63718796e-01
-5.12981936e-02 6.88718081e-01 -3.60223502e-01 2.08872050e-01
-5.58133066e-01 1.83047578e-01 2.98740298e-01 2.85455227e-01
5.69601618e-02 -1.24834502e+00 -2.76984543e-01 5.70601746e-02
-5.79773724e-01 -2.07317308e-01 4.96493429e-01 6.81630731e-01
5.40680468e-01 2.48677105e-01 2.14128092e-01 -8.41740429e-01
7.73825943e-01 -7.56902456e-01 -7.50542045e-01 1.94230467e-01
-6.25564218e-01 3.22839543e-02 2.48619840e-01 -2.02078745e-01
-3.46819341e-01 -2.54830183e-03 6.41546786e-01 -2.82111049e-01
1.89054012e-01 7.24939585e-01 -1.30997270e-01 -4.17413771e-01
6.78495228e-01 1.18205756e-01 2.64444388e-02 -4.81993735e-01
2.82367587e-01 4.68432516e-01 4.82750475e-01 -7.50735164e-01
1.30291462e+00 9.17688251e-01 4.90392923e-01 -1.17269516e+00
-6.94179654e-01 -7.04511464e-01 -1.08843648e+00 -1.50223285e-01
4.57604706e-01 -1.07363856e+00 -8.32297981e-01 1.83594957e-01
-9.08248067e-01 -2.76292861e-01 -2.29493126e-01 3.50689918e-01
-4.03234720e-01 7.01571763e-01 -8.75105739e-01 -1.03229499e+00
1.68013275e-01 -6.60471320e-01 9.60820436e-01 -2.30282322e-01
-2.75534820e-02 -1.14973629e+00 6.14554107e-01 2.00854521e-02
1.68303326e-01 5.91224551e-01 3.24328870e-01 -1.67546019e-01
-1.14583719e+00 -3.81642371e-01 -4.66947496e-01 -3.21562812e-02
2.93364841e-02 -3.52301449e-02 -5.33175588e-01 -8.88081372e-01
-6.40227739e-03 1.57994330e-01 5.81390381e-01 5.92705846e-01
3.99583608e-01 -3.06376517e-01 -7.49728501e-01 6.60047948e-01
1.56278324e+00 -6.12484038e-01 3.49536210e-01 -1.29046530e-01
7.57062495e-01 3.02437246e-01 -3.60729955e-02 5.83845258e-01
2.60822535e-01 3.59791309e-01 2.99662292e-01 1.54008031e-01
-4.91949320e-02 -4.00911033e-01 6.45181909e-02 1.28116477e+00
-1.96385816e-01 -2.48919964e-01 -8.37588489e-01 7.04194605e-01
-1.74960470e+00 -1.03705978e+00 -5.60185492e-01 2.37649488e+00
4.98184472e-01 -9.78155583e-02 1.34407878e-01 9.59446654e-02
1.32872319e+00 1.12183213e-01 -2.24517778e-01 4.44218218e-01
-3.37579250e-01 -7.62300193e-02 9.96870160e-01 1.12161183e+00
-6.43491924e-01 3.02346408e-01 7.51874018e+00 2.00535860e-02
-4.65680480e-01 2.54382372e-01 -1.31677940e-01 1.03617512e-01
-3.78279388e-01 5.92625976e-01 -7.51207411e-01 1.00738950e-01
8.72185767e-01 -7.63583124e-01 8.13185751e-01 3.45965445e-01
2.04532489e-01 1.29317626e-01 -1.06897008e+00 6.23516142e-01
-2.25971892e-01 -1.24744475e+00 -2.11313546e-01 9.99282837e-01
1.07750344e+00 2.16434687e-01 -6.25790775e-01 -2.58395106e-01
1.01421213e+00 -8.38831842e-01 3.14625114e-01 4.93118703e-01
9.37210619e-01 -3.95845830e-01 3.79664779e-01 7.09286034e-01
-1.59431005e+00 -1.92066059e-01 -4.24211562e-01 -5.13233840e-01
3.14529866e-01 1.14392900e+00 -8.73365879e-01 7.21403658e-01
3.01577747e-01 9.72478271e-01 -3.05881858e-01 1.03486395e+00
-1.94295675e-01 7.75762022e-01 -4.30235654e-01 2.89601058e-01
-2.64255971e-01 -7.35716641e-01 1.08157063e+00 9.30021763e-01
4.41994250e-01 3.21584463e-01 7.21502244e-01 9.48393881e-01
-2.71577448e-01 -3.27080995e-01 -9.43869710e-01 -2.16273010e-01
9.22669351e-01 1.16551125e+00 -7.60636568e-01 -3.07568729e-01
-3.16852391e-01 8.08316946e-01 6.00742996e-01 5.70094943e-01
-2.80186415e-01 -6.31242990e-02 6.10319495e-01 7.39051342e-01
2.90403306e-01 -5.12722194e-01 -1.77333191e-01 -1.53335929e+00
1.23759255e-01 -7.55705178e-01 1.90186128e-01 -4.42066431e-01
-1.40847600e+00 1.61596730e-01 -1.20531820e-01 -9.73449886e-01
-1.35824904e-01 8.69380683e-02 -6.13292694e-01 8.19763720e-01
-7.99210310e-01 -1.02525461e+00 -4.61668044e-01 6.07868314e-01
-4.75866169e-01 3.51140916e-01 7.89247930e-01 2.16603488e-01
-4.40556973e-01 7.20594404e-03 4.99681056e-01 3.37406933e-01
3.27445596e-01 -1.35378325e+00 3.19704294e-01 1.40834320e+00
9.99338478e-02 8.12048674e-01 9.08272445e-01 -1.13650298e+00
-1.45583177e+00 -9.51539159e-01 7.95184314e-01 -3.70389462e-01
1.15017354e+00 -7.92708814e-01 -6.59705281e-01 1.10125422e+00
-1.08689614e-01 2.07309887e-01 4.26688641e-01 3.79304379e-01
-4.12762463e-01 9.87357497e-02 -1.15963984e+00 2.38695070e-01
1.34449089e+00 -9.09832835e-01 -1.45325407e-01 4.01789576e-01
4.45865035e-01 1.96699724e-01 -1.10408151e+00 1.56447783e-01
2.74625719e-01 -7.65893638e-01 9.19157922e-01 -2.92189687e-01
-9.16644856e-02 -4.49524462e-01 -5.05667388e-01 -1.31800282e+00
-7.73555279e-01 -9.65997159e-01 -7.96012282e-02 9.97609019e-01
1.38029143e-01 -7.77653754e-01 9.34581637e-01 1.57591343e-01
4.40769881e-01 4.56061438e-02 -8.45230997e-01 -8.07755232e-01
-4.22059037e-02 9.98137072e-02 3.60903651e-01 1.00214517e+00
1.67079061e-01 6.45451427e-01 -3.85998189e-01 7.65715718e-01
1.58425200e+00 2.69487679e-01 9.59528148e-01 -1.77730584e+00
-6.71202958e-01 -1.39879182e-01 -5.66522837e-01 -9.04033005e-01
-6.70787925e-03 -7.30133176e-01 -1.13596413e-02 -1.51685250e+00
1.00702727e+00 -4.27608997e-01 2.30819657e-01 -2.62849867e-01
-4.74329554e-02 3.18066329e-01 5.23659773e-02 6.36473238e-01
-6.08395994e-01 8.29095095e-02 1.15527689e+00 -1.64474770e-02
7.33921602e-02 1.03027254e-01 -8.01518261e-01 4.72595215e-01
4.30218697e-01 -6.63166702e-01 -3.01514804e-01 -9.63051431e-03
4.79647338e-01 5.13387680e-01 5.18010020e-01 -8.48215640e-01
4.58175242e-01 1.78311523e-02 -9.90333557e-02 -5.51661968e-01
2.90114939e-01 -5.84269345e-01 7.70682991e-01 5.91830969e-01
-1.12142675e-01 -3.16314884e-02 -5.64883351e-01 1.24882078e+00
-1.87949874e-02 -1.93118647e-01 7.22587228e-01 -1.36167243e-01
5.53314947e-02 5.09662330e-01 -3.36690843e-01 2.51900226e-01
9.37966287e-01 -1.13146096e-01 -5.36916196e-01 -8.95736158e-01
-1.21374202e+00 9.09193531e-02 9.95802760e-01 -3.03293884e-01
3.05115670e-01 -1.22586095e+00 -1.13656664e+00 2.06686541e-01
3.38853821e-02 -1.49042562e-01 7.55208209e-02 1.21157837e+00
-3.43452513e-01 1.13600932e-01 8.14482719e-02 -7.68588603e-01
-1.39298487e+00 6.93225801e-01 3.93132120e-01 -4.59281236e-01
-6.33822560e-01 3.38141918e-01 3.53039891e-01 -3.42954308e-01
-4.88348342e-02 -3.66465910e-03 3.82671773e-01 -3.82583261e-01
4.61489230e-01 4.26681340e-01 -1.97618350e-01 -6.46750927e-01
-1.53075159e-01 6.49731517e-01 1.83465987e-01 -3.71274441e-01
1.08802164e+00 -8.40865016e-01 -5.78867793e-01 4.81223613e-01
1.01458192e+00 6.02587223e-01 -1.04809582e+00 -5.38270116e-01
-5.33164740e-02 -6.24633610e-01 -1.86680049e-01 1.59109682e-01
-9.05482948e-01 6.64241374e-01 -2.62258291e-01 1.02860010e+00
6.39755070e-01 3.61224592e-01 1.75816789e-01 3.72004807e-01
8.59445274e-01 -4.80196327e-01 -2.46957894e-02 2.74009377e-01
5.53401053e-01 -7.82430410e-01 2.41818488e-01 -9.06694233e-01
2.56709993e-01 7.62713373e-01 -1.23979256e-01 -6.84231997e-01
9.55068767e-01 4.65503693e-01 -5.64017773e-01 -5.68452299e-01
-6.34323597e-01 -1.99123338e-01 -2.90038735e-01 9.22153413e-01
5.34737147e-02 5.24448514e-01 7.84744397e-02 9.98774394e-02
-1.76425099e-01 -2.59505600e-01 1.34839106e+00 6.62999511e-01
-8.10180545e-01 -1.05146682e+00 -5.90792954e-01 4.49640512e-01
-2.76667207e-01 -6.83280826e-02 -7.34530449e-01 6.40510261e-01
-4.13484275e-01 1.23203230e+00 -3.00073344e-02 -3.89207184e-01
1.76886842e-01 -4.26393837e-01 6.52993679e-01 -1.01964700e+00
1.10757828e-01 2.34080344e-01 2.13482440e-01 -4.67497438e-01
-5.19438088e-01 -8.67321968e-01 -6.44860566e-01 -1.12457609e+00
-6.79327905e-01 5.07828832e-01 1.99710682e-01 8.30602050e-01
3.29559624e-01 2.48809814e-01 8.99090230e-01 -7.03014672e-01
-6.56970680e-01 -1.05332327e+00 -1.47389495e+00 1.73694313e-01
6.80262744e-01 -4.82137799e-01 -8.40875447e-01 -1.21974699e-01] | [6.863042831420898, 5.117288589477539] |
b4c44a79-9dd9-4af4-a17b-538034095ebd | high-order-joint-embedding-for-multi-level | 2111.05265 | null | https://arxiv.org/abs/2111.05265v1 | https://arxiv.org/pdf/2111.05265v1.pdf | High-order joint embedding for multi-level link prediction | Link prediction infers potential links from observed networks, and is one of the essential problems in network analyses. In contrast to traditional graph representation modeling which only predicts two-way pairwise relations, we propose a novel tensor-based joint network embedding approach on simultaneously encoding pairwise links and hyperlinks onto a latent space, which captures the dependency between pairwise and multi-way links in inferring potential unobserved hyperlinks. The major advantage of the proposed embedding procedure is that it incorporates both the pairwise relationships and subgroup-wise structure among nodes to capture richer network information. In addition, the proposed method introduces a hierarchical dependency among links to infer potential hyperlinks, and leads to better link prediction. In theory we establish the estimation consistency for the proposed embedding approach, and provide a faster convergence rate compared to link prediction utilizing pairwise links or hyperlinks only. Numerical studies on both simulation settings and Facebook ego-networks indicate that the proposed method improves both hyperlink and pairwise link prediction accuracy compared to existing link prediction algorithms. | ['Annie Qu', 'Yubai Yuan'] | 2021-11-07 | null | null | null | null | ['network-embedding'] | ['methodology'] | [-1.26428977e-01 5.01093566e-01 -7.35821128e-01 -2.10506558e-01
1.04886949e-01 -5.26798964e-01 4.80661690e-01 4.09318566e-01
2.17407271e-01 7.72783935e-01 4.70059365e-01 -2.45855615e-01
-9.06544149e-01 -1.25965941e+00 -2.64976859e-01 -4.08958942e-01
-7.51957417e-01 7.23807752e-01 4.04330909e-01 7.60059757e-03
-1.10400617e-01 2.63849676e-01 -8.02179575e-01 -4.19027805e-01
9.20339108e-01 4.37410802e-01 -2.59800225e-01 4.88528162e-01
-1.91111818e-01 6.17861331e-01 1.05759524e-01 -9.89503801e-01
1.64906353e-01 1.45672020e-02 -5.80977261e-01 -3.44787203e-02
1.86069027e-01 -3.50154400e-01 -1.02061498e+00 9.31983411e-01
1.72068506e-01 -2.05246583e-01 6.03188813e-01 -1.67909539e+00
-6.02382720e-01 1.04104078e+00 -6.75135195e-01 2.16284633e-01
6.28353417e-01 -3.02407533e-01 1.74116039e+00 -6.35051668e-01
7.10593581e-01 1.26930916e+00 8.71606290e-01 -7.57443830e-02
-1.73075545e+00 -7.52960026e-01 -7.46248141e-02 1.61432713e-01
-1.43527222e+00 -1.34304119e-02 1.10356033e+00 -6.85917854e-01
5.42954624e-01 2.33349785e-01 8.95192444e-01 8.91356587e-01
3.21146756e-01 4.49833721e-01 5.73883355e-01 -2.32813545e-02
-2.80919552e-01 7.42953643e-02 4.34553504e-01 7.97868669e-01
8.25550020e-01 -1.59026116e-01 -3.85434240e-01 -7.24118471e-01
8.25044274e-01 2.48725086e-01 -3.34662706e-01 -8.11650574e-01
-1.51612747e+00 9.80779946e-01 7.70664275e-01 -2.25747712e-02
-3.88810277e-01 2.56680399e-01 2.84146190e-01 1.84464663e-01
6.75614119e-01 -6.38105422e-02 1.16914317e-01 4.38102670e-02
-7.95619786e-01 -1.69940144e-01 1.01273334e+00 9.49858248e-01
9.35812891e-01 -2.02018276e-01 1.77511200e-01 7.16826022e-01
7.45014846e-01 1.25474930e-01 -5.09830453e-02 -9.31085765e-01
8.38184059e-01 8.68786573e-01 -1.52483033e-02 -1.89261055e+00
-2.53595650e-01 -5.20292580e-01 -1.10584271e+00 -4.43052769e-01
7.56383017e-02 -1.94539856e-02 -1.55422650e-02 1.68745470e+00
3.82583320e-01 5.71859539e-01 -1.97852775e-01 5.87508380e-01
6.56136334e-01 6.61832929e-01 -5.32860421e-02 -4.31928992e-01
9.20429111e-01 -8.86367857e-01 -1.01808167e+00 2.70988554e-01
6.66609764e-01 -6.14872932e-01 2.35052630e-01 -2.03258052e-01
-1.01303828e+00 -3.34938288e-01 -9.32140052e-01 2.25929186e-01
-3.96389933e-03 -3.17680061e-01 1.10101378e+00 3.31643909e-01
-1.11695862e+00 6.28008962e-01 -6.06544673e-01 -4.47652012e-01
9.83010978e-02 4.90141600e-01 -7.19007194e-01 -8.26597288e-02
-1.48979175e+00 4.31035638e-01 4.78232265e-01 2.28494987e-01
-1.10252075e-01 -5.39352775e-01 -9.28278685e-01 3.59272003e-01
3.70704412e-01 -7.11740375e-01 3.08194607e-01 -3.66605580e-01
-1.08597183e+00 9.07049254e-02 -3.21013838e-01 -3.01799476e-01
4.41507190e-01 1.76554605e-01 -5.32034755e-01 3.31106782e-01
1.34564742e-01 4.90661740e-01 3.92208517e-01 -1.09382558e+00
-1.37653545e-01 -6.88192844e-02 2.90418774e-01 8.41593146e-02
-7.75588751e-01 -5.72580755e-01 -6.10755086e-01 -4.14805949e-01
6.01073265e-01 -1.04258919e+00 -1.63237005e-01 2.83770204e-01
-8.41566741e-01 -3.96049201e-01 6.28997326e-01 -5.74679613e-01
1.49755859e+00 -1.72238624e+00 5.25682330e-01 7.51727879e-01
8.49198878e-01 -8.20829049e-02 -2.96217531e-01 1.20409536e+00
-3.18156630e-01 2.08738044e-01 4.88819145e-02 -2.08887517e-01
8.87056813e-02 3.22385728e-01 -8.76877829e-02 4.47118610e-01
-7.70416334e-02 9.60138798e-01 -1.14844108e+00 -8.37987363e-01
1.71105206e-01 5.74632168e-01 -6.30616903e-01 -2.95995418e-02
2.38899767e-01 2.03628778e-01 -5.75218916e-01 1.81176633e-01
7.68400729e-01 -6.39010012e-01 9.69003379e-01 -5.29343724e-01
3.64091307e-01 2.45680496e-01 -1.42809749e+00 1.26580667e+00
-1.46376684e-01 6.18270576e-01 -3.11824288e-02 -9.81005967e-01
1.08130491e+00 4.57956344e-01 8.30955565e-01 8.40342566e-02
-1.26660228e-01 -1.30919591e-01 1.67389333e-01 -4.68147576e-01
2.50893325e-01 3.03164929e-01 2.88855225e-01 6.20136082e-01
4.44911532e-02 7.16387093e-01 4.35456723e-01 1.03051865e+00
1.33652401e+00 -1.75660491e-01 2.44676650e-01 -1.48467481e-01
5.01020789e-01 -4.26195353e-01 7.43850768e-01 9.75354016e-02
-7.08481595e-02 -1.71257928e-01 9.65371251e-01 -2.58435637e-01
-1.05339909e+00 -1.51329100e+00 -1.52050406e-01 4.24255341e-01
2.65469044e-01 -7.81628788e-01 -2.48310432e-01 -5.39760113e-01
4.45000619e-01 1.13266148e-01 -5.79329371e-01 -1.11066671e-02
-1.84470356e-01 -5.90410411e-01 2.63857305e-01 3.50831926e-01
2.34729260e-01 -3.76353413e-01 8.11902046e-01 3.21311057e-01
-4.53628719e-01 -1.15153277e+00 -5.28706193e-01 -4.81432319e-01
-1.19335520e+00 -1.31827796e+00 -2.19662845e-01 -7.93618262e-01
7.47410476e-01 4.54783738e-01 8.91063809e-01 4.13605690e-01
9.44427848e-02 4.64943707e-01 -2.65306622e-01 7.44070172e-01
-1.59494266e-01 2.64359057e-01 3.41660023e-01 3.32139462e-01
2.75422871e-01 -1.13124502e+00 -6.03781044e-01 4.23186719e-01
-6.29010856e-01 3.02162260e-01 6.64373696e-01 9.09359574e-01
7.32380003e-02 3.36371690e-01 5.45735955e-01 -1.09804237e+00
7.74404049e-01 -9.90240693e-01 -4.22478497e-01 2.13888258e-01
-9.73081470e-01 6.19600937e-02 2.41842285e-01 -2.35913709e-01
-6.26421154e-01 -1.94100797e-01 3.08554649e-01 -1.61862552e-01
4.93945271e-01 8.43060434e-01 -1.67271703e-01 -2.35351905e-01
-7.74193704e-02 3.00878249e-02 1.50803477e-01 -4.69654113e-01
4.26024318e-01 4.64090258e-01 -6.44897521e-02 -4.86265391e-01
1.26978517e+00 2.89031267e-01 5.62877834e-01 -5.00868499e-01
-2.10629016e-01 -4.76201773e-01 -1.13702381e+00 -2.59026974e-01
5.35616934e-01 -9.99790072e-01 -1.19634688e+00 -3.64179522e-01
-1.16206050e+00 3.97883028e-01 3.73151749e-01 8.30773115e-01
-9.76490453e-02 1.04664540e+00 -9.55675125e-01 -7.39385426e-01
-3.58213447e-02 -8.18683028e-01 3.48068744e-01 -2.17832118e-01
-3.16644043e-01 -1.63961089e+00 4.75827992e-01 4.99451518e-01
7.30826557e-02 3.27895373e-01 1.09172225e+00 -4.19973522e-01
-8.23507309e-01 -5.38001060e-01 -7.75707066e-01 -2.03710556e-01
2.61267662e-01 3.04085761e-01 -1.11953184e-01 -4.45542067e-01
-1.14741361e+00 2.42010996e-01 5.45210838e-01 5.49193583e-02
5.42567492e-01 -5.12113810e-01 -8.02500427e-01 3.73897821e-01
1.48271132e+00 -3.84082258e-01 5.47200382e-01 5.42564094e-02
1.05917096e+00 7.46580660e-01 2.31407896e-01 5.02719164e-01
7.94858694e-01 7.83234239e-01 6.15140259e-01 9.08372849e-02
9.71452817e-02 -6.93208694e-01 1.09785475e-01 1.60496354e+00
-1.34875730e-01 -2.79099911e-01 -7.13583291e-01 6.31968856e-01
-2.14540148e+00 -1.05014515e+00 -8.56455505e-01 2.11715269e+00
6.15523815e-01 1.79096431e-01 2.52909094e-01 1.82596087e-01
1.27709055e+00 1.95425451e-01 -2.81177670e-01 -1.85762882e-01
1.95766911e-01 -2.89744765e-01 4.63392079e-01 1.00116134e+00
-6.76480830e-01 4.61387277e-01 6.57850218e+00 4.97697771e-01
-2.14140862e-01 2.51699314e-02 1.38788344e-02 2.22960308e-01
-7.40299523e-01 4.66262430e-01 -4.46322650e-01 5.52684665e-01
6.61061943e-01 -3.02731067e-01 5.23937285e-01 5.19017458e-01
2.68929631e-01 3.52939427e-01 -1.05128646e+00 7.99055636e-01
-1.55676037e-01 -1.34440053e+00 4.48002428e-01 5.50632119e-01
8.25030863e-01 -2.47964844e-01 -2.56456316e-01 -1.12178050e-01
5.46042025e-01 -5.69879532e-01 -9.45393220e-02 7.89114654e-01
3.32790554e-01 -8.03455532e-01 8.48656237e-01 8.89227241e-02
-1.67555034e+00 1.96787324e-02 -5.77403545e-01 -2.80448854e-01
3.77762526e-01 1.04908764e+00 -8.46286178e-01 9.77762520e-01
1.52434424e-01 1.19041121e+00 -4.46017265e-01 1.17338645e+00
-4.24105495e-01 6.69156909e-01 -2.27773651e-01 5.83227798e-02
-2.17549363e-03 -8.12564015e-01 7.79695272e-01 8.43164325e-01
1.18532278e-01 -1.47121057e-01 2.64130056e-01 6.95629597e-01
-3.22321922e-01 1.16173603e-01 -7.11401343e-01 -2.70298660e-01
1.05922031e+00 1.39326894e+00 -5.44146359e-01 -1.54668748e-01
-5.75239539e-01 8.13355744e-01 5.81611753e-01 6.15979254e-01
-7.11002409e-01 -5.02876759e-01 7.27413476e-01 3.80818814e-01
9.13567767e-02 -6.16041601e-01 3.33218165e-02 -1.23858202e+00
7.41511062e-02 -7.93838724e-02 3.30708206e-01 -5.68618417e-01
-1.48516512e+00 3.55527580e-01 -1.14326058e-02 -1.37730706e+00
-7.13564903e-02 -3.02746981e-01 -8.16573024e-01 8.05840552e-01
-1.42816722e+00 -1.25485194e+00 -2.13416457e-01 2.92668074e-01
-9.04066861e-02 -6.82526221e-03 7.83403039e-01 4.93700504e-01
-8.00081789e-01 6.37628853e-01 4.15905833e-01 3.73379916e-01
3.87323350e-01 -1.16348207e+00 1.91766068e-01 5.66014111e-01
1.96660444e-01 1.00738358e+00 5.61535895e-01 -9.31403100e-01
-1.42963970e+00 -1.00397325e+00 1.14308310e+00 -2.35582441e-01
1.37428021e+00 -3.43695939e-01 -8.04794848e-01 1.01827395e+00
9.76983681e-02 5.58734387e-02 1.13251042e+00 5.63743591e-01
-5.41623533e-01 -2.06854895e-01 -8.68301749e-01 5.74002028e-01
1.29249799e+00 -6.59663320e-01 -2.87816912e-01 3.12572658e-01
7.54453421e-01 4.14817899e-01 -1.49334133e+00 3.72271955e-01
8.20609570e-01 -7.37483621e-01 1.17376864e+00 -3.60764474e-01
3.33834857e-01 -3.22327614e-01 -5.03517129e-02 -1.24757230e+00
-9.97606039e-01 -5.86456180e-01 -3.77579629e-01 1.55840743e+00
4.98206079e-01 -9.11364019e-01 1.08587027e+00 4.84010726e-01
4.63463366e-01 -6.84311390e-01 -8.10731053e-01 -6.94639564e-01
-4.64489520e-01 7.20527545e-02 4.88497376e-01 1.48975909e+00
3.75182480e-01 5.74667275e-01 -6.57223463e-01 4.27698761e-01
1.18753886e+00 1.28640622e-01 7.83310890e-01 -1.85230815e+00
-4.70299810e-01 -1.31488621e-01 -1.01618814e+00 -1.08360124e+00
4.56086665e-01 -1.21067142e+00 -7.62674630e-01 -1.90144145e+00
5.31416655e-01 -6.86132729e-01 -3.10948074e-01 2.22659215e-01
-1.53618231e-02 4.48901832e-01 -1.43943310e-01 5.67498088e-01
-4.98847842e-01 7.05413818e-01 1.21476769e+00 -2.42805138e-01
-5.15786894e-02 -1.22966863e-01 -2.92707086e-01 4.99161452e-01
4.64029014e-01 -4.06127781e-01 -7.34890103e-01 -2.64276981e-01
8.09836805e-01 4.72016573e-01 3.24526936e-01 -6.28674507e-01
2.75384933e-01 1.01467073e-01 1.13980226e-01 -5.64132631e-01
5.56761980e-01 -1.01493633e+00 5.83336353e-01 4.83990341e-01
-3.51065278e-01 -1.03720307e-01 -3.10028076e-01 1.24337673e+00
-1.16988271e-01 6.21944517e-02 5.69704212e-02 4.10332382e-01
-3.63076657e-01 5.75591207e-01 -2.35541556e-02 -5.41734338e-01
1.06040692e+00 -3.10082763e-01 -3.68972927e-01 -6.91509724e-01
-1.16099226e+00 4.88891035e-01 3.02515596e-01 2.51608253e-01
6.66997910e-01 -1.96048880e+00 -7.26552010e-01 -1.72019318e-01
1.69733495e-01 -6.45492554e-01 5.17497249e-02 1.12855256e+00
-4.06937957e-01 3.76031965e-01 -9.93820354e-02 -4.77385700e-01
-1.38557732e+00 4.72678661e-01 -2.54395008e-01 -3.04837495e-01
-5.85539937e-01 5.18549681e-01 -1.68034673e-01 -6.26924515e-01
6.22587744e-03 2.47730061e-01 -3.47294271e-01 1.18125051e-01
-1.94831565e-03 6.83151066e-01 -6.02358639e-01 -8.60744834e-01
-2.04146996e-01 7.20910609e-01 -2.98826713e-02 1.64348394e-01
1.31122720e+00 -4.86662984e-01 -6.53223515e-01 5.95320106e-01
1.38933647e+00 1.85550809e-01 -8.20416391e-01 -5.37269652e-01
-9.72015709e-02 -7.80499220e-01 4.06517833e-02 -1.42229766e-01
-9.76684272e-01 7.21708953e-01 4.70295325e-02 5.95153809e-01
4.86084729e-01 -1.19019516e-01 8.65897119e-01 3.08897436e-01
5.47214806e-01 -4.05038595e-01 2.69578323e-02 4.92584473e-03
4.20709580e-01 -1.11239409e+00 3.82489830e-01 -1.28653204e+00
-7.83830285e-02 1.14701092e+00 5.34405947e-01 -2.15659574e-01
9.32427168e-01 -5.31777024e-01 -6.98264480e-01 -3.03686172e-01
-8.62540185e-01 9.13054049e-02 3.34145606e-01 4.32195812e-01
5.63843608e-01 2.88057923e-01 -5.59855461e-01 2.64059324e-02
3.22739966e-02 -3.82755756e-01 5.93145072e-01 2.39137828e-01
-3.21072847e-01 -1.56974936e+00 7.30880275e-02 7.83713520e-01
4.24338691e-03 -8.91122371e-02 -3.58376175e-01 6.85213625e-01
-2.18927294e-01 9.20171440e-01 1.40037671e-01 -8.38912785e-01
-2.52801478e-01 -1.35726795e-01 1.81804329e-01 -5.30260324e-01
2.18095645e-01 -1.12595975e-01 3.66445750e-01 -3.89175504e-01
-3.63620400e-01 -4.24074501e-01 -8.77551138e-01 -9.99610364e-01
-7.94347465e-01 6.90889001e-01 4.03359026e-01 6.76333964e-01
4.92563337e-01 3.70424688e-01 9.83841240e-01 -5.91029942e-01
1.41377654e-02 -9.04949605e-01 -8.93982172e-01 4.70000058e-01
5.86212799e-02 -9.48031366e-01 -6.53960586e-01 -3.90072793e-01] | [7.235590934753418, 6.016635417938232] |
a4b99d93-79f1-4c8c-9499-fe56a55b52a2 | zaebuc-an-annotated-arabic-english-bilingual | null | null | https://aclanthology.org/2022.lrec-1.9 | https://aclanthology.org/2022.lrec-1.9.pdf | ZAEBUC: An Annotated Arabic-English Bilingual Writer Corpus | We present ZAEBUC, an annotated Arabic-English bilingual writer corpus comprising short essays by first-year university students at Zayed University in the United Arab Emirates. We describe and discuss the various guidelines and pipeline processes we followed to create the annotations and quality check them. The annotations include spelling and grammar correction, morphological tokenization, Part-of-Speech tagging, lemmatization, and Common European Framework of Reference (CEFR) ratings. All of the annotations are done on Arabic and English texts using consistent guidelines as much as possible, with tracked alignments among the different annotations, and to the original raw texts. For morphological tokenization, POS tagging, and lemmatization, we use existing automatic annotation tools followed by manual correction. We also present various measurements and correlations with preliminary insights drawn from the data and annotations. The publicly available ZAEBUC corpus and its annotations are intended to be the stepping stones for additional annotations. | ['David Palfreyman', 'Nizar Habash'] | null | null | null | null | lrec-2022-6 | ['lemmatization'] | ['natural-language-processing'] | [-1.65046826e-01 3.88331935e-02 -1.68223634e-01 -3.50138903e-01
-1.05446529e+00 -1.35399282e+00 6.12103164e-01 5.38056910e-01
-5.33469200e-01 8.78618240e-01 6.10686481e-01 -5.11892259e-01
3.06589250e-02 -3.47341418e-01 -2.10017357e-02 -2.71704942e-01
5.06638288e-01 6.65649116e-01 2.53408346e-02 -6.21278346e-01
8.70231926e-01 4.02161330e-01 -7.30793655e-01 3.31941783e-01
1.16734707e+00 1.50375441e-01 2.71387666e-01 6.52349293e-01
-1.84377477e-01 5.60014248e-01 -7.67365277e-01 -1.15863848e+00
1.00439914e-01 -3.51911545e-01 -1.40131855e+00 5.80806248e-02
2.08673075e-01 -1.00194074e-01 9.18420553e-02 1.02044761e+00
3.06487232e-01 1.00025095e-01 4.19173002e-01 -5.35095394e-01
-8.93085301e-01 1.06054580e+00 -4.78736013e-01 2.46130034e-01
5.39010942e-01 -3.07461143e-01 1.29423547e+00 -1.18921816e+00
1.00741446e+00 8.82320881e-01 8.63487244e-01 3.96797508e-01
-4.85254019e-01 -3.28673571e-01 -1.67863682e-01 1.50067374e-01
-1.06945133e+00 -4.49096292e-01 1.95467353e-01 -4.73121166e-01
1.00045907e+00 -9.91084352e-02 4.21827465e-01 7.23340809e-01
9.99117494e-02 5.75969994e-01 1.29281986e+00 -1.23817074e+00
-2.31775820e-01 2.00843349e-01 5.98807156e-01 8.88412774e-01
1.13252811e-01 -7.58542836e-01 -5.33110678e-01 -9.24669132e-02
3.47524554e-01 -5.77626169e-01 -8.66566002e-02 3.85151625e-01
-1.30518913e+00 6.12253249e-01 -5.32887578e-01 5.88521540e-01
-8.88144076e-02 -3.60113770e-01 7.09768534e-01 2.88727194e-01
3.17668527e-01 6.15085781e-01 -8.35217416e-01 -5.36700666e-01
-1.03897572e+00 -7.96133578e-02 8.51537049e-01 1.13078487e+00
4.55171496e-01 -2.36456871e-01 -2.07647681e-03 1.01778507e+00
2.86225885e-01 4.56764251e-01 6.49978697e-01 -9.99195576e-01
5.64200580e-01 6.04945481e-01 4.26155180e-01 -7.40983486e-01
-9.10074338e-02 -2.02775616e-02 -9.17200372e-02 -2.40633368e-01
7.62743413e-01 -2.75610119e-01 -5.90290308e-01 1.08723128e+00
3.79743613e-02 -8.23891819e-01 1.90072462e-01 6.01139426e-01
7.24092484e-01 5.23666739e-01 8.06977972e-02 -4.06661510e-01
1.82299125e+00 -1.20679176e+00 -1.13401902e+00 1.22521438e-01
8.56509984e-01 -1.62008083e+00 1.25006580e+00 4.72439438e-01
-1.31674564e+00 -2.93207556e-01 -9.83313739e-01 -3.67168099e-01
-4.55439419e-01 8.30430210e-01 2.28674412e-01 1.02683616e+00
-8.91806662e-01 4.64528918e-01 -1.00821722e+00 -6.11042440e-01
-6.31046221e-02 -2.33162637e-03 -5.68850696e-01 5.28824218e-02
-1.07546699e+00 1.32817686e+00 2.48639479e-01 -1.70420948e-02
-1.93244100e-01 -3.63088399e-02 -8.93337905e-01 -2.54677415e-01
9.24125314e-02 3.29125851e-01 1.45861399e+00 -1.07346022e+00
-1.63427496e+00 1.25393665e+00 -2.73415208e-01 8.11369568e-02
1.56105757e-01 -3.51436377e-01 -4.91994500e-01 6.09240718e-02
3.16343695e-01 1.41794011e-01 3.09499472e-01 -6.43002331e-01
-9.50634658e-01 -2.98261315e-01 -1.29228011e-01 3.67012352e-01
-3.63074303e-01 9.84695613e-01 -5.00179946e-01 -1.00710595e+00
1.27654359e-01 -9.78252232e-01 1.49531215e-01 -7.40184128e-01
1.14976428e-01 -4.16734129e-01 4.94989634e-01 -1.68737507e+00
1.45988929e+00 -1.85634291e+00 -2.00307984e-02 1.46371024e-02
-2.28015944e-01 1.65002137e-01 -6.64334232e-03 6.81668818e-01
1.70662090e-01 2.62614161e-01 -1.81459323e-01 -2.55010515e-01
6.35110959e-02 2.03559116e-01 -1.25955358e-01 5.40323198e-01
1.47291481e-01 7.70536244e-01 -1.26844096e+00 -5.21357298e-01
-2.65929431e-01 1.25168279e-01 8.34531412e-02 -1.22209467e-01
1.45279750e-01 3.19328040e-01 -3.77498195e-02 8.81008625e-01
4.68744606e-01 3.38665098e-01 6.17250264e-01 -3.59820165e-02
-5.50985456e-01 9.32382762e-01 -9.99766052e-01 1.51547873e+00
-3.66473436e-01 7.91795433e-01 1.55240893e-01 -5.14286280e-01
1.05676413e+00 5.67380726e-01 -9.84106585e-02 -3.76182944e-01
1.87053561e-01 8.71143103e-01 -5.36774509e-02 -4.38122272e-01
1.15510142e+00 1.64342642e-01 -3.67295980e-01 9.94952142e-01
3.60462070e-01 -3.18940163e-01 8.66406262e-01 3.20333451e-01
5.04081607e-01 5.65368116e-01 8.12971115e-01 -4.42807674e-01
7.07432449e-01 4.15297300e-01 6.21865988e-01 2.98511744e-01
-2.13486001e-01 4.13818836e-01 5.24558842e-01 -2.38815308e-01
-1.37036407e+00 -5.76051891e-01 -1.77400157e-01 1.28197217e+00
-4.31525230e-01 -8.13833714e-01 -9.89676774e-01 -1.00277853e+00
-6.88615978e-01 7.82059908e-01 -4.77458477e-01 5.96134543e-01
-9.18947637e-01 -6.69636667e-01 9.08478558e-01 4.37677950e-01
2.23889515e-01 -1.20550239e+00 -5.60421646e-01 3.27299029e-01
-4.76992279e-01 -1.03257751e+00 -6.10080063e-01 1.62526906e-01
-5.00518501e-01 -1.13698304e+00 -5.91280520e-01 -1.20435965e+00
5.72972000e-01 -8.73864517e-02 1.12073708e+00 1.86407089e-01
2.31777474e-01 1.45271719e-01 -9.29426014e-01 -3.58380467e-01
-8.12061131e-01 4.25558925e-01 -2.24204734e-03 -8.01505744e-01
6.34790242e-01 1.38754129e-01 1.36317000e-01 2.13978276e-01
-6.60923183e-01 -2.33424231e-01 4.05976444e-01 9.79681671e-01
3.31610531e-01 -4.00862724e-01 4.64065582e-01 -1.16642344e+00
8.18361342e-01 -1.90671291e-02 -4.80662704e-01 7.06499577e-01
-6.57071769e-01 -2.83728242e-01 4.09958273e-01 4.45342548e-02
-1.36955321e+00 -8.31443146e-02 -3.10606182e-01 5.45439661e-01
-9.34919789e-02 8.12389851e-01 -1.93671510e-01 3.57427751e-03
4.90668774e-01 -7.41871521e-02 -2.77344495e-01 -5.77697396e-01
5.36398828e-01 1.27058876e+00 7.96094894e-01 -8.14300001e-01
5.07742643e-01 -1.19782262e-01 -5.09561121e-01 -6.50880396e-01
-1.00758457e+00 -4.15590554e-01 -1.45450675e+00 -1.52741373e-01
6.06341183e-01 -7.46107578e-01 -1.43510267e-01 5.84396183e-01
-1.13442063e+00 -2.77902693e-01 -7.35413656e-02 3.55624586e-01
-3.46725024e-02 7.78856933e-01 -1.09582007e+00 -5.05075514e-01
-5.59338391e-01 -1.12109232e+00 5.64232588e-01 4.96493310e-01
-7.08133221e-01 -1.22040737e+00 2.37408444e-01 6.15037441e-01
-8.35454240e-02 -1.06791019e-01 8.87942493e-01 -8.69557858e-01
3.98424536e-01 -1.31993055e-01 -1.39428243e-01 3.98933500e-01
3.23100060e-01 5.97939670e-01 -4.19447660e-01 -1.01538517e-01
-1.56360418e-01 -3.74837786e-01 2.36902788e-01 -1.91207722e-01
3.84887546e-01 -4.90427017e-01 1.59139350e-01 7.66645325e-03
1.03649342e+00 1.40170053e-01 4.53575611e-01 7.41527379e-01
4.86033291e-01 6.13929629e-01 1.00867617e+00 3.10483038e-01
6.94827735e-01 3.87038559e-01 -1.94555327e-01 3.65389436e-01
-4.80350107e-04 7.62772858e-02 7.14181185e-01 1.69217777e+00
-1.43150091e-01 -8.39466881e-03 -1.24791479e+00 9.73772347e-01
-1.52007210e+00 -6.21980906e-01 -5.99322319e-01 1.86536086e+00
1.28271663e+00 -1.78990737e-01 1.15939043e-01 1.16562285e-01
7.71139622e-01 -1.80429354e-01 4.17432159e-01 -9.04470384e-01
-3.57414246e-01 5.98535001e-01 4.89504814e-01 7.73268998e-01
-9.32416379e-01 1.39991105e+00 6.43792200e+00 6.56512558e-01
-8.20182085e-01 4.64073181e-01 2.76099354e-01 3.15028638e-01
-1.53987885e-01 2.98120290e-01 -9.05646384e-01 1.75129756e-01
9.54436600e-01 -6.80739358e-02 4.01587993e-01 5.91668427e-01
7.40686059e-02 -2.82873243e-01 -5.18168390e-01 3.59153271e-01
3.14699262e-01 -1.16096616e+00 -3.06506932e-01 -3.05978775e-01
9.90528405e-01 5.84764890e-02 -4.27041262e-01 9.17583704e-02
6.97922289e-01 -6.61106527e-01 1.11276329e+00 1.96442723e-01
9.38621521e-01 -7.82330334e-01 1.18038201e+00 -7.81550780e-02
-8.92472684e-01 2.48458862e-01 -2.85375118e-01 -8.19624439e-02
8.16238075e-02 1.62769303e-01 -7.46211708e-01 5.84066331e-01
6.22928917e-01 6.85889900e-01 -8.35532904e-01 6.45659804e-01
-9.16733921e-01 1.06431770e+00 3.92857678e-02 -9.29945484e-02
3.53481144e-01 -5.46176970e-01 4.96802658e-01 1.79581225e+00
2.21259892e-01 1.59161761e-01 1.70981437e-02 3.61948125e-02
-1.88256189e-01 7.08794892e-01 3.13801020e-01 -2.91810274e-01
7.62858570e-01 1.68852055e+00 -1.18834591e+00 -4.13703829e-01
-5.16633511e-01 1.06872308e+00 4.29271609e-01 -2.47834977e-02
-4.97464150e-01 -1.02784157e+00 1.80798173e-01 -1.60565734e-01
2.08558500e-01 -4.57263559e-01 -6.24556780e-01 -1.09002209e+00
-1.18070148e-01 -1.33283651e+00 5.90969741e-01 -6.86222076e-01
-1.26682007e+00 6.53842211e-01 -3.20538640e-01 -7.52974749e-01
1.48460552e-01 -7.69085228e-01 -4.38664556e-01 1.03822172e+00
-1.18525398e+00 -1.18425143e+00 -1.34219127e-02 2.42352579e-02
6.37254298e-01 -3.46370935e-01 1.10840189e+00 2.49707714e-01
-7.17797577e-01 6.35049343e-01 3.66344899e-01 6.34525597e-01
1.31743193e+00 -1.43777454e+00 3.37397814e-01 1.08376992e+00
2.16785774e-01 9.34601307e-01 4.52825546e-01 -8.25175047e-01
-7.97258079e-01 -7.37713516e-01 1.75627887e+00 -6.55625582e-01
1.21856868e+00 -1.05452739e-01 -8.59087944e-01 9.04237747e-01
8.31489623e-01 -6.31527483e-01 9.62787330e-01 7.06384555e-02
-1.59713775e-01 4.04652953e-01 -9.63788986e-01 5.17615736e-01
4.24198300e-01 -5.98140538e-01 -1.09203815e+00 4.95347172e-01
1.19826831e-01 -7.37115860e-01 -1.06463528e+00 -2.33172402e-01
6.91047251e-01 -3.32009882e-01 1.39556170e-01 -5.64922094e-01
6.26906455e-01 -4.05094862e-01 5.91388159e-02 -1.29139578e+00
-2.47070327e-01 -9.09453392e-01 4.17332679e-01 1.64371169e+00
6.08546019e-01 -1.76365808e-01 2.01019511e-01 3.41285825e-01
-4.39006060e-01 -3.62049192e-01 -6.33567333e-01 -3.75686884e-01
3.86693388e-01 -2.55238444e-01 3.86576384e-01 1.39986885e+00
9.33909833e-01 2.99961120e-01 -1.02002747e-01 -1.17439032e-01
1.68902755e-01 -1.81509688e-01 3.92546088e-01 -1.00056398e+00
9.06237960e-02 -4.10856217e-01 1.84867799e-01 -5.10028243e-01
2.62214333e-01 -9.22160923e-01 9.75150838e-02 -1.69476354e+00
6.12391420e-02 -3.76641542e-01 2.19957277e-01 9.42906857e-01
-4.71854687e-01 6.02697790e-01 -5.43977320e-03 4.98042673e-01
-4.54769880e-01 6.56599328e-02 7.51407683e-01 2.02162221e-01
-2.25523546e-01 -4.01738256e-01 -6.52633250e-01 7.55291939e-01
9.66492474e-01 -6.26242638e-01 3.91728044e-01 -5.51153362e-01
5.35309494e-01 -2.84257859e-01 -4.36925024e-01 -4.41282004e-01
3.97875793e-02 -4.04012769e-01 2.58015782e-01 -6.53523684e-01
-3.52440476e-01 -2.76699930e-01 -2.82923937e-01 2.23101601e-01
-1.36690244e-01 7.90724754e-01 1.93526462e-01 -4.57382470e-01
-8.88786092e-02 -1.09644306e+00 9.47953045e-01 -3.87952089e-01
-5.22176683e-01 -4.25742477e-01 -1.04145479e+00 1.96723700e-01
8.97998393e-01 -1.32966474e-01 -4.86781806e-01 -1.58789456e-01
-5.19910634e-01 1.23736389e-01 7.89759219e-01 2.46533513e-01
-9.72854439e-03 -9.51504707e-01 -1.04995918e+00 -1.58993155e-01
3.32307182e-02 -5.09998977e-01 -4.58300442e-01 7.98870385e-01
-1.14397192e+00 4.61206347e-01 -6.16655529e-01 2.33040810e-01
-1.59207439e+00 -6.51875287e-02 -1.28052002e-02 -5.12587249e-01
-2.75625378e-01 5.93474090e-01 -8.20421755e-01 -8.29207897e-01
-2.01526403e-01 1.01424627e-01 -6.36689842e-01 3.88836950e-01
4.21909660e-01 6.40856743e-01 5.03209293e-01 -1.07054448e+00
-3.49679977e-01 2.70022273e-01 -1.52895868e-01 -7.13890851e-01
1.25660181e+00 -5.96399069e-01 -7.48917520e-01 4.56440777e-01
3.09382170e-01 1.08368933e+00 -4.79084492e-01 -1.45710856e-02
6.17648184e-01 -1.47688106e-01 -1.74581230e-01 -1.04842472e+00
-4.82630104e-01 7.60358334e-01 -1.39199331e-01 -4.19901349e-02
6.87563837e-01 -3.45773309e-01 7.30530918e-01 5.75054944e-01
-9.26693995e-03 -1.79884088e+00 -3.59954596e-01 1.49228060e+00
5.70082605e-01 -8.23437989e-01 2.42136657e-01 -3.32114100e-01
-8.72974217e-01 1.59500086e+00 3.91804934e-01 1.57907173e-01
4.18095917e-01 3.14636201e-01 6.43097341e-01 6.03423715e-02
-2.38137722e-01 2.35806387e-02 2.37884387e-01 5.39173841e-01
1.18560231e+00 -6.92299604e-02 -1.19615090e+00 8.94321263e-01
-6.48080170e-01 -3.58893156e-01 1.16694260e+00 9.60639536e-01
-2.36335993e-01 -1.60383832e+00 -5.56031466e-01 2.20638707e-01
-1.08683312e+00 -5.20193040e-01 -7.81407773e-01 8.38308036e-01
-1.38047347e-02 9.85272408e-01 7.20039979e-02 1.26370847e-01
2.83302721e-02 3.98230582e-01 6.73989117e-01 -8.43402565e-01
-1.26011860e+00 2.28634298e-01 4.88232702e-01 2.90840179e-01
-4.18782949e-01 -1.09450305e+00 -1.46725130e+00 -2.11794689e-01
-6.37617290e-01 7.47707129e-01 7.12762833e-01 1.23599565e+00
-2.57953610e-02 5.87318353e-02 2.08287999e-01 -5.10444224e-01
-3.09173137e-01 -1.45067883e+00 -3.68833929e-01 1.21672086e-01
-2.92783707e-01 -1.66153595e-01 -3.14552858e-02 6.38310969e-01] | [10.38989543914795, 10.285167694091797] |
c9cf7d36-b33e-4d79-bf5f-d3b6d1b2384b | high-fidelity-and-low-latency-universal | 2105.09856 | null | https://arxiv.org/abs/2105.09856v2 | https://arxiv.org/pdf/2105.09856v2.pdf | High-Fidelity and Low-Latency Universal Neural Vocoder based on Multiband WaveRNN with Data-Driven Linear Prediction for Discrete Waveform Modeling | This paper presents a novel high-fidelity and low-latency universal neural vocoder framework based on multiband WaveRNN with data-driven linear prediction for discrete waveform modeling (MWDLP). MWDLP employs a coarse-fine bit WaveRNN architecture for 10-bit mu-law waveform modeling. A sparse gated recurrent unit with a relatively large size of hidden units is utilized, while the multiband modeling is deployed to achieve real-time low-latency usage. A novel technique for data-driven linear prediction (LP) with discrete waveform modeling is proposed, where the LP coefficients are estimated in a data-driven manner. Moreover, a novel loss function using short-time Fourier transform (STFT) for discrete waveform modeling with Gumbel approximation is also proposed. The experimental results demonstrate that the proposed MWDLP framework generates high-fidelity synthetic speech for seen and unseen speakers and/or language on 300 speakers training data including clean and noisy/reverberant conditions, where the number of training utterances is limited to 60 per speaker, while allowing for real-time low-latency processing using a single core of $\sim\!$ 2.1--2.7 GHz CPU with $\sim\!$ 0.57--0.64 real-time factor including input/output and feature extraction. | ['Tomoki Toda', 'Patrick Lumban Tobing'] | 2021-05-20 | null | null | null | null | ['low-latency-processing'] | ['robots'] | [-0.04011761 -0.3480215 0.21987627 -0.42548573 -1.249539 -0.164571
0.0638475 -0.15842183 -0.29150656 0.61534995 0.15199703 -0.39354962
0.10809544 -0.6892487 -0.5744783 -0.66178805 -0.22979672 -0.04587458
-0.04006032 -0.06412769 -0.4290126 0.38129145 -1.7463744 0.30054596
0.45907134 1.243617 0.42128268 1.286622 0.41461694 0.5932524
-0.87642676 -0.09961298 0.31096286 -0.43713632 0.20782556 -0.3494284
0.29340735 -0.4561057 -0.5519979 0.7852216 1.282782 0.44984576
0.3787759 -0.91013384 -0.24672471 0.50475657 -0.39081606 0.38417107
0.02217137 0.21400735 0.92869025 -0.9695389 0.04952816 1.1933118
0.8450685 0.27436754 -1.0382612 -1.0563607 -0.2976332 0.28792986
-1.7785333 -0.76272357 0.9472518 -0.02393281 1.4995905 0.38037965
0.36819333 1.1180544 0.370411 0.38261116 0.7510554 -0.40615723
0.22487617 -0.01310757 0.18148719 0.5851825 -0.18839711 0.24415627
-0.8773439 -0.38250017 0.7539915 -0.15779117 -0.38983762 0.8136012
-0.6003439 0.75373775 0.10383716 0.1856373 -0.5129744 0.48126397
0.57154006 0.4647547 0.522815 -0.10785205 -0.36581662 -0.44082978
-1.4137186 0.18967997 0.8209975 0.8804389 0.39654332 1.3629341
-0.14671104 0.99711615 0.4549109 1.0577345 1.025021 -0.43978667
0.47844952 -0.4284774 0.03006058 -1.0219985 -0.42742157 -0.9348779
-1.1982445 0.14914812 -0.32874832 -0.4745251 -1.0060412 1.5248994
0.15158373 0.64385456 0.4810875 0.8982144 0.8879692 1.510203
-0.4075346 -0.57947606 1.4224806 -0.9045205 -0.9522153 -0.02373398
-0.03848948 -0.9173013 1.086412 0.74340415 -1.288523 -1.1421438
-1.2370005 -0.11590733 0.0969521 0.3943442 0.06053451 1.0309948
-0.9658654 0.3737003 -0.9247712 0.48150218 -0.20189482 0.27173144
0.12171801 0.28067842 -1.3536228 0.41747072 0.15632147 0.24731755
-1.1479088 -0.74186236 -0.90259355 0.25735804 -0.31266612 -0.17666589
1.2989572 -0.5188686 -1.9510921 -0.12435109 -0.5473694 -1.0438949
0.16315013 -0.25691438 -1.1253271 0.14642201 -0.46202037 -0.13151637
1.3893876 -0.7571688 -0.44991598 0.07349756 -0.85616523 0.11555421
-0.44814122 -0.026376 -0.09461942 -0.99418926 -0.04013281 -0.45578894
-0.05825214 -0.52560985 0.01667988 0.0641649 0.91613364 -1.1195238
1.6767712 -2.3274248 -0.3497429 0.2685966 -0.17931923 0.5483335
-0.07966715 0.48782158 0.091572 -0.34188652 0.01879529 -0.8224044
0.07084689 -0.03850957 -0.9030177 0.37523103 -0.02938797 0.49820498
-0.21446015 -0.02349701 0.3434965 1.2320981 -0.3564521 0.50257546
0.06256289 -0.13948134 0.16319244 0.44360694 0.7175584 0.26516336
-0.20435722 -0.28885174 -0.26468813 0.3845975 -1.458588 1.2341577
-1.2300566 0.86806566 0.35226074 -0.39905027 1.4334879 0.9358066
-0.19827755 -0.49946555 0.29036185 0.48141086 -0.21311195 -0.36754408
0.47089332 -0.35388163 0.22168027 0.21737939 0.16036658 -0.21467987
-0.25792798 -0.49305454 0.94197184 -0.14135224 0.1923875 0.09687436
0.3779614 -0.45993087 0.73678136 0.48667186 0.12301897 0.60236955
-0.23547715 -0.16374096 -0.9437713 -1.1369065 -0.13429728 1.2784994
-0.31590194 -0.2834608 -0.4703672 0.508163 -0.33693638 0.94105893
0.11023878 0.07692911 -0.7773319 -0.61186165 1.1050726 0.4033516
0.3458667 -1.1769994 -0.9031407 0.69328564 0.18401165 -1.0874122
-0.539791 0.3879073 -0.58073634 -0.01142981 -0.7114334 -0.89676255
0.07353028 0.06368613 0.54313797 -0.54986167 -0.2952976 -0.08103704
-0.3567462 -0.3895797 -0.23446617 -0.29249308 0.59780884 0.3414955
0.02830857 -0.8705395 -0.51044005 -0.04138226 -0.6761919 -0.02247867
0.5617697 1.1034839 0.6750171 0.37925205 0.87688375 -0.23269513
0.9370678 -0.24787666 -0.7548032 -0.02141181 -0.31280845 -0.32744658
1.4669154 -0.8227804 -1.1029897 -0.30292395 -0.6965661 -0.7906701
0.2471737 0.53339714 -0.03174906 0.2388639 0.7041806 0.71433103
-0.2941326 -0.5720015 0.12699136 1.2987162 0.8014675 -0.2302232
0.77952313 0.09686171 -0.43730816 -1.2848914 -0.25307792 -0.26160508
0.2627136 0.11489341 0.42474777 -1.4050168 -1.002576 0.3761971
-1.2028165 -0.4538659 -0.24237691 1.0497955 -0.48519966 0.10957316
-1.0128719 -1.3850151 -1.2655123 -1.1156464 0.7706548 0.22880639
-0.1435646 -0.51284635 -0.12742786 0.1967989 0.80342716 0.08690831
0.62622684 -0.48320705 -0.22053711 -0.4637546 0.07010404 0.8083577
-0.10886328 -0.27573663 -1.2597873 -0.552892 0.56327647 -0.31127897
0.38811988 0.49373338 0.9329446 -0.5250909 0.21517865 0.8435338
1.5273154 0.43554848 0.3026712 -0.6248205 0.49951854 -0.04712329
0.4175143 0.7900935 -0.02133862 0.46700126 -0.06161075 -0.02303514
-0.2885384 -0.23592615 0.58362967 1.5401148 0.21246274 -0.48312664
-0.7455931 0.5173033 -1.4320933 -0.9133338 -0.00973687 2.4047081
1.0264931 0.3215166 -0.08378048 0.61057436 0.5314841 0.19860752
-0.60089815 -0.82755697 0.07401212 0.9789967 0.4313559 0.82639045
-0.57479644 0.5897405 4.755617 1.3891186 -1.5601109 0.42058167
0.5291272 -0.43653357 -0.15865833 -0.7626577 -1.0704337 0.4560728
1.8208263 -0.28979018 0.4789138 0.98770356 0.6618811 0.50149333
-0.5304469 1.4814464 0.1797775 -1.0689003 -0.1693644 -0.2799736
0.29531655 0.23263614 0.34554875 0.38767335 -0.13925536 -1.2142956
0.8730389 0.21252629 1.4081362 -1.1369635 0.60773385 0.48712286
-1.6572374 -0.20602895 -0.5434672 -0.14661418 0.29619285 0.7125171
-0.9763331 0.3515225 0.5156444 0.05393193 0.30139017 0.6860899
0.04792194 1.1579515 -0.5760818 -0.31528288 0.15826692 0.15911843
0.5088025 1.5890212 0.739826 0.2851296 -0.02607954 0.27969787
0.02215494 0.1345951 -0.19750743 0.18556988 0.7028269 1.1251311
-0.13498011 -0.14433168 -0.14474264 0.76643485 -0.23666027 0.46011326
-1.2106913 -1.0511625 0.5630172 0.07488675 0.5700927 -0.5438089
-0.13720867 -0.7123633 0.06793715 -0.92911416 -0.05522125 -0.6638742
-0.99666196 1.16104 -0.5186589 -1.283759 -0.52840704 -0.24842113
-0.56565577 1.4181505 -1.5209789 -1.0407917 -0.11871386 0.65120137
0.85280037 -0.5016981 1.2051619 0.3449808 -0.41478476 0.93818647
0.29659167 -0.09557143 0.2619934 -0.70646447 0.53334343 0.89748764
0.16953912 0.6306775 0.90942585 -0.35965613 -1.5606365 -1.3651601
0.8129099 0.47580236 0.3618596 -0.73318535 -0.8750526 0.31657282
0.3625877 0.04210723 1.0202253 -0.3190865 -0.3898218 -0.5295258
-1.1360304 0.43365106 0.3744458 -0.6402209 -0.4959454 0.10481682
1.100726 -0.58152413 -0.86410993 0.23947963 0.48271355 -0.63884664
0.8392942 0.07435276 0.01534704 -0.3804985 -0.6466729 -1.0271009
-0.07372639 -1.4269176 -0.5217702 1.043432 0.5231392 -0.668873
0.55496365 0.04790944 -0.45261684 -0.9338952 -1.3345832 -0.86642826
-0.4477729 -1.0689019 0.42282364 0.24658552 -0.20477672 0.46277076
-0.95795435 0.5956805 0.47358418 -0.03812772 0.4939971 -0.55785674
-0.8740392 0.14398706 -0.34409684 -1.1817558 -0.15455455 -0.5747415
0.13086288 -1.1459187 -0.75258666 -0.04916277 -0.39001447 0.17850779
0.2996086 0.40746063 0.06036043 -0.23888563 0.09397712 0.7510956
0.46635988 0.17435768 -0.46297526 0.37790903 -0.04352671 0.56468195
0.7481597 -0.42164707 -0.7409988 -0.331117 -0.1966378 0.6008121
0.23631999 -1.4604981 0.4014276 0.35299775 0.36880505 -0.75988734
1.142755 -0.7863761 0.25635272 0.7189854 -0.07965655 0.04245716
0.32096052 0.53778887 -0.39905083 -0.01917361 0.8918486 0.18802716
-0.27842623 0.06880261 -0.39927956 -0.17622173 0.7142548 -0.05208101
-0.04603589 -0.7333216 -0.737558 -0.16737902 -0.4317221 0.20516905
1.108118 -1.2392433 -1.0068625 0.66687846 -0.38138482 -0.24680877
0.7289469 0.22372547 -0.68107635 0.5875956 0.07695282 -0.34086534
-1.377751 0.02695042 0.35933763 -0.09516527 -0.64991224 1.1481287
-0.4338657 0.00845141 0.5134281 -0.354903 0.18137063 -0.01397386
0.93866616 0.58370966 0.34288824 -0.5653178 -0.13782912 0.31786126
0.12683992 -0.60729784 1.4832156 0.10027261 0.21483308 0.77913016
1.4555387 0.21746708 -1.0653177 -0.32339972 -0.6349014 -0.20922619
0.2841357 -0.6177655 -0.73169374 1.1565242 0.8667544 0.05506029
1.4785818 -0.8047414 1.5271508 0.17558753 0.5234928 -1.0189048
-0.11224804 0.48563382 0.9485513 -0.62933475 -0.22287452 0.24560072
-0.5936219 1.1536235 0.30176246 -0.09797764 0.79249805 0.66293865
0.3216791 0.42645943 -0.9738702 0.10175233 0.14413619 0.3900041
0.42724267 0.22212285 -0.11754716 0.97337943 -0.8541376 -0.15329625
0.4549921 0.49140114 -0.59800816 -0.6912304 -0.59610164 0.45370921
-0.5803517 -0.47700778 0.61314857 0.08368251 -0.13086627 1.2468617
0.18090571 -0.6781556 0.24537317 0.12760548 -0.10659628 -0.48435923
-0.9478263 0.6726811 -0.00514898 -0.12661763 0.53990376 -0.25221562
-1.470947 -0.17917551 -0.18916754 0.305896 1.0832382 0.37872925
0.41982448 0.8206663 0.93108004 -0.7110476 -0.88535684 -1.2576238
-0.6975042 -0.20856817 0.74558973 0.00495786 -0.43196133 0.09785896] | [14.990265846252441, 6.093010902404785] |
c5def424-737e-4b55-88ce-b4a5f90f2e78 | a-data-augmentation-method-for-fully | 2202.06344 | null | https://arxiv.org/abs/2202.06344v2 | https://arxiv.org/pdf/2202.06344v2.pdf | A Data Augmentation Method for Fully Automatic Brain Tumor Segmentation | Automatic segmentation of glioma and its subregions is of great significance for diagnosis, treatment and monitoring of disease. In this paper, an augmentation method, called TensorMixup, was proposed and applied to the three dimensional U-Net architecture for brain tumor segmentation. The main ideas included that first, two image patches with size of 128 in three dimensions were selected according to glioma information of ground truth labels from the magnetic resonance imaging data of any two patients with the same modality. Next, a tensor in which all elements were independently sampled from Beta distribution was used to mix the image patches. Then the tensor was mapped to a matrix which was used to mix the one-hot encoded labels of the above image patches. Therefore, a new image and its one-hot encoded label were synthesized. Finally, the new data was used to train the model which could be used to segment glioma. The experimental results show that the mean accuracy of Dice scores are 91.32%, 85.67%, and 82.20% respectively on the whole tumor, tumor core, and enhancing tumor segmentation, which proves that the proposed TensorMixup is feasible and effective for brain tumor segmentation. | ['Hongbing Xiao', 'Yarong Ji', 'Yu Wang'] | 2022-02-13 | null | null | null | null | ['brain-tumor-segmentation'] | ['medical'] | [ 1.44849062e-01 1.91459246e-02 -4.76670787e-02 -2.60868371e-01
-6.35316610e-01 -1.08083703e-01 1.44991621e-01 -3.98638211e-02
-5.89142025e-01 5.24579406e-01 2.90814400e-01 -1.29011273e-01
-1.08489081e-01 -6.83233857e-01 -1.34391293e-01 -1.29665732e+00
1.58739135e-01 4.79586542e-01 2.12970793e-01 1.62075773e-01
2.34294608e-01 2.99876362e-01 -8.77765059e-01 2.72971302e-01
9.97032404e-01 1.19281614e+00 4.64397818e-01 1.94777325e-01
-3.87945980e-01 6.34303987e-01 -3.78370672e-01 4.42506224e-02
2.13909939e-01 -4.19152170e-01 -7.82733619e-01 3.63856792e-01
7.43501354e-03 -2.66486287e-01 -2.78731436e-01 1.37912297e+00
4.51081157e-01 1.19879153e-02 8.97611439e-01 -8.88730526e-01
-2.47994408e-01 6.63615763e-01 -9.86187875e-01 6.49594590e-02
-3.36642742e-01 -1.19451776e-01 5.06379843e-01 -6.22693539e-01
5.70002258e-01 8.87885809e-01 3.44757199e-01 3.84036452e-01
-8.24492395e-01 -8.03285539e-01 -1.81762949e-01 1.68948472e-01
-1.26120961e+00 1.61305785e-01 7.47149706e-01 -8.65875423e-01
2.20146403e-01 5.33957422e-01 1.09196055e+00 4.80082095e-01
7.42949247e-01 1.01430595e+00 1.35090852e+00 -1.38970494e-01
5.91546446e-02 -9.86392274e-02 2.71155745e-01 7.78680861e-01
4.19048779e-02 -2.45141536e-01 1.58196881e-01 -1.04331985e-01
7.80612111e-01 2.71463931e-01 -3.34295601e-01 -2.76759833e-01
-1.70943391e+00 7.59212554e-01 8.65643024e-01 7.95964360e-01
-6.04563594e-01 -2.01889247e-01 5.74888408e-01 -2.19823927e-01
5.78659832e-01 5.91165647e-02 -6.90809190e-02 3.24793547e-01
-8.08007538e-01 -1.97443858e-01 2.79349655e-01 4.97505218e-01
5.60188591e-01 -1.92424804e-01 -3.53551149e-01 8.78201604e-01
4.08946663e-01 3.30224603e-01 1.25205648e+00 -6.18304431e-01
2.12225378e-01 8.29805970e-01 -3.48442286e-01 -1.12372661e+00
-7.90556431e-01 -5.72068393e-01 -1.31590033e+00 -1.51411891e-01
2.01402351e-01 -2.17743322e-01 -1.22004735e+00 1.29384196e+00
4.09814268e-01 3.10070604e-01 5.11228517e-02 1.08978713e+00
9.25912559e-01 5.27017057e-01 -1.12019159e-01 -3.06042790e-01
1.60677516e+00 -1.06747031e+00 -8.15426588e-01 9.67107862e-02
1.05621910e+00 -7.40550697e-01 5.53483307e-01 1.79505289e-01
-8.13776255e-01 -1.28780529e-01 -8.55506659e-01 2.72819877e-01
4.72019389e-02 3.22306395e-01 6.81219459e-01 3.45838577e-01
-8.66086543e-01 1.45110011e-01 -9.31038201e-01 -1.01267740e-01
5.14413118e-01 3.20537537e-01 -4.38242286e-01 -2.23289236e-01
-1.00081420e+00 6.50652826e-01 7.11196601e-01 1.41006529e-01
-8.72224152e-01 -4.76690292e-01 -5.79951465e-01 -2.47026056e-01
3.43288817e-02 -4.75430369e-01 1.03304291e+00 -8.80505800e-01
-1.32452846e+00 7.47481465e-01 9.45972353e-02 -1.79831550e-01
4.45573062e-01 6.42861724e-01 -1.06652543e-01 2.23892733e-01
3.64738822e-01 7.87790358e-01 4.99123812e-01 -1.01114750e+00
-7.05732882e-01 -7.34127223e-01 -5.33087790e-01 5.44190824e-01
-2.67323941e-01 -1.62847713e-01 -4.13669795e-01 -5.38351417e-01
7.98524797e-01 -9.05662239e-01 -3.80618870e-01 -3.77541542e-01
-5.96208036e-01 -1.58410892e-02 6.96142972e-01 -1.24224544e+00
9.12846625e-01 -2.12738729e+00 4.13667530e-01 5.97797811e-01
4.10869896e-01 -1.14479978e-02 3.41056921e-02 -2.73844361e-01
-2.21681923e-01 -3.54762934e-02 -5.82124352e-01 5.38899675e-02
-4.55593795e-01 9.35947523e-03 5.17600536e-01 5.30077875e-01
-3.12702149e-01 7.23219335e-01 -9.28908587e-01 -7.38810837e-01
1.66674584e-01 3.60863745e-01 -2.16057152e-01 2.03538358e-01
1.25188932e-01 8.07952583e-01 -5.99294424e-01 4.99027431e-01
8.90413046e-01 1.66731492e-01 -1.32605955e-01 -3.57591659e-01
5.15096746e-02 -3.92648369e-01 -8.20617914e-01 1.65535009e+00
-7.57526159e-02 3.53324294e-01 -1.64602213e-02 -1.00657225e+00
1.11235583e+00 5.39511323e-01 1.29017532e+00 -6.30397439e-01
6.74988449e-01 4.37398523e-01 4.25535262e-01 -8.51313055e-01
-4.70113941e-02 -1.96259156e-01 2.82559305e-01 5.13238549e-01
-2.87183583e-01 -4.21890199e-01 1.82023525e-01 -8.09458122e-02
8.67339551e-01 -4.47191417e-01 -9.27278697e-02 -3.50199133e-01
7.34813988e-01 -9.20283701e-03 6.74798429e-01 -4.48062420e-02
-3.48390937e-01 4.89453286e-01 6.24018908e-01 -4.70934331e-01
-8.26829374e-01 -5.86522639e-01 -4.15379167e-01 2.89337516e-01
1.47306463e-02 1.97399572e-01 -1.14121068e+00 -7.91582227e-01
-3.08429420e-01 3.86793435e-01 -7.86174119e-01 -1.95717156e-01
-2.28702143e-01 -1.09565198e+00 1.36285335e-01 2.24559501e-01
7.98297644e-01 -8.25312972e-01 -3.27116698e-01 1.15215987e-01
-4.81405288e-01 -7.04451501e-01 -6.80234849e-01 -6.13149367e-02
-1.04852915e+00 -1.05071783e+00 -1.34801638e+00 -1.13633204e+00
1.29268301e+00 4.08659279e-01 3.49025309e-01 1.56917069e-02
-1.17262103e-01 -1.66437119e-01 -1.92526668e-01 -6.73399419e-02
-3.01438302e-01 -1.45992264e-01 -1.91916928e-01 4.22957778e-01
2.13584483e-01 -2.88336039e-01 -6.36782706e-01 4.77380604e-01
-1.17372549e+00 4.92080241e-01 9.22870517e-01 1.10633337e+00
7.99379885e-01 2.78061956e-01 8.82554501e-02 -5.65367877e-01
6.64458990e-01 -3.51239592e-01 -2.68683285e-01 9.59910303e-02
-2.21554726e-01 -2.08689556e-01 2.33265936e-01 -4.66772407e-01
-8.23424637e-01 1.94538489e-01 3.11100530e-03 -3.12664956e-01
7.73188472e-02 8.19063723e-01 -2.55628042e-02 -1.70312375e-01
3.34260583e-01 2.38111779e-01 5.18411219e-01 -3.83158438e-02
9.15587544e-02 9.23477113e-01 2.84293711e-01 -2.89419383e-01
1.73300654e-01 4.03896242e-01 1.12454779e-02 -6.35955811e-01
-5.69126666e-01 -4.81102973e-01 -6.10500097e-01 -2.54281163e-01
1.33037412e+00 -6.18004143e-01 -2.87502080e-01 9.40045536e-01
-9.64409113e-01 -9.82145816e-02 4.95028310e-03 1.03679323e+00
-4.27605480e-01 4.33487207e-01 -7.61902392e-01 -2.49058262e-01
-5.69604635e-01 -1.83869886e+00 5.40166080e-01 4.95526195e-01
3.17112178e-01 -9.19696152e-01 -2.86220200e-02 5.74251175e-01
3.60553622e-01 2.59666085e-01 9.32555258e-01 -5.98438680e-01
-2.41324484e-01 -4.44193423e-01 -5.13592362e-01 4.63973433e-01
3.84442210e-01 -2.50379611e-02 -5.98115981e-01 -2.62227088e-01
2.83696145e-01 -6.66578487e-02 6.97141826e-01 7.81060398e-01
1.25203836e+00 -1.03921518e-01 -6.18936241e-01 6.30107224e-01
1.20554054e+00 7.95129478e-01 4.01839882e-01 2.37141490e-01
9.05079007e-01 6.85824871e-01 4.04822141e-01 3.39541063e-02
2.54060417e-01 4.58811939e-01 4.35669601e-01 -2.68495470e-01
1.21883210e-02 2.78578281e-01 -1.65421054e-01 1.36141586e+00
2.30772588e-02 2.10043892e-01 -1.22057331e+00 6.22790217e-01
-1.70150459e+00 -6.64938748e-01 -2.35325396e-01 2.04990983e+00
7.93061852e-01 1.39326695e-02 -2.29898587e-01 1.36970401e-01
9.48994160e-01 -1.88719764e-01 -4.76165831e-01 -2.53379922e-02
8.10420364e-02 -2.26301983e-01 5.27925193e-01 4.24559325e-01
-9.00731862e-01 3.94748092e-01 5.71736336e+00 1.08736980e+00
-1.33186996e+00 1.95243970e-01 1.13035285e+00 2.57754236e-01
-2.95634568e-01 -9.14802402e-02 -2.56943643e-01 6.96129084e-01
4.63136852e-01 -6.01844639e-02 1.19109623e-01 4.08783704e-01
4.02728140e-01 -3.57053220e-01 -4.35819626e-01 9.94163334e-01
6.79617226e-02 -9.73239481e-01 5.17783798e-02 2.01546922e-01
9.73306358e-01 4.85039353e-02 5.57859354e-02 -1.12496659e-01
8.89851302e-02 -7.96347380e-01 2.17143491e-01 7.09460437e-01
5.21344066e-01 -6.91205502e-01 1.29149711e+00 4.46824104e-01
-8.37997258e-01 1.87947601e-01 -4.74898338e-01 4.42277938e-01
-3.30342762e-02 8.14533353e-01 -1.03729939e+00 6.73369706e-01
3.43175232e-01 7.31584311e-01 -4.28710490e-01 1.34089482e+00
1.45198643e-01 4.42578793e-01 -2.97252566e-01 -5.03870547e-02
4.71095294e-01 -6.76210463e-01 3.09638619e-01 7.97004759e-01
5.49480677e-01 -1.69744361e-02 3.36170018e-01 4.67825621e-01
2.26499021e-01 5.46490490e-01 -3.31234097e-01 1.65585756e-01
1.25744924e-01 1.64531326e+00 -1.00768065e+00 -4.68045563e-01
-1.10295482e-01 5.98714352e-01 1.23854056e-02 2.45384216e-01
-7.50122488e-01 -4.19822782e-01 -7.22932518e-02 -1.61092415e-01
-1.72339588e-01 1.11693703e-01 -5.08409560e-01 -1.02695048e+00
-8.19751173e-02 -6.58694386e-01 3.12037587e-01 -8.03790390e-01
-1.03145099e+00 9.03449535e-01 -4.80741039e-02 -1.18812442e+00
2.76232332e-01 -5.18933892e-01 -8.89173329e-01 9.61762249e-01
-1.04339468e+00 -1.07720065e+00 -6.64464056e-01 5.19241154e-01
1.00701205e-01 -2.73150921e-01 6.37926638e-01 2.91966468e-01
-1.01662493e+00 3.25734168e-01 4.35233444e-01 4.16953027e-01
4.22086149e-01 -1.04542148e+00 -3.93850446e-01 5.94013214e-01
-4.52412814e-01 1.13733284e-01 2.17463285e-01 -6.51258171e-01
-7.52978802e-01 -1.03076506e+00 4.65078384e-01 3.28592777e-01
7.69689322e-01 1.87539741e-01 -7.72717535e-01 5.10728598e-01
2.55920738e-01 7.91880861e-02 7.00077355e-01 -6.35840595e-01
2.54619330e-01 -1.01462938e-01 -1.39754963e+00 6.08508945e-01
3.39737326e-01 4.73321555e-03 -2.26382673e-01 7.25371659e-01
6.68099940e-01 -7.36192524e-01 -1.27321398e+00 3.96313548e-01
2.96533018e-01 -6.84563577e-01 5.45165956e-01 -3.23248684e-01
3.81969720e-01 -3.18206012e-01 -6.14905283e-02 -1.59425509e+00
-5.01219213e-01 1.21290185e-01 5.91601849e-01 7.61626661e-01
4.77372915e-01 -8.42979729e-01 8.14148605e-01 5.88104963e-01
-5.11645913e-01 -1.27001798e+00 -9.18690145e-01 -2.31842592e-01
1.64777592e-01 -4.05142969e-03 6.78790927e-01 9.73796308e-01
-3.80973220e-02 -3.92301269e-02 1.45502001e-01 -1.97144225e-01
5.36909163e-01 -2.55732983e-01 2.23434955e-01 -9.45128739e-01
1.57842055e-01 -6.97953641e-01 -5.80439985e-01 -6.83164656e-01
-6.51063100e-02 -1.26445127e+00 -3.99162956e-02 -1.87511909e+00
4.45918977e-01 -7.02721119e-01 -5.57558000e-01 4.08936203e-01
-2.24842325e-01 2.84507751e-01 -1.89407945e-01 5.67063332e-01
9.87851545e-02 5.91222942e-01 2.06270623e+00 -5.81970334e-01
-1.58298060e-01 4.46084217e-04 -5.37026286e-01 5.44872642e-01
9.32551622e-01 -2.66577154e-01 -3.73097390e-01 -5.16396880e-01
-4.48108047e-01 2.27586806e-01 -1.22130282e-01 -1.09589243e+00
1.38899684e-01 -1.68244094e-01 4.05150205e-01 -6.19702876e-01
2.17446581e-01 -9.50834632e-01 1.29839420e-01 7.46316731e-01
-2.54417509e-01 -4.45254445e-02 -6.47585690e-02 1.46669716e-01
-4.96146917e-01 -3.78002942e-01 8.14020038e-01 -1.74600706e-01
-2.58529723e-01 7.93717861e-01 -3.40038985e-01 -3.32987577e-01
1.66650128e+00 -2.20857218e-01 -1.50913671e-01 -8.96447804e-03
-7.94857681e-01 2.38148570e-01 9.02756602e-02 -3.39965448e-02
7.29887605e-01 -1.70635808e+00 -8.81427824e-01 1.70280531e-01
6.23546652e-02 3.42941165e-01 5.31853914e-01 1.58032179e+00
-8.47018600e-01 4.06031758e-01 -4.74339962e-01 -8.54002476e-01
-1.09096730e+00 3.52932125e-01 6.78969622e-01 -4.34988528e-01
-4.65593368e-01 8.89730811e-01 3.23682994e-01 -4.98915911e-01
3.47227119e-02 -4.68091726e-01 -6.49445593e-01 1.50524423e-01
3.82893085e-01 7.15013742e-02 1.72073141e-01 -9.38026607e-01
-5.02663814e-02 7.44475543e-01 -3.32155079e-01 -2.21003622e-01
1.03526080e+00 1.88403249e-01 -7.43883252e-01 1.81537703e-01
1.42981851e+00 -4.43775833e-01 -9.65509236e-01 -3.85651380e-01
-3.26504767e-01 -3.13774735e-01 4.44715142e-01 -6.91141844e-01
-1.72951996e+00 8.56874883e-01 8.36763322e-01 8.93213078e-02
1.12889028e+00 -2.83664137e-01 9.60470617e-01 -1.07556753e-01
1.44927233e-01 -6.93197191e-01 -2.00064570e-01 2.41826937e-01
7.26778209e-01 -1.06861794e+00 -3.57612640e-01 -2.12871701e-01
-7.44096339e-01 1.11096752e+00 6.19625151e-01 -1.75402671e-01
7.11496711e-01 3.56308073e-02 2.77310193e-01 -3.00082862e-01
-2.00598434e-01 2.04260871e-01 3.20406377e-01 4.10634339e-01
3.58713657e-01 4.44813997e-01 -6.77169979e-01 3.51175785e-01
-2.17444673e-01 -9.32181627e-03 4.44793195e-01 7.47249782e-01
-5.85893273e-01 -7.83397675e-01 -6.19383395e-01 9.51316535e-01
-2.14651808e-01 1.66262627e-01 -1.15950838e-01 3.43305677e-01
3.76263291e-01 6.17941499e-01 8.45587254e-02 -7.10627139e-01
-6.98979422e-02 -1.39652595e-01 2.21412346e-01 -3.88417989e-01
-3.31586599e-01 2.30714768e-01 -4.07764137e-01 -2.37291098e-01
-2.32171893e-01 -6.62474155e-01 -1.46003950e+00 6.53867871e-02
-4.15623009e-01 5.17565787e-01 1.03361714e+00 8.37726355e-01
-3.94948721e-02 7.52224922e-01 8.47944856e-01 -6.24908209e-01
-3.10699612e-01 -1.21207333e+00 -7.30901301e-01 2.99868733e-01
4.31227982e-02 -6.56933308e-01 -2.97992587e-01 -2.56938905e-01] | [14.480636596679688, -2.430408000946045] |
0c1979c3-019c-45c0-956f-10fb3d39fc88 | improving-auto-encoders-self-supervised-image | 2012.03322 | null | https://arxiv.org/abs/2012.03322v2 | https://arxiv.org/pdf/2012.03322v2.pdf | A Pseudo-labelling Auto-Encoder for unsupervised image classification | In this paper, we introduce a unique variant of the denoising Auto-Encoder and combine it with the perceptual loss to classify images in an unsupervised manner. The proposed method, called Pseudo Labelling, consists of first applying a randomly sampled set of data augmentation transformations to each training image. As a result, each initial image can be considered as a pseudo-label to its corresponding augmented ones. Then, an Auto-Encoder is used to learn the mapping between each set of the augmented images and its corresponding pseudo-label. Furthermore, the perceptual loss is employed to take into consideration the existing dependencies between the pixels in the same neighbourhood of an image. This combination encourages the encoder to output richer encodings that are highly informative of the input's class. Consequently, the Auto-Encoder's performance on unsupervised image classification is improved in terms of stability, accuracy and consistency across all tested datasets. Previous state-of-the-art accuracy on the MNIST, CIFAR-10 and SVHN datasets is improved by 0.3\%, 3.11\% and 9.21\% respectively. | ['Abdelhakim Saim', 'Rachid Deriche', 'Karim Atif', 'Aymene Mohammed Bouayed'] | 2020-12-06 | null | null | null | null | ['self-supervised-image-classification', 'unsupervised-image-classification'] | ['computer-vision', 'computer-vision'] | [ 6.76602721e-01 2.61128485e-01 -3.36715346e-03 -6.68519557e-01
-4.71471697e-01 -2.20528767e-01 5.77839971e-01 3.03096265e-01
-6.83368027e-01 8.22570384e-01 -1.37959063e-01 1.83413640e-01
3.08068879e-02 -8.52626264e-01 -8.20641398e-01 -1.05900860e+00
2.20985889e-01 2.86127806e-01 6.44070506e-02 1.50388628e-01
-6.81675598e-02 2.53355682e-01 -1.66198123e+00 3.50004315e-01
8.32797170e-01 1.23182833e+00 3.64690006e-01 3.99109721e-01
-3.71416621e-02 8.37990582e-01 -5.27840197e-01 -4.12895203e-01
2.01384217e-01 -5.56913376e-01 -6.76402450e-01 5.12513578e-01
4.40277249e-01 -4.52528559e-02 -1.83588281e-01 1.31683207e+00
2.58039743e-01 2.12274358e-01 8.02154601e-01 -1.07814991e+00
-7.98040569e-01 6.32122278e-01 -5.61425865e-01 8.66215304e-02
-1.83562830e-01 -2.83705443e-03 9.08350289e-01 -6.41290903e-01
4.45786774e-01 9.26384389e-01 2.89009839e-01 4.60281819e-01
-1.40431416e+00 -6.77045524e-01 3.13203968e-02 2.38366440e-01
-1.33228242e+00 -2.87979662e-01 9.86661077e-01 -3.85036379e-01
4.60601598e-01 5.01827858e-02 3.90586495e-01 9.53670442e-01
-1.17346356e-02 5.99389970e-01 1.34754598e+00 -5.73838651e-01
2.83504426e-01 4.84194636e-01 1.13813177e-01 4.68733788e-01
-6.33202791e-02 5.03718331e-02 -3.13794434e-01 3.54218155e-01
5.27313530e-01 -1.50820971e-01 -1.23860709e-01 -3.29673976e-01
-1.00746024e+00 6.44344389e-01 8.04052174e-01 2.46486083e-01
-4.88451600e-01 -1.73444320e-02 3.07211101e-01 9.26417783e-02
5.77932537e-01 3.45547557e-01 -2.34358266e-01 2.78553247e-01
-7.52380192e-01 -6.18895404e-02 3.09028208e-01 6.67535841e-01
1.01302910e+00 2.15300575e-01 -1.66115731e-01 9.25738990e-01
4.37882990e-01 3.79008055e-01 5.70520878e-01 -9.20899630e-01
3.42748433e-01 7.20335603e-01 -1.65585831e-01 -9.45790470e-01
-2.02914223e-01 -1.13271224e+00 -1.12918842e+00 3.54579985e-01
1.48040354e-01 1.77755803e-01 -1.11043084e+00 1.90218997e+00
2.58353680e-01 3.74060452e-01 4.06443596e-01 7.18665183e-01
7.04957247e-01 6.72159910e-01 2.16869146e-01 -1.90522611e-01
1.18041444e+00 -1.04860091e+00 -7.96338141e-01 -3.90140265e-01
4.27757025e-01 -7.27443397e-01 9.44641650e-01 3.48282933e-01
-8.15645099e-01 -1.08152473e+00 -1.23875892e+00 2.12799519e-01
-3.93544197e-01 4.54559177e-01 2.30368093e-01 3.87410700e-01
-8.75780344e-01 4.72994357e-01 -6.34044468e-01 -2.69882903e-02
6.14616334e-01 4.06619847e-01 -4.14079309e-01 -1.25621617e-01
-1.04540074e+00 6.80021703e-01 7.46682048e-01 -7.62907118e-02
-8.39225769e-01 -4.76917863e-01 -7.82785296e-01 7.39634561e-04
7.85815939e-02 -3.05574030e-01 9.07506287e-01 -1.49431908e+00
-1.27356529e+00 9.76819754e-01 7.00522959e-03 -6.85645103e-01
3.42783272e-01 5.66989463e-03 -5.67019582e-01 2.39948034e-01
2.05546886e-01 9.55030143e-01 1.05490386e+00 -1.52796102e+00
-7.45133758e-01 -3.70254725e-01 -2.37269700e-02 3.94295543e-01
-4.97986943e-01 -3.06317300e-01 -2.93448865e-01 -7.79016316e-01
1.27442241e-01 -8.26936185e-01 -8.19461886e-03 -2.16800213e-01
-4.52486664e-01 1.48504914e-03 7.55654275e-01 -5.02997518e-01
8.21309090e-01 -2.49921155e+00 1.88238561e-01 2.48373806e-01
-6.42302632e-02 3.53385270e-01 -1.23576857e-01 -5.12010083e-02
-2.82879025e-01 -1.86137725e-02 -5.99541724e-01 -5.43144763e-01
-3.42684269e-01 5.22848964e-01 -3.43699902e-02 3.94353807e-01
4.01945651e-01 5.68832815e-01 -7.94922411e-01 -3.89978677e-01
3.53830427e-01 7.15583861e-01 -4.27519232e-01 1.99883133e-01
-2.75717005e-02 8.07779133e-01 -1.89661592e-01 5.62566556e-02
7.91133165e-01 -1.30984023e-01 -9.43878740e-02 -2.59226918e-01
4.26628254e-02 5.33773638e-02 -1.09647906e+00 1.57470989e+00
-4.25280392e-01 4.63808984e-01 -2.15668291e-01 -1.17627883e+00
1.12872910e+00 3.64765823e-01 2.91503012e-01 -7.02790141e-01
1.88815936e-01 1.15344487e-01 1.91044375e-01 -3.18610698e-01
2.65079737e-01 -4.34817597e-02 2.13595554e-01 3.31723660e-01
3.37831914e-01 2.55696625e-01 2.01540038e-01 -3.65479589e-02
6.55266702e-01 1.34964257e-01 1.11072779e-01 -2.58572936e-01
8.75745177e-01 -2.19842240e-01 4.81390625e-01 5.36832988e-01
-1.97497644e-02 5.40294886e-01 1.69383898e-01 -3.44169706e-01
-1.12475109e+00 -1.01774776e+00 -4.10266191e-01 8.80683303e-01
6.26080530e-03 1.39450254e-02 -9.05012310e-01 -8.30973744e-01
-2.13495135e-01 7.13985682e-01 -7.52849817e-01 -4.77175802e-01
-2.94365436e-01 -7.62143135e-01 3.51658046e-01 4.63211536e-01
9.58492219e-01 -1.22474849e+00 -4.74008411e-01 6.54835328e-02
-2.02240914e-01 -1.14653385e+00 -1.14333659e-01 6.06602967e-01
-9.10641909e-01 -8.20449054e-01 -4.57229644e-01 -1.03408492e+00
1.20570302e+00 -1.43255308e-01 7.56725907e-01 -1.78222194e-01
6.45661876e-02 -2.13076904e-01 -5.41524470e-01 -1.66137487e-01
-6.26977861e-01 3.33548114e-02 -1.09607959e-02 6.88540101e-01
1.74361944e-01 -5.22073448e-01 -4.91552830e-01 2.38414422e-01
-1.11242652e+00 7.97080323e-02 6.99507236e-01 1.04655540e+00
9.43418503e-01 5.10981560e-01 6.79589391e-01 -1.23463809e+00
8.72466490e-02 -3.67934674e-01 -3.69058341e-01 8.00364558e-03
-6.45269573e-01 2.41856202e-01 8.90207350e-01 -5.47902524e-01
-1.23425615e+00 5.56607783e-01 -1.63016394e-01 -4.36316490e-01
-4.83632058e-01 4.12542850e-01 -2.92367578e-01 4.61295731e-02
7.24945128e-01 3.99855316e-01 -5.95523305e-02 -5.56517363e-01
5.16306996e-01 7.42556334e-01 8.99888754e-01 -2.22722709e-01
8.10765088e-01 3.95453006e-01 -1.69145778e-01 -6.52611554e-01
-9.32516813e-01 -3.01412076e-01 -7.67865002e-01 -9.54608545e-02
9.90987122e-01 -7.73165464e-01 -5.46599850e-02 6.83095992e-01
-8.52537155e-01 -1.95584401e-01 -5.65040648e-01 5.43749511e-01
-4.43167657e-01 1.91230550e-01 -3.98327947e-01 -7.17328429e-01
-5.17981648e-02 -1.37464643e+00 7.11107254e-01 3.19009870e-01
1.34670800e-02 -7.80577779e-01 -2.69607067e-01 3.79748225e-01
1.88883588e-01 1.22107565e-01 8.57168019e-01 -7.74065793e-01
-2.64025986e-01 -2.78849006e-01 -2.99148917e-01 1.13894188e+00
3.07612240e-01 -2.72040933e-01 -1.23428547e+00 -2.61062831e-01
2.12234095e-01 -3.00218672e-01 9.33778763e-01 2.57427663e-01
1.27287567e+00 -3.91676754e-01 -8.31071939e-03 6.25403047e-01
1.41142726e+00 5.34985662e-01 6.37946188e-01 3.69446725e-01
6.14321232e-01 5.49289346e-01 5.06218255e-01 2.40195811e-01
1.06693067e-01 5.52935600e-01 6.27189279e-01 -2.40275785e-01
-2.63050258e-01 -1.30561605e-01 8.08960870e-02 8.00186038e-01
1.31699011e-01 -2.04516470e-01 -6.26990259e-01 4.20037240e-01
-1.53971386e+00 -6.62709594e-01 1.22306393e-02 2.23977470e+00
8.66139948e-01 3.06523085e-01 -2.58967519e-01 6.44646049e-01
8.84698808e-01 1.32821411e-01 -4.84697402e-01 -2.42345780e-01
-2.13690445e-01 2.53524393e-01 4.81801927e-01 4.54273492e-01
-1.43786800e+00 7.29394436e-01 5.19031429e+00 7.01146126e-01
-1.04758286e+00 7.66067281e-02 1.14297950e+00 3.61832976e-01
-4.95773274e-03 -9.69846025e-02 -6.18735671e-01 6.32504046e-01
8.36916208e-01 1.68217108e-01 4.73383665e-01 7.09239304e-01
-9.48640238e-03 -1.40160188e-01 -1.00627601e+00 7.66586304e-01
2.44814292e-01 -8.79206359e-01 2.28275776e-01 -1.65059231e-02
1.05854177e+00 -2.69090533e-01 3.89036447e-01 9.67608616e-02
-1.36692785e-02 -9.43219543e-01 6.62463188e-01 5.19274354e-01
7.88657963e-01 -1.02427292e+00 1.03411651e+00 3.30790550e-01
-9.54656541e-01 -1.00158282e-01 -3.28363299e-01 -6.94778785e-02
-1.16477624e-01 6.44797385e-01 -6.76345110e-01 5.47975302e-01
7.37218678e-01 7.95700550e-01 -6.55439794e-01 8.67831111e-01
-5.63512862e-01 6.73996329e-01 -1.06370874e-01 4.38620001e-01
2.30714530e-01 -2.11674362e-01 2.54553884e-01 9.52162027e-01
2.96559534e-03 -1.05509032e-02 1.44544005e-01 6.91108882e-01
-3.72917920e-01 2.86683701e-02 -4.27435637e-01 1.83831289e-01
3.09551626e-01 1.19828320e+00 -7.02454984e-01 -5.91173768e-01
-1.72805861e-01 1.12877059e+00 2.63403565e-01 4.83481854e-01
-7.63024986e-01 -4.60869104e-01 2.64356613e-01 -1.42620906e-01
3.73432904e-01 2.94401646e-01 -3.00866574e-01 -7.42949724e-01
-4.10993695e-02 -6.62480414e-01 2.75770038e-01 -8.45595419e-01
-1.08205450e+00 1.04659998e+00 -2.16680378e-01 -1.33933461e+00
-1.60447821e-01 -3.75126272e-01 -3.29365432e-01 8.80935550e-01
-1.64045513e+00 -9.56538856e-01 -4.16700840e-01 4.07749593e-01
5.13200104e-01 -2.63053924e-01 8.79902065e-01 4.84676450e-01
-6.14188135e-01 6.60780609e-01 2.49411672e-01 2.65888721e-01
5.77431202e-01 -1.30534029e+00 -3.42839696e-02 9.42914963e-01
2.69365788e-01 1.48748353e-01 5.70707262e-01 -3.44691098e-01
-5.35756767e-01 -1.47166562e+00 8.27686429e-01 5.15532913e-03
3.09283108e-01 -2.32094362e-01 -1.01687837e+00 6.53807819e-01
2.40691021e-01 3.38486254e-01 4.85877693e-01 -3.59636635e-01
-3.48366737e-01 -5.31133413e-01 -1.25520182e+00 3.53552371e-01
6.89049125e-01 -5.43607354e-01 -5.18251181e-01 2.32720897e-01
7.66577899e-01 -2.98484743e-01 -9.42558706e-01 4.41496283e-01
2.02918917e-01 -8.05122018e-01 9.41111505e-01 -3.20449471e-01
6.53564155e-01 -3.66155505e-01 -1.54827684e-01 -1.38635039e+00
-4.71561521e-01 4.94961627e-02 1.43829465e-01 1.46358454e+00
3.95014405e-01 -5.60656548e-01 5.99121392e-01 4.14984822e-02
-2.21439600e-01 -7.22461045e-01 -8.42587292e-01 -5.49920380e-01
-2.77348638e-01 -3.52524698e-01 4.34585929e-01 9.56079721e-01
-3.61789018e-01 4.48975980e-01 -3.80388886e-01 3.02767813e-01
8.27855408e-01 -1.23262480e-01 3.79549295e-01 -1.05367529e+00
-3.46307039e-01 -1.99570179e-01 -6.14669383e-01 -7.59747624e-01
1.66119650e-01 -1.13095021e+00 1.29057556e-01 -1.18504500e+00
1.24080025e-01 -5.21814346e-01 -8.41079414e-01 6.02742791e-01
-1.00218669e-01 7.91406929e-01 9.84817073e-02 2.52273113e-01
-4.51152176e-01 5.44113696e-01 1.21043134e+00 -2.68782288e-01
-3.59227210e-02 7.74633884e-02 -4.85683262e-01 6.77450240e-01
1.00832021e+00 -5.78218400e-01 -5.66628516e-01 -5.67971230e-01
-2.17186332e-01 -2.58962244e-01 2.92695463e-01 -1.26908171e+00
4.98792194e-02 3.34657013e-01 6.25224113e-01 -4.63195950e-01
3.31278563e-01 -9.24081147e-01 1.33667067e-01 4.56584066e-01
-7.05089629e-01 -2.53121436e-01 1.28763750e-01 6.09922528e-01
-4.99859095e-01 -4.45834130e-01 1.15783036e+00 -6.45091711e-03
-6.44584835e-01 7.70128965e-02 -1.58668205e-01 -1.32294551e-01
1.08542740e+00 -2.36791044e-01 -1.15428545e-01 -2.02455223e-01
-9.01997864e-01 -3.93066704e-02 2.41474643e-01 1.97735980e-01
5.83826303e-01 -1.36994874e+00 -6.28807127e-01 4.98411804e-01
1.89457417e-01 1.90121487e-01 3.62619340e-01 5.66601515e-01
-2.87767380e-01 7.42200390e-02 -4.64849651e-01 -7.16937900e-01
-1.14596498e+00 5.37770212e-01 2.02619120e-01 -3.10849875e-01
-4.18892056e-01 8.51158500e-01 3.37244600e-01 -2.64681369e-01
3.07707995e-01 -2.18059301e-01 -6.12684488e-01 2.25840174e-02
3.37564796e-01 1.26718670e-01 6.37722611e-02 -9.92220759e-01
-1.88674927e-01 5.25164783e-01 -1.17587216e-01 -2.68809292e-02
1.28661513e+00 -6.23561963e-02 -1.49942368e-01 4.69615966e-01
1.50319302e+00 -3.12882185e-01 -1.43402946e+00 -5.37240803e-01
-9.70726013e-02 -3.07430238e-01 1.74267784e-01 -9.12832975e-01
-1.46862495e+00 7.61365592e-01 9.81019020e-01 1.00067286e-02
1.56794775e+00 5.01131974e-02 3.25682312e-01 1.03063993e-01
-4.24577706e-02 -9.26930249e-01 5.12417927e-02 2.57606268e-01
6.60234332e-01 -1.14922559e+00 -2.56918579e-01 -3.81023705e-01
-6.68225110e-01 8.62431169e-01 5.22314608e-01 -2.66327083e-01
4.67004806e-01 -6.34183129e-03 1.03403881e-01 6.95440844e-02
-3.80559444e-01 -1.87460825e-01 3.61266732e-01 4.57662702e-01
2.25560874e-01 6.03961386e-02 -2.03960106e-01 3.96495998e-01
-1.83531359e-01 -7.66384229e-02 2.53615171e-01 5.93537450e-01
-3.46436292e-01 -1.07949078e+00 -2.42746815e-01 4.99662668e-01
-4.38123375e-01 2.85062827e-02 -2.95110658e-04 5.55321813e-01
5.98791718e-01 8.44259977e-01 2.89759785e-01 -5.67375541e-01
1.86987072e-01 1.94169059e-01 2.23256320e-01 -6.87719047e-01
-4.58061278e-01 9.14820433e-02 -1.89036742e-01 -1.72835395e-01
-7.11205602e-01 -4.45249945e-01 -1.31608319e+00 2.02450201e-01
-2.58305520e-01 2.24927858e-01 7.12622225e-01 8.86363149e-01
1.36329219e-01 9.45570827e-01 7.62684166e-01 -5.51119864e-01
-4.32660878e-01 -1.00468743e+00 -5.46501875e-01 7.99080253e-01
2.06124097e-01 -6.53485656e-01 -3.70881230e-01 4.22874600e-01] | [9.320601463317871, 2.9949095249176025] |
24cd634e-6d5c-4f0d-85e9-b60b9f8e8242 | prottrans-towards-cracking-the-language-of | 2007.06225 | null | https://arxiv.org/abs/2007.06225v3 | https://arxiv.org/pdf/2007.06225v3.pdf | ProtTrans: Towards Cracking the Language of Life's Code Through Self-Supervised Deep Learning and High Performance Computing | Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models taken from NLP. These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive models (Transformer-XL, XLNet) and four auto-encoder models (BERT, Albert, Electra, T5) on data from UniRef and BFD containing up to 393 billion amino acids. The LMs were trained on the Summit supercomputer using 5616 GPUs and TPU Pod up-to 1024 cores. Dimensionality reduction revealed that the raw protein LM-embeddings from unlabeled data captured some biophysical features of protein sequences. We validated the advantage of using the embeddings as exclusive input for several subsequent tasks. The first was a per-residue prediction of protein secondary structure (3-state accuracy Q3=81%-87%); the second were per-protein predictions of protein sub-cellular localization (ten-state accuracy: Q10=81%) and membrane vs. water-soluble (2-state accuracy Q2=91%). For the per-residue predictions the transfer of the most informative embeddings (ProtT5) for the first time outperformed the state-of-the-art without using evolutionary information thereby bypassing expensive database searches. Taken together, the results implied that protein LMs learned some of the grammar of the language of life. To facilitate future work, we released our models at https://github.com/agemagician/ProtTrans. | ['Tom Gibbs', 'Tamas Feher', 'Llion Jones', 'Ahmed Elnaggar', 'Yu Wang', 'Michael Heinzinger', 'Martin Steinegger', 'Ghalia Rihawi', 'Debsindhu Bhowmik', 'Christian Dallago', 'Burkhard Rost', 'Christoph Angerer'] | 2020-07-13 | null | null | null | null | ['protein-secondary-structure-prediction'] | ['medical'] | [ 9.69559327e-02 1.93302780e-01 -7.31314123e-02 -2.43327826e-01
-6.20832026e-01 -6.04579687e-01 4.82293576e-01 3.69912833e-01
-6.04687274e-01 1.22648740e+00 1.30865470e-01 -7.73962557e-01
1.09202951e-01 -4.61140335e-01 -1.14649212e+00 -9.92220163e-01
-9.44289938e-02 7.19111264e-01 -1.74727831e-02 -1.73208460e-01
2.93569565e-02 5.59974492e-01 -1.32648265e+00 5.14299989e-01
6.06927395e-01 8.17792535e-01 5.11800408e-01 1.02240646e+00
-2.47520551e-01 5.00169039e-01 -6.73931390e-02 -4.77907211e-01
1.13976486e-01 -1.86000932e-02 -6.23717964e-01 -6.22861266e-01
1.53401643e-01 2.44112145e-02 -2.92824298e-01 6.78218842e-01
6.35746777e-01 -2.53760695e-01 8.41966689e-01 -8.15295398e-01
-1.04673195e+00 1.70834661e-01 -1.66181609e-01 3.01977992e-01
2.03468800e-01 5.44463933e-01 1.21739268e+00 -1.32722652e+00
1.18579555e+00 1.08913326e+00 7.49868870e-01 6.23929739e-01
-1.59265387e+00 -4.81646121e-01 -3.00170571e-01 2.47698277e-01
-1.19367564e+00 -2.49182582e-01 -1.41084939e-01 -5.94541013e-01
1.95211506e+00 -1.37682976e-02 6.14193738e-01 1.44796336e+00
8.54550004e-01 3.82550538e-01 1.12293029e+00 -2.80314535e-01
1.51502237e-01 -3.44558881e-04 2.70978898e-01 7.73496568e-01
2.71883577e-01 1.18607998e-01 -6.63734734e-01 -7.47366130e-01
3.31268072e-01 6.72682598e-02 -1.57710731e-01 -2.36377060e-01
-1.16932881e+00 8.71616423e-01 -9.36117172e-02 3.43363047e-01
-5.89068949e-01 -1.48243248e-01 4.27281380e-01 4.09388512e-01
5.12084007e-01 5.21964490e-01 -1.45415282e+00 -2.41819203e-01
-5.69841146e-01 1.49678826e-01 8.62488568e-01 6.33174658e-01
8.00773144e-01 -2.44233057e-01 2.53634691e-01 5.07520616e-01
2.77307004e-01 2.62888014e-01 8.36954892e-01 -4.74270672e-01
-1.53362527e-02 5.19813001e-01 2.65285432e-01 -2.89477438e-01
-6.60284758e-01 -7.88375810e-02 -5.94103873e-01 -7.80272186e-02
5.08729815e-01 -1.40452176e-01 -8.40013862e-01 1.60921752e+00
2.72083312e-01 -5.76197589e-03 3.50398451e-01 6.80457532e-01
5.50547719e-01 9.32966113e-01 4.66599882e-01 -2.50569135e-01
1.55726576e+00 -7.04310775e-01 -5.03926277e-01 1.01796396e-01
1.04624271e+00 -7.85477102e-01 8.80752087e-01 4.81894463e-01
-7.47141123e-01 -7.15863943e-01 -1.05420840e+00 -4.22850639e-01
-7.42356062e-01 3.04515123e-01 6.94092155e-01 1.80846214e-01
-9.48469400e-01 9.68096673e-01 -1.13586342e+00 -5.48374712e-01
2.27858722e-01 5.23030579e-01 -7.60792673e-01 2.72332449e-02
-1.32638550e+00 1.32179284e+00 5.76263547e-01 -3.51673007e-01
-7.91954160e-01 -1.03483915e+00 -4.54108745e-01 4.48787585e-02
-3.82370323e-01 -4.56980318e-01 7.84757912e-01 -6.78073049e-01
-1.37432265e+00 1.20730031e+00 -4.51522380e-01 -8.69044781e-01
8.59351829e-02 -5.21714389e-01 -4.95659024e-01 4.17050198e-02
-2.35932291e-01 8.53455007e-01 1.67676091e-01 -6.22786939e-01
-4.40775633e-01 -4.76376474e-01 -3.63722384e-01 8.76305625e-03
-9.65429246e-02 -1.47819683e-01 2.52224714e-01 -2.08584979e-01
-2.65922695e-01 -8.92891049e-01 -2.30253667e-01 1.41442031e-01
2.02539358e-02 -3.36423963e-01 4.32379156e-01 -1.00052488e+00
9.34670925e-01 -1.80975747e+00 3.05205435e-01 -2.20089421e-01
2.72866040e-01 6.28464341e-01 -2.83083081e-01 9.88666117e-01
-6.34705842e-01 8.63364153e-03 -6.79518729e-02 1.43557265e-01
-5.76585829e-02 3.02287310e-01 -3.02637398e-01 6.25791311e-01
6.38154924e-01 1.09604287e+00 -6.85871363e-01 -1.73534229e-01
2.25469410e-01 9.59362447e-01 -5.34482062e-01 4.23949718e-01
-4.32274491e-01 3.34749609e-01 -2.12300315e-01 4.75283444e-01
5.41274130e-01 -5.47449887e-01 6.98484957e-01 -3.85485917e-01
-2.43749723e-01 3.67973387e-01 -4.11316216e-01 1.79208124e+00
-1.70302004e-01 4.43101764e-01 -3.87281179e-01 -9.22481835e-01
1.01061773e+00 2.33677909e-01 7.92991877e-01 -3.86233389e-01
-1.09012313e-01 2.02075899e-01 4.87343818e-01 -4.22676682e-01
1.49641722e-01 -7.28075653e-02 3.58397454e-01 2.51202106e-01
5.62736630e-01 2.99326599e-01 5.99573292e-02 1.11847520e-01
1.30756235e+00 7.85613418e-01 4.70125824e-01 -5.00127792e-01
5.38833141e-01 2.81242698e-01 7.66641498e-01 1.64460614e-01
-1.27388388e-01 1.78520769e-01 5.36614001e-01 -9.11770284e-01
-1.59481466e+00 -9.67293024e-01 -5.36527336e-01 1.27067268e+00
-5.19525647e-01 -8.05785358e-01 -6.86788499e-01 -3.73025060e-01
1.97178155e-01 6.33395851e-01 -3.78392786e-01 -1.99284554e-01
-4.42779630e-01 -1.24590611e+00 5.89776993e-01 2.52606124e-01
-2.75861591e-01 -1.02645361e+00 -6.09812915e-01 4.86359417e-01
9.48560685e-02 -9.26895320e-01 -7.91750476e-02 1.00458109e+00
-7.69203901e-01 -1.19092691e+00 -5.56865871e-01 -6.60553098e-01
4.00108010e-01 -4.42915082e-01 9.64270532e-01 -3.55991364e-01
-7.34887183e-01 -2.99594939e-01 -5.63670248e-02 -3.95600140e-01
-5.22410393e-01 -6.90502152e-02 7.21153140e-01 -4.59913224e-01
1.03973675e+00 -6.32919729e-01 -6.44789517e-01 -4.52666841e-02
-7.14092493e-01 2.20274717e-01 8.18943381e-01 1.19790840e+00
9.45210814e-01 -6.40820324e-01 5.64700544e-01 -8.42135847e-01
3.55423808e-01 -5.85129976e-01 -5.44928670e-01 3.37892801e-01
-6.95613861e-01 5.23454428e-01 9.93225873e-01 -5.94537616e-01
-6.66935563e-01 4.03389692e-01 -5.25388956e-01 -3.47363234e-01
-5.15193157e-02 3.44700724e-01 1.36676952e-01 2.04206571e-01
6.56817317e-01 4.92380410e-01 2.07803011e-01 -6.04656637e-01
4.11696851e-01 6.84817493e-01 1.21029407e-01 -6.50092483e-01
1.27281591e-01 2.04899952e-01 -3.17065716e-02 -9.17829394e-01
-4.01166111e-01 -2.73143977e-01 -7.69176722e-01 4.53389794e-01
9.45534945e-01 -9.52663183e-01 -1.02462089e+00 7.84474462e-02
-1.04419935e+00 -2.80932933e-01 -1.10459395e-01 5.67602813e-01
-7.21415401e-01 5.97109258e-01 -1.08147395e+00 -7.09741950e-01
-6.17541730e-01 -1.09459102e+00 9.11288023e-01 -1.75325498e-01
-4.14508313e-01 -6.93871737e-01 3.60745192e-01 1.60550475e-01
2.15978593e-01 3.64405774e-02 1.36976850e+00 -1.17610037e+00
-2.98910923e-02 2.08845437e-01 -2.72866011e-01 1.44130275e-01
7.65078366e-02 1.75548524e-01 -1.02447212e+00 -2.95762360e-01
-3.42121184e-01 -6.62756324e-01 7.98866034e-01 2.52319008e-01
9.40366149e-01 -1.29686072e-01 -4.95681703e-01 5.53711295e-01
1.51941526e+00 1.34239182e-01 5.55064917e-01 1.83914259e-01
3.24601084e-01 2.83165991e-01 6.13088250e-01 3.73453766e-01
-7.32660145e-02 5.14487863e-01 1.59143135e-01 9.18113664e-02
1.76174313e-01 -3.82094175e-01 6.27096534e-01 9.82221365e-01
2.05272082e-02 -3.11399966e-01 -1.04282153e+00 3.53767931e-01
-1.75358665e+00 -7.03182936e-01 -8.68810639e-02 1.96093833e+00
1.10112357e+00 8.03822353e-02 -1.59826174e-01 -3.86798412e-01
3.28056127e-01 -2.47300163e-01 -1.00060570e+00 -7.70385563e-01
-3.32296848e-01 6.74879193e-01 6.73387945e-01 4.36548889e-01
-8.46220732e-01 1.08077240e+00 6.30356884e+00 8.08912456e-01
-9.06671405e-01 -1.21749388e-02 7.50729501e-01 6.04270510e-02
-4.55724150e-02 1.52571067e-01 -1.25387418e+00 7.42726684e-01
1.87015688e+00 5.64741381e-02 2.63433039e-01 8.41966152e-01
1.59562245e-01 9.28263739e-02 -1.14895606e+00 5.81751525e-01
-4.08491492e-01 -1.63722897e+00 -4.17874567e-02 3.17066252e-01
4.04977441e-01 7.76352108e-01 -2.38438800e-01 4.23382312e-01
5.78455806e-01 -1.22587502e+00 4.83857244e-02 7.36946046e-01
1.06404006e+00 -5.16757607e-01 7.68649817e-01 5.02937675e-01
-7.87998438e-01 2.52055407e-01 -9.77239907e-01 2.48916820e-02
4.97520603e-02 6.22622669e-01 -1.00472438e+00 4.62741196e-01
5.38977444e-01 6.74321771e-01 -2.14609206e-01 1.31710079e-02
1.53284371e-01 5.67960978e-01 -4.45450842e-01 -2.15179935e-01
1.69872522e-01 -3.88097256e-01 1.35679796e-01 1.38848829e+00
1.76066533e-01 1.43159300e-01 -1.03670089e-02 7.82811999e-01
4.35604528e-03 1.85825706e-01 -3.78591329e-01 -6.29776359e-01
3.63144547e-01 1.21899045e+00 -1.93274111e-01 -3.18955719e-01
-3.91479850e-01 1.00638592e+00 7.96562552e-01 1.68353125e-01
-8.47754002e-01 -1.77489236e-01 1.32888937e+00 -1.14763789e-02
3.69006902e-01 -2.66673952e-01 3.49853516e-01 -1.20047069e+00
-4.47595209e-01 -1.03515589e+00 1.46978661e-01 -7.91048527e-01
-1.59683692e+00 3.33308518e-01 -5.47688067e-01 -6.28648698e-01
-6.56812415e-02 -1.44274998e+00 2.36865412e-02 1.07853568e+00
-1.40939021e+00 -1.10528171e+00 5.60924649e-01 -1.11627713e-01
3.89171302e-01 -2.97246486e-01 1.55611813e+00 1.51570320e-01
-4.68044102e-01 3.64489764e-01 7.37819910e-01 -2.21099854e-01
7.65720606e-01 -1.04897261e+00 7.71581054e-01 1.57732204e-01
1.14349853e-02 1.15198624e+00 7.39754379e-01 -6.90800309e-01
-1.60224628e+00 -9.62763965e-01 1.48990273e+00 -6.44277513e-01
9.41299736e-01 -4.57028389e-01 -1.16748834e+00 6.28940165e-01
1.07318431e-01 -2.10756669e-03 1.14484799e+00 -1.82110555e-02
-2.78926909e-01 4.13294703e-01 -1.10305500e+00 3.20772439e-01
9.70218897e-01 -5.54962575e-01 -5.63809752e-01 6.68432593e-01
8.11739266e-01 -2.48836786e-01 -1.41588521e+00 2.86103278e-01
8.31949234e-01 -7.28352010e-01 9.80599761e-01 -1.40412915e+00
6.00386679e-01 -1.22655541e-01 -4.20234144e-01 -9.06802595e-01
-5.78396618e-01 -2.63368607e-01 -4.08017993e-01 5.62398970e-01
5.96399128e-01 -7.61749089e-01 6.79148793e-01 2.70558536e-01
-1.32299066e-01 -1.25859201e+00 -9.21578884e-01 -5.02763569e-01
4.34348226e-01 -8.68694559e-02 2.95122713e-01 7.46813297e-01
9.24175382e-02 3.47727835e-01 -2.31536284e-01 -6.97630644e-02
7.69224688e-02 -1.16052225e-01 5.04448354e-01 -1.15836000e+00
-4.94651496e-01 3.00114807e-02 -4.87752646e-01 -1.03120923e+00
3.46720457e-01 -1.06439710e+00 -4.41617638e-01 -1.19305396e+00
2.86431998e-01 7.46706277e-02 -6.69794261e-01 5.84831357e-01
2.24176049e-02 -1.47806481e-01 -3.73761475e-01 1.25029102e-01
-1.80081502e-01 3.82087022e-01 7.26578832e-01 3.20960544e-02
3.42324913e-01 -6.10020697e-01 -3.21054459e-01 4.20667619e-01
8.69681001e-01 -3.86282802e-01 -3.86944376e-02 -5.57180941e-02
4.47426379e-01 -1.67625308e-01 1.24098554e-01 -7.24476576e-01
-1.43955186e-01 -3.42456475e-02 6.87806606e-01 -5.55912912e-01
5.92777491e-01 -6.26354754e-01 3.65396142e-01 9.30460572e-01
-3.41333896e-01 2.66543537e-01 3.98105621e-01 6.46566093e-01
2.59427309e-01 8.41782093e-02 7.77713716e-01 -1.11884609e-01
-4.87684846e-01 3.10486138e-01 -6.63683295e-01 -2.40609035e-01
8.45417500e-01 -5.85264079e-02 -3.04517388e-01 2.99838692e-01
-9.48834836e-01 -6.92737401e-02 6.55224919e-01 2.49271855e-01
3.98080528e-01 -7.81580806e-01 -6.51492298e-01 4.32913482e-01
1.16169244e-01 -6.54800773e-01 1.14855483e-01 6.87102795e-01
-8.56481075e-01 1.01384783e+00 -5.44736862e-01 -5.20608902e-01
-1.29681468e+00 6.08495891e-01 2.30955139e-01 -5.19531727e-01
-4.95735079e-01 7.57478356e-01 8.14314038e-02 -6.58460796e-01
-2.78166324e-01 -2.21356243e-01 -3.41364392e-03 -1.14717387e-01
2.83426285e-01 1.10337056e-01 5.99971339e-02 -5.57452500e-01
-4.76656497e-01 3.84761989e-01 -3.24045181e-01 4.32887167e-01
1.83233368e+00 2.24746004e-01 -1.53238013e-01 6.14417374e-01
1.34455454e+00 -5.37918568e-01 -1.18377256e+00 9.05195810e-03
1.97849125e-01 1.49973512e-01 -2.89406121e-01 -8.86620760e-01
-2.74286002e-01 9.56189752e-01 8.67432535e-01 -5.08068085e-01
4.28548038e-01 -2.52872109e-01 8.44680667e-01 6.54457986e-01
4.95864272e-01 -1.01529586e+00 -4.78314102e-01 6.83897734e-01
2.90581912e-01 -1.12365174e+00 1.35166436e-01 1.79391310e-01
-5.94546914e-01 1.24911356e+00 5.58220327e-01 -1.43513888e-01
5.01936316e-01 3.25099230e-01 -1.18893869e-01 -2.68077463e-01
-1.45882320e+00 9.14888084e-02 1.19043663e-01 5.23312390e-01
1.16573989e+00 1.01381987e-01 -7.04802811e-01 7.38429248e-01
-5.06847072e-03 1.93876624e-01 -3.01021282e-02 7.29050517e-01
-4.72323954e-01 -1.36471343e+00 3.08847904e-01 5.85600853e-01
-6.62532508e-01 -3.70101601e-01 -5.61350167e-01 6.43177569e-01
2.36619204e-01 4.54502136e-01 -8.00891593e-02 -3.02542150e-01
-1.18150890e-01 7.97694504e-01 3.69528651e-01 -3.94463271e-01
-5.79070628e-01 -1.68586180e-01 9.37481076e-02 -5.09984314e-01
-1.46326438e-01 -4.98844504e-01 -1.52909350e+00 -3.64373863e-01
-3.31905574e-01 3.02732378e-01 7.14426398e-01 6.72348976e-01
9.72092330e-01 3.49734306e-01 -4.59421836e-02 -6.36165679e-01
-7.23939538e-01 -1.20114470e+00 -3.86639625e-01 2.46170819e-01
-5.70999198e-02 -5.07165194e-01 -1.86633855e-01 2.62304604e-01] | [4.71624755859375, 5.643178939819336] |
ee722a42-99ae-49c9-9f12-2550b3ddcf1a | learning-bloch-simulations-for-mr | 2008.04139 | null | https://arxiv.org/abs/2008.04139v2 | https://arxiv.org/pdf/2008.04139v2.pdf | Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks | Magnetic resonance fingerprinting (MRF) enables fast and multiparametric MR imaging. Despite fast acquisition, the state-of-the-art reconstruction of MRF based on dictionary matching is slow and lacks scalability. To overcome these limitations, neural network (NN) approaches estimating MR parameters from fingerprints have been proposed recently. Here, we revisit NN-based MRF reconstruction to jointly learn the forward process from MR parameters to fingerprints and the backward process from fingerprints to MR parameters by leveraging invertible neural networks (INNs). As a proof-of-concept, we perform various experiments showing the benefit of learning the forward process, i.e., the Bloch simulations, for improved MR parameter estimation. The benefit especially accentuates when MR parameter estimation is difficult due to MR physical restrictions. Therefore, INNs might be a feasible alternative to the current solely backward-based NNs for MRF reconstruction. | ['Benjamin Marty', 'Olivier Scheidegger', 'Fabian Balsiger', 'Mauricio Reyes', 'Alain Jungo'] | 2020-08-10 | null | null | null | null | ['magnetic-resonance-fingerprinting'] | ['medical'] | [ 5.76626539e-01 -5.01335859e-02 -3.59092891e-01 -4.82022494e-01
-7.99477637e-01 -2.30209395e-01 3.63172859e-01 1.12004648e-03
-5.51863849e-01 6.84116840e-01 1.99413046e-01 -4.67401505e-01
-4.44585979e-01 -5.37470579e-01 -9.78705764e-01 -8.65913212e-01
-3.73652250e-01 4.92959321e-01 -7.42832478e-03 8.19495693e-02
1.52854666e-01 8.37060153e-01 -1.06630802e+00 2.74073780e-01
7.14105844e-01 8.76934648e-01 5.37140191e-01 5.15953064e-01
-1.51087977e-02 9.16539788e-01 -9.50173289e-02 5.77249639e-02
2.48531535e-01 -3.41359526e-01 -7.47365177e-01 -5.55012882e-01
4.54788387e-01 -7.65596151e-01 -7.44638264e-01 9.38699961e-01
9.22006369e-01 2.53023118e-01 5.40509522e-01 -4.63279158e-01
-5.70442021e-01 7.04449475e-01 -3.78649741e-01 4.55837816e-01
1.79707617e-01 -1.57797515e-01 4.35955793e-01 -9.66459334e-01
8.36166382e-01 4.90219742e-01 1.02549946e+00 6.73613131e-01
-1.47732162e+00 -5.57532430e-01 -3.71743321e-01 1.38698727e-01
-1.16454875e+00 -6.22690618e-01 8.86841714e-01 -3.76933098e-01
7.11289287e-01 1.91187173e-01 5.24330676e-01 1.17271197e+00
6.31629169e-01 6.55138075e-01 1.55647945e+00 -4.87673938e-01
-5.23820743e-02 -1.09494925e-01 1.90456398e-02 7.53855109e-01
-1.14967693e-02 6.02874100e-01 -5.28923452e-01 -4.72141594e-01
1.32035673e+00 -3.62175070e-02 -3.73756647e-01 -5.37939966e-01
-1.46916831e+00 7.27321565e-01 2.18705550e-01 5.71457148e-01
-4.64792877e-01 3.63639444e-01 3.55884641e-01 2.38447025e-01
-3.01210470e-02 4.77792919e-01 -3.46478261e-02 6.67212903e-02
-1.27145541e+00 7.36751929e-02 5.04571497e-01 3.30470026e-01
1.06961519e-01 1.13701239e-01 1.54385641e-02 1.06874704e+00
2.52237499e-01 3.97300392e-01 5.93522549e-01 -1.08643949e+00
1.55104518e-01 -3.15787375e-01 -6.10272326e-02 -9.89611447e-01
-8.66576493e-01 -7.70384610e-01 -1.03441501e+00 -4.41905521e-02
6.03520870e-01 -9.14587826e-03 -7.66191721e-01 1.70027387e+00
4.24462974e-01 4.46364015e-01 -3.03876668e-01 1.19346488e+00
9.33319926e-01 1.48471594e-01 -2.52568573e-02 -2.23063841e-01
1.20756817e+00 -7.37249970e-01 -6.50687397e-01 1.90398887e-01
4.95173573e-01 -6.98009670e-01 6.79205716e-01 4.14925694e-01
-9.99715209e-01 -5.23261189e-01 -1.02317011e+00 1.63810059e-01
7.06190467e-02 2.35601753e-01 1.07883310e+00 6.83652163e-01
-9.99108613e-01 1.06131649e+00 -1.21147525e+00 6.33316636e-02
2.05085874e-01 8.02471817e-01 -6.24948740e-01 -1.27615675e-01
-1.49903643e+00 9.94463801e-01 2.70373017e-01 3.18389654e-01
-9.15564239e-01 -9.92908001e-01 -6.75764322e-01 -4.82864350e-01
1.52163729e-01 -8.09357703e-01 9.44474757e-01 -4.22273397e-01
-1.75464797e+00 7.77689993e-01 2.55545396e-02 -6.32791281e-01
6.08924270e-01 -3.64501844e-03 -6.82904482e-01 5.87269008e-01
-1.47342324e-01 6.88234568e-01 8.54153752e-01 -1.06419683e+00
4.14053462e-02 -3.52610558e-01 -1.81867316e-01 -1.21094465e-01
1.34845480e-01 -8.53056833e-02 1.53152585e-01 -8.35960805e-01
5.30480027e-01 -9.37298417e-01 -4.85839278e-01 8.65661651e-02
-1.68799490e-01 4.62766081e-01 1.80113688e-01 -1.00689340e+00
1.06725240e+00 -1.74097824e+00 -1.23247311e-01 4.47525263e-01
4.15877372e-01 7.65948072e-02 -9.28134620e-02 1.89768091e-01
-4.67565626e-01 -3.09486955e-01 -6.98942617e-02 9.08233374e-02
-2.47576758e-01 6.00858927e-02 -1.91544324e-01 9.59197819e-01
-3.25573713e-01 9.41172659e-01 -8.86963904e-01 -4.27340388e-01
2.58056641e-01 5.47581792e-01 -3.13201815e-01 1.26518145e-01
4.73367661e-01 1.15878987e+00 -3.29244167e-01 7.34093070e-01
6.32108629e-01 -2.33641192e-01 4.77100402e-01 -7.11985886e-01
-5.72182201e-02 3.97421010e-02 -1.01990497e+00 2.12728381e+00
-4.53508794e-01 2.53465831e-01 8.20126608e-02 -1.32931817e+00
8.46301258e-01 5.12277246e-01 9.44706619e-01 -9.39129055e-01
-1.33813526e-02 5.27308166e-01 8.46645385e-02 -6.10263646e-01
3.75882059e-01 -6.32904470e-01 3.39382589e-01 6.12217546e-01
1.94839478e-01 4.21050042e-01 -2.31995538e-01 -1.34299502e-01
9.55447733e-01 4.44989234e-01 1.02454893e-01 -4.15216744e-01
6.23864651e-01 -2.75401264e-01 3.65831345e-01 1.33838224e+00
-3.14490616e-01 7.20513225e-01 5.48521318e-02 -7.13367820e-01
-1.01900792e+00 -1.13652432e+00 -7.09214389e-01 7.04029262e-01
7.30411056e-03 1.41650394e-01 -5.19046903e-01 -5.28635561e-01
9.79009494e-02 2.26843745e-01 -6.23030603e-01 5.12119234e-02
-1.03351939e+00 -9.21485662e-01 7.12940395e-01 5.02884924e-01
1.09126747e-01 -7.71530151e-01 -3.50279033e-01 7.19598830e-01
-2.54423171e-01 -1.20421612e+00 -3.80963951e-01 2.22612634e-01
-1.37853873e+00 -7.19256341e-01 -1.26219666e+00 -5.41375637e-01
5.66768229e-01 -2.78455280e-02 7.92461574e-01 -7.29755312e-02
-2.61114329e-01 2.68257529e-01 1.24701455e-01 2.87136465e-01
-5.25408626e-01 1.16443165e-01 4.32025164e-01 6.70686513e-02
-2.90867954e-01 -1.01426148e+00 -9.42796767e-01 2.98753023e-01
-7.34733641e-01 1.29162520e-01 9.79080558e-01 1.14909804e+00
1.08175623e+00 -3.93036813e-01 7.10024536e-01 -1.09776926e+00
3.38609070e-01 -3.55366409e-01 -4.50613111e-01 2.85478324e-01
-7.20653713e-01 2.70501792e-01 5.91660023e-01 -6.69984043e-01
-9.32885051e-01 1.68833420e-01 -4.16901022e-01 -3.59228641e-01
-1.89466894e-01 6.02414787e-01 4.92893398e-01 -8.61013353e-01
5.99991739e-01 6.05659842e-01 2.44507983e-01 -6.05340898e-01
1.42919898e-01 4.77126777e-01 9.36628401e-01 -8.68831456e-01
4.36840504e-01 6.57073021e-01 3.86218816e-01 -6.51588559e-01
-5.24530590e-01 -3.38709921e-01 -6.48594797e-01 -3.87155294e-01
6.09043479e-01 -6.90335393e-01 -7.22711980e-01 2.71503478e-01
-8.40690374e-01 -2.53116488e-01 -1.21129610e-01 1.00012469e+00
-8.41663361e-01 7.15426385e-01 -9.16878402e-01 -4.71684426e-01
-5.94033062e-01 -1.39032829e+00 7.20445216e-01 1.23604797e-02
-6.13608360e-02 -1.00545168e+00 1.35395139e-01 4.90956604e-01
6.97306991e-01 3.65012050e-01 9.53479826e-01 -5.18554628e-01
-5.12998044e-01 -6.65664822e-02 -1.25581235e-01 3.66279893e-02
-5.39399013e-02 -7.66625285e-01 -8.11177135e-01 -3.33035111e-01
3.51023346e-01 -6.82764575e-02 5.60586452e-01 8.15913141e-01
1.28617561e+00 1.70348257e-01 -2.68016428e-01 1.00960624e+00
1.46561563e+00 2.24149749e-01 6.63562536e-01 4.49704826e-01
6.25902355e-01 3.44540209e-01 2.97937363e-01 2.65873075e-01
2.01437250e-01 8.08355570e-01 -1.79153532e-01 -3.04429829e-01
-3.94175112e-01 -3.08221906e-01 4.77975747e-03 1.05634737e+00
-2.22834125e-01 4.70402062e-01 -9.00074244e-01 1.97350547e-01
-1.38319039e+00 -6.52725399e-01 5.02385385e-02 2.21323037e+00
7.72953033e-01 -2.09090058e-02 8.43046978e-03 -1.68364406e-01
6.20945215e-01 2.09550709e-01 -5.82749665e-01 7.27144908e-03
3.42311747e-02 3.13290566e-01 6.61692619e-01 2.91176289e-01
-9.10203576e-01 2.43913606e-01 7.03618574e+00 9.13445294e-01
-1.50230312e+00 4.19537991e-01 5.35880268e-01 6.54231235e-02
-3.93331707e-01 -3.91361453e-02 -4.88139987e-01 3.28530341e-01
1.04742718e+00 5.34352362e-01 7.30179489e-01 3.56713802e-01
1.98032334e-01 -2.23599628e-01 -7.69495010e-01 1.08413076e+00
-7.85799548e-02 -1.75990081e+00 -1.49263740e-01 4.25346419e-02
3.28719258e-01 1.95151418e-01 -2.67384574e-02 2.87394281e-02
-3.11643362e-01 -9.92862880e-01 4.82226342e-01 9.33353066e-01
1.14815307e+00 -5.54353118e-01 6.94225729e-01 1.59113824e-01
-8.78609717e-01 2.21073374e-01 -3.75980198e-01 4.48455930e-01
3.55545014e-01 8.82555902e-01 -7.18366861e-01 6.76398873e-01
3.74789357e-01 3.11990410e-01 -2.02889830e-01 8.73610556e-01
7.38285184e-02 4.75784093e-01 -2.56765395e-01 4.45801437e-01
-8.09580367e-03 -2.94763595e-01 5.84318221e-01 1.05932403e+00
2.12842897e-01 4.61151190e-02 9.71065536e-02 8.42761338e-01
2.13613883e-01 1.24882929e-01 -4.56879944e-01 -1.80887431e-01
1.91193253e-01 1.27724826e+00 -8.93424630e-01 -1.49707973e-01
-2.06042573e-01 7.62885392e-01 2.87587583e-01 2.98468918e-01
-7.15709507e-01 -2.84382820e-01 1.96864996e-02 3.71923119e-01
2.04707101e-01 -3.24724913e-01 -2.33824298e-01 -1.12002110e+00
-9.57810134e-03 -8.52246225e-01 3.12457472e-01 -5.30103445e-01
-1.13450122e+00 5.13202488e-01 -1.06529810e-01 -1.15865672e+00
-1.87510207e-01 -3.78473610e-01 -8.11428726e-02 8.00445735e-01
-1.61752605e+00 -1.13486576e+00 1.82715461e-01 3.46062690e-01
-5.97125329e-02 -6.73987567e-02 8.66206944e-01 6.18360877e-01
-2.21533611e-01 7.53505051e-01 4.19124484e-01 4.91437763e-02
7.24528432e-01 -9.93323803e-01 5.37495650e-02 4.02821362e-01
3.77374403e-02 9.76765156e-01 5.11335671e-01 -6.56777084e-01
-1.72313893e+00 -4.96759921e-01 6.41068399e-01 -1.38062537e-01
7.46064067e-01 -2.11279780e-01 -9.12552953e-01 3.16758811e-01
-4.31295961e-01 5.48077106e-01 8.21435452e-01 -1.40320241e-01
-3.77223454e-02 -2.21986234e-01 -1.30321193e+00 2.95656562e-01
8.90322506e-01 -8.52294564e-01 -4.42976654e-01 2.14125797e-01
2.96652168e-01 -9.85221684e-01 -1.72388494e+00 5.29198289e-01
1.26197600e+00 -8.74447525e-01 1.40854251e+00 -3.42597455e-01
2.10340962e-01 -2.10005015e-01 -1.90576673e-01 -9.87012446e-01
-2.62159318e-01 -5.41622937e-01 -3.50248873e-01 6.83964849e-01
1.67318881e-01 -8.17698956e-01 9.32750762e-01 4.11560774e-01
-1.98579744e-01 -9.98630345e-01 -1.17949307e+00 -8.26105714e-01
-2.14319564e-02 -4.63392645e-01 5.81849456e-01 1.04428864e+00
-3.47712070e-01 -1.62231430e-01 -7.28873551e-01 2.37055153e-01
8.74148190e-01 2.77580291e-01 1.39225826e-01 -8.98836613e-01
-8.80056322e-01 -1.16089687e-01 -1.27542004e-01 -1.00876284e+00
1.86817065e-01 -1.22104990e+00 -1.54938638e-01 -1.10413194e+00
2.39880979e-01 -9.03110683e-01 -6.26796663e-01 3.43690142e-02
8.98442492e-02 2.83286393e-01 7.41543397e-02 4.10049021e-01
-1.96752265e-01 6.64264411e-02 1.74972200e+00 2.96151196e-03
2.55563315e-02 -2.45017856e-02 -3.72068822e-01 3.85318041e-01
4.93585140e-01 -8.61639798e-01 -1.46519646e-01 -2.18924955e-01
-1.11730948e-01 9.02871311e-01 3.44933808e-01 -1.01566112e+00
4.40660089e-01 1.60814941e-01 6.54144526e-01 -5.22803605e-01
2.94902831e-01 -6.31442964e-01 6.33092165e-01 7.43754029e-01
-3.60414118e-01 1.08057931e-02 -1.63970850e-02 4.66556132e-01
-1.44669026e-01 -3.99028748e-01 7.81056583e-01 -3.16769332e-01
-4.04518127e-01 4.24307287e-01 -4.03980434e-01 -1.13317363e-01
1.85062096e-01 -4.53835279e-01 1.47343487e-01 -1.83477148e-01
-1.26915753e+00 -4.70765531e-01 -2.20157355e-02 -6.14133291e-02
6.83847785e-01 -1.34735942e+00 -4.84776676e-01 3.48786384e-01
-3.30801636e-01 -4.86707926e-01 8.91704917e-01 1.54144156e+00
-6.12316370e-01 6.88491046e-01 -3.48438829e-01 -6.89877629e-01
-7.80895889e-01 4.84966278e-01 7.47514307e-01 -6.91984236e-01
-9.58043396e-01 4.82910812e-01 -1.17116701e-02 -9.37363029e-01
3.48770991e-02 -3.08002718e-02 -1.61851540e-01 -2.94810742e-01
5.51744103e-01 3.92039686e-01 3.97836298e-01 -4.72558230e-01
-3.26105416e-01 6.39027119e-01 -1.40800506e-01 -1.53564200e-01
1.44021225e+00 -9.42000076e-02 -1.00377902e-01 1.65038377e-01
1.06183743e+00 -1.26632974e-01 -1.00627768e+00 -4.04090643e-01
9.17969793e-02 -3.01856220e-01 5.28090000e-01 -8.96818817e-01
-1.14439106e+00 7.92048097e-01 1.08239245e+00 -5.08435011e-01
9.32156920e-01 -2.39422038e-01 1.14374554e+00 3.29205066e-01
7.73482859e-01 -9.56206501e-01 -3.29887956e-01 1.67157903e-01
7.58404911e-01 -1.05668378e+00 1.01854913e-01 -2.31034279e-01
-2.40591794e-01 1.47367108e+00 3.75891775e-02 -4.11488442e-03
5.67889214e-01 2.86853760e-01 1.11947015e-01 -3.67310613e-01
-3.53516378e-02 3.58228445e-01 3.57906997e-01 7.21141338e-01
5.32690942e-01 2.11556897e-01 -4.16741580e-01 5.08555055e-01
1.19012065e-01 4.48642313e-01 3.24259102e-01 8.40475559e-01
6.22641155e-03 -1.39087391e+00 -5.09859204e-01 6.94150448e-01
-7.60110617e-01 -1.26764536e-01 4.59694475e-01 7.24496424e-01
-1.63252559e-02 2.16817573e-01 -4.55660045e-01 -1.90288916e-01
2.29802594e-01 -1.83067948e-01 1.07902634e+00 -6.97847530e-02
-6.02066875e-01 8.93406644e-02 1.04024984e-01 -7.50213861e-01
-4.86355007e-01 -7.28850424e-01 -1.22797489e+00 -5.77388778e-02
-3.82741928e-01 -9.54104289e-02 9.58341360e-01 9.57382381e-01
2.60848433e-01 3.59288454e-01 4.72925961e-01 -7.62738109e-01
-7.07625866e-01 -6.54376566e-01 -8.09570312e-01 1.92434877e-01
2.42874041e-01 -8.21885407e-01 -1.37438979e-02 -4.34336156e-01] | [13.521500587463379, -2.403188705444336] |
d38978b8-9884-4794-9cde-33ad14292803 | continual-semantic-segmentation-with | 2304.05015 | null | https://arxiv.org/abs/2304.05015v1 | https://arxiv.org/pdf/2304.05015v1.pdf | Continual Semantic Segmentation with Automatic Memory Sample Selection | Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in CSS, a memory buffer that stores a small number of samples from the previous classes is constructed for replay. However, existing methods select the memory samples either randomly or based on a single-factor-driven handcrafted strategy, which has no guarantee to be optimal. In this work, we propose a novel memory sample selection mechanism that selects informative samples for effective replay in a fully automatic way by considering comprehensive factors including sample diversity and class performance. Our mechanism regards the selection operation as a decision-making process and learns an optimal selection policy that directly maximizes the validation performance on a reward set. To facilitate the selection decision, we design a novel state representation and a dual-stage action space. Our extensive experiments on Pascal-VOC 2012 and ADE 20K datasets demonstrate the effectiveness of our approach with state-of-the-art (SOTA) performance achieved, outperforming the second-place one by 12.54% for the 6stage setting on Pascal-VOC 2012. | ['Jun Liu', 'Simon See', 'Jianxiong Yin', 'Tianrun Chen', 'Lanyun Zhu'] | 2023-04-11 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Zhu_Continual_Semantic_Segmentation_With_Automatic_Memory_Sample_Selection_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Zhu_Continual_Semantic_Segmentation_With_Automatic_Memory_Sample_Selection_CVPR_2023_paper.pdf | cvpr-2023-1 | ['continual-semantic-segmentation'] | ['computer-vision'] | [ 4.45506990e-01 -3.44580449e-02 -5.77183068e-01 -6.38914168e-01
-9.37157452e-01 -4.21572208e-01 4.14674044e-01 -1.08669242e-02
-8.73313963e-01 8.82181466e-01 -2.02962682e-01 -2.39923924e-01
2.16665372e-01 -8.00888121e-01 -9.34960961e-01 -7.29073882e-01
3.04777116e-01 5.79247594e-01 7.57878423e-01 1.59565076e-01
4.60687816e-01 2.55193740e-01 -1.80664206e+00 3.70900542e-01
1.17844391e+00 1.05618906e+00 5.74224770e-01 6.57396317e-01
-2.83890694e-01 5.62664092e-01 -9.14702952e-01 -2.75903702e-01
1.08826384e-01 -4.92031604e-01 -9.59301770e-01 2.96128988e-01
3.65879387e-01 -2.43485659e-01 7.07881525e-02 8.30881298e-01
5.09619355e-01 3.78467530e-01 1.73206776e-01 -1.04991984e+00
-2.46144757e-01 6.43720865e-01 -3.95199299e-01 1.73032120e-01
2.87460454e-04 3.59426916e-01 7.63979077e-01 -7.09630013e-01
6.27153158e-01 1.07125974e+00 3.77528816e-01 8.77630115e-01
-1.09749532e+00 -7.10292637e-01 5.10224998e-01 1.51455551e-01
-1.00649619e+00 -4.28588390e-01 6.44111812e-01 -9.50002857e-03
8.86823416e-01 4.22290385e-01 7.94553876e-01 1.09503591e+00
-1.61720797e-01 1.48350883e+00 1.14908469e+00 -3.89467269e-01
8.09409440e-01 1.73744544e-01 3.70245785e-01 5.69983006e-01
2.35422388e-01 -3.51092257e-02 -8.20716500e-01 -1.26299083e-01
3.86557698e-01 -1.01435755e-03 -9.86304134e-02 -4.84995782e-01
-9.11748767e-01 7.14331329e-01 2.58768886e-01 -9.18401685e-03
-1.91458821e-01 1.16541788e-01 5.15293896e-01 1.48404270e-01
2.64329523e-01 4.09079105e-01 -5.78095257e-01 -2.01657861e-01
-1.23547626e+00 3.23726535e-01 6.86555564e-01 9.98251915e-01
7.98045933e-01 -2.41115578e-02 -4.71997261e-01 8.84244978e-01
2.63386015e-02 4.66138422e-01 8.45290482e-01 -9.27411318e-01
4.34765875e-01 6.26446664e-01 1.65860251e-01 -4.01745588e-01
-5.03623709e-02 -6.76900685e-01 -2.80760854e-01 7.34120384e-02
2.32105255e-01 7.46905506e-02 -1.39808404e+00 1.70238245e+00
5.70732415e-01 2.36260325e-01 7.34181479e-02 8.43796253e-01
2.64164418e-01 5.60600162e-01 3.33930165e-01 -2.39846498e-01
1.04149234e+00 -1.33773494e+00 -5.40952981e-01 -5.74373126e-01
3.88147354e-01 -4.10531908e-01 1.36966670e+00 5.49522758e-01
-8.84578109e-01 -4.82853532e-01 -1.29720616e+00 2.68413067e-01
-2.70015806e-01 3.21403295e-01 7.88153827e-01 8.16759527e-01
-7.47308314e-01 7.51590967e-01 -1.13963234e+00 -3.39471065e-02
6.03422344e-01 3.34462196e-01 5.43586686e-02 3.79980095e-02
-8.30679119e-01 3.96243632e-01 6.86076820e-01 -5.49291335e-02
-1.13499272e+00 -5.68309605e-01 -5.93136311e-01 -1.25699624e-01
9.20339406e-01 -5.34620881e-01 1.39597869e+00 -1.10308313e+00
-1.81011200e+00 7.15002358e-01 -2.08724245e-01 -8.80632758e-01
7.04573691e-01 -4.44890171e-01 -1.30008250e-01 1.80459827e-01
1.40542358e-01 9.61727619e-01 1.06254518e+00 -1.34772658e+00
-8.86125445e-01 -3.84928942e-01 -1.72884017e-01 2.90535301e-01
-3.63148779e-01 -3.16990286e-01 -6.82438493e-01 -6.92419231e-01
1.92626953e-01 -1.16536140e+00 -4.06619012e-01 -3.32035780e-01
-4.84781832e-01 -3.28717716e-02 7.28996933e-01 -3.67971897e-01
1.44497192e+00 -2.08494377e+00 -1.84125062e-02 1.49686513e-02
-2.58244932e-01 6.74302042e-01 -4.86024097e-02 -1.72251344e-01
4.93604630e-01 -1.25401556e-01 -5.77652335e-01 -8.45821321e-01
-1.45939425e-01 2.82052904e-01 -3.35158646e-01 1.26132101e-01
2.07795516e-01 6.46275640e-01 -1.04958403e+00 -4.96232212e-01
6.79225698e-02 3.14192623e-02 -7.20159292e-01 3.59792441e-01
-5.49947500e-01 1.72614545e-01 -6.33704901e-01 8.27409744e-01
6.38123214e-01 -2.41699487e-01 1.41738698e-01 1.76699579e-01
6.29645362e-02 2.83951432e-01 -1.20812106e+00 2.04626155e+00
-3.00356477e-01 -5.87944780e-03 -2.29025364e-01 -7.40329802e-01
9.64892924e-01 -2.00571790e-01 3.37864049e-02 -7.18484282e-01
-1.69669688e-02 3.78237873e-01 -3.40126216e-01 -7.58696720e-02
9.53556716e-01 1.35305330e-01 -1.60190627e-01 3.57756436e-01
3.23469415e-02 5.17703220e-02 2.08268777e-01 1.91147793e-02
9.78396773e-01 4.48178083e-01 -2.22925227e-02 -2.23405719e-01
5.49428582e-01 2.37338647e-01 8.93279135e-01 1.05156314e+00
-5.34544110e-01 6.72700286e-01 2.88489461e-01 -2.53504604e-01
-7.48029113e-01 -9.25892115e-01 5.19556031e-02 1.16891408e+00
3.09799790e-01 -2.25707531e-01 -1.08225429e+00 -1.06146908e+00
-8.92492384e-02 1.25387299e+00 -5.39884627e-01 -4.85976964e-01
-7.17895746e-01 -8.72239172e-01 2.76334584e-01 5.52666366e-01
8.24953556e-01 -1.36032057e+00 -1.23688376e+00 2.87823468e-01
1.61004476e-02 -1.01030827e+00 -5.97832799e-01 3.72293085e-01
-1.12475896e+00 -9.37955439e-01 -6.26942396e-01 -5.41238725e-01
6.15134597e-01 2.46575907e-01 9.24651861e-01 -8.93136486e-02
-2.96413451e-01 1.20202184e-01 -3.32611352e-01 -2.61091083e-01
-4.46993828e-01 4.77558106e-01 -3.43596399e-01 2.87645161e-02
3.11756909e-01 -6.57442659e-02 -8.85955334e-01 2.72444546e-01
-9.25416529e-01 2.52076119e-01 6.55181289e-01 9.64302659e-01
9.69821155e-01 -1.20267607e-01 8.10977042e-01 -1.11428094e+00
3.22029173e-01 -3.31915438e-01 -5.67120373e-01 3.89627755e-01
-8.27770710e-01 3.00543249e-01 6.69678926e-01 -5.17909288e-01
-1.24351549e+00 4.28403944e-01 -2.99239904e-03 -4.80891109e-01
-1.55453578e-01 -7.44359940e-02 -2.65124351e-01 2.62756884e-01
4.85521555e-01 6.11690938e-01 -9.55298170e-02 -4.95288759e-01
3.38961005e-01 5.67234278e-01 5.84656239e-01 -8.24024856e-01
1.56419352e-01 4.00048524e-01 -3.16779852e-01 -3.84804219e-01
-9.10440147e-01 -4.47429001e-01 -4.25233275e-01 -5.02084605e-02
5.91956794e-01 -9.19684172e-01 -5.28386831e-01 7.21449673e-01
-7.52189577e-01 -5.60530245e-01 -4.82730925e-01 1.33791566e-01
-6.54313982e-01 1.55347794e-01 -5.24229407e-01 -8.89003396e-01
-5.14806688e-01 -1.39130437e+00 1.19006383e+00 4.80991542e-01
-3.77485789e-02 -3.48616481e-01 -2.32778296e-01 5.08131802e-01
3.27706158e-01 1.34260327e-01 4.82553542e-01 -7.17024446e-01
-9.29684997e-01 -4.88354936e-02 1.17913842e-01 3.89245987e-01
-1.89436898e-01 -2.57306337e-01 -1.00119841e+00 -4.73899752e-01
-2.62122210e-02 -4.16067362e-01 1.24083972e+00 1.84248850e-01
1.42480314e+00 -2.01810479e-01 -3.90029848e-01 4.99253929e-01
1.43516278e+00 5.38431764e-01 5.20363033e-01 6.47646427e-01
4.66145843e-01 2.75224447e-01 1.15719426e+00 5.15929461e-01
3.10415953e-01 5.27069390e-01 3.64392877e-01 3.52966696e-01
-9.88517329e-02 -4.56745327e-01 2.26253197e-01 4.06515360e-01
4.38025832e-01 -3.27253520e-01 -6.98250592e-01 6.15060687e-01
-1.96339858e+00 -6.26892209e-01 4.86048847e-01 2.62715626e+00
1.30023003e+00 5.46736956e-01 2.08362639e-01 2.62165725e-01
7.25858748e-01 1.43808857e-01 -9.38852906e-01 -1.57622829e-01
-5.33115938e-02 3.09682310e-01 6.36781514e-01 4.08816844e-01
-1.10048914e+00 1.37633407e+00 5.84237909e+00 1.22885251e+00
-1.23839056e+00 1.11711010e-01 1.09011209e+00 -2.51803815e-01
-2.51667172e-01 1.08034961e-01 -1.23472095e+00 6.87837899e-01
9.82423365e-01 1.81197152e-01 2.87816137e-01 1.03495657e+00
-9.67220291e-02 -5.81307769e-01 -8.11076820e-01 7.24163711e-01
-1.05315343e-01 -1.29680145e+00 1.77366689e-01 -3.62374395e-01
7.06194937e-01 -2.78974175e-01 1.14080586e-01 3.27797323e-01
1.51090696e-01 -5.89633405e-01 1.02594078e+00 4.39885110e-01
6.23542666e-01 -9.70600665e-01 3.24725598e-01 4.16214257e-01
-7.82463491e-01 -1.51773199e-01 -2.73408294e-01 3.58583421e-01
-8.41365382e-03 6.42069161e-01 -8.36040139e-01 3.48778397e-01
6.88112199e-01 3.08940113e-01 -7.15250015e-01 1.07381177e+00
-2.08044991e-01 9.16312158e-01 -2.51831889e-01 -2.34195262e-01
3.27246785e-01 4.09354120e-02 5.74995399e-01 1.20602322e+00
9.39385742e-02 -1.45660698e-01 1.60554811e-01 8.00414503e-01
1.28723651e-01 6.44166395e-03 1.13876261e-01 2.83603966e-02
8.26589704e-01 9.39845860e-01 -1.23541045e+00 -5.78059673e-01
8.71929675e-02 1.31046021e+00 3.67473394e-01 2.29134202e-01
-9.43974733e-01 -3.78715277e-01 3.73041689e-01 -2.72222757e-02
6.02385581e-01 -1.55348420e-01 -5.16791403e-01 -9.22918856e-01
9.71170366e-02 -8.32515419e-01 4.51340646e-01 -2.80774772e-01
-6.92230463e-01 6.50769770e-01 -4.84462604e-02 -9.94649708e-01
-1.89726636e-01 -2.35771433e-01 -4.50736970e-01 5.13900578e-01
-1.46958447e+00 -7.83765018e-01 -1.43301487e-01 2.79306531e-01
9.00556028e-01 -1.95206940e-01 5.78697801e-01 1.76296577e-01
-8.22074652e-01 9.13134873e-01 -5.96366227e-02 -3.51823568e-01
5.20207882e-01 -1.35973549e+00 4.95270014e-01 9.40711260e-01
-1.51634112e-01 5.11410356e-01 7.20275223e-01 -7.78702796e-01
-1.34934342e+00 -1.13657928e+00 6.06960118e-01 -8.90499428e-02
1.44931108e-01 -4.07928675e-01 -8.94981802e-01 4.12094861e-01
-1.70063600e-01 -6.29091561e-02 5.24820626e-01 -2.27039799e-01
-1.16656840e-01 -2.07400590e-01 -1.32027364e+00 6.29750490e-01
1.15427554e+00 -5.89107201e-02 -4.25544053e-01 3.25598866e-02
1.08448255e+00 -6.41885698e-01 -4.54411596e-01 3.98061305e-01
3.88309926e-01 -1.10665262e+00 8.21327686e-01 -2.72739351e-01
1.57896012e-01 -3.78345072e-01 -1.27057418e-01 -1.08782876e+00
1.14640564e-01 -7.21167207e-01 -2.82058626e-01 1.20230031e+00
3.41540754e-01 -5.58365524e-01 1.30487633e+00 5.40616691e-01
-2.00050473e-01 -1.03279376e+00 -8.81819904e-01 -7.91203856e-01
-2.24566787e-01 -3.80839348e-01 9.23800051e-01 3.94875258e-01
-6.35248065e-01 1.93453580e-01 -2.90624708e-01 -4.43888418e-02
6.74212754e-01 2.78277755e-01 7.56735802e-01 -6.65397763e-01
-5.41229963e-01 -4.08812732e-01 -2.29171813e-02 -1.16475868e+00
6.52560890e-02 -5.22872031e-01 3.12110424e-01 -1.04449034e+00
2.13571176e-01 -7.54678369e-01 -4.66681570e-01 5.45944214e-01
-6.14815235e-01 -2.55409181e-01 2.99627990e-01 2.23389402e-01
-9.79677022e-01 7.36907184e-01 1.26102328e+00 7.33679906e-02
-6.01296723e-01 3.13343763e-01 -6.25412107e-01 2.85027057e-01
7.38737166e-01 -5.03500402e-01 -7.43574023e-01 -1.77553028e-01
-2.75874376e-01 9.31000188e-02 1.38893589e-01 -1.18220258e+00
2.32862934e-01 -2.57016182e-01 3.03448737e-01 -8.83525133e-01
2.84295499e-01 -4.85091090e-01 1.35523295e-02 5.38605809e-01
-5.59140980e-01 -2.58871496e-01 2.11529911e-01 9.42155302e-01
-1.42794907e-01 -3.99897903e-01 8.22434843e-01 -2.17415616e-01
-1.05040205e+00 2.84610659e-01 -1.02977231e-02 1.54685646e-01
1.13460183e+00 -3.48539591e-01 -1.87748611e-01 2.20055923e-01
-6.16489887e-01 3.87538522e-01 5.12062371e-01 4.74247068e-01
5.41197658e-01 -1.06977725e+00 -2.79473037e-01 3.13477576e-01
9.47886482e-02 4.66018081e-01 2.23445803e-01 3.61122906e-01
-3.47183824e-01 2.61321396e-01 -4.83247228e-02 -6.74423873e-01
-1.07226765e+00 3.52124542e-01 2.01507032e-01 -3.44119340e-01
-4.92856652e-01 1.00903392e+00 -2.44084015e-01 -3.55598003e-01
4.11295652e-01 -3.12669367e-01 2.59333234e-02 5.54040307e-03
4.90822971e-01 5.05198181e-01 1.68424383e-01 -1.68830961e-01
-2.91773856e-01 1.17697949e-02 -3.17131400e-01 -1.95721343e-01
1.14570749e+00 -1.48137003e-01 2.42388666e-01 4.78479922e-01
1.00920618e+00 -2.97806382e-01 -1.80463445e+00 -3.19884598e-01
1.77030191e-01 -6.28900945e-01 -7.47482758e-03 -1.02659237e+00
-1.04619765e+00 5.53583205e-01 6.38820827e-01 -1.79202005e-01
1.21421993e+00 -3.11639249e-01 1.17941105e+00 2.63290405e-01
5.81994653e-01 -1.51512587e+00 1.70088217e-01 2.64129549e-01
4.75880206e-01 -1.23176670e+00 -2.02022269e-01 -3.51368397e-01
-8.57667923e-01 9.52484548e-01 9.15029228e-01 -7.03472570e-02
3.47750157e-01 5.71430027e-02 -1.25762522e-01 2.06558093e-01
-7.67282903e-01 -1.90867260e-02 5.54110445e-02 1.85482681e-01
6.06408529e-02 2.95878321e-01 -4.51129884e-01 7.83524036e-01
-1.10102847e-01 1.83733240e-01 2.59954661e-01 1.40150583e+00
-8.45412433e-01 -1.11462760e+00 -1.94068879e-01 4.30922598e-01
-2.98401445e-01 1.32915184e-01 -4.04880792e-02 5.11479318e-01
3.01529504e-02 7.58368552e-01 8.45676437e-02 -3.15030038e-01
3.00535172e-01 2.38759950e-01 3.55931669e-01 -6.02263868e-01
-5.47150373e-01 4.21034805e-02 2.39182170e-02 -7.68052697e-01
-2.46472850e-01 -9.11503315e-01 -1.50681269e+00 4.04609777e-02
-4.55340654e-01 1.22213952e-01 7.52412200e-01 8.58835399e-01
5.59409022e-01 6.32550776e-01 6.67291462e-01 -6.27444804e-01
-8.90452802e-01 -5.31690538e-01 -3.95254403e-01 2.59601951e-01
1.58788487e-01 -5.50347030e-01 -1.53088927e-01 -2.15489134e-01] | [9.476090431213379, 2.2301483154296875] |
c5d67d23-5067-4bba-b743-657f692b2393 | metadata-based-raw-reconstruction-via | null | null | http://openaccess.thecvf.com//content/CVPR2023/html/Li_Metadata-Based_RAW_Reconstruction_via_Implicit_Neural_Functions_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Li_Metadata-Based_RAW_Reconstruction_via_Implicit_Neural_Functions_CVPR_2023_paper.pdf | Metadata-Based RAW Reconstruction via Implicit Neural Functions | Many low-level computer vision tasks are desirable to utilize the unprocessed RAW image as input, which remains the linear relationship between pixel values and scene radiance. Recent works advocate to embed the RAW image samples into sRGB images at capture time, and reconstruct the RAW from sRGB by these metadata when needed. However, there still exist some limitations on taking full use of the metadata. In this paper, instead of following the perspective of sRGB-to-RAW mapping, we reformulate the problem as mapping the 2D coordinates of the metadata to its RAW values conditioned on the corresponding sRGB values. With this novel formulation, we propose to reconstruct the RAW image with an implicit neural function, which achieves significant performance improvement (more than 10dB average PSNR) only with the uniform sampling. Compared with most deep learning-based approaches, our method is trained in a self-supervised way that requiring no pre-training on different camera ISPs. We perform further experiments to demonstrate the effectiveness of our method, and show that our framework is also suitable for the task of guided super-resolution. | ['Qinmin Yang', 'Qi Ye', 'Huijie Qiao', 'Leyi Li'] | 2023-01-01 | null | null | null | cvpr-2023-1 | ['raw-reconstruction'] | ['computer-vision'] | [ 5.72202742e-01 -1.01441421e-01 3.04227434e-02 -4.80762869e-01
-7.97878742e-01 -1.65117905e-01 3.61608744e-01 -5.19943774e-01
-4.64444876e-01 7.40596950e-01 2.15715513e-01 -4.27132919e-02
-1.53563228e-02 -1.00615573e+00 -9.41868007e-01 -9.05910432e-01
2.67026603e-01 -1.70274958e-01 2.20176190e-01 -2.87098140e-02
2.14991450e-01 4.70273376e-01 -1.56454897e+00 2.49744102e-01
8.91692221e-01 1.38130534e+00 5.48825681e-01 6.28412724e-01
-1.96575582e-01 1.08183253e+00 -4.43691462e-01 -8.15433338e-02
7.17137575e-01 -3.65579873e-01 -6.55435622e-01 3.11819494e-01
7.82242239e-01 -9.08447146e-01 -5.27283251e-01 1.32311285e+00
2.73756325e-01 1.44113600e-01 1.36292487e-01 -7.17611551e-01
-9.61442173e-01 2.53027618e-01 -7.21769869e-01 7.14050382e-02
1.12115428e-01 1.01813070e-01 7.23465085e-01 -8.19914103e-01
3.46684277e-01 9.35523450e-01 7.36128509e-01 2.18960360e-01
-1.24543738e+00 -6.56280518e-01 -3.91545752e-03 2.98711091e-01
-1.56289399e+00 -6.57896280e-01 7.93063939e-01 -1.69672608e-01
5.07544577e-01 1.86956048e-01 5.01349032e-01 7.45735168e-01
-1.94975302e-01 2.63477564e-01 1.51327288e+00 -4.54317182e-01
9.33704302e-02 -4.15420979e-02 -4.87128906e-02 4.51340616e-01
1.35082081e-01 -7.90595114e-02 -6.24571145e-01 1.81637481e-01
1.26534235e+00 8.03870186e-02 -6.01815104e-01 -2.00230300e-01
-1.43999052e+00 5.61348975e-01 7.37344623e-01 1.25122577e-01
-5.03986001e-01 3.64906877e-01 -1.02191545e-01 6.11174889e-02
5.88017523e-01 1.36168629e-01 -2.39655346e-01 1.80431753e-01
-1.15145218e+00 -1.18328638e-01 2.75611103e-01 1.03782809e+00
1.16572118e+00 8.96651521e-02 5.49649894e-02 8.06851625e-01
1.12163961e-01 6.01503670e-01 2.53411651e-01 -1.41177356e+00
3.83266658e-01 1.04147106e-01 4.09667760e-01 -1.05083740e+00
1.90070104e-02 -4.65337187e-01 -1.13024211e+00 2.80419588e-01
2.07995757e-01 1.06831551e-01 -8.01978111e-01 1.62149191e+00
2.31083512e-01 5.40022373e-01 1.29903540e-01 1.09897161e+00
7.42269337e-01 9.72659469e-01 -3.96306306e-01 -3.29172373e-01
1.03482938e+00 -1.09818947e+00 -7.35826552e-01 -7.63942227e-02
-5.00764474e-02 -5.94922423e-01 1.28086603e+00 5.01396060e-01
-1.06575942e+00 -8.04839790e-01 -1.13078499e+00 -4.95720744e-01
-2.51991488e-03 3.20379823e-01 4.55517292e-01 3.70568812e-01
-1.32232916e+00 6.20120585e-01 -6.60398304e-01 -2.12362394e-01
3.18345845e-01 1.26922220e-01 -2.82617509e-01 -2.51885653e-01
-9.90361452e-01 6.19508505e-01 4.91610289e-01 4.38593805e-01
-6.31184101e-01 -7.64721513e-01 -5.95192254e-01 1.56779304e-01
3.74869317e-01 -6.32824838e-01 9.93361890e-01 -1.12636173e+00
-1.66324604e+00 7.28774548e-01 -1.11003041e-01 -3.20804983e-01
3.43129069e-01 -2.69069582e-01 -3.41636509e-01 2.66648471e-01
5.90386987e-02 5.71830213e-01 9.56833780e-01 -1.42723513e+00
-7.85988986e-01 -1.71581089e-01 2.67557979e-01 1.72667146e-01
-6.03664100e-01 -1.42739415e-01 -8.16062033e-01 -4.53559101e-01
3.71136993e-01 -5.45090258e-01 -2.20530972e-01 4.00076956e-01
-1.14793673e-01 3.89588326e-01 6.05202019e-01 -8.31552446e-01
8.40227306e-01 -2.29702425e+00 -5.36332326e-03 -1.76757425e-01
1.55548334e-01 2.01445043e-01 -1.70378700e-01 -8.23878273e-02
1.82087928e-01 -1.82428643e-01 -4.32713479e-01 -2.86196560e-01
-3.49113613e-01 1.32505536e-01 -6.42312706e-01 5.49222827e-01
8.28084275e-02 6.43538892e-01 -9.17115986e-01 -4.34911311e-01
4.37444240e-01 8.18019509e-01 -3.63673866e-01 3.80560338e-01
-1.14290141e-01 6.05657816e-01 -4.19930130e-01 3.67154360e-01
1.20360601e+00 -3.83813024e-01 1.64312676e-01 -7.78964639e-01
-3.00757170e-01 2.50273526e-01 -1.19303095e+00 1.92221439e+00
-6.69526517e-01 6.70077384e-01 3.22178125e-01 -8.74243557e-01
9.52951372e-01 -1.29132390e-01 4.76877809e-01 -9.27612364e-01
-2.07925469e-01 1.15261964e-01 -5.17561138e-01 -3.75625044e-01
7.80245841e-01 4.73224418e-03 2.14233518e-01 2.34234482e-01
-2.23338872e-01 -5.00494987e-02 -2.92003840e-01 -4.29525040e-02
7.08231568e-01 4.69089657e-01 3.12491685e-01 -3.23746800e-02
6.17325664e-01 3.82953808e-02 5.57189584e-01 7.16267586e-01
1.14974327e-01 9.37724352e-01 8.05875435e-02 -4.36700106e-01
-1.23736203e+00 -1.11509323e+00 -2.62496114e-01 6.77594364e-01
3.90436590e-01 -1.29379928e-01 -7.51465976e-01 -1.86272621e-01
-4.00361717e-01 6.35067761e-01 -3.62775028e-01 2.41360545e-01
-6.75430715e-01 -8.46841991e-01 3.56709093e-01 3.24851602e-01
1.26877749e+00 -7.26601779e-01 -7.59593844e-01 8.76068175e-02
-3.57433259e-01 -1.55174220e+00 -3.45179170e-01 -1.36312395e-01
-8.86289477e-01 -6.31036222e-01 -5.43462574e-01 -5.82536757e-01
5.97656667e-01 7.28096306e-01 9.12542582e-01 4.94339392e-02
-2.85524838e-02 2.47918099e-01 -2.51274109e-01 1.50341630e-01
-1.41643599e-01 -9.48092714e-02 -2.10639417e-01 4.13839579e-01
3.16019729e-03 -7.69702971e-01 -8.24419320e-01 8.44410658e-02
-1.08964801e+00 6.51025295e-01 7.59707153e-01 7.61386693e-01
9.94674802e-01 2.64723629e-01 1.86619356e-01 -7.65194714e-01
8.64030421e-02 -2.73779780e-01 -8.54793072e-01 1.64314181e-01
-6.40397012e-01 -1.00661017e-01 6.66977763e-01 -2.30625987e-01
-1.30696166e+00 2.26370826e-01 -7.10709840e-02 -6.07722461e-01
-1.56356007e-01 2.73512274e-01 -3.44364136e-01 -2.64639586e-01
3.63602161e-01 6.29450977e-01 -8.49052668e-02 -7.59828329e-01
6.15868747e-01 9.45950449e-01 1.09532607e+00 -4.17989969e-01
9.56676900e-01 8.99047852e-01 7.76328370e-02 -7.20992088e-01
-1.19584239e+00 -2.96747595e-01 -6.92683220e-01 -1.49592102e-01
9.88612950e-01 -1.20927870e+00 -4.73608941e-01 4.13048416e-01
-1.10327172e+00 -4.27721113e-01 -2.54343927e-01 3.63291860e-01
-5.93675256e-01 5.40774345e-01 -6.41757190e-01 -5.46422482e-01
-2.64957994e-01 -1.02555835e+00 1.12891269e+00 1.99797764e-01
6.76385522e-01 -6.92924798e-01 -1.64994344e-01 3.92766029e-01
7.51564741e-01 1.60828590e-01 6.27536297e-01 3.41315299e-01
-1.17317569e+00 1.33471683e-01 -8.60872626e-01 6.50876641e-01
4.02511865e-01 -4.01647121e-01 -1.22672927e+00 -2.49496475e-01
4.40285832e-01 -1.42874658e-01 7.59511828e-01 2.73826212e-01
1.60628402e+00 -2.66817510e-01 1.87083334e-01 1.36140049e+00
1.99195075e+00 -1.65885478e-01 8.86651933e-01 6.93728149e-01
1.01709259e+00 4.06621754e-01 6.03079498e-01 2.95315057e-01
5.45814395e-01 9.19707954e-01 8.10363770e-01 -3.16557437e-01
-4.45067793e-01 -1.95718661e-01 3.31337184e-01 6.44096732e-01
-2.14072004e-01 3.86674516e-02 -4.54657525e-01 3.37069154e-01
-1.65809059e+00 -9.05347586e-01 -1.92320541e-01 2.28854394e+00
9.30994272e-01 -2.76603550e-01 -3.48694324e-01 -2.31239468e-01
6.89305782e-01 5.88437021e-01 -6.36272907e-01 6.38525710e-02
-3.28964233e-01 1.29760534e-01 9.80843186e-01 4.93091017e-01
-9.73761261e-01 9.36326325e-01 6.54580212e+00 7.88943052e-01
-1.56257939e+00 3.55797440e-01 6.77081585e-01 -1.75536439e-01
-1.72562107e-01 3.30017358e-02 -6.11611187e-01 6.03562295e-01
8.44054222e-01 6.05943315e-02 9.91837800e-01 7.33978987e-01
3.81998569e-01 -1.37860551e-01 -8.06416512e-01 1.31794131e+00
1.69146389e-01 -1.46180868e+00 1.93558671e-02 6.00103028e-02
8.96665394e-01 3.29635888e-02 8.89140964e-02 -9.95814651e-02
1.22955725e-01 -9.63162661e-01 8.56594443e-01 7.34282732e-01
1.16132748e+00 -3.58422250e-01 4.60093260e-01 2.44586766e-01
-1.12797964e+00 5.81486523e-02 -9.16701019e-01 -9.14363340e-02
1.98451921e-01 8.74659240e-01 -5.34155905e-01 9.29006457e-01
1.04163516e+00 9.38610196e-01 -6.40575230e-01 7.49059200e-01
-2.97082335e-01 5.17169535e-01 -1.09438062e-01 6.66281044e-01
-7.78194219e-02 -6.20812833e-01 1.21507108e-01 8.96539748e-01
6.32589698e-01 1.39424682e-01 3.12272608e-02 1.00429225e+00
-1.26338139e-01 -1.06582433e-01 -4.01268154e-01 3.40505570e-01
3.58698815e-01 1.44379997e+00 -4.39112097e-01 -4.45961893e-01
-6.23686731e-01 1.28755915e+00 2.26957947e-01 5.34455359e-01
-7.80556500e-01 -1.38209000e-01 5.48053563e-01 2.13006303e-01
5.80552220e-01 -3.85764450e-01 -4.07355487e-01 -1.27284718e+00
2.85763890e-01 -7.20505118e-01 -2.48868708e-02 -1.37471366e+00
-1.16749835e+00 7.45388508e-01 -2.17894893e-02 -1.53850543e+00
-6.58605322e-02 -5.14794111e-01 -2.77857989e-01 1.09400737e+00
-2.06352258e+00 -1.27335119e+00 -8.89383137e-01 7.49901235e-01
3.56972307e-01 1.75242066e-01 4.88337547e-01 4.47681338e-01
-3.53187919e-01 1.30144432e-01 4.30684835e-01 -2.42366455e-03
7.22323895e-01 -9.50912178e-01 2.47540489e-01 1.09780765e+00
3.36892605e-02 4.05305833e-01 6.54420614e-01 -2.22744375e-01
-1.52187634e+00 -1.35818231e+00 3.97074759e-01 -7.97076598e-02
5.44269621e-01 -3.34334731e-01 -9.62143898e-01 7.74306715e-01
2.74800032e-01 4.61535573e-01 1.91458479e-01 -4.89893347e-01
-3.48903298e-01 -7.02445984e-01 -1.10934877e+00 4.06687081e-01
1.20727396e+00 -5.57835937e-01 -3.19531709e-01 3.33175808e-01
9.91091907e-01 -4.89616245e-01 -8.65938365e-01 3.04331392e-01
2.58336067e-01 -1.29083312e+00 1.26727629e+00 -3.77216823e-02
6.31269813e-01 -8.73691201e-01 -6.09892070e-01 -1.10712659e+00
-3.24909508e-01 -2.08496243e-01 -1.55675886e-02 1.20166552e+00
-1.10114470e-01 -6.50714397e-01 5.69898427e-01 4.10599649e-01
-1.13562755e-01 -3.99159044e-01 -8.64975095e-01 -5.92612684e-01
-2.30844736e-01 -3.58473331e-01 9.12847340e-01 8.64408970e-01
-8.83137107e-01 -1.54863549e-02 -8.17778170e-01 6.46385014e-01
1.06243157e+00 4.48287398e-01 8.99908721e-01 -8.82180870e-01
-5.20117998e-01 -1.38822943e-01 -2.21198753e-01 -1.44917488e+00
3.71149704e-02 -5.66193938e-01 2.72559017e-01 -1.56754112e+00
2.38131478e-01 -5.67997515e-01 -4.65633959e-01 2.76429206e-01
-6.96823224e-02 6.78498030e-01 1.29879013e-01 5.26444077e-01
-4.93776560e-01 5.19650161e-01 1.22662079e+00 -7.50146136e-02
6.11409061e-02 -4.24678773e-01 -7.98438907e-01 5.43207109e-01
6.04977250e-01 -1.71885237e-01 -4.43987817e-01 -1.04013550e+00
8.02742615e-02 4.05670814e-02 5.84100604e-01 -9.96888578e-01
1.72838971e-01 -4.46616352e-01 3.62923801e-01 -5.31004190e-01
5.56887865e-01 -9.29068565e-01 5.17183244e-01 -5.00369668e-02
-2.19411880e-01 -1.97428748e-01 -1.26328304e-01 4.76431489e-01
-1.88240692e-01 -1.51348293e-01 8.10347140e-01 -1.20218635e-01
-9.32889879e-01 3.73541296e-01 1.18425511e-01 -4.09010112e-01
7.33023643e-01 -1.75778359e-01 -3.86347115e-01 -4.52907115e-01
-2.77471185e-01 -2.36978725e-01 9.18727100e-01 2.25201249e-03
6.40501797e-01 -1.35178471e+00 -5.65492928e-01 3.23221505e-01
-1.21943332e-01 4.39286947e-01 3.99877787e-01 7.35912144e-01
-7.58045018e-01 2.06598714e-01 -3.61269802e-01 -7.52861440e-01
-8.40342999e-01 7.01699853e-01 3.47839803e-01 2.30683219e-02
-1.08858681e+00 4.00713563e-01 2.88494527e-01 -2.25851059e-01
7.15771364e-03 -2.75958151e-01 3.51874195e-02 -4.06080335e-01
7.26821423e-01 1.84966281e-01 3.60448584e-02 -7.64738679e-01
-3.92150953e-02 7.83083320e-01 2.56305933e-01 -1.92118868e-01
1.58788419e+00 -4.92670715e-01 -3.92154038e-01 3.14311206e-01
1.19287694e+00 2.10744336e-01 -1.67634463e+00 -5.96761942e-01
-2.74661154e-01 -1.14521158e+00 6.16060555e-01 -4.23083335e-01
-1.57087123e+00 8.02955210e-01 7.29461670e-01 5.62609918e-02
1.66729915e+00 -1.83883771e-01 7.61408031e-01 3.42130929e-01
6.46742761e-01 -6.80324376e-01 -1.73349932e-01 1.06058419e-01
7.77896821e-01 -1.21457160e+00 2.54536480e-01 -4.47001815e-01
-2.66606092e-01 1.15758395e+00 4.76899594e-01 -1.92897037e-01
3.88668001e-01 1.18120924e-01 1.68747023e-01 1.57728374e-01
-4.19618428e-01 -9.59141105e-02 -4.14368846e-02 5.88780284e-01
1.44247517e-01 -8.01626369e-02 -1.85919944e-02 1.24671303e-01
-1.48150578e-01 2.55387396e-01 7.98804939e-01 5.71871698e-01
-3.83877903e-01 -9.49523807e-01 -5.92340231e-01 2.60056555e-01
-1.70951739e-01 -3.04608256e-01 1.94731325e-01 4.64148909e-01
1.00366004e-01 7.11609721e-01 2.82123566e-01 -3.51204991e-01
1.09253973e-01 -4.05477911e-01 4.38756645e-01 -4.99730766e-01
4.10369085e-03 4.47532535e-02 -2.08744854e-01 -7.68869579e-01
-7.72209346e-01 -5.01390100e-01 -9.88811970e-01 -3.56615931e-01
1.05599326e-03 -2.80086279e-01 8.51209760e-01 6.84802651e-01
2.95058578e-01 4.57341343e-01 8.65293682e-01 -1.13740456e+00
-4.47669774e-01 -8.09893131e-01 -6.54623926e-01 3.55095118e-01
6.13722086e-01 -3.87717187e-01 -4.87921655e-01 3.13350439e-01] | [10.584247589111328, -2.348267078399658] |
68a79e1f-b54e-42d3-909a-9e1ec8bb80ec | mri-multi-modal-3d-human-pose-estimation | 2210.08394 | null | https://arxiv.org/abs/2210.08394v1 | https://arxiv.org/pdf/2210.08394v1.pdf | mRI: Multi-modal 3D Human Pose Estimation Dataset using mmWave, RGB-D, and Inertial Sensors | The ability to estimate 3D human body pose and movement, also known as human pose estimation (HPE), enables many applications for home-based health monitoring, such as remote rehabilitation training. Several possible solutions have emerged using sensors ranging from RGB cameras, depth sensors, millimeter-Wave (mmWave) radars, and wearable inertial sensors. Despite previous efforts on datasets and benchmarks for HPE, few dataset exploits multiple modalities and focuses on home-based health monitoring. To bridge the gap, we present mRI, a multi-modal 3D human pose estimation dataset with mmWave, RGB-D, and Inertial Sensors. Our dataset consists of over 160k synchronized frames from 20 subjects performing rehabilitation exercises and supports the benchmarks of HPE and action detection. We perform extensive experiments using our dataset and delineate the strength of each modality. We hope that the release of mRI can catalyze the research in pose estimation, multi-modal learning, and action understanding, and more importantly facilitate the applications of home-based health monitoring. | ['Umit Ogras', 'Yin Li', 'Sizhe An'] | 2022-10-15 | null | null | null | null | ['action-understanding', '3d-human-pose-estimation'] | ['computer-vision', 'computer-vision'] | [ 1.56119168e-01 4.90693115e-02 -2.69281268e-01 -9.24786478e-02
-8.85933042e-01 1.32272132e-02 -2.26748064e-01 -3.16538244e-01
-5.09915531e-01 5.21649539e-01 9.71893072e-01 2.90504068e-01
-7.92128891e-02 -5.86685300e-01 -3.58367920e-01 -4.83277172e-01
-5.33365250e-01 4.00657713e-01 5.18129161e-03 -3.86732012e-01
-2.46261626e-01 2.66801089e-01 -1.38911033e+00 2.15401068e-01
5.49199246e-02 9.83933687e-01 -2.00135291e-01 6.34750128e-01
8.70635867e-01 3.75498563e-01 -5.14061809e-01 1.11696966e-01
2.64239341e-01 -4.47232336e-01 -7.16990411e-01 1.32573217e-01
2.55620211e-01 -5.88658631e-01 -5.46360850e-01 2.98924893e-01
1.60586524e+00 1.40610129e-01 1.20582856e-01 -1.06347382e+00
-1.22260287e-01 8.70418176e-02 -5.59262693e-01 2.36566380e-01
1.29096496e+00 3.33576918e-01 3.74207884e-01 -5.29368520e-01
5.96487045e-01 8.83539855e-01 1.10359800e+00 1.06695330e+00
-5.39965451e-01 -4.04584050e-01 -4.21252698e-01 4.07389849e-01
-1.15985358e+00 -2.99142271e-01 7.71961689e-01 -3.34259480e-01
9.13363695e-01 5.26788056e-01 1.28981328e+00 1.59506249e+00
5.02529800e-01 8.71602893e-01 1.25304377e+00 -3.65490258e-01
2.58998752e-01 -5.33752322e-01 -2.40177706e-01 8.12252402e-01
3.33131105e-01 2.90124655e-01 -1.29315388e+00 8.73871148e-03
8.49029660e-01 2.66913414e-01 -6.09218299e-01 -2.70406991e-01
-1.59944046e+00 2.39610389e-01 5.36919355e-01 9.89819467e-02
-7.00124800e-01 2.81595975e-01 2.73716003e-01 4.09935601e-02
2.05797210e-01 3.17986161e-01 -5.64597964e-01 -6.40582502e-01
-6.03470683e-01 1.35774642e-01 5.82853436e-01 7.48826563e-01
9.66939852e-02 -3.40325505e-01 1.52371693e-02 4.43369299e-01
6.23195469e-01 7.92784750e-01 7.07928181e-01 -9.10176694e-01
5.55686831e-01 4.61336315e-01 -2.19378367e-01 -9.18088078e-01
-1.22343934e+00 -1.17664076e-01 -8.69314253e-01 6.61046132e-02
1.57911852e-01 -4.77208585e-01 -6.23140037e-01 1.36479700e+00
8.16728413e-01 6.09825589e-02 -2.94052839e-01 1.43666863e+00
1.00651073e+00 -7.70356059e-02 -3.30954678e-02 -4.46082791e-03
1.62889647e+00 -4.91235375e-01 -5.44529080e-01 -4.86162245e-01
6.03088260e-01 -3.35165739e-01 8.65043998e-01 4.10751969e-01
-7.52432644e-01 -3.26632798e-01 -9.62008893e-01 2.01627195e-01
-1.29051572e-02 -1.00919962e-01 6.35939062e-01 9.74669993e-01
-6.41238332e-01 5.97380102e-01 -1.46253371e+00 -6.84817910e-01
1.18690230e-01 4.80389506e-01 -6.84745669e-01 8.47504660e-02
-1.41892874e+00 1.01737440e+00 -5.51679805e-02 4.36275303e-01
-4.63426471e-01 -6.14522934e-01 -9.66921806e-01 -8.12500894e-01
-3.83575447e-03 -1.31828439e+00 7.99839675e-01 1.77492976e-01
-1.69440842e+00 1.08260262e+00 2.02667534e-01 -1.33844450e-01
6.07641339e-01 -1.02807724e+00 -3.13954681e-01 4.57329690e-01
-1.94497421e-01 3.21707785e-01 5.54850996e-01 -5.45648515e-01
-1.41438082e-01 -1.17636847e+00 -2.42898032e-01 4.05018181e-01
-4.73975688e-01 -3.83309200e-02 -1.42533123e-01 -4.63442534e-01
6.71861947e-01 -1.31910896e+00 -1.60001814e-01 7.24956021e-02
-4.64641541e-01 2.71302551e-01 4.66999799e-01 -9.93243217e-01
1.00557876e+00 -1.92346990e+00 5.02280593e-01 4.01016586e-02
3.20459634e-01 -2.88776398e-01 4.98045474e-01 2.70747185e-01
7.11499304e-02 -3.60100895e-01 1.71334535e-01 -2.56345987e-01
-2.28520900e-01 1.15383253e-01 3.48431110e-01 1.04212844e+00
-6.32901967e-01 1.00617886e+00 -7.07666218e-01 -5.92770040e-01
4.99192446e-01 6.15270615e-01 -4.88883495e-01 7.38990903e-02
4.39296693e-01 1.13158548e+00 -4.23133910e-01 1.16565847e+00
3.50428186e-02 -1.32417575e-01 2.59787831e-02 -6.76079631e-01
3.89343619e-01 -5.00895679e-02 -1.33044696e+00 2.13230395e+00
-2.95368999e-01 3.08223724e-01 3.47460322e-02 -6.63183868e-01
4.65700120e-01 7.59264588e-01 1.34139156e+00 -7.11583316e-01
2.49679014e-01 4.05832398e-05 -5.38315475e-01 -1.01337111e+00
1.42035738e-01 -3.72854143e-01 -2.92489201e-01 2.78440863e-01
1.34305935e-03 2.52730817e-01 -5.49050272e-01 -3.08224291e-01
1.47891426e+00 3.59544188e-01 3.45076412e-01 2.11057916e-01
1.03559144e-01 -2.51817167e-01 3.34236115e-01 3.46304834e-01
-7.79118359e-01 8.44220638e-01 -4.10671651e-01 -6.53209507e-01
-3.96711826e-01 -1.26812446e+00 2.44623944e-02 1.05900979e+00
1.12524793e-01 -5.53642631e-01 -4.02294934e-01 -2.03511685e-01
2.22514018e-01 -5.32250702e-01 -5.38995981e-01 -3.89116019e-01
-8.86660814e-01 -9.46737587e-01 6.36090040e-01 8.58405232e-01
6.03959680e-01 -9.82485473e-01 -1.34001410e+00 1.10091098e-01
-7.11267650e-01 -1.16181636e+00 -1.56964421e-01 -1.04709573e-01
-1.34694159e+00 -1.27670360e+00 -1.06598985e+00 -4.14587885e-01
1.87647298e-01 -9.07442123e-02 8.98299456e-01 -2.63672978e-01
-5.97958148e-01 1.22875166e+00 -4.26648885e-01 -2.02405527e-01
4.03756887e-01 -1.53750125e-02 6.86422646e-01 -4.23072755e-01
1.43610373e-01 -8.36358547e-01 -1.10443592e+00 3.15581828e-01
-1.49501905e-01 -1.45620093e-01 5.46155155e-01 3.45984519e-01
6.45634413e-01 -4.77233738e-01 1.86202362e-01 -2.89447665e-01
3.67484003e-01 -2.46885732e-01 2.63786137e-01 6.79169372e-02
-3.13634634e-01 -4.01560664e-01 -3.59848142e-01 -4.28464323e-01
-5.05302489e-01 3.40294927e-01 -4.94960755e-01 -4.21420578e-03
-3.12265486e-01 4.87010986e-01 -1.87124580e-01 -3.13203245e-01
9.32079852e-01 2.83472426e-02 1.28325090e-01 -4.90043819e-01
1.61454722e-01 7.55787730e-01 9.26080585e-01 -5.52221298e-01
4.66421008e-01 6.14732325e-01 2.22462475e-01 -1.03245199e+00
-6.43305421e-01 -7.49838948e-01 -7.46107876e-01 -8.25014889e-01
1.05746877e+00 -1.33174813e+00 -1.08646464e+00 7.14272678e-01
-6.61683917e-01 -2.89910018e-01 -1.64397597e-01 9.48211133e-01
-1.01182127e+00 3.65888059e-01 -8.42270911e-01 -8.07989419e-01
-6.35048032e-01 -6.06011450e-01 1.63154256e+00 2.14901119e-01
-7.95511365e-01 -6.94310486e-01 4.25240844e-01 1.04543281e+00
3.23108941e-01 1.10444045e+00 7.53896087e-02 2.26624429e-01
-7.99001828e-02 -6.57280922e-01 6.87895119e-01 -2.25065991e-01
2.22777814e-01 -9.22800720e-01 -6.80191755e-01 -5.01916289e-01
2.57177681e-01 -5.48437297e-01 3.68755609e-01 6.00519478e-01
7.88719833e-01 -2.23017242e-02 -4.89850610e-01 7.39419281e-01
9.69708979e-01 -3.10632735e-01 8.69232416e-01 7.83291042e-01
9.42209899e-01 4.35317397e-01 5.75470090e-01 8.36648524e-01
7.16254532e-01 8.48564744e-01 4.84255314e-01 -1.36083364e-01
-4.80713435e-02 9.11156833e-02 4.38918114e-01 9.76199090e-01
-9.23294783e-01 3.69239241e-01 -1.08398640e+00 1.39029041e-01
-1.54447079e+00 -9.59689379e-01 9.28232633e-03 2.05766702e+00
8.05717885e-01 -1.69656321e-01 4.46688086e-01 4.44982588e-01
4.47856128e-01 1.10527255e-01 -6.40092850e-01 4.51367795e-01
2.59113282e-01 4.25309330e-01 4.80107427e-01 -2.41455715e-02
-1.24145174e+00 2.67107427e-01 6.94712687e+00 -2.37561673e-01
-1.02891767e+00 4.56902623e-01 -6.39432967e-02 -5.57054460e-01
3.90167981e-01 -6.70628428e-01 -6.27434194e-01 3.02258939e-01
9.37968731e-01 3.13983589e-01 5.93118481e-02 9.79647160e-01
2.63147622e-01 -3.56500357e-01 -9.54874635e-01 1.32733274e+00
2.74059355e-01 -6.49915099e-01 -7.20722556e-01 3.17285925e-01
3.74199212e-01 3.37222427e-01 -3.28300476e-01 9.37054008e-02
-3.81375939e-01 -6.97842777e-01 3.86851996e-01 7.14711010e-01
6.90371037e-01 -4.12773490e-01 5.26052594e-01 5.06035507e-01
-1.37476933e+00 6.57789083e-03 1.58150703e-01 -3.29443038e-01
4.54411596e-01 5.07590175e-01 -1.60165712e-01 5.13348162e-01
1.10025048e+00 9.50840831e-01 -4.96805429e-01 1.10161531e+00
-3.06599379e-01 3.05751771e-01 -5.03570437e-01 1.81406423e-01
-6.35215104e-01 3.43359113e-01 6.37956500e-01 7.37902761e-01
3.67827564e-01 3.75663579e-01 5.15127957e-01 3.43237165e-03
3.49613219e-01 -2.26139247e-01 -5.85473359e-01 3.86361361e-01
-3.58363092e-02 9.66714382e-01 -4.85063434e-01 9.72937420e-02
-2.61835575e-01 1.34067953e+00 -3.27855438e-01 -7.37781590e-03
-8.68388951e-01 -7.92394206e-02 7.27505088e-01 4.15692329e-01
-4.20326114e-01 -7.91031897e-01 -4.68050182e-01 -1.37552917e+00
3.19392741e-01 -1.04982901e+00 5.84002495e-01 -7.91483819e-01
-9.68820691e-01 6.73069581e-02 5.95447943e-02 -1.49351633e+00
-4.65622455e-01 -6.67313159e-01 -1.39539585e-01 4.89783943e-01
-7.80159950e-01 -1.03803992e+00 -8.01342130e-01 9.77144122e-01
2.20676959e-01 2.78972179e-01 1.14480662e+00 5.11062562e-01
-5.28494298e-01 3.41748178e-01 -4.03118849e-01 3.20351899e-01
8.28699350e-01 -9.96619523e-01 1.01905450e-01 4.24225003e-01
-3.95752080e-02 6.87787712e-01 7.54825056e-01 -8.44879448e-01
-2.13642478e+00 -6.45123661e-01 4.38167393e-01 -9.82377410e-01
2.01288432e-01 -5.41588441e-02 -1.02305293e-01 6.92415655e-01
-3.96180838e-01 2.29854107e-01 1.01106119e+00 2.29584724e-01
1.96564838e-01 -5.63456910e-04 -1.24510300e+00 2.37671196e-01
1.52316284e+00 -6.30498707e-01 -7.95344234e-01 6.13747418e-01
2.04196632e-01 -1.15828109e+00 -1.48595500e+00 8.90545249e-01
1.32419503e+00 -7.12113738e-01 1.47796273e+00 -4.46803331e-01
2.77607679e-01 -6.37167990e-02 -3.25453758e-01 -1.07770979e+00
-2.01690271e-01 -2.54555166e-01 -7.71454155e-01 5.89098632e-01
-3.09165508e-01 -3.64902943e-01 1.25176442e+00 6.94634974e-01
-6.17579967e-02 -9.01146233e-01 -1.26116931e+00 -7.40475714e-01
-4.28554326e-01 -6.19854867e-01 2.45086089e-01 5.92917800e-01
4.38969016e-01 -6.03839681e-02 -8.41633976e-01 3.48317355e-01
8.75984788e-01 -3.75799164e-02 7.93277800e-01 -1.10720515e+00
-4.51988220e-01 2.47259736e-01 -1.11167347e+00 -9.06374872e-01
-3.71503353e-01 -2.85088003e-01 1.42068312e-01 -1.70227671e+00
-1.50093567e-02 2.09499329e-01 -1.76156774e-01 5.31696737e-01
8.38626474e-02 7.90827334e-01 -8.63254908e-03 2.40974590e-01
-7.07952976e-01 4.40961301e-01 1.27614427e+00 -5.27219987e-03
-1.24462634e-01 2.11173907e-01 -3.42097938e-01 7.65265763e-01
6.17038906e-01 -3.46647531e-01 -9.38980132e-02 -2.74532795e-01
2.56873369e-01 3.43957663e-01 6.63676381e-01 -1.81276667e+00
4.13061470e-01 2.96886712e-02 8.82976413e-01 -5.53385556e-01
5.06238997e-01 -7.15920806e-01 4.04582262e-01 1.04803932e+00
1.96466804e-01 6.00411259e-02 -2.24868342e-01 4.94036436e-01
3.58334966e-02 6.61298454e-01 5.07363975e-01 -5.93478918e-01
-8.58303845e-01 3.70512813e-01 -3.50524396e-01 2.03664690e-01
1.02670777e+00 -6.02904260e-01 -1.71197578e-01 -3.47283334e-01
-1.31681621e+00 1.59412161e-01 2.27491960e-01 6.25251830e-01
8.48344684e-01 -1.57159066e+00 -3.09834093e-01 1.98738948e-01
2.11546615e-01 -1.51463598e-01 3.24444890e-01 1.23377311e+00
-4.40057576e-01 3.34246427e-01 -6.02892399e-01 -8.16773593e-01
-1.32239306e+00 -9.61082801e-02 5.23737490e-01 -8.90682563e-02
-1.09563828e+00 5.62914133e-01 -7.10045278e-01 -4.31483209e-01
4.39409912e-01 -1.34978965e-01 -4.47717831e-02 -1.71877444e-02
6.42876804e-01 7.24093854e-01 2.74540067e-01 -7.64564157e-01
-8.86303306e-01 9.40622270e-01 7.57363319e-01 -2.93742388e-01
1.30553412e+00 -4.59977001e-01 2.42721647e-01 5.39024711e-01
8.90988827e-01 -1.79858550e-01 -8.71547163e-01 9.39757526e-02
-6.63932562e-02 -2.17338711e-01 -2.06182048e-01 -6.66267335e-01
-1.07975197e+00 6.05226815e-01 1.29113746e+00 -3.09286535e-01
1.37938368e+00 1.62461400e-01 1.29844189e+00 3.09331447e-01
1.26664317e+00 -1.03142738e+00 4.45240617e-01 2.07778409e-01
8.27263534e-01 -1.25294423e+00 3.85847449e-01 -2.80064702e-01
-2.90599465e-01 8.53349090e-01 6.99629247e-01 -6.12800084e-02
8.33463073e-01 3.09951931e-01 2.97966868e-01 -5.24467051e-01
-1.37221158e-01 -3.77307951e-01 3.74751776e-01 8.94789636e-01
7.80885637e-01 2.26353809e-01 -2.53831118e-01 5.54102480e-01
-3.95576477e-01 3.61156195e-01 -2.20860876e-02 1.50373602e+00
-3.85353863e-01 -8.41984928e-01 -7.43702412e-01 2.27345750e-01
-4.56039071e-01 4.61839557e-01 -3.18395287e-01 7.30850101e-01
1.37470827e-01 7.65617013e-01 -4.40319777e-01 -9.29124475e-01
7.66318858e-01 1.15361467e-01 1.01832151e+00 -5.73872566e-01
-6.16451383e-01 -3.21743309e-01 3.69738368e-03 -1.24689877e+00
-7.71469533e-01 -6.36280537e-01 -1.22260785e+00 -2.97265321e-01
-9.22185928e-02 -5.06955922e-01 8.10436606e-01 1.01485085e+00
3.44456881e-01 5.49747407e-01 1.91697165e-01 -1.22006631e+00
-4.09062505e-01 -1.02033818e+00 -7.38493383e-01 4.70113724e-01
2.54132599e-01 -8.49876165e-01 -7.92969391e-02 -2.29609292e-03] | [7.154171943664551, 0.11492877453565598] |
ea7b8333-a799-434c-8659-f547eeb7411f | inesc-id-at-semeval-2016-task-4-a-reducing | null | null | https://aclanthology.org/S16-1036 | https://aclanthology.org/S16-1036.pdf | INESC-ID at SemEval-2016 Task 4-A: Reducing the Problem of Out-of-Embedding Words | null | ["M{\\'a}rio J. Silva", 'Ramon Astudillo', 'Wang Ling', 'Silvio Amir', 'Isabel Trancoso'] | 2016-06-01 | null | null | null | semeval-2016-6 | ['twitter-sentiment-analysis'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.301971912384033, 3.620332717895508] |
ea7505c6-44f8-44ef-adb9-19a3ba1be534 | on-the-role-of-bidirectionality-in-language | 2205.11726 | null | https://arxiv.org/abs/2205.11726v2 | https://arxiv.org/pdf/2205.11726v2.pdf | On the Role of Bidirectionality in Language Model Pre-Training | Prior work on language model pre-training has explored different architectures and learning objectives, but differences in data, hyperparameters and evaluation make a principled comparison difficult. In this work, we focus on bidirectionality as a key factor that differentiates existing approaches, and present a comprehensive study of its role in next token prediction, text infilling, zero-shot priming and fine-tuning. We propose a new framework that generalizes prior approaches, including fully unidirectional models like GPT, fully bidirectional models like BERT, and hybrid models like CM3 and prefix LM. Our framework distinguishes between two notions of bidirectionality (bidirectional context and bidirectional attention) and allows us to control each of them separately. We find that the optimal configuration is largely application-dependent (e.g., bidirectional attention is beneficial for fine-tuning and infilling, but harmful for next token prediction and zero-shot priming). We train models with up to 6.7B parameters, and find differences to remain consistent at scale. While prior work on scaling has focused on left-to-right autoregressive models, our results suggest that this approach comes with some trade-offs, and it might be worthwhile to develop very large bidirectional models. | ['Ves Stoyanov', 'Luke Zettlemoyer', 'Naman Goyal', 'Jingfei Du', 'Mikel Artetxe'] | 2022-05-24 | null | null | null | null | ['text-infilling'] | ['natural-language-processing'] | [ 3.12541574e-02 -2.19535977e-02 -5.39150774e-01 -2.10616082e-01
-6.68060541e-01 -8.63044858e-01 1.09060550e+00 5.77851338e-03
-5.86628914e-01 5.13999939e-01 6.52723789e-01 -9.78370368e-01
2.27600727e-02 -6.15325689e-01 -6.05444729e-01 -4.40677166e-01
-2.83956602e-02 4.13012803e-01 3.87122601e-01 -5.93294084e-01
3.62892717e-01 2.81657219e-01 -1.05889535e+00 4.99034971e-01
4.48933482e-01 4.41225350e-01 2.32813194e-01 1.03483772e+00
-3.83223444e-01 8.20217609e-01 -4.51378971e-01 -5.00579476e-01
1.47822246e-01 -1.71014339e-01 -1.13868749e+00 -4.10725713e-01
2.50697941e-01 -2.41428196e-01 -2.46869504e-01 4.35290486e-01
7.91160107e-01 9.00199711e-02 6.58536494e-01 -1.03351831e+00
-1.16529703e+00 1.06110060e+00 -4.67178702e-01 5.45726657e-01
-1.52379349e-01 4.06704158e-01 1.18552756e+00 -9.35238540e-01
4.41050023e-01 1.49755061e+00 9.12422419e-01 6.83978081e-01
-1.49608088e+00 -4.04702276e-01 6.13788486e-01 -5.93225583e-02
-1.06350899e+00 -6.70026958e-01 2.34991983e-01 -5.10803521e-01
1.54500401e+00 2.88990825e-01 4.23997968e-01 1.34075463e+00
3.00047964e-01 7.25425184e-01 1.15203369e+00 -7.40482748e-01
-6.77029490e-02 2.68550012e-02 2.55018800e-01 1.64671108e-01
-2.79441737e-02 9.47547033e-02 -4.66695875e-01 -2.07250759e-01
8.52192938e-01 -3.22811663e-01 -5.66152437e-03 -8.62178132e-02
-1.33403420e+00 8.23738515e-01 2.32604519e-01 5.24192989e-01
-1.16729401e-01 4.04320061e-01 5.22383153e-01 3.27744722e-01
3.55589092e-01 6.71297789e-01 -7.66528368e-01 -4.87099558e-01
-8.57235551e-01 2.37939656e-01 7.16979444e-01 9.93514478e-01
5.27729094e-01 9.49165672e-02 -5.22544801e-01 1.11351180e+00
1.06132463e-01 2.29103521e-01 7.80309558e-01 -8.04717004e-01
5.88876903e-01 -5.45862988e-02 8.00833777e-02 -5.57539403e-01
-7.03670204e-01 -3.12171191e-01 -4.47288960e-01 -1.20753340e-01
4.27879274e-01 -1.91470996e-01 -9.93201256e-01 1.97754252e+00
-1.20628580e-01 -5.30064608e-05 -1.27308443e-01 6.32003665e-01
5.94713032e-01 5.62944591e-01 5.99341273e-01 2.07532123e-01
1.46756327e+00 -1.31702399e+00 -4.05530602e-01 -6.98926210e-01
1.04547536e+00 -1.19791293e+00 1.60798943e+00 5.30712083e-02
-1.35915244e+00 -5.05875230e-01 -7.77221203e-01 -5.63693166e-01
-4.82054383e-01 -4.30371203e-02 6.91411853e-01 6.13758028e-01
-1.42075455e+00 5.55108666e-01 -8.00227761e-01 -6.10336006e-01
-1.81603074e-01 2.59542793e-01 -6.26825318e-02 1.79064155e-01
-1.48718631e+00 1.22646666e+00 3.77841175e-01 -1.66779101e-01
-4.41939056e-01 -6.83169186e-01 -5.15951455e-01 2.99535424e-01
6.71638176e-02 -1.03639948e+00 1.52858043e+00 -7.57676721e-01
-1.53739440e+00 7.89723277e-01 -2.59102792e-01 -4.75188285e-01
4.63440835e-01 -1.78814396e-01 -1.73589110e-01 -4.38655406e-01
-6.82579502e-02 1.11404419e+00 6.14373386e-01 -1.04079175e+00
-6.50932610e-01 -1.05846770e-01 3.36549670e-01 3.83230090e-01
-6.71357274e-01 2.67815977e-01 -6.84078693e-01 -8.56518030e-01
-1.67430624e-01 -1.05916238e+00 -7.13543296e-02 -5.98713934e-01
-1.62495211e-01 -3.09172899e-01 3.76838386e-01 -6.32097244e-01
1.61488831e+00 -1.91136968e+00 -1.23340383e-01 -2.29988545e-01
-9.96631533e-02 1.33603841e-01 -5.91700733e-01 6.93762779e-01
-1.17249034e-01 6.88032448e-01 8.62462670e-02 -6.78864717e-01
3.47400047e-02 2.75689542e-01 -5.55808485e-01 1.05676977e-02
2.97213316e-01 1.17629755e+00 -7.21191704e-01 -3.83653104e-01
-8.53230059e-02 7.17587590e-01 -7.29977489e-01 -9.77266803e-02
-1.57176629e-01 1.55943766e-01 5.49843907e-02 4.40242410e-01
4.44571942e-01 -2.71873415e-01 2.37330332e-01 9.64374468e-02
-3.27642292e-01 9.16908383e-01 -8.26300859e-01 1.38672507e+00
-7.94726372e-01 6.80110455e-01 5.40161580e-02 -6.33022428e-01
7.11251438e-01 2.45325536e-01 4.61648963e-03 -8.34639072e-01
-9.25032720e-02 8.90118331e-02 1.51945129e-01 -3.40611100e-01
1.13378048e+00 -1.47361368e-01 1.67492345e-01 5.22229195e-01
-9.21227857e-02 -1.68689340e-02 4.02047157e-01 3.13558072e-01
9.33532417e-01 2.15757236e-01 1.14673458e-01 -4.09610927e-01
5.99776469e-02 -1.94852129e-01 3.47705424e-01 1.04707503e+00
1.57341864e-02 6.10141933e-01 8.01372170e-01 -6.61329255e-02
-1.42601264e+00 -8.24738562e-01 -1.25365227e-01 1.94394290e+00
-2.56340861e-01 -5.24908006e-01 -5.70830941e-01 -4.86119419e-01
-8.98603126e-02 1.00725460e+00 -5.95610559e-01 -1.10733330e-01
-8.98566663e-01 -8.05677950e-01 6.68813467e-01 1.08509409e+00
-1.49673596e-01 -1.03816330e+00 -3.54258746e-01 2.74108261e-01
-1.68649286e-01 -1.00158513e+00 -5.70428133e-01 4.92529422e-01
-1.06004357e+00 -4.56859857e-01 -7.22981513e-01 -7.78158665e-01
2.57262737e-01 5.58231831e-01 1.52427697e+00 2.51963675e-01
2.98540056e-01 4.39043999e-01 -3.44048351e-01 -3.31054062e-01
-4.86834168e-01 5.01970828e-01 -1.03244655e-01 -6.18157148e-01
3.24849576e-01 -5.22194088e-01 -6.43353999e-01 3.55493098e-01
-7.83935666e-01 2.66788267e-02 8.06951284e-01 1.08666778e+00
2.25906581e-01 -4.58595276e-01 3.78294587e-01 -1.06434107e+00
1.09341669e+00 -5.18634439e-01 -3.01907659e-01 1.70809925e-01
-9.18450534e-01 6.33089691e-02 4.95184451e-01 -5.34372091e-01
-8.93734336e-01 -5.13490975e-01 -3.76779467e-01 -1.17419809e-01
-7.65383942e-04 5.04542649e-01 2.72539586e-01 1.11067481e-01
8.31176519e-01 1.14881188e-01 -3.17977607e-01 -5.41284382e-01
7.96613395e-01 5.22213817e-01 1.62260473e-01 -8.07736039e-01
3.21258366e-01 3.09534788e-01 -5.73840380e-01 -7.11396158e-01
-3.57248455e-01 -3.43453765e-01 -5.26793420e-01 4.20702606e-01
7.17928410e-01 -9.65091884e-01 -5.38253188e-01 2.37140805e-02
-1.15691590e+00 -9.49205816e-01 -2.33724937e-01 3.75241220e-01
-4.66470540e-01 2.27635086e-01 -1.09567559e+00 -6.46894515e-01
-4.09158617e-01 -1.34626734e+00 1.16737652e+00 -1.55797124e-01
-7.02841282e-01 -1.21053529e+00 8.48916247e-02 1.73090279e-01
8.67636681e-01 -6.20322883e-01 1.20133245e+00 -7.71639109e-01
-2.08412349e-01 9.99159589e-02 -2.96438962e-01 2.86316693e-01
-2.38311678e-01 1.87438384e-01 -8.81469131e-01 -3.46694887e-01
-3.25845331e-01 -4.33847010e-01 9.99028623e-01 5.12784719e-01
9.91635978e-01 -2.50230759e-01 -3.69204283e-01 4.48541462e-01
9.73801374e-01 -5.53873479e-02 5.41056931e-01 6.91868246e-01
6.63312137e-01 4.94787306e-01 3.80741447e-01 1.58948928e-01
8.41309130e-01 7.00019002e-01 9.66326892e-02 -2.07742795e-01
-2.82518208e-01 -3.67390275e-01 4.63097245e-01 1.08129156e+00
-2.76135223e-04 -3.57314438e-01 -1.07166040e+00 5.68576455e-01
-1.65328753e+00 -8.77617300e-01 5.28513975e-02 2.13940048e+00
8.87304068e-01 4.78731811e-01 2.45453030e-01 -1.44114420e-01
6.06568813e-01 2.32318878e-01 -1.46250963e-01 -9.21820402e-01
-1.56221822e-01 3.47913578e-02 6.53337181e-01 9.06167507e-01
-9.12414432e-01 1.33589065e+00 7.81645441e+00 8.30840230e-01
-1.37156129e+00 2.17376590e-01 9.91178751e-01 -2.88903475e-01
-7.14646816e-01 2.87709296e-01 -1.24391115e+00 4.20607716e-01
1.02421129e+00 1.36206001e-01 4.74864423e-01 7.21073449e-01
2.69400299e-01 8.94451812e-02 -1.18039310e+00 4.62353438e-01
-8.77696350e-02 -1.17788792e+00 7.46722966e-02 4.79885265e-02
7.99404979e-01 3.01447004e-01 2.01929554e-01 7.22771704e-01
6.15312159e-01 -1.00810182e+00 8.83842528e-01 2.01934859e-01
5.91352344e-01 -5.27057171e-01 3.20809841e-01 3.08076620e-01
-1.03881776e+00 -3.28554302e-01 -4.13232356e-01 -3.86600971e-01
2.13877276e-01 2.67494231e-01 -9.80074763e-01 3.14765982e-03
6.32425845e-01 3.14866960e-01 -6.43501937e-01 6.47754610e-01
-3.01836699e-01 7.99450040e-01 -8.65854546e-02 -1.30021080e-01
4.21296895e-01 -1.25833545e-02 1.72767088e-01 1.69183636e+00
3.00799638e-01 -1.85672447e-01 1.02469474e-01 4.78134453e-01
-1.77651830e-02 2.67584682e-01 -3.40630442e-01 -9.29093920e-03
7.49293506e-01 1.24239099e+00 -7.09928989e-01 -5.52882969e-01
-6.70067191e-01 5.86248577e-01 7.09767878e-01 4.75495547e-01
-9.44915771e-01 2.86465697e-02 6.32479548e-01 1.96229666e-01
4.71322507e-01 -5.39935410e-01 -7.60873914e-01 -1.02357626e+00
-2.29194015e-01 -9.45163131e-01 4.26827163e-01 -7.45885432e-01
-1.24716282e+00 4.93923098e-01 -2.26017088e-02 -7.12851942e-01
-3.65465254e-01 -6.41388893e-01 -7.40613461e-01 1.06205368e+00
-1.61736751e+00 -1.27268064e+00 1.62782192e-01 2.60297924e-01
7.61045992e-01 2.69138873e-01 7.60109901e-01 2.60470420e-01
-4.93144363e-01 8.25871885e-01 7.01719299e-02 -8.70582834e-02
1.12890935e+00 -1.31062889e+00 1.03924656e+00 8.10226321e-01
1.25915885e-01 1.14594328e+00 6.48861647e-01 -5.13675690e-01
-1.21968544e+00 -7.88360119e-01 1.15819800e+00 -6.50232732e-01
9.99628305e-01 -4.03958440e-01 -9.39352393e-01 1.02458990e+00
5.61226726e-01 -2.72694379e-01 6.26908243e-01 7.19587207e-01
-4.87405658e-01 2.15382338e-01 -4.33912516e-01 1.09455407e+00
1.14208543e+00 -5.46805382e-01 -3.22170228e-01 2.78131187e-01
1.07074070e+00 -4.40088779e-01 -8.16082537e-01 3.24843436e-01
6.08511329e-01 -1.04599977e+00 1.07987106e+00 -8.57806444e-01
4.40590322e-01 1.39309689e-01 1.62026263e-04 -1.41901648e+00
-8.87089312e-01 -4.47775692e-01 -4.16759737e-02 1.32342112e+00
8.25229168e-01 -8.60429049e-01 5.90943277e-01 7.75262713e-01
-3.39281470e-01 -9.86271799e-01 -5.57313323e-01 -8.53987932e-01
9.01881397e-01 -5.55830657e-01 6.15263879e-01 1.02770448e+00
1.12757176e-01 6.39661074e-01 -4.93708342e-01 -1.68070659e-01
-2.30162144e-01 -1.18808374e-01 7.86022067e-01 -5.84885359e-01
-5.61025858e-01 -1.06215489e+00 1.68686539e-01 -1.63503790e+00
-2.03822758e-02 -9.03111577e-01 -1.51518852e-01 -1.48562503e+00
1.53594002e-01 -7.20329762e-01 -2.37281770e-01 5.78684568e-01
-4.21637714e-01 9.35744792e-02 4.30357903e-01 2.47102499e-01
-1.50578812e-01 2.63370812e-01 1.09791911e+00 2.59968061e-02
-3.12563837e-01 -2.35058188e-01 -1.00096440e+00 5.25229573e-01
9.13740575e-01 -2.06126332e-01 -4.75322872e-01 -1.02702308e+00
1.93130583e-01 -1.73068762e-01 8.19258094e-02 -5.01695454e-01
2.48532265e-01 -1.60779044e-01 3.51927847e-01 -1.65160149e-01
3.19224656e-01 -2.60209143e-01 -3.44328046e-01 3.21306437e-01
-6.37476861e-01 5.64818978e-01 3.78816724e-01 3.40183735e-01
5.91039658e-03 -3.52447063e-01 6.01623654e-01 -2.18189240e-01
-6.36021256e-01 -1.59103107e-02 -4.73239809e-01 2.82165706e-01
5.24127483e-01 -5.37591800e-03 -5.56625724e-01 -3.16864580e-01
-7.06921160e-01 2.59807676e-01 4.37842757e-01 7.67008364e-01
4.41138707e-02 -1.26633239e+00 -6.87190175e-01 -6.53830077e-03
-1.66725796e-02 -4.27341282e-01 1.50262967e-01 9.31341887e-01
-1.95987314e-01 6.68463588e-01 1.27868235e-01 -5.58494031e-01
-1.15645421e+00 7.25061595e-01 -9.55546945e-02 -5.88001430e-01
-3.15110743e-01 9.93298292e-01 2.32565060e-01 -4.10631865e-01
1.27004996e-01 -3.86020720e-01 -1.41719863e-01 1.84409007e-01
3.71406496e-01 3.86068285e-01 1.61322802e-01 -4.92281467e-01
-1.25464261e-01 5.02116263e-01 -3.58210802e-01 -3.16840678e-01
9.53830898e-01 -2.63522059e-01 -8.59486908e-02 5.84061623e-01
1.04686069e+00 1.07810482e-01 -1.17241693e+00 -2.05520421e-01
6.21039420e-02 -4.20791119e-01 -7.05770925e-02 -7.37928152e-01
-5.57861447e-01 1.17162240e+00 3.43563735e-01 5.52875042e-01
8.77353966e-01 -8.91346335e-02 7.22673237e-01 2.05734164e-01
-3.02684791e-02 -1.21856403e+00 1.71507552e-01 1.03329253e+00
9.14750874e-01 -1.11378884e+00 -1.04573131e-01 -1.26725540e-01
-8.56994987e-01 1.06785715e+00 7.97621965e-01 2.81355500e-01
3.71971488e-01 4.93999302e-01 1.51168793e-01 2.70704746e-01
-1.15510595e+00 -7.56762251e-02 6.08195662e-02 3.24976236e-01
1.14115226e+00 8.15819949e-02 -4.67106581e-01 2.93463469e-01
-4.84036326e-01 -2.92014956e-01 2.67578930e-01 8.92506123e-01
-4.16866571e-01 -1.49826646e+00 -5.45391440e-01 3.50879252e-01
-3.97344947e-01 -7.08396316e-01 -1.56237870e-01 9.18328047e-01
-1.11758068e-01 8.32580209e-01 2.03618646e-01 -2.82659858e-01
2.81518459e-01 3.82552475e-01 3.97643685e-01 -5.89515686e-01
-7.43730068e-01 3.61483037e-01 2.64505267e-01 -3.04714054e-01
1.01406254e-01 -4.88068521e-01 -1.02754104e+00 -5.24261296e-01
-3.30723822e-01 -1.37015238e-01 5.56766808e-01 7.62417793e-01
6.14609838e-01 5.58862388e-01 3.29791456e-01 -1.04652834e+00
-7.66322017e-01 -1.18825603e+00 -3.95908803e-02 2.71890849e-01
7.32024908e-02 -4.62688506e-01 -3.93749960e-02 -5.37050031e-02] | [10.818471908569336, 8.48800277709961] |
3fe3bea7-0c89-4f4d-8922-134bd0b6b0fe | 1d-convolutional-neural-network-models-for | 1903.01552 | null | http://arxiv.org/abs/1903.01552v1 | http://arxiv.org/pdf/1903.01552v1.pdf | 1D Convolutional Neural Network Models for Sleep Arousal Detection | Sleep arousals transition the depth of sleep to a more superficial stage. The
occurrence of such events is often considered as a protective mechanism to
alert the body of harmful stimuli. Thus, accurate sleep arousal detection can
lead to an enhanced understanding of the underlying causes and influencing the
assessment of sleep quality. Previous studies and guidelines have suggested
that sleep arousals are linked mainly to abrupt frequency shifts in EEG
signals, but the proposed rules are shown to be insufficient for a
comprehensive characterization of arousals. This study investigates the
application of five recent convolutional neural networks (CNNs) for sleep
arousal detection and performs comparative evaluations to determine the best
model for this task. The investigated state-of-the-art CNN models have
originally been designed for image or speech processing. A detailed set of
evaluations is performed on the benchmark dataset provided by
PhysioNet/Computing in Cardiology Challenge 2018, and the results show that the
best 1D CNN model has achieved an average of 0.31 and 0.84 for the area under
the precision-recall and area under the ROC curves, respectively. | ['Simo Särkkä', 'Ali Bahrami Rad', 'Serkan Kiranyaz', 'Moncef Gabbouj', 'Morteza Zabihi'] | 2019-03-01 | null | null | null | null | ['sleep-quality-prediction', 'sleep-arousal-detection'] | ['medical', 'medical'] | [ 1.84711143e-01 -1.46552473e-01 -1.21120207e-01 -3.57097924e-01
-2.05804422e-01 -1.17302142e-01 3.97996694e-01 7.23103702e-01
-7.34348357e-01 6.99965715e-01 1.65372938e-02 -5.42554669e-02
-1.29415274e-01 -2.82283604e-01 -1.21244989e-01 -7.73314357e-01
-3.14515412e-01 2.99126823e-02 -1.41025502e-02 -1.52952433e-01
2.06043079e-01 3.47679496e-01 -1.58436227e+00 2.17776239e-01
8.29969943e-01 1.44637108e+00 -5.50673120e-02 7.90586531e-01
5.28729819e-02 1.54288471e-01 -9.25348759e-01 -9.82375666e-02
-8.98217633e-02 -5.34297884e-01 -3.89345556e-01 -5.91401935e-01
1.69725254e-01 1.98022440e-01 7.30272790e-04 9.62626636e-01
8.15950215e-01 -5.11681847e-02 3.80306572e-01 -9.86043394e-01
-1.24316528e-01 1.91835374e-01 1.45006865e-01 1.20410585e+00
2.71739334e-01 2.31929228e-01 5.19168317e-01 -5.58011949e-01
-9.73408371e-02 4.79153574e-01 6.06659770e-01 6.08982265e-01
-1.07323050e+00 -7.36767948e-01 -3.61572832e-01 5.31128049e-01
-1.34807038e+00 -4.74134564e-01 5.87451935e-01 -1.07520327e-01
1.04518962e+00 4.74136651e-01 1.35986698e+00 1.24629259e+00
9.11423147e-01 2.16595292e-01 1.25570238e+00 -2.24865615e-01
3.57823402e-01 2.72695124e-01 3.85113895e-01 1.35763586e-01
6.55712545e-01 -1.14374876e-01 -8.49928677e-01 1.11601293e-01
4.71046716e-02 -4.87740450e-02 -2.55699664e-01 3.42643976e-01
-5.85063040e-01 5.63823819e-01 5.71170390e-01 5.34344673e-01
-6.19363070e-01 -1.32605880e-01 6.55026257e-01 9.47723091e-02
4.89056349e-01 5.97320974e-01 -2.64775008e-01 -4.99385327e-01
-1.17975211e+00 4.19203900e-02 7.01230526e-01 2.53604025e-01
1.85727850e-01 -4.94103841e-02 -5.24807155e-01 5.61545730e-01
2.21591413e-01 1.67110831e-01 6.31515920e-01 -6.29235566e-01
1.72985513e-02 8.52754891e-01 7.15211406e-02 -8.52313519e-01
-8.75108719e-01 -8.35748076e-01 -8.98190439e-01 -3.87077481e-02
5.62337525e-02 1.04617931e-01 -6.67572796e-01 1.45033216e+00
-1.10229507e-01 1.20207801e-01 -8.39323327e-02 8.74041617e-01
1.35867536e+00 3.03001851e-01 3.73693496e-01 -3.80924165e-01
1.72744906e+00 -4.56883460e-01 -1.06246340e+00 -5.86691439e-01
1.80507712e-02 -4.88090336e-01 1.12924278e+00 7.44696558e-01
-1.25601614e+00 -7.32625961e-01 -1.60567141e+00 2.39123907e-02
-5.06972790e-01 1.63617268e-01 4.30590779e-01 1.04072618e+00
-1.06219387e+00 6.06072307e-01 -1.18048894e+00 -5.63945115e-01
5.77029169e-01 6.60397172e-01 -1.39230505e-01 3.89246464e-01
-1.27824509e+00 1.13229311e+00 1.54192924e-01 5.86578965e-01
-1.00208831e+00 -6.65674388e-01 -3.67718697e-01 3.37162107e-01
-3.29487920e-01 -6.62959397e-01 8.71127665e-01 -7.51175642e-01
-1.15854192e+00 1.01486146e+00 -3.33590545e-02 -8.24831188e-01
1.40772313e-01 -4.90696847e-01 -7.22891748e-01 3.89252335e-01
-2.89575085e-02 4.21678752e-01 4.84937876e-01 -4.55157071e-01
-2.55101770e-01 -5.07351398e-01 -3.50960717e-02 1.16539836e-01
-5.14226437e-01 4.22149487e-02 -3.19725543e-01 -5.54299839e-02
-2.59572506e-01 -7.92911828e-01 -1.01663992e-01 -3.43462646e-01
-2.31082574e-01 -1.24475561e-01 3.60962898e-01 -2.87577718e-01
1.54052484e+00 -2.17399859e+00 -2.94367611e-01 -1.12719439e-01
5.04884541e-01 4.14129347e-01 4.00087655e-01 1.64115325e-01
-1.49453759e-01 2.10771710e-02 6.56164736e-02 -4.96964425e-01
-2.60001898e-01 2.08360344e-01 1.39841795e-01 7.85224497e-01
1.89765006e-01 7.24147379e-01 -6.18725657e-01 -3.52850139e-01
2.76881009e-01 7.06414044e-01 -1.28621861e-01 3.94808710e-01
3.28627765e-01 4.26516950e-01 -2.32964098e-01 4.47653919e-01
4.57355827e-01 -7.36468658e-02 -9.45813730e-02 -2.05374181e-01
-2.15458646e-01 7.48056948e-01 -5.07509708e-01 1.57311618e+00
-2.44064301e-01 9.34481859e-01 -2.37887993e-01 -8.01127851e-01
9.54328239e-01 2.97366828e-01 4.08502489e-01 -9.83523071e-01
5.29685438e-01 -1.55173661e-02 5.16144216e-01 -5.40078223e-01
1.94071069e-01 -2.50793040e-01 5.17559685e-02 -1.47492021e-01
5.93992807e-02 3.39148343e-02 2.10916072e-01 3.20323408e-02
1.15496266e+00 -3.84754688e-01 4.74889606e-01 -6.92759156e-01
5.21214843e-01 -3.35955948e-01 4.79671389e-01 6.93831027e-01
-5.13117492e-01 4.87975925e-01 6.14989519e-01 -6.04964197e-01
-3.65764469e-01 -1.03198218e+00 -4.40189749e-01 4.69732940e-01
2.08850518e-01 -6.97536826e-01 -1.05651391e+00 -1.93490386e-01
-6.12581611e-01 7.63578475e-01 -1.04270387e+00 -7.67159283e-01
-9.81640890e-02 -1.32928443e+00 7.12621093e-01 5.16464174e-01
4.69315499e-01 -1.30085444e+00 -1.43836641e+00 1.15952976e-01
-1.57955855e-01 -1.18202174e+00 1.47646666e-01 6.45517766e-01
-9.85221386e-01 -1.23035061e+00 -2.67062873e-01 -9.88428146e-02
2.74785817e-01 -3.22261542e-01 1.21566355e+00 3.02907318e-01
-5.98816335e-01 1.25438482e-01 -2.17935890e-01 -1.05003619e+00
-1.79823965e-01 3.53542536e-01 2.11517900e-01 -7.39492401e-02
9.67439830e-01 -9.05467451e-01 -1.41164470e+00 5.56323677e-02
-6.46135509e-01 -3.99281830e-01 6.99428558e-01 3.00387710e-01
5.12456238e-01 -3.67409796e-01 5.74888945e-01 -4.56519961e-01
8.41702759e-01 -4.42694157e-01 -1.73270464e-01 -2.79606581e-01
-1.14045298e+00 -4.10747230e-01 5.91186285e-01 -1.48666784e-01
-5.39520502e-01 -2.95120716e-01 -2.50148803e-01 -2.10090280e-01
-6.23086452e-01 2.00179398e-01 9.87381581e-03 1.40946403e-01
8.75122368e-01 2.74681777e-01 -5.66530377e-02 -2.16419891e-01
-4.01249081e-01 5.03613591e-01 5.54454446e-01 -9.28801894e-02
-2.19305567e-02 4.95816678e-01 2.92504817e-01 -1.01069236e+00
-1.10327351e+00 -7.28090346e-01 -3.94160271e-01 -3.09882730e-01
1.18343174e+00 -8.97759557e-01 -8.58217716e-01 1.45302460e-01
-8.80218625e-01 -2.25380197e-01 -1.29592419e-01 4.69035089e-01
-3.41880500e-01 1.65322259e-01 -2.58238286e-01 -7.07218468e-01
-1.13667858e+00 -1.01471329e+00 7.20034003e-01 5.08261859e-01
-7.57954597e-01 -8.72414589e-01 3.84432226e-01 1.08561710e-01
6.70160353e-01 3.14295650e-01 7.32081056e-01 -9.27821398e-01
8.94643739e-02 -3.52170646e-01 2.20162719e-01 4.95636165e-01
1.93358183e-01 -1.77233517e-01 -1.28182685e+00 -1.01032101e-01
3.68429452e-01 3.44902761e-02 6.43272102e-01 7.12659001e-01
1.20611298e+00 1.07905827e-01 -3.00934017e-01 7.35323906e-01
1.35129988e+00 2.87448078e-01 1.12596834e+00 5.30956626e-01
-6.79082945e-02 1.23265088e-01 3.11345100e-01 3.61840904e-01
-7.58698061e-02 4.42695379e-01 8.51643860e-01 -2.00880542e-01
4.77764662e-03 5.77405930e-01 1.60617426e-01 5.40510833e-01
-2.94575602e-01 -1.27427623e-01 -8.04096282e-01 4.88210648e-01
-1.18112493e+00 -6.11765325e-01 -4.71519768e-01 2.19873190e+00
6.00658238e-01 6.75835848e-01 1.62324294e-01 1.51152328e-01
3.17528963e-01 7.73211429e-03 -4.06367481e-01 -9.40420330e-01
1.03220776e-01 8.87303412e-01 1.43132031e-01 -1.23910248e-01
-8.93904626e-01 4.15655941e-01 7.02708817e+00 2.33993039e-01
-1.27990294e+00 2.19429687e-01 4.80997473e-01 -5.54074109e-01
4.56867009e-01 -4.07590419e-01 -7.31377721e-01 7.93082297e-01
1.74296808e+00 -7.22220466e-02 1.86497033e-01 6.80367291e-01
6.85206234e-01 -3.87705475e-01 -1.04643488e+00 1.01036525e+00
1.09135926e-01 -1.05839849e+00 -3.10841411e-01 -1.20928973e-01
2.42200702e-01 2.43208796e-01 1.18763261e-01 2.65109420e-01
-7.29869246e-01 -1.35389805e+00 3.85940611e-01 8.06600153e-01
7.49965250e-01 -6.54833078e-01 1.15355861e+00 -5.45524508e-02
-8.69720578e-01 -8.34704414e-02 -2.00872749e-01 -2.80413836e-01
-9.56534818e-02 4.56149846e-01 -8.27890217e-01 2.07760975e-01
1.22832131e+00 5.62616229e-01 -1.04913116e+00 1.25711143e+00
-2.16292694e-01 9.86037076e-01 -3.34894717e-01 -3.70663464e-01
1.40581951e-01 4.73447423e-03 5.30607820e-01 1.40341556e+00
1.70449242e-01 -3.07977274e-02 -5.58632374e-01 1.02701390e+00
2.27452904e-01 -6.37191087e-02 -1.92063943e-01 5.73585518e-02
3.82998050e-03 1.62108636e+00 -9.93825793e-01 -1.87436044e-01
-3.67247194e-01 5.66849351e-01 -1.49210483e-01 -5.75142130e-02
-8.48164678e-01 -3.41125488e-01 7.85466313e-01 4.28196579e-01
-1.47262052e-01 1.17968611e-01 -7.58966506e-01 -5.31701505e-01
-4.39448655e-02 -5.30426860e-01 4.37268496e-01 -8.32226992e-01
-7.90696383e-01 8.26392293e-01 9.57303680e-03 -9.85459745e-01
1.73635259e-01 -5.83803773e-01 -1.08383930e+00 8.55903566e-01
-1.41169572e+00 -5.51387787e-01 -9.61999953e-01 4.59047824e-01
5.99332452e-01 4.63477969e-02 1.14543283e+00 3.78515124e-01
-5.36349833e-01 4.66068715e-01 -4.01760310e-01 -1.78673640e-01
5.23131073e-01 -1.43747842e+00 5.28379828e-02 8.49887431e-01
-3.17162156e-01 8.19255531e-01 1.05970383e+00 -3.16820651e-01
-1.04583454e+00 -7.98725188e-01 6.18583500e-01 -6.53611958e-01
2.79872268e-01 -3.00648421e-01 -7.68927991e-01 1.82853431e-01
4.58720773e-01 -2.97815889e-01 1.08221495e+00 1.57079339e-01
3.62677634e-01 -5.34873366e-01 -9.00284052e-01 3.61415595e-01
4.85673696e-01 -1.17590494e-01 -7.35126138e-01 -4.16492559e-02
2.45616511e-01 -3.15200001e-01 -8.07937324e-01 3.40223014e-01
6.70599341e-01 -1.38161647e+00 8.35419714e-01 -4.91842985e-01
5.22197485e-01 -3.07705589e-02 1.69924453e-01 -1.10707998e+00
-1.51886791e-01 -5.38742661e-01 -2.14472458e-01 7.29964972e-01
3.07433575e-01 -3.40779871e-01 6.53731585e-01 3.67671460e-01
-6.64796650e-01 -1.14546418e+00 -1.14510262e+00 -4.79221642e-01
-2.05753386e-01 -4.66255009e-01 3.56556445e-01 3.16993326e-01
-8.35639238e-02 5.12337029e-01 9.67364311e-02 1.00123793e-01
3.00514460e-01 -2.84107447e-01 3.99731189e-01 -1.35153615e+00
3.47507060e-01 -5.37977278e-01 -6.49074674e-01 -7.80819580e-02
-2.47768551e-01 -6.42465711e-01 8.00543744e-03 -1.70350683e+00
3.33302051e-01 2.14245185e-01 -1.13410103e+00 2.20590010e-01
-1.87181979e-01 5.11019528e-01 -2.72038847e-01 -2.77568430e-01
-6.55135453e-01 3.70468140e-01 6.99656188e-01 8.88797641e-02
-4.13768291e-01 2.29460567e-01 -9.43954945e-01 6.17556572e-01
1.13749230e+00 -5.76240599e-01 -4.94453788e-01 1.77538991e-01
5.36366582e-01 -3.85051459e-01 4.90903854e-01 -1.50151849e+00
1.29594356e-01 3.65734220e-01 6.50996864e-01 -5.61275065e-01
5.99813044e-01 -6.52359247e-01 1.37467340e-01 6.81435108e-01
-2.93627411e-01 1.49604172e-01 5.63728750e-01 3.74859810e-01
-5.12509234e-02 -6.45710751e-02 9.87499237e-01 -9.01622474e-02
-3.52185577e-01 2.05734044e-01 -4.90472943e-01 5.12345321e-02
6.78157210e-01 -6.20369196e-01 -2.59423196e-01 -2.29343519e-01
-9.85288262e-01 -3.85389961e-02 8.50132927e-02 4.52933580e-01
5.45675039e-01 -8.59349966e-01 -4.39561844e-01 2.22313643e-01
2.23702148e-01 -3.37504476e-01 4.73508388e-01 1.47003031e+00
-5.16498148e-01 5.34560263e-01 -6.04953766e-01 -7.95148015e-01
-1.41564131e+00 4.44354117e-01 7.00583756e-01 -1.34754017e-01
-5.73698819e-01 6.40369236e-01 5.30644767e-02 5.84423304e-01
2.14576542e-01 -5.96451581e-01 -6.76933408e-01 6.04320839e-02
6.68716311e-01 4.93268698e-01 7.39517450e-01 -2.25283638e-01
-6.95691049e-01 2.62291938e-01 5.71219064e-02 3.62250954e-01
1.41076708e+00 -5.06803505e-02 -2.06351861e-01 6.01320684e-01
8.44078302e-01 -3.52768153e-01 -7.79579222e-01 6.08502924e-01
-1.60443783e-01 -4.38847952e-02 1.97580144e-01 -1.06417966e+00
-8.10935736e-01 1.21118689e+00 1.38037431e+00 5.12562275e-01
1.54783356e+00 -1.39538407e-01 5.82108915e-01 9.44124684e-02
-1.62508488e-01 -1.09993792e+00 1.98170826e-01 6.76423386e-02
7.16693938e-01 -7.88149834e-01 2.10269377e-01 -5.93813658e-02
-3.97225529e-01 1.24013925e+00 6.77333891e-01 -1.43395811e-01
6.72916770e-01 1.14072278e-01 -2.05872804e-02 -7.02215850e-01
-7.34549463e-01 -1.19507872e-01 4.45097953e-01 4.89117801e-01
5.31754792e-01 6.84545785e-02 -7.34830081e-01 1.19173455e+00
-4.45143014e-01 1.20998651e-01 4.81009096e-01 3.92894417e-01
-3.20814848e-01 -5.29010594e-01 -1.32806282e-02 6.85459435e-01
-1.11048806e+00 -1.71791241e-01 -3.59168410e-01 7.74661303e-01
3.27621341e-01 1.10537291e+00 2.76905924e-01 -2.34007224e-01
5.16720772e-01 2.56787330e-01 4.27006662e-01 -7.31222749e-01
-8.49241734e-01 -9.28664953e-02 5.24469875e-02 -5.84081233e-01
-6.34659886e-01 -4.35217083e-01 -1.08048332e+00 2.55859256e-01
-6.55205250e-02 2.79949039e-01 8.22964489e-01 9.40430522e-01
3.98914635e-01 9.86639559e-01 1.13927841e-01 -5.39621532e-01
3.81709971e-02 -1.30736911e+00 -5.44939816e-01 2.64276266e-01
4.23714131e-01 -7.76731670e-01 -4.55190182e-01 -1.65904090e-01] | [13.51624584197998, 3.513427495956421] |
da257d69-2bbd-4931-8ced-3de610bd41bf | ao14eae3ec-aa1i-cc2ii12a14c3-the-duplex-model | null | null | https://aclanthology.org/O17-1017 | https://aclanthology.org/O17-1017.pdf | 基於雙工音高感知模型之神經網路旋律抽取演算法 (The duplex model of pitch perception inspired neural network for melody extraction) [In Chinese] | null | ['Tai-Shih Chi', 'Hsin Chou'] | 2017-11-01 | the-duplex-model-of-pitch-perception-inspired | https://aclanthology.org/O17-1017 | https://aclanthology.org/O17-1017.pdf | roclingijclclp-2017-11 | ['melody-extraction'] | ['music'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.3553595542907715, 3.7211642265319824] |
28e7fa42-9546-4f0c-a1c7-29dd6501ddaf | automatic-language-identification-using-deep | null | null | https://ieeexplore.ieee.org/document/6854622 | https://static.googleusercontent.com/media/research.google.com/ru//pubs/archive/42538.pdf | AUTOMATIC LANGUAGE IDENTIFICATION USING DEEP NEURAL NETWORKS | This work studies the use of deep neural networks (DNNs) to address automatic language identification (LID). Motivated by their recent success in acoustic modelling, we adapt DNNs to the problem of identifying the language of a given spoken utterance from short-term acoustic features. The proposed approach is compared to state-of-the-art i-vector based acoustic systems on two different datasets: Google 5M LID corpus and NIST LRE 2009. Results show how LID can largely benefit from using DNNs, especially when a large amount of training data is available. We found relative improvements up to 70%, in Cavg, over the baseline system. | ['Pedro Moreno', 'Joaquin Gonzalez-Rodriguez', 'David Martinez', 'Oldrich Plchot', 'Javier Gonzalez-Dominguez', 'Ignacio Lopez-Moreno'] | 2014-05-04 | null | null | null | null | ['acoustic-modelling'] | ['speech'] | [-2.19788522e-01 -2.13151380e-01 4.76819165e-02 -5.16715884e-01
-1.21175432e+00 -5.39495826e-01 7.14897096e-01 -4.41576779e-01
-9.49070275e-01 2.97820985e-01 5.66505492e-01 -4.52132493e-01
3.66608471e-01 -4.15224470e-02 -5.47134876e-01 -4.49609190e-01
1.19335152e-01 6.07031524e-01 -3.00990760e-01 -2.07187291e-02
2.65737884e-02 4.10320371e-01 -1.47800195e+00 -7.86916465e-02
1.55352995e-01 1.14203227e+00 3.21507812e-01 1.03223121e+00
-2.95771599e-01 6.18561924e-01 -6.73441827e-01 -1.49693638e-01
-2.15363130e-02 -6.97969869e-02 -8.76229048e-01 -3.60124797e-01
6.64773047e-01 -5.67338169e-01 -4.93210196e-01 9.54277456e-01
1.03458571e+00 3.54188681e-01 6.75676465e-01 -7.87936985e-01
-7.48490334e-01 8.51829767e-01 3.43533419e-02 2.35311761e-01
2.89402425e-01 1.03028178e-01 1.21079147e+00 -1.31132221e+00
1.81883737e-01 1.53680789e+00 9.73855674e-01 9.70209539e-01
-1.07515311e+00 -8.27553749e-01 -2.85326630e-01 2.86562264e-01
-1.47780383e+00 -1.08475661e+00 6.70302808e-01 -1.67773992e-01
1.46536219e+00 9.99546377e-04 -1.93708569e-01 1.51451039e+00
-2.39728555e-01 1.13203549e+00 7.12104321e-01 -7.57242143e-01
2.68533081e-01 2.30172917e-01 5.13857365e-01 8.57918262e-02
-3.08270574e-01 1.84603006e-01 -7.46669471e-01 -2.49340698e-01
1.65009871e-01 -6.94751024e-01 1.50766194e-01 1.97403938e-01
-8.21153581e-01 1.09851050e+00 -1.90287709e-01 5.74710190e-01
-6.02180481e-01 1.41329646e-01 8.69843841e-01 1.36948705e-01
5.18085241e-01 4.24992174e-01 -5.63303709e-01 -5.52320957e-01
-9.67774034e-01 -7.49262050e-02 8.95847321e-01 4.84877497e-01
4.52072322e-01 6.16452932e-01 9.28887576e-02 1.55401838e+00
4.05613333e-01 5.27582765e-01 9.86167669e-01 -8.27747345e-01
2.92756349e-01 -3.58515270e-02 -2.20411375e-01 -3.49006563e-01
-4.19374585e-01 -5.78781962e-02 -7.48416305e-01 -1.49680510e-01
6.82160929e-02 -3.38262737e-01 -8.96388650e-01 1.85282660e+00
-1.59873590e-01 1.92584246e-01 5.55373192e-01 5.17129838e-01
1.24672973e+00 9.20168102e-01 1.95307612e-01 -6.87803468e-03
1.11470532e+00 -7.92347312e-01 -9.19009030e-01 -4.83595461e-01
6.79256916e-01 -9.28007066e-01 1.11832488e+00 4.32654083e-01
-8.49015653e-01 -9.71375346e-01 -9.13893819e-01 -7.87812099e-02
-3.30795825e-01 3.22651774e-01 1.86396763e-01 9.15813923e-01
-1.51858521e+00 1.27343029e-01 -5.08717358e-01 -6.47041619e-01
-1.46059707e-01 7.52419472e-01 -3.04798394e-01 2.22815014e-02
-1.49326277e+00 7.15854168e-01 4.32079792e-01 -4.98545766e-02
-9.72826302e-01 -4.38990682e-01 -9.98166382e-01 -1.29089281e-01
2.98964214e-02 7.83496276e-02 1.85156310e+00 -4.36926603e-01
-1.78905487e+00 8.08004320e-01 -2.79808760e-01 -9.13674653e-01
-8.02650526e-02 -4.89926189e-01 -6.95145905e-01 -1.86511323e-01
-1.46076694e-01 8.64910662e-01 4.17323709e-01 -1.00131774e+00
-5.21170616e-01 -2.19739452e-01 -3.93821150e-01 1.48536980e-01
-8.08042347e-01 5.41147590e-01 -4.00324166e-01 -3.37659359e-01
-3.20577115e-01 -1.10094464e+00 2.65575964e-02 -8.77185583e-01
-6.64275646e-01 -8.33825350e-01 1.16670966e+00 -9.45551515e-01
1.17603445e+00 -2.23921704e+00 -2.04096764e-01 -1.72460556e-01
-2.47081757e-01 7.35553384e-01 -4.36763525e-01 4.49816167e-01
1.13412336e-01 5.29763624e-02 5.58093116e-02 -1.09833479e+00
3.49432915e-01 3.47365916e-01 -3.11622441e-01 2.77440608e-01
-2.33292907e-01 6.66786373e-01 -2.33599633e-01 -1.94157511e-01
4.81245369e-01 7.29813755e-01 -9.38603058e-02 5.63124895e-01
-3.18205543e-02 1.20412186e-01 9.12166536e-02 4.28070068e-01
6.12094641e-01 4.10787404e-01 -1.06218345e-02 -1.03714466e-01
-1.46847382e-01 8.03542078e-01 -1.25091505e+00 1.74316823e+00
-7.87760019e-01 9.73943293e-01 3.53637397e-01 -8.96143854e-01
1.23371708e+00 8.21067572e-01 1.98511586e-01 -6.16290450e-01
3.25505227e-01 2.58789241e-01 6.93695024e-02 -6.82508498e-02
7.29434848e-01 -4.32313904e-02 -3.09071273e-01 6.53824091e-01
5.79501152e-01 -6.04658984e-02 -2.61312872e-01 -5.89790149e-03
7.86414087e-01 -3.42723221e-01 2.05851004e-01 -3.08010697e-01
7.37774849e-01 -4.72711623e-01 3.09321076e-01 9.51298714e-01
-4.28719044e-01 4.70290333e-01 -2.26447448e-01 -4.10485864e-01
-9.66022551e-01 -9.14376795e-01 -1.48341820e-01 1.61490381e+00
-6.33339524e-01 -2.53404826e-01 -9.63870764e-01 -3.11392456e-01
-1.79619968e-01 1.06960642e+00 -2.84926504e-01 5.23071066e-02
-7.01680064e-01 -5.59496343e-01 1.25459087e+00 6.79239571e-01
2.57063061e-01 -1.59261525e+00 6.11813292e-02 5.02251267e-01
-6.94914013e-02 -1.42291701e+00 -7.33213007e-01 4.74489510e-01
-3.57886463e-01 -3.41151416e-01 -6.92104340e-01 -1.19621158e+00
-3.56185824e-01 -6.83976263e-02 1.08952749e+00 -4.44534779e-01
-2.26308867e-01 6.49582982e-01 -1.06132152e-02 -6.09037697e-01
-1.17271221e+00 2.70508289e-01 1.06179118e+00 -1.74180672e-01
1.20828891e+00 -2.20752060e-01 -1.94422990e-01 -2.04480137e-03
-6.40097082e-01 -6.05873466e-01 3.55570048e-01 8.99865031e-01
3.36998582e-01 -2.20487759e-01 9.36924398e-01 -2.33518258e-01
1.03138304e+00 -1.05840154e-01 -3.96325022e-01 -1.37002170e-02
-4.56215858e-01 -8.98142233e-02 6.30231440e-01 -6.13575935e-01
-9.62037086e-01 2.53027320e-01 -9.08659577e-01 -4.02403563e-01
-6.84644639e-01 3.00042003e-01 -2.14318112e-01 1.59860000e-01
4.83466297e-01 4.54520166e-01 3.09745297e-02 -9.46527779e-01
5.85105658e-01 1.50903368e+00 1.00856364e+00 -4.59091395e-01
1.64364830e-01 -2.13314265e-01 -6.71329558e-01 -1.20752227e+00
-4.45456505e-01 -9.50303853e-01 -7.52891183e-01 1.02565579e-01
9.01589692e-01 -9.73151207e-01 -9.41977203e-01 7.74290204e-01
-1.32806051e+00 -1.51894197e-01 -1.10513702e-01 7.09875405e-01
-5.17508805e-01 3.57411981e-01 -1.07958186e+00 -1.24357867e+00
-8.19930434e-01 -1.34651017e+00 9.45732594e-01 7.17253685e-02
-5.52894533e-01 -1.12670743e+00 4.72886175e-01 2.39113569e-01
6.17161930e-01 -7.89005876e-01 5.47384083e-01 -1.36784565e+00
1.69030860e-01 -4.03842896e-01 8.36530551e-02 1.09108174e+00
1.56976238e-01 -2.94712365e-01 -1.82445347e+00 -2.75405794e-01
3.53467651e-02 -7.18264878e-01 7.37459242e-01 7.13161051e-01
9.72479045e-01 -2.87145615e-01 -2.16911342e-02 3.58661443e-01
1.14092970e+00 5.23966134e-01 3.88488322e-01 1.91387668e-01
8.42468023e-01 5.65254211e-01 -2.52320264e-02 1.35599196e-01
3.25440705e-01 7.61660814e-01 -4.65079136e-02 -1.15778949e-02
-3.04376900e-01 -1.60832599e-01 5.04660308e-01 1.49508369e+00
6.52713180e-01 -3.53891313e-01 -1.20586717e+00 8.60902488e-01
-1.28438497e+00 -5.41891396e-01 3.49229872e-01 1.97818184e+00
8.87528718e-01 1.59388278e-02 2.68360317e-01 9.05651897e-02
6.67879701e-01 1.70355737e-01 -4.96452957e-01 -9.54240143e-01
-2.11989731e-01 2.07579523e-01 4.12837565e-01 7.62409151e-01
-1.30074334e+00 1.12228775e+00 7.37757158e+00 1.08276594e+00
-1.12340796e+00 2.96658605e-01 6.88687980e-01 1.77070990e-01
1.75304472e-01 -7.37663329e-01 -1.36699402e+00 5.46103157e-02
2.06369853e+00 1.33501306e-01 1.76097527e-01 1.00124133e+00
1.48462966e-01 3.37160915e-01 -1.20369625e+00 1.08242691e+00
2.79756308e-01 -1.07947791e+00 -8.93468037e-02 6.95880428e-02
3.75986397e-01 7.11280465e-01 4.30495709e-01 5.14982283e-01
5.27769923e-01 -1.20489204e+00 3.07715088e-01 -1.01181921e-02
1.01789725e+00 -1.05880630e+00 9.66873944e-01 2.19230905e-01
-1.18719900e+00 9.34236497e-03 -4.23055947e-01 4.14605662e-02
7.32415020e-02 -7.43728969e-03 -1.42777622e+00 -1.10747769e-01
5.97135484e-01 4.06367958e-01 -1.31613493e-01 6.42004967e-01
2.61952430e-01 1.26905835e+00 -3.23197275e-01 -2.16298476e-01
5.93898535e-01 1.32636711e-01 4.43340182e-01 1.76429510e+00
1.46261051e-01 -3.73090982e-01 7.10721165e-02 6.80020928e-01
-3.04956436e-01 3.49774539e-01 -8.18461239e-01 -1.89086974e-01
6.20804071e-01 9.71782804e-01 3.41390120e-03 -3.32451284e-01
-4.74258274e-01 9.39069211e-01 1.28171563e-01 3.38673204e-01
-1.07392497e-01 -2.29160905e-01 1.09719336e+00 -5.45864403e-01
2.71296054e-01 -2.87780821e-01 -1.70132637e-01 -3.64656359e-01
-2.98061371e-01 -9.17929292e-01 1.85925484e-01 -4.41019148e-01
-1.53770232e+00 1.02171159e+00 -2.60311484e-01 -7.99071193e-01
-9.83851552e-01 -7.64595628e-01 -5.49223125e-01 1.19230521e+00
-1.14791358e+00 -1.25782752e+00 3.72550607e-01 2.03460738e-01
1.01240790e+00 -8.96767318e-01 1.45548308e+00 2.92202592e-01
-4.14215565e-01 1.00188816e+00 6.88206673e-01 4.63936955e-01
7.26826847e-01 -1.30410385e+00 1.14345384e+00 7.31158733e-01
5.79398632e-01 5.44707537e-01 6.72779918e-01 -1.67797089e-01
-1.37477160e+00 -8.73740971e-01 1.08153558e+00 -4.97372478e-01
6.52781904e-01 -7.84332752e-01 -1.02208984e+00 5.33788025e-01
4.91594493e-01 -3.20528835e-01 9.02166545e-01 3.93476546e-01
-3.61751109e-01 -6.13400228e-02 -1.00274122e+00 3.53621811e-01
4.97902095e-01 -1.17655480e+00 -7.01407790e-01 1.51713982e-01
1.06581485e+00 3.39163579e-02 -6.13469720e-01 2.52313495e-01
5.79743981e-01 -6.31285131e-01 1.13639951e+00 -3.96425247e-01
-2.20938951e-01 2.42957428e-01 -6.99061573e-01 -1.40717459e+00
-1.22314328e-02 -5.81062853e-01 4.17944863e-02 1.58113372e+00
2.86360234e-01 -2.93682724e-01 5.78998327e-01 4.03289080e-01
-2.88388729e-01 -1.04195490e-01 -1.40269268e+00 -9.47022498e-01
3.92316222e-01 -1.17425203e+00 4.32723314e-01 5.26389301e-01
-2.46232748e-01 6.40312970e-01 -7.74833500e-01 5.76578788e-02
4.42176700e-01 -7.89715648e-01 6.31338120e-01 -1.17452073e+00
-1.84426069e-01 -4.08004791e-01 -3.85085315e-01 -1.08260274e+00
7.79483140e-01 -5.68711817e-01 5.10162294e-01 -1.28780520e+00
3.97433564e-02 -4.67192605e-02 -6.14091337e-01 4.08126652e-01
1.13822334e-01 4.36625093e-01 1.56084090e-01 -3.79977524e-02
-4.86137867e-01 5.78820229e-01 1.94714174e-01 -3.36227596e-01
-4.55174446e-01 6.37584999e-02 -3.97767961e-01 7.06647456e-01
6.96612477e-01 -1.42714217e-01 -2.61529624e-01 -2.09666952e-01
-6.58717632e-01 -6.39981404e-02 -1.70083389e-01 -1.20461178e+00
2.90963709e-01 4.59484786e-01 -6.11385144e-02 -9.47835147e-01
8.81839037e-01 -3.91566873e-01 -4.18026268e-01 1.80611670e-01
-5.45820892e-01 -1.33837862e-02 7.76543796e-01 1.78621784e-01
-5.22103846e-01 -3.40648204e-01 6.78392172e-01 9.09921899e-02
-1.15890646e+00 7.58300126e-02 -8.34781289e-01 -1.18466645e-01
1.94834337e-01 7.78793320e-02 6.54415712e-02 -7.47535348e-01
-5.29555321e-01 -2.88234621e-01 -6.37873709e-02 7.83198535e-01
6.08292878e-01 -1.43923855e+00 -8.24272513e-01 5.22165954e-01
3.27458769e-01 -4.78778332e-01 1.95970297e-01 1.58939183e-01
2.00927984e-02 1.10428810e+00 2.12045088e-01 -7.11317480e-01
-1.63634038e+00 2.60001838e-01 4.57465261e-01 9.25401375e-02
-5.09697199e-01 1.19723594e+00 3.54799807e-01 -9.23862100e-01
9.54921007e-01 -1.88530192e-01 -3.73651177e-01 3.44302622e-04
9.30011749e-01 1.45783633e-01 2.09860161e-01 -1.09830844e+00
-6.19903684e-01 3.08194071e-01 -2.87077069e-01 -4.94728774e-01
1.18964815e+00 -3.56003284e-01 1.75154373e-01 9.71860945e-01
1.64720058e+00 -8.04269239e-02 -8.01655769e-01 -6.54260218e-01
1.35701269e-01 2.43427485e-01 4.71577048e-01 -7.88064063e-01
-5.02829313e-01 1.13298976e+00 1.20881438e+00 3.28338239e-03
7.58614123e-01 1.50596216e-01 1.18845749e+00 7.13814020e-01
1.81422587e-02 -1.42991614e+00 -1.08606756e-01 9.83667076e-01
6.85134053e-01 -1.48471880e+00 -6.78046227e-01 4.45356429e-01
-6.88095570e-01 1.15604699e+00 3.96296859e-01 1.96153559e-02
7.78357744e-01 4.90146011e-01 6.46847248e-01 1.60638720e-01
-5.26275873e-01 1.63094271e-02 5.86860776e-01 7.15803444e-01
7.06123888e-01 3.64960760e-01 2.45905727e-01 6.57009363e-01
-3.57122153e-01 -3.34443390e-01 3.89949381e-01 4.12704259e-01
-3.72842163e-01 -1.09968448e+00 -5.56348026e-01 2.23159343e-01
-7.97201991e-01 -4.79300708e-01 -4.44819450e-01 5.29672444e-01
-2.71537304e-01 1.27358735e+00 2.06297711e-01 -7.25565135e-01
-3.65010165e-02 6.02234304e-01 -2.11907238e-01 -5.60613811e-01
-4.12645757e-01 3.22213382e-01 3.45607013e-01 -2.21798643e-01
-3.92986268e-01 -6.98660672e-01 -1.05463386e+00 -8.50541666e-02
-2.95044750e-01 2.13140383e-01 1.20531023e+00 9.81909454e-01
1.39348954e-01 3.21636260e-01 5.77213049e-01 -8.03512216e-01
-8.92153323e-01 -1.72659945e+00 -7.93816745e-01 1.41873062e-01
6.39853835e-01 -2.41704866e-01 -5.74823976e-01 -7.58773088e-02] | [14.207420349121094, 6.6167168617248535] |
7938e6c1-f550-42b5-9968-1695c90b548b | siammask-a-framework-for-fast-online-object | 2207.02088 | null | https://arxiv.org/abs/2207.02088v1 | https://arxiv.org/pdf/2207.02088v1.pdf | SiamMask: A Framework for Fast Online Object Tracking and Segmentation | In this paper we introduce SiamMask, a framework to perform both visual object tracking and video object segmentation, in real-time, with the same simple method. We improve the offline training procedure of popular fully-convolutional Siamese approaches by augmenting their losses with a binary segmentation task. Once the offline training is completed, SiamMask only requires a single bounding box for initialization and can simultaneously carry out visual object tracking and segmentation at high frame-rates. Moreover, we show that it is possible to extend the framework to handle multiple object tracking and segmentation by simply re-using the multi-task model in a cascaded fashion. Experimental results show that our approach has high processing efficiency, at around 55 frames per second. It yields real-time state-of-the-art results on visual-object tracking benchmarks, while at the same time demonstrating competitive performance at a high speed for video object segmentation benchmarks. | ['Philip H. S. Torr', 'Luca Bertinetto', 'Li Zhang', 'Qiang Wang', 'Weiming Hu'] | 2022-07-05 | null | null | null | null | ['visual-object-tracking'] | ['computer-vision'] | [ 1.52179867e-01 -2.96301991e-01 -2.50636578e-01 -1.91456363e-01
-9.71541047e-01 -8.30020130e-01 3.87024999e-01 8.34202915e-02
-8.71536970e-01 2.79297709e-01 -6.80499434e-01 -2.15578586e-01
4.10991371e-01 -3.73227298e-01 -1.14834261e+00 -5.97580492e-01
2.66316589e-02 7.79344201e-01 9.66312051e-01 3.37973177e-01
-4.82763862e-03 7.32040584e-01 -1.41483092e+00 2.10539743e-01
3.66591871e-01 1.12265730e+00 4.24284339e-02 1.20697451e+00
-5.94884753e-02 7.59702265e-01 -4.24720943e-01 -7.22861350e-01
5.13313591e-01 -9.80111808e-02 -8.66202712e-01 5.32808721e-01
1.06965351e+00 -5.67596138e-01 -3.35132152e-01 1.07192791e+00
1.47263497e-01 8.07554796e-02 2.26795420e-01 -1.32858145e+00
-1.40198827e-01 3.88111025e-01 -7.66609967e-01 2.39736676e-01
-6.65871352e-02 2.67748684e-01 8.46968949e-01 -8.47775996e-01
5.85288644e-01 1.26314795e+00 8.03488135e-01 7.01103747e-01
-1.53774774e+00 -6.56450570e-01 3.53689730e-01 -8.02356005e-02
-1.17822921e+00 -3.99284333e-01 3.55393410e-01 -5.48645735e-01
7.97646284e-01 8.09285417e-02 6.39682233e-01 6.38966143e-01
-2.10145533e-01 1.17087340e+00 6.52122915e-01 -1.33897901e-01
2.81748082e-02 -1.58983737e-01 2.24725947e-01 9.39968884e-01
2.99070507e-01 -6.15568608e-02 -2.43870273e-01 1.18553810e-01
7.95760751e-01 1.16998732e-01 -1.56475324e-02 -6.39585495e-01
-1.36359131e+00 6.31347597e-01 3.86989236e-01 8.58168602e-02
-1.40167862e-01 8.93891871e-01 7.82331824e-01 3.85274403e-02
2.78746665e-01 -2.15093359e-01 -4.51825321e-01 -3.27250361e-02
-1.63756084e+00 4.86573696e-01 7.06027389e-01 1.11814463e+00
7.13000655e-01 6.67109340e-02 -3.57438296e-01 3.73436183e-01
2.85473168e-01 7.44324207e-01 7.89019018e-02 -1.32620573e+00
3.70103836e-01 1.23857878e-01 1.89491630e-01 -5.85702121e-01
-1.56229243e-01 -2.63581365e-01 -4.67252612e-01 5.70950627e-01
9.15951133e-01 -8.25304165e-02 -1.30669320e+00 1.52480960e+00
5.73089004e-01 6.06189191e-01 -2.14104652e-01 8.58102322e-01
5.20391047e-01 6.63811982e-01 3.68773788e-01 -8.40223432e-02
1.55101192e+00 -1.42698848e+00 -4.69893098e-01 -1.99368864e-01
4.25501406e-01 -6.60673916e-01 7.78214574e-01 4.34789181e-01
-1.46441472e+00 -6.29654109e-01 -8.30675840e-01 -1.83042288e-01
-1.50811434e-01 3.62119287e-01 6.89072669e-01 8.28409076e-01
-9.81027663e-01 6.95491314e-01 -1.50294852e+00 -1.34314731e-01
8.96842480e-01 5.38142860e-01 -6.06742539e-02 1.25238135e-01
-4.02904898e-01 5.59612691e-01 5.51117182e-01 5.15851304e-02
-1.28994882e+00 -1.01350439e+00 -8.57625127e-01 6.69635311e-02
7.04178929e-01 -5.23687840e-01 1.52487826e+00 -1.07430923e+00
-1.44648600e+00 1.05380893e+00 -1.81108594e-01 -8.07181537e-01
9.49732244e-01 -4.04238522e-01 -3.13457139e-02 4.76449341e-01
1.33146187e-02 1.04702878e+00 1.01455390e+00 -1.16441798e+00
-8.74202907e-01 -1.40525505e-01 -7.46102035e-02 -1.62717670e-01
-1.97447345e-01 4.85783011e-01 -1.32527065e+00 -6.81210637e-01
-4.21685636e-01 -1.02501357e+00 -3.31649333e-01 7.62627602e-01
-2.97190934e-01 -1.33399650e-01 1.17514765e+00 -5.52317023e-01
8.42354298e-01 -2.03149772e+00 1.56413287e-01 6.41891658e-02
4.50588942e-01 7.69276142e-01 -1.72830299e-01 -3.66699636e-01
2.06542060e-01 -1.77543625e-01 -4.95952636e-01 -8.64499629e-01
-4.08375859e-02 1.63157895e-01 -2.24968165e-01 6.34205282e-01
2.47186810e-01 1.27449691e+00 -7.52723813e-01 -8.42299819e-01
4.50554103e-01 3.95088553e-01 -6.69366539e-01 5.31067001e-03
-5.65951645e-01 2.27101624e-01 -2.49553159e-01 6.42427564e-01
8.14224660e-01 -5.52542865e-01 5.16592115e-02 -2.06965163e-01
-1.32413954e-01 -3.38777900e-01 -1.38405263e+00 1.83973026e+00
-1.66462481e-01 8.12691271e-01 3.88865381e-01 -1.00497222e+00
2.76312351e-01 -1.33582093e-02 6.84678435e-01 -1.55912399e-01
1.77783817e-01 1.19447552e-01 -2.96797931e-01 -2.45744754e-02
4.33515340e-01 1.12894572e-01 1.63492650e-01 2.93621510e-01
2.91178882e-01 1.58513397e-01 6.44317269e-01 2.56961793e-01
8.42485607e-01 3.85246813e-01 -6.74851835e-02 -1.18851326e-01
5.30408919e-01 2.03423828e-01 4.71620291e-01 6.65892422e-01
-2.99583614e-01 5.99954247e-01 4.48320270e-01 -3.10944051e-01
-1.14474761e+00 -1.28223324e+00 1.99287310e-02 1.19719553e+00
2.65648782e-01 -2.89566070e-01 -8.65119040e-01 -8.32751632e-01
2.18317807e-01 1.98463276e-01 -5.23377836e-01 2.96576709e-01
-9.23431039e-01 -5.60034335e-01 8.29626977e-01 8.36759686e-01
4.20702726e-01 -9.74629641e-01 -8.99382889e-01 3.28782022e-01
1.83754608e-01 -1.66785944e+00 -6.29992664e-01 2.12889820e-01
-8.65353405e-01 -1.19706285e+00 -1.09908831e+00 -8.47356677e-01
5.51537991e-01 2.39169717e-01 1.09209633e+00 1.74737915e-01
-5.46004593e-01 3.22931409e-01 1.63687050e-01 -4.96528521e-02
-4.31773424e-01 -6.49867579e-02 -4.23451692e-01 -3.92737947e-02
1.83031317e-02 -7.24413607e-04 -5.57912648e-01 2.81004012e-01
-9.95680094e-01 -2.29133561e-01 2.98146129e-01 5.28014600e-01
7.98450232e-01 -3.08526039e-01 1.93885013e-01 -8.00258636e-01
-2.20635146e-01 2.06626635e-02 -1.34341037e+00 3.56977224e-01
-3.18748415e-01 -1.67390078e-01 5.44581473e-01 -5.42640328e-01
-7.63038278e-01 6.03628755e-01 -9.72993150e-02 -1.01659524e+00
-8.98778066e-02 -1.05295673e-01 4.08774614e-02 -7.11697459e-01
1.68223456e-01 1.69552609e-01 2.69911319e-01 -5.27129233e-01
7.02872038e-01 1.85159549e-01 8.80333006e-01 -4.59818453e-01
1.07616282e+00 7.76573002e-01 4.65384349e-02 -6.14371061e-01
-8.30200851e-01 -7.45673239e-01 -5.98115921e-01 -4.36729312e-01
1.22266304e+00 -1.01618457e+00 -1.05962181e+00 7.77866244e-01
-1.11364007e+00 -6.69414282e-01 -2.11131066e-01 3.22581738e-01
-6.43549800e-01 5.71700454e-01 -7.99185514e-01 -4.99263138e-01
-2.39717409e-01 -1.31755614e+00 1.33124948e+00 2.19137952e-01
2.79188722e-01 -9.10793483e-01 -2.97938049e-01 4.03860629e-01
2.43681714e-01 2.27977276e-01 2.19822347e-01 -6.07517004e-01
-1.24223161e+00 -2.90871728e-02 -5.60557008e-01 4.32798117e-01
-3.05969328e-01 2.27581665e-01 -7.41587400e-01 -4.91946012e-01
-5.41534781e-01 -4.88396108e-01 1.21230853e+00 5.87081730e-01
1.27162075e+00 8.37745592e-02 -5.28021216e-01 8.72859001e-01
1.66745007e+00 -7.04854876e-02 3.73007298e-01 1.30521744e-01
8.94453287e-01 3.04002110e-02 6.42958820e-01 1.75397515e-01
2.21141115e-01 8.33823562e-01 4.34986025e-01 -3.00620943e-01
-3.82486284e-01 5.26340529e-02 3.87865067e-01 2.18571022e-01
1.88620493e-01 -1.93207964e-01 -9.08827305e-01 7.03853607e-01
-1.98007882e+00 -9.18732703e-01 -3.59118283e-01 2.15991282e+00
7.35343337e-01 3.23072076e-01 6.64658904e-01 -6.65764436e-02
7.85072505e-01 9.83642191e-02 -6.12465024e-01 3.49940695e-02
1.35796413e-01 3.23101223e-01 1.02773702e+00 6.17631555e-01
-1.62536883e+00 1.34038997e+00 6.80704165e+00 8.28942716e-01
-1.03152800e+00 2.06611753e-01 5.22744060e-01 -4.02752191e-01
3.40991586e-01 -1.21573165e-01 -1.10427463e+00 4.25321996e-01
8.32262874e-01 4.36878055e-02 3.60026628e-01 8.96422923e-01
-2.78452933e-02 -1.53760061e-01 -1.05736578e+00 9.90121067e-01
-3.55593953e-03 -1.61936855e+00 -1.22292310e-01 -1.07359864e-01
5.86885870e-01 1.99821219e-01 -1.19981848e-01 1.69281051e-01
2.34264642e-01 -6.41028583e-01 1.00531077e+00 1.27564445e-01
5.63103914e-01 -5.72865844e-01 2.78850168e-01 1.09667584e-01
-1.65276313e+00 1.31856531e-01 -7.88289905e-02 4.54980969e-01
4.72506464e-01 4.20041889e-01 -3.27968687e-01 2.81096578e-01
7.70024836e-01 7.19861984e-01 -7.58681417e-01 1.55225646e+00
1.18027426e-01 5.77418208e-01 -6.19371474e-01 2.07808107e-01
5.19378781e-01 -6.04330637e-02 5.25764406e-01 1.57351673e+00
-2.77458597e-02 -2.12488458e-01 5.45787394e-01 7.78593957e-01
-1.80033296e-01 -2.76455492e-01 -1.24042422e-01 -5.28445281e-02
1.98852122e-01 1.31923449e+00 -1.36377096e+00 -7.49736905e-01
-5.63571692e-01 1.22693133e+00 1.41155869e-01 3.17505449e-01
-1.44294333e+00 -3.12264919e-01 6.40699506e-01 -1.86876372e-01
1.08544874e+00 -5.02697825e-01 -1.18435770e-01 -1.11872423e+00
1.06269889e-01 -6.42535210e-01 3.42557043e-01 -4.16759431e-01
-8.49572778e-01 1.58545107e-01 4.58379947e-02 -9.03268158e-01
2.26739366e-02 -8.76820505e-01 -4.16433066e-01 4.46640760e-01
-1.66715586e+00 -1.34786296e+00 -3.20535034e-01 6.70890868e-01
6.10211074e-01 1.79686859e-01 2.47931808e-01 7.11320877e-01
-6.40694916e-01 5.69504380e-01 9.75083187e-02 4.57632273e-01
5.52119553e-01 -1.47369993e+00 6.67475581e-01 1.10984874e+00
3.24084908e-01 2.09883183e-01 5.67943335e-01 -4.57243562e-01
-1.28796399e+00 -1.42683721e+00 3.70396763e-01 -3.17054003e-01
7.49808311e-01 -5.11987746e-01 -8.92953396e-01 9.02547121e-01
1.65183097e-01 6.00023389e-01 2.88299978e-01 -3.31969231e-01
-2.79275894e-01 -5.11600189e-02 -9.88039732e-01 3.74968320e-01
9.46656287e-01 -2.31327608e-01 -3.68755847e-01 5.06140351e-01
8.84821475e-01 -6.95551276e-01 -6.66867793e-01 2.09186003e-01
4.25835282e-01 -6.70728505e-01 1.33394921e+00 -6.34262741e-01
4.05849218e-02 -7.09694624e-01 1.07827231e-01 -4.66678590e-01
-3.70370410e-02 -8.56558740e-01 -5.92569649e-01 1.15903091e+00
1.96985900e-01 -2.02910662e-01 1.09077954e+00 4.76331681e-01
-1.43505484e-02 -5.75692356e-01 -8.81268620e-01 -1.04617763e+00
-1.44105509e-01 -4.15599585e-01 9.46379378e-02 4.03938055e-01
-8.63673031e-01 -1.53391168e-01 -2.47799024e-01 2.94642031e-01
1.18742871e+00 3.41105819e-01 7.83246160e-01 -1.11661935e+00
-4.17926192e-01 -6.46829903e-01 -5.29128850e-01 -1.48527539e+00
3.82749319e-01 -8.66743684e-01 1.53283402e-01 -1.17366910e+00
2.89350629e-01 -1.95520222e-01 -2.25856408e-01 5.87136865e-01
-2.53380537e-01 7.61395752e-01 6.44164979e-01 8.46878886e-02
-1.19511306e+00 2.55670995e-01 1.06154275e+00 -1.64713115e-01
-3.42588127e-02 9.55516472e-02 -1.48915201e-01 7.61698961e-01
3.87790293e-01 -6.01225138e-01 -2.60811206e-02 -4.97849703e-01
-5.08088052e-01 -5.33913635e-02 8.55848968e-01 -1.22037041e+00
3.77965659e-01 1.31816398e-02 3.90058160e-01 -7.75056899e-01
4.14721191e-01 -9.21960890e-01 -1.22528672e-01 7.74112701e-01
-2.11842999e-01 2.75976229e-02 5.47027230e-01 7.88313389e-01
-1.39957547e-01 -1.00569554e-01 1.34141576e+00 9.02452692e-02
-8.96684527e-01 5.92631876e-01 -3.27783704e-01 2.84643233e-01
1.37147689e+00 -2.66269863e-01 -8.28261748e-02 1.67445838e-01
-9.20225739e-01 4.94574457e-01 5.81626594e-01 3.07455391e-01
2.97077954e-01 -1.17423987e+00 -3.96616757e-01 -7.90413693e-02
-2.22467244e-01 4.94442955e-02 8.45116600e-02 8.40649307e-01
-8.59634638e-01 2.87649691e-01 -1.31909356e-01 -9.84995604e-01
-1.56331789e+00 6.99892461e-01 4.92304236e-01 -1.99053898e-01
-7.99539626e-01 8.98640156e-01 -2.09650528e-02 9.54126492e-02
5.54081500e-01 -4.79324102e-01 3.36425990e-01 6.35012314e-02
5.07579029e-01 4.40123022e-01 1.30922475e-03 -5.35202265e-01
-6.16309404e-01 7.82095015e-01 -1.14248306e-01 -1.55669034e-01
1.06508565e+00 4.81992736e-02 1.26826987e-01 2.32709274e-01
1.24655700e+00 -8.90598372e-02 -1.77717400e+00 -1.52030885e-01
2.09792569e-01 -5.24496317e-01 1.84031263e-01 -5.79409897e-01
-1.50531149e+00 7.50246704e-01 6.07053876e-01 1.22203259e-02
1.02861655e+00 6.46265522e-02 1.02796841e+00 4.85072464e-01
9.64452997e-02 -1.01367283e+00 1.02366753e-01 2.91637838e-01
2.34487548e-01 -1.29981947e+00 3.40739526e-02 -6.00212574e-01
-4.85814512e-01 1.13606143e+00 6.16725981e-01 -3.87742579e-01
6.06222808e-01 6.17322803e-01 5.37224375e-02 3.17774452e-02
-4.95993942e-01 -3.57868880e-01 3.48485500e-01 3.60029548e-01
1.68363184e-01 -2.40036801e-01 1.13470398e-01 9.92022306e-02
5.66599488e-01 1.60157725e-01 3.55950773e-01 9.16943669e-01
-4.89179164e-01 -1.12718177e+00 -2.76544809e-01 1.88366681e-01
-6.96089387e-01 8.05856586e-02 -7.38899186e-02 1.00635183e+00
-1.71300486e-01 5.99082232e-01 2.54042685e-01 3.28811139e-01
9.74430218e-02 7.10184276e-02 6.50042653e-01 -4.22613770e-01
-7.77547002e-01 2.72441417e-01 -2.02513456e-01 -1.10220432e+00
-5.93961895e-01 -7.61966765e-01 -1.47363412e+00 -1.60737768e-01
-2.99463600e-01 -1.59421548e-01 6.08810425e-01 8.54323208e-01
2.26011351e-01 5.78746140e-01 8.03085044e-02 -1.20789552e+00
-5.40559292e-01 -3.67048353e-01 -2.98075050e-01 3.20743829e-01
6.85731888e-01 -5.91286302e-01 -5.11092059e-02 4.60916340e-01] | [8.981701850891113, -0.22268594801425934] |
55076973-4bdd-4bdc-8afe-066442d8227d | class-incremental-novel-class-discovery | 2207.08605 | null | https://arxiv.org/abs/2207.08605v1 | https://arxiv.org/pdf/2207.08605v1.pdf | Class-incremental Novel Class Discovery | We study the new task of class-incremental Novel Class Discovery (class-iNCD), which refers to the problem of discovering novel categories in an unlabelled data set by leveraging a pre-trained model that has been trained on a labelled data set containing disjoint yet related categories. Apart from discovering novel classes, we also aim at preserving the ability of the model to recognize previously seen base categories. Inspired by rehearsal-based incremental learning methods, in this paper we propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes by jointly exploiting base class feature prototypes and feature-level knowledge distillation. We also propose a self-training clustering strategy that simultaneously clusters novel categories and trains a joint classifier for both the base and novel classes. This makes our method able to operate in a class-incremental setting. Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches. Code is available at https://github.com/OatmealLiu/class-iNCD | ['Elisa Ricci', 'Nicu Sebe', 'Zhun Zhong', 'Mingxuan Liu', 'Subhankar Roy'] | 2022-07-18 | null | null | null | null | ['novel-class-discovery', 'novel-class-discovery'] | ['computer-vision', 'methodology'] | [ 4.26705718e-01 3.27677131e-01 -2.01222152e-01 -4.95770097e-01
-6.75264657e-01 -6.11922503e-01 8.10418785e-01 5.14915407e-01
-3.78654420e-01 7.15239167e-01 -2.14302972e-01 -2.21542180e-01
-2.22101703e-01 -6.36367202e-01 -7.82039046e-01 -6.75486088e-01
-3.05106014e-01 6.89750314e-01 5.01991272e-01 3.01212102e-01
3.20038646e-01 5.41717887e-01 -2.21523261e+00 6.16627514e-01
5.41337252e-01 6.97297096e-01 5.49577847e-02 6.51285052e-01
3.11924722e-02 8.26384783e-01 -2.65314192e-01 -1.26147076e-01
3.04063529e-01 -4.42182392e-01 -1.14135396e+00 4.10503417e-01
4.34274465e-01 5.53801097e-02 -2.78516740e-01 7.74391234e-01
2.24260136e-01 5.33815563e-01 5.68055272e-01 -1.25661457e+00
-4.99941707e-01 6.07686639e-01 -3.02096397e-01 3.09381664e-01
1.02746114e-01 -5.68192787e-02 7.32583106e-01 -1.32360315e+00
7.45565176e-01 1.01290619e+00 7.22570240e-01 8.43287826e-01
-1.44738770e+00 -5.87207019e-01 6.72964811e-01 6.21603191e-01
-1.55867660e+00 -6.55850947e-01 6.95752025e-01 -4.68232632e-01
9.10609543e-01 1.77097052e-01 4.36440766e-01 9.11360323e-01
-5.13952523e-02 9.28375125e-01 1.20520496e+00 -7.84427822e-01
6.30663514e-01 3.91573936e-01 6.19303226e-01 4.08637792e-01
2.02610701e-01 1.09579347e-01 -5.68337977e-01 -1.71677798e-01
5.89475334e-02 4.71252084e-01 -8.21090415e-02 -9.32300985e-01
-1.21132851e+00 6.40528381e-01 3.55544567e-01 4.86918449e-01
-2.04135224e-01 -2.95060843e-01 3.87921363e-01 4.76119637e-01
5.16845107e-01 2.59467989e-01 -7.65781462e-01 1.13759063e-01
-8.30657840e-01 -3.27663147e-03 7.31887043e-01 9.20095563e-01
9.74664748e-01 -5.08570373e-01 -1.06184468e-01 7.34969974e-01
-2.59261847e-01 5.11274897e-02 8.21765661e-01 -7.44757414e-01
-1.59343913e-01 7.61617303e-01 2.51210406e-02 -4.27193880e-01
-3.47486079e-01 -6.87149584e-01 -6.49186373e-01 5.21241352e-02
7.32809752e-02 2.82999396e-01 -1.23519802e+00 1.70389152e+00
6.81453943e-01 7.45365083e-01 3.92859310e-01 2.42441326e-01
4.27772731e-01 4.17276680e-01 -1.09951004e-01 -5.07669926e-01
7.28044331e-01 -1.15465665e+00 -1.45265922e-01 -2.55953819e-01
5.29861152e-01 -3.21193218e-01 7.46946752e-01 5.44166267e-01
-6.13056362e-01 -8.39447975e-01 -9.49300289e-01 2.80912668e-01
-7.04494715e-01 -2.71377474e-01 5.45266628e-01 2.20455512e-01
-9.54869390e-01 8.12885404e-01 -1.02473664e+00 -5.69097221e-01
6.47386551e-01 2.87738502e-01 -3.65183175e-01 -3.60161990e-01
-6.19131923e-01 6.50967717e-01 1.00533557e+00 1.73816700e-02
-1.11700499e+00 -6.98097825e-01 -5.85332870e-01 -1.63401529e-01
5.76006055e-01 -4.81797099e-01 1.52095103e+00 -9.72463787e-01
-1.04107416e+00 8.69764984e-01 -3.94869000e-01 -6.54671669e-01
1.57238364e-01 -1.53990686e-01 -6.20117903e-01 1.89882182e-02
3.47402036e-01 7.17017114e-01 9.36750114e-01 -1.39863241e+00
-1.25115776e+00 -3.44052941e-01 -1.91105232e-01 1.41646966e-01
-3.71017247e-01 -5.76475322e-01 -1.57201469e-01 -4.74549234e-01
3.80077660e-01 -9.96717632e-01 -1.05036348e-01 -2.79355943e-01
-1.13780960e-01 -5.94272673e-01 1.15767276e+00 -2.09090874e-01
1.10518277e+00 -2.24822664e+00 1.38416916e-01 4.69561741e-02
3.61963600e-01 4.04240310e-01 -6.08008094e-02 2.62980908e-01
-3.67860317e-01 -2.57574320e-01 -4.65730309e-01 -4.24085796e-01
-1.88381538e-01 5.32128692e-01 -6.74973249e-01 1.97107986e-01
1.93292290e-01 7.39223599e-01 -1.19006491e+00 -1.28693208e-01
1.45174921e-01 2.22343668e-01 -4.63330716e-01 1.72753140e-01
-2.64882654e-01 4.82247382e-01 1.01982966e-01 7.12041497e-01
7.65246570e-01 -1.96189284e-01 2.17576995e-01 3.17772537e-01
3.71690169e-02 4.08634916e-02 -1.17651069e+00 1.86308002e+00
-2.60079741e-01 3.13311011e-01 -5.95774472e-01 -1.49983490e+00
7.38921285e-01 1.23855747e-01 1.41225070e-01 -5.41730404e-01
-2.25704119e-01 2.74738610e-01 -1.53838575e-01 -2.50458300e-01
3.21906447e-01 -3.58219355e-01 -1.06118672e-01 4.15986538e-01
5.19834757e-01 2.51160979e-01 2.35041201e-01 3.44452083e-01
1.26357341e+00 2.71088760e-02 4.04536843e-01 -5.80690913e-02
4.01664197e-01 4.28738110e-02 7.44626999e-01 1.29909861e+00
-4.54958789e-02 2.91596830e-01 -1.60503574e-02 -7.04475880e-01
-7.67154515e-01 -1.48014843e+00 -2.86182702e-01 1.25557148e+00
4.43544313e-02 -2.82764167e-01 -1.10736981e-01 -1.25387132e+00
1.34564877e-01 1.05272269e+00 -9.49801683e-01 -6.55158699e-01
-3.74182016e-01 -5.92163444e-01 -3.48055176e-02 4.32381570e-01
1.88232392e-01 -9.43096936e-01 -5.33952117e-01 4.08943921e-01
9.95663479e-02 -6.13365948e-01 -2.82842163e-02 7.45566547e-01
-1.17169106e+00 -1.29924297e+00 -3.55973095e-01 -1.10456693e+00
8.64680946e-01 3.49800944e-01 1.08713806e+00 4.57911007e-02
-3.34378541e-01 6.87016249e-01 -6.78993821e-01 -4.56281155e-01
-4.54316735e-01 3.08024645e-01 2.69612998e-01 2.51188576e-01
6.53835416e-01 -8.86597037e-01 -3.40425104e-01 2.04841793e-01
-7.93385267e-01 2.17624307e-02 7.22045720e-01 1.06219399e+00
8.69435132e-01 4.81100678e-01 8.34748566e-01 -1.25995398e+00
8.07293691e-03 -8.27765822e-01 -2.90646702e-01 4.68824506e-01
-8.89584899e-01 9.87730101e-02 4.50177997e-01 -8.56443822e-01
-1.02436507e+00 1.77223682e-01 2.79718369e-01 -4.74108458e-01
-4.67657357e-01 3.31382066e-01 -3.85141410e-02 2.44029343e-01
6.79915965e-01 5.71057200e-01 -2.42812663e-01 -7.32297182e-01
5.36907256e-01 6.40470326e-01 9.70325708e-01 -4.33545917e-01
9.09331262e-01 6.44533575e-01 -2.82884389e-01 -5.71900904e-01
-1.23680317e+00 -8.43314111e-01 -1.35844958e+00 -6.85421564e-03
2.93454289e-01 -9.33882713e-01 -1.93221226e-01 5.48145115e-01
-7.69711554e-01 -4.36776727e-01 -9.39605534e-01 2.31469363e-01
-4.38511342e-01 1.67081341e-01 -9.96813029e-02 -6.56325459e-01
-1.16356775e-01 -3.65162760e-01 7.71812618e-01 2.86241889e-01
-1.61301345e-01 -8.66487086e-01 3.09930980e-01 -4.13132310e-02
2.17349693e-01 2.52708197e-01 9.06373978e-01 -1.26341069e+00
-4.32058930e-01 -3.11934084e-01 2.07030922e-01 4.14274871e-01
3.43516678e-01 -5.81217766e-01 -1.18023872e+00 -7.56058633e-01
-4.26958352e-02 -3.60056907e-01 1.33762419e+00 -2.90281236e-01
1.12880766e+00 -3.65591109e-01 -8.76736104e-01 2.66670406e-01
1.08058333e+00 5.09765029e-01 3.13762903e-01 3.61606985e-01
5.16997993e-01 3.70608211e-01 7.67526329e-01 3.37825149e-01
3.55557621e-01 4.10026014e-01 1.77824423e-01 1.99777022e-01
-3.28603357e-01 -2.89277524e-01 -1.23526871e-01 7.21032917e-01
3.50811720e-01 1.03449360e-01 -9.45224643e-01 1.11119711e+00
-2.14785671e+00 -1.02195740e+00 4.59057450e-01 2.35352921e+00
1.05656767e+00 3.09739500e-01 -2.08876077e-02 4.48109806e-01
8.82818937e-01 -5.17258525e-01 -1.05954492e+00 -2.80011535e-01
1.09644555e-01 5.54278076e-01 -1.29556328e-01 3.61306131e-01
-1.41490686e+00 7.62468040e-01 5.30277729e+00 7.32548892e-01
-7.99266458e-01 2.39330649e-01 4.94034082e-01 -1.61009878e-01
7.18901977e-02 3.88464004e-01 -8.81331682e-01 2.48654574e-01
9.88184452e-01 -3.94649893e-01 1.86910436e-01 1.03898728e+00
-5.67379415e-01 -2.73107141e-01 -1.57293260e+00 8.06501091e-01
2.82696694e-01 -1.23185587e+00 8.21801946e-02 -2.38111272e-01
9.23365831e-01 -3.43613029e-02 9.70790163e-02 7.55406857e-01
3.66619498e-01 -4.15496469e-01 6.92635298e-01 6.82231307e-01
5.80831945e-01 -8.36642563e-01 4.79641438e-01 5.70670724e-01
-1.11014509e+00 -5.32000721e-01 -3.25069070e-01 -1.78507313e-01
-4.80535209e-01 7.41624236e-01 -1.29694080e+00 5.67294657e-01
9.16728795e-01 1.10603321e+00 -1.11930501e+00 1.34881580e+00
-1.72716573e-01 6.82134151e-01 -1.85293600e-01 4.52058583e-01
-3.46198827e-02 4.59690332e-01 4.43225563e-01 1.07310188e+00
1.37667030e-01 2.03195617e-01 2.99479336e-01 3.64858419e-01
-1.00329474e-01 -3.85600120e-01 -6.01140738e-01 2.02247173e-01
7.63855696e-01 9.84033644e-01 -1.02084839e+00 -6.71974182e-01
-2.56708175e-01 1.22984791e+00 5.45686245e-01 5.35431169e-02
-4.28919762e-01 -5.09761810e-01 3.24411273e-01 -1.05673419e-02
8.52078199e-01 -5.54892644e-02 2.37858713e-01 -1.39764762e+00
3.54218297e-02 -5.03780723e-01 9.83295143e-01 -5.06531477e-01
-1.36536920e+00 6.09788239e-01 1.70592546e-01 -1.26245368e+00
-3.53259593e-01 -2.43713513e-01 -4.72525030e-01 2.25601763e-01
-1.50227678e+00 -1.15370083e+00 -1.43991828e-01 7.02150822e-01
7.71071017e-01 -1.83569580e-01 9.88163590e-01 8.94557014e-02
-4.08838093e-01 6.90134823e-01 4.93023217e-01 -1.30034164e-01
7.33063102e-01 -1.28773475e+00 3.55472744e-01 1.12635720e+00
3.46334368e-01 6.52726114e-01 4.64652061e-01 -6.72928870e-01
-9.57864106e-01 -1.59179854e+00 1.02331877e+00 -6.93957150e-01
4.66142535e-01 -6.50900364e-01 -1.22100198e+00 1.05144715e+00
-1.48185953e-01 2.12254584e-01 8.08940053e-01 2.44608253e-01
-6.67288363e-01 -2.93603241e-01 -1.11026263e+00 2.38091156e-01
1.33680522e+00 -4.13974673e-01 -1.14686656e+00 3.42510581e-01
8.66481543e-01 -1.34072721e-01 -4.43480343e-01 4.57290590e-01
2.92875588e-01 -6.76243246e-01 8.59130919e-01 -7.10091650e-01
-2.75752991e-01 -4.52430218e-01 -8.60365033e-02 -1.25456560e+00
-5.29001415e-01 -4.59740162e-01 -5.67373335e-01 1.34493935e+00
3.14983726e-01 -7.94094205e-01 6.10914230e-01 3.04578215e-01
-1.84932023e-01 -4.91647214e-01 -1.13759589e+00 -1.15998733e+00
1.61927193e-02 -2.48927101e-01 4.98317868e-01 1.09941065e+00
-1.08659863e-01 4.42022026e-01 -1.57221034e-01 1.57931983e-01
8.73671055e-01 6.27562404e-01 6.70844853e-01 -1.62988305e+00
-2.90377706e-01 -2.50716507e-02 -5.38155079e-01 -5.99236310e-01
2.16658175e-01 -1.33603120e+00 1.43635541e-01 -1.20213866e+00
4.47656840e-01 -6.88251913e-01 -8.13904345e-01 1.19576907e+00
-9.10290182e-02 2.30176255e-01 7.27472901e-02 4.43542838e-01
-1.28570342e+00 3.69739980e-01 5.30735850e-01 -1.82472542e-01
-4.95633960e-01 2.19550833e-01 -1.05245960e+00 6.16202533e-01
7.94710040e-01 -8.79095137e-01 -5.08665502e-01 -1.24252319e-01
-2.32571676e-01 -5.16999722e-01 4.26531941e-01 -1.28885841e+00
6.99994981e-01 8.68409798e-02 4.90318984e-01 -7.58243799e-01
1.59400538e-01 -7.73814917e-01 1.03470519e-01 7.04783142e-01
-3.91767353e-01 -4.07608390e-01 3.38330865e-01 1.02552271e+00
-3.45947891e-02 7.22763762e-02 8.07339370e-01 -2.27003008e-01
-1.32681417e+00 1.82966635e-01 -2.85037100e-01 -3.75103615e-02
1.27110887e+00 -3.11134964e-01 -2.54611701e-01 2.48080432e-01
-1.29694116e+00 2.27391094e-01 3.88558388e-01 6.27028704e-01
7.57342041e-01 -1.24593091e+00 -5.89194655e-01 4.39024091e-01
5.65534830e-01 2.56403774e-01 1.74861088e-01 4.81246501e-01
2.11553678e-01 3.70302737e-01 4.63488810e-02 -8.26483309e-01
-1.11953259e+00 1.23278534e+00 1.11720748e-01 -9.87497792e-02
-6.99309349e-01 9.57643569e-01 1.26002908e-01 -7.60523081e-01
3.99360389e-01 -8.34771395e-02 -5.62742213e-03 1.17743984e-01
6.32905841e-01 3.11932236e-01 4.14615989e-01 -2.65681922e-01
-6.56597555e-01 2.97206789e-01 -7.13104546e-01 2.01755077e-01
1.63489652e+00 -2.51820594e-01 -1.12597339e-01 9.41198647e-01
1.18843830e+00 -4.64399517e-01 -1.21187532e+00 -7.93865860e-01
4.26494360e-01 -3.86609465e-01 -3.00821602e-01 -1.19433153e+00
-4.38054264e-01 4.94843781e-01 9.52221036e-01 -1.76596329e-01
1.39792824e+00 4.43427056e-01 4.25118387e-01 8.17638516e-01
6.39680326e-01 -9.76435065e-01 3.43347907e-01 4.62405503e-01
6.82290375e-01 -1.14588380e+00 -1.54366434e-01 -9.53624174e-02
-2.98159957e-01 1.00261700e+00 5.60468912e-01 3.15360464e-02
9.43323195e-01 -1.61526993e-01 -1.82049498e-01 4.02003564e-02
-1.10392845e+00 -3.42982501e-01 1.12569101e-01 8.11530709e-01
-2.36612797e-01 4.59271148e-02 1.06311642e-01 6.72806323e-01
7.18111321e-02 1.45733252e-01 5.21709502e-01 1.51929677e+00
-5.78429639e-01 -1.22769237e+00 -1.86803266e-01 5.11049628e-01
7.07390159e-02 -1.06136315e-02 -3.93273294e-01 7.68458784e-01
6.96503162e-01 9.52970624e-01 3.59348059e-01 -5.45071185e-01
3.67688715e-01 6.41150475e-01 4.90254164e-01 -1.24836338e+00
-1.14535823e-01 -2.50897199e-01 -3.23605031e-01 -3.22172046e-01
-5.41896343e-01 -9.33291078e-01 -9.94269133e-01 1.15079641e-01
-2.86754876e-01 6.21572137e-01 2.47113749e-01 8.66853297e-01
6.34563267e-01 2.82851249e-01 9.38009977e-01 -6.78294420e-01
-2.52585292e-01 -7.75621414e-01 -5.60236633e-01 3.65289658e-01
5.08466601e-01 -9.16449547e-01 -5.64362586e-01 3.13192338e-01] | [9.86412239074707, 3.2219293117523193] |
d082d03c-1c85-4041-b39b-ef80a5368f40 | quantifying-character-similarity-with-vision | 2305.14672 | null | https://arxiv.org/abs/2305.14672v1 | https://arxiv.org/pdf/2305.14672v1.pdf | Quantifying Character Similarity with Vision Transformers | Record linkage is a bedrock of quantitative social science, as analyses often require linking data from multiple, noisy sources. Off-the-shelf string matching methods are widely used, as they are straightforward and cheap to implement and scale. Not all character substitutions are equally probable, and for some settings there are widely used handcrafted lists denoting which string substitutions are more likely, that improve the accuracy of string matching. However, such lists do not exist for many settings, skewing research with linked datasets towards a few high-resource contexts that are not representative of the diversity of human societies. This study develops an extensible way to measure character substitution costs for OCR'ed documents, by employing large-scale self-supervised training of vision transformers (ViT) with augmented digital fonts. For each language written with the CJK script, we contrastively learn a metric space where different augmentations of the same character are represented nearby. In this space, homoglyphic characters - those with similar appearance such as ``O'' and ``0'' - have similar vector representations. Using the cosine distance between characters' representations as the substitution cost in an edit distance matching algorithm significantly improves record linkage compared to other widely used string matching methods, as OCR errors tend to be homoglyphic in nature. Homoglyphs can plausibly capture character visual similarity across any script, including low-resource settings. We illustrate this by creating homoglyph sets for 3,000 year old ancient Chinese characters, which are highly pictorial. Fascinatingly, a ViT is able to capture relationships in how different abstract concepts were conceptualized by ancient societies, that have been noted in the archaeological literature. | ['Melissa Dell', 'Shao-Yu Jheng', 'Abhishek Arora', 'Xinmei Yang'] | 2023-05-24 | null | null | null | null | ['optical-character-recognition'] | ['computer-vision'] | [ 3.80733907e-01 -3.78549844e-01 -9.82649848e-02 -4.65855241e-01
-4.72155184e-01 -9.14532304e-01 4.80800003e-01 6.08829141e-01
-7.03133106e-01 6.42497897e-01 5.04646122e-01 -8.91302675e-02
-2.14594185e-01 -1.02816927e+00 -7.77417600e-01 -2.82850236e-01
-2.28930898e-02 4.98535246e-01 -1.94379255e-01 -3.97009760e-01
4.11478966e-01 3.02780002e-01 -1.68989778e+00 3.72390538e-01
7.96053231e-01 2.53885925e-01 2.92116225e-01 5.72196126e-01
-3.63969922e-01 2.38766626e-01 -6.05814040e-01 -1.27539051e+00
2.58880436e-01 -3.73233885e-01 -4.64942962e-01 -6.34348989e-01
1.36514819e+00 -8.53019059e-02 -4.70308870e-01 1.11100733e+00
5.99960268e-01 -2.60745108e-01 6.88896537e-01 -1.08452332e+00
-1.36249936e+00 9.43182766e-01 -6.77944481e-01 1.64719701e-01
6.96220160e-01 1.69136867e-01 1.37243330e+00 -4.73727971e-01
9.81084526e-01 1.52614832e+00 1.31840181e+00 2.28103027e-01
-1.62562799e+00 -6.91436231e-01 -2.71985114e-01 2.47418940e-01
-1.27756190e+00 -2.63893843e-01 6.26107931e-01 -5.91862023e-01
8.59370708e-01 5.63791513e-01 7.80998886e-01 1.29527879e+00
2.21824069e-02 3.69235814e-01 1.08477378e+00 -6.08366787e-01
-8.06662515e-02 9.78000686e-02 1.29906207e-01 6.09319150e-01
5.60998499e-01 1.50014674e-02 -7.77121425e-01 -5.26232958e-01
6.21510804e-01 9.80951712e-02 -1.52314723e-01 -2.81262189e-01
-1.52767825e+00 7.15285480e-01 2.99895793e-01 2.01450422e-01
6.91990778e-02 2.70961016e-01 4.74791765e-01 5.89251578e-01
2.04182699e-01 7.29458213e-01 1.71083007e-02 -3.60184520e-01
-9.14707243e-01 3.56061071e-01 7.16735780e-01 9.40472186e-01
8.65075350e-01 -4.60399956e-01 -9.96479169e-02 1.24853706e+00
5.74020855e-02 5.80420077e-01 6.30168676e-01 -1.08850133e+00
6.14590585e-01 6.91644788e-01 -7.78133273e-02 -1.44552565e+00
-1.60159022e-01 1.38573334e-01 -5.93033671e-01 1.52133167e-01
6.31176412e-01 1.40418530e-01 -5.46245098e-01 1.92972422e+00
1.29497513e-01 -1.51358023e-01 -8.77238140e-02 7.18847990e-01
4.96691555e-01 2.89449692e-01 -1.63009856e-02 2.22571731e-01
1.67579496e+00 -2.73966908e-01 -3.58319998e-01 -3.85301709e-01
5.50312042e-01 -9.43609476e-01 1.35978711e+00 -1.82759278e-02
-9.67856348e-01 -3.92412484e-01 -1.05022788e+00 -2.61598915e-01
-6.92757487e-01 -2.27887020e-01 8.69154513e-01 9.80716050e-01
-1.01854491e+00 9.62969422e-01 -4.44014043e-01 -8.57191920e-01
4.88332421e-01 -6.70503005e-02 -7.18731880e-01 -3.70685458e-02
-1.05880618e+00 1.17593074e+00 1.54186517e-01 -1.64470017e-01
-1.21361218e-01 -9.46197271e-01 -8.25425565e-01 -1.71853021e-01
-1.27747431e-01 -4.63355899e-01 7.71211624e-01 -9.59676504e-01
-7.67124474e-01 1.44637823e+00 5.12572303e-02 -2.00405151e-01
7.75012553e-01 -9.98759419e-02 -6.05051756e-01 6.56066984e-02
3.04562956e-01 7.07018018e-01 5.01575470e-01 -9.48846221e-01
-3.38918626e-01 -4.01427001e-01 -3.40030193e-01 8.63087326e-02
-7.34082639e-01 3.79445970e-01 -4.63246137e-01 -1.14570940e+00
-3.41664143e-02 -8.55160415e-01 1.38834253e-01 8.70037317e-01
-2.26415247e-02 1.36031166e-01 2.75114506e-01 -8.99035275e-01
1.19071496e+00 -2.15211916e+00 -4.26391363e-02 3.44769418e-01
3.38054225e-02 -2.90465783e-02 -2.90176243e-01 7.83949018e-01
-1.00900412e-01 2.24455386e-01 -6.59932077e-01 -2.32707828e-01
2.80162066e-01 2.03837857e-01 -3.07456672e-01 8.00434828e-01
5.29315807e-02 8.48116100e-01 -1.01922989e+00 -6.42395914e-01
1.59183890e-02 3.25049311e-01 -4.37834889e-01 -8.84238929e-02
4.98950183e-02 -4.51981038e-01 2.77672023e-01 7.18184114e-01
5.84439695e-01 8.35794061e-02 3.29386711e-01 2.47422773e-02
-2.44393915e-01 -8.11166782e-03 -1.14978993e+00 1.88445997e+00
-7.19414055e-02 1.19565976e+00 -3.02154660e-01 -6.66043103e-01
1.21399677e+00 -2.54174739e-01 7.56133869e-02 -8.76027465e-01
-3.47222000e-01 3.27025950e-01 -2.62612123e-02 -4.68117356e-01
8.30332458e-01 1.35981534e-02 -6.49757683e-02 4.76255566e-01
-3.48062903e-01 -1.92273304e-01 2.69071072e-01 2.04164445e-01
1.22969782e+00 7.42070079e-02 8.94730538e-02 -2.67792016e-01
-4.48247828e-02 1.93962783e-01 6.91483796e-01 1.02015233e+00
-1.72019787e-02 1.00475597e+00 4.29661393e-01 -3.88413578e-01
-1.65772843e+00 -1.19346595e+00 -5.09986699e-01 9.70973909e-01
-3.49400043e-02 -4.22535568e-01 -6.17856622e-01 -2.12954241e-03
6.32180691e-01 4.06453520e-01 -6.63941503e-01 -1.38640538e-01
-6.02815568e-01 -7.27994263e-01 1.18302822e+00 5.27991593e-01
2.41813511e-01 -1.06512475e+00 -6.58980489e-01 1.82428405e-01
-3.68926441e-03 -6.44337475e-01 -4.70425665e-01 -9.05678049e-03
-5.34826636e-01 -9.96776223e-01 -1.06513524e+00 -8.36360693e-01
6.59479022e-01 2.21947744e-01 1.29249203e+00 3.37165803e-01
-8.96267295e-01 3.07573378e-01 -3.44560683e-01 -1.98925450e-01
-5.21625936e-01 -2.94691205e-01 2.71588027e-01 -3.10143054e-01
7.18314230e-01 -5.29715002e-01 -4.40723389e-01 2.38067776e-01
-8.18843782e-01 -8.22605342e-02 4.13914621e-01 7.17265069e-01
3.00256282e-01 -3.78880173e-01 9.36557949e-02 -8.86592627e-01
5.01695573e-01 -4.75994885e-01 -3.84885848e-01 7.26597309e-01
-4.73312855e-01 9.02680904e-02 5.39015949e-01 -6.36447906e-01
-7.20059097e-01 -3.04364502e-01 4.06981289e-01 -1.56275973e-01
-4.96839806e-02 2.68223554e-01 1.87168136e-01 -1.76060349e-02
1.05103564e+00 -7.53376782e-02 3.15779485e-02 -6.39980018e-01
4.01039362e-01 9.28250968e-01 1.06422627e+00 -1.00379252e+00
9.48115885e-01 5.74064493e-01 -3.61589998e-01 -8.49927545e-01
1.50851116e-01 -1.05633251e-01 -6.21271372e-01 -4.76139085e-03
6.96007133e-01 -9.37074184e-01 -7.93148518e-01 5.59352875e-01
-1.01222599e+00 -1.09592021e-01 -2.24703044e-01 5.03355682e-01
-4.00572926e-01 7.72433162e-01 -5.04119933e-01 -5.64298809e-01
-1.48240522e-01 -7.97373593e-01 7.75205135e-01 1.56371653e-01
-7.89515674e-01 -6.84939742e-01 5.11445165e-01 2.03520164e-01
1.87655583e-01 4.43562448e-01 1.22577429e+00 -3.99427831e-01
-1.62059944e-02 -1.33206114e-01 -3.35382223e-01 -2.09502599e-04
2.43257374e-01 5.52392423e-01 -8.29484284e-01 -2.96755850e-01
-7.00720131e-01 -1.62926018e-01 7.05336630e-01 -1.51324823e-01
9.81442392e-01 -1.46211416e-01 -4.17186230e-01 7.54244745e-01
1.34351110e+00 -1.38075501e-01 8.12180996e-01 6.65324748e-01
7.32084692e-01 9.50198114e-01 1.75715491e-01 3.30889314e-01
4.33140516e-01 7.64339209e-01 -5.87949604e-02 -9.58289802e-02
-1.88444987e-01 -5.56408942e-01 4.72254604e-01 4.43433613e-01
6.72532544e-02 -6.14081882e-03 -1.20285547e+00 6.93197489e-01
-1.72717357e+00 -1.29465735e+00 -2.83593565e-01 2.38234806e+00
1.35810328e+00 -3.35989669e-02 8.52011219e-02 9.51249599e-02
1.12225902e+00 -1.66206583e-02 -4.90567476e-01 -5.14525592e-01
-7.60164142e-01 1.66564003e-01 7.26728499e-01 1.10748172e-01
-7.75189042e-01 6.85697019e-01 6.77600288e+00 5.13409019e-01
-7.17720568e-01 -3.91271770e-01 2.25602403e-01 -3.21236819e-01
-7.90017366e-01 6.82535321e-02 -4.47162867e-01 9.77064073e-01
8.08149159e-01 -3.70472148e-02 5.74948072e-01 6.25925481e-01
-1.04065374e-01 -5.27152009e-02 -1.48095369e+00 1.32843137e+00
2.84892499e-01 -1.47956538e+00 1.71342958e-02 -1.24164395e-01
5.36061764e-01 -1.13399580e-01 1.64595619e-01 -2.66491860e-01
7.05003560e-01 -1.14172435e+00 1.07958889e+00 6.51676774e-01
1.08941162e+00 -5.32561183e-01 1.82041362e-01 -3.54241341e-01
-9.14165556e-01 2.56342683e-02 -8.14229727e-01 -1.26279797e-02
-7.95062557e-02 5.22172689e-01 -3.55656385e-01 6.00999929e-02
1.22796154e+00 7.29697526e-01 -1.09760475e+00 1.17442262e+00
7.58894905e-02 1.64291829e-01 -3.52129966e-01 -6.05096184e-02
-1.02291800e-01 -4.73528892e-01 3.63041759e-01 1.61289954e+00
4.55627471e-01 -1.48220867e-01 -4.78258371e-01 8.55438828e-01
-2.71271169e-01 7.61528984e-02 -8.44322681e-01 -2.24489704e-01
9.82692420e-01 9.97218490e-01 -6.71866953e-01 -1.17861368e-01
-6.53982103e-01 1.21344221e+00 4.74971980e-01 1.17868684e-01
-6.98521614e-01 -6.76497519e-01 1.15997028e+00 -3.82471047e-02
9.08971950e-02 -1.51141822e-01 -3.93074423e-01 -1.01373613e+00
2.74979174e-01 -1.19304109e+00 5.57554007e-01 -8.58401060e-01
-1.75236297e+00 1.21890679e-01 -9.71521139e-02 -1.08060610e+00
1.92392886e-01 -6.60101175e-01 -4.90976989e-01 9.67715740e-01
-1.09094691e+00 -9.59536850e-01 -4.02311921e-01 4.48356688e-01
3.20740640e-02 -3.26433957e-01 8.54720056e-01 3.80911350e-01
-5.20858169e-01 1.12037861e+00 7.23373294e-01 3.52669418e-01
1.23626757e+00 -1.29882717e+00 1.06470096e+00 6.42891765e-01
4.47196513e-01 1.11576045e+00 6.93138719e-01 -9.49874580e-01
-1.56819117e+00 -6.00967228e-01 8.20053399e-01 -6.93468451e-01
8.48779142e-01 -6.40794396e-01 -1.17260373e+00 5.41310251e-01
-1.66617990e-01 -2.71436274e-01 9.95092034e-01 7.30537921e-02
-1.09736335e+00 5.02877496e-03 -1.22352743e+00 1.01421237e+00
1.49293888e+00 -1.02240467e+00 -8.80983055e-01 3.17539781e-01
3.50570738e-01 -3.21946889e-02 -9.67570126e-01 -1.00409679e-01
1.04303896e+00 -8.09648335e-01 1.25541949e+00 -6.29114330e-01
7.53947556e-01 -2.96615034e-01 -3.61622334e-01 -1.04226494e+00
-3.83320838e-01 -6.61871910e-01 3.36134851e-01 1.67232990e+00
2.93382585e-01 -5.67123175e-01 6.95537210e-01 8.65225554e-01
9.94612947e-02 -7.43675679e-02 -8.99078786e-01 -9.99203384e-01
2.18093365e-01 -2.27709860e-01 8.53483617e-01 1.39257526e+00
9.92148444e-02 -4.73109007e-01 -2.44870052e-01 -1.00883275e-01
7.81106293e-01 -6.52350634e-02 6.26903713e-01 -1.51423335e+00
-2.51160949e-01 -7.57247508e-01 -7.76423037e-01 -2.48812452e-01
2.21319899e-01 -1.27087927e+00 -1.55096203e-01 -1.09436178e+00
3.44399512e-01 -7.25228608e-01 1.01022899e-01 5.24273634e-01
-2.22023904e-01 4.88465756e-01 1.45731315e-01 4.73218530e-01
1.97177231e-01 2.60507539e-02 4.50448513e-01 -3.96464318e-01
3.75716388e-02 -8.44114423e-01 -8.32797348e-01 6.22634411e-01
4.53835875e-01 -5.07802069e-01 5.25998324e-02 -9.18918312e-01
6.48808956e-01 -4.96614397e-01 4.35303122e-01 -8.61938417e-01
2.72363126e-01 -2.90485203e-01 6.77239120e-01 -1.57116592e-01
2.31046647e-01 -8.12494576e-01 6.79334939e-01 4.51485991e-01
-5.78847587e-01 4.65500981e-01 6.32303804e-02 4.63449538e-01
3.30204636e-01 -4.02640998e-01 6.06097639e-01 -2.73476362e-01
-8.06578100e-01 -9.26673040e-02 -2.61583794e-02 8.80349651e-02
8.21133196e-01 -7.57661581e-01 -8.27446043e-01 7.70136937e-02
1.52641207e-01 6.78172382e-03 1.23649907e+00 5.70103884e-01
4.60975587e-01 -1.38736880e+00 -8.33844423e-01 4.67210151e-02
5.48395634e-01 -6.68119729e-01 -1.24883406e-01 2.29829744e-01
-1.03070629e+00 -2.57882714e-01 -7.40370810e-01 -3.87834936e-01
-1.31174791e+00 4.92638588e-01 1.39875663e-02 6.40685201e-01
-8.86199713e-01 8.30666423e-01 -3.12059343e-01 -4.83375967e-01
1.99303746e-01 1.78966969e-02 4.43119891e-02 5.27271986e-01
5.60770392e-01 6.19222581e-01 -3.10202409e-02 -6.17627203e-01
-4.84846652e-01 9.13596213e-01 -1.58977702e-01 -1.60168424e-01
1.43070877e+00 7.46993497e-02 -3.98017019e-01 4.39575195e-01
1.28074133e+00 8.32296535e-02 -9.72513258e-01 -2.52034575e-01
2.39293605e-01 -8.62195790e-01 -4.99122381e-01 -5.71921468e-01
-6.74296200e-01 5.59589863e-01 8.55966330e-01 -8.27325881e-02
4.99004364e-01 -9.17285085e-02 5.59147537e-01 5.82291901e-01
2.85710216e-01 -1.38511705e+00 -1.89172700e-01 1.03634290e-01
7.32799888e-01 -1.17004764e+00 1.73449233e-01 4.75917011e-02
-5.72345674e-01 1.12887657e+00 3.67229640e-01 1.64633378e-01
-1.15790695e-01 1.78100571e-01 6.60183877e-02 -1.64376706e-01
-2.12915123e-01 2.48676892e-02 1.33215897e-02 9.01875317e-01
4.39358592e-01 1.16470888e-01 -4.02883917e-01 5.08015230e-02
-7.70520329e-01 -5.00550449e-01 5.85724711e-01 9.08242762e-01
-1.17381245e-01 -1.14232206e+00 -7.52141654e-01 6.43546522e-01
-9.76873711e-02 -2.90287167e-01 -7.65368521e-01 4.95402545e-01
9.18321833e-02 7.35247910e-01 5.73886752e-01 -3.26084971e-01
2.85930336e-01 6.03337027e-02 4.99696583e-01 -4.60990191e-01
-8.93668473e-01 -8.39976311e-01 5.97194768e-02 -2.92105317e-01
-1.91556096e-01 -1.03218460e+00 -9.06550050e-01 -1.00409305e+00
5.07581197e-02 -1.99921221e-01 6.59856498e-01 3.59501302e-01
1.78989187e-01 -1.63803056e-01 2.46525392e-01 -4.35726583e-01
-2.60890245e-01 -5.32354832e-01 -4.53243017e-01 1.04964626e+00
8.49259943e-02 -4.68575984e-01 -2.46657267e-01 1.05161123e-01] | [10.04007339477539, 10.279000282287598] |
959808d2-db87-4305-a3ec-d7e07c475db5 | unsupervised-hebbian-learning-on-point-sets | 2207.12323 | null | https://arxiv.org/abs/2207.12323v1 | https://arxiv.org/pdf/2207.12323v1.pdf | Unsupervised Hebbian Learning on Point Sets in StarCraft II | Learning the evolution of real-time strategy (RTS) game is a challenging problem in artificial intelligent (AI) system. In this paper, we present a novel Hebbian learning method to extract the global feature of point sets in StarCraft II game units, and its application to predict the movement of the points. Our model includes encoder, LSTM, and decoder, and we train the encoder with the unsupervised learning method. We introduce the concept of neuron activity aware learning combined with k-Winner-Takes-All. The optimal value of neuron activity is mathematically derived, and experiments support the effectiveness of the concept over the downstream task. Our Hebbian learning rule benefits the prediction with lower loss compared to self-supervised learning. Also, our model significantly saves the computational cost such as activations and FLOPs compared to a frame-based approach. | ['Saibal Mukhopadhyay', 'Saurabh Dash', 'Harshit Kumar', 'Beomseok Kang'] | 2022-07-13 | null | null | null | null | ['starcraft-ii'] | ['playing-games'] | [ 4.88201529e-02 4.29424196e-02 -1.00945070e-01 -1.06581777e-01
-1.13026887e-01 -1.87597424e-01 4.25052285e-01 -1.68504938e-01
-1.03983188e+00 8.07144701e-01 -4.41379920e-02 1.25404358e-01
-2.54225194e-01 -9.26183283e-01 -8.48753452e-01 -1.00917530e+00
-2.98593521e-01 1.13135271e-01 7.62773097e-01 -6.58275247e-01
5.72428226e-01 3.53628248e-01 -1.45024610e+00 3.61953616e-01
3.82408857e-01 1.31541824e+00 7.25316942e-01 9.52333868e-01
-2.51350760e-01 1.76398098e+00 -9.80604947e-01 -2.51267135e-01
4.52364981e-01 -5.01036823e-01 -6.78510725e-01 -2.95544982e-01
-5.23205936e-01 -1.97338954e-01 -8.61033261e-01 6.44568026e-01
6.86875820e-01 3.07745814e-01 4.89922017e-01 -1.21761143e+00
-2.02861205e-01 5.63953817e-01 -3.34898144e-01 7.71322489e-01
-2.56480426e-01 2.32457936e-01 8.84037971e-01 -4.37995195e-01
4.88122314e-01 6.43458724e-01 6.07578933e-01 5.82427263e-01
-5.32227695e-01 -4.79311198e-01 2.23266602e-01 8.31935108e-01
-1.39617419e+00 -2.85939723e-01 8.79391253e-01 -1.95442826e-01
1.27157688e+00 -2.08522975e-01 1.34363270e+00 9.48012590e-01
5.43875635e-01 1.43633616e+00 5.82755148e-01 -3.52373153e-01
5.55844784e-01 -4.19306695e-01 -3.32145810e-01 9.14327204e-01
-2.01290235e-01 2.90515989e-01 -8.96856248e-01 3.95737588e-01
1.16144824e+00 9.90523547e-02 -3.01482845e-02 -3.69875729e-01
-9.07208264e-01 7.44966924e-01 5.79314768e-01 3.86576414e-01
-6.15202785e-01 6.82692707e-01 4.30210203e-01 5.26222646e-01
2.07602963e-01 4.72479433e-01 -6.69220150e-01 -7.37032294e-01
-8.13070953e-01 1.22667283e-01 6.83316469e-01 8.43094945e-01
3.87238920e-01 4.42413419e-01 -3.79251726e-02 7.05614865e-01
-5.28902002e-02 1.65720955e-01 9.97024357e-01 -8.64198208e-01
1.76898599e-01 5.13702750e-01 -1.25632256e-01 -8.73915315e-01
-4.27299023e-01 -5.56436181e-01 -5.96586287e-01 4.59140509e-01
7.41686150e-02 -3.10600668e-01 -5.37488580e-01 1.69764304e+00
-1.38581544e-01 6.35254562e-01 3.52758020e-01 7.82163918e-01
4.88044262e-01 8.73362184e-01 -2.15911448e-01 -2.36901611e-01
7.18910098e-01 -1.29257464e+00 -7.56197572e-01 -1.99698687e-01
6.07219875e-01 -1.07242120e-02 6.94291830e-01 6.03026330e-01
-1.24880934e+00 -5.73338151e-01 -1.11368859e+00 2.35616058e-01
-3.62663567e-01 6.73109889e-02 7.59986281e-01 1.93605736e-01
-1.06762874e+00 9.48067307e-01 -1.03078246e+00 -1.94746926e-01
6.18209124e-01 8.36441278e-01 -2.19788384e-02 8.46391559e-01
-1.11862850e+00 1.04795873e+00 7.69696593e-01 -1.92162730e-02
-8.57289314e-01 -2.29596287e-01 -6.32390499e-01 2.40007997e-01
3.85962874e-01 -3.44549984e-01 1.49131382e+00 -1.44600594e+00
-2.18525934e+00 5.40432096e-01 9.82744545e-02 -1.12042773e+00
1.49374142e-01 -1.52950302e-01 -1.34217232e-01 1.92950875e-01
-3.57590109e-01 8.28864872e-01 7.19464481e-01 -7.76465118e-01
-1.28923082e+00 -1.55110970e-01 1.54499426e-01 6.24920964e-01
-5.36958456e-01 -2.91505814e-01 -3.79558116e-01 -6.52288258e-01
-1.64254814e-01 -6.02991939e-01 -2.75876880e-01 -1.94926947e-01
4.92062241e-01 -3.02821994e-01 6.62355125e-01 -6.01378143e-01
1.29267895e+00 -2.09407973e+00 2.33860165e-01 -9.16928500e-02
1.55390233e-01 2.72363037e-01 4.48402315e-02 1.77564248e-01
2.77455211e-01 -5.85115552e-01 -5.30935042e-02 2.58163750e-01
-2.57035583e-01 5.00616550e-01 -2.41518080e-01 1.85097888e-01
6.27409369e-02 1.26841581e+00 -1.01882410e+00 -4.44984466e-01
1.39490888e-01 1.14390664e-01 -5.02903223e-01 2.71963179e-01
-1.74401388e-01 2.76616484e-01 -3.41553748e-01 2.18827009e-01
-7.19281882e-02 4.62337304e-03 6.44956157e-02 1.03359953e-01
-2.15531036e-01 1.77792445e-01 -8.50788176e-01 2.05871558e+00
-4.58450973e-01 9.02935743e-01 -3.74439955e-01 -1.55983984e+00
1.18643594e+00 1.46382019e-01 7.15351582e-01 -1.02517927e+00
4.59733337e-01 1.55304089e-01 3.60499948e-01 -5.52013457e-01
2.89863050e-01 9.24270675e-02 -9.39166024e-02 1.71715498e-01
5.79675317e-01 2.11890951e-01 3.85860950e-02 -2.38596588e-01
1.43153262e+00 5.79886556e-01 4.97391552e-01 -1.05032787e-01
4.37877744e-01 4.84654419e-02 6.69741452e-01 6.35783553e-01
-2.89107114e-01 4.89863148e-03 4.13769394e-01 -7.58188844e-01
-8.20730329e-01 -8.59475076e-01 5.59124231e-01 1.33901942e+00
5.70468068e-01 -1.86122566e-01 -7.62027681e-01 -4.86961097e-01
-3.32011431e-01 6.56988382e-01 -6.22795701e-01 -7.04180121e-01
-8.99234235e-01 -6.33055449e-01 7.21216261e-01 8.19196403e-01
8.94492030e-01 -1.61714208e+00 -1.52918243e+00 5.14813960e-01
5.29769026e-02 -7.72018433e-01 -3.62111151e-01 6.36409283e-01
-1.03487277e+00 -8.94391239e-01 -5.53820789e-01 -1.09785855e+00
3.20376605e-01 -1.04340442e-01 7.72096515e-01 -1.12802148e-01
-2.65439540e-01 2.45534077e-01 -4.92165595e-01 -5.84875286e-01
1.59980804e-02 2.55885780e-01 -7.35163018e-02 5.11034764e-03
4.66484696e-01 -5.84744275e-01 -6.89729929e-01 1.74296647e-01
-5.21974146e-01 2.61616975e-01 8.12812805e-01 1.04665697e+00
4.62044656e-01 3.81652206e-01 5.80064237e-01 -3.54197621e-01
7.22324133e-01 -2.78952390e-01 -6.50729775e-01 1.99701712e-01
-4.90786135e-01 3.65782350e-01 6.94321930e-01 -5.19316018e-01
-1.02134883e+00 2.12955892e-01 2.79570650e-02 -4.17912453e-01
2.64266312e-01 3.20117980e-01 2.43146662e-02 -3.29491407e-01
4.72680926e-01 6.76887572e-01 5.63801005e-02 -2.03795984e-01
9.80868861e-02 5.94866037e-01 7.81736314e-01 -2.79358238e-01
1.48543686e-01 3.56280088e-01 -1.32357180e-01 -6.56712115e-01
-4.59313989e-01 -2.82205015e-01 -7.36048162e-01 -6.39744759e-01
6.16314709e-01 -6.75095022e-01 -1.20170462e+00 6.83764756e-01
-1.19168103e+00 -7.96078086e-01 -7.78523743e-01 5.42975128e-01
-1.28481257e+00 -3.27007100e-02 -6.46017015e-01 -9.93317902e-01
-4.87354636e-01 -7.13061273e-01 5.45589209e-01 4.46753830e-01
1.56026766e-01 -9.04489994e-01 1.67051047e-01 -1.01091832e-01
2.58870065e-01 1.50788594e-02 3.99954021e-01 -6.60871744e-01
-4.58382368e-01 -1.05813593e-01 3.28987569e-01 8.54957476e-02
-1.48059666e-01 -4.79272962e-01 -6.14946246e-01 -6.20834343e-02
2.73313254e-01 -2.35218719e-01 8.56663883e-01 5.93771756e-01
1.49205196e+00 -3.16133559e-01 -1.92740455e-01 6.88759506e-01
1.39025521e+00 9.42910552e-01 7.21595466e-01 6.04829013e-01
3.14530313e-01 3.73637795e-01 6.71251416e-01 6.70851827e-01
3.81685734e-01 7.42793500e-01 5.85586548e-01 5.11878133e-02
1.55639187e-01 -3.37751359e-01 5.56140184e-01 1.11043119e+00
-4.04525459e-01 -3.66220504e-01 -7.04986036e-01 5.85747182e-01
-2.48200965e+00 -1.31535041e+00 4.50249642e-01 2.08921146e+00
7.06988692e-01 3.91369939e-01 2.60707974e-01 3.52536172e-01
5.73416233e-01 -1.58035215e-02 -7.93265164e-01 -6.18763328e-01
-3.30078453e-01 5.35810351e-01 9.39903855e-01 3.92244309e-01
-1.03413796e+00 1.43696725e+00 6.52984762e+00 1.04833984e+00
-1.31008434e+00 2.07837090e-01 4.28662002e-01 -5.23028910e-01
3.50944221e-01 -3.36368650e-01 -5.74534357e-01 6.32167041e-01
1.12087238e+00 -9.94148031e-02 6.83705032e-01 8.31925333e-01
7.24604651e-02 -8.04218277e-02 -7.43616521e-01 1.32227230e+00
2.11551294e-01 -1.61284447e+00 -3.10706973e-01 -5.68823032e-02
3.70322555e-01 1.25975609e-01 -2.50416517e-01 5.30608237e-01
5.46792328e-01 -9.63983238e-01 9.66176748e-01 8.16798031e-01
3.42437834e-01 -9.76579428e-01 7.95464158e-01 6.82235599e-01
-1.14846241e+00 -7.79733777e-01 -5.82254469e-01 -4.15053934e-01
1.60387233e-01 -1.80797756e-01 -6.85613215e-01 1.63312346e-01
8.17393124e-01 9.32642758e-01 -2.96683222e-01 1.09872615e+00
-2.42180318e-01 4.91847962e-01 -2.78347135e-01 -7.69221306e-01
4.76314545e-01 -2.56309677e-02 4.04937029e-01 1.02405870e+00
2.93245703e-01 4.38913971e-01 -1.48852021e-01 4.31057960e-01
1.94121689e-01 -2.96885194e-03 -5.70968032e-01 -2.42041564e-03
2.83843815e-01 9.60729539e-01 -8.33793581e-01 -1.99469715e-01
-9.87686813e-02 1.33695436e+00 5.45135319e-01 3.92781012e-02
-9.09754574e-01 -5.86720765e-01 2.42988810e-01 5.41465990e-02
6.41206682e-01 -2.03066736e-01 -3.46032947e-01 -8.85038078e-01
-2.18168452e-01 -3.91909570e-01 2.84203947e-01 -8.25022519e-01
-5.61433494e-01 6.18179679e-01 -2.94374794e-01 -1.41663551e+00
-5.41782677e-01 -7.74748266e-01 -6.34081423e-01 2.05173135e-01
-1.23958194e+00 -6.56603336e-01 -2.09054083e-01 6.91208839e-01
8.30251634e-01 -8.70596945e-01 6.18674517e-01 8.58698711e-02
-3.74515623e-01 5.51332593e-01 1.90748751e-01 2.30297625e-01
-3.58023159e-02 -1.17937803e+00 2.59007573e-01 6.11476541e-01
2.94891238e-01 -5.44974357e-02 3.54801983e-01 -3.14949960e-01
-1.16358268e+00 -7.97769487e-01 5.50889671e-01 -4.85894550e-03
4.77544397e-01 -2.80173510e-01 -4.12146807e-01 5.28434217e-01
3.39940280e-01 -1.28573731e-01 5.68989396e-01 -3.88356805e-01
2.96915531e-01 -4.34436440e-01 -9.50867772e-01 8.17285836e-01
1.31711900e+00 -3.30733694e-02 -7.73965538e-01 -2.87989024e-02
5.66901922e-01 -3.22016329e-01 -6.36771917e-01 2.27034256e-01
6.50585175e-01 -8.59746456e-01 8.52136850e-01 -7.47941852e-01
3.46257508e-01 -2.55457669e-01 -4.52984609e-02 -1.35690486e+00
-6.06705070e-01 -7.03156769e-01 -6.88503444e-01 5.19478679e-01
2.42874414e-01 -4.42489088e-01 1.13889849e+00 -1.83565002e-02
-2.63689041e-01 -1.13530409e+00 -1.21716535e+00 -7.27710903e-01
-2.01986730e-01 -1.84269279e-01 3.54252428e-01 5.34555674e-01
4.21886981e-01 2.38835782e-01 -4.75206405e-01 -1.90498844e-01
1.94747388e-01 -1.95187524e-01 5.40897131e-01 -1.00388968e+00
-4.70464408e-01 -6.74187303e-01 -1.03338540e+00 -1.36683762e+00
1.57594189e-01 -6.49372935e-01 2.41697416e-01 -1.35421741e+00
-2.36650273e-01 -7.02448562e-03 -7.28361130e-01 5.48170567e-01
2.31534719e-01 -2.03540206e-01 1.69279099e-01 2.40675390e-01
-9.00046945e-01 8.01793396e-01 9.70576882e-01 -1.19636588e-01
-4.15402442e-01 5.57093024e-02 -3.75097573e-01 7.58073032e-01
1.15394866e+00 -3.69968712e-01 -6.21818006e-01 -5.10464609e-01
1.00937046e-01 2.01079547e-01 2.52055496e-01 -1.42459643e+00
7.62725651e-01 -1.01475038e-01 4.12303299e-01 -4.17421222e-01
5.24518013e-01 -7.83918500e-01 -2.32338220e-01 1.07892573e+00
-5.28238535e-01 1.84762970e-01 1.49177238e-01 6.04533911e-01
-2.34230757e-01 -3.73734802e-01 7.07701862e-01 -3.48270684e-01
-1.31896639e+00 1.94599956e-01 -5.95847130e-01 -1.51761649e-02
1.27107668e+00 -6.68568432e-01 5.67876063e-02 -4.07119483e-01
-5.74397087e-01 2.03074127e-01 -9.06843692e-02 4.83103901e-01
7.40809619e-01 -1.24928284e+00 -3.16047192e-01 1.83957800e-01
-1.97249919e-01 -7.11951479e-02 4.89628576e-02 7.32693493e-01
-8.60819280e-01 2.95866191e-01 -7.52285421e-01 -3.88905019e-01
-8.20949972e-01 4.66084629e-01 6.45372331e-01 -2.51736045e-01
-7.07007587e-01 9.99784529e-01 -3.37632708e-02 -2.43873417e-01
3.95032793e-01 5.76211400e-02 -6.16118670e-01 -2.71685183e-01
3.66908997e-01 4.44335759e-01 -1.30571406e-02 -3.85008425e-01
-8.70843455e-02 3.30224961e-01 9.02919024e-02 -3.96923065e-01
1.58281624e+00 1.08337089e-01 2.63161421e-01 7.74593294e-01
7.69568086e-01 -6.43312335e-01 -1.74660718e+00 -2.71979898e-01
1.84143826e-01 -5.50253354e-02 2.15128213e-01 -6.55564129e-01
-1.38175523e+00 8.65252674e-01 7.22792268e-01 -1.78791374e-01
1.23098826e+00 -3.74803275e-01 9.60411787e-01 7.19589472e-01
6.92217708e-01 -1.63247430e+00 2.94738412e-01 6.68873906e-01
5.17502964e-01 -7.40927339e-01 -5.22640169e-01 1.91202298e-01
-9.37384486e-01 1.20347929e+00 9.71402347e-01 -5.92060626e-01
7.29401052e-01 6.09290123e-01 -2.07491919e-01 -9.32755470e-02
-1.21961653e+00 -3.26131046e-01 -2.01965973e-01 6.75441563e-01
5.65259112e-03 -3.04321498e-01 -4.80345517e-01 9.70672607e-01
-4.06947702e-01 4.48704302e-01 3.16528440e-01 1.16635096e+00
-7.88036883e-01 -6.29392028e-01 2.03177691e-01 3.86676252e-01
-1.88990042e-01 1.83152687e-02 -1.86821997e-01 5.39823055e-01
2.91841120e-01 6.69881225e-01 4.81289834e-01 -7.40083277e-01
3.35630983e-01 1.05591083e-03 7.13297129e-01 -2.31112853e-01
-8.21652353e-01 -8.86728242e-02 -3.70859116e-01 -4.71963316e-01
-4.26017016e-01 -3.78315419e-01 -1.67736244e+00 -1.50219128e-01
-2.18508631e-01 1.40272155e-01 4.69257802e-01 1.05072355e+00
4.51574057e-01 7.47952640e-01 7.99947083e-01 -8.04191053e-01
-3.82610798e-01 -8.00314963e-01 -5.99798679e-01 1.76445588e-01
1.80616714e-02 -7.67072976e-01 1.29704503e-02 1.58803195e-01] | [4.0051445960998535, 1.7337857484817505] |
b7c335d9-b839-4421-a10f-0e09db0d55c5 | decipherment | null | null | https://aclanthology.org/P13-5003 | https://aclanthology.org/P13-5003.pdf | Decipherment | null | ['Kevin Knight'] | 2013-08-01 | null | null | null | acl-2013-8 | ['decipherment'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.395583152770996, 3.554941415786743] |
e5463ecf-5281-49cf-9044-ea3034832607 | sahaayak-2023-the-multi-domain-bilingual | 2307.00021 | null | https://arxiv.org/abs/2307.00021v1 | https://arxiv.org/pdf/2307.00021v1.pdf | SAHAAYAK 2023 -- the Multi Domain Bilingual Parallel Corpus of Sanskrit to Hindi for Machine Translation | The data article presents the large bilingual parallel corpus of low-resourced language pair Sanskrit-Hindi, named SAHAAYAK 2023. The corpus contains total of 1.5M sentence pairs between Sanskrit and Hindi. To make the universal usability of the corpus and to make it balanced, data from multiple domain has been incorporated into the corpus that includes, News, Daily conversations, Politics, History, Sport, and Ancient Indian Literature. The multifaceted approach has been adapted to make a sizable multi-domain corpus of low-resourced languages like Sanskrit. Our development approach is spanned from creating a small hand-crafted dataset to applying a wide range of mining, cleaning, and verification. We have used the three-fold process of mining: mining from machine-readable sources, mining from non-machine readable sources, and collation from existing corpora sources. Post mining, the dedicated pipeline for normalization, alignment, and corpus cleaning is developed and applied to the corpus to make it ready to use on machine translation algorithms. | ['Jitendra Nasariwala', 'Vishvajitsinh Bakrola'] | 2023-06-27 | null | null | null | null | ['machine-translation'] | ['natural-language-processing'] | [ 1.41454324e-01 -1.46702990e-01 1.80832040e-03 -4.28106815e-01
-1.16163957e+00 -9.68347311e-01 8.16527188e-01 1.20050497e-01
-5.63569546e-01 1.14313233e+00 6.67032719e-01 -4.39535052e-01
4.46924008e-02 -4.11939830e-01 -4.68834341e-01 -2.17245087e-01
4.03421819e-01 1.04509795e+00 3.39885317e-02 -7.24236250e-01
6.18584514e-01 1.00029528e-01 -8.70573163e-01 3.87482256e-01
8.00702095e-01 1.10763781e-01 5.12162209e-01 4.20036525e-01
-3.37611556e-01 6.15995586e-01 -4.50430632e-01 -6.84749007e-01
6.59537435e-01 -6.32337272e-01 -1.31670725e+00 -1.90367848e-01
8.63141045e-02 1.19619317e-01 3.24583650e-02 8.10216844e-01
6.23285472e-01 -1.86008155e-01 1.73257023e-01 -7.97489941e-01
-7.14934349e-01 1.07486904e+00 -7.15382814e-01 3.76398087e-01
5.52735031e-01 -2.50828981e-01 9.08778429e-01 -8.99307251e-01
1.21683490e+00 9.49300647e-01 4.40320104e-01 2.17898369e-01
-6.97943807e-01 -7.56729662e-01 -6.48104727e-01 2.75378108e-01
-1.15975666e+00 -5.45075595e-01 5.03127873e-01 -5.77290773e-01
1.22250056e+00 1.94275677e-01 4.44989026e-01 1.00758338e+00
1.61123723e-01 3.13970149e-01 1.57042170e+00 -1.08231235e+00
-3.09548736e-01 3.43916655e-01 3.15148294e-01 1.14321485e-01
2.17353642e-01 -4.12351102e-01 -6.99544191e-01 -1.14467792e-01
2.77746111e-01 -3.97928298e-01 2.02083096e-01 2.94868320e-01
-1.35037172e+00 6.28445685e-01 -6.18017495e-01 7.68449008e-01
-3.80402178e-01 -8.20740640e-01 8.07765186e-01 9.02071893e-01
3.57968658e-01 4.56923038e-01 -8.23627949e-01 -5.80658913e-01
-1.00037670e+00 2.00687528e-01 8.14147532e-01 1.33579874e+00
7.48079479e-01 -4.62595999e-01 3.98474962e-01 1.18015170e+00
3.44670951e-01 7.42665231e-01 7.82483041e-01 -3.54619175e-01
1.19984365e+00 7.32217669e-01 -5.13833985e-02 -7.61444151e-01
-1.63729206e-01 6.92621469e-02 -5.55526197e-01 -3.46675515e-01
3.44114900e-01 -1.58657923e-01 -9.06343520e-01 1.37498200e+00
5.50935268e-01 -7.30914474e-01 3.03407699e-01 7.86306679e-01
8.96918416e-01 5.71263552e-01 -1.68504015e-01 -3.73982757e-01
1.40958405e+00 -8.60465229e-01 -5.15987813e-01 -2.49703735e-01
5.95136344e-01 -1.59299839e+00 1.03764403e+00 2.68980265e-01
-1.16369569e+00 -3.51756454e-01 -1.09105563e+00 -4.18892294e-01
-5.30154049e-01 -1.84477553e-01 7.75896162e-02 4.28474218e-01
-6.56368196e-01 4.03924912e-01 -4.75615829e-01 -1.01565480e+00
7.42534101e-02 1.49138898e-01 -7.63315797e-01 -2.44237483e-01
-1.31124568e+00 1.37219608e+00 7.23208129e-01 -2.58065164e-01
-3.28329712e-01 -1.63236648e-01 -5.56994379e-01 -7.90979922e-01
1.82966426e-01 -2.90881157e-01 9.10397172e-01 -9.90181506e-01
-1.37004745e+00 1.40909207e+00 -6.50767842e-03 -3.07925522e-01
4.13701922e-01 -3.02720845e-01 -6.17394030e-01 -3.30151469e-01
6.13230228e-01 -1.63282812e-01 4.14922118e-01 -6.63379729e-01
-8.02495778e-01 -6.13803506e-01 -3.97568882e-01 3.94165039e-01
-2.94154119e-02 9.73669946e-01 -6.20594025e-01 -6.60509467e-01
2.21977040e-01 -1.10635269e+00 -5.02761677e-02 -1.31135738e+00
-2.78374732e-01 2.70591557e-01 4.93576556e-01 -1.76434302e+00
1.48495209e+00 -1.89251280e+00 1.21805355e-01 2.09183186e-01
-1.95290655e-01 1.88825160e-01 -2.02930987e-01 1.06139266e+00
8.10525268e-02 -8.26081708e-02 -1.46596938e-01 2.12847255e-02
-2.73716211e-01 4.75266099e-01 -9.21894759e-02 4.69807029e-01
-1.56430551e-03 8.10959756e-01 -7.64194846e-01 -7.03900814e-01
5.33196935e-03 -1.08596422e-01 -1.33288935e-01 -2.72118784e-02
2.01196134e-01 7.74231493e-01 -3.16965342e-01 6.98176086e-01
6.35266542e-01 3.83840173e-01 5.42029798e-01 1.96423233e-01
-5.64052403e-01 1.02604306e+00 -9.63197768e-01 1.97115588e+00
-5.14206171e-01 5.43471694e-01 3.87905762e-02 -7.63675094e-01
1.10088885e+00 2.90591449e-01 4.14817244e-01 -9.49873686e-01
3.08571845e-01 6.34470582e-01 1.71785906e-01 -6.77695513e-01
8.96846831e-01 -4.81291339e-02 -4.16701287e-01 6.84672296e-01
1.59571037e-01 4.47954945e-02 7.28160560e-01 1.67337283e-01
9.19183195e-01 2.57511169e-01 8.70875955e-01 -4.47573990e-01
6.55774534e-01 8.24163616e-01 7.08795488e-01 1.80134818e-01
5.21272235e-02 5.64435422e-01 5.33946417e-02 -4.74181503e-01
-1.71665037e+00 -5.56775808e-01 -1.98389396e-01 1.08940208e+00
-3.77299160e-01 -4.38386559e-01 -6.29751325e-01 -4.42834258e-01
-5.08704424e-01 6.00357592e-01 -3.96573424e-01 4.61131603e-01
-1.08735549e+00 -9.35463667e-01 5.38890541e-01 -6.37290552e-02
4.35159922e-01 -1.17142892e+00 -2.26852506e-01 4.34181154e-01
-6.30562663e-01 -1.05538058e+00 -3.33297461e-01 1.23701632e-01
-4.70549196e-01 -1.05582869e+00 -2.68823117e-01 -8.68769348e-01
1.91812798e-01 1.21238887e-01 1.33174884e+00 -3.06773305e-01
-7.62838125e-02 -2.51533747e-01 -7.33962715e-01 -6.66516125e-01
-9.90715086e-01 4.43628490e-01 8.95464644e-02 -5.93529463e-01
9.90848601e-01 -5.38673103e-01 1.23202115e-01 1.97431594e-01
-7.16965973e-01 1.16428927e-01 7.63793647e-01 7.13298082e-01
4.92724389e-01 -2.94801116e-01 4.66079712e-01 -1.02676833e+00
4.91816163e-01 -7.38552868e-01 -2.76490867e-01 4.16400462e-01
-5.78347266e-01 -1.56640172e-01 5.17062664e-01 -2.92473108e-01
-9.77090299e-01 -3.48153431e-03 -1.94950417e-01 4.98831838e-01
-3.99765596e-02 7.56666124e-01 -3.81299287e-01 3.88392210e-01
6.10153198e-01 2.53144354e-01 1.33381665e-01 -6.94787443e-01
5.19182086e-01 1.48293757e+00 5.48663676e-01 -4.48732018e-01
8.85435820e-01 -1.98057313e-02 -4.45159316e-01 -8.62488210e-01
-5.14857054e-01 -7.18207717e-01 -1.33100998e+00 1.65263563e-02
6.32777691e-01 -9.85900104e-01 3.40821981e-01 4.05651987e-01
-9.68221366e-01 -1.48415118e-01 -9.45323110e-02 5.07020354e-01
-1.73239589e-01 3.64689589e-01 -7.20797718e-01 -4.83814925e-01
-8.17322731e-01 -7.50532746e-01 6.47735775e-01 -3.54380682e-02
-7.37725556e-01 -7.12421060e-01 6.97283030e-01 7.94651210e-01
1.56102329e-01 3.50000232e-01 8.92576873e-01 -1.16293788e+00
-1.47437707e-01 -5.80453165e-02 -3.90493833e-02 2.89795578e-01
2.84974247e-01 6.80303425e-02 -4.06097442e-01 -1.50166556e-01
1.42647967e-01 -3.76960248e-01 -1.68026201e-02 -1.93595186e-01
-1.65474132e-01 -4.11858320e-01 1.29474550e-01 4.83968481e-02
1.35989940e+00 4.57683086e-01 7.17413425e-01 1.07843840e+00
5.06799817e-01 5.90223014e-01 8.46924543e-01 2.55056739e-01
7.49344826e-01 6.17014647e-01 -4.23074156e-01 1.96785495e-01
9.18252394e-02 -1.20347589e-02 4.03747082e-01 1.89988315e+00
-9.28874537e-02 4.17287678e-01 -1.39772034e+00 9.16928589e-01
-1.73691082e+00 -9.27962005e-01 -4.03487891e-01 1.99866247e+00
1.26516116e+00 8.87452066e-02 2.86470801e-01 1.14277303e-01
5.84608793e-01 -3.17173481e-01 6.90869391e-02 -7.99662709e-01
-3.43517393e-01 2.39851758e-01 6.19965971e-01 4.35212702e-01
-7.59261072e-01 1.18430591e+00 5.85761261e+00 6.63279116e-01
-1.10904658e+00 4.71751064e-01 1.47959173e-01 -1.45096496e-01
-1.57543927e-01 2.07757503e-01 -8.25876832e-01 5.48652470e-01
1.39435208e+00 -4.04409379e-01 6.41771078e-01 5.18481731e-01
3.03839922e-01 -8.47967640e-02 -7.47535169e-01 7.68570364e-01
1.42747357e-01 -1.21931767e+00 -2.94345438e-01 1.08268462e-01
6.64501548e-01 9.48444545e-01 -6.93113208e-01 4.16440517e-01
5.18551648e-01 -7.19999135e-01 9.38243330e-01 1.02257140e-01
7.99009442e-01 -6.28315806e-01 8.81207705e-01 5.46160340e-01
-8.16817880e-01 1.60162419e-01 -4.38440502e-01 -2.27673233e-01
2.24011615e-01 5.51873922e-01 -9.54313397e-01 9.81546760e-01
6.66340649e-01 6.05557799e-01 -5.04350305e-01 3.67773503e-01
1.76164173e-02 6.82824612e-01 -3.21651548e-01 7.30755404e-02
2.52119690e-01 -5.59902966e-01 5.79207718e-01 1.49270868e+00
1.51128247e-01 2.01223940e-02 1.98624656e-01 -4.54020761e-02
8.32788125e-02 8.92661214e-01 -6.33209407e-01 -1.91196963e-01
6.76671386e-01 1.27187359e+00 -6.18124902e-01 -3.17569733e-01
-7.00600505e-01 9.85177875e-01 4.22446847e-01 -1.57226682e-01
-5.69426656e-01 -3.31283271e-01 3.89781177e-01 1.78888500e-01
3.33951786e-02 -4.63596910e-01 -6.24995351e-01 -1.06564760e+00
2.96962947e-01 -1.57029462e+00 4.82722044e-01 -3.20680827e-01
-1.24731469e+00 1.02081883e+00 2.13875677e-02 -1.14333403e+00
-4.07670408e-01 -2.89700121e-01 -2.41589531e-01 1.28447545e+00
-1.01950300e+00 -1.55413735e+00 2.45432049e-01 4.72537786e-01
6.13970101e-01 -6.74092352e-01 8.63365591e-01 9.17908967e-01
-5.99729478e-01 2.83946007e-01 3.36864322e-01 3.48679453e-01
1.02127337e+00 -8.93503666e-01 8.57916832e-01 1.13376176e+00
9.93798375e-02 8.61522377e-01 6.42269075e-01 -9.55525041e-01
-1.47015214e+00 -1.04489303e+00 1.66571236e+00 -9.27358985e-01
9.49366510e-01 -5.04484594e-01 -6.79495811e-01 7.06825852e-01
5.83640039e-01 -9.64042127e-01 1.03746045e+00 1.54583395e-01
-2.13533908e-01 4.26442586e-02 -1.04348779e+00 4.89026546e-01
8.33355665e-01 -5.35794437e-01 -1.27698171e+00 3.07266086e-01
2.22669110e-01 -4.23099518e-01 -1.04368889e+00 -4.85167541e-02
5.14306009e-01 -2.81515211e-01 4.44922566e-01 -8.63872230e-01
7.05590069e-01 -3.37071270e-01 -3.93412620e-01 -1.09478772e+00
-3.81486982e-01 -8.94199848e-01 4.86712307e-01 1.95011747e+00
7.48864830e-01 -4.25301731e-01 2.34894127e-01 4.41337854e-01
-1.59493878e-01 -2.03048602e-01 -9.12666440e-01 -6.64525032e-01
3.15897435e-01 -4.04837459e-01 5.97632885e-01 1.33491182e+00
3.38149250e-01 1.00748789e+00 -5.36439419e-01 -1.98657319e-01
2.08254769e-01 2.32812136e-01 1.11243987e+00 -9.76058543e-01
-1.04530767e-01 -4.57656719e-02 -1.63298145e-01 -4.73577052e-01
-3.69856566e-01 -1.21671140e+00 -1.31105542e-01 -1.67194879e+00
4.65606689e-01 -5.71320891e-01 1.03985950e-01 4.93707508e-01
2.78163166e-03 4.63463932e-01 3.15407999e-02 7.72421241e-01
-1.90199539e-01 -1.41573802e-01 9.17868853e-01 3.59595567e-01
-4.22860861e-01 -4.80470031e-01 -9.62057233e-01 4.48280960e-01
9.93327916e-01 -7.93936729e-01 -7.68155083e-02 -5.67177474e-01
3.92382056e-01 -2.97369391e-01 -5.84555030e-01 -5.38273156e-01
-1.02859996e-01 -5.04279375e-01 1.10756189e-01 -8.43344033e-01
-2.68670678e-01 -5.54398417e-01 6.44231856e-01 2.83465087e-01
8.15642029e-02 6.06180251e-01 -2.61550825e-02 -2.26897597e-01
-3.41037899e-01 -1.47339389e-01 8.44569802e-01 -4.10444438e-01
-7.01901197e-01 -8.21193978e-02 -3.31304610e-01 4.25454706e-01
9.69539821e-01 -3.36081773e-01 -3.71060073e-02 1.23456642e-01
-2.36004159e-01 8.93142074e-02 6.60213292e-01 6.80230796e-01
-1.61920190e-01 -1.12181234e+00 -1.18706203e+00 3.18092734e-01
6.74094111e-02 -3.40168893e-01 -1.53309360e-01 8.26355517e-01
-8.57468784e-01 3.93371344e-01 -9.17816699e-01 -1.18999809e-01
-1.33354461e+00 3.79564852e-01 -5.03094971e-01 -5.26320815e-01
-6.32854462e-01 2.79059500e-01 -6.12147450e-01 -9.35420394e-01
-4.53624994e-01 9.54035297e-02 -3.09818476e-01 1.63697690e-01
6.05300128e-01 3.55669945e-01 3.25563878e-01 -1.24026752e+00
-5.72444558e-01 3.97356123e-01 -2.77456045e-01 -5.50572813e-01
1.63536799e+00 -7.71411836e-01 -7.53403246e-01 4.89939541e-01
1.00226152e+00 5.75476110e-01 -2.18859389e-01 -3.17393005e-01
5.28091967e-01 -3.08147430e-01 -5.90915263e-01 -9.76150393e-01
-3.88469338e-01 3.07641000e-01 5.43931015e-02 -3.21152583e-02
9.76518035e-01 -1.31018743e-01 9.83990490e-01 2.43530303e-01
5.03318906e-01 -1.65143561e+00 -6.07232869e-01 1.23759723e+00
8.93254340e-01 -1.24876153e+00 5.04521839e-02 -1.30645931e-01
-8.47865880e-01 9.26513731e-01 2.12141141e-01 1.52948141e-01
5.92068195e-01 4.37512696e-01 6.48172140e-01 -1.02581177e-02
-4.72546101e-01 1.51813487e-02 2.63339460e-01 4.93324339e-01
7.25030661e-01 -5.04467785e-02 -1.15224504e+00 8.60026896e-01
-9.08324659e-01 9.90188792e-02 6.33976460e-01 1.09167373e+00
-1.82473212e-01 -1.69151366e+00 -4.54748333e-01 4.00560558e-01
-9.71358478e-01 -5.69880366e-01 -7.34002292e-01 9.64536190e-01
2.84818172e-01 9.32685733e-01 -1.82688206e-01 -3.55810612e-01
2.37441942e-01 1.28427535e-01 3.59070927e-01 -6.18871510e-01
-8.80291462e-01 5.88562004e-02 6.60637319e-01 -3.88226733e-02
-5.02572477e-01 -9.88993466e-01 -8.82217228e-01 -5.77166915e-01
-9.20562372e-02 3.19205552e-01 9.38483834e-01 1.25092745e+00
2.12533817e-01 -1.47358641e-01 3.98994178e-01 -3.13839436e-01
-1.98822737e-01 -1.37823057e+00 -2.57524967e-01 5.35823524e-01
-2.46826947e-01 -6.32212609e-02 2.57200837e-01 3.06335479e-01] | [11.258213996887207, 10.331754684448242] |
699861ef-fe95-447b-ac48-2dda2678fe26 | contrastive-label-disambiguation-for-partial | null | null | https://openreview.net/forum?id=EhYjZy6e1gJ | https://openreview.net/pdf?id=EhYjZy6e1gJ | Contrastive Label Disambiguation for Partial Label Learning | Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL---representation learning and label disambiguation---in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Extensive experiments demonstrate that PiCO significantly outperforms the current state-of-the-art approaches in PLL and even achieves comparable results to fully supervised learning. | ['Junbo Zhao', 'Gang Chen', 'Gang Niu', 'Lei Feng', 'Sharon Li', 'Ruixuan Xiao', 'Haobo Wang'] | 2021-09-29 | null | null | null | iclr-2022-4 | ['partial-label-learning', 'pico'] | ['methodology', 'natural-language-processing'] | [ 6.16738856e-01 3.47415924e-01 -7.27793992e-01 -4.27610666e-01
-1.00226986e+00 -5.65276086e-01 5.91238022e-01 4.68326002e-01
-3.49324852e-01 8.30488861e-01 -1.89440444e-01 -1.34066911e-02
-2.31262863e-01 -4.40333456e-01 -2.33305633e-01 -7.75173724e-01
2.04416201e-01 8.99109364e-01 -3.32134068e-02 1.12187825e-01
1.47630155e-01 2.96624571e-01 -1.78975916e+00 1.11419223e-01
8.51791859e-01 1.11724341e+00 1.54413238e-01 -9.49058402e-03
-5.34642994e-01 9.78302479e-01 -4.03768152e-01 -3.10088754e-01
1.80430695e-01 -1.40769675e-01 -1.11593997e+00 3.39609057e-01
5.87238252e-01 3.29096437e-01 2.27398753e-01 1.10902750e+00
5.24173141e-01 8.95399675e-02 9.52789962e-01 -1.49501550e+00
-2.50316232e-01 5.78892767e-01 -6.24990284e-01 -2.50498503e-01
2.53806084e-01 -4.61945027e-01 1.48956335e+00 -8.75955641e-01
6.81856334e-01 1.21997178e+00 8.98245811e-01 6.06490195e-01
-1.28719568e+00 -7.82469928e-01 2.72072136e-01 -2.14617997e-02
-1.48329008e+00 -1.70796111e-01 7.37065017e-01 -5.75511992e-01
6.40818059e-01 1.03411622e-01 2.22136140e-01 7.65524864e-01
-3.80190283e-01 9.64948356e-01 1.50261497e+00 -7.62773454e-01
2.77857900e-01 3.90091509e-01 6.75736666e-01 6.83236539e-01
3.09682637e-01 -1.20929085e-01 -5.70778131e-01 -2.62742192e-01
3.87239128e-01 -5.41758724e-02 -1.66531965e-01 -7.41000473e-01
-1.01664495e+00 6.78230047e-01 2.17542410e-01 3.97621155e-01
-4.68388833e-02 1.15084231e-01 5.37177622e-01 3.16451848e-01
3.36169958e-01 6.75780594e-01 -5.07743299e-01 3.47887397e-01
-8.66065443e-01 1.01359583e-01 8.52310896e-01 1.17586124e+00
1.12041008e+00 -2.58980215e-01 -1.62327707e-01 1.06173277e+00
4.70333666e-01 1.60025105e-01 5.64236104e-01 -8.63171399e-01
1.50995657e-01 7.90654242e-01 1.18731141e-01 -7.06149817e-01
-5.09346366e-01 -7.45297730e-01 -6.42597795e-01 5.24872206e-02
4.22811896e-01 1.24243118e-01 -5.74751794e-01 1.92911947e+00
4.75285769e-01 5.47018647e-01 1.59419373e-01 6.04592562e-01
7.31245995e-01 3.15765500e-01 5.82410991e-01 -6.11755311e-01
1.47401059e+00 -1.11446011e+00 -8.29703987e-01 -4.16893572e-01
1.00264347e+00 -8.05292547e-01 9.84469950e-01 2.69104928e-01
-5.10474503e-01 -6.24346495e-01 -1.10097873e+00 3.26488279e-02
-3.65598828e-01 2.30745628e-01 7.97193825e-01 6.93963528e-01
-7.94032335e-01 5.45043886e-01 -3.42120320e-01 -5.60170710e-01
3.54806751e-01 3.79321843e-01 -4.03046608e-01 -2.35937443e-02
-1.09169269e+00 8.00467789e-01 8.27898026e-01 -3.05102825e-01
-6.28341496e-01 -6.01825237e-01 -8.32496166e-01 -8.16554129e-02
7.59241283e-01 -6.24377549e-01 1.61062324e+00 -9.24295425e-01
-1.20884705e+00 1.37226486e+00 -1.49784565e-01 -4.57006127e-01
2.99308062e-01 -2.66342670e-01 -3.45446557e-01 -1.77402161e-02
4.21591401e-01 8.28063667e-01 7.83826411e-01 -1.58899605e+00
-1.00880075e+00 -1.72402456e-01 1.53414169e-02 3.64984751e-01
-4.79696631e-01 -1.68132380e-01 -2.20414922e-01 -6.93254948e-01
1.56086504e-01 -9.66017246e-01 -2.63817370e-01 -1.58416435e-01
-2.87417918e-01 -7.62770653e-01 7.19158113e-01 1.36847541e-01
1.27069771e+00 -2.02766728e+00 -2.93979704e-01 -2.16520149e-02
3.07668179e-01 3.81975979e-01 8.24920014e-02 2.99379855e-01
-4.05609936e-01 1.11791730e-01 -1.57731637e-01 -6.20466292e-01
3.19873303e-01 3.46333861e-01 -3.99145842e-01 3.98617506e-01
2.06679627e-01 7.73570776e-01 -1.32083356e+00 -8.41352165e-01
1.89785734e-01 1.71339259e-01 -7.97878727e-02 2.56656587e-01
-4.36245114e-01 4.44450885e-01 -5.90186656e-01 7.23570645e-01
5.87786674e-01 -6.69455051e-01 6.62304103e-01 -1.69593886e-01
1.22968756e-01 2.18654096e-01 -1.53283060e+00 1.83277369e+00
-4.37436432e-01 3.42424661e-01 -1.55077502e-01 -1.28914213e+00
1.07321179e+00 4.29403454e-01 6.18998289e-01 -3.06299061e-01
2.52905875e-01 5.84380984e-01 -6.40622437e-01 -2.27676287e-01
3.82545710e-01 -2.76674420e-01 -2.44899854e-01 5.68140984e-01
4.03813332e-01 4.32695858e-02 2.87723750e-01 -1.39968023e-01
7.86515057e-01 2.45887935e-01 9.81628358e-01 -4.60719138e-01
6.61431551e-01 9.56056267e-03 8.42774212e-01 8.30187976e-01
-3.07527781e-01 3.43314320e-01 2.67349005e-01 -3.48875374e-01
-6.28338397e-01 -7.92046249e-01 -3.78360599e-01 1.30945134e+00
4.27013636e-01 -6.12739861e-01 -7.08007038e-01 -1.09634864e+00
1.17264586e-02 5.19886196e-01 -4.70603615e-01 1.36894226e-01
-4.40490812e-01 -7.15087712e-01 4.22523290e-01 4.61466461e-01
4.31958407e-01 -9.16713178e-01 -3.71911526e-01 2.18617633e-01
2.07279045e-02 -1.10626853e+00 -2.30907455e-01 6.50305867e-01
-6.84705913e-01 -1.22331774e+00 -4.00128633e-01 -1.21043956e+00
6.52459800e-01 4.36002165e-01 1.37176645e+00 4.87845540e-02
-1.79231703e-01 3.73126835e-01 -4.81056780e-01 -3.45780939e-01
-4.36485380e-01 3.04077327e-01 1.23318724e-01 3.84207219e-02
5.75686872e-01 -5.16304970e-01 -1.91622540e-01 5.17525494e-01
-7.92631149e-01 4.33423556e-02 6.80995464e-01 1.03752553e+00
1.05243611e+00 1.46821365e-01 8.46816838e-01 -1.52259195e+00
3.34043652e-01 -4.81894851e-01 -5.53828657e-01 7.13689566e-01
-1.26764572e+00 2.09900334e-01 2.97429293e-01 -4.35004085e-01
-9.44011211e-01 5.42886078e-01 8.45097974e-02 -1.37734771e-01
-4.08863455e-01 3.59188437e-01 -3.29734534e-01 -6.45259395e-02
6.45612776e-01 -1.22826226e-01 -3.78549814e-01 -7.35294402e-01
5.83588183e-01 8.46789181e-01 6.27608657e-01 -8.75064313e-01
6.59536600e-01 3.41221958e-01 8.80653262e-02 -3.94791454e-01
-1.66615641e+00 -9.86615360e-01 -9.91900444e-01 -1.76641598e-01
5.86228788e-01 -1.00728559e+00 -4.71637011e-01 1.76007494e-01
-9.01898861e-01 -1.40807644e-01 -5.08864701e-01 2.42713884e-01
-6.40610516e-01 3.68449658e-01 -3.17684710e-01 -6.38720453e-01
-2.84769386e-01 -1.05474174e+00 1.16306984e+00 4.99825150e-01
-3.13224852e-01 -1.07781172e+00 2.09987894e-01 4.08362895e-01
-9.66730937e-02 2.08861753e-01 8.00987959e-01 -1.23642445e+00
-1.79560184e-01 -1.09664023e-01 -3.50440830e-01 2.56183684e-01
1.81844592e-01 -5.26507854e-01 -1.40209424e+00 -4.38498348e-01
-8.44747424e-02 -6.39069378e-01 7.98627198e-01 -6.79279268e-02
8.58129025e-01 6.21256344e-02 -6.43931568e-01 2.61984766e-01
1.57830942e+00 -1.54194295e-01 -5.24019869e-03 4.35098648e-01
6.35129273e-01 5.92178047e-01 1.19305718e+00 4.39814240e-01
2.58863300e-01 7.41665363e-01 3.54049206e-01 -1.86072234e-02
-3.76921773e-01 -2.61698753e-01 -6.59109578e-02 8.83322537e-01
4.05582190e-01 -2.27351442e-01 -1.02344406e+00 4.42669153e-01
-2.22753119e+00 -6.32164538e-01 -1.09648503e-01 2.12374234e+00
1.00034606e+00 6.81472048e-02 -1.46357259e-02 2.71877527e-01
9.56905425e-01 1.14049517e-01 -3.85824353e-01 9.98947620e-02
-9.77230445e-02 1.92242637e-01 3.85587662e-01 3.58365774e-01
-1.55155957e+00 1.05567491e+00 6.63931274e+00 1.26220584e+00
-8.54314268e-01 3.88718367e-01 5.56604207e-01 4.47333574e-01
2.68645063e-02 1.36078060e-01 -1.18201756e+00 1.22543894e-01
6.15969002e-01 -5.94199263e-02 -8.86631832e-02 1.18675947e+00
-4.47315603e-01 5.54160215e-02 -1.46876574e+00 1.22490311e+00
1.63733929e-01 -1.16082287e+00 2.33451184e-02 -1.18208230e-01
1.01517081e+00 -2.33811930e-01 -3.07259429e-02 4.81658220e-01
3.72284740e-01 -9.71621573e-01 6.73827946e-01 3.78297567e-01
8.93378198e-01 -6.48691833e-01 9.32778895e-01 4.33266282e-01
-1.42927837e+00 -1.52257159e-01 -3.02694291e-01 1.38384746e-02
4.29317467e-02 8.05569351e-01 -9.91239369e-01 8.18216324e-01
2.38858417e-01 8.42213154e-01 -6.30475283e-01 9.52178419e-01
-4.97574180e-01 6.21367931e-01 -9.13095102e-02 1.68387875e-01
2.08416179e-01 5.91221303e-02 1.53623864e-01 1.40353870e+00
1.10525452e-02 -1.90102279e-01 8.22692931e-01 4.64305878e-01
-3.64630073e-01 3.82686287e-01 -4.31534857e-01 5.36000133e-02
9.36957359e-01 1.49655950e+00 -8.96119297e-01 -5.18306196e-01
-4.57047433e-01 7.12329388e-01 6.50249660e-01 1.80292521e-02
-5.72208226e-01 -5.82936741e-02 2.70000219e-01 -2.33692214e-01
1.13095641e-02 2.55363494e-01 -2.61589020e-01 -9.89471436e-01
-1.31564245e-01 -8.04210842e-01 6.99676037e-01 -3.23743969e-01
-1.62906897e+00 4.10735756e-01 -2.62650307e-02 -1.42604506e+00
-2.81861097e-01 -7.22254217e-01 -1.13764547e-01 5.00212789e-01
-1.87754726e+00 -1.34070480e+00 -2.82302529e-01 3.05371374e-01
5.64047515e-01 -1.94154873e-01 1.20194066e+00 4.42803502e-01
-5.85300148e-01 6.90211594e-01 2.16538504e-01 -3.43273543e-02
1.06368387e+00 -1.57247591e+00 -9.22326148e-02 4.62932736e-01
5.87800562e-01 4.70358044e-01 5.47785521e-01 -4.32893485e-01
-8.09441149e-01 -1.29145670e+00 1.07067585e+00 -2.98324674e-01
6.61595523e-01 -9.35558677e-02 -8.46150160e-01 5.56661963e-01
3.80646773e-02 2.48858452e-01 1.10440540e+00 2.51953512e-01
-6.83331788e-01 6.88274764e-03 -9.37516391e-01 3.14692825e-01
1.03016865e+00 -6.61327243e-01 -7.34384000e-01 6.25991762e-01
4.83261675e-01 -2.48702824e-01 -9.69595969e-01 5.64184964e-01
4.13997978e-01 -6.16064727e-01 9.52736139e-01 -4.25188929e-01
-2.08029315e-01 -5.89995146e-01 -3.11952144e-01 -1.01534188e+00
-2.04475582e-01 -6.66667938e-01 -9.60479006e-02 1.63739908e+00
2.21904799e-01 -5.01638234e-01 7.10927010e-01 2.88859010e-01
-9.04248059e-02 -8.22253048e-01 -7.47747123e-01 -1.01071596e+00
-3.33654210e-02 -4.94560510e-01 5.34531891e-01 1.41400230e+00
1.54641181e-01 7.51448333e-01 -3.60397249e-01 1.42821893e-01
6.70430839e-01 4.22875404e-01 5.26473522e-01 -1.82739580e+00
-2.12307528e-01 -5.01071692e-01 -3.55686277e-01 -1.18981898e+00
6.47360861e-01 -1.20998609e+00 1.35785133e-01 -1.35024297e+00
4.06425238e-01 -9.77947891e-01 -6.17983282e-01 8.76002967e-01
-3.77233386e-01 3.21803927e-01 8.98765102e-02 5.90583026e-01
-1.15948749e+00 1.90836534e-01 8.25471878e-01 -1.76633939e-01
8.81180987e-02 -9.99683440e-02 -7.34832942e-01 9.50312853e-01
7.50196517e-01 -7.88069427e-01 -4.99823302e-01 -1.22502767e-01
2.63609082e-01 -2.46356204e-01 -5.00073694e-02 -9.72251236e-01
2.57122874e-01 -3.34558450e-02 -1.96302727e-01 -3.82045299e-01
7.37438574e-02 -9.70175683e-01 8.82850513e-02 3.20498556e-01
-6.98165417e-01 -4.19796079e-01 -2.49497414e-01 8.22860897e-01
-2.87081599e-01 -7.29993522e-01 8.78775418e-01 -1.22593671e-01
-1.07732928e+00 2.09519580e-01 -7.31674135e-02 1.68799356e-01
1.08873272e+00 -1.01720365e-02 -3.76942247e-01 2.60212030e-02
-7.69729853e-01 4.16811377e-01 4.46668178e-01 2.22043633e-01
-2.41704285e-02 -1.51941931e+00 -4.72275406e-01 -2.08325759e-01
5.21801174e-01 6.75354078e-02 -1.46404430e-01 5.88692129e-01
-9.75208879e-02 4.06338453e-01 1.65915415e-01 -6.55592680e-01
-1.20722914e+00 7.97746420e-01 1.22713260e-01 -7.53443897e-01
-3.98375124e-01 6.85575545e-01 1.47675022e-01 -8.07603180e-01
5.58482468e-01 1.90642878e-01 -5.64528525e-01 4.10797447e-01
4.62097794e-01 2.78276086e-01 3.10631245e-02 -7.99714744e-01
-2.51739651e-01 7.05551624e-01 -1.02293931e-01 2.58545756e-01
1.00250351e+00 -1.81591377e-01 -2.68201549e-02 6.98792160e-01
1.09301269e+00 -2.14077190e-01 -1.01748323e+00 -8.56800854e-01
6.97236240e-01 -1.84998080e-01 -1.55270532e-01 -7.51595259e-01
-6.81615651e-01 7.25556374e-01 7.65182674e-01 2.35067800e-01
9.81923282e-01 1.14106417e-01 4.96687204e-01 6.01410687e-01
5.68542540e-01 -1.20626462e+00 1.78576246e-01 4.25313473e-01
2.84891784e-01 -1.40228510e+00 7.03777373e-02 -8.89472187e-01
-4.43644643e-01 1.04190695e+00 6.03762567e-01 6.39221966e-02
5.85524619e-01 1.10230930e-01 1.64103046e-01 -1.31189644e-01
-7.00394630e-01 -4.88808423e-01 4.32879001e-01 6.13982260e-01
6.55524313e-01 7.66442940e-02 -4.72647339e-01 6.78496182e-01
1.23556055e-01 -1.60495237e-01 -2.36587855e-03 1.05245268e+00
-7.29045570e-01 -1.60579503e+00 -3.18108439e-01 2.37863258e-01
-3.23320061e-01 1.09599747e-01 -3.79181534e-01 8.47552717e-01
5.07281959e-01 9.84071076e-01 -2.12901279e-01 -2.01555178e-01
5.56363433e-04 5.21791756e-01 2.45540693e-01 -1.00115919e+00
-4.53750640e-01 1.82802692e-01 1.23792917e-01 -3.66025656e-01
-1.01050174e+00 -7.16822326e-01 -1.33994639e+00 2.12391540e-01
-7.27294207e-01 3.30237418e-01 3.61663580e-01 1.19925451e+00
1.51344523e-01 5.15226185e-01 6.06852174e-01 -6.24114275e-01
-6.26554370e-01 -9.26124752e-01 -7.61195481e-01 5.26623309e-01
1.03224283e-02 -1.09329331e+00 -2.46936560e-01 1.96382165e-01] | [9.53475284576416, 4.0557169914245605] |
0fe199b0-82c3-483a-a933-a8945ff7cd0a | a-data-centric-solution-to-nonhomogeneous | 2304.07874 | null | https://arxiv.org/abs/2304.07874v2 | https://arxiv.org/pdf/2304.07874v2.pdf | A Data-Centric Solution to NonHomogeneous Dehazing via Vision Transformer | Recent years have witnessed an increased interest in image dehazing. Many deep learning methods have been proposed to tackle this challenge, and have made significant accomplishments dealing with homogeneous haze. However, these solutions cannot maintain comparable performance when they are applied to images with non-homogeneous haze, e.g., NH-HAZE23 dataset introduced by NTIRE challenges. One of the reasons for such failures is that non-homogeneous haze does not obey one of the assumptions that is required for modeling homogeneous haze. In addition, a large number of pairs of non-homogeneous hazy image and the clean counterpart is required using traditional end-to-end training approaches, while NH-HAZE23 dataset is of limited quantities. Although it is possible to augment the NH-HAZE23 dataset by leveraging other non-homogeneous dehazing datasets, we observe that it is necessary to design a proper data-preprocessing approach that reduces the distribution gaps between the target dataset and the augmented one. This finding indeed aligns with the essence of data-centric AI. With a novel network architecture and a principled data-preprocessing approach that systematically enhances data quality, we present an innovative dehazing method. Specifically, we apply RGB-channel-wise transformations on the augmented datasets, and incorporate the state-of-the-art transformers as the backbone in the two-branch framework. We conduct extensive experiments and ablation study to demonstrate the effectiveness of our proposed method. | ['Jun Chen', 'Zijun Wu', 'Liangyan Li', 'Huan Liu', 'Yangyi Liu'] | 2023-04-16 | null | null | null | null | ['image-dehazing'] | ['computer-vision'] | [ 3.30584764e-01 -7.70732835e-02 3.05903614e-01 -3.14973503e-01
-5.68442941e-01 -1.45334512e-01 4.58523482e-01 -2.66946882e-01
-4.50774729e-01 5.87615192e-01 2.49600355e-02 -1.51674673e-01
-3.48542184e-01 -1.10571063e+00 -7.99040854e-01 -1.30200219e+00
2.26613939e-01 5.54773919e-02 1.98996425e-01 -6.40198290e-01
4.21427377e-02 3.59404534e-01 -1.91419029e+00 8.96390527e-02
1.24530506e+00 1.17837811e+00 1.45399332e-01 4.68678206e-01
4.18444462e-02 6.60325706e-01 -8.14986646e-01 -3.45924646e-01
8.63295972e-01 -6.16884410e-01 -4.10377085e-01 5.92422225e-02
9.43646431e-01 -3.63461554e-01 -4.62403148e-01 1.09230447e+00
4.90800381e-01 2.26361960e-01 6.28220320e-01 -1.42894340e+00
-9.25602019e-01 1.68415174e-01 -6.54399097e-01 3.71312834e-02
-2.92619377e-01 2.46003166e-01 6.66092396e-01 -8.57303917e-01
1.86126649e-01 7.41887927e-01 5.05325317e-01 3.99788678e-01
-7.76346266e-01 -7.51521468e-01 3.31869051e-02 3.37592453e-01
-1.46751904e+00 -2.93816060e-01 8.58921885e-01 -2.29360849e-01
4.52973545e-01 2.74167836e-01 8.26341212e-01 8.28535140e-01
1.62648767e-01 5.86408317e-01 1.25773299e+00 -5.45599461e-01
2.81820714e-01 8.23353603e-02 -9.63278636e-02 4.06995773e-01
5.26377320e-01 1.27980456e-01 -5.76560616e-01 3.26718450e-01
4.12520498e-01 2.50127554e-01 -4.63529348e-01 -3.47918153e-01
-1.07853472e+00 7.09036827e-01 7.57127881e-01 2.31379926e-01
-5.03843784e-01 3.18489857e-02 -2.08673850e-01 3.98048639e-01
5.80311537e-01 6.67555034e-01 -1.64543748e-01 3.06292862e-01
-1.26230884e+00 3.33616942e-01 3.10450912e-01 9.12191927e-01
1.14310884e+00 3.73275816e-01 1.13916181e-01 5.44414639e-01
3.80363539e-02 6.55499578e-01 2.05288723e-01 -8.22831631e-01
3.16197395e-01 4.61043239e-01 -3.35719585e-02 -9.90287304e-01
-2.31967360e-01 -5.23677051e-01 -1.24031174e+00 6.33811772e-01
2.97335744e-01 -3.13208885e-02 -1.28689063e+00 1.49671578e+00
3.80429864e-01 2.52516776e-01 2.93726683e-01 1.00726259e+00
8.05882335e-01 7.90773094e-01 -3.30202729e-01 1.20656071e-02
1.01794457e+00 -1.03095484e+00 -9.01102185e-01 -1.08093284e-01
3.22351694e-01 -5.66297710e-01 1.20178699e+00 6.61587656e-01
-1.05563557e+00 -4.83561516e-01 -1.38999271e+00 -2.48254552e-01
-7.26627588e-01 -2.87782192e-01 4.21870440e-01 5.63172638e-01
-1.10145319e+00 3.72928739e-01 -5.00312448e-01 -1.18752681e-01
3.67510289e-01 2.41934404e-01 -3.36895615e-01 -3.30618709e-01
-1.30236232e+00 9.69181538e-01 4.88332957e-01 5.61715961e-01
-1.01252568e+00 -8.46297324e-01 -7.56780624e-01 -1.34284301e-02
4.72850412e-01 -7.31769443e-01 7.08513498e-01 -1.01792121e+00
-1.39761400e+00 5.37967145e-01 2.17859715e-01 -2.55156755e-01
3.94606858e-01 -3.85726988e-01 -4.77721721e-01 1.32415175e-01
-2.13823408e-01 6.23857498e-01 1.31080496e+00 -1.62167847e+00
-6.12086535e-01 -2.39581138e-01 2.49801636e-01 2.08610699e-01
-5.68742454e-01 -3.21293890e-01 -2.80260026e-01 -7.59569407e-01
3.36372443e-02 -7.66976893e-01 -9.85235274e-02 8.48620310e-02
-3.50413740e-01 2.67873824e-01 8.80318642e-01 -6.06067300e-01
1.03901410e+00 -2.31767440e+00 2.13391349e-01 2.48210162e-01
5.35673082e-01 5.27672470e-01 -1.96876928e-01 3.05745095e-01
-1.29449561e-01 1.22355968e-01 -7.07742572e-01 -4.46063101e-01
-1.35773450e-01 1.94425076e-01 -4.13584650e-01 6.07230484e-01
4.47111398e-01 7.28154540e-01 -6.61568999e-01 -3.10118586e-01
3.94676238e-01 6.97125733e-01 -5.21979272e-01 4.47879046e-01
-1.15439802e-01 5.02806127e-01 -1.38752777e-02 6.23584926e-01
1.02784324e+00 1.11911058e-01 -4.96476948e-01 -3.08128268e-01
-2.31585965e-01 -2.04097177e-03 -1.00467837e+00 1.55170619e+00
-3.88870507e-01 5.85961223e-01 -2.16730335e-03 -9.57413614e-01
8.03614616e-01 1.44180790e-01 3.71141165e-01 -9.17983472e-01
1.85744882e-01 2.72916436e-01 5.67005537e-02 -5.88551283e-01
7.28762865e-01 -4.72351879e-01 3.45882744e-01 1.34831965e-01
-1.16750091e-01 -5.76561928e-01 2.77142692e-02 1.26440143e-02
8.36337209e-01 1.56123387e-02 1.79906890e-01 -1.87145591e-01
4.08181757e-01 9.77682397e-02 3.92971098e-01 7.81737745e-01
-8.87337103e-02 1.26987147e+00 8.78834948e-02 -5.27916133e-01
-1.09482527e+00 -9.65035677e-01 -1.55295596e-01 6.25817001e-01
3.31102252e-01 -8.85509923e-02 -8.15842807e-01 -3.80077332e-01
-2.30055943e-01 8.07784915e-01 -8.87641668e-01 -5.19437313e-01
-4.38404769e-01 -9.99224544e-01 5.11916697e-01 2.75758933e-02
1.05143785e+00 -8.49614918e-01 -6.03793144e-01 -3.08997389e-02
-1.65448472e-01 -1.23448396e+00 -1.43959269e-01 2.13099539e-01
-5.56616485e-01 -9.13534880e-01 -7.05987990e-01 -6.09191060e-01
5.54885685e-01 8.30695271e-01 1.00865018e+00 4.26134795e-01
-3.28156777e-04 -1.58238336e-02 -6.81800067e-01 -7.59059608e-01
-2.72474647e-01 7.14699775e-02 -7.16957524e-02 3.05163920e-01
1.64762512e-01 -7.40067184e-01 -8.55863214e-01 1.94476873e-01
-1.58079052e+00 2.72507936e-01 7.29110181e-01 7.10139513e-01
4.19632047e-01 5.09591818e-01 3.38545531e-01 -6.57179654e-01
2.14819610e-01 -6.11793578e-01 -5.25149822e-01 1.83318451e-01
-7.10698605e-01 -1.22445665e-01 6.70159101e-01 -3.09637249e-01
-1.01201344e+00 -1.45154253e-01 -1.53008163e-01 -6.03674054e-01
-2.44511753e-01 5.58279693e-01 -3.90830904e-01 -3.05438101e-01
7.17310667e-01 4.30505902e-01 3.95277999e-02 -2.08352759e-01
5.26158750e-01 6.66921198e-01 7.86068320e-01 -3.47975105e-01
1.50690746e+00 7.84363806e-01 1.16956159e-01 -9.64641392e-01
-8.66041124e-01 -3.28555793e-01 -5.54988861e-01 -6.29503131e-02
1.04818153e+00 -1.07879376e+00 -3.44320685e-01 8.63083184e-01
-9.52550292e-01 -3.50237995e-01 -3.79125088e-01 3.27678144e-01
-2.56534398e-01 3.46025497e-01 -1.48561224e-01 -7.67979145e-01
-3.48373204e-01 -1.05828357e+00 9.90645468e-01 1.94038823e-01
4.57473844e-01 -7.18533158e-01 -7.63176680e-02 3.69789034e-01
7.47672319e-01 3.74664098e-01 9.38196182e-01 -2.52072901e-01
-9.11500037e-01 -1.84660450e-01 -2.86099076e-01 7.51609445e-01
4.00101125e-01 8.24305639e-02 -1.08331811e+00 -2.05752954e-01
2.82716393e-01 -2.07384765e-01 9.54970181e-01 2.71832168e-01
1.11192751e+00 -1.37403533e-01 3.71889323e-01 1.08724284e+00
1.45523250e+00 1.09085247e-01 1.00811601e+00 6.70147121e-01
1.03290856e+00 6.99954808e-01 5.71258128e-01 7.63639957e-02
4.54125941e-01 7.09277868e-01 9.00991321e-01 -5.87097824e-01
-2.83232093e-01 1.29692748e-01 1.95580408e-01 7.09976375e-01
-2.59329617e-01 -5.44046402e-01 -8.22811782e-01 5.55195153e-01
-1.59685957e+00 -7.22876370e-01 -2.04064459e-01 2.21920061e+00
7.22920775e-01 -9.11610201e-02 -1.34154931e-01 2.84773856e-01
3.25553685e-01 2.88766861e-01 -3.00519168e-01 -1.77858081e-02
-5.22831798e-01 3.29999477e-01 4.57001656e-01 3.44927102e-01
-1.10629547e+00 8.63108158e-01 6.07165003e+00 6.77003980e-01
-1.29401147e+00 8.22117850e-02 3.16137493e-01 -2.13426948e-01
-4.26150620e-01 -1.32269889e-01 -4.16060388e-01 5.66146255e-01
7.56036103e-01 5.53653650e-02 6.19277954e-01 4.51791793e-01
1.25536278e-01 -1.72895893e-01 -8.49292934e-01 1.06246114e+00
2.94792622e-01 -1.28376329e+00 1.39215246e-01 1.43016994e-01
9.74294782e-01 -2.38019098e-02 3.75431478e-01 1.14899501e-01
-3.48827951e-02 -1.01460278e+00 9.43650544e-01 3.45410496e-01
6.77837849e-01 -5.58638096e-01 9.56998169e-01 2.48565167e-01
-8.46041918e-01 4.66989540e-02 -4.23709571e-01 -4.63468134e-02
-7.21355900e-02 8.93010914e-01 -4.26896065e-01 1.02769625e+00
1.02819180e+00 4.83859986e-01 -6.96219385e-01 1.08186448e+00
-3.48991960e-01 5.37122905e-01 -3.34265113e-01 5.74224770e-01
2.45216340e-01 -4.63463187e-01 2.72002280e-01 8.53345096e-01
5.25597155e-01 1.34529948e-01 -2.71107912e-01 8.08093071e-01
-4.81646396e-02 -1.79480642e-01 -7.25814104e-01 1.54145628e-01
1.91229001e-01 1.15204763e+00 -3.69865060e-01 -3.25034589e-01
-6.93883419e-01 9.13239956e-01 6.69410601e-02 5.72219253e-01
-9.95735645e-01 -4.14018720e-01 8.23056161e-01 4.51258644e-02
2.62854844e-01 -3.29386681e-01 -3.85636866e-01 -1.16188633e+00
1.41562745e-01 -1.22229314e+00 8.31094608e-02 -8.60670984e-01
-1.34548843e+00 8.01953316e-01 1.50593549e-01 -1.42756689e+00
1.24666102e-01 -5.03320694e-01 -5.54103136e-01 8.37300539e-01
-2.23213291e+00 -1.27261388e+00 -1.05908799e+00 8.12661886e-01
3.18215966e-01 1.00489311e-01 4.20541674e-01 5.71942508e-01
-6.23597801e-01 6.48750544e-01 4.76804003e-02 -1.34049326e-01
7.77245462e-01 -1.18910265e+00 3.18442047e-01 1.35302103e+00
1.65321194e-02 5.17633259e-01 8.88019323e-01 -3.34871113e-01
-1.41689551e+00 -1.27542436e+00 3.81197929e-01 -4.72623676e-01
3.75677615e-01 -4.68983650e-01 -1.32775927e+00 4.52310562e-01
3.50799412e-01 2.64149725e-01 3.64233434e-01 -4.49707121e-01
-4.33682323e-01 -4.45699394e-01 -9.68437374e-01 7.10009158e-01
9.94872332e-01 -3.83157372e-01 -5.76575339e-01 1.23385027e-01
9.42624688e-01 -5.40892839e-01 -5.93770146e-01 6.22962773e-01
2.54836023e-01 -1.22027934e+00 9.89015698e-01 -2.63812125e-01
5.96590996e-01 -6.60798252e-01 -3.41650724e-01 -1.48182130e+00
-1.81296349e-01 -5.22568107e-01 -9.75470468e-02 9.91863906e-01
1.71250522e-01 -6.42381489e-01 7.21817195e-01 5.02100825e-01
-4.96411532e-01 -6.78535283e-01 -7.39543140e-01 -7.56590903e-01
3.22596699e-01 -2.88276136e-01 9.49505985e-01 1.00339794e+00
-7.62378395e-01 -1.73894137e-01 -7.75972486e-01 5.04137278e-01
6.38419032e-01 -4.93226126e-02 1.10401154e+00 -1.01999307e+00
3.45575251e-02 -2.75029272e-01 -3.27977180e-01 -7.70686865e-01
-7.65665546e-02 -4.90552753e-01 4.09155220e-01 -1.46418941e+00
-7.67781883e-02 -4.71678197e-01 -4.62777913e-01 5.48802376e-01
-4.04822052e-01 5.77406049e-01 3.00151467e-01 3.47671300e-01
-1.51561186e-01 1.03519535e+00 1.36439049e+00 -3.14498544e-01
-1.48528039e-01 -3.26262057e-01 -8.47091258e-01 4.49577987e-01
8.27434301e-01 -5.18165827e-01 -5.45424521e-01 -6.43196166e-01
3.46658349e-01 -5.84448576e-01 3.88613731e-01 -1.21364105e+00
2.63768762e-01 -2.08216444e-01 1.97183207e-01 -4.14884865e-01
4.38618094e-01 -1.08716869e+00 2.57761568e-01 -5.24019077e-02
1.52552379e-02 -3.48338559e-02 8.67182687e-02 3.10169190e-01
-5.86792231e-01 3.49403219e-03 8.53582323e-01 5.73709346e-02
-7.61196256e-01 4.67889786e-01 -1.32154509e-01 -1.46653086e-01
9.44947898e-01 -4.95126307e-01 -7.10076332e-01 -4.80305880e-01
-9.23499989e-04 -6.52804300e-02 7.38823473e-01 3.58804792e-01
7.63269842e-01 -1.09405112e+00 -7.66724169e-01 4.94390309e-01
2.86277711e-01 6.24072790e-01 2.34267160e-01 1.04323435e+00
-6.84862077e-01 -6.29139096e-02 -2.20504329e-01 -4.20568287e-01
-9.59692657e-01 7.12611139e-01 4.31391299e-01 1.74790591e-01
-7.52948642e-01 6.66145384e-01 6.03035450e-01 -2.62551159e-01
5.02442978e-02 -3.37119430e-01 1.22286484e-01 -7.87807405e-02
6.13530934e-01 1.55561432e-01 4.52836215e-01 -4.90885526e-01
-1.32153168e-01 5.68057060e-01 9.01806280e-02 1.29373863e-01
1.53044820e+00 -2.29801208e-01 -3.11101913e-01 2.06306785e-01
9.90293801e-01 5.91644756e-02 -1.39021778e+00 -2.63774246e-01
-4.43471402e-01 -7.44598389e-01 3.62938374e-01 -6.13995194e-01
-1.54341304e+00 1.05086851e+00 6.69475377e-01 2.36798182e-01
1.66095972e+00 -2.92405486e-01 8.42596471e-01 4.30219710e-01
3.40940952e-01 -6.00010276e-01 1.20057717e-01 3.11305970e-01
9.12398040e-01 -1.33127201e+00 1.70879260e-01 -4.22112316e-01
-4.93984848e-01 8.61450374e-01 7.80142128e-01 -1.00707095e-02
5.60400307e-01 1.02652967e-01 3.29771578e-01 -3.91666591e-01
-3.01528931e-01 -4.38004613e-01 2.71151870e-01 6.23018742e-01
-6.31492659e-02 -2.38747239e-01 1.54402018e-01 1.46601319e-01
-3.56768727e-01 -1.49704948e-01 7.30406165e-01 1.00253689e+00
-3.88476104e-01 -8.19099486e-01 -6.14181340e-01 1.69152170e-01
-1.30919829e-01 -3.57261956e-01 -2.44159058e-01 1.06098640e+00
4.72858042e-01 1.14454544e+00 -4.18536216e-02 -6.23430908e-01
3.20860744e-01 -2.14599818e-01 4.47156161e-01 -3.65294427e-01
-4.85650897e-01 -1.68176085e-01 -4.31564838e-01 -3.84402484e-01
-6.21734321e-01 -2.25978523e-01 -9.87223089e-01 -5.23929477e-01
-3.93176943e-01 2.50004716e-02 6.75061762e-01 9.64466274e-01
3.18703502e-01 6.12558782e-01 6.94854736e-01 -9.94017422e-01
-1.67118430e-01 -8.35783899e-01 -6.51915908e-01 5.32070816e-01
8.45492065e-01 -7.12756872e-01 -6.43125594e-01 -3.34248692e-03] | [10.931629180908203, -3.147167921066284] |
c4074bc9-7ea8-4ea8-a92e-36c0a82c0b62 | explainable-fmri-based-brain-decoding-via | 2210.05713 | null | https://arxiv.org/abs/2210.05713v1 | https://arxiv.org/pdf/2210.05713v1.pdf | Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph Convolutional Network | Brain decoding, aiming to identify the brain states using neural activity, is important for cognitive neuroscience and neural engineering. However, existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability. Here, we address this issue by proposing a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities. By designing multi-scale spatial-temporal pathways and bottom-up pathways that mimic the information process and temporal integration in the brain, STpGCN is capable of explicitly utilizing the multi-scale temporal dependency of brain activities via graph, thereby achieving high brain decoding performance. Additionally, we propose a sensitivity analysis method called BrainNetX to better explain the decoding results by automatically annotating task-related brain regions from the brain-network standpoint. We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200. The results show that STpGCN significantly improves brain decoding performance compared to competing baseline models; BrainNetX successfully annotates task-relevant brain regions. Post hoc analysis based on these regions further validates that the hierarchical structure in STpGCN significantly contributes to the explainability, robustness and generalization of the model. Our methods not only provide insights into information representation in the brain under multiple cognitive tasks but also indicate a bright future for fMRI-based brain decoding. | ['Quanying Liu', 'Mo Wang', 'Zhichao Liang', 'Youzhi Qu', 'Ziyuan Ye'] | 2022-10-08 | null | null | null | null | ['brain-decoding', 'brain-decoding'] | ['medical', 'miscellaneous'] | [ 3.43532920e-01 2.56832123e-01 1.44093603e-01 -4.42697257e-01
1.18412107e-01 -3.12192708e-01 5.45760572e-01 -7.29580820e-02
-1.97102502e-02 5.59359312e-01 5.77546835e-01 -3.55701774e-01
-4.92481440e-01 -6.34539902e-01 -6.95481300e-01 -3.77334893e-01
-4.08314288e-01 1.08462483e-01 -2.35117972e-02 -1.25106052e-01
2.77681470e-01 4.88470405e-01 -1.11772799e+00 5.94125867e-01
1.05290937e+00 8.13228846e-01 3.78123075e-01 2.84732968e-01
-7.92505965e-03 5.20578980e-01 -2.48368263e-01 -1.38209924e-01
3.92509997e-02 -8.12015355e-01 -8.25751960e-01 -1.67078033e-01
-5.13892695e-02 1.07617274e-01 -5.53747296e-01 1.09468210e+00
4.97350484e-01 4.42217439e-02 6.81235611e-01 -1.06816590e+00
-7.39785850e-01 6.72410965e-01 -3.12816381e-01 6.82004869e-01
2.10216835e-01 3.95379424e-01 8.94876182e-01 -5.47920823e-01
5.18758237e-01 1.25273526e+00 5.73067009e-01 6.60109758e-01
-1.41578329e+00 -7.96511948e-01 2.53760874e-01 3.85558754e-01
-1.23936164e+00 -1.35814637e-01 6.69016182e-01 -6.70757294e-01
1.29843187e+00 1.33826807e-01 1.36895037e+00 1.30300021e+00
9.86750364e-01 3.68825108e-01 1.32188177e+00 2.21715942e-01
2.33484909e-01 -7.80568957e-01 3.88982892e-01 8.21871042e-01
1.68721199e-01 1.69790685e-01 -7.50440657e-01 9.85891446e-02
1.15008843e+00 -9.56511647e-02 -4.04768825e-01 8.45607445e-02
-1.64675045e+00 5.66554785e-01 1.08824587e+00 5.80303967e-01
-6.46984637e-01 6.66522980e-01 4.27919120e-01 -5.22918776e-02
5.65359116e-01 5.23017645e-01 -3.71881813e-01 2.85808712e-01
-1.01861632e+00 -4.47290987e-02 3.31487626e-01 5.19912779e-01
7.12389231e-01 3.23885292e-01 -5.65257430e-01 5.68363965e-01
4.33942288e-01 4.88386452e-02 6.32260084e-01 -8.11081946e-01
3.12034845e-01 7.74565578e-01 -5.60183764e-01 -1.11409712e+00
-1.03662121e+00 -6.61165595e-01 -1.13260460e+00 -2.31540233e-01
1.36444941e-01 -1.05041496e-01 -9.54188645e-01 1.90825248e+00
-2.13259161e-01 2.77682662e-01 -3.46551001e-01 1.21720707e+00
8.64209116e-01 4.17220265e-01 4.29997027e-01 -7.73695186e-02
1.65769184e+00 -7.84874916e-01 -7.92553604e-01 -5.65574944e-01
5.93369603e-01 2.41187468e-01 7.95137525e-01 1.28762037e-01
-8.59653592e-01 -6.04943037e-01 -8.85236919e-01 -3.53931971e-02
-2.62424469e-01 -1.73826739e-01 1.05139709e+00 3.76355022e-01
-1.35160112e+00 4.87226963e-01 -9.63886499e-01 -3.95549774e-01
7.93189108e-01 6.23252630e-01 -5.44418633e-01 -5.14273196e-02
-1.40533221e+00 1.05153060e+00 6.85653150e-01 3.80167931e-01
-1.30157626e+00 -8.22865307e-01 -6.92386866e-01 4.99466479e-01
-8.75461251e-02 -1.04869485e+00 4.57212567e-01 -8.92512441e-01
-1.02616751e+00 6.38087928e-01 -4.86633837e-01 -5.58281183e-01
1.41206468e-02 3.13926816e-01 -3.41571122e-01 2.91437954e-01
2.74341628e-02 1.17623365e+00 4.57187861e-01 -7.19539344e-01
3.38094711e-01 -5.08446217e-01 -1.86863318e-01 1.83238700e-01
-2.68828899e-01 -1.50183171e-01 -2.32844830e-01 -6.55356646e-01
4.91499573e-01 -7.05632448e-01 -2.30034292e-01 -1.15316764e-01
-4.30444330e-01 -6.68860376e-02 2.64285415e-01 -9.05724645e-01
1.02331078e+00 -1.82770598e+00 4.81152475e-01 2.08698004e-01
8.36279035e-01 -9.91357043e-02 -2.36955747e-01 1.33356154e-01
-4.74026352e-01 4.55909133e-01 -4.55581129e-01 1.78873241e-01
-1.52618349e-01 9.99082625e-02 2.01788634e-01 5.44775248e-01
3.73318851e-01 1.59158754e+00 -9.31090772e-01 -1.30758241e-01
1.46773290e-02 5.66662848e-01 -7.63753891e-01 -1.54832184e-01
-1.06826819e-01 1.00791979e+00 -5.08987546e-01 4.26203787e-01
2.95313001e-01 -3.31056058e-01 4.01422203e-01 -4.20808345e-01
1.12302810e-01 3.06113780e-01 -1.10812105e-01 1.99094009e+00
-1.47482529e-01 8.96635294e-01 -8.31791610e-02 -1.35597515e+00
8.79315615e-01 4.79224622e-01 5.79737782e-01 -1.06372631e+00
2.52611279e-01 -5.36015593e-02 7.93378294e-01 -4.84525472e-01
-3.46413672e-01 -1.82295009e-01 1.46394998e-01 2.90910900e-01
2.16499805e-01 2.08826542e-01 -2.63465289e-03 1.52487352e-01
1.51543677e+00 1.12921782e-01 2.59416223e-01 -8.38801384e-01
3.98606986e-01 -1.64142475e-01 4.69658792e-01 4.08264369e-01
-4.66407776e-01 3.23249549e-01 7.93868482e-01 -4.39669013e-01
-7.59231865e-01 -7.95033216e-01 -7.86598101e-02 9.41968501e-01
9.36192088e-03 -3.30598980e-01 -9.96545076e-01 -3.66011411e-01
-1.40259087e-01 5.42916596e-01 -1.07424116e+00 -6.51365578e-01
-4.60714966e-01 -1.06404316e+00 7.38518655e-01 5.15480638e-01
8.50660861e-01 -1.14386368e+00 -5.06891251e-01 3.56249690e-01
-5.65683126e-01 -1.08065903e+00 -3.48145783e-01 2.73516774e-01
-1.17020035e+00 -1.05078363e+00 -4.25604492e-01 -6.57773316e-01
8.06015253e-01 2.21593857e-01 8.52145791e-01 2.79043823e-01
-3.64576489e-01 2.00276211e-01 -4.40511219e-02 -7.34049231e-02
-4.39285301e-02 5.47468327e-02 -1.21224135e-01 -4.53117825e-02
3.05753559e-01 -8.15160513e-01 -8.73747587e-01 4.09146726e-01
-7.75560677e-01 7.01392889e-01 6.87628746e-01 7.97306836e-01
4.28834587e-01 -4.34547029e-02 8.29600692e-01 -5.45869529e-01
6.87858462e-01 -7.33865976e-01 -2.47265339e-01 9.87928584e-02
-5.70019007e-01 2.64295310e-01 4.24706876e-01 -2.36504480e-01
-1.02118969e+00 -5.25791496e-02 -1.63679391e-01 -1.02275528e-01
-7.28264228e-02 8.33330870e-01 -2.59747624e-01 -1.75599381e-01
6.86349392e-01 4.50537622e-01 3.30518838e-03 -1.26170367e-01
1.30275011e-01 -3.07661965e-02 4.28629041e-01 -5.35818398e-01
1.58296078e-01 3.85139912e-01 2.76901364e-01 -5.62017262e-01
-6.07887030e-01 -9.33734700e-02 -8.73306036e-01 -5.59878469e-01
1.32299650e+00 -9.11265910e-01 -9.25998569e-01 2.14644577e-02
-1.33381522e+00 -4.42287773e-01 3.74501824e-01 4.59134638e-01
-4.40903306e-01 1.80699140e-01 -7.05608785e-01 -5.85047960e-01
-4.47909951e-01 -1.21465635e+00 8.78604352e-01 -1.18773311e-01
-3.38223159e-01 -1.26523352e+00 -2.69672662e-01 5.35051107e-01
4.75933760e-01 5.57319403e-01 1.34066010e+00 -5.10544896e-01
-5.14800489e-01 2.19150156e-01 -5.34572184e-01 -2.30426893e-01
-1.60746828e-01 -6.14339828e-01 -9.38507080e-01 2.60455105e-02
-8.52986276e-02 1.41207963e-01 1.09036529e+00 6.69441223e-01
1.45636153e+00 -2.10731566e-01 -4.91886944e-01 5.85995376e-01
1.15096498e+00 7.43210390e-02 8.98898959e-01 -1.87720731e-02
9.09662664e-01 9.98079956e-01 -2.23866522e-01 3.74367572e-02
3.69705528e-01 5.17126918e-01 7.64282107e-01 -1.39266625e-01
-3.40170890e-01 -9.60743576e-02 5.98862886e-01 8.32530975e-01
-2.98905700e-01 -1.20205604e-01 -1.25211787e+00 5.18263698e-01
-1.90938652e+00 -9.44488108e-01 -7.06152320e-01 1.73083818e+00
5.90615809e-01 5.20199724e-02 -1.77332103e-01 -1.48461923e-01
7.39546120e-01 -6.11435771e-02 -7.79685497e-01 -1.95195049e-01
-1.96053684e-01 2.00770348e-01 2.16691777e-01 1.85042217e-01
-4.60795820e-01 9.55129623e-01 6.93727398e+00 4.56361413e-01
-9.57362592e-01 5.57729483e-01 7.28638828e-01 -1.10786915e-01
-3.68931562e-01 -8.42346251e-02 -2.17667639e-01 4.15330827e-01
1.29719353e+00 -1.51189566e-01 1.03427005e+00 1.08558267e-01
7.28904068e-01 1.16268463e-01 -1.13199449e+00 8.84083033e-01
-2.12346554e-01 -1.40500712e+00 1.02012426e-01 3.19048584e-01
5.21966517e-01 2.61372685e-01 -2.90821940e-01 2.73536801e-01
-5.19670807e-02 -1.45675111e+00 6.94146514e-01 7.57431030e-01
7.50135660e-01 -3.42403054e-01 4.70668256e-01 4.47533488e-01
-1.32034433e+00 -6.07967116e-02 -4.07323360e-01 -2.51308858e-01
1.92083919e-03 7.01816857e-01 -4.94795650e-01 3.82302135e-01
4.82097566e-01 1.08560944e+00 -6.70649171e-01 9.13574457e-01
-3.95654529e-01 8.00944924e-01 1.90769434e-01 5.26688546e-02
6.04958013e-02 -1.79993585e-02 3.87023538e-01 1.40211141e+00
3.17490429e-01 2.82363147e-01 -1.47299632e-01 1.66165018e+00
-1.08894661e-01 -1.67667478e-01 -5.61572790e-01 -2.91572750e-01
1.74195394e-01 1.35116112e+00 -1.16700375e+00 -2.49227360e-01
-1.21282376e-01 9.84355688e-01 4.32234108e-01 5.53009570e-01
-9.90505874e-01 5.81364483e-02 5.75957537e-01 1.42159462e-01
-2.32051685e-01 -5.00862479e-01 -6.85280681e-01 -1.10336936e+00
-3.28430057e-01 -4.39048767e-01 -3.19535471e-02 -1.10443354e+00
-1.07382274e+00 6.22532427e-01 -4.16107252e-02 -5.91197312e-01
2.47223243e-01 -6.78797722e-01 -5.95711291e-01 1.08253181e+00
-1.27914882e+00 -9.92337108e-01 -5.79373896e-01 7.00147629e-01
4.76159632e-01 1.05146460e-01 7.50564814e-01 1.75255746e-01
-7.14135766e-01 -3.02565489e-02 -4.71872658e-01 3.75101954e-04
1.16414465e-01 -1.01599276e+00 4.78179455e-01 7.94796705e-01
4.17531788e-04 8.92820656e-01 3.87616515e-01 -9.64863241e-01
-1.39722133e+00 -1.23981071e+00 6.01783216e-01 -3.02958220e-01
6.42016888e-01 -7.05700994e-01 -1.17594290e+00 5.76692283e-01
2.79063493e-01 -1.57521828e-03 6.35473549e-01 -9.08551589e-02
-2.56386399e-01 1.74458385e-01 -9.91136789e-01 4.98520643e-01
1.61383379e+00 -6.01533175e-01 -5.76316476e-01 5.50213814e-01
5.94634295e-01 5.69478422e-02 -1.02740371e+00 1.69656113e-01
5.47801316e-01 -8.21492732e-01 8.62345636e-01 -6.50110126e-01
6.05291665e-01 -1.91616401e-01 2.18635738e-01 -1.50742555e+00
-9.41054046e-01 -1.83578670e-01 -1.36159852e-01 6.47637784e-01
3.36967409e-01 -8.07319522e-01 5.04720032e-01 6.61759377e-01
-4.59005624e-01 -6.25897944e-01 -1.08018410e+00 -7.11688876e-01
8.58254433e-02 -5.87048173e-01 5.05585015e-01 8.48554909e-01
3.22827756e-01 5.11958361e-01 -2.32085168e-01 2.06952426e-03
4.45540696e-01 -4.34237957e-01 -1.30313057e-02 -1.42685711e+00
-3.22536752e-02 -7.23039150e-01 -4.96860653e-01 -7.57795930e-01
5.19370496e-01 -1.59822226e+00 -3.49838287e-02 -2.12146854e+00
5.04322290e-01 1.76146001e-01 -5.87650716e-01 9.14636374e-01
-7.69408569e-02 3.27661216e-01 -1.03761721e-02 3.04245591e-01
-3.87648851e-01 5.81383348e-01 1.59407198e+00 -1.18638784e-01
1.66166008e-01 -6.76106691e-01 -8.42881203e-01 4.34995979e-01
9.06220675e-01 -3.81980777e-01 -4.69625205e-01 -6.02937460e-01
8.73537585e-02 2.48170063e-01 7.65757561e-01 -1.12141883e+00
1.83308765e-01 2.51946617e-02 7.79130101e-01 -4.47186716e-02
2.13123456e-01 -6.84001803e-01 4.39908773e-01 9.69899476e-01
-4.30761606e-01 6.21346086e-02 3.71078134e-01 7.13311613e-01
2.97824368e-02 2.27479830e-01 5.97656488e-01 -2.59315699e-01
-6.03911936e-01 4.23735738e-01 -9.97865260e-01 -2.78526187e-01
7.26836383e-01 -3.85361433e-01 -4.56177562e-01 -1.41697705e-01
-9.70404625e-01 5.35540171e-02 -1.79444954e-01 3.49779874e-01
7.72416413e-01 -1.46288192e+00 -6.39681637e-01 2.41455138e-01
-1.08936414e-01 -6.63528383e-01 4.13407862e-01 1.34122300e+00
-4.70417857e-01 7.36018479e-01 -7.25357056e-01 -5.96149743e-01
-7.37041652e-01 3.39278281e-01 6.00402415e-01 -2.27585450e-01
-6.66741669e-01 7.14899838e-01 7.52830625e-01 -2.05449432e-01
-2.78685689e-01 -5.17377615e-01 -4.09318537e-01 -1.22997679e-01
2.36084700e-01 1.66016161e-01 4.04514652e-03 -7.03191638e-01
-5.00604987e-01 1.76815137e-01 3.38352829e-01 -2.44591106e-02
1.38870847e+00 -4.69748378e-02 -5.10473967e-01 1.39249399e-01
9.75850821e-01 -6.54200912e-01 -1.30676150e+00 8.29954967e-02
8.76140073e-02 -2.52306880e-03 3.42057168e-01 -1.10317886e+00
-1.42847097e+00 1.20624292e+00 5.43556929e-01 -1.44167822e-02
1.19634473e+00 -2.17043668e-01 5.69962978e-01 1.50605515e-01
5.34591913e-01 -6.14803195e-01 2.23241702e-01 5.89288592e-01
1.15670037e+00 -9.30239975e-01 -1.34789646e-01 -4.28308934e-01
-4.70175594e-01 1.31646729e+00 8.44112456e-01 -1.31639585e-01
6.18210077e-01 -2.35344678e-01 -6.24083340e-01 -8.52226734e-01
-7.18566298e-01 -2.67026126e-02 7.74204552e-01 5.03577650e-01
7.31909871e-01 2.27370054e-01 -5.64097524e-01 1.00695181e+00
-9.16140527e-02 -1.35990977e-01 1.43177062e-01 4.07034039e-01
-4.45542753e-01 -6.94225729e-01 -2.04129055e-01 7.05209494e-01
-2.77169108e-01 -4.65181470e-01 -5.40130198e-01 4.94158387e-01
1.85069218e-01 8.09388697e-01 -8.84897262e-02 -5.41134357e-01
8.87013599e-02 3.43750924e-01 5.82424462e-01 -6.98393404e-01
-9.15215492e-01 1.93379536e-01 -4.31279503e-02 -7.72490621e-01
-3.46676677e-01 -4.30854529e-01 -1.73671591e+00 -2.46307433e-01
-7.49502182e-02 -9.54403356e-02 6.88874960e-01 1.19754207e+00
7.60414541e-01 1.27206862e+00 -4.50075082e-02 -1.03043664e+00
3.55837703e-01 -1.12899482e+00 -4.52404022e-01 1.77545443e-01
-1.11860633e-01 -9.35166657e-01 9.34999138e-02 1.37868911e-01] | [12.49023723602295, 3.379387855529785] |
8a41afaa-b344-4c17-88e9-13bbb8d2e67f | heartbeat-heart-beat-estimation-through | 1810.08554 | null | http://arxiv.org/abs/1810.08554v2 | http://arxiv.org/pdf/1810.08554v2.pdf | HeartBEAT: Heart Beat Estimation through Adaptive Tracking | In this paper, we propose an algorithm denoted as HeartBEAT that tracks heart
rate from wrist-type photoplethysmography (PPG) signals and simultaneously
recorded three-axis acceleration data. HeartBEAT contains three major parts:
spectrum estimation of PPG signals and acceleration data, elimination of motion
artifacts in PPG signals using recursive least Square (RLS) adaptive filters,
and auxiliary heuristics. We tested HeartBEAT on the 22 datasets provided in
the 2015 IEEE Signal Processing Cup. The first ten datasets were recorded from
subjects performing forearm and upper-arm exercises, jumping, or pushing-up.
The last twelve datasets were recorded from subjects running on tread mills.
The experimental results were compared to the ground truth heart rate, which
comes from simultaneously recorded electrocardiogram (ECG) signals. Compared to
state-of-the-art algorithms, HeartBEAT not only produces comparable Pearson's
correlation and mean absolute error, but also higher Spearman's rho and
Kendall's tau. | ['Ghassan AlRegib', 'Dogancan Temel', 'Huijie Pan'] | 2018-10-19 | null | null | null | null | ['photoplethysmography-ppg'] | ['medical'] | [ 3.51584285e-01 -1.52877467e-02 -9.32956953e-03 -1.65248722e-01
-4.47399348e-01 -3.43538672e-01 -2.03481525e-01 -3.44350278e-01
-3.66326183e-01 7.75391459e-01 1.96928665e-01 -7.75590912e-02
-2.84276038e-01 -2.42250219e-01 -1.44605646e-02 -4.75318015e-01
-7.02950239e-01 -1.68596506e-02 -1.73501790e-01 1.00801565e-01
2.94671059e-01 2.12491766e-01 -9.12755966e-01 -2.72698849e-01
6.54834747e-01 1.34964406e+00 -5.75399339e-01 1.13791013e+00
4.65743631e-01 5.33977509e-01 -7.21757591e-01 2.84567401e-02
4.48521107e-01 -9.77003574e-01 -4.30601805e-01 -1.82397723e-01
-5.13652712e-02 -1.09472267e-01 -2.24453181e-01 6.28531754e-01
1.10828316e+00 -1.78721040e-01 2.12070137e-01 -1.21996117e+00
3.06733279e-03 4.09386992e-01 -7.09645152e-01 4.39376712e-01
7.80468524e-01 2.97690392e-01 4.31029022e-01 -5.20165563e-01
3.90366971e-01 5.65001965e-01 1.54621315e+00 3.03129524e-01
-1.38290930e+00 -6.57585800e-01 -8.08860362e-01 2.67687708e-01
-1.41530657e+00 -3.01102728e-01 1.13263118e+00 -3.27251017e-01
5.56844354e-01 9.52233493e-01 1.18139529e+00 8.07472527e-01
5.56295931e-01 3.23207259e-01 1.56872177e+00 -3.67345333e-01
1.89397469e-01 -1.40842423e-01 4.23041493e-01 3.68870735e-01
3.69731039e-01 1.58146411e-01 -7.10837960e-01 -4.75041181e-01
9.07121956e-01 -3.10267776e-01 -7.01645732e-01 1.01136923e-01
-1.48036015e+00 3.10547382e-01 -3.25390190e-01 1.88867539e-01
-8.52678776e-01 8.29828531e-02 6.46655381e-01 3.86629462e-01
3.00659835e-01 4.98553485e-01 -6.63158655e-01 -7.24112332e-01
-9.80719924e-01 1.57628655e-01 1.36485064e+00 5.37856817e-01
9.40603912e-02 1.15827322e-01 -2.31808096e-01 4.30692524e-01
3.52568418e-01 6.27078176e-01 6.43414974e-01 -9.88839328e-01
3.57014328e-01 2.17687696e-01 2.26333871e-01 -1.17894757e+00
-1.10049820e+00 -2.89219379e-01 -8.48327339e-01 -4.31797981e-01
7.05164790e-01 -7.21972823e-01 -1.27157182e-01 1.19646645e+00
4.73906845e-01 4.64341313e-01 -1.22139037e-01 1.34388268e+00
7.59767592e-01 2.46803701e-01 -1.41780436e-01 -9.13828194e-01
1.70739782e+00 -2.33938232e-01 -1.21149969e+00 -7.43312761e-02
1.66618302e-02 -5.70933640e-01 8.82538736e-01 8.01666260e-01
-9.54963088e-01 -7.80654848e-01 -1.06367993e+00 3.66337925e-01
2.22936422e-01 2.00528547e-01 4.38034505e-01 1.13630843e+00
-5.77271760e-01 1.13421452e+00 -7.70237982e-01 -2.03843728e-01
-1.28197879e-01 -3.32157761e-02 -2.23455951e-02 6.82285070e-01
-1.60435295e+00 7.86923945e-01 -1.39415935e-01 5.89058757e-01
-1.17534138e-01 -9.02307153e-01 -6.56104088e-01 -3.45472544e-01
2.10619926e-01 -3.39366078e-01 8.30542505e-01 -2.72038460e-01
-2.25370598e+00 7.32739031e-01 7.47605637e-02 -4.44075227e-01
7.34020591e-01 -5.72217047e-01 -7.41966188e-01 2.45447636e-01
-4.18862432e-01 -3.92443627e-01 1.02079630e+00 -3.66703123e-01
1.22501582e-01 -5.45567453e-01 -1.00993001e+00 1.37889385e-01
4.30617779e-02 -1.41885921e-01 -1.26996100e-01 -4.11411345e-01
6.73948407e-01 -1.09218097e+00 -1.40801728e-01 -3.46848994e-01
-4.38357472e-01 2.53613740e-01 1.97958365e-01 -1.21999311e+00
1.64007020e+00 -2.07524633e+00 -4.51629497e-02 6.94354355e-01
1.22012317e-01 2.72953026e-02 4.15832967e-01 5.47493637e-01
-5.72706722e-02 -1.78170398e-01 8.26461315e-02 1.19264171e-01
-1.15623595e-02 5.05729914e-02 -9.89614353e-02 1.06719422e+00
-3.10473830e-01 7.32638240e-01 -6.57707155e-01 -4.39968318e-01
2.96170533e-01 3.57388377e-01 1.57927543e-01 7.89086223e-02
6.30994558e-01 7.05665410e-01 -1.69436276e-01 6.33827806e-01
4.86922681e-01 2.50526555e-02 5.10776460e-01 -7.01954305e-01
-5.73724806e-02 1.52563587e-01 -1.43362153e+00 1.77119052e+00
-7.51985982e-02 6.55906022e-01 -1.04853913e-01 -7.94462860e-01
1.44693863e+00 6.64166331e-01 7.89383113e-01 -7.15367317e-01
3.59914362e-01 6.86356351e-02 1.95251882e-01 -1.12812698e+00
-4.03835587e-02 -2.30766833e-01 -8.01519528e-02 5.91402888e-01
-1.91255614e-01 -3.92723978e-01 1.68656453e-01 -1.10733740e-01
1.01238382e+00 2.21852750e-01 6.47294104e-01 -6.43818319e-01
5.95865846e-01 -3.59193414e-01 7.27578700e-01 5.33805668e-01
-6.73073649e-01 6.41980648e-01 5.97038746e-01 -7.10722208e-01
-5.13237357e-01 -8.77669454e-01 -2.68678665e-01 2.08440006e-01
3.31695750e-02 -5.13212740e-01 -6.43147647e-01 1.48788631e-01
1.67931825e-01 1.86412826e-01 -6.80869699e-01 -1.05592817e-01
-5.41862547e-01 -9.69770193e-01 8.94430041e-01 4.89230752e-01
4.50693011e-01 -8.54016006e-01 -1.36187315e+00 4.77284580e-01
-4.68022019e-01 -1.08904183e+00 -4.88719434e-01 1.31692048e-02
-1.22993100e+00 -1.35917282e+00 -6.96784377e-01 2.14869574e-01
1.07172944e-01 -5.57332873e-01 9.90591764e-01 -3.56453896e-01
-9.29083288e-01 4.32256579e-01 -1.65487975e-01 -6.55465961e-01
2.15511814e-01 -3.62043291e-01 4.90785271e-01 2.14878753e-01
3.37616742e-01 -6.80611491e-01 -9.33757842e-01 4.36504126e-01
7.03207180e-02 -2.86437571e-01 3.28773230e-01 4.73724127e-01
6.27270758e-01 -3.15932631e-01 6.48891687e-01 -5.68360806e-01
1.17278349e+00 7.46193621e-03 -6.34890020e-01 -9.53982770e-02
-9.04634893e-01 -5.29565573e-01 4.36126679e-01 -5.82576573e-01
-4.27861005e-01 9.05719846e-02 9.15951878e-02 -1.84392378e-01
2.38514155e-01 2.33492583e-01 3.79997522e-01 -4.03725822e-03
1.09929609e+00 3.00995022e-01 3.03599387e-01 -2.18625471e-01
1.92173421e-02 4.84340489e-01 1.16963649e+00 -5.52553117e-01
3.67250293e-01 1.23124011e-01 4.47115451e-01 -1.11167276e+00
-3.83123398e-01 -6.34079278e-01 -6.16756499e-01 -5.75493991e-01
7.99120724e-01 -6.66487634e-01 -1.29521966e+00 6.77744806e-01
-7.22193718e-01 -2.01970622e-01 -3.96657586e-01 1.06589723e+00
-6.61409557e-01 6.20721996e-01 -9.18923318e-01 -1.32730567e+00
-1.13118005e+00 -1.43204480e-01 6.08308792e-01 4.77473110e-01
-8.75157177e-01 -6.32072151e-01 4.03392017e-01 2.98622519e-01
4.07356292e-01 1.06489599e+00 -1.64839085e-02 -1.93356544e-01
5.22944450e-01 -5.89593232e-01 3.29876006e-01 3.51680040e-01
1.51887059e-01 -7.76478946e-02 -1.08965468e+00 -2.74782658e-01
4.75265592e-01 9.26781297e-02 -1.48229385e-02 7.44501710e-01
7.62093782e-01 -2.44930014e-01 -1.39870718e-01 7.17888892e-01
1.15769899e+00 2.71380901e-01 1.13729942e+00 1.33129079e-02
3.43482554e-01 5.18774033e-01 5.04306257e-01 7.89588213e-01
1.89198218e-02 3.54244411e-01 -7.49465376e-02 -2.29240760e-01
4.01623785e-01 9.83908176e-02 2.74154633e-01 9.29762185e-01
-7.87094057e-01 5.52579701e-01 -8.46976221e-01 1.24498859e-01
-1.49157870e+00 -8.26066494e-01 -8.93381119e-01 2.31157255e+00
9.19435561e-01 1.66949295e-02 5.89214683e-01 9.93899405e-01
5.21278679e-01 -1.32168591e-01 -7.92226374e-01 -5.20401597e-01
9.50449258e-02 4.04399782e-01 6.15226150e-01 1.07992850e-01
-9.38402593e-01 -1.41673565e-01 6.60360146e+00 -1.76490590e-01
-1.17814350e+00 -9.83985811e-02 2.49031603e-01 -3.81537490e-02
4.82616723e-01 -1.47268295e-01 -2.68211007e-01 7.31570303e-01
1.36872447e+00 -4.42164421e-01 4.65224266e-01 7.08692610e-01
3.41121167e-01 -3.38628262e-01 -8.02692056e-01 1.43784440e+00
1.32656783e-01 -7.21520960e-01 -1.42315924e+00 -2.48074129e-01
3.86435091e-01 -1.88595638e-01 -5.50270617e-01 -1.11506037e-01
-6.37433708e-01 -5.83436847e-01 3.55239093e-01 1.00910461e+00
8.24376643e-01 -4.38396543e-01 6.43728733e-01 2.51014918e-01
-1.11354744e+00 1.02487728e-01 -8.22157264e-02 -3.66347492e-01
2.25302324e-01 1.23208582e+00 -5.42029858e-01 7.10376501e-01
5.58109522e-01 6.43575549e-01 -1.22957408e-01 1.05283308e+00
-5.22791982e-01 1.01352370e+00 -4.78599191e-01 -1.53088734e-01
-6.11935973e-01 -4.06690180e-01 5.50082743e-01 9.50513542e-01
1.46156937e-01 8.24615777e-01 -3.66878021e-03 7.27441549e-01
6.28493488e-01 1.61956936e-01 -2.48157993e-01 3.86910141e-02
3.47073883e-01 1.46273446e+00 -5.71202338e-01 -5.04819334e-01
-3.19146395e-01 7.05816269e-01 -7.99223304e-01 2.53622293e-01
-1.01592052e+00 -1.17218459e+00 3.19292098e-01 2.84823924e-01
-6.99842930e-01 -1.46023259e-01 -7.61575341e-01 -1.05301142e+00
9.79255959e-02 -7.74327159e-01 5.08628786e-01 -7.10785687e-01
-1.10165370e+00 4.44440216e-01 -8.95185247e-02 -1.32002711e+00
-4.82225120e-01 -2.06690788e-01 -6.94994569e-01 1.27818608e+00
-8.59940827e-01 4.43110168e-02 -6.79907501e-01 6.55372202e-01
9.47980769e-03 4.16343510e-01 9.57667351e-01 5.00344872e-01
-4.65918303e-01 2.80045867e-01 -5.29673159e-01 1.02707148e-01
6.60271823e-01 -1.11516070e+00 4.23937857e-01 7.18573928e-01
-1.82016060e-01 6.65777624e-01 9.73283112e-01 -5.54807782e-01
-1.94001865e+00 -4.41627920e-01 8.00806224e-01 -1.25402525e-01
5.41248620e-01 -1.01845628e-02 -7.95083523e-01 2.33568296e-01
-1.16957486e-01 4.65622038e-01 6.30764604e-01 -5.05037159e-02
3.10737848e-01 -4.85379308e-01 -1.20366502e+00 9.09534916e-02
4.20008749e-01 -5.16246557e-01 -7.32895076e-01 2.82319225e-02
-2.00768232e-01 -8.89762521e-01 -1.45569098e+00 4.87673849e-01
1.32660556e+00 -5.98539829e-01 8.41898859e-01 -3.25693756e-01
-1.04498841e-01 -3.66577595e-01 4.09614265e-01 -1.12234592e+00
-1.56225652e-01 -1.45694017e+00 -3.41754466e-01 8.25903475e-01
-9.64160077e-03 -9.35958862e-01 6.57107353e-01 8.14731359e-01
1.06183596e-01 -5.47387600e-01 -7.23951399e-01 -8.90978158e-01
-7.39560843e-01 -4.39806849e-01 1.09711662e-01 1.09346175e+00
8.61678898e-01 1.94919989e-01 -9.87091839e-01 -3.36885750e-02
1.15518510e+00 1.08690962e-01 9.38870430e-01 -1.34599447e+00
-4.23317373e-01 2.12469518e-01 -5.61026335e-01 -3.44442844e-01
-7.03291416e-01 -1.79378524e-01 2.82505918e-02 -1.25971603e+00
-1.93267554e-01 6.35483116e-02 -5.04024506e-01 3.93902928e-01
-3.01068187e-01 5.61198473e-01 1.32346779e-01 -8.97558033e-02
2.09172089e-02 -2.46734619e-01 1.08279145e+00 3.12855273e-01
-8.21113646e-01 2.59444952e-01 -2.57844925e-01 6.23927295e-01
8.41040373e-01 -3.77633512e-01 -4.52786922e-01 4.20975655e-01
2.83348560e-01 8.84187460e-01 1.99866593e-01 -1.33198059e+00
1.13117009e-01 1.65233970e-01 7.18424380e-01 -4.10496742e-01
1.76162332e-01 -4.90748107e-01 8.74452055e-01 1.06177688e+00
-1.57371297e-01 6.17870428e-02 9.13615599e-02 7.70668015e-02
-2.95986850e-02 3.40960860e-01 7.37829626e-01 -8.93820915e-03
-1.45909637e-01 -7.09240958e-02 -2.62501597e-01 2.27769703e-01
7.43610501e-01 -5.33309221e-01 -3.61871928e-01 -3.43508244e-01
-9.54111278e-01 1.29909605e-01 -3.73706847e-01 2.37577543e-01
6.07779264e-01 -1.27081072e+00 -7.72642791e-01 4.68541831e-01
-2.39289954e-01 -6.80172861e-01 4.63223487e-01 1.73421490e+00
-5.38976252e-01 2.06414998e-01 -5.10874927e-01 -7.63581216e-01
-1.22419858e+00 8.55332687e-02 4.27136242e-01 -6.14859723e-02
-9.49539721e-01 4.39332038e-01 -6.86928988e-01 2.36884177e-01
6.84716702e-02 -6.38699174e-01 -1.30927041e-01 1.29940122e-01
6.42690718e-01 1.00329351e+00 8.81221965e-02 -8.76434743e-02
-6.70350969e-01 8.49422574e-01 5.65921366e-01 -1.96901694e-01
8.39401782e-01 -1.94928467e-01 1.15308002e-01 7.08566010e-01
7.83695400e-01 9.71144065e-03 -8.81658018e-01 2.91665614e-01
1.09524839e-01 -4.85027283e-01 -2.49019638e-01 -8.20607722e-01
-9.58822429e-01 7.87181735e-01 9.91700113e-01 4.47422326e-01
1.37941849e+00 -8.62573981e-01 8.18172872e-01 8.87315422e-02
4.48524833e-01 -1.44292259e+00 -9.75890458e-02 -7.81880021e-02
7.08405435e-01 -4.01758701e-01 5.13477504e-01 -3.76193136e-01
-8.27221334e-01 1.12451279e+00 2.14577988e-01 -3.91181976e-01
7.16312945e-01 4.03172940e-01 4.35127914e-01 3.20262997e-03
-5.60995460e-01 2.69997001e-01 3.69276494e-01 5.26534796e-01
6.90993369e-01 3.07856891e-02 -1.10839391e+00 8.69292617e-01
-1.37718409e-01 7.21318603e-01 4.82776612e-01 7.15842247e-01
-1.56232014e-01 -5.54460704e-01 -6.82514071e-01 5.67113042e-01
-9.16096449e-01 2.09519282e-01 -2.26447403e-01 7.98833728e-01
-2.49533385e-01 9.67205822e-01 -2.19748840e-01 -4.20744389e-01
7.51387537e-01 4.09104377e-01 5.84702671e-01 -3.28339748e-02
-7.83127546e-01 2.62861043e-01 2.62330979e-01 -1.04110658e+00
-2.68530101e-01 -7.81408846e-01 -1.19230068e+00 4.43699723e-03
-3.10181856e-01 2.43214712e-01 9.06686783e-01 5.08221328e-01
1.79479629e-01 6.82654977e-01 7.40067244e-01 -6.17758453e-01
-6.94860876e-01 -1.22496843e+00 -1.20305872e+00 3.75674754e-01
2.75734454e-01 -1.83179036e-01 -4.72240776e-01 3.65907997e-01] | [13.960573196411133, 3.006913423538208] |
1407cc7c-36e5-4bd9-b175-3d560ee36df9 | adaptive-multi-stage-density-ratio-estimation | 2209.08739 | null | https://arxiv.org/abs/2209.08739v1 | https://arxiv.org/pdf/2209.08739v1.pdf | Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model | This paper studies the fundamental problem of learning energy-based model (EBM) in the latent space of the generator model. Learning such prior model typically requires running costly Markov Chain Monte Carlo (MCMC). Instead, we propose to use noise contrastive estimation (NCE) to discriminatively learn the EBM through density ratio estimation between the latent prior density and latent posterior density. However, the NCE typically fails to accurately estimate such density ratio given large gap between two densities. To effectively tackle this issue and learn more expressive prior models, we develop the adaptive multi-stage density ratio estimation which breaks the estimation into multiple stages and learn different stages of density ratio sequentially and adaptively. The latent prior model can be gradually learned using ratio estimated in previous stage so that the final latent space EBM prior can be naturally formed by product of ratios in different stages. The proposed method enables informative and much sharper prior than existing baselines, and can be trained efficiently. Our experiments demonstrate strong performances in image generation and reconstruction as well as anomaly detection. | ['Tian Han', 'Zhisheng Xiao'] | 2022-09-19 | null | null | null | null | ['density-ratio-estimation'] | ['methodology'] | [ 2.25720838e-01 -2.37699285e-01 -1.02943033e-01 -3.11900437e-01
-1.23995078e+00 -2.47427821e-01 9.15352106e-01 -2.44409487e-01
-4.11583990e-01 6.78075969e-01 2.27481022e-01 -1.12921976e-01
1.67051539e-01 -7.95304716e-01 -8.76739919e-01 -8.69180977e-01
1.55373439e-01 7.73149371e-01 2.49185175e-01 3.34699363e-01
2.27221921e-01 3.48447531e-01 -1.22701025e+00 -1.91599861e-01
9.30526257e-01 9.10712421e-01 5.78550160e-01 8.50077212e-01
-2.52805561e-01 9.65443194e-01 -5.26240587e-01 -1.55856058e-01
1.15782641e-01 -7.78795421e-01 -5.33136249e-01 1.10731043e-01
2.03733832e-01 -6.54468238e-01 -3.16327631e-01 1.32671368e+00
4.40997630e-01 3.22870493e-01 1.44947124e+00 -1.09872854e+00
-6.09637141e-01 3.59690577e-01 -1.14683795e+00 3.78775209e-01
8.43248889e-02 6.04443848e-02 7.56803513e-01 -1.14461219e+00
2.56557167e-01 1.45639396e+00 5.30807614e-01 4.19365764e-01
-1.33687878e+00 -6.94566309e-01 2.68204808e-01 2.24346831e-01
-1.61754620e+00 -4.47031111e-01 7.80339658e-01 -3.80614668e-01
7.07266271e-01 -7.41221383e-02 6.43447578e-01 1.30191779e+00
1.46948427e-01 1.06432569e+00 1.21212995e+00 -5.21541059e-01
3.92636478e-01 -8.65666866e-02 -2.93392301e-01 9.68163073e-01
1.94011420e-01 -1.23498492e-01 -4.74971384e-01 -3.98561239e-01
1.20045185e+00 -8.51437002e-02 -2.63446838e-01 -1.99018449e-01
-8.71235490e-01 9.26688194e-01 8.41993168e-02 3.83674987e-02
-4.03017730e-01 6.78401411e-01 -9.43079218e-02 -1.41672835e-01
4.38166469e-01 -5.45636564e-02 3.10091935e-02 -2.03101709e-01
-1.52438569e+00 3.34719606e-02 5.53660333e-01 9.63077903e-01
9.96854782e-01 2.42841959e-01 -3.69813651e-01 9.49152946e-01
9.00114834e-01 7.30496526e-01 4.46505964e-01 -1.02051795e+00
2.61593521e-01 -3.99238840e-02 2.79893696e-01 -6.73520684e-01
3.10149193e-01 -3.32870245e-01 -1.22299123e+00 1.30410016e-01
3.64480048e-01 -7.98136219e-02 -1.41920519e+00 1.78536522e+00
3.57547134e-01 8.26177299e-01 -2.68728316e-01 5.40217221e-01
1.49756595e-01 1.19685352e+00 5.12150303e-02 -4.08652306e-01
1.14582324e+00 -9.93180275e-01 -8.41335297e-01 -2.95721382e-01
2.22599640e-01 -8.19949925e-01 1.00110650e+00 3.21567178e-01
-1.22336304e+00 -5.21379769e-01 -1.10102892e+00 2.61340290e-02
2.66891152e-01 1.74045071e-01 4.27044660e-01 3.96772563e-01
-9.51737404e-01 5.40782571e-01 -1.36810434e+00 -1.21782422e-02
5.40979981e-01 6.34877309e-02 2.03555271e-01 -2.56764948e-01
-9.37350094e-01 7.03962922e-01 3.61967176e-01 6.24656444e-03
-1.59494758e+00 -5.44494331e-01 -9.88491178e-01 -1.60899997e-01
1.81124136e-01 -9.35426712e-01 1.15767908e+00 -6.16035759e-01
-1.79793346e+00 5.67290545e-01 -3.58090520e-01 -4.76284504e-01
6.29213512e-01 -4.76948828e-01 -3.54752243e-02 2.02934787e-01
2.66764630e-02 8.88761818e-01 1.50554180e+00 -1.21071947e+00
-4.38668877e-01 1.86861664e-01 -4.44805205e-01 3.00239772e-01
-5.44989519e-02 -9.85739306e-02 -6.61647677e-01 -7.30063617e-01
1.99541748e-02 -6.28496528e-01 -3.06523770e-01 3.08918394e-02
-3.12334031e-01 -6.36223331e-02 7.82937229e-01 -7.59736240e-01
1.15954578e+00 -1.88032377e+00 9.85765532e-02 2.89221823e-01
1.25658298e-02 2.91064251e-02 -4.79098596e-03 8.26849043e-02
1.34880066e-01 -5.12786023e-02 -6.32152677e-01 -7.07383573e-01
1.34599790e-01 4.72775906e-01 -4.75829184e-01 6.01916730e-01
2.94692457e-01 8.67329657e-01 -8.97818208e-01 -7.70877659e-01
3.89083654e-01 6.63957179e-01 -6.53963625e-01 5.85115194e-01
-2.16102228e-01 5.63773334e-01 -2.43500888e-01 5.21212220e-01
9.68318999e-01 -4.81688470e-01 -1.18942626e-01 -2.39078268e-01
2.86687523e-01 -1.01930805e-01 -1.35804570e+00 1.80698192e+00
-5.39368570e-01 4.37094480e-01 8.19418696e-04 -1.01470184e+00
7.48485863e-01 1.80568442e-01 2.40853310e-01 -2.59610564e-01
-2.68120300e-02 1.15439683e-01 -2.86430746e-01 -1.47496611e-01
3.46376896e-01 -3.36009681e-01 5.14448881e-02 4.45657164e-01
3.67155910e-01 -1.80963710e-01 -6.88585499e-03 2.51540601e-01
8.68806660e-01 4.71532226e-01 5.57411909e-01 -1.76765084e-01
5.14666796e-01 -6.38668358e-01 6.06779993e-01 1.14485753e+00
-1.07264131e-01 7.16610610e-01 2.50917584e-01 3.53947282e-02
-1.29089618e+00 -1.52715814e+00 -1.34587109e-01 7.04559743e-01
1.57083020e-01 -4.30792630e-01 -8.52381170e-01 -6.80630505e-01
-5.32564163e-01 7.32904077e-01 -3.28821957e-01 -1.79812938e-01
-7.31344402e-01 -1.37366855e+00 3.60927492e-01 6.18750691e-01
8.99468005e-01 -7.07315266e-01 -1.43970564e-01 2.21839532e-01
-3.86211812e-01 -1.01062286e+00 -6.59038603e-01 4.00600657e-02
-9.47893918e-01 -5.27341247e-01 -9.38406289e-01 -4.93798196e-01
8.10912669e-01 -2.09194809e-01 1.17328990e+00 -9.28480700e-02
-1.90524146e-01 4.36060071e-01 4.43656975e-03 -5.04721254e-02
-6.15338206e-01 -2.14447170e-01 8.58038515e-02 1.57319158e-01
-3.67032690e-03 -9.65406537e-01 -8.04138064e-01 1.60091877e-01
-9.63648260e-01 2.52829194e-01 9.09925461e-01 8.50873768e-01
9.42319870e-01 2.60847867e-01 3.10460538e-01 -6.51006758e-01
2.18402013e-01 -5.49196005e-01 -7.80621588e-01 2.67610729e-01
-6.05931520e-01 5.13402998e-01 4.31876957e-01 -4.70345289e-01
-1.47243428e+00 1.78002864e-02 -5.01697183e-01 -6.05380595e-01
-1.85502440e-01 1.50305167e-01 -3.97161394e-01 2.39203587e-01
2.93441355e-01 3.84064853e-01 -4.37913179e-01 -6.39055312e-01
5.59470356e-01 2.96131849e-01 8.87589753e-01 -8.08626294e-01
1.01687551e+00 5.05403996e-01 4.41153422e-02 -6.08756959e-01
-9.61117208e-01 -3.79492164e-01 -4.17657286e-01 -9.71423611e-02
9.19763148e-01 -1.08790481e+00 -9.30016339e-02 7.08201051e-01
-1.00765121e+00 -4.02827114e-01 -3.14188749e-01 5.82776010e-01
-5.62220156e-01 7.46719122e-01 -8.64622414e-01 -1.12902105e+00
-2.42507711e-01 -1.09014428e+00 1.21038270e+00 1.97116658e-01
1.10029936e-01 -1.19394302e+00 3.25171739e-01 -2.02212669e-02
3.31095904e-01 9.89039093e-02 8.83146763e-01 -1.04798004e-01
-8.22085917e-01 -1.74370147e-02 -1.71224236e-01 4.47735190e-01
8.39263573e-02 4.39268956e-03 -1.10078287e+00 -4.06125456e-01
2.95331955e-01 -2.84623355e-01 1.28340507e+00 6.89773917e-01
1.26108193e+00 -3.92882645e-01 -3.87283981e-01 8.25681448e-01
1.60584915e+00 -1.38026997e-01 9.59722221e-01 -1.21077389e-01
7.89108872e-01 -4.76625711e-02 4.08054709e-01 4.93351787e-01
8.00302625e-02 4.16497767e-01 1.96305871e-01 7.41171464e-02
-2.50838578e-01 -6.19272470e-01 7.62585223e-01 1.08675957e+00
7.42645115e-02 -4.64460194e-01 -7.15343893e-01 3.43195766e-01
-1.75157106e+00 -9.92345154e-01 3.15360397e-01 1.99640179e+00
1.00952017e+00 2.74357110e-01 2.29934952e-03 -8.01378712e-02
8.91238391e-01 1.89540192e-01 -5.15812755e-01 1.56780615e-01
1.74885362e-01 2.05499023e-01 3.48473638e-01 8.21900308e-01
-1.04545105e+00 6.86242998e-01 7.13995981e+00 1.55247724e+00
-5.38351238e-01 3.09363306e-01 8.41880202e-01 5.94714098e-02
-6.53065741e-01 2.43915930e-01 -1.00437212e+00 7.26167798e-01
1.01665521e+00 2.95387626e-01 2.86818922e-01 7.67627418e-01
-9.69204456e-02 -5.07495105e-01 -1.08579051e+00 1.34711015e+00
-3.38685177e-02 -1.16369021e+00 3.93785387e-01 2.29594231e-01
8.89200270e-01 -9.89170149e-02 1.65422842e-01 4.62245017e-01
5.59414506e-01 -1.00230014e+00 7.10510850e-01 8.42970073e-01
7.67178476e-01 -7.71444678e-01 5.23792148e-01 6.89212620e-01
-1.33563280e+00 1.91032052e-01 -5.86333334e-01 2.45435789e-01
4.69254434e-01 8.30067694e-01 -6.11966848e-01 2.57627666e-01
4.64462310e-01 5.19512177e-01 -3.69908512e-01 1.06415975e+00
-3.16421688e-01 1.04771936e+00 -6.01110876e-01 4.27059889e-01
1.76771596e-01 -5.06298423e-01 7.50933290e-01 1.22826827e+00
5.62621951e-01 -2.29002103e-01 3.03819567e-01 1.10404587e+00
-2.28542998e-01 -2.05761328e-01 -2.86650777e-01 8.49029869e-02
4.96438116e-01 1.24644494e+00 -9.64569092e-01 -5.47602236e-01
-3.08935851e-01 1.42465425e+00 4.31715101e-01 4.58160847e-01
-1.28093183e+00 6.93123862e-02 1.63642094e-01 -3.00186444e-02
4.22053009e-01 -2.83066511e-01 3.28307211e-01 -1.39753830e+00
-2.67093241e-01 -4.20875728e-01 3.75147104e-01 -6.94670975e-01
-1.54202807e+00 3.12764555e-01 5.09136736e-01 -1.00140870e+00
-5.74168324e-01 -4.23173368e-01 -8.58513713e-01 9.45075154e-01
-1.54413652e+00 -1.14111340e+00 -1.20658323e-01 5.15170932e-01
7.12376833e-01 -5.55796102e-02 6.79000914e-01 3.05982351e-01
-7.37570107e-01 6.00371301e-01 2.45961338e-01 -6.99809045e-02
5.60034811e-01 -1.60177279e+00 4.32064712e-01 1.20705843e+00
3.92664403e-01 4.04360652e-01 6.39419079e-01 -7.47012377e-01
-6.77649021e-01 -1.01971960e+00 1.01485617e-01 -3.97325844e-01
4.26950753e-01 -4.12005156e-01 -8.63495767e-01 6.02625370e-01
2.68519223e-01 1.48886651e-01 5.34654617e-01 -4.05968457e-01
-1.87847391e-01 1.32122785e-01 -1.01930130e+00 4.47049081e-01
8.36590290e-01 -5.86081624e-01 -3.55867296e-01 1.97287410e-01
3.75331789e-01 -3.66659820e-01 -5.99261105e-01 3.89871389e-01
1.58674374e-01 -7.74715185e-01 1.08128893e+00 -2.27759238e-02
1.03498325e-01 -5.43754816e-01 -4.02153581e-01 -9.97600675e-01
-2.86593854e-01 -8.29524457e-01 -9.76771057e-01 1.47682965e+00
1.21932350e-01 -1.30805045e-01 6.54645741e-01 1.84039459e-01
-3.95122916e-02 -7.72305191e-01 -8.08582306e-01 -6.68363869e-01
-3.11903637e-02 -6.44572556e-01 3.62860620e-01 5.63899755e-01
-8.57203245e-01 3.93214226e-01 -8.33686590e-01 3.72914255e-01
1.01212859e+00 -5.35329990e-02 6.35255933e-01 -9.15777147e-01
-7.70905554e-01 -1.69550017e-01 -1.42837986e-01 -1.71670651e+00
-5.49786836e-02 -8.40718508e-01 2.97420621e-01 -1.51778758e+00
7.12320328e-01 -1.31987855e-01 -3.45909357e-01 -1.09599587e-02
-4.89764571e-01 4.32325542e-01 -2.19502166e-01 5.09395659e-01
-7.38189578e-01 9.19286788e-01 1.14520764e+00 1.59987167e-03
1.85692623e-01 -1.71597734e-01 -3.53623122e-01 1.25238299e+00
4.40275222e-01 -7.12903380e-01 -6.23395741e-01 -1.20766476e-01
2.38055736e-01 6.11120043e-03 4.66766655e-01 -1.08635950e+00
1.35636315e-01 -1.43502995e-01 9.47444797e-01 -9.45109487e-01
5.06870806e-01 -4.52971905e-01 1.50595918e-01 1.20022960e-01
-1.14025190e-01 -7.98164383e-02 -4.81756255e-02 1.06732714e+00
-5.11624217e-02 -5.88305950e-01 1.15775621e+00 -2.20287845e-01
-6.92109168e-01 5.84921777e-01 -5.30285239e-01 2.27195382e-01
6.37844861e-01 -6.75764820e-03 2.07842752e-01 -5.78900039e-01
-8.17532659e-01 1.00406446e-01 4.17988718e-01 -2.38037080e-01
7.78617799e-01 -1.69410658e+00 -5.99244177e-01 1.38469815e-01
-2.28725210e-01 3.22232008e-01 2.75375366e-01 7.59496868e-01
-5.43794632e-01 -3.81747305e-01 1.49631754e-01 -9.11041677e-01
-5.88249922e-01 3.13257307e-01 5.13954937e-01 -6.59990370e-01
-7.88766265e-01 1.06942999e+00 4.28144723e-01 -4.49857526e-02
2.34403834e-01 -1.61263198e-01 8.33552182e-02 -2.05364883e-01
6.29758120e-01 3.78326923e-01 -4.91852015e-01 -5.43331325e-01
-1.75852552e-01 5.33773065e-01 -2.71971434e-01 -6.34183764e-01
1.10279119e+00 -4.78657931e-01 8.01031757e-03 4.83292639e-01
1.27864254e+00 2.92754844e-02 -1.79315472e+00 -1.93759829e-01
-1.31247461e-01 -5.84960639e-01 2.57602394e-01 -4.10627246e-01
-8.15058291e-01 9.37703073e-01 8.23100865e-01 -2.93661982e-01
1.14432752e+00 1.93939749e-02 1.03600848e+00 2.20026389e-01
-3.94855142e-02 -1.28850901e+00 6.32327378e-01 3.47460210e-01
5.87295473e-01 -1.06675982e+00 1.41896799e-01 -7.16291294e-02
-3.46482724e-01 7.60290146e-01 6.06345773e-01 -2.95135081e-01
8.03439021e-01 4.50176865e-01 -3.55890065e-01 -4.69506755e-02
-5.11321068e-01 -1.75871029e-02 5.17686248e-01 5.72336435e-01
9.25475210e-02 -2.47222751e-01 2.85354733e-01 2.00738519e-01
8.60155821e-02 -3.66646767e-01 3.81834626e-01 8.35488677e-01
-5.42917967e-01 -1.11678612e+00 -3.58730167e-01 4.47967827e-01
-5.62355995e-01 -3.65170509e-01 3.40946257e-01 4.07897562e-01
1.07137300e-01 5.08805215e-01 2.82913715e-01 1.26644731e-01
-3.10730428e-01 1.87373549e-01 8.95058155e-01 -3.68870527e-01
4.27079767e-01 6.82116151e-01 -3.87223870e-01 -4.13638353e-01
-5.10116279e-01 -6.97445750e-01 -1.05015647e+00 -1.38001576e-01
-6.36048079e-01 1.99958652e-01 2.78329849e-01 1.08214259e+00
-1.52152687e-01 3.55723888e-01 5.07314563e-01 -9.89180028e-01
-5.26664793e-01 -1.09958041e+00 -6.68485522e-01 2.26224080e-01
3.41258258e-01 -7.47875750e-01 -3.75892669e-01 8.29510838e-02] | [7.079527854919434, 3.8064730167388916] |
b4060cd3-a811-458f-afb0-270015c85451 | a-hybrid-statistical-machine-learning | 2212.02255 | null | https://arxiv.org/abs/2212.02255v1 | https://arxiv.org/pdf/2212.02255v1.pdf | A Hybrid Statistical-Machine Learning Approach for Analysing Online Customer Behavior: An Empirical Study | We apply classical statistical methods in conjunction with the state-of-the-art machine learning techniques to develop a hybrid interpretable model to analyse 454,897 online customers' behavior for a particular product category at the largest online retailer in China, that is JD. While most mere machine learning methods are plagued by the lack of interpretability in practice, our novel hybrid approach will address this practical issue by generating explainable output. This analysis involves identifying what features and characteristics have the most significant impact on customers' purchase behavior, thereby enabling us to predict future sales with a high level of accuracy, and identify the most impactful variables. Our results reveal that customers' product choice is insensitive to the promised delivery time, but this factor significantly impacts customers' order quantity. We also show that the effectiveness of various discounting methods depends on the specific product and the discount size. We identify product classes for which certain discounting approaches are more effective and provide recommendations on better use of different discounting tools. Customers' choice behavior across different product classes is mostly driven by price, and to a lesser extent, by customer demographics. The former finding asks for exercising care in deciding when and how much discount should be offered, whereas the latter identifies opportunities for personalized ads and targeted marketing. Further, to curb customers' batch ordering behavior and avoid the undesirable Bullwhip effect, JD should improve its logistics to ensure faster delivery of orders. | ['Foaad Iravani', 'Ali Eshragh', 'Kasun Bandara', 'Saed Alizami'] | 2022-12-01 | null | null | null | null | ['marketing'] | ['miscellaneous'] | [-3.15176815e-01 -6.68688938e-02 -8.15097213e-01 -7.73698926e-01
-4.00407195e-01 -6.21653259e-01 2.41786823e-01 6.16685569e-01
-2.96431720e-01 1.85985744e-01 3.25033724e-01 -6.49554968e-01
-4.60357338e-01 -8.70143414e-01 -4.47137594e-01 -7.17248440e-01
-5.70415109e-02 5.81156850e-01 -4.13336426e-01 -5.49183607e-01
5.44910252e-01 4.64839429e-01 -1.32359767e+00 2.37343311e-01
9.44674492e-01 1.17002916e+00 1.88635647e-01 1.29064724e-01
-1.32543504e-01 5.71031451e-01 -5.10846496e-01 -7.46280551e-01
4.20611262e-01 -2.66367733e-01 -4.89441957e-03 2.78592974e-01
-3.06569666e-01 -7.09293067e-01 1.54649273e-01 6.12503052e-01
6.17015846e-02 -1.88793868e-01 7.91049957e-01 -1.25682986e+00
-9.76968467e-01 1.01709950e+00 -3.29703718e-01 1.55665636e-01
1.54663116e-01 2.54217349e-02 1.46923959e+00 -3.17976326e-01
3.25708419e-01 1.15336430e+00 4.25381690e-01 9.79908481e-02
-1.49431169e+00 -5.23486674e-01 5.37678361e-01 8.72541592e-02
-1.08335567e+00 -3.06720007e-02 8.67674172e-01 -4.14509982e-01
4.84959096e-01 3.93542171e-01 5.94961524e-01 8.31518650e-01
6.14769459e-01 7.60369539e-01 9.30749118e-01 -3.57164621e-01
3.69771093e-01 5.12031794e-01 9.64305475e-02 2.03977097e-02
4.05508161e-01 -1.13991097e-01 4.86204736e-02 -1.70303106e-01
5.61057031e-01 4.89830166e-01 2.21976683e-01 -1.16243780e-01
-6.25148773e-01 1.45004845e+00 1.29138321e-01 2.01817721e-01
-5.56225598e-01 -2.66315520e-01 2.46507451e-01 5.11052370e-01
4.95176107e-01 7.21395969e-01 -9.22329605e-01 -2.18471348e-01
-6.17006600e-01 5.41795850e-01 1.14662600e+00 9.62251663e-01
4.34120148e-01 -1.14216037e-01 1.69414014e-01 7.12299347e-01
4.40663815e-01 2.54910380e-01 3.46088290e-01 -6.99782610e-01
3.64758343e-01 6.32018805e-01 2.66839743e-01 -1.14164507e+00
-5.22374094e-01 -4.52929318e-01 -3.15494716e-01 -1.26957312e-01
5.89176059e-01 -5.05688265e-02 -5.66388786e-01 1.16873479e+00
-2.57716537e-01 -7.55699456e-01 -2.07464620e-01 9.90187347e-01
1.79477930e-01 5.19602180e-01 3.01492542e-01 -2.92508572e-01
1.61509228e+00 -4.05405313e-01 -7.45536029e-01 -1.08109586e-01
9.57980454e-01 -7.72987187e-01 1.05796254e+00 7.56564558e-01
-8.17113757e-01 -3.06178719e-01 -9.98160303e-01 2.61872500e-01
-3.08313459e-01 1.02952560e-02 1.27202868e+00 7.02332258e-01
-2.34116912e-01 7.84018159e-01 -5.26825249e-01 -2.07015406e-02
2.76576877e-01 4.03025866e-01 2.96038568e-01 -1.93194121e-01
-1.14346766e+00 9.85841095e-01 8.42991620e-02 1.65928066e-01
-2.98971385e-01 -6.38477564e-01 -6.91722572e-01 1.96167380e-01
5.07364392e-01 -2.01907873e-01 1.32830226e+00 -1.10100901e+00
-1.10422432e+00 2.41581827e-01 8.70892555e-02 -5.93700230e-01
2.61612266e-01 -1.22342549e-01 -9.42092478e-01 -3.00319940e-01
2.85997000e-02 1.28725886e-01 6.55623734e-01 -1.31274819e+00
-9.60685551e-01 -6.92413449e-01 1.22958310e-01 -2.30170190e-02
-9.50811282e-02 -3.29302289e-02 -1.82029996e-02 -5.20832121e-01
2.95007885e-01 -9.72370744e-01 -3.98266613e-01 -6.96330249e-01
-3.39598387e-01 -4.26255792e-01 4.63159770e-01 -5.35876691e-01
1.25555170e+00 -2.07532406e+00 -2.88653195e-01 3.48441899e-01
1.56007037e-01 -1.84158802e-01 1.59393102e-01 8.29438329e-01
1.88011616e-01 4.48282063e-01 4.06103373e-01 -7.37910271e-02
3.70988786e-01 4.57736194e-01 -2.61582524e-01 3.11469704e-01
2.30419874e-01 6.65665627e-01 -4.99804258e-01 -1.18074812e-01
2.07960472e-01 7.33843446e-02 -6.21463656e-01 1.48997113e-01
-2.14344203e-01 3.13448519e-01 -6.89433515e-01 1.10257149e+00
7.61633396e-01 -7.28938133e-02 3.03174347e-01 -6.90318197e-02
-3.36154997e-01 4.47538137e-01 -1.02067161e+00 7.96505988e-01
-4.93318975e-01 1.02488160e-01 2.88408343e-02 -1.07085621e+00
1.22099245e+00 -1.23596519e-01 4.00121391e-01 -9.17341769e-01
3.46093267e-01 2.71017313e-01 4.75888163e-01 -7.14944899e-01
6.07511818e-01 -1.52774647e-01 -3.59362036e-01 2.37322211e-01
-5.05466819e-01 1.41638398e-01 1.78175330e-01 2.30604801e-02
6.15444660e-01 -1.40595645e-01 2.22875684e-01 -5.42137921e-01
-1.20816201e-01 7.58284703e-03 8.51394892e-01 5.74580371e-01
-1.56527922e-01 1.92591488e-01 7.82784402e-01 -4.25897837e-01
-1.04745090e+00 -8.81695271e-01 -4.37634796e-01 1.21966219e+00
5.83424084e-02 -1.60137028e-01 -2.68995404e-01 -4.80993807e-01
6.77582920e-01 1.38598049e+00 -5.63095391e-01 -1.29326999e-01
-2.16646269e-01 -6.65344238e-01 -1.67951912e-01 6.49681449e-01
1.19959958e-01 -6.67689443e-01 -2.94119418e-01 4.57631618e-01
1.34715691e-01 -8.74154150e-01 -5.38004637e-01 3.60299945e-01
-9.55618799e-01 -7.36745656e-01 -4.21936810e-01 -3.26652855e-01
6.82941258e-01 1.78716570e-01 1.12482488e+00 -2.68894224e-03
2.84108464e-02 1.35803327e-01 -4.93909538e-01 -7.33641446e-01
-4.73525882e-01 2.95623899e-01 -3.61543521e-02 2.69442722e-02
9.65507448e-01 -3.82368207e-01 -7.66239703e-01 6.45743191e-01
-8.58146906e-01 -3.96809042e-01 7.66141057e-01 4.79239374e-01
3.32696706e-01 5.26767492e-01 8.33460867e-01 -1.05919647e+00
8.99787009e-01 -7.98465371e-01 -5.45302629e-01 -5.49785607e-02
-1.43655694e+00 -1.88653041e-02 7.50222266e-01 -4.50878233e-01
-9.54353988e-01 -2.51416475e-01 -5.33898659e-02 2.29665637e-01
-8.14126506e-02 7.93218374e-01 -2.52221376e-01 5.00350475e-01
2.24987417e-01 -1.27042443e-01 1.01141006e-01 -7.10892677e-01
1.34947896e-01 7.55709410e-01 -2.19591800e-02 -2.49900743e-01
3.92621845e-01 2.46922940e-01 -2.12847933e-01 -5.04033029e-01
-6.92747295e-01 -3.34227502e-01 -5.85795045e-01 3.42562497e-02
5.53389490e-01 -7.05138206e-01 -1.24871361e+00 -7.22847655e-02
-5.36096871e-01 8.26913267e-02 -1.21004805e-01 8.88150990e-01
-3.07729363e-01 -1.12894915e-01 -7.95912921e-01 -1.09893954e+00
4.02343832e-02 -1.18808258e+00 6.97023809e-01 1.65411502e-01
-5.87555110e-01 -1.00531912e+00 -5.26772380e-01 7.19639242e-01
3.82425755e-01 5.44817634e-02 1.41784537e+00 -1.15210152e+00
-5.87400794e-01 -4.43134189e-01 -5.95825724e-02 3.38239908e-01
3.18930119e-01 8.52427483e-02 -3.03349555e-01 -9.84754860e-02
1.38756856e-01 2.48514473e-01 4.41380113e-01 8.55100989e-01
8.89506817e-01 -4.73720163e-01 -2.70513982e-01 2.09615067e-01
1.52124882e+00 7.91386545e-01 6.26042485e-01 6.45721018e-01
3.86965245e-01 1.14942157e+00 1.10398102e+00 7.97422171e-01
8.00037324e-01 7.20158339e-01 6.16652966e-01 5.30762076e-02
7.37606704e-01 -4.33919638e-01 2.12400243e-01 5.55617571e-01
-1.12117559e-01 -1.62802830e-01 -4.34713751e-01 3.07823092e-01
-1.77620852e+00 -6.03552222e-01 -2.36003801e-01 2.19711423e+00
4.21460539e-01 4.79724646e-01 6.17454767e-01 1.16714843e-01
3.79754573e-01 -1.72641829e-01 -6.07254684e-01 -1.04546916e+00
-3.90459634e-02 -3.38976473e-01 1.04123330e+00 1.57336682e-01
-4.93532181e-01 4.89206612e-01 6.51876450e+00 5.84169626e-01
-8.56708586e-01 -3.59849334e-01 1.15077126e+00 -1.70031250e-01
-8.68426800e-01 9.16200429e-02 -1.15640247e+00 7.40992904e-01
1.07955801e+00 -7.76801109e-02 4.85580295e-01 1.17040896e+00
8.21455002e-01 -1.89067423e-01 -1.10315263e+00 4.59942043e-01
-1.73992947e-01 -1.07241118e+00 -3.21926683e-01 6.25172555e-01
3.45396996e-01 -7.07598746e-01 1.62716910e-01 4.25749242e-01
2.17356771e-01 -1.03234100e+00 8.10872018e-01 3.78856361e-01
-1.33796066e-01 -1.08937681e+00 8.71677995e-01 2.29461774e-01
-7.87616909e-01 -6.31665051e-01 -3.68702263e-01 -4.22099471e-01
2.99879462e-01 8.50534141e-01 -7.85092711e-01 2.11616546e-01
6.91555977e-01 4.09079134e-01 -2.69227087e-01 4.84259874e-01
6.93071932e-02 6.79785073e-01 1.14621706e-02 -3.07051361e-01
3.09309334e-01 -6.71452403e-01 2.33141929e-02 8.80012155e-01
2.67065048e-01 2.02047333e-01 -1.09682426e-01 9.63593364e-01
2.40477458e-01 3.02549630e-01 -3.69470775e-01 -4.58708346e-01
5.63201785e-01 1.18612862e+00 -7.69773722e-01 1.70175973e-02
-7.04530597e-01 4.77346689e-01 -1.78865924e-01 2.64443070e-01
-7.14648843e-01 -1.90724671e-01 6.92243338e-01 6.44855320e-01
5.98087370e-01 -3.91668022e-01 -7.03889728e-01 -7.85113871e-01
3.96496616e-02 -9.64004815e-01 2.36470774e-01 -2.56325036e-01
-1.39881849e+00 7.39077032e-02 -1.32523015e-01 -1.08800781e+00
-2.37305269e-01 -5.69805920e-01 -3.80376577e-01 7.93750048e-01
-1.42761087e+00 -9.53920901e-01 2.77290106e-01 2.09546685e-01
5.16613066e-01 9.20382738e-02 5.58380842e-01 2.36812666e-01
-4.39061671e-01 5.72195649e-01 4.35141057e-01 -1.93045497e-01
4.23184216e-01 -1.25067687e+00 4.96642478e-02 -4.64217998e-02
-2.83590555e-01 7.83216417e-01 1.03940475e+00 -7.10441589e-01
-1.59964895e+00 -4.56386536e-01 1.24869406e+00 -3.91375780e-01
7.14513004e-01 -5.62008679e-01 -7.53715754e-01 7.01025188e-01
-1.66610330e-01 -8.41629028e-01 1.04405069e+00 7.04799891e-01
-1.47187188e-01 -5.22482872e-01 -1.20853114e+00 7.60539114e-01
5.48171282e-01 -1.08399000e-02 -4.53686625e-01 2.11152017e-01
8.47229004e-01 1.44405141e-01 -1.46786118e+00 -5.46037033e-02
7.02274799e-01 -9.44563031e-01 5.77307761e-01 -6.86436832e-01
5.51147521e-01 3.81032735e-01 -2.89511949e-01 -1.19448078e+00
-6.94578826e-01 -4.54961360e-01 4.04742748e-01 1.52460289e+00
8.70021522e-01 -9.47091341e-01 8.73605549e-01 1.62208736e+00
-8.52408260e-03 -1.14808607e+00 -6.31675363e-01 -7.56163180e-01
3.46603543e-02 -5.72183013e-01 1.07481313e+00 8.23540390e-01
1.38003305e-01 1.24647729e-01 -4.41862017e-01 -7.86731094e-02
4.13795531e-01 4.69227642e-01 5.49932837e-01 -1.18492663e+00
-2.96246439e-01 -3.93720478e-01 -2.75778323e-01 -9.66892004e-01
-2.43672654e-01 -4.63657558e-01 -3.21774662e-01 -1.17917597e+00
-9.92999449e-02 -7.12239683e-01 -2.57670403e-01 6.37743389e-04
2.71586686e-01 -3.89630377e-01 2.92423636e-01 4.48159367e-01
-7.26830065e-02 2.53227890e-01 1.34739017e+00 1.04898967e-01
-6.53075755e-01 6.53397262e-01 -1.56508577e+00 5.88184357e-01
8.78726661e-01 -2.88584411e-01 -2.82599360e-01 -9.83607173e-02
3.95099878e-01 1.27732635e-01 -1.35106146e-02 -1.80264395e-02
-2.25300893e-01 -5.44346333e-01 4.44489092e-01 -5.48812330e-01
1.27421632e-01 -1.14853764e+00 2.06192151e-01 3.57431620e-01
-6.40130103e-01 4.10599381e-01 -2.27622129e-02 5.48981488e-01
9.27463770e-02 -4.16637093e-01 2.43014455e-01 4.94971611e-02
-2.99108952e-01 1.39254719e-01 -6.62942111e-01 -4.53180075e-01
9.42854464e-01 -3.10139984e-01 -1.49254665e-01 -7.37314999e-01
-7.02512741e-01 2.57838428e-01 3.28669369e-01 6.97123110e-01
9.09584835e-02 -1.21687818e+00 -5.54577529e-01 1.60432145e-01
6.76031411e-02 -5.90390265e-01 2.45636776e-01 6.88179195e-01
-1.66812629e-01 7.28952944e-01 -7.67712109e-03 -3.20078731e-01
-7.64934540e-01 7.27990329e-01 -1.52144223e-01 -3.31026584e-01
-3.47795248e-01 4.69925970e-01 -8.96181017e-02 4.85261641e-02
-5.60288914e-02 -5.54678559e-01 -3.41941744e-01 3.27781141e-01
2.24701166e-01 5.44524074e-01 4.14309129e-02 -5.74966431e-01
-1.97115153e-01 1.58861712e-01 -6.69479907e-01 3.45561117e-01
1.45071852e+00 -5.06366193e-01 3.11513335e-01 5.02792597e-01
1.18395972e+00 -4.13071684e-04 -1.47312331e+00 -5.00297137e-02
1.46035701e-01 -8.59117627e-01 1.05020134e-02 -8.43415201e-01
-1.29058981e+00 3.42125624e-01 4.23308760e-01 1.06955814e+00
1.15143538e+00 1.33845180e-01 8.45723867e-01 -2.08593488e-01
2.57502586e-01 -1.39138293e+00 -4.09060121e-01 -2.00403795e-01
6.05521560e-01 -1.60610521e+00 1.45678163e-01 -5.57852864e-01
-1.18521440e+00 1.06332624e+00 2.02971235e-01 -3.87605578e-02
7.86548615e-01 6.25651404e-02 1.36271879e-01 -9.58037376e-02
-6.71415269e-01 1.18241407e-01 1.11096270e-01 4.04869169e-01
5.54771483e-01 5.54861784e-01 -8.58791888e-01 1.33634245e+00
-4.29695010e-01 -1.72809437e-01 4.95244980e-01 7.85949349e-01
-3.70396644e-01 -1.29111433e+00 -1.46027029e-01 9.97459233e-01
-6.78737640e-01 -1.14172667e-01 -1.28245994e-01 1.16452003e+00
1.52736649e-01 1.26418841e+00 2.84691662e-01 -4.94819164e-01
6.55484617e-01 -8.48725438e-02 9.49227810e-02 -4.51308519e-01
-5.95350921e-01 3.57628912e-01 3.30536395e-01 -2.97872454e-01
1.44887874e-02 -1.11304700e+00 -1.16096687e+00 -8.09661567e-01
-5.32273591e-01 1.44282132e-01 1.08231974e+00 1.09913433e+00
4.93750781e-01 3.06061238e-01 9.41127777e-01 -5.91373384e-01
-1.07975817e+00 -7.56099403e-01 -1.40507281e+00 5.67682624e-01
-4.30624820e-02 -6.85129344e-01 -5.64182639e-01 -1.93403631e-01] | [9.379195213317871, 5.804562568664551] |
fa1bbd51-d3fa-418e-b5dc-e87b0f651a8a | inductive-biases-for-deep-learning-of-higher | 2011.15091 | null | https://arxiv.org/abs/2011.15091v4 | https://arxiv.org/pdf/2011.15091v4.pdf | Inductive Biases for Deep Learning of Higher-Level Cognition | A fascinating hypothesis is that human and animal intelligence could be explained by a few principles (rather than an encyclopedic list of heuristics). If that hypothesis was correct, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human-like intelligence. This hypothesis would suggest that studying the kind of inductive biases that humans and animals exploit could help both clarify these principles and provide inspiration for AI research and neuroscience theories. Deep learning already exploits several key inductive biases, and this work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing. The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities in terms of flexible out-of-distribution and systematic generalization, which is currently an area where a large gap exists between state-of-the-art machine learning and human intelligence. | ['Yoshua Bengio', 'Anirudh Goyal'] | 2020-11-30 | null | null | null | null | ['systematic-generalization'] | ['reasoning'] | [ 3.65642607e-02 4.10567284e-01 6.55806139e-02 -4.26009417e-01
6.42789841e-01 -5.42460442e-01 8.73284459e-01 3.44196916e-01
-5.63049376e-01 6.62570894e-01 -8.48670527e-02 -5.11341453e-01
-4.01789874e-01 -1.05773640e+00 -4.69908208e-01 -5.05497277e-01
-2.71000981e-01 6.16369724e-01 3.39351624e-01 -6.00743234e-01
7.38396645e-01 6.12003624e-01 -1.88052726e+00 3.32079351e-01
1.10862505e+00 6.46246731e-01 5.09769678e-01 4.67361450e-01
-2.07397431e-01 9.70608115e-01 -3.77389491e-01 -4.45838630e-01
4.72361408e-02 -6.23138011e-01 -8.94780159e-01 -3.73132616e-01
3.93730886e-02 2.81773973e-02 3.24463956e-02 1.02162158e+00
1.50318652e-01 1.95328295e-01 7.00314939e-01 -8.48586798e-01
-8.78207505e-01 5.93285799e-01 -1.56640872e-01 2.23303482e-01
1.98714375e-01 3.55439633e-01 9.28033829e-01 -2.17045277e-01
3.21492970e-01 1.36977947e+00 5.52725196e-01 7.14916527e-01
-1.08432543e+00 -3.38043213e-01 1.70656085e-01 4.01405841e-01
-7.55100727e-01 -4.60969284e-02 7.12200701e-01 -4.81434584e-01
1.00222552e+00 1.86853603e-01 1.27455020e+00 6.79165006e-01
4.52482402e-01 7.77406156e-01 1.59710264e+00 -4.90856111e-01
4.05333340e-01 4.56371874e-01 2.21415684e-01 8.42012942e-01
7.46983886e-01 4.79833871e-01 -5.97023606e-01 2.96078861e-01
9.54446673e-01 -6.99768811e-02 -1.29066750e-01 -4.21214163e-01
-1.41996264e+00 9.10335898e-01 7.18387544e-01 8.57809246e-01
-4.86161083e-01 -1.51832074e-01 2.53993124e-01 3.33215833e-01
-8.17370266e-02 1.43737841e+00 -7.54252851e-01 1.47795558e-01
-9.87206459e-01 1.71177104e-01 8.13935637e-01 2.63420284e-01
1.00781667e+00 1.26212135e-01 2.90285558e-01 5.78029156e-01
2.75241613e-01 3.98581803e-01 8.52328539e-01 -9.35960531e-01
-4.02738810e-01 9.07487214e-01 -2.27183595e-01 -1.03605747e+00
-9.03255820e-01 -5.57710528e-01 -7.40478098e-01 4.72774208e-01
5.66687822e-01 -7.66807124e-02 -8.25101972e-01 1.75003922e+00
-4.36453037e-02 -4.63961840e-01 1.37741212e-02 1.04244328e+00
6.81868136e-01 4.92721766e-01 9.27104875e-02 -1.94836587e-01
1.44321942e+00 -6.53296292e-01 -4.09134865e-01 -8.79443109e-01
6.31376684e-01 -2.52557069e-01 1.09590900e+00 4.61355925e-01
-1.28254759e+00 -5.80652654e-01 -1.19514978e+00 -2.16146365e-01
-7.56960154e-01 -2.43974969e-01 1.73241699e+00 7.51378059e-01
-1.14664233e+00 7.70256817e-01 -5.67016244e-01 -7.61717618e-01
3.81485969e-01 4.35700804e-01 -5.84201105e-02 3.33705634e-01
-1.37592816e+00 1.50400436e+00 7.24452257e-01 -1.02858879e-01
-6.44387126e-01 -5.10910213e-01 -6.02016747e-01 2.14299485e-02
2.54185766e-01 -9.67779636e-01 1.07136977e+00 -1.47990918e+00
-1.22499776e+00 1.27920055e+00 -2.32109234e-01 -6.18928313e-01
5.37246019e-02 8.81063715e-02 -9.41831395e-02 1.24419898e-01
-1.63129479e-01 9.15267885e-01 4.12088871e-01 -1.25704205e+00
-4.52264369e-01 -6.67582750e-01 1.17276624e-01 6.77393377e-02
-2.17470631e-01 -1.44365713e-01 2.91654855e-01 -4.38570023e-01
3.16455215e-01 -9.40938950e-01 -1.68292508e-01 -1.42319828e-01
1.42464533e-01 -4.91520375e-01 5.10933697e-02 -3.59907299e-01
8.13780129e-01 -1.70327830e+00 1.35044873e-01 4.57629450e-02
4.00832474e-01 3.62117887e-01 -1.17586209e-02 3.77608955e-01
6.73819482e-02 2.21007317e-01 -4.57804091e-02 5.15096784e-01
2.06519246e-01 1.77373230e-01 -1.91121578e-01 2.47447371e-01
2.02934861e-01 1.11242938e+00 -1.03920507e+00 -1.70082331e-01
1.85216680e-01 2.12560952e-01 -7.02015579e-01 1.43692389e-01
-2.56231159e-01 2.46911138e-01 -4.08646822e-01 3.38241786e-01
3.88493806e-01 -2.14296982e-01 3.46307904e-01 5.78473546e-02
-3.36894035e-01 6.52504444e-01 -7.01605499e-01 1.32462919e+00
-2.42173865e-01 8.75635147e-01 -3.43647659e-01 -1.38512456e+00
9.78040576e-01 -4.23459113e-02 4.51132096e-02 -1.09246409e+00
3.60111028e-01 1.49479821e-01 9.27688003e-01 -4.44550395e-01
1.12607695e-01 -5.49900830e-01 1.34884119e-01 5.77406168e-01
1.18832365e-01 -6.76771104e-01 2.89337218e-01 8.01114365e-02
8.23764026e-01 -1.82040900e-01 5.59192240e-01 -8.66900027e-01
5.60904980e-01 -3.13278399e-02 5.53059101e-01 1.00884295e+00
-2.08457008e-01 -2.17463616e-02 4.47980046e-01 -1.02385843e+00
-8.98609638e-01 -1.00766385e+00 -1.33380622e-01 1.28578973e+00
6.98419437e-02 1.16069198e-01 -7.96239436e-01 -1.91289544e-01
-2.68484771e-01 1.07680345e+00 -8.87668192e-01 -3.22207123e-01
-2.10414946e-01 -9.39958096e-01 1.53067410e-01 2.85832793e-01
7.23913848e-01 -1.70624185e+00 -1.31581676e+00 -8.44833907e-03
3.21045548e-01 -6.27068400e-01 6.42796218e-01 5.39628863e-01
-1.16627562e+00 -9.32127297e-01 -2.98264921e-01 -7.53219247e-01
6.23746753e-01 3.78649205e-01 1.40984297e+00 6.61924899e-01
-2.15003401e-01 2.72627622e-01 -2.73521751e-01 -9.86017287e-01
-3.53086203e-01 -8.43349099e-02 2.82834679e-01 -5.93338966e-01
7.66792715e-01 -8.74646246e-01 -6.36370301e-01 -7.82608613e-03
-9.78992939e-01 2.17075542e-01 9.40646470e-01 7.69931316e-01
-1.00709736e-01 1.97179038e-02 6.64942980e-01 -7.95056164e-01
5.80529749e-01 -3.68431211e-01 -3.11740994e-01 2.58996457e-01
-7.12112367e-01 2.79593557e-01 6.18565977e-01 -3.39711517e-01
-1.16327798e+00 -4.85282004e-01 -4.24837396e-02 5.37243247e-01
-6.05636358e-01 4.03740644e-01 -4.56767045e-02 -1.12840392e-01
5.87829292e-01 4.84340131e-01 -1.71564043e-01 -1.65683568e-01
2.80574709e-01 2.94805646e-01 1.95720866e-01 -8.03234220e-01
5.70446193e-01 3.87329608e-01 4.39388826e-02 -9.82816339e-01
-1.03077471e+00 1.75521627e-01 -7.74346530e-01 -1.21575028e-01
8.36120129e-01 -4.22763884e-01 -8.84230971e-01 2.73914307e-01
-1.20085132e+00 -3.71557593e-01 -3.37445438e-01 4.60753739e-01
-7.51769006e-01 -5.80606190e-03 -4.63303983e-01 -8.52646232e-01
2.53790189e-02 -9.48632717e-01 4.75235164e-01 6.77397788e-01
-6.18873894e-01 -1.24200296e+00 -6.75642106e-04 2.79214710e-01
4.92053002e-01 -1.66422844e-01 1.30773783e+00 -1.07568252e+00
-4.94201511e-01 1.15211517e-01 -1.07729092e-01 1.93288252e-01
-1.91446841e-01 -1.98132440e-01 -1.05226958e+00 -4.51761410e-02
4.18012053e-01 -5.55351317e-01 1.02347231e+00 2.82735050e-01
9.51850355e-01 -1.43418372e-01 -2.08749846e-01 4.36015010e-01
1.35001087e+00 5.58304608e-01 8.49020600e-01 6.54933393e-01
1.80521235e-01 1.17359829e+00 1.91583857e-01 1.59967571e-01
5.19783616e-01 1.01463780e-01 2.00662896e-01 6.04738444e-02
1.02803208e-01 2.61791777e-02 1.81211323e-01 9.89833355e-01
-4.66151148e-01 1.84747428e-01 -1.13745534e+00 6.84579432e-01
-1.46147931e+00 -1.28446269e+00 -7.36821815e-02 2.05290961e+00
8.82896245e-01 3.52590412e-01 -6.13638163e-02 1.30383268e-01
4.33803797e-01 -1.25690945e-03 -7.12259889e-01 -1.06817579e+00
-3.07132244e-01 2.51152933e-01 -5.85550666e-02 1.97166204e-01
-6.63364232e-01 1.17441523e+00 7.48267794e+00 3.49133670e-01
-1.08457160e+00 -2.87203670e-01 6.16248369e-01 2.19304264e-01
-3.98469031e-01 7.07768351e-02 -5.63952565e-01 2.67201364e-01
1.09015203e+00 -2.42331162e-01 7.33176589e-01 6.70843601e-01
1.12529911e-01 -4.59094137e-01 -1.21618879e+00 5.49785972e-01
4.00114991e-02 -1.21226370e+00 1.04286842e-01 1.20453849e-01
7.08717823e-01 -2.01653056e-02 -4.59689787e-03 4.36065614e-01
4.29733127e-01 -1.27982950e+00 5.61605036e-01 7.02262402e-01
-1.24177203e-01 -4.92570698e-01 7.00470269e-01 6.19023502e-01
-4.65762228e-01 -1.94340602e-01 -7.36644447e-01 -8.07397187e-01
-3.31930310e-01 7.27525473e-01 -4.13932264e-01 -1.17205232e-01
6.52626514e-01 3.70912641e-01 -8.36499691e-01 1.06836903e+00
-5.24947107e-01 3.54816407e-01 -1.99065536e-01 -6.75540268e-01
1.43070549e-01 -1.22927614e-01 3.72154057e-01 1.18690813e+00
1.40517816e-01 3.76568556e-01 -3.62406731e-01 1.01070738e+00
3.26001257e-01 1.26045821e-02 -7.17439175e-01 -2.57762432e-01
5.58615625e-01 1.17781794e+00 -1.11595500e+00 -3.69922370e-01
-5.04411936e-01 7.22468197e-01 4.25355047e-01 -1.49849262e-02
-6.50838912e-01 -1.83218583e-01 6.02107704e-01 -9.80522409e-02
2.64421940e-01 -3.05303514e-01 -7.67045021e-01 -1.24133039e+00
-4.90288347e-01 -1.20678651e+00 -9.26223677e-03 -7.66029119e-01
-1.25565529e+00 3.59853804e-01 -2.14068487e-01 -3.03552181e-01
-1.51624411e-01 -9.80850875e-01 -5.87709785e-01 4.41807449e-01
-1.31158304e+00 -8.74116302e-01 -2.10424200e-01 2.86641240e-01
3.20901603e-01 -2.00021431e-01 8.81331921e-01 -4.46861058e-01
-2.07002088e-01 2.53652394e-01 -2.16710225e-01 -5.81127629e-02
3.99910033e-01 -1.28735149e+00 2.57450491e-01 4.90461946e-01
3.23676825e-01 1.05055380e+00 9.31394875e-01 -3.25652719e-01
-1.36726296e+00 -2.81169087e-01 8.06593955e-01 -5.33198416e-01
7.35823095e-01 -1.87322885e-01 -1.02749550e+00 5.02661645e-01
5.26475072e-01 -5.38290024e-01 7.12115705e-01 4.83969241e-01
-3.28458637e-01 3.55196670e-02 -1.01208079e+00 7.85373390e-01
1.02816045e+00 -2.00770795e-01 -1.40838683e+00 2.00793535e-01
3.83807659e-01 3.34452689e-01 -5.55435181e-01 3.94008398e-01
7.88340807e-01 -1.55295801e+00 8.80859017e-01 -8.01704168e-01
4.75096464e-01 -1.75412402e-01 1.30819604e-01 -1.49195719e+00
-7.29948223e-01 -3.00178170e-01 1.25106484e-01 9.16175902e-01
4.99974042e-01 -9.48239565e-01 4.97419178e-01 6.81504369e-01
8.84785205e-02 -6.84919775e-01 -3.53653342e-01 -7.78487384e-01
6.28330946e-01 -3.62196386e-01 5.84658742e-01 1.12015510e+00
3.00974488e-01 3.97448689e-01 2.22408742e-01 -2.11913630e-01
5.44214249e-01 2.06792250e-01 4.31137890e-01 -1.73719645e+00
-1.59145236e-01 -8.49759996e-01 -5.60117424e-01 -7.31438220e-01
2.15295210e-01 -7.33741939e-01 4.46465798e-02 -1.53207171e+00
3.30565274e-01 -2.15718165e-01 -4.22001690e-01 3.14926386e-01
-1.01899587e-01 1.01951383e-01 4.09499556e-01 6.53650537e-02
-5.03568172e-01 2.92398930e-01 1.30499721e+00 1.22431368e-01
6.46560220e-03 -4.44702715e-01 -1.36805975e+00 1.39767587e+00
1.07150066e+00 -2.24253938e-01 -2.94554889e-01 -3.80305141e-01
6.66351736e-01 -5.24490476e-01 4.73178774e-01 -1.31623340e+00
2.65431195e-01 -4.67015773e-01 7.55384684e-01 3.22976150e-02
1.03827022e-01 -6.57617092e-01 -4.11632389e-01 7.28007376e-01
-3.34668696e-01 -1.13665881e-02 3.77477288e-01 -7.10101277e-02
2.05029994e-02 -3.94104660e-01 9.74145830e-01 -7.83000052e-01
-1.07404554e+00 -3.15006286e-01 -7.61365891e-01 1.22861423e-01
1.03224742e+00 -3.31162632e-01 -5.59694111e-01 -1.80331662e-01
-4.28667754e-01 -2.57180189e-03 7.19753027e-01 2.99666941e-01
4.69560951e-01 -7.25013912e-01 -4.20387119e-01 2.22041741e-01
-2.24660352e-01 -5.56707740e-01 8.41972008e-02 6.16126060e-01
-6.12120867e-01 8.61851037e-01 -7.51257718e-01 -2.15826213e-01
-6.39498830e-01 8.39067042e-01 4.63033378e-01 -9.29491520e-02
-2.29605719e-01 1.10464036e+00 6.80983722e-01 -5.53480268e-01
-1.25622958e-01 -2.06468478e-01 -4.02007312e-01 1.76218092e-01
7.60109484e-01 8.71194527e-02 -2.39287317e-01 -2.34455988e-01
-5.48500657e-01 5.48654556e-01 -1.11177385e-01 2.54555400e-02
1.56832123e+00 1.46560129e-02 -6.50112629e-01 6.15381479e-01
4.64826822e-01 -1.78676590e-01 -8.67226958e-01 2.31415734e-01
1.59978494e-01 -1.50652125e-01 8.69328082e-02 -1.19216669e+00
-6.17050409e-01 1.33238649e+00 3.05411309e-01 5.95968187e-01
1.39909649e+00 1.07909255e-01 4.41504925e-01 7.57977366e-01
6.62384748e-01 -1.17572594e+00 6.29825741e-02 7.68427432e-01
7.97138512e-01 -1.32724750e+00 2.80577391e-01 5.02711572e-02
-6.72571123e-01 1.24362838e+00 7.15709209e-01 -4.87714708e-01
3.77793491e-01 6.05129041e-02 -2.62035698e-01 -3.31906646e-01
-9.62114513e-01 -5.94772100e-01 4.11389560e-01 7.17598915e-01
1.01517427e+00 1.56490445e-01 -6.59388959e-01 5.44416428e-01
-6.48188293e-01 6.36699889e-03 4.22668070e-01 6.71272039e-01
-1.14539099e+00 -1.00254989e+00 -3.53599191e-01 4.71834242e-01
-2.76499927e-01 -2.01538235e-01 -8.34022403e-01 9.21271741e-01
6.00330710e-01 9.51052547e-01 1.42925322e-01 -3.16580176e-01
-1.42423555e-01 1.07828386e-01 9.76961017e-01 -6.45638287e-01
-6.29544079e-01 -5.49425900e-01 -1.16553664e-01 -4.56182867e-01
-5.82135737e-01 -7.31589198e-01 -1.23891246e+00 -6.17237747e-01
5.97958714e-02 2.59483963e-01 5.98664045e-01 1.19852614e+00
9.76486038e-03 4.86213148e-01 3.16638947e-02 -9.20035779e-01
-1.19472794e-01 -8.72145712e-01 -5.59081674e-01 2.49312028e-01
3.52012052e-04 -6.81691945e-01 -4.09769863e-01 -3.53978947e-02] | [9.087322235107422, 6.4797844886779785] |
3d7b7d38-938b-4f45-88ac-aa2a8a642104 | new-sqrt-n-consistent-numerically-stable | 2302.08097 | null | https://arxiv.org/abs/2302.08097v1 | https://arxiv.org/pdf/2302.08097v1.pdf | New $\sqrt{n}$-consistent, numerically stable higher-order influence function estimators | Higher-Order Influence Functions (HOIFs) provide a unified theory for constructing rate-optimal estimators for a large class of low-dimensional (smooth) statistical functionals/parameters (and sometimes even infinite-dimensional functions) that arise in substantive fields including epidemiology, economics, and the social sciences. Since the introduction of HOIFs by Robins et al. (2008), they have been viewed mostly as a theoretical benchmark rather than a useful tool for statistical practice. Works aimed to flip the script are scant, but a few recent papers Liu et al. (2017, 2021b) make some partial progress. In this paper, we take a fresh attempt at achieving this goal by constructing new, numerically stable HOIF estimators (or sHOIF estimators for short with ``s'' standing for ``stable'') with provable statistical, numerical, and computational guarantees. This new class of sHOIF estimators (up to the 2nd order) was foreshadowed in synthetic experiments conducted by Liu et al. (2020a). | ['Chang Li', 'Lin Liu'] | 2023-02-16 | null | null | null | null | ['epidemiology'] | ['medical'] | [ 1.50856510e-01 1.77169248e-01 -5.14597178e-01 -1.42919749e-01
-8.38022113e-01 -4.20634955e-01 7.42313683e-01 2.46994883e-01
-5.51095188e-01 1.22524858e+00 1.80809513e-01 -3.01794589e-01
-4.15008426e-01 -5.80754161e-01 -6.63784266e-01 -9.71040964e-01
-5.47082841e-01 1.64523408e-01 1.46671310e-01 1.37008473e-01
2.71632433e-01 4.50722009e-01 -1.57987952e+00 -5.09847939e-01
1.00211287e+00 6.64324939e-01 -2.06972718e-01 5.65373182e-01
2.53169179e-01 2.23677561e-01 -1.49450511e-01 -6.31035566e-01
1.82356834e-01 -5.81866741e-01 -6.32395685e-01 -1.98669404e-01
1.72598064e-01 -3.96893471e-02 2.82149520e-02 1.18359482e+00
4.98926699e-01 9.35538113e-02 9.07716811e-01 -1.30121362e+00
-5.52523792e-01 6.76266849e-01 -6.74217641e-01 4.29020897e-02
1.10087164e-01 1.84932917e-01 1.06865656e+00 -8.88096988e-01
5.65813065e-01 1.17297685e+00 8.56147707e-01 5.49481452e-01
-1.13817322e+00 -5.46576858e-01 -1.43105626e-01 -1.05630174e-01
-1.37186456e+00 -3.86311561e-01 2.95867294e-01 -5.62191129e-01
1.61644071e-01 5.56336641e-01 5.39674342e-01 1.10940897e+00
1.98452935e-01 9.76774991e-01 1.23808002e+00 -3.64741355e-01
3.86520833e-01 2.02313736e-01 7.62411132e-02 6.25805259e-01
7.42132962e-01 1.49329260e-01 -2.82697856e-01 -4.85860407e-01
7.16246545e-01 -2.30735198e-01 -1.90489545e-01 -3.59473675e-01
-1.16687334e+00 1.05573928e+00 2.28476357e-02 4.33284730e-01
-4.91268426e-01 1.44844696e-01 3.99868757e-01 1.52137294e-01
8.64741921e-01 3.92431200e-01 -3.94826889e-01 -2.76017934e-01
-8.01140964e-01 4.42602038e-01 7.96230197e-01 7.53060937e-01
3.78788620e-01 -3.22762668e-01 -3.82028222e-01 7.04899251e-01
2.43950590e-01 7.23173916e-01 -1.98429823e-02 -9.85398889e-01
5.32941595e-02 9.65536758e-02 4.21435356e-01 -7.84037709e-01
-5.76340914e-01 -4.61401761e-01 -1.26490402e+00 -3.90979916e-01
8.58393908e-01 -3.21144313e-01 -3.46097171e-01 1.79588294e+00
4.85837221e-01 6.42067567e-03 -3.31080079e-01 7.82113254e-01
2.10130110e-01 5.21783054e-01 -6.98593929e-02 -7.61265576e-01
1.14082992e+00 -4.89288449e-01 -6.64717019e-01 2.57970929e-01
5.71798384e-01 -7.00914741e-01 8.32700491e-01 4.30262685e-01
-1.28871679e+00 -4.57500853e-02 -5.42033076e-01 2.91205138e-01
-1.80075139e-01 -1.39779538e-01 9.34860766e-01 8.19685817e-01
-1.19921184e+00 6.63574100e-01 -6.55934930e-01 -4.46470618e-01
7.54910409e-01 7.52184466e-02 -8.16968307e-02 8.00942034e-02
-1.29625094e+00 7.53207326e-01 -3.44459862e-01 -8.27834904e-02
-6.02540135e-01 -1.00417233e+00 -4.57024604e-01 -1.82952136e-01
6.94703698e-01 -6.88482642e-01 9.12826657e-01 -6.03334904e-01
-1.45889044e+00 8.92581463e-01 -1.05601653e-01 -5.08615434e-01
8.89028430e-01 -3.46865892e-01 6.10449277e-02 -1.09654576e-01
1.32873327e-01 4.38949652e-02 5.52064359e-01 -9.27843153e-01
-4.42362666e-01 -4.82438594e-01 -1.60803303e-01 -1.06100880e-01
-2.17659846e-01 2.35693350e-01 1.93248615e-02 -7.46880412e-01
-1.02243334e-01 -9.17238474e-01 -4.36891586e-01 1.11394599e-01
-5.36857307e-01 -4.23182935e-01 1.63956285e-02 -4.92840171e-01
1.30276787e+00 -1.87925744e+00 2.32524037e-01 1.49738908e-01
2.62826204e-01 2.19640061e-01 1.41630918e-01 5.30701876e-01
1.61077514e-01 4.67540532e-01 -6.75377905e-01 -1.42170355e-01
5.85326320e-03 -2.11378455e-01 1.07823163e-01 1.18969941e+00
4.72722985e-02 9.07978356e-01 -1.16123283e+00 -2.93650150e-01
2.41264068e-02 3.91029388e-01 -5.27694464e-01 -1.91634819e-01
5.21280207e-02 4.74920481e-01 -5.02023637e-01 6.24822319e-01
6.20964170e-01 -2.46380031e-01 -3.60981375e-02 2.09774017e-01
-4.24643189e-01 -1.08661242e-01 -1.22776318e+00 9.82613444e-01
-2.24550635e-01 5.90150952e-01 3.43512028e-01 -1.22830856e+00
7.24376619e-01 2.36493945e-01 9.44817722e-01 -1.86680526e-01
3.39558214e-01 3.89257282e-01 -3.51327583e-02 -3.30363452e-01
2.02275738e-01 -4.92273062e-01 -1.26518697e-01 3.71045709e-01
-2.49934316e-01 -6.61849156e-02 2.51956105e-01 -1.13944702e-01
1.02447653e+00 -1.34030744e-01 7.39831984e-01 -1.02032232e+00
7.20158875e-01 -3.54611576e-01 2.60364920e-01 1.09712553e+00
-4.18567151e-01 4.08019125e-01 6.44290924e-01 -1.58215389e-01
-1.19042993e+00 -9.09117639e-01 -7.75030196e-01 6.86776459e-01
-1.13455899e-01 -1.11968234e-01 -8.02003801e-01 -3.05592775e-01
3.25163662e-01 4.88575220e-01 -8.57635379e-01 -5.60978353e-02
-3.45001429e-01 -9.83262658e-01 6.11753225e-01 2.81707764e-01
3.00769925e-01 -6.42719150e-01 -4.79277432e-01 1.94288120e-01
2.00063348e-01 -7.93170929e-01 -5.30323923e-01 -1.59008488e-01
-8.77048492e-01 -1.20807517e+00 -1.28747332e+00 -1.57563150e-01
5.19701660e-01 -2.39445809e-02 7.87189603e-01 -6.40379563e-02
-1.87876448e-01 2.61230171e-01 -2.14288518e-01 -5.21304667e-01
-4.21623647e-01 -1.20110465e-02 3.26711446e-01 1.73839986e-01
-2.37571970e-02 -3.92078251e-01 -5.42463541e-01 3.70909721e-01
-9.24623251e-01 -2.46476710e-01 4.86079901e-01 8.49606216e-01
4.88201857e-01 -3.23480994e-01 8.42202485e-01 -1.04674816e+00
5.82399845e-01 -7.36826301e-01 -9.21517849e-01 1.84113398e-01
-9.13605571e-01 3.28362286e-01 6.47607505e-01 -2.32830822e-01
-5.81652403e-01 -5.21710575e-01 -2.68210620e-01 -5.35994917e-02
1.72121927e-01 4.74919856e-01 7.06660077e-02 4.74401237e-03
4.79206353e-01 1.59648687e-01 1.07605614e-01 -6.54721141e-01
2.69302785e-01 6.82015657e-01 2.55300730e-01 -6.34016931e-01
7.41943061e-01 5.24145186e-01 5.25217175e-01 -8.84048939e-01
-1.06348395e+00 -5.83047211e-01 -4.65320200e-01 -2.17727318e-01
5.59878945e-01 -4.68096972e-01 -8.41100454e-01 5.57176173e-01
-7.85396993e-01 -2.87499398e-01 -3.28620225e-01 6.29197299e-01
-5.95027506e-01 3.12992603e-01 -2.46714592e-01 -1.38519430e+00
-5.22920899e-02 -8.49057913e-01 1.02455926e+00 1.43212318e-01
-1.01887800e-01 -1.29927123e+00 2.17029780e-01 -2.41370909e-02
5.23856342e-01 5.56185842e-01 6.62166893e-01 -3.84826392e-01
-1.61392123e-01 -2.43416190e-01 -2.05423713e-01 2.42371395e-01
5.28567359e-02 2.66333163e-01 -7.39789844e-01 -2.80838937e-01
5.39215580e-02 8.53964388e-02 8.47117126e-01 9.46424246e-01
1.31181109e+00 -6.55802250e-01 -3.16662252e-01 5.46735406e-01
1.34437573e+00 -1.35382846e-01 4.92201775e-01 9.95458290e-02
2.48101979e-01 5.76013446e-01 6.30386353e-01 6.75512016e-01
1.63128555e-01 5.79763293e-01 1.67679098e-02 1.87153891e-01
1.73864335e-01 -2.15239123e-01 2.81339765e-01 8.44211698e-01
-3.48603129e-01 -3.21600467e-01 -6.73737228e-01 5.67155957e-01
-1.65341270e+00 -9.28605616e-01 -5.12192488e-01 2.74024224e+00
9.63319421e-01 -7.20029473e-02 5.03485262e-01 1.54639725e-02
9.50527132e-01 2.80652121e-02 -5.38583040e-01 -3.61838549e-01
-2.31191650e-01 1.82273492e-01 8.51994932e-01 6.73191369e-01
-9.96072710e-01 4.79703218e-01 6.49945498e+00 9.51048374e-01
-8.18138957e-01 7.70241246e-02 7.89013982e-01 1.32369339e-01
-4.28448886e-01 1.04406945e-01 -7.43530154e-01 5.25875211e-01
1.18496299e+00 -4.20207024e-01 2.85802484e-01 6.59792602e-01
3.61809045e-01 -4.42312837e-01 -6.91185832e-01 6.65571988e-01
-2.29432791e-01 -1.22467244e+00 -5.62567174e-01 3.56833130e-01
9.75011349e-01 4.98721434e-04 -3.45319062e-02 1.13683522e-01
3.11373830e-01 -1.10598278e+00 4.61162716e-01 7.99668849e-01
8.23948920e-01 -7.06898391e-01 8.53467882e-01 4.78206307e-01
-7.51838803e-01 2.42534846e-01 -4.49382603e-01 2.24305261e-02
2.02830598e-01 1.19775987e+00 -4.02292877e-01 5.63966870e-01
4.50588733e-01 8.38024437e-01 -1.88830957e-01 1.21689939e+00
-4.19262424e-02 9.71563816e-01 -4.87928778e-01 -6.06854498e-01
1.87037110e-01 -2.48598233e-01 9.08975124e-01 1.00108540e+00
3.95627409e-01 1.35359779e-01 -2.34183908e-01 6.37673855e-01
-2.18608648e-01 2.90319204e-01 -5.34804642e-01 -1.98521540e-01
4.35413182e-01 1.07028568e+00 -8.63814056e-01 -8.15884471e-02
-1.62238091e-01 4.03875500e-01 -7.83979297e-02 2.13730320e-01
-8.16079259e-01 -1.19336501e-01 7.37334549e-01 3.01811785e-01
1.94504410e-02 -1.88436627e-01 -5.91503680e-01 -1.15049112e+00
-7.99160376e-02 -6.17072701e-01 3.63035738e-01 -2.01771945e-01
-1.43686759e+00 -5.05957082e-02 3.40804994e-01 -1.01161051e+00
-1.65769443e-01 -7.23949134e-01 -1.42387122e-01 7.13790774e-01
-1.19839180e+00 -3.26553971e-01 2.82169431e-01 9.04642567e-02
2.47928500e-01 2.38012001e-01 5.37221074e-01 1.58244133e-01
-4.55364496e-01 5.27732849e-01 8.46767485e-01 -2.69878179e-01
4.13306117e-01 -1.20526135e+00 6.71274140e-02 6.41449869e-01
-1.73811272e-01 7.59378910e-01 1.04876351e+00 -4.98140693e-01
-1.47691882e+00 -6.12534940e-01 1.04136288e+00 -5.31923771e-01
8.03061008e-01 -3.17993432e-01 -6.91829681e-01 3.00677687e-01
-1.38712391e-01 -2.49510799e-02 4.74947810e-01 3.35764736e-01
1.16484553e-01 -1.24835670e-01 -1.27024603e+00 6.19648039e-01
1.03623223e+00 6.89527066e-03 1.39280379e-01 4.85901445e-01
2.89442033e-01 -6.44591153e-02 -1.06090260e+00 6.55296862e-01
7.22685874e-01 -1.14088452e+00 8.28482091e-01 -5.25713682e-01
3.96886110e-01 1.61650240e-01 7.46545121e-02 -1.09799278e+00
-7.37116635e-02 -1.01341450e+00 -5.16163073e-02 9.62971270e-01
2.10349008e-01 -8.78342748e-01 3.74260098e-01 3.53212804e-01
1.23818792e-01 -1.27748477e+00 -1.12358034e+00 -1.10261512e+00
5.20032823e-01 -5.17441630e-01 3.32175076e-01 8.74720454e-01
-2.48110276e-02 7.41226077e-02 -4.73817408e-01 -2.80134171e-01
8.83897543e-01 -2.45695502e-01 6.47738993e-01 -1.42568386e+00
-6.45590946e-02 -9.27402914e-01 -3.84087920e-01 -8.91604006e-01
-9.63096246e-02 -9.07217681e-01 1.30379483e-01 -1.18911290e+00
4.59608823e-01 -5.16044617e-01 -1.77058086e-01 1.29823342e-01
-4.10174578e-01 -8.04043002e-03 -1.60354123e-01 1.96648762e-01
-3.34455818e-01 4.94351745e-01 1.37964809e+00 3.06768090e-01
4.22419608e-02 4.00207788e-01 -8.70805383e-01 6.42691851e-01
6.81982398e-01 -5.19635320e-01 -2.58341521e-01 1.68991864e-01
3.34847301e-01 2.13665575e-01 5.73843300e-01 -6.89271033e-01
-1.46272525e-01 -5.39541125e-01 -7.04855621e-02 -2.27082342e-01
-2.67921448e-01 -2.51424164e-01 1.10764794e-01 6.68594360e-01
-6.11964643e-01 -1.32298306e-01 -6.25013858e-02 4.35748696e-01
1.56393245e-01 -3.92592847e-01 1.11309052e+00 1.10818282e-01
1.99250830e-03 4.44324255e-01 -2.15208784e-01 5.06172240e-01
1.04329765e+00 2.39358068e-01 -3.19996715e-01 -6.81813180e-01
-3.28301311e-01 1.01339258e-01 3.36265773e-01 3.49422060e-02
3.01455557e-01 -1.00042033e+00 -1.08215964e+00 -1.24191351e-01
-2.11645424e-01 -1.45119011e-01 4.40938249e-02 1.47217274e+00
-2.65707850e-01 6.66569769e-01 3.44342262e-01 -4.32051390e-01
-7.10681915e-01 3.38387221e-01 1.15614876e-01 -3.65785956e-01
-5.46187222e-01 9.11695421e-01 1.86875805e-01 -2.14805424e-01
8.87125134e-02 -1.98149234e-01 2.30292574e-01 7.76355192e-02
5.24481356e-01 8.46051276e-01 -3.42895865e-01 -4.95768160e-01
-5.41749835e-01 2.74397045e-01 2.85334677e-01 -1.98693484e-01
1.59429026e+00 -2.49655157e-01 -1.34236619e-01 8.32269013e-01
1.32331014e+00 3.49805325e-01 -1.14534843e+00 -9.51417461e-02
2.84931034e-01 -3.65358710e-01 -1.60877064e-01 -5.33443809e-01
-7.82565296e-01 7.37464607e-01 1.94324672e-01 6.59620166e-01
9.24014747e-01 2.00759009e-01 6.18930578e-01 -5.34635223e-02
5.00029981e-01 -9.21212494e-01 -3.01393121e-01 3.01925242e-01
9.35073853e-01 -9.69389021e-01 2.87283838e-01 -3.21734190e-01
-3.77645493e-01 9.64425266e-01 -3.18127275e-02 -1.50273889e-01
8.91960979e-01 1.18332818e-01 -5.06610870e-01 3.22630927e-02
-6.13387764e-01 -3.88561517e-01 4.37686145e-01 4.89485621e-01
5.50604582e-01 1.44662365e-01 -1.15080106e+00 5.79294324e-01
-1.72064193e-02 1.10212572e-01 5.13632894e-01 4.09933716e-01
-5.34604549e-01 -9.91592765e-01 -2.47454911e-01 7.95131326e-01
-5.89057088e-01 -8.55891779e-02 -1.47488058e-01 9.73017275e-01
-2.32538790e-01 6.28012061e-01 -3.40315461e-01 -4.79880162e-02
-2.43253876e-02 -1.26779340e-02 4.44756687e-01 -2.19505057e-01
-2.04297915e-01 -4.70208824e-02 1.41622415e-02 -5.29500425e-01
-5.74584842e-01 -1.26916826e+00 -7.92262316e-01 -6.09383345e-01
-2.88011819e-01 3.66927385e-01 5.90273201e-01 1.12239659e+00
2.61080042e-02 1.24053016e-01 1.01134121e+00 -3.70549083e-01
-9.07496035e-01 -9.34322119e-01 -8.97586524e-01 9.63935703e-02
3.63429397e-01 -7.10807323e-01 -7.24511445e-01 -3.04894418e-01] | [7.305613994598389, 4.241812229156494] |
87284432-fcd0-470d-aff7-b710588782d5 | deepir-a-deep-semantics-driven-framework-for | 1811.07793 | null | https://arxiv.org/abs/1811.07793v3 | https://arxiv.org/pdf/1811.07793v3.pdf | DeepIR: A Deep Semantics Driven Framework for Image Retargeting | We present \emph{Deep Image Retargeting} (\emph{DeepIR}), a coarse-to-fine framework for content-aware image retargeting. Our framework first constructs the semantic structure of input image with a deep convolutional neural network. Then a uniform re-sampling that suits for semantic structure preserving is devised to resize feature maps to target aspect ratio at each feature layer. The final retargeting result is generated by coarse-to-fine nearest neighbor field search and step-by-step nearest neighbor field fusion. We empirically demonstrate the effectiveness of our model with both qualitative and quantitative results on widely used RetargetMe dataset. | ['Zhibo Chen', 'Jianxin Lin', 'Tiankuang Zhou'] | 2018-11-19 | null | null | null | null | ['image-retargeting'] | ['computer-vision'] | [ 3.9855194e-01 2.4554588e-01 -2.0565777e-01 -5.1070559e-01
-8.7386918e-01 -7.8282112e-01 6.4252639e-01 3.7249871e-02
-5.5402535e-01 6.0099012e-01 7.8794557e-01 1.6252303e-01
-1.6197388e-01 -9.3626338e-01 -7.1352410e-01 -3.4156826e-01
6.2736863e-01 -1.4382219e-01 4.3176609e-01 -4.5399922e-01
5.7745838e-01 7.0686799e-01 -1.3633299e+00 6.6334689e-01
3.7861329e-01 9.1044813e-01 2.4761398e-01 5.1632899e-01
-6.9719769e-02 7.2111380e-01 -4.0854385e-01 -3.5026670e-01
5.4710084e-01 -2.5583383e-01 -1.1190535e+00 3.1824872e-02
6.9604635e-01 -3.2232124e-01 -7.4544585e-01 1.3775030e+00
7.8416562e-01 5.5607855e-01 5.7228959e-01 -7.5611681e-01
-1.4467919e+00 7.9962933e-01 -8.4379411e-01 7.0656341e-01
2.3221263e-01 1.3927005e-01 7.7644068e-01 -1.1224040e+00
9.3543798e-01 1.2138792e+00 5.7255656e-01 2.6118231e-01
-1.3431536e+00 -6.6212565e-01 1.5215178e-01 1.9361487e-01
-1.7406271e+00 -4.5990968e-01 9.4180322e-01 -4.5309454e-01
8.2836288e-01 4.3423274e-01 5.0655746e-01 8.3977139e-01
5.8451897e-01 3.4574285e-01 9.9165219e-01 -3.1324360e-01
1.4882326e-01 -1.9163068e-02 -1.2068675e-01 4.8519444e-01
-2.9317909e-01 3.2414946e-01 -6.2111270e-01 1.3880081e-02
1.0135586e+00 6.6874579e-02 -2.6615000e-01 -1.8192413e-01
-1.2405204e+00 1.0391363e+00 1.0166837e+00 4.2621231e-01
-4.0545332e-01 2.4886678e-01 4.1543102e-01 3.5417473e-01
4.7620398e-01 6.9879442e-01 -4.2594609e-01 3.8359201e-01
-8.7613648e-01 2.8143311e-01 7.1956059e-03 9.4921333e-01
1.1602846e+00 3.2903936e-02 -9.8436266e-01 9.1015959e-01
-1.7410609e-01 2.3204933e-01 8.6875427e-01 -1.1767879e+00
-9.7158682e-03 4.3956989e-01 -1.0050027e-01 -1.3095446e+00
-4.3074390e-01 -5.8023137e-01 -8.4359580e-01 3.7226763e-01
-1.6524430e-01 9.9004984e-02 -1.1170735e+00 1.6076366e+00
3.4132090e-01 -6.8746470e-02 -1.3877679e-01 9.7061223e-01
1.0110458e+00 3.8767746e-01 4.3983069e-01 1.8219139e-02
1.5786759e+00 -1.2856739e+00 -5.3952515e-01 -8.0983021e-04
5.1836061e-01 -9.4268852e-01 1.2939614e+00 -1.2436252e-01
-1.0472254e+00 -7.6745087e-01 -7.1054256e-01 -4.1245365e-01
-6.2652725e-01 7.2022356e-02 1.6507085e-01 5.3758073e-01
-1.4367576e+00 3.3857268e-01 5.0900768e-02 -3.4857020e-01
5.5930632e-01 4.1022360e-01 -8.4416968e-01 -1.3159506e-02
-1.2512454e+00 6.1009562e-01 8.1213588e-01 -4.0016952e-01
-7.6855040e-01 -1.1164640e+00 -8.8202357e-01 2.9800570e-02
7.4119471e-02 -8.5094297e-01 1.1243869e+00 -1.3065683e+00
-1.4860322e+00 1.0551336e+00 1.2237977e-01 -3.8973233e-01
2.7790627e-01 -3.3201944e-02 -6.0790318e-01 1.7528394e-01
3.1543323e-01 1.3421991e+00 1.1797348e+00 -1.1419252e+00
-9.0068698e-01 -2.0611313e-01 3.0087504e-01 4.3725008e-01
-3.4303147e-01 2.9946547e-02 -5.5844945e-01 -1.5121419e+00
3.5377081e-02 -6.9102031e-01 -4.4920591e-01 3.1374052e-02
-5.3879112e-01 2.1336579e-01 9.3488884e-01 -5.7802206e-01
1.2901993e+00 -2.2635570e+00 -4.2709704e-02 1.9800265e-01
6.9625527e-01 -1.8174825e-03 -6.1996830e-01 1.3407318e-01
-5.9848946e-01 5.5932563e-02 6.3075088e-02 1.3405198e-01
-3.2091901e-01 -4.4022268e-01 -2.8019470e-01 6.0540670e-01
-2.7446157e-01 1.3719318e+00 -7.8413695e-01 -4.4442701e-01
5.5063486e-01 5.0045013e-01 -6.5233392e-01 -9.1585509e-02
8.0157146e-02 2.7388322e-01 -3.8797286e-01 3.5611188e-01
6.6687262e-01 -1.9578671e-01 -5.3716564e-01 -9.5795888e-01
-1.2842257e-01 -5.0696832e-01 -7.9376316e-01 1.9038687e+00
-4.8668981e-01 7.3215872e-01 -5.3209770e-01 -4.2953858e-01
9.8754203e-01 -1.9517714e-01 5.3148311e-01 -1.1409860e+00
3.0945885e-01 -5.9123974e-02 -5.6467509e-01 -2.7804023e-01
1.0914091e+00 6.4625941e-02 -2.3639160e-01 3.6331066e-01
-9.9100366e-02 6.6873446e-02 -2.7654386e-01 2.4303244e-01
8.7604290e-01 -1.7501402e-01 6.7999583e-01 -7.3746765e-01
5.3945380e-01 1.6235188e-01 1.6247521e-01 7.6998240e-01
-2.3672092e-01 1.0711261e+00 -1.6867743e-01 -8.9846700e-01
-1.2519759e+00 -1.0129008e+00 -1.4926151e-02 1.5308293e+00
4.3823102e-01 -1.6055878e-01 -1.0267594e+00 -9.0137893e-01
-2.6143792e-01 7.3235297e-01 -1.2278752e+00 -5.9975392e-01
-3.4582859e-01 -3.3654439e-01 4.1503400e-01 4.1739383e-01
7.9287052e-01 -1.2974515e+00 -3.8547146e-01 1.6702645e-01
5.1206728e-03 -7.9544306e-01 -1.2548054e+00 -5.2230336e-02
-4.1186661e-01 -6.9394386e-01 -9.4012815e-01 -1.0013694e+00
9.0260887e-01 6.2734568e-01 8.5371226e-01 -2.0131874e-01
-4.0785834e-01 2.0675945e-01 -5.7101214e-01 2.6779616e-01
-3.1107059e-01 2.5973693e-01 -5.2079473e-02 -6.8179024e-03
2.6703751e-01 -4.6469426e-01 -1.1026849e+00 3.3587551e-01
-1.2601577e+00 1.4733398e-01 5.1847988e-01 5.1210606e-01
9.1664451e-01 1.6320032e-01 3.8374874e-01 -7.1657073e-01
8.6511844e-01 -2.1194480e-01 -3.4645063e-01 1.4500491e-01
-2.8258520e-01 6.5483108e-02 4.1054288e-01 -5.6296599e-01
-9.3252933e-01 3.1214488e-01 -1.9009410e-01 -4.7052521e-01
-3.1180578e-01 1.1194672e-01 -9.8877206e-02 -5.0297815e-01
1.1504245e+00 2.0169333e-01 -5.1235801e-01 -4.3819582e-01
1.1311352e+00 6.4568496e-01 9.4837600e-01 -1.8630643e-01
8.4807402e-01 7.1845341e-01 -3.4408778e-01 -4.0747210e-01
-1.0012927e+00 -5.1407471e-02 -7.3757201e-01 -1.4099894e-01
1.1893840e+00 -9.5070946e-01 -3.6161223e-01 2.3900296e-01
-9.7272331e-01 -2.3759498e-01 -1.0091369e+00 6.6633224e-02
-5.7160813e-01 1.6128999e-01 -2.4651438e-01 1.8925934e-01
-5.3807789e-01 -1.2231470e+00 1.1884347e+00 3.5395542e-01
-3.6463937e-01 -8.4590566e-01 2.4957947e-01 8.6713493e-02
5.8155054e-01 -1.8878417e-02 8.1643045e-01 -6.3587952e-01
-1.9824168e-01 9.4742723e-02 -7.7908224e-01 -6.8556443e-02
4.9781817e-01 -4.9302700e-01 -1.1205273e+00 -4.1190642e-01
-3.7614679e-01 -4.8829161e-02 9.4545585e-01 5.9178907e-01
1.4868056e+00 -5.5652839e-01 -4.5460927e-01 7.9638594e-01
1.3880299e+00 -2.5272623e-02 8.3472317e-01 6.0128289e-01
9.8166043e-01 4.0736610e-01 5.5284470e-01 4.6990567e-01
2.7215791e-01 8.1394935e-01 3.2735127e-01 -3.9730054e-01
-8.4572256e-01 -3.9324248e-01 -1.1876953e-01 1.4128062e-01
4.5771450e-01 -2.3429771e-01 -4.3159837e-01 9.3158197e-01
-1.5966884e+00 -7.6532429e-01 3.9591557e-01 1.8111838e+00
8.1701964e-01 -1.6204713e-01 2.9667968e-02 -2.4420239e-01
1.1678966e+00 2.6263031e-01 -5.6230867e-01 -2.7163768e-01
-2.7346653e-01 1.9252438e-02 7.8366518e-01 7.1227306e-01
-1.1984241e+00 1.5339584e+00 6.7587276e+00 1.5665658e+00
-1.2642573e+00 2.1110182e-01 8.9349055e-01 3.3224445e-02
-7.7865750e-01 -1.4931504e-01 -6.6003150e-01 2.1207651e-01
3.3496937e-01 -1.5102729e-01 5.1365155e-01 8.2145298e-01
5.9450582e-02 2.1824344e-01 -4.9079105e-01 1.2998996e+00
7.2463483e-02 -1.9947182e+00 5.6049079e-01 -1.7788328e-01
1.1611989e+00 -8.4511556e-02 3.8174185e-01 1.7399946e-02
6.3284719e-01 -1.0051837e+00 9.9961388e-01 5.3626651e-01
1.3534771e+00 -9.2583358e-01 2.4953268e-01 -3.3109850e-01
-1.3878256e+00 -2.3148680e-01 -5.3586203e-01 5.0872749e-01
4.7786105e-02 6.4648193e-01 -6.3922054e-01 3.5700136e-01
1.0642707e+00 6.1443782e-01 -8.4118122e-01 7.9077137e-01
1.4056866e-01 -1.3541055e-01 1.4894351e-02 4.4279227e-01
1.7012337e-01 2.5726435e-01 6.4237064e-01 1.2222146e+00
3.7728211e-01 7.8758866e-02 -9.2108533e-02 7.9299194e-01
-2.8048328e-01 3.7298539e-01 -6.5212172e-01 3.6028242e-01
7.1125782e-01 1.3260939e+00 -1.0019084e+00 -2.6893163e-01
-7.4232370e-02 1.4769922e+00 4.4587353e-01 5.9381521e-01
-6.4138424e-01 -5.7344419e-01 6.4437753e-01 2.2648773e-01
6.1765361e-01 2.6602426e-01 -2.9804233e-01 -6.9789261e-01
-4.8732355e-01 -7.9642797e-01 4.7419649e-01 -9.8628789e-01
-1.2771788e+00 1.0660685e+00 1.1649677e-01 -1.1658748e+00
2.0891196e-01 -1.5092720e-01 -2.5735393e-01 8.0843925e-01
-1.2346883e+00 -1.4861832e+00 -5.0407320e-01 1.0272380e+00
9.1219932e-01 -4.3386829e-01 5.1832223e-01 1.2826580e-01
-9.8650023e-02 8.8281035e-01 -6.6484198e-02 -6.4321883e-02
7.5746387e-01 -7.7620488e-01 7.9090834e-01 7.4317783e-01
8.1411742e-02 4.1792706e-01 7.0452154e-01 -7.0931882e-01
-6.7204887e-01 -1.6517720e+00 5.2886909e-01 -3.2347804e-01
4.1924497e-01 -2.7533849e-03 -5.7566190e-01 6.2398344e-01
3.9585686e-01 3.0903468e-01 3.3693627e-01 -5.4034644e-01
-5.9887064e-01 -9.5882945e-02 -1.6200011e+00 1.0098090e+00
1.1460222e+00 -5.5248004e-01 -4.5051783e-01 1.0632991e-01
1.4247900e+00 -4.3856454e-01 -1.0189365e+00 3.0255592e-01
5.2021754e-01 -9.2911148e-01 1.1933299e+00 -3.9004150e-01
5.6964722e-02 -4.2100373e-01 -6.3822675e-01 -1.3285964e+00
-1.1817107e+00 -7.9169017e-01 2.9582626e-01 1.0750669e+00
2.3093010e-01 -3.3894473e-01 6.9216454e-01 2.5079736e-01
-4.4765450e-02 -3.6643654e-01 -9.3267369e-01 -3.4042335e-01
1.2538749e-01 -1.4444181e-01 1.1044611e+00 1.0612630e+00
-4.6424291e-01 1.6570771e-01 -3.7567177e-01 5.8688153e-02
4.0846983e-01 -5.8195423e-02 4.9938467e-01 -7.1240890e-01
-3.3460993e-02 -5.4192448e-01 -6.0355610e-01 -8.0510116e-01
1.4978820e-01 -7.5006229e-01 -9.3206532e-02 -1.2839862e+00
4.4613212e-01 -9.6430585e-02 -4.5753163e-01 6.9133008e-01
-1.4007828e-01 1.1700971e+00 7.3991895e-02 1.9342110e-01
-5.4680347e-01 6.3762707e-01 1.4319314e+00 -2.5009900e-01
-3.2510376e-01 -4.8849726e-01 -1.1526000e+00 5.5424148e-01
8.1788749e-01 -6.1432046e-01 -5.5968934e-01 -4.6468285e-01
2.5800747e-01 -3.7899935e-01 4.3725297e-01 -9.8759651e-01
-5.0712124e-02 -3.7404606e-01 4.9743420e-01 -4.5194149e-01
1.3891758e-01 -8.0892992e-01 2.1347314e-01 1.8892805e-01
-7.6511651e-01 2.0574015e-01 3.9665613e-01 4.9741969e-01
-3.7109915e-03 -3.2523721e-02 1.1944363e+00 2.6678216e-02
-1.2602150e+00 5.3028572e-01 -2.8029796e-01 -1.1048508e-02
1.1171892e+00 -5.1597685e-01 -4.4492182e-01 -3.7283885e-01
-8.9504701e-01 -3.8276747e-01 5.8224154e-01 8.5430986e-01
7.5740600e-01 -1.6795551e+00 -7.3167413e-01 1.9925290e-01
4.8650321e-01 -4.3487361e-01 7.6325560e-01 4.4915298e-01
-4.7926274e-01 2.3655322e-01 -5.0194353e-01 -2.2484933e-01
-1.1137701e+00 9.7832054e-01 4.6438178e-01 1.2107147e-01
-9.5679748e-01 1.1046541e+00 9.7326308e-01 -3.7948173e-01
-1.5775822e-01 3.3331439e-02 -3.7647983e-01 -2.7086526e-01
7.6964295e-01 2.9041418e-01 -6.9418624e-02 -1.0624084e+00
-2.6774037e-01 8.8819897e-01 -4.9831522e-01 -3.3373505e-01
9.8605186e-01 -7.9943734e-01 3.0035732e-02 -2.5858614e-01
1.4669982e+00 6.5987289e-02 -1.4562287e+00 -3.9675790e-01
-6.4040458e-01 -6.8753660e-01 4.7281206e-01 -7.8474557e-01
-1.4075110e+00 2.5154334e-01 1.1419443e+00 -1.3836069e-01
1.3900495e+00 1.2561241e-01 7.4215335e-01 2.4870735e-01
2.5068512e-02 -9.8687255e-01 3.0484974e-01 2.3572843e-01
1.2368933e+00 -9.2215240e-01 2.7147043e-02 -2.2201088e-01
-7.9214680e-01 7.4178976e-01 5.3868055e-01 -3.4339568e-01
8.4891337e-01 1.1147967e-01 2.9506847e-01 -3.6145064e-01
-9.9407390e-02 -8.6711131e-02 6.1225814e-01 9.5735586e-01
4.6614584e-02 -9.2456900e-02 -6.1242152e-02 3.5696101e-01
-4.5175749e-01 2.9978413e-02 2.0871651e-01 6.3262886e-01
-7.1657509e-01 -8.2490027e-01 -4.0710476e-01 2.2491565e-01
-2.9437497e-01 -3.3355978e-01 -2.7555811e-01 6.1172432e-01
1.9576153e-01 7.4979156e-01 2.3840439e-01 -6.8802458e-01
3.2916299e-01 -7.3070335e-01 4.5862761e-01 -5.0392085e-01
-7.6105785e-01 -7.7532097e-03 -2.7915183e-01 -7.7174425e-01
-9.4455212e-02 -7.3746786e-02 -1.0968660e+00 -2.7574527e-01
-1.7492361e-02 -1.6333166e-01 2.6475742e-01 7.8311169e-01
7.3669571e-01 6.8185866e-01 6.5867209e-01 -8.9601803e-01
2.4126805e-02 -8.5107452e-01 -5.4761231e-01 4.0176630e-01
4.0486696e-01 -4.3594247e-01 2.5021885e-02 3.1471062e-01] | [11.252364158630371, -1.028210163116455] |
8e3ef591-97e0-4719-8516-c73617b9eb7e | ra-unet-a-hybrid-deep-attention-aware-network | 1811.01328 | null | http://arxiv.org/abs/1811.01328v1 | http://arxiv.org/pdf/1811.01328v1.pdf | RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans | Automatic extraction of liver and tumor from CT volumes is a challenging task
due to their heterogeneous and diffusive shapes. Recently, 2D and 3D deep
convolutional neural networks have become popular in medical image segmentation
tasks because of the utilization of large labeled datasets to learn
hierarchical features. However, 3D networks have some drawbacks due to their
high cost on computational resources. In this paper, we propose a 3D hybrid
residual attention-aware segmentation method, named RA-UNet, to precisely
extract the liver volume of interests (VOI) and segment tumors from the liver
VOI. The proposed network has a basic architecture as a 3D U-Net which extracts
contextual information combining low-level feature maps with high-level ones.
Attention modules are stacked so that the attention-aware features change
adaptively as the network goes "very deep" and this is made possible by
residual learning. This is the first work that an attention residual mechanism
is used to process medical volumetric images. We evaluated our framework on the
public MICCAI 2017 Liver Tumor Segmentation dataset and the 3DIRCADb dataset.
The results show that our architecture outperforms other state-of-the-art
methods. We also extend our RA-UNet to brain tumor segmentation on the
BraTS2018 and BraTS2017 datasets, and the results indicate that RA-UNet
achieves good performance on a brain tumor segmentation task as well. | ['Qiangguo Jin', 'Zhaopeng Meng', 'Leyi Wei', 'Ran Su', 'Changming Sun'] | 2018-11-04 | null | null | null | null | ['deep-attention', 'deep-attention'] | ['computer-vision', 'natural-language-processing'] | [-2.26472139e-01 3.52122545e-01 -3.26247305e-01 -3.68006796e-01
-6.50180042e-01 1.01583009e-03 3.72740328e-01 -3.60725485e-02
-3.95539194e-01 3.17841113e-01 3.54265541e-01 -1.98069438e-01
1.43689722e-01 -6.00628674e-01 -4.78518575e-01 -8.45156312e-01
-2.78120309e-01 7.67537892e-01 4.23976302e-01 5.98269068e-02
-1.43856227e-01 6.67081535e-01 -7.55004048e-01 1.09593451e-01
1.00915897e+00 1.13838375e+00 3.54619712e-01 4.49761719e-01
-4.56985354e-01 8.03390861e-01 -2.34374449e-01 1.45975038e-01
3.08454454e-01 -4.05493438e-01 -1.19168591e+00 3.46148610e-01
8.01882744e-02 -3.10459614e-01 -3.28660995e-01 1.05079794e+00
5.34698904e-01 -4.15842891e-01 8.12592030e-01 -9.65143561e-01
-6.63850188e-01 7.96133041e-01 -7.66815066e-01 4.56506521e-01
-1.71111271e-01 1.59171477e-01 5.71195006e-01 -8.64374816e-01
5.27964890e-01 8.09241176e-01 7.66220868e-01 6.36918187e-01
-9.60629284e-01 -4.88539547e-01 6.48924112e-02 -3.46925072e-02
-1.31895745e+00 1.32915854e-01 6.62788272e-01 -7.66444862e-01
8.63969564e-01 2.09792390e-01 9.82864082e-01 7.64711082e-01
5.03236055e-01 1.25164664e+00 1.00805950e+00 -1.66636527e-01
-9.49793588e-03 -9.35981721e-02 3.78150374e-01 1.02061939e+00
1.27230227e-01 -1.18396297e-01 3.67254645e-01 1.68700606e-01
1.05257654e+00 2.53101468e-01 -5.48531532e-01 -6.23450935e-01
-1.45624149e+00 9.59970117e-01 1.20319366e+00 7.75283337e-01
-6.00459516e-01 1.68917954e-01 4.98923391e-01 -1.21823967e-01
7.17942894e-01 2.05844447e-01 -4.42487806e-01 5.38712442e-01
-8.96991074e-01 -2.92185932e-01 6.92058623e-01 7.89317787e-01
2.69377798e-01 -2.24013422e-02 -6.87485516e-01 6.47503018e-01
4.67035025e-01 -1.01882694e-02 9.89835799e-01 -2.07851812e-01
-2.29817349e-02 9.22763944e-01 -3.87151659e-01 -3.35818470e-01
-9.44291234e-01 -7.73101330e-01 -1.26287889e+00 8.48390460e-02
4.46615905e-01 -1.68071881e-01 -1.68454671e+00 1.27005565e+00
3.96019042e-01 2.22725436e-01 -6.68677175e-03 1.10953677e+00
1.68344152e+00 3.32357496e-01 4.05222654e-01 -6.26275167e-02
1.53634202e+00 -1.29391849e+00 -6.30108118e-01 3.52207199e-02
8.13554466e-01 -3.84682566e-01 7.83503532e-01 -2.31667817e-01
-9.12101448e-01 -3.68992835e-01 -7.65600204e-01 -1.32958991e-02
-2.14798823e-01 1.30537957e-01 8.60139489e-01 6.72713161e-01
-1.27997065e+00 1.69431031e-01 -1.08706379e+00 -3.32271636e-01
1.00085318e+00 5.47624052e-01 -1.71387672e-01 2.15172544e-01
-9.92321134e-01 9.70452666e-01 4.49957043e-01 1.99142285e-02
-1.21847188e+00 -9.70250368e-01 -9.71260607e-01 1.78474844e-01
3.33057731e-01 -8.19243431e-01 1.16998100e+00 -8.93796384e-01
-1.48068845e+00 1.05814898e+00 2.82459527e-01 -7.02502608e-01
6.17203832e-01 3.89253765e-01 2.44137704e-01 2.66325712e-01
6.62636086e-02 9.58794296e-01 5.19045711e-01 -1.00365222e+00
-3.86881113e-01 -4.84364867e-01 -2.66964495e-01 1.65467039e-01
-5.53833358e-02 -3.09726447e-01 -5.75314343e-01 -6.37234151e-01
2.87603438e-01 -8.40619504e-01 -6.52462780e-01 -1.91665724e-01
-5.47421873e-01 -3.81253809e-01 9.82801735e-01 -6.53759956e-01
7.70844102e-01 -1.70291364e+00 4.23407346e-01 9.92918462e-02
5.31783104e-01 1.65670991e-01 1.60795510e-01 -6.24870956e-01
-8.40368345e-02 2.75784016e-01 -4.46223438e-01 -1.47681341e-01
-2.69778937e-01 9.93723050e-02 4.16738659e-01 5.37083566e-01
-3.97852622e-02 1.43020666e+00 -7.90113747e-01 -1.00962698e+00
3.97153378e-01 5.12839198e-01 -5.13830006e-01 3.02458912e-01
-1.11927189e-01 7.95880556e-01 -5.88376284e-01 8.03455472e-01
5.01987457e-01 -5.39359629e-01 -1.03501827e-01 -3.27535361e-01
-1.37263492e-01 -2.97657043e-01 -2.87977159e-01 1.84736693e+00
-3.56975138e-01 5.11443615e-01 1.97830498e-01 -1.11752522e+00
7.31762886e-01 5.17413020e-01 1.12628412e+00 -6.12261117e-01
6.77101731e-01 1.90350398e-01 2.14330047e-01 -6.68797076e-01
6.45848690e-04 -7.01131448e-02 -9.18961763e-02 1.34472743e-01
2.03695491e-01 -4.39832717e-01 6.92662001e-02 4.04365547e-02
8.13349962e-01 -1.91181768e-02 4.26084638e-01 -7.66849577e-01
7.56273627e-01 1.51369020e-01 6.21295094e-01 4.10371929e-01
-5.95933795e-01 5.35351694e-01 6.36465251e-01 -6.84007466e-01
-6.74380302e-01 -7.78750598e-01 -4.95520413e-01 6.58672810e-01
1.41208455e-01 2.52027418e-02 -9.13050175e-01 -1.40684533e+00
-4.91729099e-03 4.40995634e-01 -1.00317943e+00 2.06349015e-01
-5.44030726e-01 -1.14374232e+00 2.42352456e-01 6.59720719e-01
7.53283322e-01 -1.19594979e+00 -8.82631660e-01 2.19572783e-01
-2.12359354e-01 -1.00732768e+00 -6.62176132e-01 3.43130767e-01
-1.04964507e+00 -1.20331311e+00 -1.26675916e+00 -1.06567430e+00
1.00381231e+00 -1.65528362e-03 1.21160042e+00 2.56563634e-01
-6.77673042e-01 3.83174002e-01 -1.56701043e-01 -4.27506208e-01
-2.53116548e-01 3.68005961e-01 -6.13960385e-01 -1.89359218e-01
2.51540601e-01 -2.04114899e-01 -7.12853789e-01 2.43589595e-01
-7.66672790e-01 3.44188422e-01 9.72864211e-01 1.04104149e+00
8.77809584e-01 -2.53059506e-01 5.38618326e-01 -9.94660616e-01
3.42951030e-01 -5.52354157e-01 -6.29538178e-01 1.48895517e-01
-3.07273686e-01 -1.16351582e-02 2.98943818e-01 -2.89360821e-01
-7.97779381e-01 3.57333422e-01 -2.76838511e-01 -5.37699759e-01
-1.24984413e-01 4.83789384e-01 5.86474687e-02 -2.40798593e-01
2.44837001e-01 2.07651585e-01 1.04459688e-01 -1.96446806e-01
-2.05728635e-02 3.58193636e-01 1.94130436e-01 -1.03680186e-01
3.47140282e-01 4.18750286e-01 1.67652652e-01 -6.95592642e-01
-8.40039313e-01 -3.85029286e-01 -9.39171731e-01 -1.88006163e-01
1.36530900e+00 -6.95876181e-01 -5.79973698e-01 6.01606429e-01
-7.90363252e-01 -7.17233598e-01 -5.52027702e-01 5.11387408e-01
-4.79591906e-01 1.48567438e-01 -9.94147599e-01 -1.83514699e-01
-8.53019357e-01 -2.00683331e+00 9.64442670e-01 4.26925778e-01
2.19496027e-01 -1.11668110e+00 -2.50695050e-01 1.43377885e-01
7.16106892e-01 4.89145547e-01 9.46394682e-01 -8.23835075e-01
-6.53953671e-01 2.85609718e-02 -5.44331491e-01 4.38646190e-02
1.27709240e-01 -2.74525672e-01 -6.40129805e-01 -3.38000357e-01
-1.35799453e-01 -2.79588163e-01 1.10182631e+00 1.06731546e+00
1.55144501e+00 -3.93645614e-02 -6.78269804e-01 1.00149500e+00
1.35135567e+00 1.95300832e-01 3.54675740e-01 1.42656222e-01
8.78268659e-01 1.76526248e-01 3.68125625e-02 1.37101635e-01
4.91003901e-01 3.80052090e-01 8.96377861e-01 -8.07667315e-01
-4.34644222e-01 3.09768498e-01 -2.03701913e-01 8.91272247e-01
7.18784519e-03 4.37236391e-02 -1.22146261e+00 8.15409243e-01
-1.49239957e+00 -5.33574402e-01 -1.79553688e-01 1.78994894e+00
6.93842888e-01 -5.67632169e-02 -7.08233938e-02 -3.71311545e-01
5.54693401e-01 9.84411612e-02 -5.58098137e-01 -4.68363576e-02
2.56326735e-01 1.42654389e-01 6.06016397e-01 4.30590570e-01
-1.51786542e+00 8.38799834e-01 5.32468271e+00 5.68294168e-01
-1.24997234e+00 4.40068513e-01 1.15951228e+00 2.40735278e-01
-1.48506202e-02 -4.68069285e-01 -5.01285732e-01 2.98660874e-01
3.74680012e-01 9.68957767e-02 -3.18517953e-01 8.51506829e-01
-1.13416769e-01 -2.28397641e-02 -1.01467156e+00 8.85462344e-01
1.76772792e-02 -1.31924844e+00 -1.31009191e-01 2.24420503e-01
8.17841351e-01 4.73541409e-01 -9.14165080e-02 5.67232311e-01
3.89528930e-01 -1.27924407e+00 3.24643046e-01 4.57933962e-01
8.01757932e-01 -5.40477216e-01 1.18780303e+00 2.43493542e-01
-1.31424034e+00 1.40498519e-01 -2.65851557e-01 6.67717874e-01
-1.19316019e-02 5.95570028e-01 -1.28370559e+00 4.74006444e-01
6.82636678e-01 8.01391840e-01 -6.29171073e-01 1.41439283e+00
-1.41766459e-01 4.93326902e-01 -2.41190881e-01 4.44662459e-02
5.41116655e-01 -1.16670638e-01 4.07362252e-01 1.29337764e+00
3.69355947e-01 2.62143731e-01 6.14934087e-01 9.32594538e-01
-3.25830400e-01 3.47068995e-01 -2.51348317e-01 3.19381922e-01
-2.23987222e-01 1.62302530e+00 -1.33307874e+00 -5.80912948e-01
-2.38860816e-01 8.09387505e-01 1.51090249e-01 4.59717028e-02
-1.00970340e+00 -4.26668301e-02 1.57952383e-01 1.37049332e-02
2.69226283e-01 1.08603992e-01 -2.54882753e-01 -1.21742177e+00
-5.83873451e-01 -3.13947409e-01 5.65275848e-01 -4.34507638e-01
-1.18097353e+00 1.08230829e+00 -1.88115850e-01 -9.80077446e-01
1.12294063e-01 -3.19671899e-01 -6.38376534e-01 6.46722496e-01
-1.77244413e+00 -1.29718125e+00 -8.13764930e-01 6.61171377e-01
7.80597925e-01 1.24458252e-02 5.71396768e-01 1.04918115e-01
-5.79202414e-01 3.86849761e-01 -4.10095811e-01 7.10787416e-01
2.53597438e-01 -1.49428320e+00 2.50814464e-02 4.79901075e-01
-2.40671754e-01 -5.44908606e-02 1.33056566e-01 -7.40487993e-01
-1.21419382e+00 -1.36911929e+00 3.46979022e-01 -1.37468517e-01
3.19916695e-01 -1.22025803e-01 -8.03327680e-01 9.17239606e-01
5.69037676e-01 7.60165930e-01 4.26262617e-01 -3.39189976e-01
2.47953311e-01 1.73774093e-01 -1.45267034e+00 3.05585265e-01
8.79478157e-01 7.27503225e-02 -6.39738083e-01 5.33816218e-01
8.70165110e-01 -8.90477657e-01 -1.22922480e+00 8.21572959e-01
1.33683100e-01 -7.72450030e-01 1.06127834e+00 -2.82175422e-01
3.01352769e-01 -1.72357887e-01 1.76406175e-01 -1.47555494e+00
-5.10628283e-01 1.99764799e-02 1.57967597e-01 6.66292191e-01
3.36350650e-01 -6.29466176e-01 8.46012473e-01 4.29680169e-01
-6.31520629e-01 -1.19985545e+00 -8.77160728e-01 -3.22700828e-01
3.38943481e-01 -2.40228381e-02 6.27561212e-01 9.54719305e-01
-2.93603748e-01 1.49710059e-01 1.74197465e-01 3.23210582e-02
7.47244000e-01 2.61203557e-01 2.98649669e-01 -1.28583443e+00
2.05554828e-01 -8.97315681e-01 -4.57795382e-01 -9.62760687e-01
1.47252828e-01 -1.40653169e+00 -9.26424265e-02 -1.89963794e+00
5.45735538e-01 -5.88883400e-01 -4.24445570e-01 6.30426466e-01
-6.09755106e-02 2.74130136e-01 2.09922060e-01 1.53172627e-01
-5.46601951e-01 5.92865109e-01 1.78691542e+00 -5.89932203e-01
-3.84472162e-01 4.46163639e-02 -2.62147516e-01 7.66088843e-01
7.05759346e-01 -2.27591753e-01 -1.49985150e-01 -3.98670852e-01
-7.31812954e-01 4.22197014e-01 2.68198490e-01 -9.86614883e-01
2.77865112e-01 1.76816732e-01 9.58761036e-01 -9.88645375e-01
-5.63364811e-02 -1.05621254e+00 -1.50326207e-01 9.44775701e-01
-2.25309640e-01 -2.30082870e-01 1.84545919e-01 1.62627339e-01
-1.38659477e-01 -1.15232661e-01 1.09807014e+00 -6.14053667e-01
-5.98398685e-01 1.01358140e+00 -3.54745477e-01 4.54596169e-02
1.49602330e+00 2.49828789e-02 4.13786955e-02 9.18686613e-02
-9.81505275e-01 5.40180504e-01 1.42297730e-01 1.59717232e-01
5.97340584e-01 -1.23116064e+00 -8.29649568e-01 2.39621684e-01
-8.93766508e-02 6.11944973e-01 4.15851891e-01 1.50662172e+00
-6.76566124e-01 6.77682459e-01 -2.34415323e-01 -1.18825984e+00
-1.01742208e+00 6.64257169e-01 9.64049995e-01 -8.57431591e-01
-1.04202294e+00 9.51775491e-01 7.08015442e-01 -4.34976727e-01
3.14273179e-01 -8.64612818e-01 -4.87594068e-01 8.49008095e-03
2.74173647e-01 -2.69824147e-01 1.01627484e-01 -7.69573987e-01
-3.51102859e-01 5.76382220e-01 -1.20996751e-01 5.58127582e-01
1.36636209e+00 3.42445523e-02 -2.31909260e-01 -1.56582370e-01
1.22723305e+00 -4.31825131e-01 -1.24965096e+00 -3.92070860e-01
1.90471575e-01 -1.35612935e-01 5.57397485e-01 -8.78789425e-01
-2.06276035e+00 7.96696246e-01 7.65875340e-01 8.27176198e-02
1.27790928e+00 2.86892146e-01 8.66360366e-01 -2.85892516e-01
1.83662713e-01 -4.87014323e-01 1.33177005e-02 5.19687593e-01
8.90898705e-01 -1.44949150e+00 -3.46047059e-02 -3.35859954e-01
-6.75707996e-01 1.10355914e+00 9.77513552e-01 -1.66749626e-01
8.48607421e-01 4.31335181e-01 -2.37490865e-03 -4.63903815e-01
-3.36939514e-01 -5.30230522e-01 4.81608480e-01 2.89370030e-01
5.56604743e-01 2.83814251e-01 -2.05409050e-01 7.24009871e-01
1.37617633e-01 4.20176722e-02 4.34547216e-01 5.98893225e-01
-4.58335876e-01 -6.38769388e-01 -3.40509981e-01 6.76388860e-01
-5.99048078e-01 -4.36698794e-02 -1.31259665e-01 1.27082121e+00
1.34089783e-01 2.06496760e-01 7.73445964e-02 9.37635303e-02
8.35799202e-02 6.60015852e-04 5.19633949e-01 -5.45942843e-01
-1.00062275e+00 3.38711828e-01 -4.94218886e-01 -4.62923646e-01
-3.07681590e-01 -4.14902925e-01 -1.58720684e+00 2.52169698e-01
-1.92219257e-01 1.95108876e-01 6.91515386e-01 7.46984303e-01
9.48164016e-02 1.05297196e+00 5.65799594e-01 -1.11406767e+00
-2.66844511e-01 -1.07219648e+00 -2.63097614e-01 3.48353565e-01
2.85616070e-01 -7.30047166e-01 -2.23384984e-02 -2.69820571e-01] | [14.599202156066895, -2.551504373550415] |
f53a637f-82ca-4ad9-8699-30666fb78115 | semantic-vad-low-latency-voice-activity | 2305.1245 | null | https://arxiv.org/abs/2305.12450v1 | https://arxiv.org/pdf/2305.12450v1.pdf | Semantic VAD: Low-Latency Voice Activity Detection for Speech Interaction | For speech interaction, voice activity detection (VAD) is often used as a front-end. However, traditional VAD algorithms usually need to wait for a continuous tail silence to reach a preset maximum duration before segmentation, resulting in a large latency that affects user experience. In this paper, we propose a novel semantic VAD for low-latency segmentation. Different from existing methods, a frame-level punctuation prediction task is added to the semantic VAD, and the artificial endpoint is included in the classification category in addition to the often-used speech presence and absence. To enhance the semantic information of the model, we also incorporate an automatic speech recognition (ASR) related semantic loss. Evaluations on an internal dataset show that the proposed method can reduce the average latency by 53.3% without significant deterioration of character error rate in the back-end ASR compared to the traditional VAD approach. | ['Li-Rong Dai', 'Jie Zhang', 'Shiliang Zhang', 'Qian Chen', 'Lingyun Zuo', 'Yuchun Shu', 'Mohan Shi'] | 2023-05-21 | null | null | null | null | ['activity-detection'] | ['computer-vision'] | [ 3.57233942e-01 -1.59728050e-01 1.53453082e-01 -4.21391964e-01
-8.36001039e-01 -5.82547486e-01 2.73936801e-02 2.36026451e-01
-4.86892104e-01 3.85399193e-01 9.41592678e-02 -6.95888996e-01
4.53325689e-01 -3.31969708e-01 -3.02393138e-01 -5.36742985e-01
5.40247917e-01 1.95065483e-01 7.35681891e-01 1.47005513e-01
7.48191029e-02 4.28032458e-01 -1.46402597e+00 2.88162053e-01
1.10540605e+00 1.16734552e+00 7.08132863e-01 7.38466859e-01
-6.44314051e-01 4.11390990e-01 -1.22681665e+00 1.29646286e-01
-4.37514707e-02 -5.98601937e-01 -5.40678203e-01 2.04811350e-01
-5.36291525e-02 -3.57952356e-01 -1.23277925e-01 9.16993856e-01
8.39072824e-01 3.23342174e-01 2.88857639e-01 -1.00393474e+00
3.47215503e-01 6.10238135e-01 -3.32356215e-01 2.56457061e-01
4.59628284e-01 1.35382608e-01 6.94859862e-01 -7.20538855e-01
2.98029453e-01 1.13310921e+00 4.61661428e-01 6.54354215e-01
-1.00186729e+00 -4.87234324e-01 2.49065250e-01 1.79469630e-01
-1.39304876e+00 -8.16676378e-01 8.86880279e-01 -8.37479085e-02
1.18210697e+00 5.52080691e-01 4.46134388e-01 7.80957639e-01
-2.58145005e-01 9.93129730e-01 7.84181356e-01 -5.32547355e-01
5.17286956e-01 -5.65203093e-03 2.80916512e-01 2.56544679e-01
-3.13972145e-01 -2.98899025e-01 -4.11948502e-01 1.59903355e-02
3.64303827e-01 -3.48415971e-01 -3.19791019e-01 3.76570851e-01
-6.33919120e-01 3.22328717e-01 -1.04871571e-01 3.36603373e-01
-3.77308965e-01 -2.34887257e-01 5.70297301e-01 -1.63223245e-03
5.49027145e-01 -3.99946906e-02 -4.96169627e-01 -7.76708782e-01
-1.24948859e+00 -1.86512783e-01 7.34845877e-01 8.68997514e-01
3.11169803e-01 3.76050979e-01 -3.93260360e-01 1.21832430e+00
3.25910568e-01 4.83937919e-01 4.71832246e-01 -7.83305287e-01
4.96285111e-01 3.76118630e-01 9.71510708e-02 -4.49035138e-01
-2.26023182e-01 -6.85297668e-01 -4.74758118e-01 1.38483062e-01
5.29523969e-01 -1.99226052e-01 -1.12695348e+00 1.51191258e+00
3.44738901e-01 3.36412936e-01 -3.06380745e-02 9.88838255e-01
4.59357500e-01 1.00023651e+00 2.57607475e-02 -7.22684264e-01
1.30685508e+00 -1.03463399e+00 -1.23297322e+00 -2.77915508e-01
5.72558939e-01 -1.14135826e+00 1.42825234e+00 6.27119720e-01
-1.17237258e+00 -5.21974266e-01 -1.06668651e+00 4.74773021e-03
4.40629246e-03 1.45339593e-01 -3.29321809e-02 1.01266050e+00
-9.09163356e-01 2.42632166e-01 -7.54185975e-01 -1.66956589e-01
-1.71982385e-02 2.54898548e-01 2.31428683e-01 2.10963011e-01
-9.99644876e-01 4.69192684e-01 4.50603291e-02 1.07150830e-01
-5.44537902e-01 -4.43193913e-01 -6.20876312e-01 1.73783004e-01
4.29244548e-01 -1.72714218e-01 1.63094878e+00 -1.11098981e+00
-2.01656079e+00 3.70190233e-01 -7.34980702e-01 -4.25670564e-01
6.15924120e-01 -3.93986344e-01 -6.06521726e-01 2.21577898e-01
-3.59236181e-01 3.35670590e-01 1.00018728e+00 -1.15165353e+00
-6.55307651e-01 -8.78541544e-02 -2.99042642e-01 5.18292308e-01
-3.17719132e-01 2.04927042e-01 -8.19242239e-01 -8.32589984e-01
1.84570298e-01 -8.50626528e-01 6.80938363e-02 -3.70380908e-01
-3.96778166e-01 -1.69260636e-01 1.23172295e+00 -1.10874188e+00
1.87094116e+00 -2.56013465e+00 -1.28996968e-01 2.15494871e-01
-1.34497717e-01 8.45867276e-01 1.02758043e-01 -3.93247348e-04
2.05183432e-01 4.12683710e-02 -3.20501834e-01 -6.26251817e-01
-1.68537989e-01 1.59881741e-01 -1.39279574e-01 4.88425083e-02
-1.40221074e-01 3.53322834e-01 -6.05545580e-01 -4.60401177e-01
5.21639645e-01 5.09590209e-01 -3.77072096e-01 4.52878684e-01
-2.55756587e-01 3.11511874e-01 -7.67704025e-02 4.44573998e-01
7.26377547e-01 4.62396771e-01 -2.55792234e-02 1.37203068e-01
-2.37794310e-01 8.80640924e-01 -1.20390713e+00 1.58390331e+00
-7.80108333e-01 5.34206808e-01 3.63932163e-01 -5.13171196e-01
8.55696142e-01 6.18447542e-01 1.83667839e-01 -7.24065542e-01
3.00041735e-01 3.35092902e-01 2.13476166e-01 -5.74709475e-02
5.27614594e-01 2.12796837e-01 1.76960602e-01 1.05529323e-01
-4.62645203e-01 -3.48519534e-02 -3.79322290e-01 -3.12261991e-02
1.12490511e+00 -1.22153275e-01 3.43301590e-03 1.11585349e-01
7.68354297e-01 -2.39252165e-01 7.36578524e-01 4.22894835e-01
-5.50948620e-01 7.93910623e-01 3.76285404e-01 2.67899990e-01
-9.01315808e-01 -1.09066594e+00 2.03019530e-01 7.89709628e-01
1.92450583e-01 -5.42410374e-01 -1.35170186e+00 -5.74232817e-01
-4.94934738e-01 1.11231041e+00 3.14670533e-01 -6.07014969e-02
-5.50840437e-01 -5.39599359e-02 7.33496249e-01 3.67563546e-01
4.57692057e-01 -1.13037932e+00 -2.75685012e-01 5.37635505e-01
-3.55945855e-01 -1.35071421e+00 -7.93950558e-01 1.24342181e-01
-8.51610184e-01 -3.75264913e-01 -6.56169534e-01 -7.78151691e-01
2.56782115e-01 3.83935153e-01 5.79331934e-01 1.95649676e-02
-2.36364119e-02 -1.05198231e-02 -6.87489212e-01 -1.17719263e-01
-8.01026583e-01 1.49298459e-01 4.99167712e-04 1.34083286e-01
3.31863523e-01 -3.36621970e-01 -5.98921061e-01 4.11698520e-01
-6.43709958e-01 4.23817672e-02 3.17526937e-01 5.73589325e-01
5.62920749e-01 1.04823306e-01 8.27573180e-01 -5.53129911e-01
6.01952732e-01 -1.12303309e-01 -4.71544117e-01 -7.29357004e-02
-5.87781787e-01 -1.71228394e-01 9.00896907e-01 -6.01167798e-01
-1.28713024e+00 1.85760245e-01 -8.50881457e-01 -4.28285688e-01
-3.82318705e-01 1.91965565e-01 -8.03620398e-01 3.52917224e-01
1.95301488e-01 2.86693335e-01 6.50491267e-02 -8.36738110e-01
1.10704370e-01 1.44240344e+00 3.64209205e-01 -6.97641447e-02
3.30588877e-01 -8.98669809e-02 -5.41963816e-01 -1.38733613e+00
-3.28632593e-01 -6.94302022e-01 -2.18064547e-01 -1.78424820e-01
6.65401459e-01 -7.52203286e-01 -4.72638071e-01 7.88199008e-01
-1.37268496e+00 -3.37007910e-01 -1.63346946e-01 5.25103509e-01
-3.59075814e-01 5.69696784e-01 -7.54168093e-01 -1.20900440e+00
-5.09646297e-01 -1.28705013e+00 8.34522247e-01 1.51669160e-01
-3.50995034e-01 -2.66390890e-01 -4.99351472e-01 5.43546081e-01
3.54066640e-01 -4.60290909e-01 7.19308257e-01 -8.12984467e-01
-2.48760998e-01 -6.93709552e-02 -5.08184060e-02 7.88997114e-01
2.55352587e-01 -2.42195074e-02 -1.19942689e+00 2.28659381e-04
1.36688545e-01 4.44763631e-01 5.76679766e-01 5.63228190e-01
1.12810922e+00 -1.49059489e-01 -2.04511791e-01 2.52774417e-01
9.23606277e-01 1.04441309e+00 7.79338479e-01 -1.57089040e-01
6.28136277e-01 3.87388647e-01 8.68239164e-01 5.19251525e-01
-1.02394149e-01 8.44498575e-01 6.41031936e-02 -1.03920840e-01
-4.40466136e-01 -6.08930811e-02 7.85236955e-01 1.22448766e+00
4.56456721e-01 -8.40245128e-01 -7.43099630e-01 3.88381451e-01
-1.61624348e+00 -7.08455920e-01 -3.37273031e-01 2.52534819e+00
9.47678864e-01 5.04298210e-01 2.00089961e-01 7.08908856e-01
1.12153661e+00 2.14458972e-01 -4.45157409e-01 -8.83623481e-01
-3.12375743e-02 2.49517739e-01 2.66721934e-01 9.36379611e-01
-7.10861027e-01 1.23186493e+00 5.56743670e+00 1.43437588e+00
-1.25308740e+00 3.38467628e-01 4.76817012e-01 -1.60561070e-01
-2.78004408e-01 -1.10153928e-01 -7.37321675e-01 6.96944714e-01
1.23273826e+00 2.40721107e-01 4.55857992e-01 7.74628878e-01
9.00384724e-01 -3.49229336e-01 -6.59340382e-01 1.11379850e+00
-1.98601559e-01 -5.96397877e-01 -1.06701128e-01 -1.37455031e-01
4.76526730e-02 -4.61601257e-01 -9.26934332e-02 7.32956007e-02
-4.57440317e-01 -5.94434619e-01 9.05938148e-01 1.18756384e-01
9.27110195e-01 -9.79950845e-01 6.15496635e-01 2.92783171e-01
-1.29522336e+00 1.87065899e-01 8.18393454e-02 -8.59561563e-02
4.97869968e-01 6.68840528e-01 -1.13598633e+00 1.35952637e-01
3.17109972e-01 1.24439616e-02 -1.97475582e-01 1.12806058e+00
-2.84913749e-01 1.24667704e+00 -6.00315332e-01 -1.55274108e-01
1.00543007e-01 -2.47413442e-02 1.00775135e+00 1.33784378e+00
2.78397918e-01 -1.29149132e-03 8.44083875e-02 2.81037867e-01
6.10866807e-02 3.62988651e-01 -4.65895161e-02 -9.84710753e-02
8.25119615e-01 8.89130890e-01 -8.51456583e-01 -3.48233283e-01
-3.02688628e-01 1.60395420e+00 -3.83585960e-01 4.08644676e-01
-1.10836256e+00 -7.75375962e-01 8.82118404e-01 1.25721231e-01
2.54270613e-01 -3.76118213e-01 -4.71713454e-01 -6.71477079e-01
2.70352125e-01 -6.98945999e-01 -5.92246875e-02 -6.48705006e-01
-6.78261220e-01 7.25258410e-01 -5.93191862e-01 -1.17881680e+00
-1.87292904e-01 -1.84423417e-01 -4.98105913e-01 9.79117036e-01
-1.29772401e+00 -5.91874063e-01 -1.85442314e-01 4.01020646e-01
1.12073660e+00 1.24225117e-01 5.82249105e-01 7.46948719e-01
-7.72533059e-01 9.40940797e-01 -3.02639008e-02 1.22657269e-02
6.87920690e-01 -1.03230166e+00 4.33063120e-01 1.09577179e+00
-1.81675758e-02 1.79268152e-01 9.56123173e-01 -7.45300770e-01
-8.76340628e-01 -9.46625531e-01 9.92107093e-01 1.68468744e-01
1.35395020e-01 -4.83150303e-01 -1.07083201e+00 3.23746264e-01
1.41451284e-01 -3.28743041e-01 5.70553839e-01 -2.97670543e-01
4.68817651e-02 -2.08779216e-01 -1.14944208e+00 6.91537678e-01
9.04049218e-01 -5.58084726e-01 -5.36918044e-01 -2.89057702e-01
1.33595312e+00 -3.56097728e-01 -1.97473377e-01 7.20308200e-02
3.81663978e-01 -8.21112633e-01 5.25321186e-01 4.63888282e-04
-2.99489886e-01 -6.51118219e-01 -2.28348821e-02 -1.17394567e+00
2.06128567e-01 -1.00436723e+00 -1.69552773e-01 1.75122571e+00
5.62000990e-01 -3.41539949e-01 7.27669358e-01 5.91728568e-01
-5.80771446e-01 -4.10453916e-01 -1.12993431e+00 -9.40082550e-01
-6.15578413e-01 -8.92632306e-01 3.74288410e-01 2.73212880e-01
-1.99633196e-01 4.87670571e-01 -2.36014798e-01 3.24258476e-01
1.45753637e-01 -4.48413402e-01 4.19528037e-01 -8.31906676e-01
-2.15352163e-01 -4.00411546e-01 -2.29155988e-01 -1.50015843e+00
-2.82971952e-02 -4.33365822e-01 4.59079236e-01 -1.39479208e+00
-5.51562846e-01 -4.63553756e-01 -3.73057395e-01 1.50257125e-01
-1.18899621e-01 -1.64280057e-01 2.04068333e-01 -2.18538746e-01
-4.30905730e-01 6.76982760e-01 8.55889916e-01 8.48360658e-02
-9.31477129e-01 5.31167448e-01 -1.59862265e-02 7.12823749e-01
9.63851690e-01 -4.38441634e-01 -6.14017487e-01 -1.65903047e-01
-4.02807772e-01 3.31041515e-01 -1.69307977e-01 -1.19564319e+00
1.77617222e-01 5.46634458e-02 -8.17122459e-02 -8.95503879e-01
6.42284572e-01 -9.25569296e-01 -2.17851289e-02 2.73447961e-01
-1.25083193e-01 -2.23817438e-01 3.70281518e-01 4.08275843e-01
-2.43027136e-01 -4.44064856e-01 7.70061374e-01 3.50680590e-01
-6.11330688e-01 -5.75482473e-02 -1.04465151e+00 -9.56975296e-02
9.18692410e-01 -4.82030809e-01 2.24718805e-02 -4.25755948e-01
-7.08414435e-01 -6.03472814e-02 3.28332752e-01 3.75047207e-01
6.54797435e-01 -7.97310889e-01 -1.82149708e-01 2.48502225e-01
-1.81962222e-01 5.07481992e-02 3.49417329e-01 8.45675468e-01
-5.95238328e-01 1.15007810e-01 3.23395967e-01 -5.11250496e-01
-1.64976478e+00 5.18005550e-01 2.76853085e-01 1.32154211e-01
-6.30924344e-01 6.99104786e-01 -2.26202339e-01 1.91814944e-01
7.62875915e-01 -4.94181514e-01 -5.75998127e-02 1.27662927e-01
5.06439388e-01 5.17028868e-01 2.31455863e-01 -5.97679257e-01
-4.16339606e-01 1.42220363e-01 1.19142354e-01 -6.44682169e-01
6.97103441e-01 -6.64613485e-01 1.64034739e-01 6.68668270e-01
1.10738969e+00 4.97939348e-01 -1.18925917e+00 -8.60687345e-02
1.66363806e-01 -2.67610282e-01 3.05436760e-01 -1.04649317e+00
-8.08203697e-01 1.18846917e+00 7.37271070e-01 1.49846941e-01
1.31959593e+00 -3.07050407e-01 1.62247241e+00 -6.06173202e-02
1.06593959e-01 -1.40062737e+00 -2.01093867e-01 6.45516455e-01
5.78996480e-01 -7.27041185e-01 -7.09991813e-01 -6.57149911e-01
-7.58481741e-01 9.38560307e-01 6.42211795e-01 3.75441164e-01
4.81195718e-01 5.05033016e-01 2.45916724e-01 6.44525230e-01
-4.19619918e-01 -3.49505305e-01 4.81027924e-02 4.18736696e-01
3.06523055e-01 7.23006576e-02 -5.76781750e-01 7.58439720e-01
-6.20634109e-02 -3.43027174e-01 4.34383631e-01 8.78084779e-01
-7.73136675e-01 -1.29991841e+00 -3.62484038e-01 1.81478038e-01
-6.62363350e-01 -3.18398029e-01 -3.56090784e-01 3.36163267e-02
-7.56309256e-02 1.52235782e+00 3.06888610e-01 -5.75425088e-01
4.84685957e-01 5.96976757e-01 2.49780845e-02 -6.93759263e-01
-7.81982660e-01 7.34929323e-01 2.55657703e-01 -5.29900491e-01
1.42666847e-01 -5.90681553e-01 -1.78872430e+00 -1.92643091e-01
-4.89496619e-01 2.01419219e-01 9.15805399e-01 9.00195003e-01
5.31571448e-01 8.34864557e-01 6.97951913e-01 -2.93744236e-01
-1.84816226e-01 -1.07475698e+00 -4.57161456e-01 1.04490623e-01
5.05752921e-01 -3.40400368e-01 -6.45441592e-01 -6.46349937e-02] | [14.687544822692871, 6.529976844787598] |
618d25b3-e5cb-4841-998e-562e8942fe0c | dynamic-mlp-for-mri-reconstruction | 2301.08868 | null | https://arxiv.org/abs/2301.08868v2 | https://arxiv.org/pdf/2301.08868v2.pdf | Computationally Efficient 3D MRI Reconstruction with Adaptive MLP | Compared with 2D MRI, 3D MRI provides superior volumetric spatial resolution and signal-to-noise ratio. However, it is more challenging to reconstruct 3D MRI images. Current methods are mainly based on convolutional neural networks (CNN) with small kernels, which are difficult to scale up to have sufficient fitting power for 3D MRI reconstruction due to the large image size and GPU memory constraint. Furthermore, MRI reconstruction is a deconvolution problem, which demands long-distance information that is difficult to capture by CNNs with small convolution kernels. The multi-layer perceptron (MLP) can model such long-distance information, but it requires a fixed input size. In this paper, we proposed Recon3DMLP, a hybrid of CNN modules with small kernels for low-frequency reconstruction and adaptive MLP (dMLP) modules with large kernels to boost the high-frequency reconstruction, for 3D MRI reconstruction. We further utilized the circular shift operation based on MRI physics such that dMLP accepts arbitrary image size and can extract global information from the entire FOV. We also propose a GPU memory efficient data fidelity module that can reduce $>$50$\%$ memory. We compared Recon3DMLP with other CNN-based models on a high-resolution (HR) 3D MRI dataset. Recon3DMLP improves HR 3D reconstruction and outperforms several existing CNN-based models under similar GPU memory consumption, which demonstrates that Recon3DMLP is a practical solution for HR 3D MRI reconstruction. | ['Chi Zhang', 'Eric Z. Chen', 'Shanhui Sun', 'Terrence Chen', 'Yikang Liu', 'Xiao Chen'] | 2023-01-21 | null | null | null | null | ['mri-reconstruction'] | ['computer-vision'] | [-8.06633160e-02 -1.51467845e-01 -2.33887248e-02 -1.95688367e-01
-6.52002692e-01 1.11469679e-01 -2.66559273e-02 7.80044720e-02
-6.10558093e-01 3.21702272e-01 2.40760222e-01 -3.36988658e-01
-2.28173956e-01 -1.04578698e+00 -7.76947021e-01 -8.46034110e-01
-2.38758087e-01 1.61956683e-01 5.32945991e-01 1.60242036e-01
-8.19372535e-02 9.17421043e-01 -1.08936381e+00 3.43760878e-01
6.17539048e-01 1.11739945e+00 7.64818132e-01 5.22731841e-01
1.03117544e-02 7.71410823e-01 -1.01198569e-01 2.10176766e-01
7.19137862e-02 -3.30525711e-02 -7.41137564e-01 -2.65709579e-01
-1.80893741e-03 -7.00163901e-01 -8.19092929e-01 8.33963394e-01
1.03932106e+00 -2.06974987e-03 3.97756994e-01 -4.88451600e-01
-6.32328629e-01 4.41123366e-01 -7.88944185e-01 7.26226807e-01
-1.06783576e-01 1.42938823e-01 -6.55333251e-02 -8.69876623e-01
3.65783274e-01 7.17147052e-01 1.04109073e+00 5.23938775e-01
-1.09483254e+00 -7.43304789e-01 -4.06925619e-01 8.55188668e-02
-1.34546483e+00 6.28824607e-02 6.44692719e-01 -4.05452996e-01
1.26846778e+00 3.53902429e-01 7.26129293e-01 7.32992947e-01
6.81699038e-01 4.08152729e-01 1.28689575e+00 -2.01830547e-02
-1.22477569e-01 -3.50404292e-01 1.01009548e-01 7.40701675e-01
-6.46354705e-02 1.58243001e-01 -1.77033871e-01 -1.12539224e-01
1.68738568e+00 4.22340721e-01 -6.65960431e-01 2.02590153e-01
-1.34631860e+00 7.12071419e-01 1.05758429e+00 4.32212412e-01
-4.44054961e-01 1.15909018e-01 4.88610893e-01 -1.59961939e-01
3.36426586e-01 1.46089256e-01 -1.44484460e-01 1.88511088e-01
-7.11770713e-01 -1.84647426e-01 1.88769042e-01 7.27687240e-01
4.10565883e-01 1.25213981e-01 -1.83617622e-01 1.03314185e+00
4.69414964e-02 4.91015226e-01 8.72009575e-01 -7.23669410e-01
1.48655325e-01 4.53215122e-01 -5.42682707e-01 -1.03650272e+00
-1.01738846e+00 -7.69111574e-01 -1.58662653e+00 3.66969444e-02
-1.12132162e-01 3.47055905e-02 -9.45794284e-01 1.20903528e+00
4.48738396e-01 1.96928248e-01 -2.22285584e-01 1.46430993e+00
1.49527478e+00 7.02906787e-01 3.26427892e-02 -2.88822770e-01
1.43420041e+00 -1.05030167e+00 -5.81186414e-01 -4.78669815e-02
7.00413704e-01 -6.02163672e-01 1.03485632e+00 1.59062698e-01
-1.12350523e+00 -5.27768373e-01 -9.49074924e-01 -2.15869337e-01
1.55479819e-01 1.97096288e-01 9.31346655e-01 4.55232888e-01
-1.00681412e+00 5.73197901e-01 -1.16141784e+00 2.31489033e-01
5.19823194e-01 4.84279215e-01 -4.96091455e-01 -2.98244923e-01
-1.00368798e+00 8.77868533e-01 3.75366896e-01 3.38539183e-01
-7.07945704e-01 -9.85478520e-01 -7.41387308e-01 -1.39997452e-01
-6.36635497e-02 -6.13224804e-01 9.86548781e-01 -3.75823379e-01
-1.41559100e+00 8.06378484e-01 1.91353753e-01 -2.63565868e-01
3.26609552e-01 3.12895030e-01 -5.30273259e-01 4.77636725e-01
-7.01610073e-02 5.90610325e-01 5.32430947e-01 -7.18375981e-01
1.21159041e-02 -3.91315699e-01 -1.44894838e-01 2.18207926e-01
-9.69752483e-03 9.49806869e-02 -4.03888792e-01 -7.01907992e-01
5.93652129e-01 -7.34442353e-01 -5.81277132e-01 5.12279570e-02
-6.28772303e-02 2.62349844e-01 4.94256198e-01 -8.42021585e-01
9.91739213e-01 -1.99962926e+00 -2.21227318e-01 8.19708686e-03
5.95359862e-01 1.95477813e-01 2.29435533e-01 -2.80465901e-01
-3.53042096e-01 -9.48693827e-02 -3.04202259e-01 6.90009072e-02
-7.04673111e-01 1.97348505e-01 1.90201879e-01 5.90994179e-01
-3.43686491e-02 9.73182976e-01 -6.40667260e-01 -5.35670757e-01
2.78159201e-01 8.63535583e-01 -6.69309258e-01 1.75476879e-01
4.75657701e-01 6.91356122e-01 -3.79272521e-01 5.49065232e-01
1.14917469e+00 -5.98989367e-01 -3.33975926e-02 -7.23875105e-01
-2.13115066e-01 -8.84373635e-02 -8.94439876e-01 1.92614174e+00
-5.93894780e-01 2.62976885e-01 9.17166248e-02 -1.20898664e+00
7.59233832e-01 3.68026644e-01 7.60559559e-01 -1.08335686e+00
2.77970433e-01 4.68068331e-01 -7.81041980e-02 -8.50294113e-01
1.29276454e-01 -5.73437214e-01 1.94851130e-01 3.17743301e-01
1.20713145e-01 -9.29119810e-03 -3.96039218e-01 -9.97298285e-02
1.21230769e+00 -1.54876411e-01 -1.28851220e-01 -4.15846735e-01
3.26510340e-01 -5.37140481e-02 5.20856202e-01 6.62756026e-01
-1.77028757e-02 1.03411520e+00 2.19431102e-01 -8.09894323e-01
-1.15713155e+00 -9.23517227e-01 -7.57515311e-01 3.24865878e-01
2.84481615e-01 1.64719038e-02 -6.50745273e-01 -3.91598463e-01
-2.51573443e-01 2.53018388e-03 -3.89812022e-01 -4.76621091e-02
-9.67164993e-01 -1.37976074e+00 5.77554345e-01 6.28156543e-01
7.22099304e-01 -8.72200012e-01 -7.12111771e-01 4.70965624e-01
-3.24551016e-01 -1.23401642e+00 -4.24565673e-01 2.90616900e-01
-1.33194292e+00 -8.96229327e-01 -9.70216691e-01 -9.63149846e-01
8.70521426e-01 4.06744450e-01 7.14836419e-01 2.01267108e-01
-6.06105387e-01 -1.40243560e-01 -9.97251123e-02 -4.98229936e-02
-1.81859866e-01 -3.65167409e-02 1.08711481e-01 -4.10703629e-01
-4.89164293e-02 -7.74000406e-01 -1.02634537e+00 2.09334299e-01
-1.12689519e+00 6.68008745e-01 9.28371787e-01 9.64296997e-01
1.05092740e+00 1.92511126e-01 4.46116835e-01 -6.61688864e-01
2.73574412e-01 -4.71466660e-01 -1.55666277e-01 3.66328247e-02
-3.20944279e-01 -7.58581087e-02 7.96707571e-01 -6.65970743e-01
-8.29498529e-01 -9.39860567e-02 -7.79415965e-01 -5.75420737e-01
-5.90594625e-03 5.20838261e-01 3.26162219e-01 -6.10955894e-01
6.56054854e-01 5.01183987e-01 2.31490523e-01 -5.72522759e-01
-2.81854361e-01 6.10807836e-01 4.96950269e-01 -3.22968304e-01
7.54191577e-02 5.93322814e-01 1.60110950e-01 -7.88427711e-01
-5.88785827e-01 -2.19349518e-01 -4.34376925e-01 -2.88356453e-01
9.97031033e-01 -1.16363001e+00 -8.92341435e-01 6.45156562e-01
-1.07665980e+00 -3.54277521e-01 -1.04783773e-01 1.13880861e+00
-3.73527497e-01 3.36171746e-01 -1.29776800e+00 -1.23210363e-01
-8.33342195e-01 -1.70273244e+00 8.55186999e-01 3.59272867e-01
3.50036174e-01 -7.72922158e-01 -3.40883225e-01 4.36857820e-01
8.42466712e-01 4.08369601e-01 9.46539700e-01 2.21202765e-02
-6.63287759e-01 -7.88328797e-02 -7.00764060e-01 3.41393590e-01
-2.38329768e-01 -8.01717222e-01 -7.55368531e-01 -3.23125899e-01
5.59483111e-01 -2.83340663e-01 6.87741399e-01 8.39489520e-01
1.90794337e+00 -1.13067716e-01 -1.46309882e-01 1.13338172e+00
1.62066913e+00 5.33317477e-02 8.13898027e-01 2.70107359e-01
8.10920000e-01 -8.22186396e-02 6.26500100e-02 2.57222354e-01
4.43773180e-01 5.26373446e-01 2.78047293e-01 -6.46272659e-01
-3.59077811e-01 -2.76470184e-03 -9.32745636e-02 1.63323402e+00
-3.38665515e-01 4.85985518e-01 -9.09390032e-01 3.27087194e-01
-1.52419388e+00 -4.65912282e-01 -3.75243634e-01 1.92522526e+00
9.00643945e-01 2.08326653e-02 -2.50323653e-01 -9.37996432e-02
5.24951041e-01 -1.08684391e-01 -5.55781960e-01 -2.07175806e-01
-1.33940324e-01 5.55451572e-01 8.99737954e-01 2.79271722e-01
-8.92863572e-01 1.57670006e-01 5.83697987e+00 1.18280900e+00
-1.61378849e+00 7.60972023e-01 6.83537126e-01 -3.32041889e-01
-2.72568971e-01 -2.69942373e-01 -5.45523882e-01 5.03838003e-01
6.14639819e-01 2.70416975e-01 2.04759032e-01 6.05319798e-01
1.56115070e-01 -1.99096173e-01 -5.25296271e-01 1.38601506e+00
6.09002188e-02 -1.67615044e+00 -6.23451248e-02 1.48285711e-02
4.09889162e-01 4.03405666e-01 -2.10950434e-01 1.06701404e-01
-3.63503098e-01 -1.37525141e+00 2.67263949e-01 5.77940345e-01
1.18849587e+00 -7.84991562e-01 7.87901700e-01 5.71866095e-01
-1.05412114e+00 1.72238484e-01 -6.94512844e-01 1.06923170e-01
1.56446233e-01 9.24815893e-01 -4.86578077e-01 6.79368258e-01
1.14872169e+00 4.28003043e-01 -2.05743685e-01 1.19456685e+00
1.03478089e-01 2.88260847e-01 -3.01580548e-01 1.17372155e-01
2.51981765e-01 -7.05838995e-03 3.41715127e-01 1.33857024e+00
4.40331638e-01 6.22503936e-01 2.34696984e-01 7.30398893e-01
-8.71615261e-02 6.38550371e-02 -3.07403296e-01 5.90187192e-01
2.32986286e-02 1.42892218e+00 -8.48542273e-01 -1.69630289e-01
-4.65322256e-01 7.73506224e-01 3.73087883e-01 1.14291117e-01
-9.74513113e-01 -3.94957483e-01 1.46532729e-01 4.62709963e-01
-1.14072165e-04 -4.47420865e-01 -2.92031556e-01 -1.25010383e+00
4.54527549e-02 -4.64073598e-01 2.67241299e-01 -1.01659632e+00
-1.12729573e+00 8.11231971e-01 -3.27876985e-01 -1.16633165e+00
5.04992902e-01 -5.66869736e-01 -2.10325465e-01 9.57137465e-01
-1.76185834e+00 -1.05701888e+00 -5.38356125e-01 6.34398878e-01
1.97452500e-01 3.47599745e-01 9.37011123e-01 7.76603162e-01
-4.45525914e-01 3.56683403e-01 -7.08427280e-03 2.31763110e-01
3.30615044e-01 -7.50017166e-01 -1.61538675e-01 3.92195225e-01
-6.57183230e-01 4.79895324e-01 -2.00418904e-02 -6.96389973e-01
-1.78163815e+00 -1.11347759e+00 4.04494107e-01 2.16189519e-01
3.67563576e-01 -1.19971685e-01 -1.13131821e+00 4.64897513e-01
-1.44812867e-01 7.14407325e-01 7.25764453e-01 -4.39386398e-01
8.01933929e-02 -8.77048373e-02 -1.43291283e+00 1.96441069e-01
1.10797215e+00 -5.27078629e-01 -3.50442708e-01 3.94567043e-01
9.21269357e-01 -1.15421474e+00 -1.59658384e+00 7.10512280e-01
4.18230087e-01 -8.07517171e-01 1.21809626e+00 -6.05769157e-02
5.75751305e-01 -3.15868020e-01 4.10569981e-02 -1.09897602e+00
-6.31367266e-01 1.15706392e-01 -8.43470395e-02 3.95298272e-01
1.15596972e-01 -6.99692965e-01 6.65850699e-01 4.89545375e-01
-6.38972878e-01 -1.10734546e+00 -1.33399487e+00 -6.19757473e-01
1.39542058e-01 -5.83480299e-01 5.32180130e-01 1.03532350e+00
-1.74830884e-01 -2.76040006e-02 -2.85680443e-01 3.65856647e-01
7.40407050e-01 1.68249890e-01 7.44484439e-02 -6.52453363e-01
-3.66136730e-01 -3.10659885e-01 -5.25821209e-01 -1.16409099e+00
-2.93911934e-01 -1.23879242e+00 -3.85686606e-01 -1.57658362e+00
5.54948688e-01 -9.27564502e-01 -1.58608884e-01 3.11754107e-01
1.84077308e-01 6.59078836e-01 -1.84757799e-01 3.35521400e-01
-2.65130997e-01 4.58837837e-01 2.01488757e+00 -7.53915384e-02
-6.02790480e-03 -2.85169780e-01 -4.30614203e-01 6.05319083e-01
4.88709211e-01 -4.79095548e-01 -2.31820010e-02 -9.25899267e-01
5.75455986e-02 6.52427554e-01 5.40576041e-01 -1.20347369e+00
5.89811325e-01 1.41978130e-01 9.49293017e-01 -5.87394536e-01
1.53761461e-01 -7.06206381e-01 5.82822800e-01 7.17021644e-01
5.64785376e-02 -1.85476169e-02 2.97498524e-01 6.83401898e-02
-2.30479017e-01 -1.26257941e-01 1.01085699e+00 -4.96678174e-01
-4.16195095e-01 8.67488205e-01 -3.06394309e-01 -2.59996891e-01
7.77009845e-01 -2.20463261e-01 -1.42137825e-01 2.88706422e-01
-9.32306707e-01 1.98638029e-02 1.44311175e-01 1.09166563e-01
1.06434083e+00 -1.63639474e+00 -5.83135366e-01 3.47646534e-01
-2.19654471e-01 5.09185612e-01 1.22054470e+00 1.35062683e+00
-1.15275168e+00 1.85621336e-01 -3.63007993e-01 -9.53751802e-01
-8.24331641e-01 4.67015594e-01 8.12810600e-01 -3.72909606e-01
-1.29359460e+00 7.56214619e-01 1.51717052e-01 -8.60195696e-01
-1.25270009e-01 -4.38489676e-01 -1.54578045e-01 -4.65292066e-01
7.42281914e-01 1.12005085e-01 4.90368843e-01 -5.36341131e-01
-3.57908070e-01 8.09189320e-01 1.48133021e-02 3.89137834e-01
1.68547857e+00 -7.09352642e-03 -2.18420818e-01 3.57681923e-02
1.48222792e+00 -3.63757491e-01 -1.08872581e+00 -4.12737489e-01
-6.64424241e-01 -4.76557225e-01 7.10523963e-01 -5.40057242e-01
-1.48066223e+00 9.41905022e-01 8.36940348e-01 -1.89299345e-01
1.35488153e+00 2.78051440e-02 1.31678331e+00 -1.53423011e-01
5.19069850e-01 -8.49872053e-01 -5.26976585e-02 3.81580561e-01
8.93384993e-01 -1.17701793e+00 1.89190313e-01 -4.31619167e-01
-3.76886010e-01 1.41612363e+00 6.48815811e-01 -2.57601380e-01
9.24625218e-01 5.43182075e-01 -2.51179546e-01 -4.49208379e-01
-1.94819108e-01 2.09928453e-01 2.26524144e-01 3.50735515e-01
3.55566144e-01 2.52826452e-01 -3.39680016e-01 8.49609256e-01
-5.46243833e-03 3.09301078e-01 4.55673724e-01 9.36383784e-01
-1.06438473e-01 -6.00894690e-01 -2.65042245e-01 7.46556222e-01
-6.12886667e-01 -1.15435332e-01 8.41333091e-01 5.53984463e-01
3.99608403e-01 3.02841455e-01 1.49904460e-01 -3.25439215e-01
3.77903461e-01 -5.92592776e-01 8.15596521e-01 -2.76721954e-01
-7.05689311e-01 2.60593504e-01 -3.23653668e-01 -5.96418440e-01
-3.11417252e-01 -1.23587288e-01 -1.65040624e+00 -5.49111664e-01
-1.69201076e-01 -2.50810444e-01 8.19013059e-01 8.05465341e-01
3.91799867e-01 8.50629985e-01 5.98707914e-01 -8.73265207e-01
-6.34343997e-02 -7.41376340e-01 -7.96367168e-01 9.06409547e-02
2.05489814e-01 -4.89928693e-01 -2.99445596e-02 -4.82778460e-01] | [13.591370582580566, -2.4545438289642334] |
16c96ab3-005b-424d-b0c7-08d2ab65de47 | synthetic-data-augmentation-using-gan-for-1 | 2212.09317 | null | https://arxiv.org/abs/2212.09317v1 | https://arxiv.org/pdf/2212.09317v1.pdf | Synthetic Data Augmentation Using GAN For Improved Automated Visual Inspection | Quality control is a crucial activity performed by manufacturing companies to ensure their products conform to the requirements and specifications. The introduction of artificial intelligence models enables to automate the visual quality inspection, speeding up the inspection process and ensuring all products are evaluated under the same criteria. In this research, we compare supervised and unsupervised defect detection techniques and explore data augmentation techniques to mitigate the data imbalance in the context of automated visual inspection. Furthermore, we use Generative Adversarial Networks for data augmentation to enhance the classifiers' discriminative performance. Our results show that state-of-the-art unsupervised defect detection does not match the performance of supervised models but can be used to reduce the labeling workload by more than 50%. Furthermore, the best classification performance was achieved considering GAN-based data generation with AUC ROC scores equal to or higher than 0,9898, even when increasing the dataset imbalance by leaving only 25\% of the images denoting defective products. We performed the research with real-world data provided by Philips Consumer Lifestyle BV. | ['Dunja Mladenić', 'Blaž Fortuna', 'Erik Koehorst', 'Spyros Theodoropoulos', 'Patrik Zajec', 'Jože M. Rožanec'] | 2022-12-19 | null | null | null | null | ['defect-detection'] | ['computer-vision'] | [ 4.44901735e-01 4.98480290e-01 1.99065119e-01 -4.29246247e-01
-2.71255255e-01 -3.96587312e-01 1.99898139e-01 5.67529678e-01
-9.97927114e-02 4.13448691e-01 -2.82483369e-01 1.88264437e-03
-2.10628688e-01 -9.36652362e-01 -5.64054608e-01 -6.00851238e-01
2.41336510e-01 4.44835454e-01 -6.35613501e-02 -3.60524608e-03
2.54384726e-01 6.32559121e-01 -1.93547916e+00 4.30571705e-01
1.25724685e+00 1.10155904e+00 1.78023484e-02 5.35004616e-01
2.35400326e-03 6.51237667e-01 -1.01545680e+00 -3.07539970e-01
3.49128872e-01 -4.00166631e-01 -5.95797181e-01 7.80044198e-01
1.27915189e-01 -7.45160729e-02 3.39989126e-01 1.21186483e+00
1.95973277e-01 -2.61891842e-01 6.80179477e-01 -1.36445403e+00
-7.17787445e-01 9.52678770e-02 -4.36876386e-01 -1.88269198e-01
2.59118170e-01 3.88282180e-01 8.04890275e-01 -3.72975856e-01
4.94681537e-01 8.00725579e-01 3.66717190e-01 2.82623500e-01
-1.38272822e+00 -1.70391589e-01 -1.83284029e-01 5.04948981e-02
-1.08959162e+00 7.87072722e-03 9.27613914e-01 -6.30905688e-01
7.81842053e-01 2.23122984e-01 7.91289151e-01 5.21847188e-01
2.80237257e-01 4.80703443e-01 1.13043296e+00 -8.66879225e-01
3.58238339e-01 4.04844284e-01 2.01833081e-02 7.88406968e-01
5.16170561e-01 2.21675076e-02 -6.96696118e-02 1.65348887e-01
5.04289925e-01 -1.26891047e-01 7.35707879e-02 -3.58650386e-01
-6.74659669e-01 9.70995665e-01 2.66333610e-01 6.40160918e-01
-6.01923585e-01 -2.84203768e-01 4.85360414e-01 3.72759759e-01
5.15466154e-01 9.25809264e-01 -4.00893003e-01 1.88575268e-01
-7.62044311e-01 -1.82261586e-01 3.38239640e-01 8.52706790e-01
7.70163119e-01 3.65555763e-01 -1.03954405e-01 7.38542497e-01
2.71883190e-01 3.69854152e-01 1.78615436e-01 -9.55021679e-01
1.95452005e-01 1.27569222e+00 7.47706965e-02 -9.42339361e-01
-1.81646183e-01 -5.32551944e-01 -8.06369305e-01 6.09411299e-01
2.33876452e-01 1.53258499e-02 -1.27905869e+00 1.02604246e+00
2.97610578e-03 -6.77815974e-01 2.67199818e-02 5.37911117e-01
2.74689823e-01 5.63787937e-01 1.66553900e-01 -2.16849387e-01
1.27006257e+00 -6.40949845e-01 -9.69176710e-01 -1.09814301e-01
6.72706842e-01 -7.81884313e-01 1.20352471e+00 9.74769711e-01
-9.91074443e-01 -1.13386261e+00 -1.46205711e+00 4.60936844e-01
-2.96934038e-01 5.56944489e-01 6.10952675e-01 1.19827163e+00
-7.53232479e-01 4.63183045e-01 -7.82271147e-01 -1.54287472e-01
6.16204083e-01 4.02192712e-01 -5.26817381e-01 -3.62696350e-01
-6.70604706e-01 6.69052839e-01 3.26163650e-01 2.04090029e-01
-9.44924116e-01 -5.24804294e-01 -7.98606932e-01 -1.02244504e-01
9.91022065e-02 -2.33565614e-01 7.06050217e-01 -1.12902820e+00
-1.11178792e+00 8.45029533e-01 3.65177721e-01 -5.03081024e-01
4.03016686e-01 -2.79878616e-01 -6.35298193e-01 1.70164496e-01
1.16716750e-01 5.02313435e-01 6.74394250e-01 -1.52821255e+00
-7.47844994e-01 -3.79699379e-01 -4.38125953e-02 -4.23030496e-01
-2.92006880e-01 -1.58067957e-01 -1.54797062e-01 -2.83650964e-01
1.36560444e-02 -7.83613265e-01 -2.57603854e-01 -2.10137531e-01
-4.61762220e-01 7.32943565e-02 7.96299934e-01 -9.37392831e-01
8.71369004e-01 -2.22427773e+00 -2.11049631e-01 4.83748823e-01
-1.03817448e-01 4.85040456e-01 6.53315783e-02 2.64709055e-01
-6.04105517e-02 1.18391976e-01 -5.00318706e-01 -2.15324014e-01
-1.21948067e-02 2.44335383e-01 2.86235005e-01 5.01249433e-01
6.08013034e-01 5.56218266e-01 -5.99211395e-01 -2.87305534e-01
5.20581484e-01 1.97068304e-01 -4.66947079e-01 3.81959647e-01
-2.18590707e-01 5.63234866e-01 -1.30860433e-01 7.83293843e-01
6.05503023e-01 7.53139183e-02 1.74062252e-01 -3.24973434e-01
2.13444278e-01 -3.42965782e-01 -1.13875210e+00 1.50948358e+00
-5.12449801e-01 4.33102041e-01 -9.27363709e-02 -1.10729039e+00
1.45421839e+00 3.45357686e-01 4.74504679e-01 -1.05742788e+00
1.83751285e-01 1.45567432e-01 1.50852367e-01 -6.20041788e-01
3.09162557e-01 -6.78210482e-02 5.69835790e-02 5.02040461e-02
1.49646729e-01 -3.29413593e-01 4.62651879e-01 -2.97205895e-01
7.97628045e-01 9.25801601e-03 -1.97294466e-02 -1.63751781e-01
4.92485374e-01 1.93175510e-01 5.23369968e-01 2.99975634e-01
1.02217346e-01 5.47731221e-01 4.75311100e-01 -1.80981636e-01
-1.31505072e+00 -8.44229817e-01 6.62752939e-03 2.48818740e-01
-1.96343020e-01 2.32102126e-01 -9.55618501e-01 -8.53968024e-01
-9.76143032e-03 8.28135967e-01 -6.93283439e-01 -4.89066899e-01
-3.84965539e-02 -7.45744586e-01 2.29230404e-01 4.56952721e-01
5.57798564e-01 -1.21068478e+00 -7.96868145e-01 1.48716897e-01
1.98539257e-01 -9.99382496e-01 1.03736438e-01 3.16690087e-01
-8.79063249e-01 -1.36476278e+00 -3.96255136e-01 -7.33655989e-01
1.22521615e+00 -3.82920831e-01 1.07121944e+00 1.70234591e-01
-7.97312081e-01 1.08885184e-01 -7.35127807e-01 -5.81226110e-01
-1.04574370e+00 -7.03688711e-02 -2.73091555e-01 1.04713105e-01
2.66689569e-01 -9.38708633e-02 -4.60978895e-01 3.05730641e-01
-1.17655683e+00 -3.26757580e-01 7.05684245e-01 7.04328418e-01
5.81776440e-01 8.40042174e-01 7.93315887e-01 -1.00839376e+00
5.64318538e-01 -2.49676406e-02 -6.87150955e-01 1.81937501e-01
-1.06411791e+00 9.10987705e-02 5.48211873e-01 -2.34702215e-01
-1.17647755e+00 2.27535859e-01 -2.39508763e-01 -2.33167216e-01
-5.66697180e-01 3.10563803e-01 -5.23635924e-01 4.67522144e-02
6.19747937e-01 -1.95921630e-01 2.63931692e-01 -4.49611008e-01
1.68611765e-01 6.32185996e-01 3.21016490e-01 -4.18379940e-02
6.63410187e-01 4.66525227e-01 4.11981456e-02 -6.67545199e-01
-5.56502938e-01 -3.48121971e-01 -7.69850791e-01 -3.98440689e-01
1.07240248e+00 -4.14123178e-01 -5.26961327e-01 5.16879737e-01
-8.05273414e-01 -4.63040220e-03 -8.16399395e-01 3.66281271e-01
-3.81913632e-01 4.41891193e-01 -3.92845631e-01 -1.09882545e+00
-4.73420233e-01 -1.14088202e+00 7.14796245e-01 1.60649672e-01
-1.29672572e-01 -7.33615935e-01 -1.93918049e-01 5.96490264e-01
1.63948312e-01 6.73714101e-01 1.15971017e+00 -5.76968610e-01
-2.44192436e-01 -6.92915261e-01 9.14358720e-02 1.25094497e+00
6.14361286e-01 2.58802384e-01 -8.25059593e-01 -2.35328168e-01
9.32141542e-02 -6.45545423e-02 4.24152195e-01 3.03997099e-01
7.16255844e-01 -5.70801347e-02 1.22412741e-01 4.32163142e-02
1.66295826e+00 8.56806517e-01 1.04756856e+00 1.88354507e-01
5.31441987e-01 1.07808948e+00 1.31670594e+00 4.01558548e-01
-2.60846347e-01 4.52286869e-01 7.76352763e-01 -4.89094496e-01
-1.38344333e-01 -1.40050933e-01 -6.28900528e-02 5.58514535e-01
1.27517462e-01 -2.80378878e-01 -7.39080131e-01 7.95558333e-01
-1.36599135e+00 -5.29494584e-01 -5.65451145e-01 2.20099902e+00
4.87480193e-01 5.93771279e-01 3.75538431e-02 1.01057506e+00
6.27324462e-01 -4.70858306e-01 -1.63558811e-01 -7.18332827e-01
1.43941984e-01 3.91245395e-01 4.67494994e-01 2.11389750e-01
-8.95564079e-01 4.74358320e-01 6.12762642e+00 4.36986238e-01
-7.00274050e-01 2.49634758e-02 7.41455495e-01 3.49899709e-01
-1.22947700e-01 -1.94186360e-01 -1.80803329e-01 4.92487460e-01
8.67803276e-01 5.13524354e-01 7.03923553e-02 8.21384013e-01
3.07182044e-01 -3.76834542e-01 -8.40850234e-01 4.77384388e-01
1.70883924e-01 -9.25940931e-01 -1.44353166e-01 3.19334477e-01
9.59579408e-01 -6.00344718e-01 -9.60172713e-02 -1.61204755e-01
1.67973742e-01 -9.64514732e-01 5.41635036e-01 7.31257200e-01
6.40791953e-01 -1.17148483e+00 1.26118755e+00 9.71827060e-02
-7.40797937e-01 -3.00830007e-01 -2.64604509e-01 2.60414630e-01
2.10847765e-01 9.21061456e-01 -9.74424064e-01 7.58740187e-01
5.95965326e-01 1.45146266e-01 -7.95703411e-01 1.03587747e+00
-3.13778609e-01 5.43198764e-01 3.10794972e-02 2.64915675e-01
-8.46773684e-02 -2.92969465e-01 2.46843100e-02 7.83805013e-01
2.36450121e-01 -5.10310709e-01 -7.19566271e-02 9.35315549e-01
3.00748050e-01 1.03365399e-01 -5.25299788e-01 -1.98688745e-01
-7.56814629e-02 9.64397609e-01 -8.25540662e-01 -1.31979510e-02
-3.20169747e-01 9.92628872e-01 -3.61829519e-01 -4.35676612e-02
-7.86042511e-01 -6.31956398e-01 2.39192650e-01 4.08224851e-01
2.75731683e-01 -1.68743525e-02 -3.82912755e-01 -3.04525316e-01
1.87477127e-01 -9.15011227e-01 -1.23791741e-02 -7.16846585e-01
-1.20816505e+00 6.61881030e-01 -1.70175985e-01 -1.43544924e+00
-1.82168558e-01 -6.89779878e-01 -2.69043475e-01 6.13632381e-01
-1.21029019e+00 -1.15814435e+00 -4.99681622e-01 1.27499312e-01
4.68231231e-01 -2.96110868e-01 6.87826216e-01 4.45325077e-01
-3.74120951e-01 3.92526180e-01 -7.68469125e-02 7.87344109e-03
2.66667843e-01 -1.26190364e+00 1.83114901e-01 1.04594100e+00
9.98036861e-02 -1.21666514e-03 8.95439029e-01 -7.85237372e-01
-1.01210403e+00 -1.03079283e+00 5.40598512e-01 -7.96856582e-02
2.00625032e-01 -1.18495032e-01 -9.05395210e-01 1.61660239e-01
2.87163287e-01 -1.39067218e-01 6.74834311e-01 -3.38803470e-01
1.75853241e-02 -3.52136165e-01 -1.72286570e+00 3.51554947e-03
4.06841934e-01 -2.95498401e-01 -3.64475369e-01 2.41296068e-01
4.59645480e-01 6.28406182e-02 -1.29481828e+00 5.71279466e-01
1.11063682e-01 -1.01390362e+00 5.41623533e-01 -4.18964505e-01
5.17701030e-01 -4.89807427e-01 1.58599671e-02 -1.22632480e+00
-5.86469807e-02 6.64242506e-02 2.07829654e-01 1.61586380e+00
5.13512850e-01 -3.77610177e-01 9.14632797e-01 3.39010090e-01
-2.47252822e-01 -4.45869863e-01 -5.80454588e-01 -6.70109391e-01
-5.35183191e-01 -3.72656524e-01 5.47240078e-01 7.06021070e-01
-2.93750376e-01 -8.77728909e-02 -1.75387532e-01 3.73918682e-01
5.71895123e-01 -2.29544699e-01 5.91480494e-01 -1.32126319e+00
-3.58044058e-01 1.11818381e-01 -8.10762644e-01 -1.13847278e-01
-1.74853161e-01 -5.38619399e-01 1.02212712e-01 -1.87802970e+00
-1.56485692e-01 -3.56065482e-01 -2.47197822e-01 4.98125166e-01
1.87744066e-01 4.84251291e-01 1.56773195e-01 -1.89041466e-01
-1.75933205e-02 3.29933196e-01 1.27969420e+00 -4.92036015e-01
-1.37345701e-01 2.02596858e-01 -6.04444027e-01 4.18501556e-01
8.89111280e-01 -3.78361374e-01 -6.38818204e-01 -2.27903783e-01
1.90656185e-01 -2.54786521e-01 2.71128297e-01 -1.24687099e+00
-3.32572460e-01 2.02456072e-01 4.34928566e-01 -4.34541881e-01
-1.51655469e-02 -1.37718511e+00 4.97757912e-01 7.58648157e-01
-1.56834021e-01 -6.67045936e-02 1.89376459e-01 4.02817369e-01
-4.40974921e-01 -6.69001222e-01 8.19671273e-01 5.34677692e-02
-4.05510515e-01 -2.18063682e-01 -3.56011063e-01 -4.47703689e-01
1.30719674e+00 -4.94155675e-01 -1.25089169e-01 -5.92051335e-02
-9.06363428e-01 -1.38930723e-01 5.66832602e-01 4.16807860e-01
5.17525792e-01 -1.06313252e+00 -6.01417303e-01 5.31810343e-01
3.99076372e-01 -2.73523051e-02 3.43572110e-01 4.02595043e-01
-8.53624046e-01 2.66175240e-01 -4.59467232e-01 -6.56777978e-01
-1.28985918e+00 7.95025051e-01 1.22479826e-01 -4.01920408e-01
-2.92816043e-01 4.46218640e-01 -3.26543957e-01 -1.45993873e-01
4.85092215e-02 -4.35794801e-01 -3.55254948e-01 -4.73808646e-02
1.59505144e-01 5.85901260e-01 6.93563163e-01 -3.32935572e-01
-8.79716426e-02 3.01418424e-01 1.13804549e-01 1.81121528e-01
1.28079903e+00 1.29723281e-01 5.21638319e-02 2.82647222e-01
9.22092259e-01 6.78074509e-02 -1.30166316e+00 4.37794894e-01
1.27117917e-01 -4.84297752e-01 -1.56565681e-02 -1.16190886e+00
-1.52902234e+00 7.76543319e-01 1.21251464e+00 7.01885402e-01
1.54030406e+00 -2.18718648e-01 2.81410396e-01 -1.37775108e-01
5.14895916e-01 -1.31829417e+00 1.42987341e-01 -3.39190453e-01
7.17533171e-01 -1.21477246e+00 5.09612449e-02 -6.91032588e-01
-1.03684509e+00 7.39442348e-01 4.98815328e-01 -1.67334437e-01
2.79061854e-01 2.59808958e-01 1.14421174e-01 -3.86353552e-01
-2.19952181e-01 -1.71100587e-01 2.95018643e-01 1.02769911e+00
2.93750137e-01 3.76230069e-02 -2.89926350e-01 3.87115031e-01
1.74718052e-01 -1.49500472e-02 3.86007398e-01 1.08736062e+00
-3.25249910e-01 -1.25843585e+00 -3.84554267e-01 6.02864981e-01
-5.62056959e-01 3.48562539e-01 -1.94656581e-01 9.21988964e-01
6.29422009e-01 1.38335824e+00 1.80060267e-01 -4.26185429e-01
7.91877210e-01 2.40677949e-02 4.23453927e-01 -6.76606655e-01
-7.44551122e-01 1.88915676e-03 1.65992215e-01 -2.27579847e-01
-5.60189545e-01 -6.05591953e-01 -1.13052726e+00 1.56100675e-01
-5.41795611e-01 2.00071529e-01 1.00169981e+00 8.88023138e-01
2.53835291e-01 1.09356844e+00 9.84320521e-01 -2.90800124e-01
-2.52716690e-01 -1.16330492e+00 -8.23498309e-01 5.64679265e-01
7.79173523e-02 -5.45691431e-01 -3.15382838e-01 4.29103583e-01] | [7.355600833892822, 1.9559049606323242] |
9b8d4181-0eee-4ace-8b1b-547adb12a24e | greenkgc-a-lightweight-knowledge-graph | 2208.09137 | null | https://arxiv.org/abs/2208.09137v1 | https://arxiv.org/pdf/2208.09137v1.pdf | GreenKGC: A Lightweight Knowledge Graph Completion Method | Knowledge graph completion (KGC) aims to discover missing relationships between entities in knowledge graphs (KGs). Most prior KGC work focuses on learning representations for entities and relations. Yet, a higher-dimensional embedding space is usually required for a better reasoning capability, which leads to a larger model size and hinders applicability to real-world problems (e.g., large-scale KGs or mobile/edge computing). A lightweight modularized KGC solution, called GreenKGC, is proposed in this work to address this issue. GreenKGC consists of three modules: 1) representation learning, 2) feature pruning, and 3) decision learning. In Module 1, we leverage existing KG embedding models to learn high-dimensional representations for entities and relations. In Module 2, the KG is partitioned into several relation groups followed by a feature pruning process to find the most discriminant features for each relation group. Finally, a classifier is assigned to each relation group to cope with low-dimensional triple features for KGC tasks in Module 3. We evaluate the performance of GreenKGC on four widely used link prediction datasets and observe that GreenKGC can achieve comparable or even better performance against original high-dimensional embeddings with a much smaller model size. Furthermore, we experiment on two triple classification datasets to demonstrate that the same methodology can generalize to more tasks. | ['C. -C. Jay Kuo', 'Bin Wang', 'Xiou Ge', 'Yun-Cheng Wang'] | 2022-08-19 | null | null | null | null | ['triple-classification'] | ['graphs'] | [-1.72290921e-01 3.98731083e-01 -5.35611749e-01 -7.76917636e-02
-3.08329195e-01 -2.66894370e-01 3.65044564e-01 6.71417773e-01
-7.76639357e-02 4.91258889e-01 1.57290995e-01 -4.63865370e-01
-5.92762828e-01 -1.24495435e+00 -4.64810669e-01 -5.27642787e-01
-5.29555857e-01 4.49825257e-01 1.84507638e-01 -1.81448609e-01
-1.46283954e-01 3.68015528e-01 -1.33483803e+00 1.50943130e-01
1.04365849e+00 1.02222073e+00 -1.06032319e-01 2.46394724e-01
-1.83228403e-01 7.28026927e-01 -1.06471471e-01 -7.95310795e-01
2.04425603e-01 2.07304712e-02 -1.02311313e+00 -2.21214712e-01
-1.08810877e-02 6.66646883e-02 -4.72327620e-01 9.11535561e-01
2.22368315e-01 1.71129107e-01 7.86313772e-01 -1.53473771e+00
-6.65102243e-01 7.93238401e-01 -4.09143001e-01 -9.38871056e-02
3.77273202e-01 -3.94675702e-01 1.44028473e+00 -1.03038526e+00
5.85936189e-01 1.14896905e+00 7.19462037e-01 2.41649941e-01
-1.20049083e+00 -4.99233037e-01 1.37143552e-01 5.02230585e-01
-1.56712425e+00 -7.63092041e-02 7.19446301e-01 -3.62362057e-01
9.98878419e-01 1.65280819e-01 6.76464260e-01 7.10392058e-01
-6.57604933e-02 6.02193236e-01 5.98998547e-01 -5.32047033e-01
2.83485740e-01 2.30564505e-01 3.73422444e-01 8.70251298e-01
7.74905205e-01 -3.17338914e-01 -4.79961306e-01 -3.59267175e-01
3.58508289e-01 3.02439816e-02 -3.37624460e-01 -7.59067595e-01
-1.05624032e+00 9.96902108e-01 6.99798167e-01 1.40372813e-01
-3.79366755e-01 4.91000675e-02 4.22234297e-01 3.87155741e-01
4.93561119e-01 4.37160999e-01 -6.01656199e-01 8.99916068e-02
-2.78528035e-01 2.17272788e-01 1.10240412e+00 1.03412426e+00
9.15621996e-01 -1.98461041e-01 7.28359148e-02 8.80533695e-01
3.77145708e-01 3.98907363e-02 2.90049702e-01 -4.89100546e-01
9.12284136e-01 1.19768012e+00 -1.85968608e-01 -1.61863422e+00
-5.19153476e-01 -5.51213443e-01 -8.93462598e-01 -3.27336729e-01
-6.11600978e-03 7.16114342e-02 -4.92121726e-01 1.62340367e+00
6.31606400e-01 1.54711992e-01 3.32065731e-01 6.91962779e-01
8.69930804e-01 3.14629227e-01 4.84164357e-02 8.24290663e-02
1.46789217e+00 -8.56894374e-01 -5.24550140e-01 -7.73268379e-03
1.21742904e+00 -2.19568133e-01 6.55465543e-01 -8.62635002e-02
-6.16277516e-01 -1.64554700e-01 -1.06803644e+00 -1.76990613e-01
-9.39932287e-01 1.99562773e-01 1.18724918e+00 5.85178256e-01
-7.87343502e-01 5.06215870e-01 -7.20118761e-01 -4.57990885e-01
4.50957358e-01 3.40999961e-01 -6.73721075e-01 -4.86000121e-01
-1.51474428e+00 8.14304650e-01 8.89839709e-01 1.10405967e-01
-1.75861284e-01 -8.22083354e-01 -1.29030824e+00 3.39899093e-01
6.62490070e-01 -7.06183255e-01 4.17153180e-01 -9.99097303e-02
-9.00874496e-01 5.36254764e-01 4.22421470e-02 -5.09457767e-01
6.77925199e-02 -1.26533419e-01 -7.01397777e-01 2.25784406e-02
9.32995752e-02 4.00345355e-01 6.48686051e-01 -1.10337579e+00
-5.87068677e-01 -6.34195685e-01 3.34169447e-01 1.72144115e-01
-6.88251555e-01 -5.32577932e-01 -6.92255974e-01 -6.66111827e-01
4.27685827e-01 -1.01790941e+00 2.20397245e-02 -3.44212174e-01
-4.76694584e-01 -4.83238429e-01 7.25577891e-01 -5.73679328e-01
1.53462720e+00 -2.00783205e+00 4.40236568e-01 4.80727375e-01
5.53954065e-01 2.84884781e-01 -1.01044461e-01 6.21023476e-01
-2.15630859e-01 1.06551826e-01 8.78905281e-02 -3.15072745e-01
-1.05992043e-02 3.58581930e-01 -1.82683337e-02 2.55778551e-01
3.13701600e-01 1.11943579e+00 -9.05176759e-01 -4.72704589e-01
-6.40305579e-02 3.11362714e-01 -6.34333730e-01 -2.61423945e-01
4.49889526e-02 -2.86241472e-01 -5.82756639e-01 9.61379230e-01
6.33450389e-01 -5.48223317e-01 6.97585404e-01 -4.53389972e-01
2.64759958e-01 1.45557761e-01 -1.30653143e+00 1.44040930e+00
-4.22767758e-01 3.04017514e-01 -2.55656600e-01 -1.39034259e+00
9.67563510e-01 2.46720523e-01 5.30851901e-01 -4.17955995e-01
3.43284593e-03 2.12029219e-01 1.93789136e-02 -3.72625768e-01
6.10062301e-01 2.31348738e-01 -1.04837142e-01 2.64697999e-01
1.09936446e-01 4.13282931e-01 2.88419694e-01 6.74980223e-01
1.25603819e+00 -2.44707063e-01 4.65374231e-01 -1.52562082e-01
5.67269087e-01 -4.53274287e-02 8.48200321e-01 3.44662398e-01
2.41775867e-02 1.94310024e-02 7.36532748e-01 -5.41564822e-01
-4.62220460e-01 -7.81936646e-01 4.91138175e-02 7.60485172e-01
3.19402575e-01 -1.07905698e+00 -2.65448421e-01 -1.07987297e+00
6.79561079e-01 4.69689310e-01 -7.62833655e-01 -5.97400308e-01
-1.56528264e-01 -7.59197176e-01 4.12490517e-01 6.36090100e-01
3.09700340e-01 -7.57580161e-01 -1.69877410e-01 9.07950923e-02
-7.82000422e-02 -1.25378573e+00 -1.66670635e-01 2.48382926e-01
-8.22657347e-01 -1.50989139e+00 -1.21074945e-01 -8.43947232e-01
7.57672191e-01 4.35826033e-01 8.89305413e-01 1.87066823e-01
-2.69770205e-01 5.15900731e-01 -6.91191554e-01 -7.77232870e-02
2.06018006e-03 4.70116496e-01 2.90455282e-01 7.14956149e-02
4.53380615e-01 -7.05461383e-01 -4.78991866e-01 2.41310015e-01
-7.57666826e-01 6.84077740e-02 7.95916438e-01 8.45435500e-01
4.36272085e-01 5.86833894e-01 7.68326938e-01 -1.11776054e+00
6.23737156e-01 -7.66623795e-01 -4.32935059e-01 5.24260640e-01
-1.02931738e+00 1.84158519e-01 5.53367317e-01 -3.51322651e-01
-6.60059392e-01 -1.86333701e-01 3.33830744e-01 -3.83375883e-01
3.64125550e-01 1.14225137e+00 -3.83534402e-01 -8.87125283e-02
4.20863539e-01 -3.74327949e-03 -1.33281514e-01 -4.57686990e-01
5.47958910e-01 4.19446915e-01 2.47785717e-01 -5.63388228e-01
1.17860413e+00 1.72279894e-01 2.55882084e-01 -6.00593507e-01
-7.74598837e-01 -5.28296828e-01 -6.65852726e-01 1.86888009e-01
6.31213844e-01 -1.03365052e+00 -7.70458102e-01 -2.97247302e-02
-8.32201779e-01 -9.76311881e-03 -1.51890516e-01 7.04336584e-01
-9.69829559e-02 1.87272042e-01 -5.64777732e-01 -6.10693634e-01
-3.08064163e-01 -6.43875480e-01 7.20566332e-01 9.47998762e-02
-4.61203698e-03 -1.19718981e+00 -4.01073657e-02 5.77166319e-01
1.28747508e-01 1.46955878e-01 1.49746656e+00 -8.24204922e-01
-5.43173134e-01 -4.67592448e-01 -4.10396814e-01 1.79079592e-01
2.34278351e-01 -4.43188220e-01 -5.10164976e-01 -3.18135977e-01
-6.99831307e-01 -3.15801471e-01 9.65783536e-01 -2.67341286e-01
1.01545691e+00 -2.32351556e-01 -7.09761739e-01 6.43101394e-01
1.39390349e+00 6.51502796e-03 5.59903741e-01 3.57263148e-01
1.02278090e+00 5.50969839e-01 6.95851624e-01 3.03414732e-01
7.94816494e-01 7.63286054e-01 3.17075044e-01 1.59998253e-01
4.75819223e-02 -5.35071313e-01 1.32300973e-01 9.38532710e-01
-1.26661777e-01 -1.79468900e-01 -9.67924118e-01 6.27636671e-01
-2.07935810e+00 -5.87450027e-01 -9.78607386e-02 1.95527947e+00
6.47928953e-01 -2.71943565e-02 -2.28359010e-02 4.35645729e-01
5.29862225e-01 3.85202058e-02 -5.20808756e-01 -9.74754021e-02
4.71979519e-03 5.55549115e-02 3.60150725e-01 1.28946662e-01
-1.15459514e+00 9.61504281e-01 4.85522985e+00 7.03154981e-01
-6.15994334e-01 -5.69579117e-02 2.13938296e-01 2.07988724e-01
-4.35939252e-01 3.57577473e-01 -8.21686566e-01 2.09982485e-01
6.38516128e-01 -2.51935929e-01 3.34568560e-01 9.69914436e-01
-2.66499877e-01 1.11496001e-01 -1.01549363e+00 1.11083519e+00
1.37635646e-03 -1.37691534e+00 1.49723157e-01 3.19649696e-01
5.92649341e-01 -3.32317561e-01 -2.40599528e-01 8.89999449e-01
3.00352514e-01 -8.76341701e-01 1.30698651e-01 2.00872466e-01
6.58564687e-01 -9.60444093e-01 7.69691408e-01 1.94138616e-01
-1.54775476e+00 -2.28968784e-01 -5.43717206e-01 8.48441124e-02
-1.21083617e-01 8.34995329e-01 -9.27775741e-01 1.41909289e+00
5.81139207e-01 9.63421464e-01 -8.36037934e-01 7.92061746e-01
-1.78472564e-01 4.06173497e-01 -1.11625805e-01 1.27967551e-01
-4.43535820e-02 -2.80728489e-01 2.06305459e-01 9.02290046e-01
1.94991037e-01 1.47115022e-01 1.99159667e-01 5.82006514e-01
-3.99116784e-01 3.13443720e-01 -6.91257298e-01 -2.35794038e-01
7.19905317e-01 1.48176634e+00 -6.33682370e-01 -1.09613948e-01
-7.19290853e-01 8.91745567e-01 9.31651890e-01 3.83271605e-01
-7.36319005e-01 -6.14268243e-01 6.35603547e-01 -1.40981087e-02
4.51631963e-01 -2.02644259e-01 1.08117172e-02 -1.33693027e+00
1.80761740e-01 -5.13949454e-01 8.32473397e-01 -3.36539596e-01
-1.21753335e+00 3.01500529e-01 -8.58002380e-02 -1.01996207e+00
-8.84116143e-02 -5.57223320e-01 -4.66238052e-01 6.74873054e-01
-1.65751708e+00 -1.28090799e+00 -3.95442516e-01 6.49797618e-01
-1.95371434e-01 -2.11254537e-01 9.95901763e-01 4.55212027e-01
-9.34377432e-01 7.54071057e-01 2.66488492e-02 3.45728695e-01
3.81014466e-01 -1.40570509e+00 1.30276024e-01 4.41066146e-01
1.72126934e-01 7.97515094e-01 9.86737385e-02 -7.81202912e-01
-1.80844092e+00 -1.38930309e+00 9.24495041e-01 -2.02612221e-01
7.34527826e-01 -4.75842327e-01 -9.93606031e-01 7.75251150e-01
-5.65789819e-01 5.40517986e-01 1.00346971e+00 9.21276987e-01
-6.55127406e-01 -2.80624121e-01 -9.51191247e-01 5.77959478e-01
1.18613827e+00 -5.66756248e-01 -3.78449380e-01 2.47024953e-01
8.05979431e-01 -1.34352103e-01 -1.38528740e+00 5.15386283e-01
6.38255537e-01 -3.67614180e-01 9.46121573e-01 -9.07759309e-01
2.20232829e-01 -3.46219182e-01 -2.95399457e-01 -1.29645395e+00
-3.80877823e-01 -2.95553952e-01 -8.44559491e-01 1.34817767e+00
5.41899085e-01 -8.37721229e-01 8.87531459e-01 4.91504520e-01
1.18292063e-01 -1.22476816e+00 -7.64205039e-01 -9.89184737e-01
-1.96584046e-01 -3.30076396e-01 7.35751212e-01 1.27386713e+00
3.21616739e-01 7.25989759e-01 -2.16008812e-01 4.54228222e-01
5.95683038e-01 4.83048320e-01 8.29828143e-01 -1.69914329e+00
-1.73470318e-01 -1.05948023e-01 -8.60720694e-01 -6.55061483e-01
3.35228622e-01 -1.37046981e+00 -5.71424723e-01 -1.70551848e+00
1.72678933e-01 -8.56523156e-01 -3.50299478e-01 7.18547225e-01
-2.67171055e-01 -1.10657088e-01 8.78501609e-02 1.15588628e-01
-6.99705482e-01 8.82639050e-01 9.19945240e-01 -2.66746312e-01
-3.30538660e-01 -2.33191866e-02 -9.97867763e-01 3.85435671e-01
6.81143224e-01 -2.87779838e-01 -7.99460649e-01 -1.40841037e-01
4.90525365e-01 -2.56533101e-02 3.56255770e-01 -7.75851965e-01
3.62749428e-01 6.94314986e-02 2.58276463e-01 -4.98801172e-01
1.94005668e-01 -8.64975274e-01 1.27235919e-01 2.61622339e-01
6.32561892e-02 -1.93970397e-01 -9.59090889e-02 9.52258706e-01
-2.83975035e-01 -6.71077073e-02 2.10987732e-01 3.01805168e-01
-7.88738966e-01 4.36531872e-01 2.32785985e-01 -8.98636431e-02
1.17689371e+00 -6.08073659e-02 -3.96783531e-01 -1.60448253e-01
-8.08467448e-01 6.45220697e-01 2.25615293e-01 5.73731959e-01
7.38383174e-01 -1.70742977e+00 -4.38134730e-01 5.05927652e-02
6.22318089e-01 2.52708644e-01 1.69062778e-01 9.98629689e-01
-1.30101427e-01 6.00601554e-01 3.89657974e-01 -2.05806375e-01
-1.26645744e+00 7.31433034e-01 -1.43542467e-02 -5.90280116e-01
-7.74295568e-01 5.05574703e-01 -5.82636483e-02 -4.58042085e-01
1.69648170e-01 -3.02495539e-01 -3.88502836e-01 3.38243872e-01
2.57086217e-01 4.27814484e-01 2.47273222e-01 -4.70743209e-01
-5.55729747e-01 4.10852432e-01 -3.87176692e-01 4.23066676e-01
1.41020048e+00 7.91358650e-02 -1.05090007e-01 1.68210879e-01
1.28463459e+00 -3.04379575e-02 -6.38854086e-01 -4.73995566e-01
4.54495937e-01 -3.95196766e-01 -4.31021750e-02 -4.01500076e-01
-1.16850448e+00 4.01967108e-01 1.22149736e-01 2.19613224e-01
1.01164770e+00 2.10787073e-01 6.42788887e-01 6.55295551e-01
5.62882721e-01 -9.50173497e-01 -1.22641601e-01 3.97079766e-01
6.49927139e-01 -1.18465185e+00 2.79241532e-01 -8.03469777e-01
-6.02506459e-01 9.57100630e-01 5.95505178e-01 2.60364324e-01
1.03165185e+00 -1.92159578e-01 -5.38485348e-01 -5.58887362e-01
-8.35498869e-01 -3.98312598e-01 4.46683317e-01 6.34703994e-01
9.08889025e-02 2.67901570e-01 -3.01803023e-01 9.39179897e-01
-1.06840536e-01 -1.88439921e-01 1.15139790e-01 9.66127694e-01
-9.12047550e-02 -1.25225580e+00 4.71534356e-02 6.38904870e-01
-1.98559072e-02 -4.48696613e-02 -3.48065913e-01 9.80698168e-01
2.14165285e-01 9.49377596e-01 -2.34714404e-01 -7.29003370e-01
4.46026772e-01 1.34653628e-01 2.40931824e-01 -6.79673195e-01
-9.32962671e-02 -5.19771039e-01 2.08416343e-01 -5.75810552e-01
-1.66836649e-01 -4.84830081e-01 -1.22474432e+00 -3.79721880e-01
-5.59793293e-01 3.50112230e-01 4.16602373e-01 7.01322794e-01
7.27225065e-01 5.36693037e-01 5.56409538e-01 -2.44678825e-01
-2.66514331e-01 -8.41738284e-01 -9.50114250e-01 4.81507570e-01
-1.10683799e-01 -1.10155177e+00 -1.95021853e-01 -3.61608386e-01] | [8.741541862487793, 7.857255935668945] |
bef75037-e1f1-492b-9a16-70d37b27d089 | wave-propagation-of-visual-stimuli-in-focus | 2006.11035 | null | https://arxiv.org/abs/2006.11035v1 | https://arxiv.org/pdf/2006.11035v1.pdf | Wave Propagation of Visual Stimuli in Focus of Attention | Fast reactions to changes in the surrounding visual environment require efficient attention mechanisms to reallocate computational resources to most relevant locations in the visual field. While current computational models keep improving their predictive ability thanks to the increasing availability of data, they still struggle approximating the effectiveness and efficiency exhibited by foveated animals. In this paper, we present a biologically-plausible computational model of focus of attention that exhibits spatiotemporal locality and that is very well-suited for parallel and distributed implementations. Attention emerges as a wave propagation process originated by visual stimuli corresponding to details and motion information. The resulting field obeys the principle of "inhibition of return" so as not to get stuck in potential holes. An accurate experimentation of the model shows that it achieves top level performance in scanpath prediction tasks. This can easily be understood at the light of a theoretical result that we establish in the paper, where we prove that as the velocity of wave propagation goes to infinity, the proposed model reduces to recently proposed state of the art gravitational models of focus of attention. | ['Lapo Faggi', 'Marco Gori', 'Dario Zanca', 'Alessandro Betti', 'Stefano Melacci'] | 2020-06-19 | null | null | null | null | ['scanpath-prediction'] | ['computer-vision'] | [ 2.17481971e-01 6.17871396e-02 1.27023518e-01 1.48814648e-01
2.92032301e-01 -3.62561345e-01 6.12030685e-01 3.20202410e-01
-5.49788237e-01 3.98112416e-01 3.42936993e-01 -3.53776366e-02
-3.97975534e-01 -8.16154957e-01 -7.12093949e-01 -7.10525036e-01
-2.95090288e-01 2.65666187e-01 7.18276978e-01 -3.79138857e-01
8.33390772e-01 7.25588024e-01 -1.95192015e+00 3.47353444e-02
5.47709644e-01 5.76167941e-01 6.34915471e-01 8.53426456e-01
3.33336860e-01 9.27842379e-01 -3.52093488e-01 8.62961486e-02
1.46876752e-01 -6.07439280e-01 -9.75209117e-01 -3.37546140e-01
2.62194991e-01 2.09156409e-01 -3.66789013e-01 9.56499457e-01
5.64799190e-01 4.59211528e-01 6.18051469e-01 -9.22609806e-01
-9.19296086e-01 4.69231308e-02 -5.13511062e-01 1.06176281e+00
2.49539807e-01 3.08375627e-01 9.01042163e-01 -9.03463781e-01
1.01416767e+00 9.02404249e-01 4.03094947e-01 5.56666672e-01
-1.35607815e+00 9.01465043e-02 9.94693413e-02 4.99224544e-01
-1.38824391e+00 -4.40988511e-01 6.54146671e-01 -4.65310037e-01
1.47518682e+00 3.70074242e-01 9.20926869e-01 7.28275955e-01
6.93723619e-01 4.94982690e-01 7.09284306e-01 -6.77057028e-01
5.08942604e-01 4.90148291e-02 -1.99952811e-01 5.40573061e-01
4.60774660e-01 2.99786329e-01 -1.07997346e+00 1.62487298e-01
1.00114286e+00 -4.20888662e-01 -5.39524794e-01 -4.67173547e-01
-1.17427480e+00 5.66898167e-01 9.37464297e-01 6.33130074e-01
-5.98381519e-01 3.27692956e-01 -1.20157927e-01 -7.28595033e-02
4.05949205e-01 6.17684007e-01 -5.30124493e-02 1.10351935e-01
-8.75047326e-01 3.29012960e-01 4.21707481e-01 7.13635087e-01
5.52033961e-01 -4.29601483e-02 -1.02900617e-01 3.52891624e-01
3.56933206e-01 3.63221943e-01 6.31777585e-01 -8.90677512e-01
1.24678284e-01 3.88746858e-01 1.14436634e-01 -1.35412407e+00
-6.49459660e-01 -8.69949996e-01 -4.30376947e-01 5.35647511e-01
4.20212179e-01 2.11159199e-01 -4.37826067e-01 1.69948888e+00
8.95125642e-02 6.52607158e-02 -1.80580944e-01 1.11942160e+00
2.31226936e-01 5.21815896e-01 1.69674888e-01 -1.98095322e-01
1.12174881e+00 -8.11021030e-01 -4.43094581e-01 -4.75070208e-01
3.57373625e-01 -4.77947384e-01 9.65694487e-01 2.39831313e-01
-1.38636625e+00 -5.98637223e-01 -9.22264397e-01 -1.49148971e-01
-3.33325058e-01 -4.58720028e-01 5.97354293e-01 3.06899607e-01
-1.50667512e+00 6.75695539e-01 -7.65074313e-01 -7.68722355e-01
4.01027143e-01 3.37441206e-01 -1.78505018e-01 3.51265669e-01
-6.90644562e-01 1.16090226e+00 1.17380910e-01 1.62318185e-01
-6.74965441e-01 -5.74450850e-01 -4.34608459e-01 3.39233875e-01
-1.11495763e-01 -9.14073288e-01 1.24705219e+00 -1.15874648e+00
-1.12539887e+00 8.27030540e-01 -3.72580141e-01 -5.53433180e-01
2.73134679e-01 -2.57166564e-01 1.34291857e-01 3.90354633e-01
-2.94220448e-02 7.16202855e-01 6.47328556e-01 -1.09165096e+00
-6.99490666e-01 -5.97984791e-01 -7.78080225e-02 3.36537451e-01
-2.51394540e-01 6.68367147e-02 -1.53146282e-01 -4.81042475e-01
1.12863839e-01 -7.58526027e-01 -4.48731154e-01 -2.75532547e-02
1.29924104e-01 -8.01572055e-02 2.87889391e-01 -1.09501302e-01
1.33150649e+00 -1.84017897e+00 3.83836329e-01 1.06772646e-01
3.68880540e-01 6.39598817e-02 1.06788427e-01 6.09328985e-01
-1.22731917e-01 1.29706040e-01 5.02920114e-02 -4.66326922e-02
-2.66831636e-01 -3.21600102e-02 -4.40034539e-01 6.20864213e-01
1.36005312e-01 9.09449399e-01 -1.09361434e+00 -4.75097895e-01
1.30415395e-01 4.40439850e-01 -8.96163106e-01 -6.40784502e-02
-4.43961620e-02 4.47814405e-01 -5.01048803e-01 2.31462687e-01
3.95762712e-01 -4.37447041e-01 -7.59126544e-02 2.24159181e-01
-6.63349390e-01 6.44966215e-02 -7.90526271e-01 1.61065042e+00
-1.27124920e-01 1.01509047e+00 -1.95470735e-01 -9.27289844e-01
7.54956126e-01 5.74665740e-02 2.71467716e-01 -9.95980680e-01
2.65583575e-01 -1.81965176e-02 2.92217225e-01 -4.59729671e-01
6.13227069e-01 2.64407955e-02 2.89598137e-01 3.11300308e-01
-5.41274957e-02 -3.28740664e-02 1.81941912e-01 1.58090979e-01
1.03297532e+00 2.43841961e-01 3.72573256e-01 -6.73320949e-01
5.40306211e-01 3.05308402e-01 1.44182416e-02 1.00344241e+00
-3.11139673e-01 2.99035639e-01 1.78552464e-01 -5.86038411e-01
-9.94736195e-01 -9.29961383e-01 -1.16853848e-01 1.32088482e+00
5.33565998e-01 -2.42004991e-01 -9.06598628e-01 2.39202932e-01
-3.56401026e-01 6.70047522e-01 -9.26430285e-01 -3.53586733e-01
-6.60656154e-01 -7.33595014e-01 5.19681461e-02 5.46070397e-01
2.72337139e-01 -1.60091031e+00 -1.70896745e+00 1.80446267e-01
-2.67758630e-02 -5.96447051e-01 -1.09767690e-01 1.20424777e-01
-1.04331124e+00 -8.43749106e-01 -7.08839118e-01 -7.03037262e-01
5.77486455e-01 4.86435682e-01 1.14514172e+00 2.49567404e-01
-5.01247585e-01 4.69849348e-01 -2.48045757e-01 -6.05060041e-01
-3.52727138e-02 2.55993232e-02 -1.28620595e-01 -4.29037884e-02
3.98393661e-01 -7.44801819e-01 -9.62808132e-01 4.38232832e-02
-7.20854938e-01 8.65536332e-02 4.18713152e-01 4.61493760e-01
4.75253671e-01 -2.05293998e-01 3.14529032e-01 -3.16004068e-01
5.39469123e-01 -5.02380669e-01 -6.66666508e-01 1.55646773e-02
-4.55374837e-01 2.97420055e-01 5.01571476e-01 -2.59523571e-01
-8.76185715e-01 -3.89197245e-02 2.42179811e-01 -8.56410787e-02
-1.18279628e-01 4.01701242e-01 4.26025063e-01 -4.03607547e-01
1.05641520e+00 4.43712860e-01 -3.71953338e-01 -3.50156963e-01
2.05993071e-01 1.03707545e-01 5.96916437e-01 -1.99203283e-01
3.81995887e-01 6.71468973e-01 2.91587263e-01 -1.03044677e+00
-5.12182891e-01 -3.23687077e-01 -7.16297448e-01 -5.60813248e-01
7.62181401e-01 -3.10467958e-01 -1.18338680e+00 1.49555400e-01
-1.24894655e+00 -3.39131474e-01 -4.02897030e-01 5.06339192e-01
-8.94049227e-01 9.88481566e-02 -1.70298994e-01 -1.06928492e+00
-3.75498496e-02 -6.30759358e-01 8.07529390e-01 5.25571644e-01
-1.33161888e-01 -1.08612871e+00 4.10759062e-01 -2.55928963e-01
7.52493441e-01 1.64363943e-02 7.76162028e-01 -1.06577240e-01
-9.47689891e-01 8.21773522e-03 -1.08654320e-01 -4.72797006e-01
-4.14222330e-01 -6.53405711e-02 -1.00258827e+00 -8.04025829e-02
1.86023980e-01 1.92920163e-01 9.79062259e-01 7.20236957e-01
9.22200441e-01 -2.12338213e-02 -5.94453037e-01 6.38738573e-01
1.68673241e+00 1.00365415e-01 6.85299456e-01 5.09973288e-01
1.29378304e-01 8.04939747e-01 2.67260164e-01 4.77399915e-01
1.51607573e-01 6.29838705e-01 8.75003278e-01 1.57336846e-01
-2.08931342e-01 -1.77928656e-01 -1.58343896e-01 4.16016817e-01
-7.95709670e-01 -4.73871201e-01 -1.12710369e+00 8.94309998e-01
-1.88566482e+00 -1.30356824e+00 -2.71295547e-01 2.46734929e+00
3.40898395e-01 2.46875629e-01 -4.43311222e-02 -1.48240374e-02
5.48156381e-01 4.60743047e-02 -3.60335976e-01 -4.86397475e-01
-2.17012074e-02 2.89724231e-01 5.99621296e-01 5.77986062e-01
-6.32596135e-01 8.98902059e-01 7.61326551e+00 2.16080502e-01
-1.13773024e+00 1.26215801e-01 2.81685412e-01 -2.21981138e-01
-1.00363940e-01 6.41060323e-02 -5.02768636e-01 3.40953827e-01
1.01939547e+00 -3.99656475e-01 5.11559665e-01 6.70502365e-01
3.26022267e-01 -4.90094215e-01 -9.57717717e-01 8.08440268e-01
2.26176679e-02 -1.44559908e+00 -7.64689520e-02 1.54327244e-01
3.22241157e-01 1.73735186e-01 2.44078174e-01 -2.46495634e-01
-1.87397525e-02 -1.03686559e+00 9.72961426e-01 8.05800796e-01
3.08054358e-01 -5.07771671e-01 3.35470468e-01 7.51727283e-01
-1.05269492e+00 -3.38889450e-01 -6.55641437e-01 -5.83010554e-01
1.70606762e-01 -1.62702769e-01 -6.19105935e-01 1.20667830e-01
7.46877015e-01 3.63925636e-01 -7.14860737e-01 1.49658787e+00
-3.21697593e-02 3.56559068e-01 -1.78117976e-01 -4.28585172e-01
2.28973523e-01 2.16007799e-01 7.13362157e-01 1.17018557e+00
3.14325154e-01 1.41568556e-01 -3.67385089e-01 9.64400887e-01
4.23150480e-01 1.49488017e-01 -8.05352390e-01 2.91829437e-01
1.93931207e-01 8.85783911e-01 -1.06563222e+00 -1.35350361e-01
-3.13871711e-01 8.51587951e-01 5.25665581e-01 4.17767853e-01
-6.96862757e-01 -2.81063616e-01 2.57892728e-01 4.38356966e-01
4.29840177e-01 -3.41842055e-01 -2.85180569e-01 -8.14655900e-01
-2.17748120e-01 -2.43218131e-02 3.47436629e-02 -1.14547765e+00
-7.33270884e-01 7.96938300e-01 2.45613996e-02 -8.56691241e-01
-7.75426999e-02 -6.68190062e-01 -5.63906431e-01 1.11485887e+00
-1.36242008e+00 -8.00568223e-01 -4.07391727e-01 6.06399477e-01
5.82643867e-01 1.38050795e-01 7.52781749e-01 -1.33417919e-01
-1.02318719e-01 2.20915705e-01 -1.55080408e-01 -3.35576624e-01
2.60400176e-01 -1.11255991e+00 5.40220916e-01 1.13645291e+00
3.34439784e-01 7.49433935e-01 1.17693114e+00 -5.60679317e-01
-1.33173943e+00 -5.25869489e-01 1.30398989e+00 -5.99938095e-01
5.99656820e-01 -1.48994118e-01 -8.59869540e-01 4.40237820e-01
3.29469979e-01 2.19572663e-01 2.82848477e-01 6.87486976e-02
-9.21332613e-02 9.24592093e-02 -6.81609213e-01 5.42751253e-01
1.13693023e+00 -2.05336630e-01 -8.33688796e-01 2.92422354e-01
3.44417572e-01 -2.20022008e-01 -1.64159968e-01 -1.94835290e-02
5.62983990e-01 -1.39037228e+00 9.16057050e-01 -7.41388083e-01
2.94275105e-01 -2.12930158e-01 1.07711159e-01 -9.66831863e-01
-9.13629115e-01 -7.60773599e-01 -4.91655953e-02 3.88863742e-01
2.61573881e-01 -5.79051137e-01 6.83882296e-01 3.51093143e-01
-1.40044451e-01 -4.24723059e-01 -9.35224593e-01 -5.13969243e-01
-9.25525650e-02 -2.48902619e-01 -8.54847673e-03 4.84260410e-01
3.83567899e-01 3.99371117e-01 9.18010622e-02 1.68249413e-01
5.78569174e-01 4.24452685e-02 3.31635267e-01 -1.38597822e+00
-3.82198960e-01 -7.63593495e-01 -6.77923977e-01 -1.11644852e+00
-3.69538635e-01 -6.34021521e-01 1.36628255e-01 -1.52173138e+00
1.08419441e-01 -1.17957987e-01 -3.75911564e-01 1.35432065e-01
1.44738883e-01 3.03350717e-01 3.10856104e-01 4.21658009e-01
-5.28206646e-01 2.00668097e-01 1.20266068e+00 3.51008296e-01
-3.17606091e-01 -6.53802902e-02 -6.51701510e-01 7.62144327e-01
6.98558807e-01 -4.14796591e-01 -5.64785898e-01 -4.96282965e-01
6.74675882e-01 1.41671561e-02 6.39223158e-01 -1.18592155e+00
6.57936335e-01 -2.31627449e-01 3.71760637e-01 -3.07924032e-01
2.33631402e-01 -7.11286783e-01 -1.68447763e-01 7.00476408e-01
-5.79219222e-01 2.02731639e-01 2.57945716e-01 6.84063017e-01
1.14232548e-01 -3.28188062e-01 7.69075572e-01 -3.07958186e-01
-8.64955842e-01 4.22298489e-03 -7.55682528e-01 -2.13781428e-02
9.44111705e-01 -5.06059289e-01 -5.04874647e-01 -2.68349618e-01
-8.57276320e-01 -1.61644474e-01 5.33265829e-01 3.39722514e-01
5.18990040e-01 -9.10821974e-01 -5.27791619e-01 2.12066501e-01
-7.17525855e-02 -4.12755102e-01 4.08862323e-01 1.00536358e+00
-8.67480695e-01 6.83858514e-01 -5.36109805e-01 -5.91535389e-01
-1.00711286e+00 1.04910815e+00 4.02053386e-01 1.97104692e-01
-6.71246111e-01 1.07789910e+00 5.20932674e-01 5.88118970e-01
4.19222005e-02 -3.35239798e-01 -4.56028402e-01 -2.91454494e-01
7.26658404e-01 2.94855356e-01 9.10728518e-03 -7.38930106e-01
-5.36427081e-01 7.74141967e-01 3.48924071e-01 -1.84360236e-01
1.30168688e+00 -3.95278931e-01 -8.39806050e-02 3.68596464e-01
4.65463251e-01 1.31108969e-01 -1.24996114e+00 3.29811983e-02
5.62334061e-02 -5.43293476e-01 1.73792794e-01 -6.81333005e-01
-5.58155477e-01 1.17424262e+00 5.19817054e-01 5.58221579e-01
1.29878414e+00 2.98994601e-01 1.85565501e-01 2.23651156e-01
4.23265278e-01 -9.36144054e-01 1.51662707e-01 5.31052589e-01
9.68984425e-01 -6.19986773e-01 -1.02472246e-01 -1.34690374e-01
-3.46843809e-01 1.01339209e+00 5.38038433e-01 -6.06027961e-01
5.23644567e-01 2.00154841e-01 -5.12862504e-01 -4.84597534e-01
-1.07600343e+00 -3.95058513e-01 3.25407267e-01 9.18381333e-01
4.24593300e-01 -4.70264137e-01 -2.42486954e-01 1.51184842e-01
-1.72051147e-01 -1.42612889e-01 6.17511213e-01 9.13723946e-01
-1.15290844e+00 -4.95982736e-01 -3.39107901e-01 -2.10307702e-01
-1.92387491e-01 -2.28595510e-01 -3.09514880e-01 9.62153435e-01
1.88153952e-01 6.75637424e-01 3.75964075e-01 1.25430867e-01
1.86691329e-01 -1.28521100e-01 8.65193844e-01 -5.19633472e-01
-5.10983646e-01 1.54084802e-01 -4.51183766e-01 -6.58738375e-01
-6.57814622e-01 -6.32355392e-01 -1.13538110e+00 -1.85284629e-01
-1.76157892e-01 7.45544136e-02 5.60268939e-01 8.47615123e-01
3.75416338e-01 6.90617383e-01 1.10242359e-01 -1.14306140e+00
-2.16968119e-01 -7.27075458e-01 -4.59288955e-01 8.71548280e-02
3.64728838e-01 -6.62936032e-01 -2.23172933e-01 3.27698648e-01] | [9.995736122131348, 1.7233139276504517] |
544d65ab-214f-4a04-b35e-8d7c62cd3da9 | wsgat-weighted-and-signed-graph-attention | 2109.11519 | null | https://arxiv.org/abs/2109.11519v1 | https://arxiv.org/pdf/2109.11519v1.pdf | wsGAT: Weighted and Signed Graph Attention Networks for Link Prediction | Graph Neural Networks (GNNs) have been widely used to learn representations on graphs and tackle many real-world problems from a wide range of domains. In this paper we propose wsGAT, an extension of the Graph Attention Network (GAT) layers, meant to address the lack of GNNs that can handle graphs with signed and weighted links, which are ubiquitous, for instance, in trust and correlation networks. We first evaluate the performance of our proposal by comparing against GCNII in the weighed link prediction task, and against SGCN in the link sign prediction task. After that, we combine the two tasks and show their performance on predicting the signed weight of links, and their existence. Our results on real-world networks show that models with wsGAT layers outperform the ones with GCNII and SGCN layers, and that there is no loss in performance when signed weights are predicted. | ['Giuseppe Mangioni', 'Marco Grassia'] | 2021-09-21 | null | null | null | null | ['link-sign-prediction'] | ['graphs'] | [-1.33093372e-01 5.30782104e-01 -3.39752585e-01 -2.51423836e-01
3.58032823e-01 -2.39118606e-01 7.97471642e-01 2.47660220e-01
-1.93279326e-01 6.98504806e-01 1.63104400e-01 -4.52019006e-01
-4.55787748e-01 -1.14338505e+00 -5.90326965e-01 -3.04293722e-01
-6.65138543e-01 6.13449872e-01 6.19389236e-01 -5.00129580e-01
-2.12861553e-01 4.81972128e-01 -9.91852999e-01 1.09301113e-01
7.26723850e-01 1.00119472e+00 -3.05862248e-01 4.94930595e-01
-8.33488107e-02 1.02566183e+00 -3.27229679e-01 -1.03581321e+00
1.68653682e-01 -1.96812034e-01 -7.80160725e-01 -3.72143805e-01
4.77699757e-01 -7.56731704e-02 -6.45274282e-01 1.07270479e+00
2.99168080e-01 -7.02965334e-02 6.86564267e-01 -1.69296217e+00
-9.05879498e-01 1.25726640e+00 -4.97679204e-01 2.20754147e-01
2.92799741e-01 -7.30244219e-02 1.74806738e+00 -5.56061327e-01
8.19001436e-01 1.48442733e+00 1.09773600e+00 3.29909056e-01
-1.13783848e+00 -5.52185178e-01 5.35308242e-01 4.36850131e-01
-9.18610573e-01 -7.05365539e-02 9.06366289e-01 -2.41099730e-01
9.68493044e-01 -3.01451702e-02 7.39833713e-01 1.22501349e+00
1.07066236e-01 7.10062265e-01 5.70242882e-01 -2.60906041e-01
-1.24221161e-01 -1.84647337e-01 3.94996345e-01 8.70431066e-01
7.50691652e-01 1.23458438e-01 -3.46817613e-01 2.17672437e-02
6.27809942e-01 -6.32667542e-02 -3.47576588e-01 -6.96860552e-01
-1.02376401e+00 1.06012940e+00 1.33805680e+00 6.98989809e-01
-2.76148319e-01 6.25238061e-01 5.27986228e-01 6.96662247e-01
6.98672831e-01 4.72227633e-01 -3.67673784e-01 4.20266390e-01
-7.27756858e-01 -1.57230690e-01 1.15013731e+00 7.91489065e-01
3.97376537e-01 1.16916813e-01 -1.92076951e-01 7.10520327e-01
4.88260239e-01 1.37297362e-02 2.53857940e-01 -2.07048133e-01
5.07121325e-01 8.36270273e-01 -4.18001950e-01 -1.35283053e+00
-7.30997920e-01 -7.88217723e-01 -1.00159025e+00 1.50961250e-01
3.32797945e-01 -3.26717533e-02 -9.14193869e-01 1.72554564e+00
-1.52309507e-01 4.09383684e-01 -1.45226076e-01 8.63474905e-01
1.17277956e+00 2.26381823e-01 4.12884913e-02 1.76731274e-01
1.01633716e+00 -1.12418950e+00 -5.81008971e-01 -4.13874358e-01
7.26100743e-01 -1.23103209e-01 7.21181691e-01 1.64963618e-01
-9.02813256e-01 -3.34697366e-01 -1.23033559e+00 -3.41768004e-02
-6.76244617e-01 -2.87062436e-01 1.10889196e+00 5.44703662e-01
-1.46815264e+00 1.12758183e+00 -5.76558471e-01 -7.05645144e-01
6.36447728e-01 5.26092291e-01 -5.31274319e-01 -1.34579241e-01
-1.54228759e+00 1.16826475e+00 4.67210919e-01 2.82501787e-01
-5.71357787e-01 -3.36669773e-01 -9.33777034e-01 5.23186386e-01
3.98757845e-01 -6.18506968e-01 7.43447840e-01 -1.07078838e+00
-9.94865179e-01 8.58143449e-01 5.39710224e-01 -7.82712698e-01
5.31001806e-01 7.01580420e-02 -7.08220482e-01 -1.33972466e-01
-2.59766012e-01 4.74722534e-01 4.47387427e-01 -1.18386436e+00
-1.35315984e-01 -2.00001463e-01 3.59988898e-01 -2.99727619e-01
-5.53207457e-01 -2.54344612e-01 -1.23839013e-01 -6.01464689e-01
4.01671268e-02 -7.88399696e-01 -1.34636581e-01 1.37787089e-01
-7.98045516e-01 -4.45078552e-01 8.71946454e-01 -3.85401756e-01
1.13033319e+00 -1.85380304e+00 2.86164641e-01 6.54946089e-01
7.25262523e-01 7.28156388e-01 -6.56569302e-01 5.26578963e-01
-3.30807060e-01 2.86163718e-01 1.04808211e-02 -9.03803781e-02
1.87019646e-01 3.81439537e-01 8.43689591e-03 2.16470048e-01
3.36700022e-01 1.37332106e+00 -1.07452762e+00 -2.03921363e-01
-1.97491452e-01 3.77869666e-01 -4.10108477e-01 6.57511577e-02
-3.49825263e-01 -1.47298053e-01 -3.60122204e-01 3.54181707e-01
4.60808069e-01 -5.94745457e-01 8.10766637e-01 -1.61482364e-01
4.96278018e-01 3.76926363e-01 -9.87012029e-01 1.22384012e+00
-2.04195186e-01 5.98900974e-01 4.38080430e-02 -9.20742929e-01
1.05856204e+00 2.32590616e-01 1.80955574e-01 -6.12179935e-01
2.97548532e-01 2.65833497e-01 7.32329547e-01 -1.91722780e-01
2.35310584e-01 4.86354716e-02 1.43474966e-01 6.41248286e-01
4.52778518e-01 1.09935440e-01 5.56710720e-01 7.09420085e-01
1.36740899e+00 -1.33661598e-01 2.44404048e-01 -2.54907310e-01
5.48199117e-01 -5.38433969e-01 2.23089904e-01 5.38542151e-01
-1.54192910e-01 3.34899485e-01 1.36764956e+00 -6.17221177e-01
-7.46950805e-01 -8.63189280e-01 4.68505144e-01 1.15682948e+00
-7.08811805e-02 -5.15422463e-01 -3.69727403e-01 -1.12749064e+00
3.38576049e-01 3.77201617e-01 -7.88480699e-01 -4.81226057e-01
-3.88510436e-01 -7.41010368e-01 2.96843082e-01 5.97450793e-01
1.14473842e-01 -1.27478540e+00 1.71547741e-01 1.82954460e-01
3.00270349e-01 -1.19155991e+00 -1.56132206e-01 2.10970104e-01
-7.77497113e-01 -1.54647434e+00 -4.78686213e-01 -7.63169289e-01
5.79244375e-01 3.08074374e-02 1.53135872e+00 8.23201299e-01
2.67671924e-02 2.84111470e-01 -5.33831775e-01 -1.99779600e-01
-2.21301451e-01 4.57189560e-01 -1.13267772e-01 2.73697022e-02
4.41555642e-02 -8.96091461e-01 -3.00012678e-01 2.37947688e-01
-8.52962196e-01 -1.08259305e-01 5.17025471e-01 8.97463858e-01
-2.50836015e-01 -2.84487516e-01 7.75930882e-01 -1.52276576e+00
1.00244045e+00 -5.73126733e-01 -4.89683956e-01 2.90723503e-01
-9.00514901e-01 2.33069047e-01 5.41099727e-01 -1.62337139e-01
-2.57807136e-01 -4.53333646e-01 -1.07606620e-01 -1.87072173e-01
5.81390679e-01 8.87329936e-01 -4.30523381e-02 -4.17846948e-01
4.73204702e-01 -5.19180477e-01 -5.43449223e-02 -3.98569286e-01
4.48279113e-01 8.47402588e-03 1.06915660e-01 -3.32945913e-01
1.01173174e+00 2.91887093e-02 2.58166820e-01 -1.07437946e-01
-8.10770869e-01 -4.01226152e-03 -7.75678933e-01 -7.24590048e-02
4.38577563e-01 -5.11927545e-01 -6.98511243e-01 3.32278877e-01
-1.06359458e+00 -4.25123811e-01 -1.52370259e-01 3.58371079e-01
-1.96665034e-01 3.03614736e-01 -9.23821628e-01 -4.31945801e-01
-4.29939657e-01 -7.68323839e-01 4.55724716e-01 7.63142034e-02
1.76910535e-02 -1.59991777e+00 -8.26902017e-02 -5.36410697e-02
7.08554506e-01 3.92193675e-01 1.28369820e+00 -1.10814524e+00
-4.55831230e-01 -3.65541846e-01 -7.43268073e-01 2.65900224e-01
-1.38788104e-01 2.75152586e-02 -7.02441335e-01 -3.96866769e-01
-8.86480153e-01 -3.19832742e-01 1.39843285e+00 1.13377132e-01
9.29722726e-01 -2.21317396e-01 -5.56341231e-01 3.71396631e-01
1.21607959e+00 -4.11640614e-01 6.30864561e-01 7.63726234e-02
9.92629409e-01 5.35668015e-01 3.57600972e-02 5.84748238e-02
5.42139828e-01 5.37941873e-01 1.12023997e+00 -3.38302404e-01
-4.59803522e-01 -3.83292586e-01 2.37165883e-01 9.60236609e-01
-4.23538119e-01 -8.57585728e-01 -8.25994372e-01 3.86470169e-01
-2.09340549e+00 -7.07601666e-01 -4.77572054e-01 1.90644979e+00
3.53321791e-01 4.32524532e-01 2.59886146e-01 2.52883285e-01
7.62137830e-01 5.52745819e-01 -3.38118643e-01 -6.04571998e-01
-1.17462136e-01 3.31898510e-01 3.81296933e-01 5.25037646e-01
-9.90782320e-01 1.08911967e+00 6.50770044e+00 3.67813587e-01
-1.01657844e+00 8.50115716e-02 4.10447538e-01 1.82462469e-01
-4.43071514e-01 -6.64477572e-02 -1.89905822e-01 3.02985102e-01
9.14102197e-01 1.07736159e-02 3.57029945e-01 5.93858242e-01
-3.14315885e-01 4.78800088e-01 -1.30592334e+00 3.87434036e-01
6.69314861e-02 -1.16370106e+00 5.87661825e-02 -5.29631693e-03
6.94273591e-01 2.13116348e-01 -1.08149335e-01 4.73448515e-01
9.07008827e-01 -1.26862204e+00 3.40758801e-01 4.78466004e-01
4.91332740e-01 -4.78342354e-01 1.27771854e+00 -9.96846706e-02
-1.11414516e+00 -1.71335086e-01 -3.60333860e-01 -1.71546951e-01
6.40785992e-02 8.54719281e-01 -9.93735433e-01 8.74385357e-01
3.36738229e-01 1.16151357e+00 -7.74517834e-01 1.28583705e+00
-8.42462480e-01 5.73379934e-01 -1.24431789e-01 -2.00932398e-01
4.52817053e-01 -2.21686855e-01 3.76172453e-01 1.05712366e+00
2.86464453e-01 -4.54380482e-01 2.24334419e-01 7.81159043e-01
-6.87823236e-01 -4.89313789e-02 -6.59126043e-01 -2.77574718e-01
1.47343710e-01 1.38534260e+00 -8.31553698e-01 -1.66088223e-01
-4.01436746e-01 7.44027615e-01 7.42206931e-01 4.35407162e-01
-8.42728496e-01 -4.22606319e-01 5.16413033e-01 3.22107911e-01
4.27661926e-01 -1.86136156e-01 2.07279205e-01 -9.94373500e-01
-1.06084742e-01 -4.41418767e-01 8.05297911e-01 -9.50963438e-01
-1.74108338e+00 8.77639174e-01 -3.98660213e-01 -8.34058106e-01
-9.27182809e-02 -9.62523401e-01 -1.04046845e+00 5.90304077e-01
-2.08966470e+00 -1.47935832e+00 -2.60807008e-01 5.63346803e-01
-3.15240175e-01 -6.48049861e-02 6.10330403e-01 4.62538958e-01
-4.24770504e-01 7.06897676e-01 -2.40550160e-01 6.30628169e-01
4.08947051e-01 -1.40796530e+00 7.70905733e-01 6.16732657e-01
4.61615026e-01 4.24593329e-01 4.48995143e-01 -6.60647333e-01
-1.12976229e+00 -1.14656019e+00 1.11445355e+00 -7.95377269e-02
1.01867688e+00 -5.46231747e-01 -8.86250138e-01 1.01998746e+00
1.21923715e-01 6.77535772e-01 2.97272742e-01 6.70608461e-01
-9.24489200e-01 -3.04060467e-02 -1.16988075e+00 4.42931354e-01
1.58426499e+00 -3.09420615e-01 -2.81790465e-01 4.60162997e-01
7.98402429e-01 -1.02989770e-01 -1.04170012e+00 4.63646233e-01
4.46022600e-01 -1.08869874e+00 1.06984353e+00 -9.66921985e-01
4.61880952e-01 -5.79341140e-04 2.16506109e-01 -1.86303949e+00
-6.59644723e-01 -2.98064381e-01 -3.45568091e-01 1.07936013e+00
7.62707829e-01 -1.00583160e+00 9.10572171e-01 9.71001387e-02
-7.75927454e-02 -7.31898487e-01 -7.66722441e-01 -7.62300313e-01
-1.58839032e-01 -4.94836830e-02 6.85789168e-01 1.17989182e+00
1.00541875e-01 5.87375462e-01 -4.50705558e-01 -4.12541814e-02
3.47725511e-01 7.67576769e-02 4.12251681e-01 -1.95292175e+00
-1.60698429e-01 -7.50426590e-01 -1.01820385e+00 -4.34523642e-01
4.02958870e-01 -1.45913339e+00 -4.09032732e-01 -2.11757112e+00
8.05573612e-02 -4.56987947e-01 -6.87217057e-01 8.56155157e-01
-1.43403977e-01 4.41083848e-01 4.86717939e-01 -1.81398705e-01
-8.61341774e-01 5.90591788e-01 1.22336495e+00 -4.16474968e-01
2.10497662e-01 4.28415611e-02 -6.75733030e-01 6.00975692e-01
5.50741673e-01 -3.99345100e-01 -3.94875288e-01 -4.80488062e-01
7.39753008e-01 -3.02726418e-01 4.50562626e-01 -9.39880908e-01
1.14584222e-01 3.57658178e-01 2.39650115e-01 -3.80315408e-02
1.91918150e-01 -9.75895226e-01 -1.09490179e-01 6.90882146e-01
-3.46465796e-01 -1.22496588e-02 -1.48970112e-01 6.85564399e-01
-1.33666083e-01 -1.77663248e-02 4.70847517e-01 -1.87916718e-02
-6.18454218e-01 6.33486271e-01 2.35123858e-01 -1.43103525e-01
8.39970112e-01 -1.88949496e-01 -7.98204124e-01 -6.51083946e-01
-9.98968899e-01 6.05168462e-01 1.80549279e-01 6.72217488e-01
5.57917953e-01 -1.45771372e+00 -8.11541677e-01 9.84080210e-02
2.60446668e-01 -3.83364290e-01 -3.04436356e-01 9.80425298e-01
-3.08027595e-01 2.50892639e-01 -4.27719623e-01 -1.01283193e-01
-1.08963776e+00 6.33696258e-01 3.34093869e-01 -8.39054883e-01
-5.03899872e-01 9.77432847e-01 -1.59368202e-01 -7.59451568e-01
1.57789052e-01 -4.64775056e-01 -4.91986245e-01 1.63666561e-01
3.91044468e-02 2.69443572e-01 1.97639599e-01 -3.97026181e-01
-2.57155865e-01 3.74098271e-01 -1.24766171e-01 5.74012041e-01
1.78025246e+00 2.68118322e-01 -4.35620695e-01 2.18472168e-01
9.88105834e-01 -2.78202832e-01 -9.56069350e-01 -4.10347283e-01
5.13499081e-01 -2.09954798e-01 -2.88424995e-02 -9.55823004e-01
-1.66403186e+00 9.39763784e-01 1.54303327e-01 6.79453254e-01
6.64069712e-01 1.51509538e-01 7.96802878e-01 2.43574411e-01
4.12338644e-01 -4.78503704e-01 1.00203805e-01 6.77710950e-01
8.87300730e-01 -1.19629431e+00 1.53760001e-01 -6.14483356e-01
-4.37640429e-01 1.15057611e+00 6.23184443e-01 -4.19295371e-01
7.53191471e-01 -8.36843699e-02 -3.95068675e-01 -6.38438702e-01
-8.81664753e-01 -4.59516168e-01 4.67026532e-01 7.67666101e-01
5.94405115e-01 1.62085176e-01 -3.41587245e-01 4.60919589e-01
3.82210277e-02 -2.09895089e-01 5.99134922e-01 4.62192297e-01
-3.10474813e-01 -1.27661622e+00 2.23449156e-01 8.13922703e-01
-2.65530407e-01 -3.00556839e-01 -8.64254236e-01 8.40969861e-01
-1.18586756e-01 7.67426372e-01 -2.66504791e-02 -5.67378938e-01
3.22083682e-01 9.78376810e-03 3.86909604e-01 -6.39192164e-01
-8.54955673e-01 -5.60886204e-01 5.19616783e-01 -5.46700180e-01
-2.69149721e-01 -5.39765656e-02 -1.08310711e+00 -5.51258504e-01
-4.99356955e-01 1.78543776e-01 4.44918573e-01 5.93141317e-01
3.15946162e-01 9.92322683e-01 2.65560478e-01 -7.27352917e-01
-2.92993277e-01 -1.03766477e+00 -9.00164962e-01 5.89499652e-01
3.04786861e-01 -8.06454778e-01 -2.59155959e-01 -7.94958711e-01] | [7.030376434326172, 6.206997871398926] |
e165915e-65aa-435b-a6ac-6f12a665f1ff | a-self-paced-regularization-framework-for-1 | 1804.07759 | null | http://arxiv.org/abs/1804.07759v2 | http://arxiv.org/pdf/1804.07759v2.pdf | A Self-paced Regularization Framework for Partial-Label Learning | Partial label learning (PLL) aims to solve the problem where each training
instance is associated with a set of candidate labels, one of which is the
correct label. Most PLL algorithms try to disambiguate the candidate label set,
by either simply treating each candidate label equally or iteratively
identifying the true label. Nonetheless, existing algorithms usually treat all
labels and instances equally, and the complexities of both labels and instances
are not taken into consideration during the learning stage. Inspired by the
successful application of self-paced learning strategy in machine learning
field, we integrate the self-paced regime into the partial label learning
framework and propose a novel Self-Paced Partial-Label Learning (SP-PLL)
algorithm, which could control the learning process to alleviate the problem by
ranking the priorities of the training examples together with their candidate
labels during each learning iteration. Extensive experiments and comparisons
with other baseline methods demonstrate the effectiveness and robustness of the
proposed method. | ['Congyang Lang', 'Songhe Feng', 'Gengyu Lyu'] | 2018-04-20 | null | null | null | null | ['partial-label-learning'] | ['methodology'] | [ 3.90188456e-01 8.84344131e-02 -7.24605322e-01 -5.06151915e-01
-6.11524880e-01 -6.06207430e-01 6.22265577e-01 3.93046856e-01
-6.26912057e-01 8.08192134e-01 -1.15294665e-01 -8.11409876e-02
-3.08878213e-01 -6.50504231e-01 -2.02140138e-01 -9.10438895e-01
1.56169966e-01 7.66600668e-01 1.65656894e-01 3.91239554e-01
3.03931594e-01 1.00769512e-01 -1.73701000e+00 8.69584903e-02
1.01887751e+00 9.49382901e-01 1.92825526e-01 1.59313411e-01
-5.26750922e-01 1.04421437e+00 -4.81848150e-01 -2.87188981e-02
2.54901826e-01 -4.67826396e-01 -9.09675121e-01 2.36190081e-01
3.52301419e-01 2.08633274e-01 2.05118924e-01 1.00999653e+00
4.51907724e-01 1.66316435e-01 6.50541425e-01 -1.39897144e+00
-8.16810429e-02 4.01921928e-01 -7.00986564e-01 2.17362225e-01
5.06881215e-02 -2.19763890e-01 1.16848671e+00 -8.50348830e-01
4.42032605e-01 1.10920024e+00 5.91276050e-01 5.52613258e-01
-1.24476242e+00 -8.86840999e-01 6.91943824e-01 2.53298968e-01
-1.38825381e+00 -2.40097702e-01 1.05713499e+00 -4.42552358e-01
2.27580398e-01 1.77473482e-02 4.41867143e-01 7.00313032e-01
-1.46851093e-01 8.99657726e-01 1.52603996e+00 -7.26176322e-01
6.08326316e-01 3.59676212e-01 6.12303197e-01 7.36185968e-01
8.98441151e-02 -2.31798701e-02 -6.63059056e-01 -3.53720188e-01
3.81207645e-01 -3.26652825e-02 -3.28710303e-02 -7.17856288e-01
-1.15605986e+00 6.80537105e-01 9.28715765e-02 2.06026986e-01
-3.68957937e-01 -8.01048875e-02 4.15857404e-01 2.75171846e-01
6.55501068e-01 3.99198145e-01 -5.97466946e-01 1.67516351e-01
-8.58154953e-01 1.56689957e-01 5.65573812e-01 7.53107727e-01
1.11670089e+00 -3.77645820e-01 -7.13459849e-01 1.04891121e+00
2.49757007e-01 6.56941906e-02 7.05283105e-01 -7.60086894e-01
1.48144230e-01 8.28391492e-01 3.24291348e-01 -6.08127952e-01
-4.07808036e-01 -6.31546915e-01 -6.10002816e-01 9.34097916e-02
4.56021667e-01 -1.39435768e-01 -7.82785356e-01 1.95099890e+00
7.59769440e-01 6.04562700e-01 -6.62233979e-02 7.22091436e-01
3.48888755e-01 6.13351941e-01 5.55479228e-01 -8.99907053e-01
1.21800971e+00 -1.23260963e+00 -7.11329103e-01 -1.99858740e-01
7.38845885e-01 -5.80603540e-01 1.01608312e+00 3.74905497e-01
-6.18433177e-01 -7.22695887e-01 -6.86936677e-01 3.29492509e-01
1.09352507e-02 2.86090463e-01 6.29609942e-01 4.42404836e-01
-8.30455124e-01 5.75583220e-01 -4.07741129e-01 -2.39692070e-03
2.60495543e-01 3.96323800e-01 1.41254097e-01 -1.66412834e-02
-1.15438807e+00 4.42508221e-01 6.73128486e-01 -7.25338161e-02
-7.62868881e-01 -5.20418406e-01 -5.12985885e-01 -8.48529022e-03
5.42840660e-01 -3.40359479e-01 1.48333251e+00 -1.29562438e+00
-1.27761853e+00 8.62654269e-01 -5.27982891e-01 -1.73763976e-01
5.00967503e-01 -6.76007420e-02 -3.03335458e-01 -1.91198096e-01
3.02256793e-01 7.95577109e-01 1.02524197e+00 -1.38103795e+00
-1.24012315e+00 -4.94290888e-02 1.24700107e-01 5.25207460e-01
-5.73148191e-01 -3.00182611e-01 -4.03791219e-01 -5.33822417e-01
2.61918008e-01 -1.02181959e+00 -2.06412569e-01 -3.01172823e-01
-1.12654679e-01 -9.79634821e-01 8.81779134e-01 -1.08953947e-02
1.40659070e+00 -2.16417861e+00 -8.95610750e-02 7.52264038e-02
1.87945306e-01 3.37212294e-01 -2.91601509e-01 1.91751078e-01
-2.63927400e-01 -9.67458189e-02 8.57773647e-02 -3.98971766e-01
-1.33232996e-01 3.11870843e-01 -2.82940090e-01 3.40777159e-01
6.21321052e-02 6.81584954e-01 -1.42207587e+00 -8.00122738e-01
5.35054021e-02 1.45750165e-01 -2.25021973e-01 3.67864192e-01
-3.95736247e-01 6.75605059e-01 -6.74443603e-01 5.45800626e-01
4.77517039e-01 -3.73009920e-01 4.07929003e-01 -7.03028888e-02
-1.96641646e-02 3.06094497e-01 -1.50383341e+00 1.17709446e+00
-5.25917649e-01 2.39192229e-02 -2.03093946e-01 -9.97087419e-01
1.02781177e+00 4.74699229e-01 7.57638454e-01 -6.87191963e-01
-2.58423537e-01 1.12704292e-01 -2.55088925e-01 -3.95696461e-01
5.25634587e-02 -4.31813866e-01 1.13238379e-01 8.27000499e-01
-1.19045056e-01 3.36705178e-01 3.41347486e-01 -5.12227826e-02
7.67445624e-01 3.47923160e-01 4.62071747e-01 -3.26560348e-01
8.93857837e-01 -8.89709592e-02 1.06465960e+00 7.91537702e-01
-5.21623552e-01 1.53575912e-01 4.07822758e-01 -7.68128097e-01
-6.13219142e-01 -6.84271753e-01 -2.31897891e-01 1.54787004e+00
3.71998996e-01 -3.80704373e-01 -5.45786321e-01 -1.32448995e+00
-1.31563321e-01 5.88197172e-01 -4.70161557e-01 -1.75875723e-01
-5.03856122e-01 -7.47854292e-01 -1.01796255e-01 2.33007461e-01
4.48211342e-01 -1.21200049e+00 -5.21227717e-01 4.45420951e-01
-1.47414565e-01 -6.05520487e-01 -5.13209045e-01 5.34491360e-01
-8.81060779e-01 -1.14725435e+00 -3.92650187e-01 -1.06102586e+00
1.04198480e+00 4.15346146e-01 1.08793318e+00 1.34076983e-01
1.82256967e-01 2.46232957e-01 -4.27425861e-01 -1.61532760e-01
-3.57388020e-01 2.89646685e-01 2.41439447e-01 4.41233456e-01
4.94685709e-01 -4.58610386e-01 -4.77627039e-01 4.57114697e-01
-6.45438194e-01 1.89503610e-01 4.97005612e-01 1.03438222e+00
8.36252332e-01 5.91652870e-01 1.03245819e+00 -1.39812052e+00
5.86297631e-01 -4.31200325e-01 -5.59621155e-01 5.67811370e-01
-1.33220732e+00 3.17646384e-01 6.64439917e-01 -7.18910754e-01
-1.06549227e+00 4.23595041e-01 2.59753108e-01 -2.67619669e-01
-2.40118995e-01 3.50149959e-01 -9.49653983e-02 -2.41178721e-02
3.35042238e-01 1.52298242e-01 -2.95228273e-01 -4.44958359e-01
2.16170564e-01 5.28447866e-01 2.64509141e-01 -7.75302410e-01
7.73180723e-01 4.58093211e-02 -2.60789227e-02 2.77314764e-02
-1.57362044e+00 -7.61070549e-01 -8.18638027e-01 -4.57407415e-01
3.34898233e-01 -1.02888894e+00 -5.69799721e-01 3.99352282e-01
-7.81986356e-01 -2.12269992e-01 -4.19568300e-01 2.75579453e-01
-3.42858613e-01 2.95001060e-01 -4.07131672e-01 -8.76412690e-01
-1.58981666e-01 -1.09231734e+00 9.46891725e-01 4.24486786e-01
-3.39073509e-01 -1.19011295e+00 2.64456898e-01 2.49838606e-01
1.61299810e-01 -1.38290137e-01 1.16708791e+00 -8.63049328e-01
-2.94807106e-01 -1.69300452e-01 -7.34426752e-02 7.37261251e-02
5.36692619e-01 -5.07540107e-01 -1.03296411e+00 -4.94753987e-01
4.98813167e-02 -6.04452014e-01 8.18279147e-01 2.30634898e-01
9.87545490e-01 -2.32462853e-01 -3.86149734e-01 1.22477442e-01
1.38019979e+00 3.34292263e-01 -4.87018377e-03 4.73993897e-01
7.43491292e-01 6.58097565e-01 1.08465171e+00 5.33245981e-01
5.00569761e-01 6.98508024e-01 2.15936184e-01 -1.62753224e-01
-8.97461474e-02 -3.28117073e-01 4.86229770e-02 7.17378974e-01
3.07739615e-01 -8.67169425e-02 -8.98109496e-01 3.21648359e-01
-2.07808495e+00 -6.54527962e-01 1.17885038e-01 2.34590673e+00
1.14837241e+00 3.55688751e-01 5.38845211e-02 4.19878393e-01
9.64517057e-01 2.38762617e-01 -7.95691371e-01 2.59053130e-02
1.01510227e-01 -1.25341251e-01 2.08030432e-01 5.21213412e-01
-1.43713725e+00 1.01266229e+00 6.49734259e+00 1.00051081e+00
-1.26468146e+00 1.20974779e-01 9.19904113e-01 2.16764156e-02
-1.51629969e-01 1.71383858e-01 -1.10725915e+00 5.38119674e-01
7.53590465e-01 -2.29656234e-01 3.02097976e-01 9.90356505e-01
1.63120553e-01 -2.50905037e-01 -1.21526527e+00 8.48814309e-01
-7.86971748e-02 -8.62451911e-01 -3.80022377e-02 -2.55763143e-01
1.06728947e+00 -4.37782377e-01 -9.00986716e-02 5.89411736e-01
4.35488939e-01 -6.05780959e-01 7.62898684e-01 3.40092123e-01
7.71711409e-01 -8.56350958e-01 5.32193184e-01 6.94831073e-01
-1.29170990e+00 -4.52102005e-01 -1.85018286e-01 -2.19143361e-01
-1.45250633e-01 7.43451536e-01 -8.90433192e-01 2.68659472e-01
3.84206921e-01 8.78074348e-01 -7.45062292e-01 9.10900533e-01
-4.83224958e-01 1.01626861e+00 2.75990944e-02 1.39675960e-01
1.70614898e-01 -1.56970963e-01 2.40962222e-01 8.89356136e-01
-1.14975668e-01 4.88339067e-02 7.82903314e-01 4.13007289e-01
1.16808554e-02 2.03026667e-01 -1.24669977e-01 1.35839403e-01
8.25037420e-01 1.41532004e+00 -1.05734193e+00 -3.69417161e-01
-2.81190813e-01 6.09855354e-01 6.26994908e-01 3.15571278e-01
-5.33575058e-01 1.39822483e-01 1.74937978e-01 7.64631992e-03
7.93611258e-02 1.09390564e-01 -3.09524983e-01 -8.74622881e-01
-1.30041316e-01 -6.44391954e-01 6.61469698e-01 -2.51340210e-01
-1.31801605e+00 4.16448921e-01 -9.62845832e-02 -1.40754545e+00
-1.83944091e-01 -1.06502444e-01 -5.48695624e-01 5.95191896e-01
-1.94634569e+00 -8.63978267e-01 -1.14322163e-01 3.29661876e-01
7.92325079e-01 -8.00797045e-02 7.10988879e-01 2.07268938e-01
-7.10327983e-01 5.37251711e-01 1.32295474e-01 -3.42650145e-01
1.02778590e+00 -1.35875618e+00 -5.57503477e-02 4.78092730e-01
1.78306803e-01 3.10010195e-01 4.97348815e-01 -5.40726185e-01
-8.15088928e-01 -1.32558441e+00 1.29318750e+00 -1.10730909e-01
2.92063355e-01 -3.06698859e-01 -9.95811105e-01 3.93564016e-01
-1.67800814e-01 7.92808160e-02 6.71825647e-01 3.33371282e-01
-2.83751875e-01 -4.49989796e-01 -9.20711756e-01 3.86556566e-01
8.58160496e-01 -2.61772096e-01 -4.48176980e-01 6.10030890e-01
6.07059062e-01 -1.29105315e-01 -4.74263281e-01 5.81740499e-01
1.80390403e-01 -6.56911433e-01 7.28596985e-01 -2.52832353e-01
3.93490233e-02 -5.55024266e-01 4.73471522e-01 -1.21727443e+00
-7.51729310e-01 -3.97694558e-01 -2.36103326e-01 1.52684093e+00
1.83940709e-01 -4.97994483e-01 9.27926481e-01 6.04983330e-01
1.72133118e-01 -9.02951002e-01 -9.15010154e-01 -6.15590811e-01
-2.59253591e-01 -7.95377567e-02 5.06459534e-01 1.28338468e+00
-1.58341199e-01 5.85525274e-01 -6.48260415e-01 7.93604478e-02
6.46755338e-01 4.81069595e-01 3.15004945e-01 -1.72213793e+00
-1.54254243e-01 -2.63929754e-01 3.13829854e-02 -8.36948752e-01
5.31398237e-01 -8.55688989e-01 2.73008883e-01 -1.29600739e+00
3.83788645e-01 -1.17100644e+00 -8.46610188e-01 9.20671761e-01
-7.18338192e-01 1.84406117e-02 -3.62231731e-02 6.06484294e-01
-1.09341061e+00 4.30108309e-01 1.07567334e+00 -7.61848167e-02
-3.43302488e-01 2.42194355e-01 -6.70992494e-01 5.60217381e-01
6.27620697e-01 -8.02533627e-01 -8.04102540e-01 -8.93148929e-02
9.96896476e-02 -5.80536425e-02 -1.46922842e-01 -9.71346796e-01
5.50065458e-01 -4.46065396e-01 1.36496156e-01 -3.79346132e-01
-2.06611618e-01 -8.81204426e-01 3.92321423e-02 5.14334619e-01
-8.20600569e-01 -2.64527172e-01 -2.17761949e-01 7.05615342e-01
-1.83501139e-01 -4.73988742e-01 9.40739095e-01 -4.68551852e-02
-9.05181289e-01 3.37636173e-01 -2.08149031e-01 -1.10560739e-02
1.25322652e+00 2.56695412e-03 -6.71989918e-02 -1.23300910e-01
-5.76435626e-01 5.85035980e-01 3.06242347e-01 4.89316165e-01
1.26024991e-01 -1.49069846e+00 -4.76469517e-01 1.81358129e-01
2.25532204e-01 3.27340901e-01 -2.61657387e-02 5.35857201e-01
1.16174035e-01 4.03984278e-01 1.51463091e-01 -6.67379022e-01
-1.12885356e+00 9.38454211e-01 1.51507676e-01 -7.38002539e-01
-4.68051046e-01 7.80385852e-01 3.19401711e-01 -5.18955708e-01
6.19302452e-01 2.28375882e-01 -5.99156141e-01 3.57694954e-01
4.62809026e-01 2.54730761e-01 -5.79229034e-02 -4.65577960e-01
-2.24811569e-01 7.03335583e-01 -3.59056562e-01 2.60566115e-01
1.08441901e+00 -3.81550878e-01 -1.06490955e-01 8.33420515e-01
7.56648242e-01 -2.50292927e-01 -1.48849761e+00 -7.91788816e-01
5.46221137e-01 -1.77171394e-01 1.89200565e-02 -8.53425860e-01
-1.03374374e+00 3.13045561e-01 6.69263363e-01 -5.15474081e-02
1.29704309e+00 -2.15105578e-01 5.42498648e-01 3.38083833e-01
5.66386282e-01 -1.18734407e+00 3.74428004e-01 5.40783584e-01
1.32246971e-01 -1.28477144e+00 -3.69052701e-02 -4.95829046e-01
-6.15323424e-01 9.11158264e-01 8.87024105e-01 2.04837061e-02
4.96748805e-01 6.44365922e-02 3.69854808e-01 6.09889925e-02
-1.16679621e+00 8.76078308e-02 2.10888565e-01 2.12896779e-01
4.97956961e-01 -1.50056317e-01 -7.63548315e-01 2.98168719e-01
3.96299094e-01 6.42485619e-02 9.78020057e-02 1.15958953e+00
-5.32673359e-01 -1.61530101e+00 -3.44423681e-01 3.51099104e-01
-4.92446609e-02 1.62075803e-01 -1.89773679e-01 1.84744671e-01
5.51607609e-01 9.09368038e-01 -1.01843579e-02 -2.74348855e-01
1.31405592e-01 5.40333688e-01 6.67716116e-02 -8.56275976e-01
-5.56301355e-01 4.03669953e-01 -2.08466202e-01 -1.75072834e-01
-7.08381057e-01 -6.97432816e-01 -1.25414681e+00 2.99557567e-01
-4.83390510e-01 5.37303925e-01 2.77772456e-01 1.15724599e+00
1.94265023e-01 4.59811300e-01 1.16726327e+00 -6.73680305e-01
-7.11068928e-01 -7.25192130e-01 -6.46979511e-01 5.11787117e-01
3.15081656e-01 -8.84800971e-01 -3.33929837e-01 1.75164312e-01] | [9.435420989990234, 4.004659652709961] |
700f3962-d9f1-4373-9c8c-7c3d59f926cb | hdr-reconstruction-from-bracketed-exposures | 2203.14825 | null | https://arxiv.org/abs/2203.14825v1 | https://arxiv.org/pdf/2203.14825v1.pdf | HDR Reconstruction from Bracketed Exposures and Events | Reconstruction of high-quality HDR images is at the core of modern computational photography. Significant progress has been made with multi-frame HDR reconstruction methods, producing high-resolution, rich and accurate color reconstructions with high-frequency details. However, they are still prone to fail in dynamic or largely over-exposed scenes, where frame misalignment often results in visible ghosting artifacts. Recent approaches attempt to alleviate this by utilizing an event-based camera (EBC), which measures only binary changes of illuminations. Despite their desirable high temporal resolution and dynamic range characteristics, such approaches have not outperformed traditional multi-frame reconstruction methods, mainly due to the lack of color information and low-resolution sensors. In this paper, we propose to leverage both bracketed LDR images and simultaneously captured events to obtain the best of both worlds: high-quality RGB information from bracketed LDRs and complementary high frequency and dynamic range information from events. We present a multi-modal end-to-end learning-based HDR imaging system that fuses bracketed images and event modalities in the feature domain using attention and multi-scale spatial alignment modules. We propose a novel event-to-image feature distillation module that learns to translate event features into the image-feature space with self-supervision. Our framework exploits the higher temporal resolution of events by sub-sampling the input event streams using a sliding window, enriching our combined feature representation. Our proposed approach surpasses SoTA multi-frame HDR reconstruction methods using synthetic and real events, with a 2dB and 1dB improvement in PSNR-L and PSNR-mu on the HdM HDR dataset, respectively. | ['Eduardo Perez-Pellitero', 'Ales Leonardis', 'Sibi Catley-Chandar', 'Richard Shaw'] | 2022-03-28 | null | null | null | null | ['hdr-reconstruction'] | ['computer-vision'] | [ 4.36206430e-01 -5.00606060e-01 1.70333177e-01 -3.93017262e-01
-1.05079544e+00 -1.89700171e-01 5.00596225e-01 -1.13726981e-01
-3.75902385e-01 8.01550329e-01 2.99011499e-01 3.94166201e-01
-2.47105211e-02 -8.06306481e-01 -9.32760596e-01 -8.06828499e-01
1.40972942e-01 -1.41506821e-01 3.36580336e-01 -1.92806363e-01
2.44687852e-02 5.10809898e-01 -2.07775354e+00 3.42611849e-01
6.85850084e-01 1.24108028e+00 4.68747646e-01 8.52745950e-01
2.64601171e-01 1.21396244e+00 -2.11599544e-01 -1.42305225e-01
4.31955785e-01 -5.42047918e-01 -3.72907162e-01 2.53568083e-01
6.44711912e-01 -9.14701939e-01 -8.77795041e-01 7.80525744e-01
6.77070618e-01 1.82642758e-01 1.76471826e-02 -9.93527055e-01
-5.68937659e-01 -2.05701411e-01 -7.27194726e-01 2.83432633e-01
7.32097387e-01 3.71686190e-01 8.87228429e-01 -8.69477510e-01
7.61080742e-01 1.10303521e+00 4.92276907e-01 2.47151002e-01
-1.28997898e+00 -5.99768043e-01 -3.70003849e-01 4.29537982e-01
-1.11186159e+00 -6.47847593e-01 8.94436181e-01 -4.67387140e-02
1.09100962e+00 2.42179871e-01 8.85869503e-01 1.00457740e+00
2.08991557e-01 5.29769778e-01 1.53819418e+00 -3.37388277e-01
6.23991564e-02 -3.65697801e-01 -4.00199145e-01 4.90574151e-01
-2.01166198e-01 5.13056278e-01 -1.01284027e+00 2.01438203e-01
1.12366676e+00 4.79860187e-01 -7.28572786e-01 3.04773431e-02
-1.40667570e+00 5.14815509e-01 4.36526895e-01 1.27468571e-01
-6.42839551e-01 2.68759280e-01 6.13912493e-02 3.05161119e-01
3.98533463e-01 8.15978274e-02 -2.80203134e-01 -1.71989754e-01
-9.66211796e-01 -7.62211606e-02 3.59184861e-01 6.08791649e-01
9.84402120e-01 1.08724028e-01 -9.12253335e-02 6.65988863e-01
4.88524772e-02 7.36116290e-01 3.10533583e-01 -1.23295665e+00
1.42309904e-01 2.03257173e-01 2.80708760e-01 -8.61112595e-01
-2.37863272e-01 -6.80311024e-03 -9.87769306e-01 5.08142412e-01
2.96614151e-02 2.39844427e-01 -9.54377294e-01 1.56404519e+00
4.30580258e-01 3.05199265e-01 2.89033167e-02 1.33003271e+00
5.54037035e-01 9.37188506e-01 -1.57767776e-02 -5.34967721e-01
1.14698470e+00 -5.94986439e-01 -9.26072538e-01 -3.87277007e-02
-3.44960988e-01 -7.94871449e-01 1.08950722e+00 4.63882446e-01
-1.24137425e+00 -7.06968069e-01 -1.08732939e+00 -4.71505672e-01
2.48722248e-02 -6.86028376e-02 4.58215505e-01 2.58602291e-01
-9.89944339e-01 6.77256584e-01 -7.90551841e-01 -3.37407440e-01
2.98362434e-01 6.96371868e-02 -5.17618537e-01 -5.81246614e-01
-1.19710076e+00 8.40465426e-01 2.28624061e-01 -8.52334350e-02
-9.77211893e-01 -9.60017920e-01 -9.41764355e-01 -2.42685407e-01
2.11564347e-01 -6.75894618e-01 7.80954123e-01 -1.01595569e+00
-1.74292672e+00 7.13895082e-01 -6.42465651e-02 -3.52965832e-01
4.50785667e-01 -4.11537379e-01 -5.23076415e-01 5.94183207e-01
-3.23190615e-02 4.99584287e-01 1.06977737e+00 -1.18656743e+00
-7.38992751e-01 -2.60347933e-01 4.18934561e-02 4.61974651e-01
-1.26658440e-01 6.95686191e-02 -5.33604741e-01 -6.48082554e-01
1.26427293e-01 -5.58575213e-01 -6.31983876e-02 3.95027101e-01
2.52699610e-02 4.49478745e-01 9.82423663e-01 -7.86548793e-01
8.04274321e-01 -2.15624642e+00 1.72047615e-01 -4.65913832e-01
2.40636691e-01 1.72615517e-02 -9.32726730e-03 2.60728091e-01
-6.61988091e-03 -5.58331788e-01 -2.42103085e-01 -5.03174722e-01
-4.22719866e-01 3.45059186e-01 -5.51817596e-01 8.61395836e-01
2.87991226e-01 6.88846707e-01 -9.99099612e-01 -4.34867650e-01
1.05183160e+00 9.35571551e-01 -3.02785784e-01 6.27619982e-01
-1.16526462e-01 7.33587742e-01 3.57581861e-02 8.59871209e-01
6.96917057e-01 -2.57844388e-01 -1.05382070e-01 -8.34820569e-01
-2.53952384e-01 1.51215782e-02 -1.29258597e+00 2.14716768e+00
-7.34866977e-01 7.95933187e-01 -1.09096855e-01 -4.81757879e-01
7.41998553e-01 1.89883664e-01 9.15494204e-01 -1.25233972e+00
-1.98822469e-01 3.26494664e-01 -6.16182804e-01 -5.95720232e-01
7.62709558e-01 -3.61829221e-01 3.24552022e-02 2.13460982e-01
2.23387226e-01 -1.30804986e-01 -1.32474646e-01 1.08011946e-01
1.18676460e+00 4.39638019e-01 4.32905704e-01 3.89966577e-01
3.25869948e-01 -3.35011899e-01 5.57925940e-01 4.11885768e-01
-1.09921433e-01 1.18873668e+00 -2.44092822e-01 -3.80503863e-01
-1.35115743e+00 -1.40850866e+00 -2.77494043e-01 7.62824595e-01
5.36351919e-01 -2.77730465e-01 9.09571275e-02 -4.97344695e-02
-1.40233859e-01 4.31702793e-01 -4.01503354e-01 -2.05225572e-02
-5.57845533e-01 -7.85736799e-01 3.31887960e-01 2.47294992e-01
9.16737080e-01 -7.98049271e-01 -1.07647288e+00 3.49297911e-01
-5.02306819e-01 -1.45541251e+00 -3.05143207e-01 2.39054099e-01
-5.27713180e-01 -9.57820594e-01 -8.24061751e-01 -2.69347876e-01
1.54570565e-01 4.71451849e-01 1.13526952e+00 -3.48482609e-01
-7.43123651e-01 5.62311411e-01 -4.57838386e-01 2.16670170e-01
-1.57237291e-01 -7.50005960e-01 -1.18414119e-01 4.76493150e-01
-1.65172130e-01 -9.23672915e-01 -1.09322119e+00 1.98529586e-01
-1.28453708e+00 3.94653857e-01 7.14844167e-01 9.72608566e-01
8.46455872e-01 9.27635352e-04 3.18728477e-01 -3.03921163e-01
-2.53900081e-01 -3.51743519e-01 -5.52457273e-01 1.34201527e-01
-5.27787685e-01 -1.91388339e-01 6.72206163e-01 -3.71519774e-01
-1.39189446e+00 2.52375901e-01 -9.84642208e-02 -9.61312532e-01
-1.58337533e-01 -1.40764788e-01 -1.95935145e-01 -3.66057783e-01
4.55454379e-01 4.86251771e-01 -9.46889296e-02 -1.69571161e-01
5.21860063e-01 4.94012445e-01 1.04057121e+00 -4.04821664e-01
7.97911882e-01 9.45417464e-01 8.70578960e-02 -7.59691656e-01
-6.79849327e-01 -5.71428299e-01 -1.87382221e-01 -5.54509819e-01
9.32926297e-01 -1.49068642e+00 -5.97881019e-01 7.16144264e-01
-9.84267175e-01 -2.70704955e-01 -5.44593632e-01 4.35125113e-01
-8.46100867e-01 4.95879143e-01 -9.22745585e-01 -7.17025340e-01
-3.31656009e-01 -9.77485061e-01 1.54739499e+00 3.73324156e-01
4.08102483e-01 -5.33054471e-01 9.69297662e-02 2.43010595e-01
6.08648360e-01 7.00404823e-01 4.00069207e-01 3.70955944e-01
-1.07358980e+00 8.63119736e-02 -3.86110008e-01 3.08589488e-01
1.55269206e-01 -3.16869855e-01 -1.20393419e+00 -2.36313522e-01
2.64232665e-01 -6.29366040e-01 8.53652298e-01 3.34714413e-01
9.79861081e-01 -3.48353162e-02 9.64852646e-02 1.18390095e+00
2.19194317e+00 5.45253605e-03 1.08015478e+00 3.73745948e-01
8.89245510e-01 3.16893905e-01 7.57526159e-01 7.99464047e-01
4.87089902e-01 9.44499314e-01 5.04338503e-01 -3.89780015e-01
-6.93978906e-01 -2.05762818e-01 5.98432541e-01 3.15127403e-01
-1.32569015e-01 -1.96649835e-01 -4.35155809e-01 4.71529663e-01
-1.66292536e+00 -1.06827426e+00 3.32850553e-02 2.15354085e+00
1.02680898e+00 -4.01785433e-01 -1.49713367e-01 1.55653983e-01
5.71639478e-01 5.63821971e-01 -7.11881816e-01 3.81929636e-01
-7.90834844e-01 3.20832908e-01 6.58400774e-01 3.67252827e-01
-8.98665190e-01 4.80639517e-01 5.00385284e+00 7.13973224e-01
-1.22201633e+00 2.57426202e-01 5.74516118e-01 -5.03913879e-01
-1.98506355e-01 2.70118322e-02 -4.66686547e-01 5.44219494e-01
9.24799800e-01 4.96433564e-02 7.50751257e-01 4.04562205e-01
2.30803251e-01 -4.74275082e-01 -1.08103132e+00 1.62915719e+00
3.84289801e-01 -1.34967864e+00 -1.43473133e-01 -3.96113768e-02
7.78612316e-01 1.37229368e-01 1.10392096e-02 -1.93689898e-01
2.36058548e-01 -8.10426772e-01 9.06296790e-01 6.24525487e-01
1.25337052e+00 -5.38095057e-01 2.44071618e-01 -1.30945399e-01
-1.32995594e+00 -1.45597070e-01 -1.03204347e-01 1.57341301e-01
6.96304023e-01 7.52344429e-01 -1.38313860e-01 8.84950876e-01
1.23299301e+00 1.26795423e+00 -4.27220762e-01 7.86906481e-01
-5.63155077e-02 6.83309361e-02 -4.57634449e-01 7.71631002e-01
-3.24724346e-01 -1.80299118e-01 5.61943293e-01 8.93249869e-01
4.54342544e-01 3.52092147e-01 2.71269120e-02 7.34835267e-01
6.92551732e-02 -4.84143734e-01 -5.69536805e-01 3.58019531e-01
2.41055533e-01 1.37751091e+00 -3.07818651e-01 -1.66134849e-01
-7.06287861e-01 1.72900999e+00 4.25931104e-02 3.47515821e-01
-1.06492460e+00 -2.83218056e-01 7.08423674e-01 1.17602579e-01
3.45811188e-01 -2.44355187e-01 4.06434685e-02 -1.44831848e+00
1.18539929e-01 -7.62648582e-01 3.38133574e-01 -1.25040960e+00
-1.31671786e+00 4.92733479e-01 -2.47188285e-01 -1.40029097e+00
-1.40672982e-01 -2.55076438e-01 -1.13618203e-01 6.88441098e-01
-2.11295080e+00 -1.34117496e+00 -7.91553438e-01 1.12985504e+00
6.45946205e-01 2.74606258e-01 5.98644972e-01 8.30938637e-01
-3.70737880e-01 1.79385245e-01 2.25245252e-01 -2.01620385e-01
1.05727291e+00 -1.09660387e+00 -1.55635625e-01 1.11792886e+00
5.26037291e-02 -3.89210172e-02 7.55775630e-01 -3.88425291e-01
-1.97320068e+00 -1.31971443e+00 2.71751821e-01 -1.84158072e-01
3.54941547e-01 -2.02131778e-01 -8.16431522e-01 4.45735157e-01
1.24704048e-01 7.05137074e-01 2.45850101e-01 -5.25129497e-01
-3.20887357e-01 -5.43049753e-01 -1.20772243e+00 3.77142161e-01
1.03433990e+00 -9.65617955e-01 -2.26141736e-01 1.72612324e-01
7.04237044e-01 -5.91946125e-01 -1.28820693e+00 4.22024161e-01
4.94095445e-01 -1.43108344e+00 1.30409825e+00 3.03557575e-01
7.05571651e-01 -6.88145995e-01 -6.25666857e-01 -9.54041421e-01
2.98240297e-02 -7.75649726e-01 -4.15394157e-01 1.28300488e+00
-4.42437738e-01 -4.92068768e-01 2.34407857e-01 4.42576617e-01
-9.41035748e-02 -4.78417486e-01 -1.10063004e+00 -5.23057401e-01
-6.67966843e-01 -3.25425476e-01 3.08932155e-01 7.22508669e-01
-5.67960918e-01 1.02742910e-01 -9.58130181e-01 3.03694814e-01
1.10781217e+00 5.40714145e-01 6.29648328e-01 -6.56183541e-01
-6.30080581e-01 2.21141577e-01 -5.51436007e-01 -8.57350826e-01
-1.26491979e-01 -3.64750087e-01 2.29125679e-01 -1.32259929e+00
1.66242033e-01 -2.66268969e-01 -2.40765303e-01 2.02741340e-01
-1.96764559e-01 7.03177691e-01 2.65128762e-01 4.34475869e-01
-8.87456059e-01 8.07474136e-01 9.45733547e-01 1.99098274e-01
-7.34384870e-03 -8.11940968e-01 -9.10919234e-02 4.21513021e-01
2.51646161e-01 -2.07643226e-01 -2.35197842e-01 -5.52048206e-01
1.02631077e-01 6.23260021e-01 7.99945474e-01 -1.35906303e+00
3.71764451e-01 -1.27775162e-01 8.46756935e-01 -4.07694221e-01
7.75413334e-01 -9.26842809e-01 8.38912487e-01 1.93561595e-02
-4.35275659e-02 9.59800463e-03 -1.53747043e-02 9.69525993e-01
-4.12443370e-01 6.30096555e-01 1.12628043e+00 -1.02837376e-01
-1.13090205e+00 5.07376254e-01 1.13639325e-01 -2.25501627e-01
1.14303970e+00 -2.01812267e-01 -4.50262368e-01 -3.69067699e-01
-2.17373624e-01 -1.72578305e-01 9.55546677e-01 2.61501968e-01
9.79480684e-01 -1.30854964e+00 -6.42197073e-01 3.66132289e-01
1.66433677e-01 -1.12881064e-02 8.00573945e-01 8.66359115e-01
-5.51710248e-01 -1.98648453e-01 -6.24081790e-01 -8.37084293e-01
-9.19378400e-01 4.20661956e-01 3.99666756e-01 -1.09763637e-01
-1.20023465e+00 3.89301866e-01 -3.35420705e-02 3.12917680e-01
-2.91921254e-02 -5.24936942e-03 2.23645821e-01 -8.34682956e-02
6.25655472e-01 2.95649827e-01 3.26046944e-02 -7.21734226e-01
-7.82065243e-02 7.89791048e-01 1.70274451e-01 -1.83200985e-01
1.64130592e+00 -7.19138861e-01 6.26993626e-02 5.79370618e-01
1.34607327e+00 -1.84795365e-01 -1.83450115e+00 -3.30256730e-01
-5.67166746e-01 -1.03627455e+00 4.27656025e-01 -7.13001966e-01
-1.31070137e+00 6.15773857e-01 1.06951177e+00 -1.92035437e-01
1.93129492e+00 -7.58245289e-02 1.24323249e+00 -1.24449410e-01
6.39675498e-01 -7.81765282e-01 3.32400352e-01 -2.51401458e-02
7.83739209e-01 -1.55883884e+00 1.72276214e-01 -7.48492405e-02
-4.82077181e-01 1.24578571e+00 3.85817945e-01 -1.32631823e-01
2.46273473e-01 3.05396825e-01 -1.50067732e-01 1.25090573e-02
-7.24555671e-01 -4.22751099e-01 -1.27151012e-01 5.67543864e-01
-1.45702029e-03 -3.79738867e-01 9.13419500e-02 3.64736654e-02
3.71288866e-01 2.98081547e-01 5.19267201e-01 7.80979037e-01
-1.47877291e-01 -7.10908771e-01 -4.39185888e-01 1.48701385e-01
-4.51839387e-01 -1.50185362e-01 5.65615952e-01 6.69014513e-01
1.97060466e-01 9.44616616e-01 2.63295555e-03 -4.00864959e-01
3.37105036e-01 -3.48176271e-01 8.11260223e-01 1.42560136e-02
-2.55806327e-01 2.07575187e-02 -5.39585538e-02 -1.29208803e+00
-8.70886683e-01 -6.33991122e-01 -1.06521797e+00 -3.08056235e-01
1.28018763e-02 -5.54498076e-01 6.21416092e-01 5.98406196e-01
4.40240204e-01 5.64163089e-01 8.78536642e-01 -1.26017392e+00
-1.17902197e-01 -5.48991859e-01 -7.74027884e-01 7.84347653e-01
9.08364236e-01 -5.76938331e-01 -5.86360872e-01 4.46812510e-01] | [10.678972244262695, -2.1089367866516113] |
7c192e3c-104c-4505-a7b4-29f46e69dc8d | conditional-generative-adversarial-nets | 1411.1784 | null | https://arxiv.org/abs/1411.1784v1 | https://arxiv.org/pdf/1411.1784v1.pdf | Conditional Generative Adversarial Nets | Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels. | ['Mehdi Mirza', 'Simon Osindero'] | 2014-11-06 | null | null | null | null | ['human-action-generation'] | ['computer-vision'] | [ 6.33001089e-01 8.05798292e-01 1.82189375e-01 -6.17966712e-01
-8.40683937e-01 -1.05257285e+00 1.07076502e+00 -5.44104874e-01
-2.70775914e-01 1.13464224e+00 8.20564851e-02 -2.56044298e-01
2.46151671e-01 -1.15411949e+00 -8.63825500e-01 -7.77367294e-01
1.57222256e-01 9.31713998e-01 -1.02729686e-01 -1.66241273e-01
-2.10051298e-01 5.39775312e-01 -1.16385901e+00 4.49383259e-01
3.87246668e-01 4.78648454e-01 -2.44311899e-01 8.10652435e-01
-6.67914078e-02 8.90442908e-01 -1.03137100e+00 -7.04552889e-01
2.61094689e-01 -6.05665088e-01 -9.51997697e-01 1.01350702e-01
2.90251940e-01 -2.71748245e-01 -3.74478638e-01 1.17748022e+00
4.58296955e-01 1.12399586e-01 1.18537712e+00 -1.49224424e+00
-1.16514671e+00 1.04260778e+00 3.56418461e-01 -2.65321314e-01
2.04474613e-01 -1.37939557e-01 6.66994452e-01 -6.17825925e-01
7.99995601e-01 1.23999608e+00 6.79826736e-01 1.33371270e+00
-1.50333762e+00 -5.70851862e-01 -2.04793945e-01 -2.61603177e-01
-1.04058719e+00 -3.24742079e-01 7.78340518e-01 -4.75812644e-01
5.85343897e-01 2.29053155e-01 3.82393539e-01 1.57185447e+00
2.26517972e-02 8.60573769e-01 1.23900032e+00 -7.51974523e-01
1.93082839e-01 1.01275183e-01 -2.22218007e-01 6.85738087e-01
-1.60150468e-01 6.10821664e-01 2.96602771e-02 -2.11119533e-01
9.27324474e-01 1.96996387e-02 1.26137242e-01 -3.89424235e-01
-1.20889509e+00 1.41393292e+00 6.89592361e-01 3.31069797e-01
2.77005304e-02 6.27262354e-01 1.14264354e-01 2.67357826e-01
3.47812057e-01 5.40482819e-01 -6.98160678e-02 3.17942500e-01
-6.95248902e-01 2.29078963e-01 8.40007663e-01 1.24975133e+00
8.47686172e-01 5.44008374e-01 -4.00238216e-01 8.25138330e-01
1.45518631e-01 5.35517395e-01 5.82400620e-01 -1.13978887e+00
-1.39298782e-01 -7.10393637e-02 -7.72808418e-02 -6.73384815e-02
-1.47402957e-01 -1.15291648e-01 -7.46339142e-01 4.31215167e-01
2.14097202e-01 -4.78726983e-01 -1.68992221e+00 1.99761593e+00
-1.31949857e-01 2.12920204e-01 4.38703150e-01 3.93665195e-01
9.24882948e-01 4.62416977e-01 5.09643435e-01 3.38524371e-01
9.46305335e-01 -7.11570024e-01 -5.52917063e-01 -1.51996449e-01
4.49483275e-01 -8.51677895e-01 4.42824244e-01 2.74836682e-02
-1.10984147e+00 -7.39683568e-01 -8.66669357e-01 -3.04250326e-02
-9.17421341e-01 1.51401863e-01 1.04941022e+00 9.36186075e-01
-1.32230449e+00 7.16750801e-01 -8.22568119e-01 -2.76854515e-01
4.93393064e-01 4.55123335e-01 -2.80216306e-01 -1.06605351e-01
-1.49500501e+00 9.09224212e-01 6.63259327e-01 -2.56768584e-01
-1.47934914e+00 -1.58188313e-01 -1.01343918e+00 -1.00854881e-01
-1.62244558e-01 -9.87484574e-01 1.52759266e+00 -1.18027794e+00
-1.49797368e+00 1.12449253e+00 2.29669273e-01 -4.52093095e-01
2.70130366e-01 2.27822393e-01 -6.18659258e-01 5.29817641e-02
1.97937772e-01 1.33123398e+00 7.61599064e-01 -1.46636152e+00
-5.28682947e-01 1.17639467e-01 4.46852654e-01 -2.62464881e-01
6.28013462e-02 -1.36877835e-01 1.65739581e-02 -1.08503008e+00
-1.49078086e-01 -1.19026983e+00 -3.15724969e-01 -3.29787016e-01
-8.21774244e-01 -1.76081941e-01 5.45465767e-01 -2.14260265e-01
3.25084150e-01 -1.88061488e+00 1.08013168e-01 3.19471121e-01
4.22196984e-02 2.76099086e-01 -3.62235844e-01 5.02856016e-01
-4.63646144e-01 3.73259872e-01 -5.85440636e-01 -3.71252924e-01
4.30338144e-01 7.65788198e-01 -6.07055664e-01 1.71327680e-01
5.76541483e-01 1.19955242e+00 -9.42261994e-01 -2.57261515e-01
1.71031475e-01 7.12961853e-01 -5.37857175e-01 5.11683285e-01
-4.10171747e-01 5.32722831e-01 -2.97688127e-01 4.96005654e-01
3.87352556e-01 -1.52493473e-02 -1.47701064e-02 2.20528379e-01
3.91030997e-01 1.91451058e-01 -7.24052906e-01 1.62023091e+00
-3.90359372e-01 6.01812303e-01 -3.34444314e-01 -1.21216023e+00
7.63061523e-01 5.16971052e-01 1.71616420e-01 3.10519487e-02
1.45776942e-01 3.66776995e-02 -1.10930316e-01 -1.42300785e-01
3.74329299e-01 -8.32812548e-01 -6.02022648e-01 5.74233532e-01
6.46522999e-01 -4.48038608e-01 2.31574968e-01 2.88579464e-01
1.01007485e+00 3.97326767e-01 4.39818352e-02 6.78859279e-02
3.12484801e-01 3.88407521e-02 2.17219278e-01 9.06851530e-01
3.09167236e-01 7.11657941e-01 3.04838955e-01 -3.48003954e-01
-1.23423994e+00 -1.45303226e+00 -1.15522824e-01 1.07094634e+00
-3.43731791e-01 -8.98122489e-02 -8.85131121e-01 -1.02086949e+00
-1.30272329e-01 8.95837724e-01 -1.05394745e+00 -3.88161331e-01
-4.84750599e-01 -7.61560559e-01 9.52132821e-01 8.72582853e-01
1.17598981e-01 -1.58122122e+00 -5.74494302e-02 1.56945303e-01
3.43233608e-02 -8.55946004e-01 -1.78631708e-01 8.83879364e-01
-6.56322777e-01 -8.81546140e-01 -9.44082737e-01 -1.22668970e+00
1.04240799e+00 -5.16716599e-01 1.50467670e+00 2.42243521e-02
4.27345522e-02 5.73786914e-01 -4.13628638e-01 -4.90931451e-01
-1.31732512e+00 2.70075023e-01 -2.66137898e-01 -4.22398478e-01
4.22809213e-01 -6.20206714e-01 -6.64705262e-02 1.37490943e-01
-1.45827770e+00 1.04002636e-02 5.14553666e-01 1.05251658e+00
5.81381321e-01 -2.29169354e-01 6.80700123e-01 -1.66475284e+00
5.15416980e-01 -6.07200921e-01 -4.00299400e-01 1.68636918e-01
-2.65481800e-01 3.18599790e-01 7.25107849e-01 -5.75688362e-01
-7.72785902e-01 3.40406567e-01 -7.31210530e-01 -3.08378607e-01
-5.66105127e-01 2.27049842e-01 -3.55660647e-01 -1.83327287e-01
6.40554249e-01 1.20638162e-01 -3.01136404e-01 -3.06083441e-01
8.43777180e-01 5.04921913e-01 8.35173190e-01 -6.87400639e-01
1.11427689e+00 3.73917192e-01 1.63810983e-01 -8.39983001e-02
-7.19553709e-01 2.44623959e-01 -7.77314365e-01 1.80072635e-01
1.01642859e+00 -7.83909321e-01 -2.51959413e-01 2.58271903e-01
-1.17174888e+00 -5.63285351e-01 -8.48460793e-01 2.26383805e-01
-1.11911535e+00 -1.16784781e-01 -7.24460185e-01 -4.67755526e-01
3.09358221e-02 -8.52415979e-01 9.37442541e-01 2.05795482e-01
-7.62201175e-02 -1.52778006e+00 1.18968159e-01 -3.01163971e-01
3.50107104e-01 5.10048091e-01 9.33095753e-01 -1.19952393e+00
-5.10104656e-01 -3.92605364e-01 1.50697932e-01 5.55066705e-01
1.39931887e-01 -1.43620431e-01 -1.13262403e+00 -1.06135361e-01
-2.37806827e-01 -6.68853104e-01 8.95704389e-01 1.33803815e-01
1.09577250e+00 -2.07462326e-01 -4.55058694e-01 8.21065962e-01
1.42909527e+00 3.96584123e-01 8.37545633e-01 5.84785379e-02
8.37371171e-01 1.86749861e-01 1.16641983e-01 -1.05060436e-01
6.29708022e-02 5.43137014e-01 3.87901604e-01 -2.68545717e-01
-4.43587393e-01 -5.33896625e-01 2.39953324e-01 5.61844707e-01
-5.97983673e-02 -5.40234447e-01 -6.67860806e-01 5.04777431e-01
-1.41421092e+00 -1.21867418e+00 2.90419489e-01 1.71068501e+00
1.03484392e+00 4.48256247e-02 3.32630090e-02 1.18109345e-01
8.10688555e-01 -7.66968653e-02 -3.10376137e-01 -4.84543920e-01
-1.49466559e-01 9.70141053e-01 4.97555494e-01 6.04774535e-01
-1.41615975e+00 1.10499656e+00 8.47653580e+00 7.34096646e-01
-8.55264843e-01 3.00283849e-01 5.37123144e-01 3.66530865e-01
-7.16010451e-01 7.95255080e-02 -7.57149518e-01 4.88494784e-01
1.14309669e+00 1.71977520e-01 3.40692818e-01 9.51330900e-01
-7.07780719e-01 3.62194955e-01 -1.45372510e+00 4.67124104e-01
2.05991134e-01 -1.14452648e+00 2.49250025e-01 9.92417261e-02
1.07778454e+00 -2.40091532e-01 1.68451801e-01 6.08337998e-01
1.37024152e+00 -1.23804116e+00 6.72866583e-01 6.32712126e-01
1.13621771e+00 -7.92108417e-01 6.50156915e-01 1.80310816e-01
-6.59262300e-01 2.51908928e-01 -4.90722269e-01 2.78182805e-01
4.04542804e-01 3.15125823e-01 -1.01694453e+00 3.68554682e-01
5.93551397e-02 4.84220684e-01 -4.04842168e-01 8.51046145e-01
-7.40285337e-01 5.33444464e-01 -4.42139208e-02 1.38843819e-01
3.21165919e-01 8.49683061e-02 3.24934870e-01 1.33964443e+00
5.80727398e-01 2.85768826e-02 2.85939246e-01 1.05330193e+00
-3.57800424e-01 -6.07394993e-01 -9.50709939e-01 -2.60287941e-01
2.05705136e-01 1.14364994e+00 -8.51595461e-01 -6.67874157e-01
-1.57579690e-01 1.27868998e+00 2.48480156e-01 4.12656516e-01
-9.12114143e-01 -4.77593094e-01 4.13835436e-01 -1.94233850e-01
4.72943693e-01 -4.62467819e-02 -6.33583171e-03 -1.12630725e+00
-8.37502241e-01 -6.78026080e-01 2.98698753e-01 -1.08664191e+00
-1.55524921e+00 9.89296615e-01 5.79399131e-02 -1.22007489e+00
-1.09277284e+00 -8.04605484e-01 -4.37816173e-01 1.15245295e+00
-1.28239930e+00 -1.43796587e+00 2.68814694e-02 7.07113504e-01
2.23924786e-01 -5.39786518e-01 1.50814950e+00 1.40852094e-01
-4.18475047e-02 6.44765198e-01 9.54376757e-02 6.04368746e-01
5.66527665e-01 -1.72429693e+00 7.08060980e-01 8.66123378e-01
7.12650418e-01 4.54174995e-01 7.22355843e-01 -5.04492164e-01
-5.24617493e-01 -1.36767101e+00 9.82509673e-01 -7.35565364e-01
3.89528245e-01 -4.45481122e-01 -4.28519636e-01 1.39711607e+00
3.19012314e-01 7.17081875e-02 1.02455878e+00 -2.25429848e-01
-3.41438979e-01 3.18783462e-01 -1.39392889e+00 3.26801598e-01
1.05758834e+00 -6.33130431e-01 -7.66104102e-01 4.81310010e-01
6.80387259e-01 -5.91504455e-01 -8.04869473e-01 2.82440186e-01
2.12260112e-01 -7.72871673e-01 1.03637052e+00 -8.84513080e-01
4.69259739e-01 -1.22251637e-01 -1.59988821e-01 -1.80674899e+00
-5.62621951e-01 -4.70589936e-01 1.05960377e-01 1.47207999e+00
4.19010192e-01 -5.37092149e-01 6.99777782e-01 3.46403182e-01
-4.09858525e-01 -1.27817661e-01 -8.10857177e-01 -7.85996675e-01
5.66913784e-01 -2.76557356e-01 7.78034091e-01 9.09855604e-01
-3.87080491e-01 2.90374607e-01 -4.81995553e-01 -1.67247400e-01
3.79196197e-01 2.65394989e-02 5.15890896e-01 -1.14673781e+00
-3.73327076e-01 -2.23080158e-01 -5.64516842e-01 -9.56971765e-01
5.88473737e-01 -1.41356921e+00 3.72574389e-01 -1.43983936e+00
1.01558231e-02 -8.50731611e-01 -2.70113200e-01 8.61192524e-01
-2.92574521e-02 8.97951186e-01 2.69308120e-01 1.09300531e-01
-1.13016933e-01 2.91744053e-01 1.17613304e+00 -3.38571608e-01
4.74384785e-01 2.57989228e-01 -7.43268371e-01 6.04594588e-01
7.67269075e-01 -8.33112121e-01 -4.93781149e-01 -3.06714088e-01
-5.67828910e-03 -1.34458780e-01 4.85125512e-01 -1.06206572e+00
-1.83489457e-01 9.37738493e-02 8.58052909e-01 -2.17408240e-01
4.67385262e-01 -9.02238607e-01 5.13573766e-01 3.89899135e-01
-6.53118551e-01 -6.81855381e-02 4.91455570e-02 2.55841345e-01
-3.14258993e-01 -7.03589082e-01 8.64409447e-01 -3.93623173e-01
-5.91220677e-01 2.61853486e-01 -4.44329798e-01 -3.82277891e-02
9.41888332e-01 9.86268297e-02 -3.86627644e-01 -5.20947278e-01
-1.35266387e+00 -3.35214823e-01 5.56886435e-01 1.78445294e-01
4.48997378e-01 -1.89884949e+00 -6.14634156e-01 3.48168939e-01
-9.27425325e-02 -2.69832820e-01 -1.36671111e-01 -1.01394407e-01
-3.60295326e-01 4.60192204e-01 -5.79643905e-01 -2.38592327e-01
-7.10771680e-01 9.83689368e-01 3.83692652e-01 -2.00075537e-01
-1.78686336e-01 9.28737938e-01 2.57576585e-01 -5.03706932e-01
-6.52045086e-02 -6.91393241e-02 -1.94764629e-01 -9.50291082e-02
2.70588070e-01 -2.61842072e-01 -1.60023883e-01 -7.18638182e-01
-1.86362430e-01 3.47731501e-01 2.77845711e-01 -4.29101050e-01
1.21558106e+00 1.87913552e-01 7.21751451e-02 3.87809753e-01
1.16555226e+00 2.85273441e-03 -1.03404856e+00 -8.61859508e-03
-4.27714199e-01 -1.30214747e-02 -5.43446302e-01 -1.07071602e+00
-1.26114249e+00 9.62223530e-01 5.96723974e-01 6.27384841e-01
1.02859056e+00 3.44842315e-01 6.21193886e-01 1.88587785e-01
3.45301479e-01 -6.18791759e-01 -1.25848070e-01 4.33348596e-01
6.14095390e-01 -9.97967482e-01 -4.68346387e-01 -2.98796594e-01
-3.88686568e-01 1.08492005e+00 2.74444580e-01 -5.24112225e-01
6.41039312e-01 4.54436302e-01 2.12366462e-01 -3.14130709e-02
-5.01657665e-01 -5.18233478e-01 2.71317273e-01 1.35579288e+00
5.72380185e-01 3.25331300e-01 -8.25142190e-02 3.61485124e-01
-5.40659010e-01 -2.88713668e-02 5.01529217e-01 9.78206277e-01
-1.90632656e-01 -1.79990005e+00 -3.13940614e-01 2.66788632e-01
-7.11156785e-01 -3.05602074e-01 -4.57207412e-01 8.00010264e-01
5.74500620e-01 6.33754134e-01 2.30636969e-01 -4.06847566e-01
8.01770240e-02 5.37089050e-01 7.25282431e-01 -1.02008224e+00
-4.78825152e-01 -1.69890344e-01 1.53227210e-01 -7.77911171e-02
-7.98549950e-01 -5.21643221e-01 -1.10870790e+00 -1.15669601e-01
2.37294962e-03 3.80810976e-01 6.37607872e-01 7.80076087e-01
-6.79267943e-02 6.31558061e-01 4.97563481e-01 -9.60297883e-01
-4.26273316e-01 -1.23672414e+00 -6.01312757e-01 5.74133396e-01
2.27147177e-01 -5.98750412e-01 -3.83135229e-01 7.32854545e-01] | [11.552664756774902, -0.17095650732517242] |
ba967527-f9fe-4b56-812a-eb86a664658c | robust-automated-human-activity-recognition | 1607.04867 | null | http://arxiv.org/abs/1607.04867v2 | http://arxiv.org/pdf/1607.04867v2.pdf | Robust Automated Human Activity Recognition and its Application to Sleep Research | Human Activity Recognition (HAR) is a powerful tool for understanding human
behaviour. Applying HAR to wearable sensors can provide new insights by
enriching the feature set in health studies, and enhance the personalisation
and effectiveness of health, wellness, and fitness applications. Wearable
devices provide an unobtrusive platform for user monitoring, and due to their
increasing market penetration, feel intrinsic to the wearer. The integration of
these devices in daily life provide a unique opportunity for understanding
human health and wellbeing. This is referred to as the "quantified self"
movement. The analyses of complex health behaviours such as sleep,
traditionally require a time-consuming manual interpretation by experts. This
manual work is necessary due to the erratic periodicity and persistent
noisiness of human behaviour. In this paper, we present a robust automated
human activity recognition algorithm, which we call RAHAR. We test our
algorithm in the application area of sleep research by providing a novel
framework for evaluating sleep quality and examining the correlation between
the aforementioned and an individual's physical activity. Our results improve
the state-of-the-art procedure in sleep research by 15 percent for area under
ROC and by 30 percent for F1 score on average. However, application of RAHAR is
not limited to sleep analysis and can be used for understanding other health
problems such as obesity, diabetes, and cardiac diseases. | ['Jaideep Srivastava', 'Luis Fernandes-Luque', 'Ferda Ofli', 'Aarti Sathyanarayana', 'Ahmed Elmagarmid', 'Shahrad Taheri', 'Teresa Arora'] | 2016-07-17 | null | null | null | null | ['sleep-quality-prediction'] | ['medical'] | [ 3.11745703e-01 -2.09240645e-01 -5.62582016e-01 -9.13997293e-02
-2.06269830e-01 -2.03352839e-01 1.27821907e-01 4.04034197e-01
-4.52698588e-01 7.70518363e-01 3.67769361e-01 -1.55097455e-01
-2.27765247e-01 -6.95635319e-01 -4.76346351e-02 -8.27798605e-01
-7.62271211e-02 -1.48548678e-01 8.72821137e-02 5.25162332e-02
-2.19958797e-01 2.18403339e-01 -1.74268699e+00 -1.98914558e-01
7.42808044e-01 1.03506720e+00 -1.07106365e-01 5.91224313e-01
3.08149099e-01 1.45720571e-01 -7.18360782e-01 6.81535080e-02
-2.21176043e-01 -8.92112494e-01 -2.44394690e-01 -3.66595984e-02
-1.36587590e-01 1.12207323e-01 3.59098822e-01 6.31947339e-01
5.58326840e-01 3.60812068e-01 4.19067852e-02 -1.01801300e+00
-1.39114738e-01 -7.49015808e-03 -1.83618248e-01 4.94419098e-01
8.97964716e-01 1.34999007e-01 5.44529021e-01 -2.43043333e-01
-3.27057876e-02 4.72332001e-01 9.75608706e-01 5.07462144e-01
-1.13036621e+00 -5.40304422e-01 -4.17437434e-01 4.02751297e-01
-1.32481945e+00 -6.85799778e-01 6.02934003e-01 -3.12513918e-01
7.77954519e-01 8.31893921e-01 1.35574448e+00 1.06452131e+00
4.24589902e-01 3.54065955e-01 1.16686344e+00 -3.18168193e-01
5.25956273e-01 2.57798642e-01 3.24740887e-01 5.37926614e-01
6.97378397e-01 -7.01295286e-02 -6.56934977e-01 -1.06879346e-01
2.81166047e-01 6.11415505e-01 -1.22249380e-01 4.79840897e-02
-1.08838677e+00 5.24590552e-01 2.96261143e-02 5.43588996e-01
-5.29326975e-01 -6.36159554e-02 2.42162138e-01 -3.23088616e-02
4.09106344e-01 4.65706140e-01 -2.44339213e-01 -7.83713996e-01
-1.21933925e+00 -9.93624330e-02 8.96664500e-01 1.73601329e-01
4.90454942e-01 -2.26638660e-01 -2.51588374e-01 7.08250046e-01
4.33641732e-01 6.29188001e-01 1.10096765e+00 -8.98096383e-01
-3.02981555e-01 9.45482612e-01 1.67763770e-01 -1.00726092e+00
-9.15888429e-01 -7.05879867e-01 -1.03945184e+00 -2.96533585e-01
2.05874801e-01 1.47030830e-01 -3.28385651e-01 1.47427261e+00
5.43467820e-01 6.29640520e-02 -3.39125216e-01 5.88472068e-01
5.83094954e-01 2.72328317e-01 2.31904224e-01 -7.80167758e-01
1.83353221e+00 -6.61738157e-01 -1.11035967e+00 -3.73682201e-01
3.50314587e-01 -2.70025939e-01 1.27657950e+00 4.96516615e-01
-8.80038619e-01 -5.07483900e-01 -1.15812504e+00 1.54785439e-01
-5.06757498e-01 3.05598620e-02 6.53115511e-01 1.42402828e+00
-7.36279607e-01 5.74661732e-01 -1.43997777e+00 -7.87373602e-01
5.10295749e-01 4.71161783e-01 -2.35902503e-01 2.00154215e-01
-7.81333685e-01 8.58488858e-01 -1.93543762e-01 1.79815255e-02
-2.94506431e-01 -5.43892086e-01 -9.11477506e-01 9.47300792e-02
3.50407213e-01 -6.58981442e-01 9.59115207e-01 -4.29645032e-01
-1.61396408e+00 7.84322083e-01 -4.00393248e-01 -4.73361254e-01
1.02735676e-01 -4.23014700e-01 -9.60290015e-01 -1.02669038e-01
1.38090342e-01 -2.12251320e-01 5.33185124e-01 -3.86635542e-01
-1.29957229e-01 -7.73425698e-01 -4.81435388e-01 -1.61701515e-01
-3.93249780e-01 -1.05049141e-01 -6.57483563e-02 -4.03197676e-01
-1.52142182e-01 -8.66935492e-01 -6.03524297e-02 -1.18480146e-01
1.89996115e-03 -6.96358904e-02 6.19489849e-01 -6.30693853e-01
1.93401468e+00 -2.20096946e+00 -2.63437718e-01 2.51744449e-01
3.05481344e-01 4.43668991e-01 5.49289942e-01 2.90160000e-01
4.64918226e-01 2.61782631e-02 -2.58862346e-01 -3.14932108e-01
-3.08321863e-02 4.58307385e-01 5.23848355e-01 8.91981125e-01
-2.86823213e-01 9.87023413e-01 -9.96048868e-01 -3.84117275e-01
5.10397732e-01 4.87241477e-01 -3.36818069e-01 1.82291925e-01
4.01963562e-01 5.83133936e-01 -1.63633764e-01 6.30034387e-01
-2.30141133e-02 -3.86585295e-01 1.30108640e-01 -6.77012131e-02
-2.04500824e-01 3.60508204e-01 -1.02279150e+00 1.63244879e+00
-4.65740442e-01 4.70072240e-01 -2.23175243e-01 -8.85330677e-01
8.81597400e-01 1.97312027e-01 6.79934561e-01 -9.94154334e-01
1.45900160e-01 -3.35615650e-02 3.91390212e-02 -8.83387208e-01
1.32233754e-01 -2.88733989e-01 -1.90852932e-03 4.95701164e-01
-2.78057337e-01 6.16437852e-01 2.38573551e-01 -4.80595261e-01
1.36490762e+00 -6.04625307e-02 1.26126170e+00 -3.49191666e-01
6.52758420e-01 -5.21184266e-01 5.62067628e-01 4.68518138e-01
-5.77373505e-01 2.18473151e-02 9.47159715e-03 -2.84127951e-01
-3.95711273e-01 -1.12750530e+00 -2.17259437e-01 1.08143997e+00
-3.04232165e-02 -6.68709338e-01 -5.91794550e-01 -3.95403951e-01
-9.51036736e-02 3.99981558e-01 -7.17813253e-01 -6.08904362e-01
-2.33295649e-01 -1.16044343e+00 5.21492183e-01 5.32137811e-01
6.65911734e-01 -9.35982883e-01 -1.29283583e+00 3.43633175e-01
-2.08944574e-01 -8.70414376e-01 -4.17407334e-01 1.25616446e-01
-9.37559903e-01 -1.15053785e+00 -4.75538373e-01 -5.66900410e-02
2.28292316e-01 2.38305911e-01 1.09428072e+00 2.35761419e-01
-5.33703506e-01 5.63194036e-01 -3.60608160e-01 -5.02591312e-01
-9.61016417e-02 1.17437981e-01 3.54490340e-01 1.93507075e-01
6.83470130e-01 -7.67177284e-01 -1.20883703e+00 5.91265261e-01
-6.61816955e-01 -4.87035573e-01 5.37789106e-01 4.44190472e-01
6.34562969e-01 1.25254437e-01 7.11311877e-01 -6.77621305e-01
6.73259616e-01 -7.09137022e-01 -3.08966842e-02 -2.88374573e-02
-1.15902245e+00 -1.34578750e-01 3.17409307e-01 -2.98973352e-01
-6.22982264e-01 -8.12044144e-02 -1.61029220e-01 3.58671308e-01
-2.96086371e-01 2.65573233e-01 -2.61307001e-01 1.76932424e-01
8.18425715e-01 3.88595387e-02 2.58341074e-01 -6.53299510e-01
-5.63986786e-02 8.08326960e-01 6.17387116e-01 -2.47308630e-02
2.34043851e-01 4.70944792e-01 2.69364655e-01 -1.38967848e+00
-9.53117132e-01 -1.11808681e+00 -3.68039519e-01 -2.68589407e-01
1.04491699e+00 -5.75311422e-01 -1.07713282e+00 1.45172939e-01
-2.40766719e-01 -2.76586413e-01 -4.95120496e-01 4.85345066e-01
-2.71610707e-01 4.18695569e-01 1.16464235e-01 -1.17633879e+00
-6.51702881e-01 -5.76187670e-01 9.48449969e-01 6.06266081e-01
-8.96784365e-01 -1.17784595e+00 5.50930142e-01 5.97841740e-01
5.43817341e-01 5.85437894e-01 2.45734096e-01 -3.33466053e-01
1.39754295e-01 -3.90777707e-01 3.44014496e-01 4.16861206e-01
6.01852953e-01 -5.17955124e-01 -8.76213849e-01 -1.11478470e-01
3.75960976e-01 2.92412519e-01 3.16391379e-01 3.75234157e-01
9.72426593e-01 -4.85233307e-01 -3.49303871e-01 3.35926443e-01
1.01663554e+00 1.84586361e-01 8.09907377e-01 3.20383400e-01
3.59959215e-01 2.93320090e-01 3.94222349e-01 6.23088539e-01
3.84368807e-01 9.54737246e-01 1.15504406e-01 -2.17175707e-01
-1.48579657e-01 8.38146880e-02 5.11914670e-01 6.27511561e-01
-3.88443440e-01 8.58329702e-04 -6.45476997e-01 4.38583672e-01
-1.69061446e+00 -1.10717082e+00 -2.20333740e-01 2.58651519e+00
7.09889710e-01 5.26990881e-03 8.42414856e-01 6.62587583e-01
2.03096777e-01 -1.46407723e-01 -3.85978937e-01 -4.74757373e-01
3.15404773e-01 6.30658984e-01 4.45044428e-01 1.28985718e-02
-7.89990127e-01 -2.51597054e-02 6.28441715e+00 2.23616481e-01
-8.83744419e-01 4.15684879e-01 1.14403769e-01 -2.68563092e-01
2.78589308e-01 -4.11341280e-01 -5.94305694e-01 9.02637661e-01
1.51800513e+00 -3.49416137e-02 5.57158530e-01 6.15646899e-01
8.98473263e-01 -6.70480728e-01 -9.62260544e-01 1.15505528e+00
1.86091974e-01 -8.07184100e-01 -7.97254384e-01 4.44066435e-01
3.08187604e-01 -3.81851137e-01 -2.69433290e-01 1.24119058e-01
-6.58787787e-01 -9.04753983e-01 1.82545427e-02 9.14569020e-01
5.82715571e-01 -4.68943626e-01 8.68161500e-01 2.16384113e-01
-1.10005450e+00 -1.48276836e-01 2.82416165e-01 -4.94164973e-01
1.22296952e-01 8.63327861e-01 -7.24124372e-01 1.87081397e-01
8.22699845e-01 7.76448965e-01 -8.66794825e-01 1.27659428e+00
-4.37845811e-02 8.08387876e-01 -4.78412747e-01 -2.78948635e-01
-3.43120515e-01 -1.67870805e-01 2.64626414e-01 1.11210525e+00
3.70719671e-01 4.76987138e-02 -9.87138376e-02 6.10109091e-01
2.15338096e-01 9.23172086e-02 -5.07846832e-01 -1.90040365e-01
2.13766545e-01 1.25220144e+00 -9.26211774e-01 -1.16596088e-01
-3.37353766e-01 7.50588834e-01 -4.42099065e-01 -2.15671703e-01
-6.45090640e-01 -2.27595747e-01 7.06890821e-01 5.87864816e-01
-1.57253399e-01 -2.84005851e-01 -4.64369923e-01 -9.04785812e-01
9.30945277e-02 -8.51189554e-01 4.51675296e-01 -2.68854707e-01
-8.94803226e-01 -9.58586633e-02 7.06015453e-02 -1.18338525e+00
-2.71625847e-01 -2.58003265e-01 -7.03569591e-01 3.18775892e-01
-9.30818796e-01 -6.95251346e-01 -8.38740706e-01 4.74474341e-01
3.64255279e-01 2.49895513e-01 1.01130581e+00 5.98586559e-01
-8.09912086e-01 5.87622523e-01 -1.05966814e-01 -4.28466350e-01
4.47866857e-01 -1.17584169e+00 -9.42019969e-02 7.32741296e-01
1.59604520e-01 7.68851697e-01 7.72910833e-01 -4.96872276e-01
-1.44924212e+00 -8.53595853e-01 9.07441020e-01 -6.95142210e-01
2.80601501e-01 -1.53670460e-01 -6.34155750e-01 2.36408070e-01
-2.67139465e-01 -2.21058682e-01 1.60204053e+00 4.54919994e-01
4.19163078e-01 -5.89268208e-01 -1.28752160e+00 3.54372263e-01
9.77381408e-01 -3.41539055e-01 -6.09591961e-01 4.06648703e-02
6.56346977e-02 -2.63601448e-03 -1.15675855e+00 1.95256546e-01
1.13761663e+00 -1.14981067e+00 9.53659415e-01 -2.09035307e-01
-2.38640025e-01 -2.90363491e-01 1.62379324e-01 -8.68514240e-01
-2.57201791e-01 -6.84612751e-01 -6.17818356e-01 1.02943742e+00
4.82663885e-02 -6.21859789e-01 7.71566033e-01 5.85640192e-01
-8.68014172e-02 -7.44872391e-01 -9.68395472e-01 -8.52605999e-01
-9.27730799e-01 -4.59711403e-01 5.38427532e-01 6.05278552e-01
3.53311688e-01 4.15564299e-01 -3.76222104e-01 -1.42968535e-01
5.01377225e-01 -3.47249657e-01 7.36283243e-01 -1.50620782e+00
-3.97054285e-01 -1.85766995e-01 -7.25916207e-01 -4.26202059e-01
-5.12772620e-01 -5.38824737e-01 -1.08084850e-01 -1.47862160e+00
9.80755165e-02 4.41681296e-02 -5.42813480e-01 4.44630563e-01
-5.96119799e-02 6.98679030e-01 -2.83703625e-01 -1.96918957e-02
-7.99729645e-01 3.02199990e-01 8.17362487e-01 1.22676067e-01
-8.39021742e-01 5.93020737e-01 -8.10591400e-01 6.13625944e-01
9.51881945e-01 -3.42592269e-01 -4.50664908e-01 3.23893368e-01
4.85056162e-01 -1.46528050e-01 5.44564247e-01 -1.49209499e+00
4.98342514e-03 6.65475950e-02 4.21918035e-01 -1.18484497e-01
3.69386792e-01 -1.00549293e+00 6.01163983e-01 7.45399594e-01
1.09652497e-01 2.59933919e-02 4.15972769e-02 6.90044343e-01
2.60771036e-01 4.64437529e-02 6.34071112e-01 -1.08802855e-01
-3.46928298e-01 -9.30846557e-02 -4.90139246e-01 -1.29428163e-01
9.30849195e-01 -5.87645888e-01 -2.51969337e-01 -2.18405381e-01
-1.04220939e+00 -1.82143413e-02 3.73452634e-01 3.27635407e-01
2.88907111e-01 -1.22721004e+00 5.93201481e-02 4.58588630e-01
2.77673393e-01 -5.46783924e-01 2.96898097e-01 1.49274838e+00
-1.74780354e-01 2.81854808e-01 -2.96588063e-01 -5.53683102e-01
-1.38695252e+00 4.76200789e-01 3.43645692e-01 -2.76793420e-01
-6.07261300e-01 4.70335521e-02 -4.78330731e-01 4.57999796e-01
1.42312393e-01 -6.09704494e-01 -2.32564360e-01 1.58785209e-01
7.72227705e-01 1.20952392e+00 3.32165629e-01 -3.77047926e-01
-7.86272526e-01 3.50221187e-01 5.35128534e-01 1.95769176e-01
1.06273806e+00 -4.75036174e-01 -6.74217343e-02 9.08233762e-01
8.63699853e-01 1.82572514e-01 -5.91670573e-01 3.46671164e-01
2.03805730e-01 -2.36386135e-01 8.42139125e-02 -8.33071172e-01
-5.28475344e-01 6.16423547e-01 1.26520348e+00 7.81538963e-01
1.30998564e+00 -2.06461418e-02 9.46870029e-01 2.62124449e-01
1.76007554e-01 -9.80696082e-01 -7.26764575e-02 -3.69276762e-01
3.38458329e-01 -1.09903967e+00 3.99564952e-01 4.29839790e-02
-3.42147321e-01 5.89719415e-01 9.25766826e-02 2.86152303e-01
7.80895472e-01 -1.73400491e-01 -1.59613445e-01 -2.23011076e-01
-2.80340910e-01 -3.90505910e-01 4.70819473e-01 7.39932775e-01
5.74955463e-01 3.92129064e-01 -9.23571467e-01 1.02500939e+00
-3.74344915e-01 4.19527829e-01 2.85358489e-01 8.81354809e-01
-6.76512122e-01 -1.05080307e+00 -3.23723167e-01 7.68596768e-01
-7.62519717e-01 3.78656775e-01 -1.57433882e-01 5.37529111e-01
4.29487050e-01 1.35791349e+00 -1.10542201e-01 -2.94547468e-01
5.34615159e-01 3.57092679e-01 3.34351212e-01 -7.99030542e-01
-6.02658451e-01 -1.21219128e-01 2.30090573e-01 -7.87694633e-01
-8.76522303e-01 -7.59110391e-01 -8.45150054e-01 -1.84978485e-01
-3.91209684e-02 2.17881337e-01 7.71800399e-01 1.16187918e+00
4.54076320e-01 6.38862848e-01 4.56456333e-01 -5.63511372e-01
1.79264415e-02 -9.85920727e-01 -6.65667832e-01 3.14406276e-01
4.75042343e-01 -9.09245849e-01 -1.93109959e-01 9.62778926e-02] | [13.559586524963379, 3.3891026973724365] |
bafb1f04-1efb-4440-9449-0c5e0c1d35b6 | breaking-trade-offs-in-speech-separation-with | 2211.06493 | null | https://arxiv.org/abs/2211.06493v2 | https://arxiv.org/pdf/2211.06493v2.pdf | Handling Trade-Offs in Speech Separation with Sparsely-Gated Mixture of Experts | Employing a monaural speech separation (SS) model as a front-end for automatic speech recognition (ASR) involves balancing two kinds of trade-offs. First, while a larger model improves the SS performance, it also requires a higher computational cost. Second, an SS model that is more optimized for handling overlapped speech is likely to introduce more processing artifacts in non-overlapped-speech regions. In this paper, we address these trade-offs with a sparsely-gated mixture-of-experts (MoE) architecture. Comprehensive evaluation results obtained using both simulated and real meeting recordings show that our proposed sparsely-gated MoE SS model achieves superior separation capabilities with less speech distortion, while involving only a marginal run-time cost increase. | ['Takuya Yoshioka', 'Naoyuki Kanda', 'Jian Wu', 'Yu Shi', 'Zhuo Chen', 'Xiaofei Wang'] | 2022-11-11 | null | null | null | null | ['speech-separation'] | ['speech'] | [ 1.65283516e-01 -1.44711480e-01 3.24231148e-01 -3.88725728e-01
-1.25295889e+00 -1.70152932e-01 1.65200219e-01 -1.13327548e-01
-1.76076889e-01 3.91023904e-01 4.87824887e-01 -2.72565663e-01
7.41668642e-02 -6.11995794e-02 -4.62496608e-01 -6.37359142e-01
5.83905503e-02 -6.76687658e-02 3.05763930e-01 -1.26798138e-01
8.98367465e-02 4.33897048e-01 -1.71172500e+00 3.48945916e-01
1.22625577e+00 1.00984979e+00 5.65521657e-01 6.95485175e-01
-3.74314860e-02 5.53336680e-01 -8.39917243e-01 -1.18642092e-01
2.93013781e-01 -3.64894748e-01 -2.14353636e-01 2.91331202e-01
2.67082542e-01 1.12809949e-01 -3.61977756e-01 1.05219305e+00
9.38918054e-01 4.52400595e-01 4.58691984e-01 -7.68988132e-01
-1.21358857e-01 5.65739751e-01 -6.28419459e-01 3.48011136e-01
2.49152496e-01 1.00171573e-01 7.73523748e-01 -1.12980390e+00
-2.40170807e-01 1.14747298e+00 5.62757611e-01 2.55519629e-01
-1.14773118e+00 -7.64110982e-01 1.11761861e-01 2.86984816e-02
-1.65515280e+00 -1.27558923e+00 6.64571583e-01 -7.36745968e-02
1.10628951e+00 5.36773741e-01 4.27225441e-01 6.99612260e-01
-8.91384929e-02 9.30345833e-01 1.12887752e+00 -3.89688611e-01
4.35587794e-01 5.48123084e-02 1.08369060e-01 9.70931128e-02
6.02693446e-02 1.57552138e-01 -8.28375161e-01 -1.06037699e-01
7.10143566e-01 -3.91431659e-01 -7.31908739e-01 7.53301382e-02
-7.69875646e-01 3.36120099e-01 -5.87761626e-02 4.34065819e-01
-4.93797749e-01 -1.27985671e-01 2.72400618e-01 1.91491097e-01
5.94971895e-01 2.27298558e-01 -2.88628519e-01 -3.39013577e-01
-1.50027204e+00 -2.35098898e-01 6.74390674e-01 8.80074561e-01
3.48054469e-01 7.28157580e-01 -6.81463256e-02 1.54200590e+00
5.70299625e-01 5.00158310e-01 6.25921667e-01 -6.60921514e-01
6.92512095e-01 -1.32629573e-01 2.43345425e-02 -7.39403069e-01
-1.48407817e-01 -1.01070213e+00 -6.97517693e-01 7.35438243e-02
2.53826261e-01 -1.94234729e-01 -1.11854625e+00 1.60738170e+00
1.13947660e-01 4.32863116e-01 1.55325234e-01 1.17855084e+00
5.39315879e-01 9.27202880e-01 -1.58164546e-01 -5.88678420e-01
1.38013113e+00 -1.04213572e+00 -1.06475627e+00 -5.86484611e-01
-1.32653248e-02 -1.40968275e+00 8.56652021e-01 4.96872842e-01
-1.47688651e+00 -6.61558032e-01 -1.09716058e+00 2.59019643e-01
1.72719255e-01 3.80779564e-01 9.44756567e-02 9.04219806e-01
-1.17685854e+00 2.52244383e-01 -8.63632321e-01 -1.95162609e-01
-7.65293464e-02 1.58398598e-01 7.15308487e-02 1.87270790e-01
-9.69942868e-01 7.00141430e-01 -1.31118432e-01 1.14525042e-01
-7.90776432e-01 -6.10381067e-01 -8.49782348e-01 4.65857267e-01
2.97016293e-01 -3.74417335e-01 1.59395301e+00 -1.09369457e+00
-2.00074482e+00 2.95333594e-01 -8.06716859e-01 -4.25541133e-01
1.50134251e-01 -3.41922760e-01 -1.05233026e+00 7.85373971e-02
-3.57795209e-01 8.94778669e-02 1.30925810e+00 -1.44490302e+00
-4.82089251e-01 -2.98233598e-01 -5.57597458e-01 5.07768333e-01
-2.46790528e-01 3.06679428e-01 -4.84785408e-01 -1.25598693e+00
5.25328696e-01 -8.95547628e-01 -1.67639047e-01 -4.39871788e-01
-8.90815705e-02 1.66487709e-01 4.55044925e-01 -9.84220028e-01
1.54317737e+00 -2.53720045e+00 -1.30738497e-01 1.93164051e-01
-1.02814615e-01 7.03774214e-01 -5.00509217e-02 2.99256176e-01
-2.16855735e-01 -4.39037919e-01 -2.60181963e-01 -6.66475534e-01
-2.51383573e-01 -1.23845212e-01 -3.10391217e-01 2.92232722e-01
9.87384990e-02 1.65008873e-01 -6.17883682e-01 -3.38588178e-01
2.94474453e-01 5.41743755e-01 -5.00164986e-01 3.65195483e-01
2.91874021e-01 2.29854137e-01 1.04979977e-01 5.45497775e-01
7.78343081e-01 1.21999532e-01 8.11897144e-02 -2.18313634e-01
-2.82185435e-01 7.63137817e-01 -1.61875319e+00 1.46054947e+00
-7.45787680e-01 7.48593211e-01 7.25197554e-01 -7.94311643e-01
9.07344282e-01 7.76638567e-01 2.09284853e-02 -5.63490748e-01
3.01588550e-02 5.62698364e-01 2.23771930e-01 -1.91584051e-01
5.94137430e-01 -2.90086955e-01 4.21476096e-01 1.89772323e-01
7.41967931e-02 -1.61019251e-01 -3.03085715e-01 -2.36875508e-02
8.76296401e-01 -4.28112864e-01 3.20719808e-01 -3.50057244e-01
6.02732778e-01 -5.21704376e-01 7.59469986e-01 5.02917230e-01
-4.60839808e-01 8.02919507e-01 -2.50473619e-01 3.43753278e-01
-6.67129099e-01 -1.22353435e+00 -4.11853045e-02 9.40881908e-01
1.03154123e-01 -3.32361102e-01 -7.61064291e-01 3.12781171e-03
-5.02227068e-01 8.41478348e-01 2.63290375e-01 7.84694999e-02
-5.18707752e-01 -4.04181033e-01 5.72322488e-01 4.61605459e-01
1.57592356e-01 -6.21901751e-01 -3.77832294e-01 2.67814785e-01
-4.09299493e-01 -1.17793036e+00 -9.30900872e-01 2.82200545e-01
-7.59622931e-01 -3.71056348e-01 -1.18465698e+00 -9.21843886e-01
6.51772141e-01 9.32093859e-01 9.32285845e-01 -3.68866473e-01
1.29975647e-01 3.16024870e-01 -5.51384151e-01 -3.93600553e-01
-4.30488080e-01 -3.73450577e-01 2.95899987e-01 4.77481335e-01
2.78184742e-01 -6.43268168e-01 -6.89567447e-01 5.64121187e-01
-7.06683755e-01 -1.00652315e-01 6.54353440e-01 8.20480049e-01
4.62465793e-01 3.06265682e-01 7.06836224e-01 -1.48400813e-01
7.75595009e-01 -2.02116132e-01 -5.59263170e-01 1.58721447e-01
-4.08819556e-01 -2.26321831e-01 7.58506656e-01 -5.73217154e-01
-1.55039573e+00 5.14426157e-02 -3.34035605e-01 -4.98238802e-01
-1.72893047e-01 3.27165484e-01 -2.96360672e-01 3.63320485e-02
4.84385639e-01 5.54089904e-01 -9.42522883e-02 -6.15039587e-01
1.28319636e-01 1.34744406e+00 4.58054274e-01 -3.45897615e-01
6.02693737e-01 8.81189778e-02 -5.07210195e-01 -1.46830511e+00
-3.08367044e-01 -9.39058304e-01 1.53425317e-02 -1.70109853e-01
4.10156816e-01 -1.32280886e+00 -1.33691490e-01 4.96992320e-01
-9.18164730e-01 -2.91684885e-02 -6.80978894e-02 9.13829446e-01
-3.84013176e-01 6.70351923e-01 -5.36795974e-01 -1.34044027e+00
-3.27938825e-01 -1.27275288e+00 8.30531359e-01 2.23595604e-01
-3.71561825e-01 -3.05147320e-01 -1.42691210e-01 5.84376693e-01
6.64728522e-01 -7.57283390e-01 4.52732593e-01 -6.35374308e-01
-3.72531533e-01 -1.69339534e-02 6.78651333e-02 6.84020221e-01
2.50979483e-01 -1.53592542e-01 -1.37501776e+00 -4.12191033e-01
3.33315998e-01 1.36715278e-01 5.27735233e-01 7.23874450e-01
9.15752828e-01 -2.82897949e-01 -4.28767987e-02 4.71825749e-01
1.03145516e+00 6.77919209e-01 6.84584379e-01 -2.91507781e-01
2.81789243e-01 5.77269316e-01 7.29698598e-01 4.23211575e-01
2.87528094e-02 7.85603940e-01 -1.81214407e-01 -3.21749657e-01
-4.56958234e-01 -8.65212083e-02 5.82540929e-01 1.68986368e+00
2.11138591e-01 -3.52684140e-01 -8.00674379e-01 7.80288696e-01
-1.65253544e+00 -8.15538347e-01 1.26269892e-01 2.46777511e+00
8.04963827e-01 2.85283010e-02 2.62829810e-01 6.01900935e-01
8.47280025e-01 2.30228007e-01 -3.03659558e-01 -5.09838343e-01
-1.19708098e-01 3.52871835e-01 2.21646786e-01 6.56689048e-01
-6.76832497e-01 5.70064962e-01 6.41194630e+00 1.40163445e+00
-1.22381186e+00 2.31390625e-01 4.01018500e-01 -4.24703091e-01
-1.43148005e-01 -2.09767133e-01 -5.44999301e-01 5.41809201e-01
1.11018431e+00 -9.05976221e-02 6.07707620e-01 5.98342597e-01
5.65201581e-01 -2.30627835e-01 -7.89745271e-01 1.35909295e+00
1.42403707e-01 -8.72749507e-01 -1.76579654e-01 -1.71528161e-01
3.91036481e-01 4.94530648e-02 1.52578637e-01 1.41766876e-01
9.54881907e-05 -7.08730698e-01 9.61326122e-01 1.36574861e-02
6.41373158e-01 -7.46649981e-01 4.65428054e-01 2.92513549e-01
-1.48652649e+00 -7.59054795e-02 -5.91624491e-02 2.24884078e-01
3.49634111e-01 8.17487955e-01 -8.10940623e-01 4.98221010e-01
6.84508860e-01 -1.59110680e-01 2.03623176e-02 1.40171361e+00
-1.65970802e-01 9.99415219e-01 -3.48698109e-01 2.33393133e-01
-8.84152576e-02 -1.45003378e-01 1.06705761e+00 1.63848960e+00
4.27144498e-01 3.47297430e-01 -1.11905225e-01 5.97057343e-01
2.96666443e-01 1.04151875e-01 -2.39004403e-01 -1.04410003e-03
8.77317071e-01 1.03281355e+00 -5.10315180e-01 -2.88698554e-01
-4.91163880e-01 9.20651793e-01 -1.50240764e-01 5.94841421e-01
-8.04260612e-01 -5.50854266e-01 9.04564381e-01 3.16625535e-01
4.61832404e-01 -4.80371833e-01 -4.95524526e-01 -1.06942475e+00
-7.41275325e-02 -1.24450028e+00 -6.56484142e-02 -7.09094286e-01
-1.05686593e+00 9.49110150e-01 -3.37128222e-01 -1.48259819e+00
-9.33555365e-02 -2.08813652e-01 -4.32953477e-01 1.21190953e+00
-1.50380599e+00 -6.32089913e-01 8.58388022e-02 5.46316385e-01
1.16716206e+00 -1.82061374e-01 6.96995795e-01 6.97812438e-01
-7.05438197e-01 9.78934526e-01 1.46086797e-01 -2.31468901e-01
5.85529447e-01 -8.98387969e-01 3.32496375e-01 1.27081227e+00
2.48149619e-01 7.97073901e-01 8.54770601e-01 -3.34829032e-01
-1.06398821e+00 -8.50084901e-01 8.41465831e-01 2.05894634e-01
3.06836277e-01 -2.16616735e-01 -1.02003467e+00 2.85238445e-01
2.22793758e-01 -3.19621980e-01 9.83721435e-01 2.21582264e-01
-2.09060416e-01 -2.28402168e-01 -9.26742256e-01 5.74459910e-01
6.65043354e-01 -7.12632239e-01 -8.61361623e-01 -2.06130281e-01
7.23549247e-01 -3.09817731e-01 -6.62145734e-01 3.41937274e-01
3.53553414e-01 -9.16832387e-01 1.02554107e+00 2.60249257e-01
-5.38826920e-02 -6.67612076e-01 -4.47336853e-01 -1.68918121e+00
-2.83927679e-01 -1.04201889e+00 -2.57011771e-01 1.38568652e+00
5.73412240e-01 -6.17548585e-01 2.98298985e-01 4.87257481e-01
-5.27015865e-01 -5.71611345e-01 -1.02651954e+00 -1.16754234e+00
-4.75600004e-01 -5.61836958e-01 4.52590287e-01 7.44921505e-01
9.59358364e-02 5.22937655e-01 -4.13646758e-01 6.27816021e-01
5.77247560e-01 -2.29220822e-01 5.54419458e-01 -6.49401307e-01
-5.87752998e-01 -3.58186096e-01 -1.55195817e-01 -1.45539594e+00
-2.34478697e-01 -3.35255504e-01 4.89080399e-01 -1.23828673e+00
-2.61665851e-01 -3.90189111e-01 -4.53066587e-01 1.95390712e-02
-2.62123913e-01 -1.71458274e-01 2.28589535e-01 1.06530905e-01
-3.14397186e-01 7.74744213e-01 7.21434712e-01 2.11290583e-01
-4.64117616e-01 2.51883119e-01 -4.65914428e-01 8.53848159e-01
6.23852789e-01 -4.34702724e-01 -4.95426118e-01 -4.74637508e-01
-4.08388942e-01 4.55405444e-01 -8.64830911e-02 -1.33896148e+00
5.43862760e-01 6.67161345e-02 -1.51643138e-02 -7.88521826e-01
8.59827816e-01 -8.71347785e-01 2.30548516e-01 1.65511340e-01
-1.47668391e-01 -3.81329685e-01 5.10250926e-01 5.91974139e-01
-6.18804038e-01 -2.16753572e-01 1.17649996e+00 1.70893922e-01
-2.45602787e-01 -2.61320084e-01 -8.42290223e-01 -2.07609192e-01
7.06410885e-01 -4.92460519e-01 1.62106797e-01 -7.15305865e-01
-5.57678699e-01 -9.26638544e-02 4.47604917e-02 3.26281548e-01
6.40632570e-01 -9.65124547e-01 -5.97158134e-01 4.29596752e-01
-1.65080100e-01 -1.15027629e-01 4.41456497e-01 8.25667143e-01
-1.48454025e-01 5.69579005e-01 2.90053576e-01 -5.91224253e-01
-1.54722035e+00 2.17834219e-01 2.30612814e-01 -1.92938615e-02
-3.64163190e-01 1.23833120e+00 3.55884343e-01 -1.98993728e-01
5.62734723e-01 -3.05679172e-01 -1.29976887e-02 -7.57756829e-02
5.48896372e-01 7.11933196e-01 4.21173304e-01 -8.43995810e-01
-4.28939283e-01 2.98804134e-01 1.06417574e-02 -4.67639238e-01
1.06474519e+00 -4.08502519e-01 3.78498584e-01 3.36397141e-01
7.60811269e-01 4.90143269e-01 -1.07462204e+00 -3.63939613e-01
-5.26988767e-02 -7.59418130e-01 5.29351890e-01 -8.41397583e-01
-9.72569466e-01 8.23316753e-01 6.39741600e-01 2.30156794e-01
1.50736618e+00 -3.80724311e-01 9.83076811e-01 1.69308316e-02
4.20595825e-01 -1.19189954e+00 4.40089069e-02 4.23334777e-01
9.63464141e-01 -9.44069028e-01 -2.83136576e-01 -6.63933098e-01
-8.76700461e-01 6.81745768e-01 4.51662332e-01 1.54217362e-01
7.53633261e-01 5.85955501e-01 2.77964234e-01 7.29129985e-02
-6.54842496e-01 -4.32859004e-01 3.51107925e-01 5.04350960e-01
5.36981046e-01 2.51239091e-01 -2.46341363e-01 8.44327867e-01
-2.18321472e-01 -1.93676814e-01 2.13743314e-01 7.56306350e-01
-5.79226792e-01 -8.69645953e-01 -9.49430764e-01 2.32374564e-01
-6.38120890e-01 -3.89486939e-01 -1.21106692e-01 -2.23095100e-02
-2.06743732e-01 1.61582077e+00 3.19047198e-02 -3.57069850e-01
5.32556117e-01 1.00217566e-01 2.31620446e-01 -5.64328015e-01
-7.12686002e-01 9.78303373e-01 2.09513873e-01 -3.56789112e-01
-2.40493134e-01 -5.24435759e-01 -1.10636330e+00 -1.52934626e-01
-8.48347366e-01 2.75916994e-01 8.53969514e-01 7.21626699e-01
7.16966391e-01 1.00504673e+00 8.11143935e-01 -6.99739516e-01
-7.24027872e-01 -1.07758546e+00 -8.04519236e-01 -1.72322784e-02
4.88312572e-01 -3.59044075e-01 -6.22049630e-01 -2.21390761e-02] | [14.956242561340332, 5.907796859741211] |
27c3ace4-8246-4607-af2f-9dc2b296ab22 | robust-contrastive-language-image-pretraining | 2303.06854 | null | https://arxiv.org/abs/2303.06854v1 | https://arxiv.org/pdf/2303.06854v1.pdf | Robust Contrastive Language-Image Pretraining against Adversarial Attacks | Contrastive vision-language representation learning has achieved state-of-the-art performance for zero-shot classification, by learning from millions of image-caption pairs crawled from the internet. However, the massive data that powers large multimodal models such as CLIP, makes them extremely vulnerable to various types of adversarial attacks, including targeted and backdoor data poisoning attacks. Despite this vulnerability, robust contrastive vision-language pretraining against adversarial attacks has remained unaddressed. In this work, we propose RoCLIP, the first effective method for robust pretraining {and fine-tuning} multimodal vision-language models. RoCLIP effectively breaks the association between poisoned image-caption pairs by considering a pool of random examples, and (1) matching every image with the text that is most similar to its caption in the pool, and (2) matching every caption with the image that is most similar to its image in the pool. Our extensive experiments show that our method renders state-of-the-art targeted data poisoning and backdoor attacks ineffective during pre-training or fine-tuning of CLIP. In particular, RoCLIP decreases the poison and backdoor attack success rates down to 0\% during pre-training and 1\%-4\% during fine-tuning, and effectively improves the model's performance. | ['Baharan Mirzasoleiman', 'Wenhan Yang'] | 2023-03-13 | null | null | null | null | ['data-poisoning', 'backdoor-attack'] | ['adversarial', 'adversarial'] | [ 3.11091896e-02 -1.54998749e-01 -1.91147611e-01 2.04643682e-01
-1.25540090e+00 -1.17710185e+00 6.69570446e-01 1.87383324e-03
-7.00412393e-01 4.92095381e-01 -1.22226000e-01 -3.48367423e-01
4.12501276e-01 -6.37369275e-01 -1.28401554e+00 -6.90542042e-01
5.16114384e-02 5.29512525e-01 4.19113487e-01 -3.27100277e-01
-1.66113693e-02 4.58941221e-01 -1.22808588e+00 4.72181201e-01
5.53294063e-01 9.93490577e-01 -1.65352941e-01 9.51017022e-01
4.12028804e-02 1.06801414e+00 -7.03516364e-01 -1.17399335e+00
4.15523469e-01 -3.11571211e-01 -5.39299011e-01 -1.61477908e-01
9.64727938e-01 -6.41094565e-01 -9.94127631e-01 1.51353610e+00
6.09191298e-01 -3.34105790e-01 5.08940279e-01 -1.83044112e+00
-9.62650299e-01 4.77910668e-01 -7.11795449e-01 1.10236123e-01
2.26084396e-01 8.47322941e-01 6.95325315e-01 -8.38388383e-01
4.91575956e-01 1.33150482e+00 5.18618166e-01 1.09925258e+00
-9.50354159e-01 -1.03411412e+00 -1.84434488e-01 1.67638928e-01
-1.20388412e+00 -4.81806517e-01 6.21018708e-01 -3.57922554e-01
5.52373827e-01 2.16139928e-01 1.37563318e-01 1.68190062e+00
-1.19773224e-02 8.55683029e-01 8.93819034e-01 -2.44266063e-01
1.16496950e-01 2.69105911e-01 4.22518253e-02 8.12659383e-01
2.48567805e-01 2.27906317e-01 -4.23318088e-01 -6.22094452e-01
3.91248375e-01 -8.69758576e-02 -1.79621950e-01 -2.46584550e-01
-8.87426555e-01 1.18280566e+00 5.40977836e-01 -1.21003710e-01
-8.66976753e-02 3.91383469e-01 5.71896076e-01 1.20190956e-01
-9.46918800e-02 4.70106900e-01 -2.66127717e-02 2.17070013e-01
-6.99525356e-01 1.67718396e-01 7.41863012e-01 9.16806281e-01
6.16313398e-01 2.78223976e-02 -2.64447898e-01 5.77322602e-01
1.11540884e-01 1.13608372e+00 3.09095770e-01 -9.40046608e-01
9.27062809e-01 3.19133580e-01 1.46372288e-01 -1.05693686e+00
2.85331160e-01 -3.14637609e-02 -9.00550961e-01 1.77353472e-01
4.53820199e-01 -3.48605633e-01 -9.59719181e-01 1.98657811e+00
2.32315376e-01 2.04500929e-01 4.46798235e-01 8.93036127e-01
7.09657311e-01 7.79175699e-01 3.09908241e-01 -1.00043863e-01
1.49747980e+00 -8.57003510e-01 -3.25790524e-01 -3.74493837e-01
4.42612559e-01 -6.98056519e-01 1.26797438e+00 1.25765830e-01
-9.47548568e-01 -3.08980882e-01 -9.70261753e-01 1.43864825e-01
-4.17397201e-01 -5.43004692e-01 3.45525146e-01 7.65688837e-01
-5.09900808e-01 9.04432163e-02 -3.84897858e-01 -7.49365985e-02
9.22006369e-01 2.48385429e-01 -6.86374903e-01 -5.95697641e-01
-1.43413186e+00 7.44962871e-01 9.36482027e-02 -3.44469696e-01
-1.73865354e+00 -6.26907587e-01 -7.83793032e-01 -3.43718193e-02
3.91919702e-01 -6.42091095e-01 1.05098093e+00 -8.80308688e-01
-8.01721573e-01 1.02407610e+00 3.05416942e-01 -8.08073521e-01
8.27735662e-01 -2.54753888e-01 -3.58428568e-01 6.00536883e-01
1.94601342e-01 8.89789820e-01 1.24490833e+00 -1.69236827e+00
-3.38054061e-01 -4.05550063e-01 1.81118235e-01 1.60021819e-02
-7.65037715e-01 3.60372633e-01 -8.34682345e-01 -5.52306294e-01
-6.84106648e-01 -9.76263165e-01 -2.16863409e-01 2.42875323e-01
-6.99445128e-01 1.55563489e-01 1.11694574e+00 -4.04160917e-01
7.55108356e-01 -2.17527843e+00 -2.18334839e-01 -7.86311552e-02
1.44299224e-01 7.90576875e-01 -5.73509216e-01 4.06629115e-01
5.63066155e-02 4.64248955e-01 -1.58432901e-01 -2.84511119e-01
1.68532133e-05 2.25391522e-01 -9.38504457e-01 5.90459049e-01
4.46145684e-02 9.70989704e-01 -9.96347964e-01 -6.36122763e-01
2.26584777e-01 3.94151747e-01 -3.43604356e-01 5.11824906e-01
-3.43280166e-01 1.41942099e-01 -3.17976952e-01 6.82683706e-01
7.79740512e-01 -6.70806319e-02 -3.27779323e-01 -1.94347501e-01
4.90678549e-01 -5.77295244e-01 -5.69321096e-01 1.19066405e+00
-4.17863987e-02 5.16664505e-01 2.54147165e-02 -5.54818392e-01
6.42202914e-01 3.21989745e-01 2.39669293e-01 -6.91689789e-01
2.53928006e-01 -8.56342986e-02 -3.42108130e-01 -6.78568244e-01
1.31377190e-01 -1.78985506e-01 -5.17001748e-01 3.55500191e-01
6.20315634e-02 -6.80988953e-02 2.83667240e-02 6.68080091e-01
1.18320918e+00 -5.91847360e-01 -3.49942386e-01 3.76846045e-01
5.88994443e-01 1.59137487e-01 1.91833213e-01 1.27476954e+00
-4.46169585e-01 5.68424940e-01 5.76785445e-01 -3.21786255e-01
-1.32004094e+00 -1.34828389e+00 3.11241388e-01 1.18743038e+00
3.19678932e-01 -1.18009090e-01 -1.16593039e+00 -9.76137042e-01
4.84162085e-02 7.01909721e-01 -6.56602740e-01 -6.34562075e-01
-3.14495206e-01 -4.74467099e-01 1.45834637e+00 1.52813181e-01
9.02005792e-01 -1.15466821e+00 -2.50556648e-01 -1.76453531e-01
-3.33672255e-01 -1.29143620e+00 -7.25084424e-01 -1.43239215e-01
-3.31221730e-01 -1.35684919e+00 -8.05143476e-01 -8.19172382e-01
7.44288027e-01 5.06461680e-01 9.22282100e-01 1.13682508e-01
-3.39570552e-01 5.88428020e-01 -2.90076941e-01 -3.70113879e-01
-7.71189570e-01 -2.88487911e-01 2.69701689e-01 1.08953953e-01
2.64178991e-01 -1.43478453e-01 -3.59419167e-01 4.69354004e-01
-1.18169808e+00 -4.81096208e-01 3.59568268e-01 8.06941986e-01
4.52503592e-01 4.97085080e-02 4.08173412e-01 -7.35328913e-01
6.43087685e-01 -5.76515198e-01 -6.22715414e-01 5.47017992e-01
5.05571775e-02 -2.20720083e-01 8.44609737e-01 -1.08568668e+00
-4.53543544e-01 8.16971958e-02 1.79853085e-02 -1.42108011e+00
-2.37307753e-02 1.49510289e-02 -3.78574312e-01 -3.44990164e-01
1.06532824e+00 4.16271716e-01 1.39826640e-01 -6.59740791e-02
7.97383547e-01 6.78922892e-01 1.05959415e+00 -5.72399795e-01
1.40749156e+00 4.56761032e-01 -2.50775397e-01 -7.92342663e-01
-9.25232410e-01 -1.72407895e-01 -1.12396672e-01 -2.39322826e-01
9.24882948e-01 -1.02944303e+00 -8.99173200e-01 8.28849971e-01
-1.25558698e+00 -8.12510327e-02 -1.32355839e-01 1.01696633e-01
-6.27648354e-01 6.62251830e-01 -6.35215342e-01 -8.32289219e-01
-6.07767642e-01 -1.16804385e+00 6.96104705e-01 1.94173232e-01
3.05307060e-01 -6.21886849e-01 -6.25291541e-02 8.00829828e-01
1.02822080e-01 3.55831921e-01 8.53194296e-01 -7.99686909e-01
-6.33820832e-01 -7.45508552e-01 -3.65636200e-01 6.66019619e-01
-2.89650470e-01 -2.15276837e-01 -9.46139812e-01 -6.68078661e-01
8.60370696e-02 -9.96384799e-01 8.86450589e-01 -9.45466757e-02
1.13147175e+00 -7.61953294e-01 -1.87718526e-01 5.31686306e-01
1.55442309e+00 -2.74300016e-02 9.92091358e-01 2.80449927e-01
8.36548865e-01 3.31287891e-01 4.57307160e-01 2.89488763e-01
8.68755803e-02 2.92139322e-01 1.06798530e+00 -1.00597866e-01
-1.27149895e-02 -5.99939525e-01 6.27629757e-01 6.08627945e-02
6.06739044e-01 -5.61350286e-01 -8.33677649e-01 6.01255953e-01
-1.75777984e+00 -1.30375922e+00 1.63866162e-01 2.28757095e+00
8.23851049e-01 2.93416262e-01 2.16294169e-01 -2.92965323e-01
1.00198925e+00 1.67554095e-01 -8.30802679e-01 -2.70541430e-01
-2.72677183e-01 -1.25023529e-01 8.73592257e-01 3.17930490e-01
-1.36637008e+00 1.39172292e+00 6.23240471e+00 1.02115762e+00
-9.72085416e-01 2.08824515e-01 7.09946513e-01 -1.79629505e-01
-1.00365810e-01 -2.08433211e-01 -8.82963181e-01 6.45635247e-01
7.26810157e-01 -1.45687014e-01 7.02772915e-01 1.04098785e+00
-2.72392333e-01 1.66996613e-01 -1.02153778e+00 1.10074806e+00
5.10640562e-01 -1.44381225e+00 6.18929803e-01 9.18297172e-02
6.39451742e-01 2.29881659e-01 4.30360079e-01 3.75575781e-01
5.99043667e-01 -1.11062396e+00 6.33079827e-01 2.83940732e-01
1.02627563e+00 -9.29807663e-01 6.34117365e-01 4.82636571e-01
-6.77266598e-01 -3.62943798e-01 -4.91650850e-01 6.10466123e-01
-9.90307480e-02 9.13305432e-02 -4.93713707e-01 9.42067355e-02
6.97531879e-01 -2.74739712e-02 -7.27290034e-01 8.13402832e-01
-2.03335628e-01 5.93427122e-01 -2.58101046e-01 1.46914005e-01
4.74740416e-01 3.71858865e-01 6.59542024e-01 1.07037914e+00
-1.39664575e-01 8.72511510e-03 3.09903324e-01 6.52943194e-01
-6.17451549e-01 -2.29035109e-01 -1.11667538e+00 -2.39434808e-01
6.10645771e-01 1.00367904e+00 -9.30235833e-02 -4.28514391e-01
-2.64511168e-01 1.06770051e+00 3.12390774e-01 3.44884545e-01
-1.29070568e+00 -4.10351038e-01 7.74477363e-01 -8.27001315e-03
2.77819633e-01 -6.19181469e-02 7.73362219e-02 -1.02684879e+00
-1.39152527e-01 -1.21501672e+00 6.02060795e-01 -9.20077026e-01
-1.76084924e+00 7.04958975e-01 -1.87712282e-01 -1.11170828e+00
3.14021111e-02 -5.06266415e-01 -7.47542322e-01 5.56216300e-01
-1.12486410e+00 -1.48024750e+00 -1.71074346e-01 1.29527974e+00
3.09931397e-01 -6.31445169e-01 7.65894532e-01 1.43423021e-01
-5.73636949e-01 1.23699415e+00 4.58479412e-02 6.46694481e-01
6.74586713e-01 -7.08694398e-01 1.94025859e-01 9.66758609e-01
1.70214444e-01 3.67643595e-01 7.25296736e-01 -6.18955135e-01
-1.66220951e+00 -1.30900216e+00 2.72841185e-01 -7.01666832e-01
9.95016873e-01 -3.36313844e-01 -9.16142046e-01 4.18402165e-01
1.10860728e-01 2.05070436e-01 5.22958696e-01 -5.80100596e-01
-1.11890590e+00 -1.59436345e-01 -1.43867671e+00 8.64729047e-01
6.03578806e-01 -9.85456347e-01 -5.85536718e-01 7.15566874e-01
1.01697123e+00 -2.09308155e-02 -4.95717615e-01 6.56494498e-02
3.06296825e-01 -6.27918720e-01 1.34322643e+00 -9.26528215e-01
5.37343442e-01 -1.57964766e-01 -5.04218519e-01 -7.92199194e-01
-3.34732309e-02 -7.34895945e-01 -3.67128462e-01 1.25682414e+00
2.00687975e-01 -3.12300980e-01 8.57650518e-01 5.29694140e-01
2.72453040e-01 -3.11140686e-01 -1.13412046e+00 -9.40067053e-01
3.59176368e-01 -3.08398992e-01 9.60969850e-02 9.51973855e-01
-3.11233521e-01 2.64557779e-01 -8.50214720e-01 5.02563000e-01
1.18066120e+00 -4.56403583e-01 1.11426127e+00 -7.13156998e-01
-2.07640007e-01 -1.11677237e-01 -3.11167091e-01 -6.16300046e-01
2.05398917e-01 -6.95993781e-01 4.06988375e-02 -1.19739509e+00
5.37108839e-01 -1.66031808e-01 -2.71593392e-01 7.62356818e-01
-1.84930161e-01 6.70295060e-01 6.52948380e-01 4.56160218e-01
-8.23757708e-01 3.70553911e-01 1.13288736e+00 -7.20488369e-01
1.74292654e-01 -2.28663251e-01 -7.79914379e-01 4.96546060e-01
7.47159481e-01 -8.98805380e-01 -4.08810556e-01 -3.82432997e-01
-5.40940911e-02 -2.09666304e-02 7.88503885e-01 -9.84864652e-01
4.36678946e-01 -1.30022973e-01 3.06225210e-01 -3.99027556e-01
5.66908777e-01 -8.18306863e-01 -1.54228806e-01 7.67577350e-01
-3.68238300e-01 -1.10016376e-01 4.02216166e-01 7.78256714e-01
1.55939922e-01 -3.76063108e-01 1.13184512e+00 -3.84695500e-01
-5.50221920e-01 5.57428598e-01 -2.02764332e-01 4.72996652e-01
1.19565296e+00 -2.11785529e-02 -9.30726469e-01 -4.91819620e-01
-5.83031237e-01 4.99362171e-01 6.47361517e-01 6.40909612e-01
7.89981365e-01 -1.28758550e+00 -8.14640820e-01 8.43588188e-02
3.22403282e-01 -2.40056515e-01 3.72499287e-01 2.49437198e-01
-3.86494964e-01 2.86877016e-03 -3.01191509e-01 -5.31615198e-01
-1.43950999e+00 1.31912661e+00 4.02058959e-01 -1.39042228e-01
-3.44918013e-01 8.98518801e-01 4.83838022e-01 -1.81946442e-01
5.24448276e-01 6.66684508e-01 2.40893528e-01 -1.57530949e-01
8.10346127e-01 8.79482925e-02 -4.98147398e-01 -8.10670495e-01
-4.31911439e-01 4.66600746e-01 -4.45502698e-01 -2.47402534e-01
8.36658478e-01 2.21766248e-01 -1.34590445e-02 -1.13157727e-01
1.33068538e+00 -1.38138264e-01 -1.37823260e+00 -1.81169003e-01
-5.61982214e-01 -5.22846937e-01 -8.65622386e-02 -9.25260067e-01
-9.93503094e-01 1.00820529e+00 6.45287693e-01 8.38379562e-02
7.98362613e-01 1.18676595e-01 1.01960170e+00 6.89440370e-01
4.38603133e-01 -8.14931214e-01 7.75627375e-01 4.33512509e-01
8.90210092e-01 -1.33764732e+00 -2.85990119e-01 -1.15149908e-01
-9.68273401e-01 5.73088050e-01 7.79834211e-01 -2.98109561e-01
3.21049243e-01 8.09502751e-02 1.66985244e-01 -4.83641028e-02
-6.23519123e-01 2.78767906e-02 -1.20445535e-01 9.63212848e-01
-6.86243534e-01 -1.87871531e-01 4.57231343e-01 4.66474444e-01
1.57561347e-01 -2.47857541e-01 4.58590925e-01 7.27187693e-01
-6.00854933e-01 -7.21850872e-01 -8.58830154e-01 4.59027588e-02
-5.36102772e-01 -2.11988762e-01 -5.92338681e-01 7.22281635e-01
3.26234438e-02 1.06661904e+00 -2.67635696e-02 -6.20212436e-01
2.58676201e-01 -7.30421543e-02 3.95517170e-01 -2.07352221e-01
-6.80264354e-01 -2.48288542e-01 -1.68578476e-01 -3.74358684e-01
2.93783754e-01 -1.11638464e-01 -9.87928748e-01 -5.66289246e-01
-2.35100105e-01 1.01280153e-01 6.06697500e-01 7.31506824e-01
2.21409678e-01 -1.82391047e-01 1.04392576e+00 -6.83081806e-01
-9.80080009e-01 -5.48796296e-01 -1.99325159e-01 7.71241665e-01
4.09592062e-01 -4.22083139e-01 -6.00167572e-01 1.15961187e-01] | [5.860833644866943, 7.868347644805908] |
7abe72b4-3f19-4dfa-835c-93b22d723495 | rotateqvs-representing-temporal-information | 2203.07993 | null | https://arxiv.org/abs/2203.07993v2 | https://arxiv.org/pdf/2203.07993v2.pdf | RotateQVS: Representing Temporal Information as Rotations in Quaternion Vector Space for Temporal Knowledge Graph Completion | Temporal factors are tied to the growth of facts in realistic applications, such as the progress of diseases and the development of political situation, therefore, research on Temporal Knowledge Graph (TKG) attracks much attention. In TKG, relation patterns inherent with temporality are required to be studied for representation learning and reasoning across temporal facts. However, existing methods can hardly model temporal relation patterns, nor can capture the intrinsic connections between relations when evolving over time, lacking of interpretability. In this paper, we propose a novel temporal modeling method which represents temporal entities as Rotations in Quaternion Vector Space (RotateQVS) and relations as complex vectors in Hamilton's quaternion space. We demonstrate our method can model key patterns of relations in TKG, such as symmetry, asymmetry, inverse, and can further capture time-evolved relations by theory. Empirically, we show that our method can boost the performance of link prediction tasks over four temporal knowledge graph benchmarks. | ['Aiping Li', 'Yitong Li', 'Ye Wang', 'Kai Chen'] | 2022-03-15 | null | https://aclanthology.org/2022.acl-long.402 | https://aclanthology.org/2022.acl-long.402.pdf | acl-2022-5 | ['temporal-knowledge-graph-completion'] | ['knowledge-base'] | [-4.33165550e-01 9.52180997e-02 -8.06420982e-01 -1.10748984e-01
5.29671371e-01 -6.08111620e-01 9.76600111e-01 4.89540577e-01
-2.67034527e-02 7.68462002e-01 3.60966831e-01 -6.47167027e-01
-6.95969403e-01 -1.04049885e+00 -6.48789585e-01 -3.55888039e-01
-7.08873451e-01 4.24468309e-01 4.48821157e-01 -7.86702216e-01
-7.86396116e-02 4.27534968e-01 -9.89983499e-01 -2.68065352e-02
6.47042334e-01 6.27545595e-01 -5.30138016e-01 5.10539830e-01
3.09983473e-02 1.28384101e+00 -4.38084275e-01 -7.43237972e-01
-9.75438133e-02 -4.80038077e-01 -1.18305242e+00 -5.64731538e-01
-2.05193341e-01 1.64205268e-01 -1.24293101e+00 6.41499043e-01
-4.70399968e-02 2.98656106e-01 8.01020443e-01 -1.53369713e+00
-9.61068332e-01 7.56556988e-01 -5.35732329e-01 7.12372124e-01
6.02745831e-01 -1.88637912e-01 1.42098987e+00 -2.86275864e-01
1.15151930e+00 1.30460000e+00 6.23626173e-01 1.91371694e-01
-1.17213023e+00 -4.20051008e-01 4.69218165e-01 1.02855527e+00
-1.30089462e+00 1.67109564e-01 8.57661903e-01 -5.24243653e-01
1.13627481e+00 3.03669035e-01 1.30397427e+00 1.10030997e+00
6.99830055e-01 5.72236717e-01 6.67438209e-01 -1.24644823e-01
-8.99509788e-02 -6.25008821e-01 2.35417053e-01 8.63805294e-01
2.05575630e-01 5.83463348e-02 -1.09198761e+00 1.44392356e-01
7.95989990e-01 -3.66624780e-02 -1.77142978e-01 -2.79672414e-01
-1.66369092e+00 5.69157839e-01 7.85233319e-01 4.51876014e-01
-3.09702069e-01 4.40051466e-01 2.10661724e-01 6.39344573e-01
4.66316730e-01 4.13355917e-01 -6.31121635e-01 -2.28649423e-01
-3.26150805e-01 3.54449935e-02 7.84663975e-01 1.10967195e+00
4.02330965e-01 -2.61778712e-01 -4.64934893e-02 4.20309156e-01
9.91033018e-02 3.24625731e-01 4.64514285e-01 -6.00409746e-01
3.52200419e-01 9.57472265e-01 -1.30865350e-01 -1.56753826e+00
-8.53535473e-01 -3.40253115e-01 -1.09539092e+00 -7.39872515e-01
3.22889805e-01 2.54034042e-01 -7.01415539e-01 1.91203415e+00
2.59034127e-01 4.59290892e-01 -2.43691206e-02 4.63584661e-01
8.07405293e-01 7.26526320e-01 2.34228317e-02 -5.94305217e-01
1.36392927e+00 -4.64712292e-01 -1.05161941e+00 1.88639462e-01
9.25396442e-01 -4.26072747e-01 5.00551283e-01 -8.41485430e-03
-9.21033323e-01 -6.98059872e-02 -9.54242051e-01 -1.29636839e-01
-7.30941594e-01 -4.08864528e-01 1.44498360e+00 1.04900807e-01
-8.46895516e-01 7.65474141e-01 -1.06248105e+00 -7.35832989e-01
4.66259904e-02 1.77751288e-01 -3.22643906e-01 2.38880470e-01
-1.87737834e+00 1.16679132e+00 5.67229092e-01 2.72037894e-01
-2.41292730e-01 -6.71387672e-01 -7.66890824e-01 -2.12447301e-01
4.18247789e-01 -8.87474358e-01 8.83336484e-01 -9.59687531e-02
-1.25432491e+00 6.86384678e-01 -4.83738296e-02 -5.78832507e-01
3.57661337e-01 3.41198780e-02 -1.10090399e+00 -5.02827950e-02
-1.67694137e-01 3.57664436e-01 4.69130844e-01 -6.60186648e-01
-3.24521780e-01 -1.59052864e-01 4.77432579e-01 7.19692633e-02
-3.95552278e-01 -3.49707693e-01 -6.06015086e-01 -7.21434116e-01
5.21481395e-01 -1.16168797e+00 -9.54690352e-02 -9.87009406e-02
-4.84437376e-01 -4.99980539e-01 6.13925159e-01 -4.48652714e-01
1.86682379e+00 -1.91052437e+00 6.78362191e-01 2.65932709e-01
2.87427634e-01 -1.41767338e-01 1.26530126e-01 8.00102711e-01
-2.99053460e-01 2.42688373e-01 1.87443838e-01 4.35594887e-01
-5.02916193e-03 7.87107468e-01 -6.87045276e-01 4.59839135e-01
6.23384118e-02 1.39070320e+00 -1.36014616e+00 -6.49506509e-01
-1.90217838e-01 1.53187811e-01 -3.19153458e-01 -2.03728631e-01
-4.61291939e-01 1.75118074e-01 -5.38322926e-01 5.62542260e-01
1.32917300e-01 -7.49692380e-01 6.43870890e-01 -5.11049092e-01
1.52342692e-01 4.45216298e-01 -8.86640489e-01 1.61567295e+00
-2.32886970e-01 6.71035051e-01 -8.83070886e-01 -8.34827662e-01
6.03943884e-01 3.92626405e-01 7.96327531e-01 -1.00265014e+00
-9.86901820e-02 -1.30588174e-01 4.14627463e-01 -4.28587824e-01
6.60079718e-01 3.42699327e-02 2.39281580e-02 4.83681649e-01
-2.39098761e-02 -1.14019193e-01 4.98728424e-01 7.55393684e-01
1.17478168e+00 1.23663247e-01 4.86957788e-01 -7.78043345e-02
2.40702495e-01 -6.61090016e-02 7.13687479e-01 1.28043219e-01
-2.98335012e-02 -1.79567650e-01 9.96883094e-01 -8.07372034e-01
-6.52297676e-01 -1.13758481e+00 -4.69614677e-02 8.35289896e-01
3.31197053e-01 -1.02747214e+00 2.75869846e-01 -5.42272329e-01
1.60609588e-01 5.60801566e-01 -9.93269920e-01 -6.64475858e-01
-7.32600689e-01 -9.30477440e-01 4.44750398e-01 6.47780478e-01
2.65724391e-01 -6.98324025e-01 -3.68770272e-01 1.59505650e-01
-3.32285583e-01 -1.10741413e+00 -3.23784649e-01 5.63002527e-02
-9.80654240e-01 -1.22565317e+00 -1.94997862e-01 -3.67401749e-01
3.09028625e-01 1.28445163e-01 1.24484622e+00 2.45375559e-01
-1.97054744e-01 5.77183306e-01 -3.92109156e-01 -2.65929401e-01
-7.30578089e-03 2.04920769e-01 3.02299410e-01 -1.90103412e-01
-8.45335126e-02 -9.21017885e-01 -7.16907084e-01 4.46065277e-01
-7.92879343e-01 1.86052367e-01 2.34898329e-01 8.50157738e-01
3.17350954e-01 3.38954896e-01 4.05086964e-01 -7.77242362e-01
5.28997481e-01 -6.79521024e-01 -2.96411604e-01 6.52931392e-01
-7.68619359e-01 4.31743711e-01 2.68450171e-01 -6.37503445e-01
-8.36981535e-01 -5.54832935e-01 5.96764207e-01 -2.19319299e-01
8.07870805e-01 1.19274199e+00 4.14034605e-01 7.70532712e-02
6.04527712e-01 5.42801470e-02 -4.22976732e-01 4.93310280e-02
9.25733805e-01 -3.34944576e-01 3.53022307e-01 -8.15653622e-01
9.45612133e-01 5.59725702e-01 7.70137489e-01 -5.19012868e-01
-9.61480558e-01 -2.84465045e-01 -8.66302550e-01 -2.03645065e-01
5.72761774e-01 -6.75090611e-01 -9.48099852e-01 1.36235446e-01
-1.25786746e+00 -1.56134218e-01 -1.54612362e-01 5.87764025e-01
-3.94114882e-01 2.35501096e-01 -7.63398409e-01 -5.34438908e-01
3.97082567e-02 -3.91559154e-01 5.90460479e-01 8.64986703e-02
-5.25004387e-01 -1.49046218e+00 2.68441886e-01 -1.15984358e-01
5.70926666e-02 4.40618634e-01 1.39622366e+00 -1.41020432e-01
-8.61817062e-01 8.40958953e-02 -1.46628758e-02 -5.34897089e-01
2.68554419e-01 3.84389013e-01 -2.21009567e-01 4.12206836e-02
-5.80837071e-01 -5.64868003e-02 7.99782515e-01 3.38771828e-02
7.86624610e-01 -4.62886095e-01 -7.47698545e-01 6.69935882e-01
9.36406791e-01 3.75104070e-01 6.79783523e-01 2.38500789e-01
7.99745858e-01 6.25720978e-01 6.99075282e-01 3.94551188e-01
8.81825507e-01 7.82445371e-01 2.53765494e-01 3.64383698e-01
-9.83776078e-02 -4.43914086e-01 6.86948076e-02 1.44125521e+00
-8.71218681e-01 -2.52835125e-01 -1.14467323e+00 5.97036183e-01
-2.17835879e+00 -1.14568126e+00 -4.13196176e-01 1.70816517e+00
1.03893459e+00 1.73856661e-01 -1.61727257e-02 2.03751530e-02
3.82020265e-01 4.28629667e-01 -5.76838434e-01 2.33284216e-02
-3.73862952e-01 4.98843007e-02 3.48565012e-01 3.83046001e-01
-8.02466929e-01 1.19575226e+00 6.57790375e+00 5.36878049e-01
-1.00856793e+00 -1.85592413e-01 1.56186998e-01 6.92049339e-02
-6.28057420e-01 2.72847652e-01 -1.89979196e-01 8.70491862e-02
7.97175229e-01 -8.28295231e-01 5.28398454e-01 2.24098727e-01
-2.71544993e-01 2.26263031e-01 -1.19288886e+00 1.17417109e+00
-3.14809203e-01 -1.37555945e+00 1.75614282e-01 -7.77408853e-02
9.15552616e-01 -4.42038774e-01 1.52824193e-01 3.56363922e-01
6.32390916e-01 -9.78087723e-01 5.81796169e-01 1.03271961e+00
6.05937064e-01 -5.19886732e-01 3.79885346e-01 -6.13266528e-02
-1.65979779e+00 8.39235559e-02 -6.95712641e-02 -2.06251845e-01
2.82896161e-01 4.87007648e-01 -8.85386467e-01 1.32440031e+00
4.60005045e-01 1.45586336e+00 -7.83436954e-01 6.22953176e-01
-6.41367972e-01 6.64745808e-01 -2.06447244e-01 -1.40499786e-01
-8.20278600e-02 -3.02895427e-01 3.50662470e-01 8.15473855e-01
2.40549028e-01 4.68851894e-01 -2.65480250e-01 4.01221633e-01
5.05995005e-03 -9.53626856e-02 -6.78248644e-01 -5.69249630e-01
4.04214621e-01 8.26105297e-01 -8.93333256e-01 -1.31614998e-01
-3.15151721e-01 7.88112104e-01 3.58934760e-01 6.54992580e-01
-1.09043038e+00 7.72238076e-02 6.50260866e-01 -6.45978898e-02
-1.08109444e-01 -7.91448891e-01 -7.26927742e-02 -1.45652044e+00
1.00939788e-01 -5.60018957e-01 9.05481875e-01 -8.15435231e-01
-1.26135290e+00 4.73434597e-01 2.67200649e-01 -1.15261066e+00
-3.06299120e-01 -5.12504101e-01 -4.09650058e-01 2.99661726e-01
-1.16992652e+00 -1.35840559e+00 -8.84525105e-02 8.56063843e-01
-1.69385076e-01 1.26538113e-01 6.49982154e-01 1.96040764e-01
-5.16481578e-01 2.67691970e-01 -2.25931242e-01 6.16984032e-02
5.49494088e-01 -1.38698637e+00 5.14935493e-01 6.09102190e-01
6.04547083e-01 1.06295788e+00 7.77603805e-01 -8.23473752e-01
-1.60630739e+00 -9.04128253e-01 1.18433821e+00 -6.22781813e-01
1.56484890e+00 -4.91798669e-02 -8.62589836e-01 1.10471284e+00
2.69417241e-02 1.80037186e-01 5.29076397e-01 7.33220756e-01
-8.16351891e-01 -1.97382882e-01 -2.95374602e-01 9.97052968e-01
1.73778498e+00 -8.56718719e-01 -6.93301499e-01 6.30338490e-01
9.99353468e-01 -4.80821759e-01 -1.27387631e+00 5.08071244e-01
6.73448145e-01 -4.14766461e-01 1.21084774e+00 -1.24204111e+00
3.80534291e-01 -3.26347798e-01 5.84265478e-02 -1.44037688e+00
-5.87872326e-01 -8.79134655e-01 -8.22363377e-01 9.33783054e-01
3.84085178e-01 -7.92039573e-01 5.31680286e-01 2.55910516e-01
2.68238246e-01 -9.06908512e-01 -1.01808929e+00 -1.03306854e+00
1.47512434e-02 -2.97537953e-01 7.66399622e-01 1.56942856e+00
4.63601977e-01 6.17234468e-01 -4.71204370e-01 5.32979779e-02
1.26871526e-01 3.04417610e-01 4.17424768e-01 -1.34918177e+00
-1.99416041e-01 -6.96358263e-01 -9.40911770e-01 -8.54151249e-01
1.86407909e-01 -1.10285962e+00 -7.41769373e-01 -1.76326883e+00
-4.51157540e-02 -2.63095289e-01 -4.16656047e-01 4.81658667e-01
-2.75548846e-01 -3.34292054e-01 2.28205267e-02 2.48524293e-01
-7.78856099e-01 9.20194924e-01 1.62037849e+00 -3.29763860e-01
1.51232379e-02 -2.10538819e-01 -2.81542659e-01 5.71985185e-01
4.65629548e-01 -3.23724359e-01 -9.46204185e-01 -2.70634353e-01
1.29609489e+00 4.02360827e-01 2.62886435e-01 -6.21117651e-01
6.05598390e-01 -6.09823346e-01 7.83919767e-02 -4.89928722e-01
3.76438588e-01 -6.94562137e-01 5.66510201e-01 6.30857527e-01
-1.38974369e-01 5.59081256e-01 4.92297560e-02 1.00287449e+00
-2.36359581e-01 6.26193702e-01 8.12166631e-02 2.69971520e-01
-8.11880767e-01 6.63009346e-01 9.07897949e-03 6.27510026e-02
1.02610290e+00 2.46928409e-01 -8.04215729e-01 -5.67737103e-01
-8.95180702e-01 5.09774268e-01 3.72713320e-02 6.48220897e-01
4.73460764e-01 -1.69666624e+00 -3.63605648e-01 -5.99510193e-01
2.79431909e-01 -3.00915450e-01 2.64652997e-01 1.15714967e+00
-5.22106111e-01 6.47600114e-01 -1.79407448e-02 -3.91035885e-01
-9.69267309e-01 1.00960684e+00 3.16550285e-01 -6.01386011e-01
-6.21370077e-01 7.09922254e-01 6.60272762e-02 -1.38321295e-01
-1.15301706e-01 -6.80058002e-01 -4.63713408e-01 4.68558937e-01
-4.23622578e-02 2.90322155e-01 -1.86726138e-01 -5.33365428e-01
-5.68092346e-01 6.64568722e-01 -5.45140803e-02 -5.17217405e-02
1.35507286e+00 9.66236964e-02 -4.15057093e-01 9.19586182e-01
8.26637268e-01 -1.44714147e-01 -6.37355566e-01 -3.79517943e-01
3.52354735e-01 -1.24611892e-01 -4.32073027e-01 -4.81885821e-01
-9.26938236e-01 5.47364891e-01 -1.02167629e-01 6.08970344e-01
9.77456868e-01 2.47634307e-01 6.30909860e-01 7.29804277e-01
6.46704972e-01 -8.42877090e-01 4.95440632e-01 7.74529457e-01
9.70591307e-01 -7.51816094e-01 3.58443350e-01 -7.70112753e-01
-5.19252002e-01 1.17244971e+00 4.57022995e-01 2.37478480e-01
1.08128917e+00 -3.71709943e-01 -3.50483745e-01 -6.27086222e-01
-1.34782541e+00 -2.69152433e-01 7.61818707e-01 3.96353364e-01
4.19248343e-01 3.46787304e-01 -5.85497320e-01 2.40782976e-01
-5.86103618e-01 -2.95428127e-01 3.66320938e-01 8.51133764e-01
2.44365886e-01 -1.18313611e+00 1.41612992e-01 2.61276543e-01
-8.91096666e-02 -9.96568426e-02 -5.10815203e-01 1.08258855e+00
6.13014512e-02 6.64165199e-01 5.62869152e-03 -6.57851815e-01
3.63796145e-01 -1.72808301e-02 8.03628743e-01 -3.11989516e-01
2.01779306e-02 -4.49825913e-01 2.78291076e-01 -6.19616449e-01
-6.21700406e-01 -6.85518205e-01 -1.29980934e+00 -5.67353606e-01
-4.00470011e-02 1.30315319e-01 2.20749140e-01 9.76743877e-01
2.85773605e-01 9.25647020e-01 2.38432989e-01 2.24282146e-01
4.21398468e-02 -7.73134887e-01 -6.48984313e-01 5.79596996e-01
1.37182668e-01 -1.14771140e+00 -1.09762616e-01 2.67634571e-01] | [8.53089714050293, 7.930069923400879] |
d99507bd-2dee-490b-a693-7c788721c18c | can-audio-captions-be-evaluated-with-image | 2110.04684 | null | https://arxiv.org/abs/2110.04684v2 | https://arxiv.org/pdf/2110.04684v2.pdf | Can Audio Captions Be Evaluated with Image Caption Metrics? | Automated audio captioning aims at generating textual descriptions for an audio clip. To evaluate the quality of generated audio captions, previous works directly adopt image captioning metrics like SPICE and CIDEr, without justifying their suitability in this new domain, which may mislead the development of advanced models. This problem is still unstudied due to the lack of human judgment datasets on caption quality. Therefore, we firstly construct two evaluation benchmarks, AudioCaps-Eval and Clotho-Eval. They are established with pairwise comparison instead of absolute rating to achieve better inter-annotator agreement. Current metrics are found in poor correlation with human annotations on these datasets. To overcome their limitations, we propose a metric named FENSE, where we combine the strength of Sentence-BERT in capturing similarity, and a novel Error Detector to penalize erroneous sentences for robustness. On the newly established benchmarks, FENSE outperforms current metrics by 14-25% accuracy. Code, data and web demo available at: https://github.com/blmoistawinde/fense | ['Kenny Q. Zhu', 'Mengyue Wu', 'Zeyu Xie', 'Xuenan Xu', 'Zhiling Zhang', 'Zelin Zhou'] | 2021-10-10 | null | null | null | null | ['audio-captioning'] | ['audio'] | [ 2.41722777e-01 4.82344627e-03 6.67817593e-02 -3.28374207e-01
-1.24931276e+00 -5.90698242e-01 6.03640437e-01 3.49281251e-01
-3.49743336e-01 7.94442117e-01 6.14465356e-01 1.45453006e-01
7.76907578e-02 -3.19998056e-01 -5.11632204e-01 -2.41182223e-01
1.24335639e-01 1.04336858e-01 9.68787521e-02 -1.07326388e-01
3.76817226e-01 -2.08281592e-01 -1.64773047e+00 5.78629017e-01
8.77967417e-01 1.16512465e+00 8.62478763e-02 6.75154567e-01
-8.69977009e-03 7.82805920e-01 -7.88936079e-01 -5.21739304e-01
-5.98380379e-02 -6.97714865e-01 -7.45390952e-01 -1.42311230e-01
3.55767310e-01 -1.48907542e-01 -3.15894298e-02 1.01895678e+00
8.11007917e-01 -2.22357258e-01 4.03626204e-01 -1.58231080e+00
-7.27601171e-01 9.01461065e-01 -2.03460455e-01 1.61792919e-01
9.97654915e-01 3.58623534e-01 1.20958579e+00 -9.00977671e-01
6.18953705e-01 1.05824375e+00 6.85058057e-01 6.01105392e-01
-1.03344119e+00 -7.88444519e-01 -1.17248192e-01 3.94054383e-01
-1.50758004e+00 -5.87182045e-01 7.42252648e-01 -5.91729641e-01
3.09426457e-01 5.00792146e-01 3.54635000e-01 1.49448335e+00
-3.51740569e-01 6.32352710e-01 1.15706086e+00 -2.23128125e-01
2.63865769e-01 5.17192423e-01 -1.74720004e-01 8.98266360e-02
6.00128397e-02 -1.61109224e-01 -8.75033438e-01 -2.90286038e-02
3.53434503e-01 -7.10889637e-01 -6.78787172e-01 -9.14031193e-02
-1.36836302e+00 5.38143158e-01 2.93867797e-01 4.55306739e-01
-2.36439571e-01 -2.19277292e-02 7.37962425e-01 2.51827776e-01
4.73075807e-01 6.05525851e-01 5.91075532e-02 -7.38931656e-01
-9.73596692e-01 2.55711883e-01 4.96191502e-01 7.94509590e-01
3.05430889e-01 -9.26239341e-02 -4.85180765e-01 7.88881481e-01
1.81888834e-01 3.85804385e-01 5.11442184e-01 -8.22581708e-01
6.60478532e-01 3.65489513e-01 3.60123366e-01 -1.12486291e+00
-1.52805179e-01 -3.79552782e-01 -6.14788353e-01 -1.25623748e-01
2.85231024e-01 -1.14370979e-01 -5.50068259e-01 1.66781294e+00
-7.72292092e-02 2.14452162e-01 -1.22782014e-01 1.32162118e+00
1.12486351e+00 7.30652928e-01 9.31034908e-02 -2.17790604e-01
1.22143114e+00 -8.16338003e-01 -8.76773894e-01 -6.48749620e-02
4.17772979e-01 -9.74363983e-01 1.49648190e+00 4.81702894e-01
-1.01790941e+00 -6.64561331e-01 -1.09136331e+00 2.89636374e-01
-1.87469274e-01 7.87805468e-02 1.47599369e-01 5.13080776e-01
-1.06658530e+00 4.67637211e-01 -3.61205190e-01 -2.60110825e-01
1.55120954e-01 -7.96409920e-02 -3.01682502e-01 2.62843400e-01
-1.39398074e+00 7.73833394e-01 3.04180622e-01 1.73277576e-02
-7.89602280e-01 -5.54179370e-01 -6.41705096e-01 -1.22974552e-01
1.22238517e-01 -4.10981447e-01 1.45954454e+00 -1.14523256e+00
-1.34257472e+00 7.09289372e-01 1.37449592e-01 -5.05034745e-01
7.27037907e-01 -3.46805871e-01 -6.51699483e-01 1.94105536e-01
1.37479946e-01 9.31462169e-01 7.07327485e-01 -1.56604111e+00
-3.92582148e-01 1.84661970e-01 1.62064478e-01 2.72368848e-01
-5.02252936e-01 1.16598897e-01 -4.29776162e-01 -6.96895063e-01
-2.50940174e-01 -7.03034282e-01 1.23488203e-01 -8.48314762e-02
-3.72408926e-01 -8.98111388e-02 6.23777688e-01 -7.18126297e-01
1.54067957e+00 -2.32026052e+00 -1.22220851e-01 -5.09346239e-02
1.14895828e-01 3.80908221e-01 -3.13651621e-01 4.89689976e-01
-7.15944096e-02 3.13681602e-01 -2.43456826e-01 -3.69044363e-01
1.07296787e-01 -1.01317644e-01 -1.91147164e-01 1.19137608e-01
2.84859508e-01 5.51308751e-01 -1.18522477e+00 -7.44899452e-01
1.06993265e-01 6.00360572e-01 -4.79662687e-01 2.81724364e-01
-1.13243304e-01 5.67613006e-01 -2.91915834e-01 5.09244740e-01
5.32721579e-01 -2.08654717e-01 -2.25016028e-01 -2.92872578e-01
-3.57787311e-03 3.97791326e-01 -1.32742023e+00 1.70413291e+00
-4.93607104e-01 8.30442786e-01 -1.43904224e-01 -6.13304675e-01
1.06712782e+00 7.35624433e-01 4.12169218e-01 -8.24397743e-01
2.42139816e-01 4.05315548e-01 -1.62228271e-01 -6.86993599e-01
5.39037883e-01 1.43430635e-01 -5.77232577e-02 1.87811375e-01
-4.38126288e-02 -1.92594558e-01 4.04543728e-01 3.18394363e-01
1.00367141e+00 1.02423176e-01 9.07335207e-02 1.46947116e-01
5.19440591e-01 -1.98528290e-01 3.32029283e-01 5.89293599e-01
-4.42569584e-01 1.21638238e+00 4.70498711e-01 -1.05804875e-01
-1.13841045e+00 -8.96629870e-01 -1.51890069e-01 8.31424296e-01
1.21176176e-01 -7.86753058e-01 -1.03119135e+00 -5.90106189e-01
-3.79746109e-01 6.87255204e-01 -4.46501732e-01 -3.61759737e-02
-3.94638255e-02 -3.47244889e-01 9.05522466e-01 2.51695931e-01
4.81319457e-01 -1.20142007e+00 -6.17725849e-01 1.53135940e-01
-8.73517334e-01 -1.26585007e+00 -5.12662947e-01 -3.48277301e-01
-3.37734848e-01 -8.80190849e-01 -9.27342296e-01 -4.34845507e-01
2.19116434e-01 -9.90392547e-03 1.22031283e+00 1.99938603e-02
8.77982825e-02 2.69990921e-01 -9.37984049e-01 -3.52396458e-01
-6.74369454e-01 1.31175116e-01 6.09866194e-02 1.63865253e-01
2.55205810e-01 -5.50771534e-01 -7.21651256e-01 4.89731848e-01
-9.77400184e-01 1.91871852e-01 4.99640495e-01 6.00632370e-01
2.86256939e-01 -5.06153226e-01 8.47543180e-01 -2.98799247e-01
9.47218060e-01 -4.26841974e-01 -1.03171282e-01 4.63142321e-02
-5.49514353e-01 -1.09719500e-01 5.31358421e-01 -5.06614387e-01
-6.85005963e-01 -2.15846390e-01 -3.54474604e-01 -3.64759177e-01
-3.38852078e-01 5.06548822e-01 -7.23953766e-04 1.97341174e-01
8.49295497e-01 3.80216502e-02 -1.33504719e-01 -4.73938167e-01
2.96158288e-02 1.16429996e+00 6.40214026e-01 -3.44277412e-01
6.68093324e-01 1.15108013e-01 -5.52001774e-01 -5.28460860e-01
-8.47219884e-01 -4.14135307e-01 -1.38989747e-01 -6.98490918e-01
7.45587647e-01 -1.10899913e+00 -4.30761069e-01 1.68952823e-01
-1.35831702e+00 3.37916277e-02 -1.33859038e-01 5.77025056e-01
-6.67038798e-01 5.19527316e-01 -3.47596318e-01 -8.90298009e-01
-4.85904157e-01 -1.14314246e+00 1.07745194e+00 2.28629373e-02
-6.79054797e-01 -4.62909371e-01 1.94092408e-01 6.11551404e-01
4.63625282e-01 4.08170968e-01 2.91138232e-01 -5.55532932e-01
-1.30761474e-01 -2.07449198e-01 -3.71214539e-01 6.13460958e-01
-8.46864656e-02 4.65766415e-02 -1.10638618e+00 -2.07327083e-01
-2.75579482e-01 -5.40474951e-01 4.82867628e-01 -6.77336976e-02
1.06806242e+00 -3.99705470e-01 1.17506139e-01 5.30961454e-02
1.29500878e+00 8.76756907e-02 8.06857884e-01 5.47287822e-01
2.97289401e-01 4.77214873e-01 8.02832067e-01 6.91928327e-01
2.68729270e-01 9.39914584e-01 5.90946496e-01 7.23650083e-02
-3.04712117e-01 -5.16920507e-01 6.47537053e-01 9.98059630e-01
-3.24391536e-02 -5.91589749e-01 -9.85383451e-01 6.88377559e-01
-1.77818453e+00 -8.57360423e-01 -2.09402323e-01 2.21523952e+00
8.48429978e-01 4.14658278e-01 2.43750498e-01 5.82017601e-01
8.78451288e-01 1.30113438e-01 -5.82330115e-02 -4.57642466e-01
-1.53442308e-01 -1.85439304e-01 1.33402392e-01 3.63370448e-01
-8.57813835e-01 5.28447926e-01 5.75689173e+00 8.44694257e-01
-1.16871178e+00 2.37756118e-01 5.90274930e-01 -9.69113559e-02
-4.01098251e-01 -5.29753342e-02 -3.32140416e-01 8.37113738e-01
1.07879055e+00 -1.81719542e-01 2.76027739e-01 6.29538715e-01
6.47239089e-01 3.56652923e-02 -1.04875100e+00 1.28445506e+00
3.15508276e-01 -9.32499707e-01 1.58621952e-01 -3.76103342e-01
5.19108713e-01 -1.00838244e-01 1.52036548e-01 1.25729114e-01
-2.46931046e-01 -8.54879677e-01 1.13788867e+00 5.03246903e-01
7.74285734e-01 -4.69671577e-01 9.60779309e-01 -1.68452226e-02
-9.74239528e-01 1.82071924e-01 1.91313296e-03 -1.07128792e-01
4.95808542e-01 5.37555873e-01 -1.00183594e+00 6.70236170e-01
7.76523173e-01 4.67592716e-01 -8.03531110e-01 1.41037250e+00
-1.39469281e-01 7.72992671e-01 -2.73371160e-01 -1.46063253e-01
3.41149062e-01 2.40796551e-01 8.08578372e-01 1.37591445e+00
5.85209072e-01 -3.11964929e-01 -1.32977173e-01 8.03706050e-01
-2.52349563e-02 4.93225992e-01 -4.43979949e-01 -1.67989179e-01
6.28355622e-01 1.18773925e+00 -5.05503654e-01 -2.31839389e-01
-2.86412448e-01 8.41970384e-01 -1.38121262e-01 1.13390669e-01
-1.28577447e+00 -4.46702003e-01 4.19469893e-01 2.88697094e-01
-6.43054843e-02 4.65334058e-02 -2.80088186e-01 -9.59883392e-01
4.01712090e-01 -1.06945109e+00 1.98394746e-01 -1.19854605e+00
-1.06883514e+00 1.00214767e+00 -1.41748618e-02 -1.84319496e+00
-1.46971688e-01 -1.94066182e-01 -5.28757274e-01 3.81212771e-01
-1.14085984e+00 -8.71403813e-01 -6.51239574e-01 3.42975706e-01
5.81669748e-01 8.86450261e-02 6.49004579e-01 8.28546941e-01
-4.45687801e-01 8.50480914e-01 -2.07173213e-01 -8.26115981e-02
1.14480627e+00 -9.57753301e-01 2.24181414e-01 6.56535804e-01
2.72294074e-01 5.32769971e-02 1.38631690e+00 -2.82145947e-01
-6.91911578e-01 -9.29648399e-01 9.85000074e-01 -4.00415897e-01
6.71086609e-01 -2.88674027e-01 -9.69593823e-01 6.43931776e-02
4.07189131e-01 -2.51507193e-01 5.44608653e-01 -1.25980556e-01
-4.13604766e-01 -1.47806987e-01 -8.91712189e-01 4.70942765e-01
9.93009031e-01 -5.40459394e-01 -4.15550858e-01 2.57016003e-01
8.00376773e-01 -1.54908106e-01 -9.56941128e-01 4.77529079e-01
4.96316046e-01 -1.05742204e+00 5.12407720e-01 -1.12488970e-01
6.43464863e-01 -5.60547471e-01 -1.01335429e-01 -1.26711333e+00
1.13587797e-01 -6.67331159e-01 3.27282965e-01 1.78688681e+00
7.32169032e-01 -1.45009384e-01 4.56292897e-01 2.64786988e-01
-2.27346331e-01 -3.82222325e-01 -9.93074715e-01 -9.29645956e-01
-3.72857988e-01 -6.44438624e-01 5.94922125e-01 9.46939528e-01
3.86492044e-01 3.57376099e-01 -7.24127233e-01 -4.24072966e-02
3.71610790e-01 -3.61431092e-01 7.69531369e-01 -9.29408729e-01
-8.74433070e-02 -4.70828027e-01 -6.36592507e-01 -6.05366826e-01
-1.60542086e-01 -6.65949404e-01 2.17970088e-01 -1.54994130e+00
2.58983910e-01 -1.09246604e-01 -4.18912560e-01 4.33344424e-01
-5.79768419e-02 7.46124327e-01 4.08042461e-01 1.87833384e-01
-1.03634489e+00 6.59975588e-01 1.02627110e+00 -1.38994485e-01
-1.09808050e-01 -3.14315468e-01 -6.19733453e-01 5.16635060e-01
1.01042819e+00 -5.01695931e-01 -2.47587338e-01 -4.69303757e-01
3.90309006e-01 -5.51349185e-02 5.42471290e-01 -1.72446823e+00
3.78788449e-02 8.28154236e-02 -1.07232630e-01 -3.08934420e-01
3.37501317e-01 -5.88712275e-01 4.18166310e-01 1.96866378e-01
-6.09853745e-01 1.93730250e-01 1.17972177e-02 2.12665156e-01
-6.70018613e-01 -3.43940258e-01 5.79014301e-01 2.11250231e-01
-5.57632685e-01 -4.16579247e-02 -2.37130553e-01 1.46401361e-01
7.95658231e-01 -2.80145615e-01 -1.95787221e-01 -9.23760116e-01
-5.75992584e-01 1.27291292e-01 4.52243865e-01 8.76531482e-01
5.57331145e-01 -1.49427354e+00 -1.06324184e+00 -3.22352380e-01
5.51209390e-01 -4.26005900e-01 3.47912848e-01 7.96692431e-01
-4.60308611e-01 3.32768708e-01 -2.93257147e-01 -6.40525281e-01
-1.36355984e+00 4.35011059e-01 2.90131476e-02 -2.97374465e-02
-2.03666314e-01 6.11676633e-01 -1.69106379e-01 9.06043202e-02
4.62574065e-01 -3.65844309e-01 -2.64958054e-01 1.34027511e-01
5.50054312e-01 2.59182632e-01 1.07042208e-01 -7.77680933e-01
-3.47852439e-01 2.72871107e-01 1.42025188e-01 -3.49399865e-01
9.98842239e-01 -4.20877784e-01 3.13283861e-01 5.04518867e-01
1.04014313e+00 -3.83892953e-02 -9.52597201e-01 4.23149131e-02
9.23049897e-02 -4.62889940e-01 -1.23596430e-01 -9.00964618e-01
-6.83722079e-01 7.63660073e-01 8.66738737e-01 3.72827977e-01
1.15806496e+00 -6.98220963e-03 7.88708866e-01 3.82266031e-03
2.41274700e-01 -1.10223377e+00 3.29562604e-01 3.00688058e-01
1.25226784e+00 -1.34588206e+00 -2.94832081e-01 -3.25197160e-01
-9.41670597e-01 6.97038949e-01 6.08475983e-01 3.31555307e-01
1.91103578e-01 4.49291095e-02 2.65459210e-01 2.10240573e-01
-8.03434551e-01 -2.53228664e-01 3.77823144e-01 4.77519035e-01
7.53828526e-01 -6.74619153e-02 -6.87093437e-01 7.08913147e-01
-5.18086433e-01 1.71968982e-01 5.95505893e-01 5.63721716e-01
-3.65604639e-01 -9.87991273e-01 -4.79342997e-01 8.14612731e-02
-6.09615743e-01 4.49341200e-02 -5.14708936e-01 4.79371607e-01
1.58858985e-01 1.23344970e+00 -1.47970870e-01 -6.67822301e-01
4.21636373e-01 -6.50168629e-03 5.16132303e-02 -3.17639202e-01
-6.46162987e-01 -4.83280420e-02 3.31553131e-01 -4.06576306e-01
-6.18105829e-01 -4.24272299e-01 -7.24904001e-01 -9.96262506e-02
-3.07779372e-01 6.11988723e-01 6.83310151e-01 6.24816716e-01
4.17242855e-01 3.65039259e-01 6.87901855e-01 -6.98117375e-01
-3.87690514e-01 -1.30204570e+00 -1.16891690e-01 9.08924758e-01
1.69671670e-01 -5.88250279e-01 -6.11531258e-01 1.75602034e-01] | [15.259384155273438, 4.872631072998047] |
1303246e-65e2-40ba-8225-9736a5b81046 | comparing-knowledge-based-reinforcement | 1901.04626 | null | https://arxiv.org/abs/1901.04626v2 | https://arxiv.org/pdf/1901.04626v2.pdf | Comparing Knowledge-based Reinforcement Learning to Neural Networks in a Strategy Game | The paper reports on an experiment, in which a Knowledge-Based Reinforcement Learning (KB-RL) method was compared to a Neural Network (NN) approach in solving a classical Artificial Intelligence (AI) task. In contrast to NNs, which require a substantial amount of data to learn a good policy, the KB-RL method seeks to encode human knowledge into the solution, considerably reducing the amount of data needed for a good policy. By means of Reinforcement Learning (RL), KB-RL learns to optimize the model and improves the output of the system. Furthermore, KB-RL offers the advantage of a clear explanation of the taken decisions as well as transparent reasoning behind the solution. The goal of the reported experiment was to examine the performance of the KB-RL method in contrast to the Neural Network and to explore the capabilities of KB-RL to deliver a strong solution for the AI tasks. The results show that, within the designed settings, KB-RL outperformed the NN, and was able to learn a better policy from the available amount of data. These results support the opinion that Artificial Intelligence can benefit from the discovery and study of alternative approaches, potentially extending the frontiers of AI. | ['Liudmyla Nechepurenko', 'Viktor Voss', 'Vyacheslav Gritsenko'] | 2019-01-15 | null | null | null | null | ['game-of-go'] | ['playing-games'] | [ 5.16687483e-02 8.48503768e-01 -2.71501839e-01 -1.69824034e-01
-2.45314792e-01 -3.19635600e-01 7.41002917e-01 1.89897329e-01
-6.80449188e-01 1.23074985e+00 -7.55383596e-02 -4.85668302e-01
-6.24239504e-01 -9.59977210e-01 -7.21026242e-01 -7.64404953e-01
-1.37263536e-03 6.80091918e-01 -7.56188557e-02 -4.11008209e-01
5.48070014e-01 5.89667261e-01 -1.51757157e+00 1.05187334e-01
6.55859172e-01 1.10825956e+00 4.14994866e-01 4.23246324e-01
-9.74345058e-02 1.24932706e+00 -6.18501127e-01 -3.80711779e-02
4.07763153e-01 -3.62528920e-01 -1.04102862e+00 -2.79903591e-01
-3.42975371e-02 -1.46135956e-01 -1.20622657e-01 6.57752097e-01
4.17616814e-01 4.08044368e-01 4.57894683e-01 -1.01151633e+00
-5.11665523e-01 5.44997811e-01 1.05710745e-01 1.68059021e-01
5.34569800e-01 5.06762803e-01 8.37061286e-01 -2.85634100e-01
7.19843209e-01 1.33300424e+00 2.82165498e-01 7.53726065e-01
-1.12016940e+00 -3.77772063e-01 1.89179555e-01 4.43384022e-01
-9.97870624e-01 -4.37633961e-01 6.48571908e-01 -2.31190175e-01
1.19971514e+00 -1.15836382e-01 1.00669825e+00 1.01967371e+00
7.39572197e-02 8.81239474e-01 1.50546157e+00 -9.65149701e-01
8.01086128e-01 6.90444708e-01 -1.98651806e-01 7.08591104e-01
2.06603840e-01 9.13755298e-01 -4.81128484e-01 2.80356333e-02
8.33974183e-01 -4.34246510e-01 -1.45489536e-02 -6.01183236e-01
-9.66170371e-01 1.02351928e+00 6.26138747e-01 5.89917719e-01
-8.91337693e-01 9.74572599e-02 2.97756046e-01 5.70493519e-01
2.77367793e-02 1.36530924e+00 -8.14714491e-01 -2.16692790e-01
-6.08500898e-01 3.01849484e-01 1.11196971e+00 1.63390055e-01
8.58074009e-01 5.12346804e-01 -1.49971858e-01 4.02020365e-01
3.08218986e-01 4.60395157e-01 7.64668703e-01 -1.14516807e+00
3.34033847e-01 8.51570368e-01 1.72242299e-01 -9.36351776e-01
-4.19020325e-01 -4.23465222e-01 -3.55309606e-01 7.40460217e-01
4.70781177e-01 -3.80394489e-01 -6.64768577e-01 1.55086863e+00
1.76166371e-01 4.80215326e-02 6.46585107e-01 7.27472067e-01
3.82626921e-01 6.91550493e-01 2.63263024e-02 -4.18263853e-01
8.15107226e-01 -8.40275466e-01 -6.74434245e-01 -3.84404063e-01
6.18785977e-01 -6.18262170e-03 8.65450799e-01 7.09409893e-01
-1.09035647e+00 -7.39355206e-01 -9.14381146e-01 6.26250327e-01
-5.58984995e-01 -1.72973931e-01 7.99344480e-01 4.15625304e-01
-1.27882767e+00 8.02411079e-01 -4.38835680e-01 -4.11085725e-01
2.85916507e-01 6.27847910e-01 -3.79786998e-01 6.14847336e-03
-1.41624796e+00 1.62923229e+00 1.09083223e+00 1.69806793e-01
-8.70307505e-01 -2.38352910e-01 -7.83175111e-01 6.88348487e-02
8.85956466e-01 -5.09190142e-01 1.34534872e+00 -1.49368107e+00
-2.09370780e+00 4.57857519e-01 2.01194793e-01 -9.41461205e-01
3.56858760e-01 -9.84003991e-02 -2.23150983e-01 2.36038074e-01
-4.07057434e-01 8.03411245e-01 8.04488122e-01 -1.47688138e+00
-7.52418518e-01 -1.74370944e-01 2.30766773e-01 1.58747360e-01
4.74210419e-02 -5.53661108e-01 1.28347918e-01 -2.51325399e-01
-4.03974593e-01 -7.67112494e-01 -5.17191648e-01 -5.06246448e-01
1.41152680e-01 -4.80895579e-01 5.33739209e-01 -3.38265240e-01
1.16997731e+00 -1.88957620e+00 2.23410293e-01 5.39679646e-01
-5.83347902e-02 8.49249661e-01 -1.50517151e-01 6.59400642e-01
-5.75391278e-02 8.05650875e-02 7.01994747e-02 2.94950992e-01
7.66545609e-02 7.77782679e-01 -2.01845661e-01 2.21204269e-03
2.73610115e-01 1.11639810e+00 -9.20906425e-01 -1.91623151e-01
3.11645359e-01 4.78429021e-03 -3.79120648e-01 5.40314615e-01
-6.22167587e-01 4.29123610e-01 -7.58708656e-01 2.53599137e-01
-1.01529919e-01 -1.13812469e-01 3.74736995e-01 2.55842149e-01
-2.82556247e-02 6.91340193e-02 -1.19889295e+00 1.15435338e+00
-4.16985035e-01 5.22240043e-01 -2.88884670e-01 -1.58903968e+00
1.29328978e+00 5.55848539e-01 2.77336627e-01 -1.32549620e+00
1.64372832e-01 2.66465664e-01 2.62584001e-01 -7.65486121e-01
-1.05455220e-02 -1.92370757e-01 2.11092934e-01 5.32942593e-01
5.04704081e-02 -2.98729956e-01 1.32036120e-01 -2.83616066e-01
9.75067317e-01 2.67049968e-01 7.73942828e-01 -1.20957822e-01
7.55608261e-01 1.69504806e-01 4.27069068e-01 1.06283092e+00
-8.03552195e-02 -4.69397813e-01 4.57228988e-01 -9.38174844e-01
-7.16239929e-01 -6.18322492e-01 4.20472175e-01 8.89543891e-01
-2.76568741e-01 8.00712779e-02 -7.30613589e-01 -7.91952908e-01
-3.11172474e-02 1.21213353e+00 -7.34783828e-01 -3.20441186e-01
-5.19360304e-01 -3.92864019e-01 2.40610972e-01 2.55836338e-01
5.66842914e-01 -1.96505439e+00 -1.15846968e+00 4.56580848e-01
3.06176662e-01 -7.92920947e-01 5.61630785e-01 5.10951698e-01
-1.15501475e+00 -1.06316769e+00 -2.68966556e-01 -4.75238025e-01
5.43638110e-01 -4.12968695e-01 9.73610282e-01 8.65137726e-02
-2.30008587e-02 6.79680467e-01 -4.36092257e-01 -7.53775299e-01
-6.98069632e-01 -1.79623011e-02 1.34305254e-01 -3.75589937e-01
4.25601631e-01 -4.56279874e-01 -3.22492898e-01 -2.61358321e-02
-8.38570178e-01 -1.19888894e-01 1.14318812e+00 9.33260322e-01
1.20095335e-01 4.28076804e-01 1.02526748e+00 -6.90538943e-01
1.14747620e+00 -4.05020028e-01 -7.50642359e-01 3.59149992e-01
-1.37578046e+00 6.59847379e-01 7.84165978e-01 -4.64941949e-01
-9.89944339e-01 -5.57105877e-02 1.54024124e-01 -2.38590196e-01
-5.66236258e-01 6.41824961e-01 1.52396038e-01 -1.16763569e-01
7.61108935e-01 3.07072014e-01 3.67614895e-01 -2.98250288e-01
3.44048500e-01 3.76562566e-01 2.85734862e-01 -7.28902042e-01
4.36576307e-01 -9.07512456e-02 -4.15395293e-03 -6.21941268e-01
-7.73088574e-01 -1.73943266e-01 -5.21892786e-01 -2.51533121e-01
6.60222352e-01 -3.85800749e-01 -8.91372025e-01 3.27528864e-02
-8.16475153e-01 -6.70966327e-01 -8.33041012e-01 5.34775555e-01
-9.77961719e-01 -1.30619213e-01 -1.46118611e-01 -1.18084490e+00
-1.30595878e-01 -1.01560533e+00 1.79049909e-01 4.41388518e-01
-2.83702552e-01 -1.15484428e+00 2.31671020e-01 3.22670966e-01
3.95176113e-01 1.96061991e-02 1.13777149e+00 -1.06012154e+00
-2.79374570e-01 -5.71799465e-02 5.53986169e-02 5.67838669e-01
-9.14557427e-02 -2.48250216e-01 -8.84945691e-01 -1.62986606e-01
6.06216677e-02 -7.53221333e-01 4.69777286e-01 3.45721930e-01
8.09570432e-01 -6.86426222e-01 2.41362918e-02 -2.69221719e-02
1.45582783e+00 7.98328400e-01 6.68104768e-01 1.01224637e+00
-3.12167220e-02 8.43687773e-01 7.63427198e-01 4.08598274e-01
1.22300416e-01 5.90827703e-01 5.83073437e-01 -5.59248328e-02
2.83117861e-01 -2.47805148e-01 3.82057518e-01 2.14266166e-01
-3.72864783e-01 -6.09242357e-02 -9.38942790e-01 1.60253331e-01
-2.18031240e+00 -9.50116873e-01 5.80268860e-01 2.02450633e+00
7.08354414e-01 3.06102872e-01 2.30201647e-01 3.64026248e-01
2.00023681e-01 -2.00879410e-01 -7.55436480e-01 -1.09119213e+00
1.50898516e-01 3.65709901e-01 2.33928144e-01 4.24166471e-01
-6.49793267e-01 1.04953432e+00 7.14395571e+00 6.49055243e-01
-1.07243991e+00 -4.60832775e-01 3.66805017e-01 2.39127398e-01
7.23449513e-02 -1.68671548e-01 -6.14004493e-01 1.09773710e-01
1.52354705e+00 5.39813749e-02 9.98149753e-01 9.18089330e-01
4.06379133e-01 -5.65945208e-01 -1.05501807e+00 5.59545517e-01
-1.70503527e-01 -1.38660300e+00 1.84580520e-01 1.40621573e-01
5.06229103e-01 -2.84011275e-01 -1.29905909e-01 6.48183644e-01
5.15106201e-01 -1.32403123e+00 6.45737052e-01 9.67464030e-01
3.23342420e-02 -9.25545394e-01 1.00803995e+00 9.62457061e-01
-3.77698421e-01 -7.51087546e-01 -2.92186409e-01 -6.30245030e-01
-3.56267303e-01 9.48696285e-02 -1.26527154e+00 7.07811475e-01
4.37692523e-01 3.84439915e-01 -6.18993938e-01 7.73578763e-01
-5.04106224e-01 6.59134686e-01 -1.11452956e-02 -5.36210418e-01
7.67514050e-01 -2.49489725e-01 3.42724293e-01 9.99901533e-01
-2.11087428e-02 2.25827947e-01 2.19163105e-01 8.23411942e-01
4.79322582e-01 8.89413804e-02 -8.35151494e-01 -5.03167868e-01
2.60006011e-01 8.27821076e-01 -5.71753681e-01 -3.38580251e-01
-3.96509245e-02 4.24744159e-01 6.74451232e-01 4.34191734e-01
-2.31333435e-01 4.78009954e-02 1.30818859e-01 -2.08032370e-01
4.24669832e-01 9.13615003e-02 -1.23571411e-01 -5.26368916e-01
-3.30424279e-01 -1.27809381e+00 3.01835001e-01 -8.12977970e-01
-9.45686221e-01 5.75763345e-01 1.24672525e-01 -7.41229236e-01
-8.70199323e-01 -8.28112662e-01 -2.61133760e-01 7.42674232e-01
-1.66595256e+00 -6.24528944e-01 1.60453513e-01 4.23313320e-01
2.40311414e-01 -7.37179875e-01 1.20784628e+00 -4.66354638e-01
-4.31076467e-01 4.20355983e-03 1.21820606e-01 -1.39727846e-01
2.72397608e-01 -1.28385055e+00 -3.03782016e-01 2.21600741e-01
8.07642937e-02 4.21765059e-01 8.31677258e-01 -3.13827574e-01
-1.40133584e+00 -4.78558272e-01 5.69230080e-01 -2.18799695e-01
4.69537348e-01 2.75382936e-01 -7.71237016e-01 3.58966142e-01
3.94465238e-01 -2.38469526e-01 5.57936847e-01 2.43507028e-02
3.65153560e-03 -2.00398639e-01 -1.31268752e+00 4.33069855e-01
3.54202151e-01 -1.37630865e-01 -1.26466835e+00 4.43992242e-02
4.95135218e-01 -1.06631070e-02 -7.81399846e-01 2.66376495e-01
4.54334259e-01 -1.11310041e+00 9.21778321e-01 -9.33050394e-01
4.61924672e-01 -7.50895366e-02 9.30163115e-02 -1.59874320e+00
-4.48693007e-01 -4.38497663e-01 -4.50169891e-01 7.46124804e-01
4.99070466e-01 -8.37822974e-01 6.85195148e-01 6.73616648e-01
2.57229388e-01 -1.08272123e+00 -8.01835001e-01 -7.44245768e-01
1.45611577e-02 -3.52704942e-01 5.29126346e-01 7.46693313e-01
-3.24911326e-02 2.26151481e-01 -2.60150343e-01 -1.52265325e-01
1.53441206e-01 -2.60875709e-02 6.80892408e-01 -1.33412373e+00
-5.47765613e-01 -6.09222412e-01 -2.77352482e-01 -4.36407596e-01
4.84776378e-01 -5.43561697e-01 6.72036484e-02 -1.63103235e+00
-3.61874074e-01 -4.86668497e-01 -5.99884272e-01 6.92403793e-01
5.21081612e-02 -3.09188068e-01 3.55208397e-01 8.02258216e-03
-4.85640854e-01 3.20769757e-01 1.44501328e+00 8.58541578e-02
-4.90354508e-01 1.23210043e-01 -8.42622519e-01 8.02013516e-01
1.01833510e+00 -4.14283574e-01 -6.16812944e-01 1.07416905e-01
5.90828359e-01 3.61556649e-01 2.70350069e-01 -8.29328358e-01
2.00549036e-01 -4.74046558e-01 5.86066008e-01 1.10746592e-01
1.60111085e-01 -1.04413188e+00 -5.58641739e-02 8.49387825e-01
-5.62310517e-01 -2.88877580e-02 4.23026145e-01 5.08942366e-01
-2.53917605e-01 -6.13723397e-01 5.21100581e-01 -5.84268272e-01
-1.10389173e+00 -2.62758464e-01 -6.70907855e-01 -1.45575866e-01
1.23876417e+00 -5.20349085e-01 2.00768420e-03 -3.18430394e-01
-7.44176686e-01 3.27558130e-01 1.56748183e-02 2.36911684e-01
5.59010804e-01 -8.20416510e-01 -3.79270673e-01 2.33115897e-01
-2.07932442e-01 -1.67769119e-02 -1.39904872e-01 5.19122839e-01
-3.24037164e-01 9.71681714e-01 -6.16818964e-01 -8.51624683e-02
-7.38829255e-01 7.63787985e-01 6.07072055e-01 -6.19424284e-01
-7.27738976e-01 3.88100356e-01 -2.64066368e-01 -5.93520522e-01
5.27575135e-01 -1.40060872e-01 -7.18604684e-01 -1.78230293e-02
4.90565985e-01 3.15345436e-01 -4.27307822e-02 2.85005216e-02
4.24746657e-03 1.33769736e-01 6.49331212e-02 -3.26891959e-01
1.55033731e+00 1.16061062e-01 1.17032044e-01 4.62688386e-01
3.99419963e-01 -4.76277739e-01 -1.23084307e+00 -2.20287144e-01
5.84235847e-01 -1.08500816e-01 3.18208247e-01 -1.44908392e+00
-8.18858206e-01 5.93650937e-01 4.55816925e-01 3.11513513e-01
1.12480772e+00 -3.14987630e-01 1.36325076e-01 1.04544961e+00
4.87076133e-01 -1.38986862e+00 2.19797403e-01 4.97853637e-01
9.24269378e-01 -1.38630342e+00 -2.20738612e-02 4.02132004e-01
-9.36383843e-01 1.47298956e+00 6.92905307e-01 -1.69215426e-01
3.13266546e-01 4.26480919e-02 1.88342974e-01 -3.01672608e-01
-1.02387023e+00 -2.52168357e-01 3.66038054e-01 7.32407629e-01
4.89068441e-02 -8.28138590e-02 2.98850937e-03 2.34146789e-01
-1.67799190e-01 4.33181733e-01 2.77051777e-01 1.10331702e+00
-7.13889718e-01 -1.22057104e+00 -4.50238973e-01 3.17680329e-01
-8.03507492e-02 3.35731059e-01 -6.45981252e-01 1.08789194e+00
2.27517188e-01 1.03370321e+00 -3.37107986e-01 -2.91607734e-02
4.18345958e-01 3.22496116e-01 5.93471408e-01 -5.99019885e-01
-8.13786685e-01 -3.15190136e-01 1.07736990e-01 -8.19590628e-01
-6.75200284e-01 -3.20595354e-01 -1.23692715e+00 3.68548706e-02
-1.41491070e-01 5.56427240e-01 6.39617622e-01 1.39150953e+00
6.37000352e-02 6.89253390e-01 5.05808055e-01 -6.26450241e-01
-7.94881463e-01 -8.02094638e-01 -4.95094270e-01 -2.10159225e-03
2.84045219e-01 -7.46241510e-01 -2.92872787e-01 -2.08582550e-01] | [4.227792263031006, 1.6675138473510742] |
97fb5984-b32e-4348-ad5a-86e2d6e54a75 | from-isolated-islands-to-pangea-unifying | 2304.00553 | null | https://arxiv.org/abs/2304.00553v2 | https://arxiv.org/pdf/2304.00553v2.pdf | From Isolated Islands to Pangea: Unifying Semantic Space for Human Action Understanding | Action understanding matters and attracts attention. It can be formed as the mapping from the action physical space to the semantic space. Typically, researchers built action datasets according to idiosyncratic choices to define classes and push the envelope of benchmarks respectively. Thus, datasets are incompatible with each other like "Isolated Islands" due to semantic gaps and various class granularities, e.g., do housework in dataset A and wash plate in dataset B. We argue that a more principled semantic space is an urgent need to concentrate the community efforts and enable us to use all datasets together to pursue generalizable action learning. To this end, we design a Poincare action semantic space given verb taxonomy hierarchy and covering massive actions. By aligning the classes of previous datasets to our semantic space, we gather (image/video/skeleton/MoCap) datasets into a unified database in a unified label system, i.e., bridging "isolated islands" into a "Pangea". Accordingly, we propose a bidirectional mapping model between physical and semantic space to fully use Pangea. In extensive experiments, our system shows significant superiority, especially in transfer learning. Code and data will be made publicly available. | ['Cewu Lu', 'Xudong Lu', 'Jingru Tan', 'Yixing Li', 'Junyi Zhang', 'Yikun Ji', 'Yiming Dou', 'Xinpeng Liu', 'Xiaoqian Wu', 'Yong-Lu Li'] | 2023-04-02 | null | null | null | null | ['action-understanding'] | ['computer-vision'] | [ 5.32528125e-02 -5.96412830e-02 -5.31374514e-01 -3.76444906e-01
-3.85827214e-01 -5.39975762e-01 7.18081951e-01 -3.26659709e-01
-1.88121438e-01 5.78935802e-01 5.82599998e-01 7.10519031e-04
-4.98281896e-01 -1.04750144e+00 -5.94856620e-01 -6.87493563e-01
6.15232527e-01 1.22521199e-01 5.18509924e-01 -3.12392294e-01
3.48662257e-01 -5.43199927e-02 -1.48292077e+00 4.50723261e-01
7.88729608e-01 1.02287591e+00 3.27009439e-01 -1.30307674e-01
-3.35695475e-01 8.10005665e-01 -1.82003096e-01 -4.14261460e-01
3.95599544e-01 -6.57707989e-01 -1.26709139e+00 1.81392297e-01
3.58020067e-01 -1.19054146e-01 -4.93815929e-01 1.31305599e+00
7.05714896e-02 1.07821070e-01 4.25306976e-01 -1.62670422e+00
-1.02000284e+00 7.11387277e-01 -2.66117334e-01 -1.42165393e-01
4.35753614e-01 3.01970482e-01 1.25097775e+00 -5.71283340e-01
7.61414349e-01 1.33434355e+00 5.52990496e-01 5.50437689e-01
-9.32825744e-01 -4.72423315e-01 3.76806170e-01 5.79546273e-01
-1.29752886e+00 -1.19474024e-01 8.25309038e-01 -6.54769182e-01
5.07893682e-01 3.67597431e-01 8.49073470e-01 1.54679120e+00
1.59051940e-02 8.80150497e-01 9.62072074e-01 -1.07049763e-01
4.03655559e-01 -3.42685729e-02 9.09501612e-02 5.81202328e-01
1.76024809e-01 -2.23341018e-01 -7.43492305e-01 2.60136306e-01
8.14879000e-01 3.08422863e-01 -1.05401151e-01 -8.01987588e-01
-1.60280371e+00 6.75873816e-01 4.92518127e-01 3.86000842e-01
-4.80358712e-02 2.84542114e-01 4.23508704e-01 1.00141920e-01
2.07205027e-01 4.24772441e-01 -5.13234735e-01 -3.61824989e-01
-3.21727186e-01 2.98112839e-01 3.34376514e-01 1.12657130e+00
8.47077072e-01 -5.13005674e-01 -3.39336507e-03 9.26505685e-01
3.76553833e-01 2.81991005e-01 6.14852965e-01 -1.38094342e+00
6.30235970e-01 1.09834158e+00 1.72437936e-01 -1.05739093e+00
-5.04794657e-01 -1.32242560e-01 -5.37090778e-01 4.12387997e-02
5.79039276e-01 1.86783642e-01 -6.17308736e-01 1.91538453e+00
4.35712039e-01 2.89586425e-01 -9.87301394e-03 1.15446699e+00
5.92391968e-01 2.33264893e-01 2.90169626e-01 2.90841132e-01
1.50728703e+00 -1.12651908e+00 -5.71164191e-01 -1.28826931e-01
9.60998297e-01 -3.06419462e-01 1.66592216e+00 3.75058323e-01
-6.43545389e-01 -6.29206240e-01 -1.14374650e+00 -2.56020993e-01
-6.70207441e-01 3.41428071e-02 8.37237358e-01 3.70391697e-01
-8.17596078e-01 7.50630736e-01 -9.30989861e-01 -8.36601913e-01
6.08285367e-01 -6.25682995e-02 -5.86865425e-01 1.99466780e-01
-1.28956699e+00 7.25809455e-01 6.45087898e-01 -2.48532802e-01
-7.16455698e-01 -5.80555081e-01 -7.70542383e-01 -2.85790890e-01
6.05115056e-01 -8.60993803e-01 9.77615654e-01 -7.53677547e-01
-1.35538018e+00 9.42428887e-01 5.18493831e-01 -2.03581586e-01
6.00078404e-01 -3.81232113e-01 -5.64681828e-01 -5.49096987e-02
4.45000440e-01 5.79501212e-01 3.61654013e-01 -1.01199865e+00
-9.37989533e-01 -6.30327284e-01 6.77295744e-01 2.60744780e-01
-5.54133952e-01 -6.14865907e-02 -5.36635399e-01 -6.79919899e-01
4.63072538e-01 -1.06292748e+00 -1.96218640e-02 1.00036241e-01
-2.71287471e-01 -3.86434346e-01 6.87678158e-01 -3.35200638e-01
1.34983897e+00 -2.19659996e+00 4.28800851e-01 -2.39015356e-01
2.95161933e-01 -2.34471232e-01 -1.56558398e-02 3.44608426e-01
-2.02493723e-02 2.69451469e-01 -2.32889012e-01 1.18415438e-01
3.03137928e-01 3.94500256e-01 -2.21529350e-01 6.06473207e-01
-2.81808704e-01 9.12961125e-01 -1.30529952e+00 -6.56474590e-01
2.46695429e-01 -8.66385698e-02 -6.64786994e-01 -9.67785046e-02
-2.74754137e-01 6.39380991e-01 -9.91381824e-01 7.58645833e-01
3.98937821e-01 -4.55860317e-01 3.18205133e-02 -4.00064141e-01
-1.85926408e-01 3.04512769e-01 -1.27787554e+00 2.45999432e+00
-3.83617342e-01 3.12295020e-01 -2.89461255e-01 -1.17820871e+00
9.18165803e-01 1.09021358e-01 8.83364320e-01 -7.91741908e-01
6.67611063e-02 2.12544233e-01 -1.60766289e-01 -8.48217964e-01
3.20407480e-01 -2.24953055e-01 -3.35464031e-01 3.12912941e-01
1.20959520e-01 -2.60378700e-03 1.61070704e-01 3.31257395e-02
1.13022375e+00 6.53647304e-01 2.03070015e-01 -4.07646894e-01
7.02116668e-01 5.10827862e-02 8.35838258e-01 4.73615676e-01
-5.54688275e-01 5.49105585e-01 5.08216679e-01 -5.40644586e-01
-8.32111895e-01 -1.30522776e+00 -3.01452756e-01 1.25651813e+00
7.74264276e-01 -6.87580943e-01 -8.61726105e-01 -8.79450738e-01
-9.84776765e-02 4.59938049e-01 -8.31539094e-01 -3.89821053e-01
-5.91982663e-01 -5.30087650e-01 4.38911796e-01 6.65444314e-01
9.35828626e-01 -1.22891152e+00 -4.61232692e-01 -7.32182488e-02
-3.84107977e-01 -9.89317000e-01 -2.28837997e-01 -2.19877869e-01
-6.50985003e-01 -1.28392160e+00 -3.70863020e-01 -4.57483023e-01
2.03113571e-01 4.12027836e-01 1.05126059e+00 4.69736271e-02
6.42836839e-02 4.49831992e-01 -7.39295185e-01 -8.30828920e-02
-6.91143945e-02 8.54775310e-02 3.14873308e-01 1.68153450e-01
4.93600547e-01 -7.51314759e-01 -9.55421805e-01 6.67532384e-01
-9.49518859e-01 4.42050785e-01 3.32444757e-01 4.46542382e-01
4.68333572e-01 -7.88260438e-03 4.00401622e-01 -6.48730874e-01
2.56090224e-01 -7.96613336e-01 -2.47885644e-01 3.51683110e-01
-4.29431707e-01 -7.63572380e-02 4.96821046e-01 -1.07948571e-01
-1.24937344e+00 -7.61478022e-02 1.56550020e-01 -2.27392107e-01
-2.67619163e-01 3.32216173e-01 -8.88577819e-01 1.29623756e-01
6.36107087e-01 1.41268983e-01 -3.15131247e-01 -8.11711490e-01
8.18111241e-01 7.45485902e-01 5.87054491e-01 -9.82319415e-01
5.55544257e-01 8.27568173e-01 -2.06890881e-01 -3.00106704e-01
-1.17064893e+00 -4.22881246e-01 -9.63608086e-01 -3.23085010e-01
1.34966302e+00 -7.59123862e-01 -5.40339768e-01 4.87034589e-01
-9.02023494e-01 -2.84847021e-01 -3.78419042e-01 6.17111146e-01
-9.86504376e-01 4.05654967e-01 -4.07914400e-01 -9.10291225e-02
4.16302562e-01 -1.12048042e+00 1.21720052e+00 2.04879597e-01
-2.75000721e-01 -1.05160558e+00 2.88488865e-01 8.63707900e-01
3.78965922e-02 2.70122856e-01 6.66433752e-01 -4.35034811e-01
-6.73550427e-01 2.74860740e-01 -3.46611947e-01 3.68773013e-01
5.20662665e-01 -2.44052395e-01 -7.24694610e-01 1.61691532e-01
2.09291831e-01 -3.91693026e-01 6.91769660e-01 6.60653692e-03
1.58151031e+00 -1.70174494e-01 -4.84482497e-01 6.87406421e-01
1.29450297e+00 3.16599607e-01 8.11887980e-01 7.15648711e-01
9.39426005e-01 7.54224837e-01 8.07827830e-01 4.23215806e-01
5.80374181e-01 9.55974519e-01 3.89288783e-01 3.06538314e-01
-2.58692592e-01 -5.45165360e-01 2.73227304e-01 8.92015040e-01
-9.73837972e-02 -8.39227885e-02 -1.00359833e+00 5.60070515e-01
-2.24879456e+00 -9.77971077e-01 -1.45646945e-01 1.90769768e+00
7.41784573e-01 4.55514193e-02 4.09284979e-02 -1.25860438e-01
6.21874571e-01 3.35911274e-01 -5.66520929e-01 3.84948283e-01
-1.50026670e-02 -3.27662826e-01 3.88458818e-01 3.08767915e-01
-1.27064371e+00 1.10125756e+00 5.36317730e+00 1.01252520e+00
-8.10753047e-01 3.51233482e-01 1.66262671e-01 9.02749225e-02
-3.18650037e-01 3.33210766e-01 -5.25489450e-01 8.58781636e-01
5.71345687e-01 -1.73483193e-01 3.22986066e-01 8.44897449e-01
1.81845248e-01 1.79611132e-01 -1.33005428e+00 1.21200681e+00
-1.63253784e-01 -1.33784509e+00 1.92805156e-01 1.48100436e-01
5.89815080e-01 -1.37379169e-01 -1.44923955e-01 3.92380059e-01
4.71763313e-01 -8.82135153e-01 9.78802204e-01 7.70963192e-01
6.61495984e-01 -1.10166296e-01 2.18850985e-01 2.71855325e-01
-1.37391067e+00 -1.91106960e-01 -3.77571672e-01 -2.23943293e-01
1.25982225e-01 7.08069056e-02 1.76298469e-01 8.91925216e-01
8.93116653e-01 1.27081251e+00 -5.45003891e-01 8.56448710e-01
-1.69026002e-01 3.01678985e-01 3.96692418e-02 2.17380196e-01
3.56640130e-01 -7.28298068e-01 3.39841515e-01 6.73265219e-01
4.64160323e-01 1.81795478e-01 3.06363881e-01 9.12523091e-01
-7.71138072e-02 8.37407261e-02 -5.41542172e-01 -2.00974438e-02
3.60390037e-01 1.07845080e+00 -8.74338627e-01 -3.42609853e-01
-7.25784004e-01 9.35778737e-01 2.95681149e-01 2.29350179e-01
-1.34717047e+00 -2.48749629e-01 1.03390205e+00 1.31407142e-01
-1.78011358e-01 -1.00198023e-01 -3.82604122e-01 -1.45019734e+00
1.03084296e-01 -6.88417435e-01 5.65614462e-01 -7.67135859e-01
-1.33208370e+00 1.14236049e-01 1.71419889e-01 -1.62976778e+00
4.36437011e-01 -8.03115547e-01 -2.92481154e-01 2.69386768e-01
-8.88685882e-01 -1.05080652e+00 -7.67138839e-01 7.75303483e-01
5.62098503e-01 -6.87334388e-02 5.31685054e-01 5.14904082e-01
-5.40371597e-01 2.29012892e-01 -4.94572036e-02 1.31353006e-01
5.39969265e-01 -1.14266145e+00 2.19050810e-01 4.34060156e-01
4.68744546e-01 5.38469315e-01 4.04528171e-01 -5.89213371e-01
-1.25212550e+00 -1.04864776e+00 4.03421551e-01 -1.05112636e+00
1.06133103e+00 -4.20888335e-01 -9.98826265e-01 8.05990219e-01
-6.21385649e-02 -7.95422867e-02 7.13328063e-01 1.26348391e-01
-5.02044320e-01 -2.42189899e-01 -7.77243435e-01 7.86859155e-01
2.07759857e+00 -6.25133991e-01 -9.08456862e-01 5.53414345e-01
1.02242959e+00 -1.67404681e-01 -9.78012919e-01 4.49073583e-01
4.41109121e-01 -1.16800165e+00 9.70402658e-01 -8.81251097e-01
5.49311161e-01 -6.31836951e-01 -5.21631598e-01 -1.05310273e+00
-4.06218916e-01 -4.19676483e-01 3.41991074e-02 1.20236278e+00
1.67163182e-02 -5.22000670e-01 8.19169998e-01 4.33657140e-01
-3.35319042e-01 -6.60370648e-01 -9.55665529e-01 -1.01054049e+00
1.80572927e-01 -7.29203582e-01 9.85764503e-01 1.10548842e+00
3.61156613e-01 2.73425430e-01 -2.99843401e-01 -2.05227435e-01
4.44143653e-01 2.28511125e-01 8.03888857e-01 -1.22807550e+00
-1.73373565e-01 -7.69883275e-01 -5.19302666e-01 -1.23400819e+00
1.41987756e-01 -1.15993690e+00 -2.33947754e-01 -1.50636387e+00
4.01438057e-01 -6.68001950e-01 -6.79745853e-01 5.78495145e-01
3.95543128e-03 1.91506132e-01 1.35941327e-01 5.34415960e-01
-1.04005790e+00 8.87076735e-01 1.30681646e+00 -2.92840470e-02
-2.77804639e-02 -5.04309773e-01 -1.00858247e+00 1.07989073e+00
7.42655098e-01 -2.49666795e-01 -6.20961785e-01 -6.25763178e-01
3.86540383e-01 -2.12008059e-01 5.14901042e-01 -1.26055098e+00
5.66885099e-02 -6.94796085e-01 -1.29287198e-01 -6.22995533e-02
2.18502536e-01 -8.35711837e-01 3.06952715e-01 1.15047604e-01
-4.01869982e-01 -4.97806698e-01 -3.93383265e-01 7.54772127e-01
-2.17509195e-01 1.26227709e-02 6.24269605e-01 -2.18631044e-01
-1.07962525e+00 4.75857496e-01 3.50351125e-01 2.80906498e-01
1.22494113e+00 -3.69119227e-01 -4.93875414e-01 -1.85902510e-02
-7.94472456e-01 3.19389552e-01 7.31526375e-01 9.55205739e-01
1.09910712e-01 -1.79126203e+00 -3.73428375e-01 -1.23213090e-01
5.43249249e-01 -2.04254851e-01 4.28783149e-01 8.31238270e-01
-4.20554310e-01 4.23680544e-01 -6.00169539e-01 -4.89810199e-01
-8.24471831e-01 6.36655807e-01 3.88740689e-01 7.76110142e-02
-8.95269752e-01 6.02033556e-01 7.09755301e-01 -5.73976338e-01
1.53004065e-01 -4.31827784e-01 -2.56586879e-01 7.33683780e-02
4.00683969e-01 5.07707477e-01 -4.47409779e-01 -6.50549293e-01
-5.35154998e-01 6.38155699e-01 4.64609355e-01 1.02994844e-01
1.16779220e+00 -3.81825298e-01 -1.48338124e-01 6.14738226e-01
1.17786789e+00 -1.36984095e-01 -1.48350382e+00 -2.31394157e-01
3.24931473e-01 -7.12787092e-01 -3.55166435e-01 -6.23009324e-01
-1.04460084e+00 7.22457051e-01 5.41647255e-01 3.42707306e-01
9.25890028e-01 5.25175035e-01 8.74265432e-01 2.65176475e-01
6.25093341e-01 -1.53905320e+00 3.87369931e-01 2.80039817e-01
9.54962492e-01 -1.18799388e+00 -3.92821729e-02 -4.03068036e-01
-6.21314347e-01 8.27637434e-01 9.41857815e-01 -3.07095554e-02
5.92500746e-01 -3.08199704e-01 -1.08908825e-01 -4.85742480e-01
-3.80201250e-01 -2.15047210e-01 1.08877033e-01 4.62852269e-01
2.16049537e-01 3.01003605e-01 -5.73405087e-01 1.01374495e+00
-3.42137694e-01 1.08466864e-01 2.51499265e-01 7.09259868e-01
-5.09513378e-01 -1.28902018e+00 -1.68326899e-01 9.54476148e-02
-7.92593434e-02 3.05844635e-01 -3.02724838e-01 9.95073736e-01
8.16168547e-01 7.27183223e-01 2.09600329e-02 -6.73850775e-01
4.12644237e-01 1.25895217e-01 4.89108473e-01 -5.45135379e-01
5.65192141e-02 -4.64526743e-01 -3.66148576e-02 -1.04657555e+00
-6.81986511e-01 -5.60149372e-01 -1.40687239e+00 -1.09595604e-01
1.50015816e-01 -1.29183277e-01 3.25078756e-01 1.19342256e+00
2.76313603e-01 3.47385257e-01 3.63285303e-01 -3.61709714e-01
-4.81661350e-01 -7.52247155e-01 -6.45359933e-01 8.31964135e-01
-2.29857862e-01 -1.24021316e+00 -1.48565173e-01 2.16510117e-01] | [8.477058410644531, 0.7623854279518127] |
53f78a09-fe91-4c7c-bbde-4b42f8f3857c | deepfake-detection-with-deep-learning | 2304.03698 | null | https://arxiv.org/abs/2304.03698v1 | https://arxiv.org/pdf/2304.03698v1.pdf | Deepfake Detection with Deep Learning: Convolutional Neural Networks versus Transformers | The rapid evolvement of deepfake creation technologies is seriously threating media information trustworthiness. The consequences impacting targeted individuals and institutions can be dire. In this work, we study the evolutions of deep learning architectures, particularly CNNs and Transformers. We identified eight promising deep learning architectures, designed and developed our deepfake detection models and conducted experiments over well-established deepfake datasets. These datasets included the latest second and third generation deepfake datasets. We evaluated the effectiveness of our developed single model detectors in deepfake detection and cross datasets evaluations. We achieved 88.74%, 99.53%, 97.68%, 99.73% and 92.02% accuracy and 99.95%, 100%, 99.88%, 99.99% and 97.61% AUC, in the detection of FF++ 2020, Google DFD, Celeb-DF, Deeper Forensics and DFDC deepfakes, respectively. We also identified and showed the unique strengths of CNNs and Transformers models and analysed the observed relationships among the different deepfake datasets, to aid future developments in this area. | ['Vrizlynn L. L. Thing'] | 2023-04-07 | null | null | null | null | ['face-swapping'] | ['computer-vision'] | [-9.46133256e-01 -3.98048788e-01 -1.25767305e-01 4.28160615e-02
-4.15843934e-01 -9.59476173e-01 1.12743926e+00 2.10295413e-02
-4.25367147e-01 6.04447067e-01 9.09355357e-02 -2.68464327e-01
-1.73610225e-01 -1.06959772e+00 -4.90195572e-01 -3.91130239e-01
-2.50687420e-01 4.22574341e-01 3.10721040e-01 8.46255850e-03
3.92440587e-01 6.96541011e-01 -1.14827156e+00 4.95544165e-01
5.01996517e-01 1.29533231e+00 -6.35446668e-01 9.57472205e-01
3.76789756e-02 1.03900397e+00 -1.03300536e+00 -1.32826138e+00
1.98345408e-01 3.90778273e-01 -8.59392583e-01 -6.94523633e-01
6.30812824e-01 -6.86333477e-01 -6.31991327e-01 1.04894495e+00
8.70927453e-01 -6.45555437e-01 5.61961532e-01 -1.37382233e+00
-1.15528703e+00 6.43840671e-01 -9.05163765e-01 8.31282973e-01
-6.79796711e-02 2.54360557e-01 6.05910718e-01 -8.50506961e-01
4.84622985e-01 1.16484332e+00 1.33650506e+00 4.83723998e-01
-4.51028079e-01 -1.27823198e+00 -7.47989774e-01 3.58112037e-01
-1.41755843e+00 -4.39209968e-01 3.89896780e-01 -7.80421972e-01
1.15846729e+00 -5.66915572e-02 4.38909084e-01 1.38576341e+00
2.18870282e-01 6.34750247e-01 1.13012910e+00 -2.25277022e-01
-3.65669519e-01 3.80865902e-01 6.65238976e-01 6.66347563e-01
6.68577135e-01 2.55008191e-01 -5.31935394e-01 -4.53379691e-01
3.08561921e-01 -3.29817683e-01 2.23376542e-01 6.30798340e-01
-7.26123154e-01 9.72387612e-01 3.80444944e-01 4.98316377e-01
-3.72066259e-01 1.55578822e-01 9.01870847e-01 1.90950632e-01
4.86379117e-01 2.18461409e-01 -2.40218103e-01 -3.49167466e-01
-1.08592629e+00 4.38521355e-01 7.18770981e-01 4.78128344e-01
2.47196138e-01 1.72930703e-01 -1.33634475e-03 6.29033387e-01
1.55724883e-01 5.88737965e-01 5.02493739e-01 -6.62298441e-01
5.55526972e-01 5.01203775e-01 1.68401420e-01 -1.59166348e+00
-4.99101013e-01 -8.90226066e-01 -8.78262460e-01 -8.88876319e-02
4.80997473e-01 -1.62341386e-01 -6.52567089e-01 1.10425067e+00
1.30664840e-01 2.73610979e-01 -9.50982198e-02 5.67554176e-01
1.17099750e+00 5.50992012e-01 1.96753576e-01 6.58869267e-01
1.34543812e+00 -3.58463645e-01 -5.20487607e-01 2.11700216e-01
5.59297144e-01 -8.66163969e-01 7.51729846e-01 7.86590993e-01
-1.14451063e+00 -6.08255982e-01 -1.01210761e+00 6.48442656e-02
-6.01376534e-01 2.79255718e-01 3.53951871e-01 1.19887054e+00
-8.33777249e-01 6.41763687e-01 -3.80976260e-01 -3.15970719e-01
1.01663768e+00 1.62697122e-01 -1.94139823e-01 3.19923729e-01
-1.51783979e+00 8.04080546e-01 1.35762230e-01 2.11789012e-02
-1.36716211e+00 -6.63721561e-01 2.07352072e-01 1.11346059e-01
-2.76648641e-01 -2.41715491e-01 1.43007350e+00 -4.62637454e-01
-7.32521534e-01 1.43962133e+00 6.01499557e-01 -9.85596120e-01
6.82138145e-01 -5.22765934e-01 -8.50381374e-01 1.63450465e-02
5.20298630e-02 2.36151710e-01 3.65461409e-01 -6.90863431e-01
-7.11960614e-01 -4.44228590e-01 -2.14151014e-02 -7.68607020e-01
-8.55488718e-01 6.10320985e-01 3.40301573e-01 -2.56649405e-01
-8.57563972e-01 -5.27848184e-01 5.30142069e-01 -2.98050970e-01
-6.92745090e-01 -4.03695941e-01 1.13010168e+00 -1.10298204e+00
1.30621946e+00 -1.86607742e+00 -7.30353057e-01 6.19893186e-02
8.97014022e-01 1.08404636e+00 9.44355205e-02 4.95631814e-01
1.41974166e-01 5.48704088e-01 4.76168573e-01 -1.01518646e-01
-5.19526415e-02 -3.15331221e-01 -2.58909851e-01 6.31538272e-01
6.86255619e-02 9.36285317e-01 -8.37738276e-01 -1.08192094e-01
1.23388870e-02 5.92601180e-01 -1.72213882e-01 3.05507407e-02
3.64867926e-01 -1.57166973e-01 -4.53604370e-01 9.18693662e-01
1.01266026e+00 -2.39004970e-01 -2.25366309e-01 -2.85165578e-01
-3.80332172e-01 3.73227358e-01 -5.47162294e-01 9.22926426e-01
-2.45837837e-01 1.36817956e+00 -1.68361261e-01 -8.36084843e-01
1.33623171e+00 1.72690690e-01 2.74530083e-01 -1.14434218e+00
6.02094471e-01 4.31398630e-01 1.55353591e-01 -6.82731867e-01
6.90805733e-01 5.38716912e-02 -2.21186467e-02 4.80860144e-01
2.82448262e-01 8.27039540e-01 -1.82715982e-01 4.87893522e-01
1.20714962e+00 -6.44011855e-01 9.07733589e-02 -5.13468266e-01
3.17397028e-01 -7.37567395e-02 -5.62319234e-02 9.61563587e-01
-6.94303334e-01 4.00276303e-01 5.64169705e-01 -9.80101049e-01
-1.19274819e+00 -8.25671375e-01 -2.79225469e-01 7.70183086e-01
-4.30450708e-01 -5.43609798e-01 -8.46823037e-01 -7.57512212e-01
5.63714206e-02 4.35893267e-01 -8.02979648e-01 -3.21233898e-01
-5.78869104e-01 -1.13055003e+00 1.88547528e+00 3.86125684e-01
1.28228521e+00 -6.88201606e-01 -6.52801037e-01 1.18529685e-01
-2.02792540e-01 -1.06782520e+00 2.40420923e-01 -2.78750569e-01
-2.09026620e-01 -1.60482287e+00 -6.78135753e-01 -3.79682481e-01
-4.02167112e-01 1.10521257e-01 1.48002100e+00 1.35438770e-01
-3.71149898e-01 -2.70921588e-02 -2.58288801e-01 -6.10672116e-01
-4.43888456e-01 2.97830164e-01 -8.47049132e-02 -1.91791393e-02
8.40137064e-01 -2.41486013e-01 -6.33602023e-01 1.11033641e-01
-4.60687429e-01 -5.49926937e-01 2.90306538e-01 5.90438306e-01
-2.35602632e-01 6.17640354e-02 7.97937870e-01 -7.31142879e-01
9.28882241e-01 -9.93543923e-01 -3.61353695e-01 -2.84745954e-02
-5.30589581e-01 -4.89592165e-01 2.52072811e-01 -4.15904611e-01
-8.73259008e-01 -6.30721390e-01 -2.47264132e-01 -3.94170195e-01
-1.06829002e-01 3.81007016e-01 1.31258935e-01 -1.31471073e-02
1.18849742e+00 -4.98351865e-02 -4.47981298e-01 -7.68391907e-01
2.14287341e-02 1.29909527e+00 8.63487422e-01 -4.15110052e-01
6.17657900e-01 4.08592939e-01 -4.13016289e-01 -7.03345835e-01
-4.03152227e-01 -3.51202220e-01 -3.01573247e-01 -3.87291610e-01
6.42168224e-01 -9.02341366e-01 -1.02513778e+00 1.42234612e+00
-1.61924350e+00 1.71882063e-01 2.38853842e-01 -7.15791211e-02
5.64703286e-01 5.33535540e-01 -8.06055188e-01 -9.51968849e-01
-1.03850007e+00 -6.89793110e-01 5.95211089e-01 1.81339294e-01
-3.51870209e-01 -8.89140308e-01 3.21046919e-01 2.80073106e-01
8.65275204e-01 6.30233765e-01 3.80259752e-01 -1.06600404e+00
-1.15252033e-01 -4.88100886e-01 -7.86696017e-01 4.47880924e-01
-4.17639643e-01 6.28512740e-01 -1.46917439e+00 -1.08901393e-02
-4.17438090e-01 -4.89883661e-01 8.53165269e-01 9.26934257e-02
1.09829056e+00 -4.18391883e-01 -1.62239254e-01 5.45237064e-01
1.12768507e+00 2.39422992e-01 1.06362951e+00 9.77319837e-01
5.77616870e-01 3.82040650e-01 -1.64020091e-01 7.84880340e-01
2.81099439e-01 4.13463116e-01 5.40760934e-01 2.06470624e-01
-2.27839023e-01 -9.47827175e-02 3.48788470e-01 3.22156280e-01
-8.50881785e-02 -6.24177098e-01 -1.66443157e+00 7.93998659e-01
-1.27638304e+00 -1.13447535e+00 -9.33205962e-01 1.64963973e+00
4.16525751e-01 2.30327472e-01 6.89544737e-01 3.53243113e-01
1.01000381e+00 2.57318653e-02 -2.08604798e-01 -6.01751626e-01
-3.85528296e-01 5.32584250e-01 7.92414486e-01 -1.45652965e-01
-1.28258443e+00 7.34766781e-01 5.84269190e+00 8.78589451e-01
-1.14206398e+00 6.72341645e-01 7.96777010e-01 -1.70536444e-01
3.18932623e-01 -6.17341280e-01 -1.07936835e+00 7.61916220e-01
1.61062098e+00 -1.29314870e-01 -1.39592335e-01 7.91874409e-01
1.78264696e-02 3.68873060e-01 -4.60662782e-01 9.88943696e-01
-2.04290435e-01 -1.91834307e+00 -2.06608802e-01 2.64054298e-01
6.62089944e-01 7.41514146e-01 2.73235798e-01 1.31960794e-01
7.40162551e-01 -1.14527249e+00 8.98526371e-01 3.01724821e-01
7.80181646e-01 -1.11692178e+00 1.05679858e+00 1.90916687e-01
-6.73215270e-01 -2.60467291e-01 -3.33909959e-01 6.28700107e-03
-2.21088350e-01 9.37035918e-01 -8.09681535e-01 3.11657488e-01
1.35846186e+00 8.15943420e-01 -7.44892716e-01 1.16035342e+00
5.72521538e-02 9.98911142e-01 -3.17096829e-01 -1.94959849e-01
5.68041325e-01 7.33893573e-01 1.91706404e-01 1.74087083e+00
5.06569684e-01 -4.53733593e-01 -4.97139663e-01 8.20543170e-01
-3.64563763e-01 -2.94072986e-01 -4.21979308e-01 -3.05249989e-01
7.48455882e-01 1.43308723e+00 -3.68038505e-01 -5.21208644e-01
-2.98101753e-01 3.69440377e-01 1.54192775e-01 -1.13851339e-01
-1.21393740e+00 -4.07822371e-01 7.55661786e-01 4.92943645e-01
-1.28107384e-01 1.32182389e-01 -2.78669894e-01 -1.15514410e+00
-3.51687819e-01 -9.38982725e-01 6.52885556e-01 -6.23225033e-01
-1.62346077e+00 7.24749863e-01 -1.34436101e-01 -8.87338340e-01
4.98837642e-02 -7.17624187e-01 -9.35283244e-01 8.33651841e-01
-1.48145509e+00 -1.34691632e+00 -5.43581426e-01 7.30445266e-01
-1.67199120e-01 -7.41767704e-01 3.02098691e-01 9.79599535e-01
-7.40786314e-01 9.67936277e-01 3.36614937e-01 7.83080935e-01
5.53860009e-01 -8.75819027e-01 8.89066935e-01 8.57591033e-01
-2.67443776e-01 4.83730942e-01 1.98444530e-01 -6.13236725e-01
-7.81551898e-01 -1.22433710e+00 9.17666614e-01 -5.76559722e-01
1.11942863e+00 -2.57307082e-01 -8.68532240e-01 4.48423803e-01
3.17032844e-01 -1.79629654e-01 7.13289022e-01 8.98422524e-02
-7.61825979e-01 -4.54340689e-02 -1.44639862e+00 -1.77439377e-01
7.21077740e-01 -6.03276491e-01 -1.43274277e-01 1.08466640e-01
1.15193613e-03 -1.30876333e-01 -8.61200452e-01 1.05824217e-01
9.78510857e-01 -1.34034324e+00 1.27306664e+00 -9.55415249e-01
6.54606462e-01 3.69436681e-01 -4.16693352e-02 -9.14285064e-01
-6.05119348e-01 -2.91811854e-01 -5.30187130e-01 1.65587580e+00
8.37031230e-02 -6.71633065e-01 8.48173738e-01 3.49416018e-01
-1.65321738e-01 -3.50281686e-01 -1.02134442e+00 -7.74154425e-01
7.68213451e-01 -4.55900341e-01 9.21472549e-01 1.25075066e+00
-7.07515240e-01 -7.50487894e-02 -8.33374679e-01 1.72700614e-01
5.62403083e-01 -4.26248282e-01 9.35628474e-01 -1.45806634e+00
-9.43579227e-02 -6.03525162e-01 -6.42593920e-01 -2.19532520e-01
-2.95240879e-01 -6.54456317e-01 -1.04582512e+00 -9.35988605e-01
4.67878759e-01 -3.04209739e-01 -4.54976290e-01 4.84490484e-01
4.43752408e-01 5.92634022e-01 1.77296475e-01 4.24251586e-01
-2.20111653e-01 -1.46374926e-01 7.99096465e-01 -1.85648859e-01
5.12911916e-01 -3.00934136e-01 -7.75703847e-01 7.52274215e-01
1.21406305e+00 -5.61053157e-01 1.16095111e-01 -5.72826445e-01
6.30403817e-01 -6.71090662e-01 1.05730140e+00 -1.11001813e+00
-1.81039572e-01 2.68663585e-01 7.61380970e-01 -7.21951008e-01
-1.70743570e-01 -2.56265372e-01 1.55478746e-01 6.99167192e-01
-2.35061690e-01 2.14874238e-01 2.67659694e-01 -2.78616557e-03
3.63287181e-02 -2.13937134e-01 9.64128792e-01 -1.25369832e-01
-7.86327660e-01 1.69814482e-01 -2.98585504e-01 1.48819551e-01
7.23343313e-01 -1.83081925e-01 -1.07864225e+00 -1.60138935e-01
-4.18719500e-01 -2.14238673e-01 -1.46556929e-01 5.43549359e-01
4.76460874e-01 -1.31568408e+00 -9.82434094e-01 2.60904692e-02
1.02159772e-02 -7.85563886e-01 2.69192517e-01 5.61418593e-01
-7.12598085e-01 4.73904282e-01 -6.36413813e-01 -2.77323157e-01
-1.18553638e+00 1.87666908e-01 7.53340542e-01 -3.32146853e-01
-7.19853789e-02 9.72789824e-01 -1.28989279e-01 -3.53192449e-01
2.60213912e-02 2.11346964e-03 -3.66828650e-01 2.93203235e-01
8.99925888e-01 1.08479464e+00 3.36640716e-01 -7.99426436e-01
-5.91290355e-01 2.32407615e-01 -3.60747218e-01 5.15287161e-01
1.29459012e+00 2.08356574e-01 1.72864258e-01 -2.03690425e-01
1.37980437e+00 -1.02703132e-04 -6.07892513e-01 -7.72931576e-02
5.44966105e-03 -5.85567653e-01 2.80137420e-01 -1.40999818e+00
-1.39230168e+00 1.45584917e+00 9.15018559e-01 7.28828907e-01
8.00682366e-01 5.81544414e-02 1.29271162e+00 -5.39632514e-03
6.64142445e-02 -7.10271955e-01 1.68101251e-01 6.02149546e-01
5.53400278e-01 -9.05958772e-01 -2.77402639e-01 3.22370946e-01
-5.51866069e-02 1.40501440e+00 6.83907509e-01 -2.09573090e-01
6.10244453e-01 3.54817063e-01 -1.38654694e-01 -6.96058869e-01
-5.05662322e-01 2.43485034e-01 1.54282197e-01 8.15251410e-01
3.05494487e-01 1.02004573e-01 -1.46918386e-01 8.69631767e-01
-4.27952498e-01 2.59090334e-01 5.24857640e-01 4.10628855e-01
-3.96513134e-01 -7.35813379e-01 -3.78894478e-01 4.61685926e-01
-1.21967721e+00 -5.79362456e-03 -1.08081317e+00 1.17207670e+00
4.95677412e-01 7.99573481e-01 4.40344289e-02 -9.64747131e-01
1.70588031e-01 -1.58934280e-01 6.50546849e-02 5.01860417e-02
-1.18830681e+00 -3.58972102e-01 5.82833827e-01 -1.93974748e-01
-1.79314509e-01 -6.18188560e-01 -7.98924506e-01 -1.51838624e+00
-3.14245433e-01 1.78438783e-01 5.34095168e-01 6.36685848e-01
6.36966527e-01 9.19271782e-02 3.33942026e-01 -3.72470260e-01
-4.83438939e-01 -1.06819689e+00 -4.79756474e-01 1.62370116e-01
3.34690213e-01 -6.79086804e-01 -3.27288061e-01 -2.60589123e-01] | [12.38290786743164, 1.193517804145813] |
d331861f-6c76-435e-9ab2-85ad158ecf5f | lime-live-intrinsic-material-estimation | 1801.01075 | null | http://arxiv.org/abs/1801.01075v2 | http://arxiv.org/pdf/1801.01075v2.pdf | LIME: Live Intrinsic Material Estimation | We present the first end to end approach for real time material estimation
for general object shapes with uniform material that only requires a single
color image as input. In addition to Lambertian surface properties, our
approach fully automatically computes the specular albedo, material shininess,
and a foreground segmentation. We tackle this challenging and ill posed inverse
rendering problem using recent advances in image to image translation
techniques based on deep convolutional encoder decoder architectures. The
underlying core representations of our approach are specular shading, diffuse
shading and mirror images, which allow to learn the effective and accurate
separation of diffuse and specular albedo. In addition, we propose a novel
highly efficient perceptual rendering loss that mimics real world image
formation and obtains intermediate results even during run time. The estimation
of material parameters at real time frame rates enables exciting mixed reality
applications, such as seamless illumination consistent integration of virtual
objects into real world scenes, and virtual material cloning. We demonstrate
our approach in a live setup, compare it to the state of the art, and
demonstrate its effectiveness through quantitative and qualitative evaluation. | ['Hans-Peter Seidel', 'Michael Zollhoefer', 'Maxim Maximov', 'Avishek Chatterjee', 'Abhimitra Meka', 'Christian Theobalt', 'Christian Richardt'] | 2018-01-03 | lime-live-intrinsic-material-estimation-1 | http://openaccess.thecvf.com/content_cvpr_2018/html/Meka_LIME_Live_Intrinsic_CVPR_2018_paper.html | http://openaccess.thecvf.com/content_cvpr_2018/papers/Meka_LIME_Live_Intrinsic_CVPR_2018_paper.pdf | cvpr-2018-6 | ['foreground-segmentation'] | ['computer-vision'] | [ 7.47783363e-01 -1.99857205e-01 6.78177238e-01 -3.10446799e-01
-7.16480255e-01 -7.49375045e-01 6.74797297e-01 -3.97609055e-01
-8.65637138e-02 5.15418649e-01 -2.96044558e-01 -9.70095098e-02
3.17196518e-01 -8.97544742e-01 -1.10543442e+00 -5.72941184e-01
1.95926756e-01 6.96901262e-01 3.88272226e-01 -2.17216879e-01
1.71694770e-01 7.54685521e-01 -1.91714251e+00 4.10336882e-01
9.48935866e-01 1.21507478e+00 2.87240475e-01 1.19711375e+00
-2.29591802e-01 1.06105959e+00 -4.08636957e-01 -2.57432550e-01
5.25507867e-01 -2.61917084e-01 -6.09401941e-01 3.55843693e-01
1.02722585e+00 -8.79956782e-01 6.55745342e-02 8.40125203e-01
4.31132466e-01 1.45588815e-01 5.63770235e-01 -1.02455592e+00
-4.82023716e-01 -1.59315035e-01 -6.20069623e-01 -3.54847074e-01
5.66599667e-01 3.39144468e-01 6.90578282e-01 -8.80087018e-01
6.76654398e-01 1.16232169e+00 5.99174619e-01 4.07903552e-01
-1.34114504e+00 -3.33270609e-01 1.20807335e-01 -2.23667353e-01
-1.06112528e+00 -5.87035775e-01 9.65600073e-01 -3.36380631e-01
7.97561884e-01 5.24159491e-01 7.94242799e-01 6.40309155e-01
-5.21531738e-02 7.34903455e-01 1.38401711e+00 -4.08411860e-01
1.87954471e-01 2.91519344e-01 -3.23537499e-01 9.92761493e-01
-1.19114453e-02 3.40122432e-01 -4.47253048e-01 -1.43145129e-01
1.15707743e+00 -1.44517794e-01 -5.11859655e-01 -4.87307519e-01
-1.09707677e+00 6.06723614e-02 3.76399159e-01 -3.71109217e-01
-1.30529910e-01 5.04503131e-01 -6.95873797e-02 1.34966299e-01
5.65960884e-01 1.63450509e-01 -4.51224029e-01 1.48211241e-01
-8.58931124e-01 2.27167055e-01 9.10318613e-01 7.99418330e-01
8.79629433e-01 2.67333835e-01 1.25097394e-01 7.70014703e-01
4.54572231e-01 1.14980543e+00 -2.81827271e-01 -1.55676639e+00
1.81169268e-02 1.69163927e-01 6.71477795e-01 -6.59602821e-01
-1.82517260e-01 -3.98864329e-01 -3.14698964e-01 8.78719568e-01
2.58784056e-01 2.95639429e-02 -9.32784140e-01 1.39066899e+00
7.00741231e-01 3.94046664e-01 -4.34593596e-02 1.25407147e+00
8.04907501e-01 5.98081768e-01 -5.43410480e-01 9.16137546e-02
1.19041955e+00 -1.02307999e+00 -4.30915833e-01 -8.03027824e-02
1.48641899e-01 -1.11114550e+00 1.20363736e+00 8.53069067e-01
-1.55773270e+00 -3.54484230e-01 -8.95857692e-01 -5.22130489e-01
5.83523586e-02 1.12387463e-01 8.22278380e-01 7.53563166e-01
-1.25139904e+00 7.04598784e-01 -7.98661470e-01 3.08771014e-01
2.33834699e-01 3.28079849e-01 3.49355005e-02 -2.44879380e-01
-6.16869271e-01 4.72219884e-01 -2.72882938e-01 1.92658812e-01
-1.01786828e+00 -1.15146375e+00 -7.30500638e-01 -2.26863101e-02
3.61287385e-01 -1.08404410e+00 1.27485192e+00 -1.55955672e+00
-2.22785902e+00 1.03159750e+00 -1.67970620e-02 -1.50496354e-02
7.28499293e-01 -4.83674794e-01 8.50342959e-02 3.53170931e-01
-4.02827710e-01 5.03705025e-01 8.77373695e-01 -1.98043835e+00
-2.35335216e-01 -1.06509335e-01 1.81485742e-01 4.35114354e-01
2.33523920e-01 5.07926233e-02 -5.31779349e-01 -1.61695972e-01
9.09388363e-02 -6.31662905e-01 -1.16102159e-01 7.51286507e-01
-2.82653868e-01 7.01342642e-01 6.58772111e-01 -6.83684707e-01
1.05761610e-01 -1.90789926e+00 -2.91141961e-02 1.23428077e-01
1.83162808e-01 4.69809435e-02 -1.64476514e-01 2.44018957e-02
6.98282719e-02 -5.19391894e-01 -3.26354802e-01 -6.82853460e-01
-3.90848517e-02 -1.32362962e-01 -5.30226409e-01 5.02340257e-01
2.23815395e-03 8.75672936e-01 -9.00116801e-01 -3.29400480e-01
7.58618712e-01 1.15147781e+00 -5.74476540e-01 5.28440237e-01
-6.64919198e-01 6.70965493e-01 8.90142769e-02 6.50796711e-01
1.26117086e+00 -1.20145097e-01 8.45910832e-02 -2.75279373e-01
-2.90747523e-01 3.17172587e-01 -1.29109478e+00 1.66944385e+00
-9.49492395e-01 7.99484134e-01 7.46543944e-01 -2.57010549e-01
8.10376287e-01 1.51532963e-02 4.97164279e-01 -9.40246284e-01
2.88415104e-01 3.00393015e-01 -6.94640279e-01 -2.12928563e-01
6.97316289e-01 -1.85613379e-01 6.11570120e-01 4.76473719e-01
-4.07749474e-01 -1.06518042e+00 -3.89534801e-01 8.80269185e-02
7.51701891e-01 9.33113217e-01 -3.01173300e-01 -1.08215548e-01
4.36059505e-01 -2.85184056e-01 1.14252269e-01 3.58427674e-01
4.38404471e-01 1.20281923e+00 1.53222144e-01 -4.33020949e-01
-1.01480877e+00 -1.52001143e+00 -1.09491516e-02 9.68830168e-01
4.00250256e-01 1.90416381e-01 -7.91934192e-01 7.94505104e-02
-7.71107525e-02 7.15483367e-01 -4.14284706e-01 3.39102238e-01
-7.28034914e-01 -4.27911758e-01 -6.13915958e-02 1.91544309e-01
5.96869230e-01 -8.23688686e-01 -9.25721765e-01 -1.22736883e-03
-1.25173792e-01 -1.38692260e+00 -2.55741060e-01 -1.86398521e-01
-7.64838099e-01 -1.08334637e+00 -7.82981575e-01 -3.66665930e-01
5.68402827e-01 7.04883814e-01 1.70555496e+00 1.97622225e-01
-7.72619188e-01 8.81783843e-01 6.36954010e-02 -2.81596690e-01
-5.38625896e-01 -6.55167222e-01 -5.50597012e-01 3.73280048e-01
-6.86776400e-01 -6.38307631e-01 -1.05424070e+00 2.57366955e-01
-1.06417871e+00 8.22564185e-01 1.27512246e-01 2.71193117e-01
6.12065673e-01 -4.07485723e-01 -3.47252131e-01 -1.07338130e+00
-1.18303247e-01 1.27568690e-03 -1.24505532e+00 2.24893302e-01
-2.26191536e-01 -1.19677842e-01 5.63209295e-01 -2.01917782e-01
-1.67733443e+00 1.29139438e-01 -8.99529532e-02 -5.11909246e-01
-6.95390999e-02 -3.26145947e-01 -8.03409815e-02 -4.06730771e-01
5.22842467e-01 1.40733033e-01 -2.45573282e-01 -3.59517783e-01
4.77805763e-01 3.86026323e-01 6.54942274e-01 -6.98577464e-01
7.06753910e-01 1.34955847e+00 1.16864704e-01 -1.08373439e+00
-7.36066818e-01 -3.63537997e-01 -4.33527738e-01 -5.04339755e-01
6.50059164e-01 -9.84879732e-01 -1.16076136e+00 6.67597413e-01
-1.44345868e+00 -9.94461536e-01 -4.79605258e-01 1.79146200e-01
-9.29980099e-01 4.20358568e-01 -6.82874739e-01 -1.04366350e+00
-3.54151458e-01 -1.05077553e+00 1.72791266e+00 5.08294739e-02
3.06668669e-01 -9.52824354e-01 -2.84470730e-02 6.46202385e-01
5.29482365e-01 5.35014451e-01 5.61563492e-01 7.57170439e-01
-1.41999161e+00 3.92584831e-01 -7.17321873e-01 3.65676999e-01
-4.07650955e-02 3.18726152e-01 -1.55041814e+00 -1.32265121e-01
1.52044548e-02 -2.47591287e-01 8.66754591e-01 4.79573995e-01
1.13693595e+00 -1.99178718e-02 3.58154811e-02 1.17883778e+00
1.80005705e+00 -1.73808083e-01 8.01156998e-01 -1.03988655e-01
9.91790414e-01 6.29347980e-01 4.91097659e-01 4.98265088e-01
3.97487581e-01 8.08225334e-01 8.93816650e-01 -7.73117661e-01
-7.27890372e-01 3.17038387e-01 4.26972508e-01 4.95817542e-01
-2.89646596e-01 -4.05487776e-01 -5.06996095e-01 2.01768354e-01
-1.27196574e+00 -7.22249508e-01 -5.39851367e-01 2.63481975e+00
6.78447902e-01 -3.01972210e-01 -2.84123898e-01 -1.21610492e-01
1.34377673e-01 -6.32318556e-02 -4.49907184e-01 -4.94061738e-01
-2.98343539e-01 4.42499906e-01 6.87563717e-01 1.05336261e+00
-7.42695034e-01 8.97716582e-01 6.30004883e+00 3.30763161e-01
-1.40232003e+00 1.66504011e-01 6.58327579e-01 -2.42864743e-01
-1.06055140e+00 -1.14424579e-01 -2.14378357e-01 7.84077868e-02
6.94208026e-01 5.73779345e-01 9.62700427e-01 4.84909803e-01
2.06356883e-01 -4.74114001e-01 -1.02888310e+00 1.08356547e+00
2.01007783e-01 -1.30870080e+00 -1.56602263e-01 -1.72105342e-01
1.03857207e+00 2.49728516e-01 2.31560066e-01 -3.71271074e-01
5.35581768e-01 -8.34969044e-01 1.03261864e+00 7.20468163e-01
1.01795459e+00 -3.67150545e-01 -5.10984547e-02 6.31447211e-02
-1.02135324e+00 3.03839833e-01 -2.10664779e-01 1.52119398e-01
3.44774604e-01 8.41744661e-01 -6.74961150e-01 4.89852518e-01
4.85706389e-01 3.62628132e-01 -2.10511953e-01 8.27852070e-01
-1.68447286e-01 3.40767503e-01 -6.06322110e-01 3.55430394e-01
-2.10738078e-01 -3.90117347e-01 4.53268260e-01 1.10579610e+00
1.00150555e-01 1.95955187e-02 2.35101078e-02 1.26764166e+00
-4.20102179e-02 -1.47250164e-02 -3.58358562e-01 4.30705398e-01
-2.88951993e-01 1.21746373e+00 -8.88108075e-01 -2.48427436e-01
-2.99723983e-01 1.57435989e+00 1.63615316e-01 6.94199324e-01
-9.66645420e-01 -1.82345742e-03 5.93470812e-01 3.83966982e-01
4.30763215e-02 -3.25887412e-01 -3.77462626e-01 -1.22237742e+00
1.50851667e-01 -4.55765128e-01 -3.94770414e-01 -1.40947616e+00
-8.40925634e-01 4.22477722e-01 -3.38536888e-01 -1.10109365e+00
1.27492264e-01 -8.08308721e-01 -3.26347113e-01 9.02591765e-01
-2.13105392e+00 -1.30206501e+00 -7.11959183e-01 4.46640462e-01
3.77452970e-01 5.39242506e-01 8.12431514e-01 3.19817841e-01
7.77516663e-02 1.96071602e-02 2.72730082e-01 -3.51477057e-01
5.51088572e-01 -1.28389812e+00 5.06432056e-01 6.47531033e-01
-7.22572207e-02 2.62408972e-01 8.52789640e-01 -3.38032275e-01
-1.86775684e+00 -8.13203752e-01 -9.05493833e-03 -4.39963907e-01
1.01504780e-01 -6.56890452e-01 -7.26296902e-01 4.48856384e-01
2.31530085e-01 3.72945070e-01 2.38396451e-01 -3.75555634e-01
-5.79870105e-01 -1.45898059e-01 -1.18188930e+00 6.43004894e-01
9.89948809e-01 -4.07317489e-01 2.41591588e-01 5.97789109e-01
8.05437803e-01 -9.88550246e-01 -4.06321317e-01 1.35358125e-01
8.29341650e-01 -1.68739069e+00 1.36573887e+00 9.57590118e-02
5.87413192e-01 -4.91234541e-01 -1.89010218e-01 -9.47662711e-01
1.52628422e-01 -9.00560081e-01 3.37182637e-03 9.09064174e-01
1.60825059e-01 -5.42006969e-01 8.44412923e-01 7.96239495e-01
-2.54591346e-01 -4.79493618e-01 -4.79394048e-01 -3.66597027e-01
-3.61180425e-01 -6.77010477e-01 4.81142610e-01 6.67176545e-01
-1.06183875e+00 -1.39195383e-01 -3.57238650e-01 4.05508250e-01
9.90481734e-01 8.11330676e-01 9.93610442e-01 -1.15573967e+00
-7.47820079e-01 -2.14659333e-01 -1.00431331e-01 -1.24654543e+00
1.09702740e-02 -6.96545899e-01 3.16982985e-01 -1.52942717e+00
1.39182985e-01 -7.04495907e-01 1.47452787e-01 -1.34471685e-01
1.71290934e-02 6.98454082e-01 8.85980651e-02 -1.49593517e-01
-5.96217573e-01 5.01481175e-01 1.46455109e+00 -5.35961753e-03
-3.32468599e-01 -3.04914024e-02 -2.50755996e-01 8.29215825e-01
4.62719232e-01 -1.87761262e-02 -3.88171941e-01 -9.85294580e-01
5.98678648e-01 9.23551694e-02 8.45021725e-01 -8.82336974e-01
-3.10618192e-01 -3.46878678e-01 4.38892305e-01 -4.25355494e-01
9.47181523e-01 -9.52465951e-01 2.90428936e-01 1.66296914e-01
-1.36167228e-01 -6.05091631e-01 2.46705428e-01 3.26795995e-01
3.82783830e-01 7.94477090e-02 1.01152754e+00 -2.13011235e-01
-3.52031052e-01 2.57469684e-01 1.40979424e-01 -1.90270487e-02
6.90988064e-01 -3.03988516e-01 -2.56701022e-01 -5.11413991e-01
-2.85164386e-01 -1.48143038e-01 9.90149260e-01 -3.15528736e-02
8.94493401e-01 -9.35050189e-01 -7.96759605e-01 2.11375102e-01
-2.13079050e-01 1.33259848e-01 4.43885505e-01 6.60647392e-01
-1.35429466e+00 -1.34505644e-01 1.70488041e-02 -7.94218004e-01
-1.47399783e+00 2.81697690e-01 7.76697934e-01 1.61753580e-01
-8.53046179e-01 9.32016790e-01 8.41237783e-01 -5.56935370e-01
6.02455856e-03 -5.08643508e-01 4.79160964e-01 -6.65612340e-01
5.94538271e-01 3.47958028e-01 1.85003713e-01 -4.12614405e-01
-9.47307348e-02 8.61327767e-01 5.27836919e-01 -4.43085074e-01
1.35282147e+00 -3.63279909e-01 -3.13954473e-01 6.10126495e-01
1.16975307e+00 3.72802168e-01 -1.74373925e+00 -7.11873993e-02
-7.66178906e-01 -8.86523724e-01 3.03233266e-01 -9.06748056e-01
-1.22959387e+00 1.13234556e+00 5.17800391e-01 -2.21063122e-01
1.23042631e+00 -1.97773844e-01 9.35883224e-01 1.66699424e-01
5.04975438e-01 -9.43243206e-01 6.10287376e-02 3.23122799e-01
8.61646950e-01 -1.19417810e+00 1.65052280e-01 -9.60818887e-01
-2.65728235e-01 1.11672950e+00 2.34497994e-01 -1.94136605e-01
4.92559820e-01 8.16282451e-01 3.38675737e-01 -8.62953737e-02
-6.28141105e-01 -6.51736706e-02 3.12655926e-01 5.88826001e-01
5.08034825e-01 6.58838972e-02 5.10686994e-01 -2.94137508e-01
-2.50481442e-02 -1.11682110e-01 6.63861513e-01 6.23626590e-01
-2.94734657e-01 -7.59297490e-01 -5.67516863e-01 3.40950452e-02
-2.94538677e-01 -1.76314175e-01 -2.23408341e-01 2.38811925e-01
1.10324703e-01 5.13721228e-01 2.11085051e-01 2.89004982e-01
7.17528239e-02 -3.99149805e-01 1.06787097e+00 -4.33624208e-01
-5.44338763e-01 3.00605327e-01 -1.30070718e-02 -9.03824866e-01
-4.22307462e-01 -4.82315063e-01 -1.45724666e+00 -1.74112007e-01
-3.66184890e-01 -4.78337765e-01 1.19967520e+00 5.04765272e-01
1.92216009e-01 6.66612804e-01 7.62071967e-01 -1.41285801e+00
1.72643185e-01 -3.62174660e-01 -4.96600628e-01 4.36917394e-01
6.76203430e-01 -4.79672462e-01 -3.45965207e-01 3.12597305e-01] | [9.671793937683105, -3.1005594730377197] |
c7ae10ed-fb5e-4d85-b132-bb880a6eed5d | reconstructing-the-image-scanning-microscopy | 2211.1251 | null | https://arxiv.org/abs/2211.12510v1 | https://arxiv.org/pdf/2211.12510v1.pdf | Reconstructing the Image Scanning Microscopy Dataset: an Inverse Problem | Confocal laser-scanning microscopy (CLSM) is one of the most popular optical architectures for fluorescence imaging. In CLSM, a focused laser beam excites the fluorescence emission from a specific specimen position. Some actuators scan the probed region across the sample and a photodetector collects a single intensity value for each scan point, building a two-dimensional image pixel-by-pixel. Recently, new fast single-photon array detectors have allowed the recording of a full bi-dimensional image of the probed region for each scan point, transforming CLSM into image scanning microscopy (ISM). This latter offers significant improvements over traditional imaging but requires an optimal processing tool to extract a super-resolved image from the four-dimensional dataset. Here we describe the image formation process in ISM from a statistical point of view, and we use the Bayesian framework to formulate a multi-image deconvolution problem. Notably, the single-photon detector suffers exclusively from the photon shot noise, enabling the development of an effective likelihood model. We derive an iterative likelihood maximization algorithm and test it on experimental and simulated data. Furthermore, we demonstrate that the ISM dataset is redundant, enabling the possibility of obtaining reconstruction sampled at twice the scanning step. Our results prove that in ISM, under appropriate conditions, the Nyquist-Shannon sampling criterium is effectively relaxed. This finding can be exploited to speed up the acquisition process by a factor of four, further improving the versatility of ISM systems. | ['Giuseppe Vicidomini', 'Marco Castello', 'Alessandro Zunino'] | 2022-11-22 | null | null | null | null | ['image-deconvolution'] | ['computer-vision'] | [ 9.06160235e-01 -3.02281320e-01 1.83848023e-01 -1.75580420e-02
-7.08302379e-01 -5.45049906e-01 2.66212344e-01 -5.12864925e-02
-1.05866241e+00 8.13848555e-01 -5.82517326e-01 -7.34103844e-03
-8.62468854e-02 -6.45141304e-01 -6.55068934e-01 -1.40209961e+00
3.58082294e-01 5.64772010e-01 1.68370768e-01 6.87908173e-01
4.03233528e-01 9.45428610e-01 -1.50456595e+00 -1.50744557e-01
4.35554683e-01 7.93870866e-01 7.60037124e-01 7.49882042e-01
-1.53999820e-01 2.18019173e-01 -3.49563301e-01 -2.50351150e-03
-2.19579693e-02 -5.34667730e-01 -6.12199187e-01 3.78795445e-01
-1.19669423e-01 -4.82212245e-01 4.54935543e-02 1.10142529e+00
5.27185500e-01 -1.26889810e-01 6.83728635e-01 -5.70917547e-01
3.21821719e-02 -1.11796387e-01 -7.41641939e-01 1.35692209e-01
4.09029126e-01 3.32679629e-01 5.77616513e-01 -9.73138213e-01
8.09656739e-01 8.27051640e-01 1.56759143e-01 3.98560196e-01
-1.72737455e+00 -2.66572237e-01 -5.88403702e-01 8.51994157e-02
-1.26556945e+00 -3.96032125e-01 6.57622397e-01 -2.75667846e-01
5.10993421e-01 2.73908395e-02 7.38389969e-01 7.12270498e-01
1.92932501e-01 2.67215878e-01 1.65448666e+00 -6.94706857e-01
4.00468558e-01 -3.22169140e-02 -2.86990888e-02 4.44641232e-01
3.55480313e-01 4.69049476e-02 -4.86386001e-01 -1.84518799e-01
9.92094815e-01 1.25071660e-01 -5.86773872e-01 -3.86607617e-01
-1.24462759e+00 5.18988669e-01 -4.67329435e-02 4.48287189e-01
-4.30065960e-01 -2.00567082e-01 -4.86578159e-02 -2.97935717e-02
4.30149473e-02 2.85097212e-01 8.81926119e-02 5.08344062e-02
-9.54800606e-01 -1.53945997e-01 6.11346543e-01 3.00479054e-01
1.02542162e+00 -5.33976376e-01 2.27306113e-01 3.42601717e-01
2.84415692e-01 7.98641145e-01 2.29493335e-01 -1.29303443e+00
-2.03477874e-01 3.86166334e-01 4.44316953e-01 -2.51326770e-01
-3.43481541e-01 -1.53779253e-01 -6.46205127e-01 4.20966119e-01
8.52624714e-01 6.52018040e-02 -5.69384933e-01 1.41280735e+00
5.12904823e-01 8.37020054e-02 -6.22307248e-02 9.95119154e-01
2.66535003e-02 5.16679883e-01 -4.83343691e-01 -1.02368164e+00
1.48020113e+00 -6.89631850e-02 -6.67373240e-01 8.87731090e-02
2.31440350e-01 -6.59934998e-01 7.71714330e-01 7.54773557e-01
-1.09925473e+00 -1.00183330e-01 -9.66739118e-01 1.61049441e-01
2.54651576e-01 1.40795365e-01 9.03272927e-02 5.26399434e-01
-6.77636921e-01 4.38119411e-01 -8.97832811e-01 -1.44887999e-01
3.27516288e-01 2.31464058e-01 -5.96864343e-01 -3.50955844e-01
-4.37263459e-01 6.14434540e-01 2.46576130e-01 -8.17670003e-02
-6.89728618e-01 -5.03502131e-01 -2.60941803e-01 -8.94384980e-02
2.59141862e-01 -6.88800216e-01 8.81583512e-01 -2.44255960e-01
-1.98761904e+00 1.14245033e+00 -7.85417616e-01 -3.80636066e-01
3.56888890e-01 8.58939290e-02 4.32571284e-02 9.95235085e-01
1.02632819e-02 1.53958157e-01 7.58004546e-01 -1.20415473e+00
-2.81181931e-01 -7.89041758e-01 -4.21180487e-01 -1.96749076e-01
7.25786388e-02 3.12347151e-02 -3.11836839e-01 3.17051113e-01
2.67657518e-01 -7.86138713e-01 -1.11026682e-01 -1.77247569e-01
-3.73101532e-01 2.77260274e-01 7.35829353e-01 3.63613032e-02
6.79715931e-01 -2.27775908e+00 1.34556934e-01 -2.45806649e-02
2.17019647e-01 3.05888355e-01 7.41520002e-02 6.36196494e-01
1.31726161e-01 -2.88186610e-01 -3.85720670e-01 -4.03070033e-01
-6.64630115e-01 7.31063634e-02 -2.23445799e-02 1.02228034e+00
9.54611152e-02 6.04279637e-01 -7.59748280e-01 -4.98323202e-01
4.18732464e-01 5.94454408e-01 -3.92333001e-01 2.51859158e-01
-1.39340209e-02 1.13740981e+00 -4.67498660e-01 3.01765531e-01
9.74256814e-01 -6.09041870e-01 3.93552870e-01 -2.64535129e-01
-7.76588678e-01 -3.20612080e-02 -1.03528976e+00 1.62216806e+00
-1.52656972e-01 3.96685034e-01 3.24656188e-01 -1.02337074e+00
8.11445951e-01 3.40297043e-01 5.82735717e-01 -6.70837820e-01
4.19837311e-02 3.84869993e-01 -1.87703341e-01 -7.11903930e-01
2.95088142e-02 -6.68097138e-01 3.21741939e-01 5.94457805e-01
-5.04972264e-02 -2.05695033e-01 2.21995279e-01 -9.75546911e-02
1.00139129e+00 3.34126428e-02 3.99583548e-01 -2.00919792e-01
5.30732930e-01 -1.88823536e-01 2.98415273e-01 7.86235034e-01
1.58147123e-02 6.33672953e-01 3.74651462e-01 -1.97717756e-01
-1.33337104e+00 -1.10557473e+00 -6.32986903e-01 2.82138258e-01
2.27783859e-01 1.57748088e-01 -9.74699020e-01 6.66025132e-02
-1.51090249e-01 3.36251944e-01 -2.55687505e-01 3.34941387e-01
-4.27647799e-01 -1.06142497e+00 3.07805002e-01 -2.83347905e-01
2.91262865e-01 -7.22587883e-01 -1.25061035e+00 2.68468171e-01
-1.58477098e-01 -1.35254848e+00 1.71252608e-01 4.37492728e-01
-7.40885019e-01 -1.21912587e+00 -8.44904006e-01 -1.39801323e-01
7.44942009e-01 5.94724834e-01 4.96862024e-01 -3.13247561e-01
-5.70455015e-01 5.54458857e-01 -6.03569001e-02 3.44362110e-02
-3.20554674e-01 -5.27228713e-01 7.62810186e-02 2.49571264e-01
5.01091003e-01 -7.52226353e-01 -8.64223599e-01 1.96962878e-01
-9.66671050e-01 -6.24103621e-02 6.52174175e-01 8.22506070e-01
9.27888930e-01 3.98175381e-02 3.45879734e-01 -6.28995597e-01
-6.23323433e-02 -8.56660828e-02 -1.08360028e+00 -1.54278710e-01
-1.92174166e-01 6.50036186e-02 6.53582156e-01 -1.89641938e-01
-1.03864777e+00 2.77222246e-01 1.92756783e-02 -2.28463873e-01
-5.28379738e-01 4.07611132e-01 -6.30486235e-02 -3.23516607e-01
3.88082147e-01 6.46988332e-01 5.70184469e-01 -4.66116369e-01
2.60373447e-02 5.69526196e-01 6.29353285e-01 -4.49740052e-01
3.82951558e-01 1.27056551e+00 5.86851120e-01 -1.40917623e+00
-6.25310600e-01 -8.44240189e-01 -8.03886890e-01 -2.32174590e-01
8.13694715e-01 -7.69386292e-01 -1.31720686e+00 6.20776534e-01
-1.16690445e+00 -3.95202450e-03 -2.78154433e-01 7.97316372e-01
-6.66537702e-01 7.44213700e-01 -6.14180803e-01 -1.20731235e+00
7.58808851e-02 -1.28181541e+00 1.19518900e+00 3.11069965e-01
2.73870140e-01 -6.52502954e-01 1.53912887e-01 3.36851388e-01
9.05988291e-02 1.00806519e-01 6.85143232e-01 -2.51136161e-02
-8.68224859e-01 -3.09829950e-01 -1.69755280e-01 6.70276359e-02
3.97096947e-02 -2.32735164e-02 -1.13293600e+00 -3.63034755e-01
6.53828144e-01 -1.74639583e-01 9.11870062e-01 8.09599817e-01
9.81948376e-01 3.22463751e-01 -5.30648291e-01 5.56230426e-01
1.78642941e+00 1.40527621e-01 7.07073331e-01 1.87799126e-01
2.86428124e-01 6.57117367e-01 3.74051452e-01 6.41437709e-01
-1.15571342e-01 7.83557594e-01 4.89645302e-01 2.47004434e-01
1.91685870e-01 3.26965272e-01 1.82066664e-01 4.45958346e-01
-1.17910810e-01 -4.57168430e-01 -4.32518333e-01 3.31164539e-01
-1.32933986e+00 -9.73009765e-01 -5.48395932e-01 2.71062541e+00
7.87692070e-01 -2.67555863e-01 6.76683635e-02 2.13962749e-01
7.31784880e-01 -2.24309072e-01 -5.52776635e-01 2.45319620e-01
-3.24487329e-01 3.55568916e-01 5.41869223e-01 5.10520697e-01
-6.44828379e-01 4.13111895e-01 6.48569775e+00 5.44655085e-01
-1.42631733e+00 -1.14086717e-01 2.22735688e-01 -2.07848176e-01
-3.92124236e-01 1.27482936e-01 -1.02218008e+00 7.45761216e-01
8.78674269e-01 -9.84205678e-02 3.30977410e-01 1.64138854e-01
5.96479297e-01 -8.69119763e-01 -8.88638318e-01 1.00168943e+00
-4.23797309e-01 -1.17521334e+00 1.19130462e-01 6.07899606e-01
1.96837589e-01 1.43002532e-02 -5.17708957e-02 -8.69492710e-01
-2.21771240e-01 -7.12105274e-01 1.15141757e-01 6.18671715e-01
1.09293342e+00 -5.59185326e-01 4.16187704e-01 6.07126057e-01
-6.66670084e-01 1.13671515e-02 -4.56649661e-01 8.29804596e-03
6.61644876e-01 1.31460953e+00 -7.83379853e-01 4.79320616e-01
3.99018914e-01 3.13220829e-01 1.31394148e-01 9.56432879e-01
2.36392483e-01 4.40301836e-01 -6.45187616e-01 1.63379222e-01
1.14679843e-01 -8.46704423e-01 8.38501096e-01 9.46790755e-01
7.36105144e-01 2.57409900e-01 -2.72809267e-01 1.22383010e+00
1.72063112e-01 -3.56571406e-01 -4.57331449e-01 -8.49287584e-02
6.59055948e-01 1.35739553e+00 -8.12595963e-01 -6.28633797e-02
-5.07500410e-01 8.53035867e-01 4.16787937e-02 3.69708270e-01
-1.83452934e-01 -3.09905410e-01 3.37194711e-01 2.68956810e-01
5.09911835e-01 -3.05540144e-01 3.45777124e-02 -1.14674699e+00
-1.15472525e-01 -3.51995558e-01 -1.15486182e-01 -5.47894776e-01
-8.11904907e-01 -3.96599509e-02 -1.54799700e-01 -9.34855998e-01
-1.14588417e-01 -7.83118486e-01 -3.59696209e-01 1.05277216e+00
-1.77640390e+00 -6.17305040e-01 -1.06017977e-01 5.07048368e-01
-4.22231257e-02 3.93709958e-01 9.16664362e-01 1.08128950e-01
-4.48819071e-01 -2.84960836e-01 5.78044593e-01 -2.57301569e-01
6.50764346e-01 -1.09783471e+00 -1.20778546e-01 9.12732720e-01
-1.49009541e-01 7.81821311e-01 6.95598364e-01 -3.17562997e-01
-1.65458691e+00 -4.38557982e-01 5.10867834e-01 -1.27925470e-01
5.27351201e-01 -9.14037004e-02 -1.02301085e+00 1.81050360e-01
4.55357991e-02 1.72956303e-01 8.20454121e-01 -7.07582474e-01
8.35301355e-02 2.00828046e-01 -1.37856734e+00 1.66160271e-01
5.97241461e-01 -7.05102801e-01 -2.68135875e-01 1.44937888e-01
1.34692028e-01 -6.95721880e-02 -8.60588729e-01 2.25472748e-01
7.47091711e-01 -1.39231956e+00 8.40671301e-01 1.52573675e-01
2.13910893e-01 -6.21619165e-01 -3.20400931e-02 -9.06164825e-01
-1.56340674e-01 -7.30730712e-01 1.09007716e-01 7.71332443e-01
-1.51222616e-01 -9.21487212e-01 7.81141102e-01 1.14400741e-02
8.69562179e-02 -4.30294335e-01 -1.19507277e+00 -6.52857542e-01
-2.01782867e-01 -1.04979970e-01 5.83915524e-02 3.27100366e-01
1.11843124e-02 1.83164820e-01 -3.62269282e-02 3.06017071e-01
1.29927647e+00 2.65209079e-01 5.18210828e-01 -1.36740434e+00
-3.96608114e-01 -7.01305717e-02 -2.74821281e-01 -1.34072495e+00
3.30013270e-03 -3.81172091e-01 -2.07945276e-02 -9.09535944e-01
5.85215330e-01 4.31606956e-02 1.10792413e-01 -3.03570628e-01
2.27983519e-02 3.41362119e-01 -2.68687308e-02 5.04749179e-01
-3.47009093e-01 9.93291661e-02 1.36832976e+00 3.89927030e-01
2.38248203e-02 9.43258107e-02 -2.06008971e-01 4.41994637e-01
3.90337437e-01 -3.57185394e-01 -7.61727914e-02 -9.81782675e-02
3.48272383e-01 2.52261370e-01 7.28344142e-01 -9.13006246e-01
3.98762345e-01 7.02001154e-02 2.76440710e-01 -5.03316462e-01
5.84451914e-01 -7.78225064e-01 4.40654159e-01 4.91429806e-01
2.62034107e-02 -7.96253324e-01 -1.86340705e-01 6.98930860e-01
-1.63234800e-01 -7.08143711e-01 1.26910222e+00 -3.91704559e-01
-3.14659804e-01 3.25629227e-02 -6.87452257e-01 -3.70277286e-01
1.02247083e+00 -4.30444211e-01 -3.86655569e-01 2.55882032e-02
-5.94535708e-01 -2.45610550e-01 9.54996943e-01 -7.46783197e-01
6.77420914e-01 -8.21904838e-01 -3.50046694e-01 5.20994067e-01
-6.91991597e-02 2.04620153e-01 4.50315863e-01 1.37348330e+00
-5.73674202e-01 5.63769519e-01 -9.92146581e-02 -1.02645755e+00
-1.17301214e+00 4.73578274e-01 2.98383564e-01 -1.39315307e-01
-7.08864987e-01 5.54425776e-01 3.93501639e-01 1.46529600e-01
-5.66875756e-01 1.24114886e-01 -7.40483180e-02 -7.95359462e-02
1.00362813e+00 3.00883144e-01 -6.29700124e-02 -5.74052334e-01
-2.16896564e-01 1.01132584e+00 -6.72524944e-02 -3.04564476e-01
1.24692726e+00 -5.72549164e-01 -3.01598251e-01 5.76514423e-01
1.30106759e+00 1.08436100e-01 -1.43782127e+00 -1.92884579e-01
-2.01736763e-01 -5.19619703e-01 1.80117637e-01 -1.61929861e-01
-5.02286911e-01 1.05282724e+00 2.80914515e-01 4.09035176e-01
1.02037132e+00 8.65831375e-02 4.91639018e-01 3.04422826e-01
6.90261245e-01 -7.09693968e-01 -6.22286722e-02 1.35999382e-01
1.76113844e-01 -9.97933507e-01 -1.22881718e-02 -4.01989043e-01
-1.11194544e-01 1.37078667e+00 -3.92711371e-01 6.70362487e-02
1.64562002e-01 4.74898964e-01 -1.91526160e-01 -3.47845286e-01
-5.83546937e-01 -2.73043782e-01 -4.18280184e-01 5.92478454e-01
3.15229028e-01 -1.16739817e-01 -1.54647604e-01 -9.42391753e-02
4.66363221e-01 3.27859581e-01 8.23874474e-01 7.99947917e-01
-7.22509027e-01 -1.07133555e+00 -4.88871783e-01 1.55052453e-01
-6.53871000e-01 2.10344672e-01 -1.46679701e-02 4.74223614e-01
-3.15776139e-01 7.69542277e-01 8.27167258e-02 3.55516613e-01
-8.03873390e-02 1.86164886e-01 8.96184444e-01 -5.87188482e-01
3.51995230e-01 5.39077401e-01 -4.66703326e-01 -6.15416050e-01
-8.93058360e-01 -8.96656811e-01 -1.36972642e+00 -8.89229923e-02
-5.45077145e-01 2.69214272e-01 8.06697249e-01 1.13338244e+00
4.09891129e-01 6.24955222e-02 8.12233806e-01 -1.00707710e+00
-4.08785492e-01 -5.77606857e-01 -1.06386518e+00 -1.54741609e-03
6.77369416e-01 -3.35073203e-01 -7.40843594e-01 1.81824118e-01] | [12.837176322937012, -2.788691759109497] |
99122de3-2c7e-4c34-ab0b-446763a09276 | adaptive-experimental-design-and | 2210.14369 | null | https://arxiv.org/abs/2210.14369v1 | https://arxiv.org/pdf/2210.14369v1.pdf | Adaptive Experimental Design and Counterfactual Inference | Adaptive experimental design methods are increasingly being used in industry as a tool to boost testing throughput or reduce experimentation cost relative to traditional A/B/N testing methods. This paper shares lessons learned regarding the challenges and pitfalls of naively using adaptive experimentation systems in industrial settings where non-stationarity is prevalent, while also providing perspectives on the proper objectives and system specifications in these settings. We developed an adaptive experimental design framework for counterfactual inference based on these experiences, and tested it in a commercial environment. | ['Lalit Jain', 'Houssam Nassif', 'Arick Chen', 'Sergio Gamez', 'Tanner Fiez'] | 2022-10-25 | null | null | null | null | ['counterfactual-inference'] | ['miscellaneous'] | [ 3.58593792e-01 -1.62059635e-01 -5.74851573e-01 -2.93745905e-01
-2.46629730e-01 -6.86666369e-01 3.75126690e-01 -3.76483142e-01
-3.43269706e-01 1.20324564e+00 -2.97979087e-01 -1.24674666e+00
-5.96133411e-01 -4.54421967e-01 -6.69836819e-01 -3.59976172e-01
-3.40892136e-01 2.66500205e-01 -1.11641616e-01 1.64503455e-01
6.58376276e-01 4.33099508e-01 -1.75855696e+00 -2.05226377e-01
4.05066252e-01 6.32699013e-01 -3.79289448e-01 7.14234710e-01
5.10197818e-01 5.36166370e-01 -9.71440017e-01 -2.01209247e-01
4.92532164e-01 -6.94221735e-01 -4.64908391e-01 2.21251380e-02
2.09241703e-01 -8.02265704e-01 1.23696022e-01 9.39015210e-01
7.02937245e-01 2.99678259e-02 1.03186771e-01 -1.76800954e+00
-1.18469439e-01 1.05965900e+00 -6.89314842e-01 4.07166928e-01
4.86729413e-01 8.01609218e-01 8.40252995e-01 -6.10738061e-02
3.40281397e-01 1.37240791e+00 3.33346874e-01 2.81310558e-01
-1.73934257e+00 -1.24095666e+00 2.39201412e-01 4.01177444e-02
-1.44875562e+00 -5.76649070e-01 3.87443990e-01 -3.39287728e-01
1.15075362e+00 4.20106977e-01 8.31615329e-01 1.40165508e+00
7.01403499e-01 3.57324243e-01 1.29416692e+00 -5.41911721e-01
7.12060869e-01 1.73927918e-01 -3.26996565e-01 6.32873178e-02
1.01299095e+00 8.96705568e-01 -1.03403002e-01 -3.24358493e-01
1.02445447e+00 -2.06165105e-01 2.63330370e-01 -4.76614535e-01
-9.93745804e-01 8.70239139e-01 -3.39190662e-01 4.75737900e-02
-3.28276426e-01 6.67861581e-01 4.25298482e-01 7.57184803e-01
9.08048917e-03 1.05097544e+00 -9.37481880e-01 -5.25650561e-01
-7.52153814e-01 8.28653216e-01 7.97829866e-01 9.56305206e-01
1.07387111e-01 4.36934829e-01 -2.01247796e-01 6.56903908e-02
6.22666955e-01 4.65950757e-01 2.66683459e-01 -1.40274584e+00
3.60585511e-01 2.72231013e-01 5.86848795e-01 -1.03585064e-01
1.98323242e-02 -4.97352928e-01 1.27072752e-01 8.04187119e-01
2.86632895e-01 -7.22317755e-01 -5.92254519e-01 1.56271613e+00
4.00032490e-01 2.55161017e-01 -1.91720173e-01 3.52031231e-01
-6.56486154e-01 7.22971782e-02 6.91743344e-02 -7.10044801e-01
6.94567680e-01 -1.71782464e-01 -8.06869805e-01 1.54624015e-01
5.76803327e-01 -9.72775996e-01 1.33575010e+00 6.35874212e-01
-1.12687075e+00 -1.78869113e-01 -1.35398674e+00 9.77829576e-01
3.73522602e-02 -9.15997386e-01 6.57270253e-01 1.61274898e+00
-7.20434248e-01 8.04220080e-01 -8.68909955e-01 -2.24830564e-02
2.55842447e-01 5.57619274e-01 4.88519609e-01 4.41830494e-02
-7.19533265e-01 7.27262616e-01 2.51952201e-01 -1.19729698e-01
-1.02220595e+00 -1.03978884e+00 -6.27442837e-01 5.95997600e-03
8.53591323e-01 -4.56836045e-01 1.79751408e+00 -4.08221096e-01
-1.91582787e+00 -2.32892022e-01 6.78288937e-01 -4.97116297e-01
5.99061608e-01 -1.62763357e-01 -7.61157274e-01 -4.98758405e-01
1.38166234e-01 6.38373792e-02 4.72807646e-01 -7.90782452e-01
-8.45096946e-01 -1.42268240e-01 2.98420399e-01 -1.61236212e-01
2.61395007e-01 2.79056430e-01 7.32058764e-01 -4.09350395e-01
-4.49431598e-01 -9.83001709e-01 -6.75442696e-01 -6.65911317e-01
-4.45881814e-01 1.84814304e-01 9.64820623e-01 1.52914122e-01
1.16421592e+00 -1.81246805e+00 -6.85114145e-01 5.97245216e-01
-3.58370036e-01 -2.03557331e-02 1.85035318e-02 6.26738667e-01
-1.95072398e-01 5.96301496e-01 4.09906030e-01 6.24638140e-01
5.54395437e-01 -1.77101314e-01 -1.51028723e-01 4.61939335e-01
-2.87477840e-02 4.91077065e-01 -8.02441776e-01 -4.24693406e-01
6.63609624e-01 -4.23720509e-01 -8.18885863e-01 7.18846247e-02
-3.80389512e-01 3.15316737e-01 -5.32034397e-01 6.72738433e-01
2.88875312e-01 1.43540338e-01 8.53865087e-01 5.70423067e-01
-5.52337885e-01 4.85170901e-01 -1.51586807e+00 8.37655067e-01
-6.69812262e-01 2.99669772e-01 -1.42372057e-01 -8.22510183e-01
3.93286556e-01 4.59096223e-01 4.77041513e-01 -9.32103992e-01
3.27431679e-01 1.14840187e-01 7.28464067e-01 -4.91689652e-01
-5.56505285e-03 -4.08926815e-01 -2.56441057e-01 6.76021993e-01
-1.52181178e-01 -5.56981444e-01 3.91801000e-01 -6.28899753e-01
1.20199597e+00 3.41529846e-01 6.99110448e-01 -6.34494245e-01
-2.83191744e-02 -6.30803481e-02 6.51727200e-01 8.99140120e-01
-1.42482296e-01 -2.58546710e-01 6.83119595e-01 -1.02359496e-01
-1.05949163e+00 -1.08663392e+00 -2.19600812e-01 5.24012446e-01
-4.09772694e-02 -1.50272772e-01 -4.57566649e-01 -7.28881896e-01
3.36505622e-01 1.70547926e+00 -4.05606478e-01 -1.35080829e-01
-3.10297430e-01 -4.70853269e-01 3.45214218e-01 4.95047748e-01
2.60224998e-01 -7.16016948e-01 -1.03731596e+00 4.22836572e-01
6.85786128e-01 -5.94168127e-01 -2.71340996e-01 2.09568396e-01
-9.21565950e-01 -1.22504139e+00 1.63410038e-01 -1.06387891e-01
2.35969871e-01 6.07024729e-02 1.06893826e+00 -1.82658896e-01
-3.97761941e-01 2.73167014e-01 4.45807911e-02 -9.84636128e-01
-4.85288292e-01 -5.91537535e-01 2.22799733e-01 -7.90726721e-01
1.21175155e-01 -7.56430626e-01 -7.33756661e-01 1.04893029e+00
-7.19254136e-01 -5.10954559e-01 6.66068316e-01 7.47981548e-01
2.57165819e-01 6.11526251e-01 8.33102763e-01 -1.11685205e+00
9.12385166e-01 -4.34382111e-01 -1.33683348e+00 1.89007863e-01
-1.30081952e+00 -1.36543125e-01 4.55763489e-01 -8.52290154e-01
-1.07043815e+00 -5.70858181e-01 1.59372941e-01 -1.54472381e-01
-3.31211910e-02 6.07062161e-01 -2.70145386e-01 -2.52039712e-02
5.89124560e-01 -8.91745687e-01 4.66357358e-02 4.34202515e-02
4.63045165e-02 4.12544280e-01 -3.80543470e-01 -9.10985351e-01
7.01139212e-01 -3.05177063e-01 1.43661261e-01 -3.39344323e-01
-2.34029338e-01 1.88864335e-01 -1.48514193e-02 -1.67041525e-01
1.03161134e-01 -6.14555299e-01 -1.05496776e+00 -2.70040780e-01
-1.38233632e-01 -8.83553147e-01 -9.49062824e-01 1.06536520e+00
-7.21161485e-01 -2.97589093e-01 -1.45530730e-01 -9.56494749e-01
4.23415989e-01 -1.33904767e+00 3.84327948e-01 2.29716122e-01
-7.52130032e-01 -8.56153905e-01 2.27535233e-01 1.13225199e-01
5.22306263e-01 4.32815999e-01 9.04908061e-01 -6.80352390e-01
-5.93158960e-01 -3.55476052e-01 4.22939867e-01 1.38991848e-01
1.17906339e-01 4.71912354e-01 -4.78941917e-01 -4.50619698e-01
1.03972092e-01 -1.31351322e-01 -4.82836396e-01 7.13261366e-01
9.60683167e-01 -6.19712174e-01 -1.63332805e-01 -1.62552804e-01
1.42129529e+00 8.86552751e-01 3.56165916e-01 4.81578559e-01
-1.74382076e-01 2.79194295e-01 1.33140337e+00 7.83841193e-01
-4.39868063e-01 6.92676187e-01 1.92007452e-01 3.24659616e-01
4.08939153e-01 -2.90376127e-01 6.26850605e-01 4.65112627e-02
2.81980336e-01 -2.86334336e-01 -6.71459377e-01 3.70634198e-01
-1.66832829e+00 -9.10275936e-01 1.59879476e-01 2.52249002e+00
6.68513536e-01 8.93935919e-01 4.77823347e-01 1.36098340e-01
8.71563911e-01 -4.59688693e-01 -8.01862717e-01 -8.85612786e-01
5.99446297e-01 5.21180153e-01 8.82419109e-01 -6.13409020e-02
-5.00761688e-01 2.75782257e-01 8.20938778e+00 5.77561438e-01
-8.86717737e-01 -5.63688204e-02 5.49927473e-01 -3.46941829e-01
-3.08117300e-01 4.63706076e-01 -7.04041123e-01 3.59238416e-01
1.82850027e+00 -1.07148147e+00 3.37503254e-01 1.04257882e+00
6.68442726e-01 -3.42744321e-01 -1.59144580e+00 3.42724502e-01
-7.01434851e-01 -1.18426955e+00 -2.87951469e-01 5.11023939e-01
8.41200590e-01 -4.88139778e-01 4.51953322e-01 6.11522555e-01
1.01667321e+00 -8.85913312e-01 9.65283453e-01 -1.30949393e-01
7.65254915e-01 -8.83476317e-01 1.00541091e+00 7.97781646e-02
-5.07603049e-01 -3.73166025e-01 4.52467464e-02 -6.97983086e-01
6.15350343e-02 3.58123928e-01 -1.36424243e+00 7.22002685e-02
5.21005273e-01 -1.46730885e-01 -1.99600756e-01 1.30903459e+00
-2.63957947e-01 1.04706192e+00 -2.31387123e-01 -3.15831572e-01
2.84124874e-02 -5.91481552e-02 4.40352947e-01 5.88847339e-01
5.37894309e-01 -4.51725334e-01 3.17286812e-02 1.02535951e+00
4.05214727e-01 -2.98238933e-01 -9.52288449e-01 -4.11679894e-01
7.27930248e-01 7.82123446e-01 -9.09987807e-01 -1.40541568e-02
-2.36055613e-01 -2.00202659e-01 -8.42450261e-01 2.21288621e-01
-1.20698082e+00 -3.82002532e-01 9.43139911e-01 2.01288387e-01
2.33525470e-01 -2.19249353e-01 -3.81705582e-01 -4.16268438e-01
-3.31508160e-01 -1.33813858e+00 4.03650522e-01 -4.00411367e-01
-9.43918467e-01 -3.12945604e-01 8.25361848e-01 -1.36739933e+00
-7.51281440e-01 -5.48613489e-01 -6.53142035e-01 5.68832278e-01
-6.03440166e-01 -5.31244755e-01 5.93726635e-01 2.10175335e-01
5.73246777e-01 -9.58201140e-02 6.20837986e-01 2.55366992e-02
-9.46232080e-01 6.89293802e-01 3.87308337e-02 -6.56338513e-01
5.78899682e-01 -1.34232688e+00 4.41113949e-01 8.79358590e-01
-1.42307818e-01 1.08061147e+00 1.33054066e+00 -7.09704578e-01
-1.49008977e+00 -7.10394979e-01 -1.01334870e-01 -1.90487280e-01
1.26078737e+00 -3.42912763e-01 -2.74349302e-02 8.98356318e-01
4.31614190e-01 -5.01905859e-01 8.51472735e-01 5.77691853e-01
2.26117730e-01 -1.41117424e-01 -1.51507568e+00 1.21306288e+00
9.23996568e-01 -1.37659088e-01 -2.93888211e-01 3.15267444e-01
1.10427666e+00 -2.42537051e-01 -1.10756946e+00 4.28381175e-01
6.89959168e-01 -7.99453020e-01 5.35711944e-01 -6.24800146e-01
-4.05135229e-02 -1.76060349e-01 -3.05033941e-02 -1.31888068e+00
-7.80097470e-02 -1.20714712e+00 3.29203278e-01 1.36892819e+00
8.26586843e-01 -9.95877624e-01 7.54654050e-01 8.49532664e-01
4.81153615e-02 -2.68140972e-01 -7.97770679e-01 -1.09518623e+00
-6.00604080e-02 -5.30744731e-01 8.67814422e-01 8.08359683e-01
6.29222617e-02 2.97459841e-01 1.06330171e-01 3.43317538e-02
6.03272676e-01 9.51028708e-03 8.98865759e-01 -6.94693923e-01
-6.55569673e-01 -3.39108676e-01 -5.82160592e-01 -6.76297322e-02
-4.17969078e-02 -9.57466103e-03 -5.71541339e-02 -5.56003451e-01
-7.56623894e-02 -2.25355044e-01 -4.68176782e-01 2.17343092e-01
2.14549482e-01 -2.89961994e-02 -2.47056946e-01 -4.16327327e-01
-4.26530153e-01 4.37652394e-02 9.59158897e-01 1.67880848e-01
-3.85013849e-01 5.49511492e-01 -9.83677387e-01 4.29909647e-01
9.67894614e-01 -4.13112164e-01 -9.28278744e-01 3.37848336e-01
3.62910211e-01 2.14852646e-01 5.06156497e-02 -1.07369924e+00
-2.51735240e-01 -9.12306249e-01 3.96541566e-01 -3.31671119e-01
-3.65224570e-01 -1.13430357e+00 8.08765948e-01 6.00482404e-01
-4.29974616e-01 5.06459117e-01 6.32334590e-01 4.35852706e-01
1.74017251e-01 -2.46202409e-01 4.79761451e-01 4.73479591e-02
-4.34947938e-01 -2.54769623e-01 -5.99509776e-01 -9.94265676e-02
1.67085731e+00 -3.24853033e-01 -4.23968703e-01 -2.28215158e-01
-4.82824862e-01 3.66026610e-01 5.98809004e-01 1.42602175e-01
2.35781252e-01 -1.05879200e+00 -2.02843085e-01 1.89933106e-01
-3.16075198e-02 -6.51441753e-01 1.84290946e-01 9.84866917e-01
-5.23665667e-01 3.45956445e-01 -4.79691803e-01 -3.74134213e-01
-1.26571214e+00 6.95645094e-01 1.13052182e-01 -2.25730047e-01
-3.82743031e-01 3.75115305e-01 -5.82101308e-02 -1.02230646e-01
-8.54832903e-02 -3.10534954e-01 4.68183577e-01 -4.41209972e-01
3.56802106e-01 5.86581469e-01 1.43822342e-01 5.57668388e-01
-3.38751882e-01 -2.21703246e-01 -1.06942907e-01 -7.58765638e-01
1.20211375e+00 -2.14919180e-01 1.88004166e-01 1.04045713e+00
5.27642846e-01 1.37443393e-01 -1.13552880e+00 5.32696128e-01
3.82754326e-01 -8.59409750e-01 1.46296069e-01 -9.66242790e-01
-4.21018690e-01 1.56819060e-01 7.59297490e-01 6.41294301e-01
8.74936581e-01 -6.68349802e-01 -8.89757946e-02 4.38802153e-01
7.25390375e-01 -1.33937669e+00 -1.88234791e-01 -2.57258296e-01
6.42679989e-01 -5.80825925e-01 6.28015637e-01 -2.18456507e-01
-5.30987322e-01 8.21973622e-01 5.64414859e-01 -1.18961059e-01
6.26887143e-01 7.26193011e-01 -2.34854490e-01 -2.89177615e-02
-1.12020826e+00 2.35024273e-01 -5.34129143e-01 5.82923472e-01
4.87948298e-01 2.92941988e-01 -4.84244347e-01 2.31700893e-02
-1.49101421e-01 2.62571692e-01 9.25044537e-01 1.47514141e+00
1.45250466e-02 -1.51607478e+00 -4.95926470e-01 7.12191224e-01
-7.41094053e-01 2.35043168e-01 -1.79596648e-01 1.80164015e+00
-9.03664716e-03 1.22492135e+00 -2.08754372e-02 -5.72539866e-01
6.40418351e-01 -5.20566553e-02 6.27933383e-01 -8.51138234e-01
-5.80018342e-01 3.56442869e-01 6.79111362e-01 -8.44927430e-01
-2.93926507e-01 -1.14959228e+00 -5.42617977e-01 -5.11653721e-01
-8.36484373e-01 4.29634720e-01 7.15165615e-01 7.60278046e-01
1.86455637e-01 9.96128261e-01 9.51224744e-01 -4.57253754e-01
-1.24576700e+00 -9.01741564e-01 -9.15088415e-01 -2.72858232e-01
-8.32374245e-02 -1.05465829e+00 -5.50696731e-01 -3.84026647e-01] | [4.767499923706055, 2.4916179180145264] |
c922b686-036d-40cf-8b1c-8f2dfb6b29fa | acne-severity-grading-on-face-images-via | null | null | https://ieeexplore.ieee.org/document/9995101 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9995101 | Acne Severity Grading on Face Images via Extraction and Guidance of Prior Knowledge | Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists. | ['Xue Cheng', 'Jing Yang', 'Haiyan You', 'Xiguang Liu', 'Yi Guan', 'Zhaoyang Ma', 'Dongxin Chen', 'Jingchi Jiang', 'Yi Lin'] | 2023-01-02 | null | null | null | ieee-international-conference-on-6 | ['acne-severity-grading'] | ['medical'] | [ 2.15460956e-01 4.65281084e-02 -6.25567019e-01 -4.11561400e-01
-3.50794554e-01 -1.81840375e-01 1.71271190e-01 -2.46006146e-01
-7.56512508e-02 6.08265340e-01 -1.63409352e-01 7.86439627e-02
-1.31521255e-01 -9.38684583e-01 -9.35265943e-02 -7.21027374e-01
3.71054858e-01 4.33211714e-01 5.38403690e-01 -1.99421644e-02
3.92484307e-01 6.91903293e-01 -1.52527547e+00 6.45215511e-01
1.26642358e+00 1.41991258e+00 8.23014677e-02 4.61786360e-01
-2.79370248e-01 5.06382048e-01 -4.96069998e-01 -3.94429743e-01
2.36661434e-02 -2.22789869e-01 -7.62161672e-01 4.15016115e-01
5.93251050e-01 -3.24962974e-01 -2.23791059e-02 1.27084684e+00
3.33572447e-01 -4.09143955e-01 1.16557670e+00 -1.33088958e+00
-7.95471787e-01 -1.63663343e-01 -8.67137074e-01 3.85231256e-01
5.27204312e-02 3.00692767e-01 2.95568645e-01 -6.65348291e-01
6.52605474e-01 1.16703093e+00 6.32465959e-01 5.19633234e-01
-4.21982497e-01 -6.27712488e-01 1.87086836e-01 7.20093131e-01
-1.43440008e+00 -5.80897443e-02 6.72057509e-01 -5.63944638e-01
4.28597093e-01 9.14394930e-02 1.06059515e+00 4.83163834e-01
1.36383519e-01 7.49534667e-01 1.48211110e+00 -3.16768587e-01
3.18482108e-02 3.41847271e-01 8.05191845e-02 1.19265592e+00
3.64372462e-01 -1.44827500e-01 -2.34784439e-01 -2.01478839e-01
1.09873474e+00 1.07477538e-01 -1.97727248e-01 1.20831579e-01
-1.96737170e-01 7.17409968e-01 3.09557140e-01 8.54387134e-02
-4.84312654e-01 -1.80259556e-01 -3.90691422e-02 -3.48462254e-01
3.61363739e-01 -1.19465068e-01 -2.71540612e-01 5.37797272e-01
-8.87396634e-01 -2.20533356e-01 8.83082747e-01 6.11538768e-01
5.61979592e-01 -3.00690204e-01 -4.46160614e-01 9.92456615e-01
6.76750362e-01 4.50664908e-01 3.80952388e-01 -9.31910753e-01
-8.18827599e-02 1.10586441e+00 -3.21277887e-01 -8.57273102e-01
8.24823529e-02 -1.58948749e-01 -6.41233981e-01 4.99505341e-01
2.05816433e-01 -1.24551363e-01 -1.69316459e+00 9.26086903e-01
5.63163042e-01 5.62602520e-01 -2.68035471e-01 9.35508490e-01
1.18647623e+00 6.07569039e-01 3.42635661e-01 -3.49535704e-01
1.77073979e+00 -1.06494188e+00 -1.09490979e+00 -2.31187612e-01
-1.51597470e-01 -9.91694927e-01 7.63448656e-01 7.94905245e-01
-9.14921284e-01 -2.28799507e-01 -9.89019156e-01 1.91006228e-01
-3.94063264e-01 5.43524683e-01 9.68505740e-01 7.56561995e-01
-1.07974970e+00 2.97366798e-01 -4.49195683e-01 -4.51899588e-01
1.08697844e+00 3.88439536e-01 -2.46703908e-01 -6.95402250e-02
-8.39276493e-01 1.09106410e+00 4.28087950e-01 3.05202782e-01
-7.40781486e-01 -7.42816091e-01 -5.51442623e-01 -1.78991795e-01
6.31855130e-01 -6.80632114e-01 1.28780878e+00 -7.81885326e-01
-1.57098186e+00 1.17811573e+00 -3.17360878e-01 2.05291197e-01
2.25100189e-01 1.16385505e-01 -6.07821763e-01 6.83620930e-01
-1.36994302e-01 5.28201520e-01 1.00949478e+00 -1.47650349e+00
-1.22363424e+00 -4.99206424e-01 -2.23860711e-01 2.04843417e-01
-2.99129695e-01 -2.44177222e-01 -8.56839716e-01 -3.23040307e-01
-8.43611732e-02 -5.21150649e-01 -2.76332736e-01 5.66246867e-01
-3.12845230e-01 -6.98451400e-01 1.08575118e+00 -9.65991318e-01
1.13828075e+00 -1.59020793e+00 -3.09869409e-01 9.14825082e-01
3.46696854e-01 4.83757347e-01 -1.39796391e-01 -6.06032833e-02
9.09695104e-02 2.96894312e-01 -1.87389433e-01 4.18793589e-01
-2.25006849e-01 2.50666022e-01 2.75804698e-01 1.81282133e-01
2.89828837e-01 7.83921778e-01 -5.44171095e-01 -1.04758358e+00
1.85802266e-01 7.16694891e-01 -3.21495801e-01 2.43117467e-01
-3.17480713e-01 2.91975625e-02 -7.72589028e-01 1.07352149e+00
9.71703410e-01 -4.41687971e-01 1.67121142e-01 -5.19451857e-01
2.89416522e-01 -4.68414813e-01 -1.36442339e+00 1.26824582e+00
-1.48754582e-01 1.53590277e-01 3.56459707e-01 -5.11305690e-01
5.48894942e-01 2.51138031e-01 3.14321637e-01 -1.04061037e-01
5.81803858e-01 1.51473746e-01 -1.58330575e-01 -1.26577592e+00
-3.20810020e-01 -9.97708514e-02 7.17467487e-01 -2.17949077e-02
8.73649642e-02 -4.61010695e-01 4.24678534e-01 -2.44365316e-02
4.75058675e-01 6.76131621e-02 6.38723314e-01 -1.19992018e-01
6.83427095e-01 2.01716255e-02 7.77617037e-01 1.30215228e-01
-3.19280058e-01 3.35922122e-01 7.69669950e-01 -2.71029174e-01
-5.58369875e-01 -1.15321827e+00 -4.06509340e-01 5.76859355e-01
2.13584036e-01 -6.39793947e-02 -1.21461511e+00 -1.10011888e+00
9.61498395e-02 8.39048699e-02 -7.61649966e-01 5.62882423e-02
-1.35643259e-01 -8.10168147e-01 9.73912850e-02 5.68264127e-01
7.20514715e-01 -1.02555871e+00 1.11105241e-01 -3.43510956e-01
-2.48794025e-03 -7.21386790e-01 -5.43628931e-01 -6.60124958e-01
-6.68626368e-01 -1.64265788e+00 -7.65752614e-01 -1.17461777e+00
1.13480306e+00 -2.18501434e-01 6.95348680e-01 4.64579552e-01
-1.05038893e+00 5.94935536e-01 4.87859063e-02 -5.62796175e-01
-2.30106302e-02 -4.40100610e-01 -3.61585468e-01 2.42432609e-01
4.87512827e-01 -5.56060016e-01 -1.13580537e+00 1.34507596e-01
-9.21973705e-01 -3.53399903e-01 1.26101124e+00 4.44828600e-01
9.83648002e-01 3.02423477e-01 3.49754393e-01 -1.12437725e+00
8.61738026e-01 -3.33457768e-01 -5.36162972e-01 7.07008600e-01
-8.42301548e-01 -3.71259898e-01 3.29225860e-03 -3.37279826e-01
-1.44571888e+00 2.14193553e-01 -1.08285055e-01 -1.42806232e-01
-5.22073805e-01 4.24559355e-01 -2.69057810e-01 -5.55854797e-01
4.42199200e-01 -9.00332332e-02 2.47740015e-01 -3.78673971e-01
3.09466183e-01 9.70512152e-01 6.89408004e-01 -3.69630754e-01
4.96843874e-01 4.83415484e-01 1.82153985e-01 -5.97738981e-01
-1.05489707e+00 -5.62760115e-01 -6.58709943e-01 -4.81197864e-01
1.00743210e+00 -5.55128455e-01 -1.01259398e+00 4.89107192e-01
-1.09526992e+00 -1.02205984e-02 1.77780271e-03 3.19427520e-01
-2.12508634e-01 5.91929317e-01 -6.70805633e-01 -5.84082067e-01
-5.31827033e-01 -9.97160017e-01 7.35039651e-01 1.05554736e+00
3.88801068e-01 -9.99294043e-01 -1.78738505e-01 8.62861633e-01
3.82695310e-02 1.79521725e-01 9.77276981e-01 -3.16130728e-01
-6.37089372e-01 -2.55232692e-01 -5.50086498e-01 5.43673337e-01
2.65997589e-01 3.60338151e-01 -9.40576494e-01 1.33739457e-01
-7.26105049e-02 -2.24867910e-02 9.81673121e-01 4.80341762e-01
1.84850109e+00 -3.99674147e-01 -6.34390950e-01 4.50483263e-01
1.68295586e+00 4.72077042e-01 9.26368833e-01 -3.62697393e-01
5.94459832e-01 7.16284215e-01 6.49693668e-01 4.44833301e-02
3.51765394e-01 -1.65178697e-03 3.82876962e-01 -4.44792420e-01
-5.13645649e-01 2.13954900e-03 -3.34715247e-01 4.92747068e-01
-6.59973919e-01 -2.48607084e-01 -8.22060168e-01 5.62103212e-01
-1.68314147e+00 -8.58855724e-01 -1.07365929e-01 1.65867686e+00
9.67118979e-01 -7.71430880e-02 -1.56099692e-01 -9.80783254e-02
1.15632319e+00 -4.70655411e-01 -6.18582129e-01 -2.22582921e-01
3.03179085e-01 5.31503797e-01 3.13945472e-01 3.98743182e-01
-1.00546587e+00 9.34872389e-01 7.06017208e+00 1.41265428e+00
-1.11094439e+00 1.83889747e-01 7.04448819e-01 3.49975020e-01
-6.23799525e-02 -2.04091594e-01 -8.85614693e-01 3.81010920e-01
1.48859009e-01 7.85169601e-02 3.29200566e-01 7.52959192e-01
-1.52936671e-03 -5.06286681e-01 -7.29168653e-01 9.81869221e-01
5.18659115e-01 -1.35335445e+00 4.55065370e-01 7.37422258e-02
8.70235264e-01 -6.78663731e-01 2.89912373e-01 -1.35587588e-01
1.83541566e-01 -1.36470640e+00 -2.08892062e-01 1.06711447e+00
1.02818811e+00 -7.49171972e-01 9.89082456e-01 -2.89835688e-02
-1.10465205e+00 6.18791319e-02 -3.07224523e-02 3.57196212e-01
8.35707318e-03 7.56399453e-01 -1.17916274e+00 2.83629835e-01
6.45930409e-01 3.51362497e-01 -5.22066653e-01 1.49715567e+00
-8.54003310e-01 6.67227209e-01 -3.68864417e-01 -1.37543455e-01
8.19287226e-02 -4.16268378e-01 2.40298554e-01 9.73916590e-01
1.86207131e-01 6.87906563e-01 3.47152084e-01 6.87218308e-01
-1.30134672e-01 5.46371877e-01 -6.70271963e-02 -3.33093815e-02
3.68985206e-01 1.73637438e+00 -9.38560724e-01 -2.86499381e-01
-2.50401765e-01 8.77786279e-01 8.75878334e-02 3.92593771e-01
-4.52452064e-01 -4.69461292e-01 1.57031752e-02 3.40042740e-01
2.85623848e-01 6.41294539e-01 -2.49681890e-01 -6.02449596e-01
-1.80017129e-02 -3.76940519e-01 8.09585631e-01 -8.84882987e-01
-1.75879061e+00 1.78039491e-01 -1.33465156e-01 -8.16977739e-01
3.18609476e-01 -1.15837586e+00 -1.17364573e+00 6.61026597e-01
-2.04855704e+00 -1.67182338e+00 -7.46489167e-01 6.62908494e-01
3.49283457e-01 -2.76157141e-01 6.11611605e-01 9.57558975e-02
-5.76671243e-01 4.22048002e-01 -5.20804226e-01 4.95641008e-02
8.52375031e-01 -1.37283790e+00 -8.42714608e-01 4.38670605e-01
-6.57200992e-01 3.89131606e-01 1.39328524e-01 -9.79314923e-01
-7.62108326e-01 -9.70433176e-01 2.38744453e-01 -1.16512686e-01
3.22794288e-01 4.27548647e-01 -5.95031202e-01 2.18199030e-01
3.54857892e-01 3.34769845e-01 1.03905332e+00 -5.39352186e-02
-1.92443896e-02 -3.57727081e-01 -1.77839673e+00 4.29407179e-01
7.88905621e-01 -1.74095884e-01 -5.27285516e-01 5.21009982e-01
9.66410488e-02 -3.71154875e-01 -1.19089162e+00 8.98870766e-01
6.94658220e-01 -5.67389607e-01 7.70171404e-01 -4.15658772e-01
4.99005616e-01 -3.67270470e-01 3.76106471e-01 -9.53857780e-01
-2.60386795e-01 -1.69468269e-01 -2.25788876e-01 1.24880338e+00
5.05120814e-01 -4.78684813e-01 1.10208476e+00 3.71362031e-01
1.10391922e-01 -1.19346893e+00 -6.32870555e-01 -1.38017282e-01
-1.44910514e-01 1.85425788e-01 4.68918562e-01 1.04497981e+00
-2.60799974e-01 1.74697697e-01 1.55714586e-01 2.95848310e-01
7.28200972e-01 -5.04204519e-02 1.20391443e-01 -1.58990335e+00
2.73660094e-01 -5.19035995e-01 -4.77629334e-01 -4.26135391e-01
-5.01756743e-02 -9.26296830e-01 -2.09599212e-01 -2.18186212e+00
7.59557426e-01 -8.87338445e-02 -4.29600269e-01 7.61919141e-01
-3.12929332e-01 4.24257457e-01 -3.01849544e-01 -1.87486157e-01
-3.63541365e-01 2.13073064e-02 1.95847178e+00 -2.53869832e-01
-1.23839550e-01 2.06552111e-02 -8.47398579e-01 1.22667003e+00
9.35243189e-01 -6.45189313e-03 -5.01187503e-01 1.10053599e-01
-9.40745510e-03 -1.51126489e-01 5.21291316e-01 -7.96645284e-01
5.24369001e-01 -6.45169020e-01 8.19418848e-01 -9.19037998e-01
2.95265406e-01 -8.44961286e-01 -3.80197436e-01 5.10669887e-01
2.95128692e-02 -7.77291059e-01 6.09692149e-02 5.77970564e-01
-1.26418856e-03 -4.17466670e-01 1.07731223e+00 -2.80490518e-01
-9.22394395e-01 9.22809482e-01 -2.15031043e-01 -1.64303258e-01
1.39718783e+00 -2.58915395e-01 -5.64340651e-01 -2.04143003e-01
-1.04317629e+00 5.00726104e-01 -3.56100760e-02 1.37686446e-01
8.12808633e-01 -1.27263939e+00 -7.77224362e-01 4.36736830e-02
-1.43416086e-02 -1.90800354e-02 4.68865901e-01 8.33819270e-01
-8.02867770e-01 7.90379345e-02 -4.54408944e-01 -4.84182775e-01
-1.58339059e+00 1.63850635e-01 4.95330751e-01 -9.92627293e-02
6.19164575e-03 8.30788136e-01 -4.74213064e-02 -2.64138609e-01
2.88814157e-01 1.01082861e-01 -1.04656959e+00 9.36199203e-02
4.78266388e-01 5.37800550e-01 -2.10839763e-01 -3.32909435e-01
-1.34657741e-01 9.22636628e-01 -4.18269813e-01 1.34338453e-01
1.11316311e+00 1.61619559e-01 -7.43984342e-01 -2.45503277e-01
6.99266493e-01 1.03696026e-02 -9.03839648e-01 1.98308844e-02
-4.24560189e-01 -4.95147407e-01 4.73172456e-01 -1.50261974e+00
-1.42899621e+00 7.38324463e-01 1.24209797e+00 -2.59804994e-01
1.30700397e+00 1.15661420e-01 7.59828627e-01 2.46795014e-01
1.57989040e-02 -1.53498030e+00 2.32962713e-01 -8.33542347e-02
8.83964419e-01 -1.19586194e+00 3.13014179e-01 -1.37016201e+00
-5.21555603e-01 1.26270831e+00 1.20580411e+00 -2.00644150e-01
1.08544087e+00 3.30677778e-01 2.33546227e-01 -5.00653684e-01
-3.25294405e-01 -5.94465733e-01 8.92881811e-01 9.38659310e-01
-5.42866215e-02 -5.81768900e-02 -8.42697024e-01 9.54873502e-01
1.22849293e-01 3.61582160e-01 1.48589060e-01 7.51656711e-01
-8.80012989e-01 -1.03893423e+00 -4.51918602e-01 1.05084598e+00
-6.92383289e-01 1.50431484e-01 -7.06774175e-01 6.41305983e-01
8.66450191e-01 8.41237724e-01 -7.04266354e-02 -9.64758825e-03
4.67907079e-02 -6.16901070e-02 9.04638469e-01 -6.91789687e-01
-5.95835187e-02 2.49990299e-01 -1.47413254e-01 -4.25963104e-01
-4.59441483e-01 -1.55091658e-01 -1.51410329e+00 9.29674953e-02
-5.28194785e-01 1.30452728e-02 7.94438422e-01 9.84637618e-01
3.90203819e-02 4.16525811e-01 5.82011163e-01 -3.05722594e-01
4.76115383e-03 -9.47145700e-01 -7.08035111e-01 1.49243400e-01
-2.92045102e-02 -6.06780767e-01 -1.06588796e-01 4.49011415e-01] | [15.69981861114502, -2.970245361328125] |
b3dded28-2437-4cc4-8d2f-1afc0422db01 | context-aware-video-reconstruction-for | 2205.12912 | null | https://arxiv.org/abs/2205.12912v1 | https://arxiv.org/pdf/2205.12912v1.pdf | Context-Aware Video Reconstruction for Rolling Shutter Cameras | With the ubiquity of rolling shutter (RS) cameras, it is becoming increasingly attractive to recover the latent global shutter (GS) video from two consecutive RS frames, which also places a higher demand on realism. Existing solutions, using deep neural networks or optimization, achieve promising performance. However, these methods generate intermediate GS frames through image warping based on the RS model, which inevitably result in black holes and noticeable motion artifacts. In this paper, we alleviate these issues by proposing a context-aware GS video reconstruction architecture. It facilitates the advantages such as occlusion reasoning, motion compensation, and temporal abstraction. Specifically, we first estimate the bilateral motion field so that the pixels of the two RS frames are warped to a common GS frame accordingly. Then, a refinement scheme is proposed to guide the GS frame synthesis along with bilateral occlusion masks to produce high-fidelity GS video frames at arbitrary times. Furthermore, we derive an approximated bilateral motion field model, which can serve as an alternative to provide a simple but effective GS frame initialization for related tasks. Experiments on synthetic and real data show that our approach achieves superior performance over state-of-the-art methods in terms of objective metrics and subjective visual quality. Code is available at \url{https://github.com/GitCVfb/CVR}. | ['Mingyi He', 'Qi Liu', 'Zhiyuan Zhang', 'Yuchao Dai', 'Bin Fan'] | 2022-05-25 | null | http://openaccess.thecvf.com//content/CVPR2022/html/Fan_Context-Aware_Video_Reconstruction_for_Rolling_Shutter_Cameras_CVPR_2022_paper.html | http://openaccess.thecvf.com//content/CVPR2022/papers/Fan_Context-Aware_Video_Reconstruction_for_Rolling_Shutter_Cameras_CVPR_2022_paper.pdf | cvpr-2022-1 | ['video-reconstruction', 'motion-compensation'] | ['computer-vision', 'computer-vision'] | [ 8.51704627e-02 -5.23624241e-01 -2.00704873e-01 -2.02436849e-01
-4.68561590e-01 -2.80791432e-01 4.66901422e-01 -5.09172440e-01
-2.69411206e-01 7.06484675e-01 2.00634763e-01 -2.87592053e-01
2.21941620e-01 -5.64178109e-01 -6.75656796e-01 -7.91904211e-01
4.54420745e-01 -3.91812146e-01 2.22819820e-01 -3.76867913e-02
2.21829489e-01 4.59374368e-01 -1.16045237e+00 4.60495129e-02
8.79338801e-01 1.05990934e+00 4.66217309e-01 5.09506822e-01
7.55723119e-02 8.56581986e-01 -4.28898394e-01 -2.08629861e-01
4.44617420e-01 -5.49318016e-01 -4.95670587e-01 3.97428542e-01
2.79102236e-01 -8.55501175e-01 -6.66525483e-01 9.36706781e-01
2.25784987e-01 4.69289601e-01 -6.99075982e-02 -1.17675066e+00
-5.50662816e-01 -3.22131403e-02 -9.12717521e-01 1.03428535e-01
4.35532063e-01 4.15333956e-01 6.97060585e-01 -8.98898065e-01
7.56902277e-01 1.14786696e+00 3.67943823e-01 5.19390106e-01
-1.15605378e+00 -7.66182125e-01 2.48093501e-01 3.08920920e-01
-1.36459017e+00 -5.50028265e-01 8.92460704e-01 -1.83000132e-01
5.88806152e-01 4.04453754e-01 8.81175816e-01 9.52992857e-01
2.81029642e-01 7.59608269e-01 7.64705300e-01 -1.35741204e-01
6.18233792e-02 -3.39112937e-01 -4.16661322e-01 5.23896933e-01
9.10222754e-02 1.10732183e-01 -5.74581802e-01 7.73062110e-02
1.30620074e+00 3.55008036e-01 -8.96216512e-01 -3.89036715e-01
-1.47811103e+00 4.97496992e-01 4.71116990e-01 8.75864699e-02
-4.26675022e-01 1.75726399e-01 1.20235726e-01 -2.43963841e-02
4.50407296e-01 7.24795908e-02 -1.64894015e-01 7.58807287e-02
-9.50890779e-01 2.68611044e-01 4.11278158e-01 9.43588197e-01
7.90100157e-01 2.43593231e-01 -8.19689259e-02 7.07778573e-01
4.78512466e-01 2.13391259e-01 2.14997634e-01 -1.32507372e+00
5.10416090e-01 2.44350970e-01 3.67496192e-01 -1.21356320e+00
-1.30531177e-01 -3.11710507e-01 -1.04661548e+00 2.79520154e-01
1.95320845e-01 4.94641513e-02 -8.05046380e-01 1.61809194e+00
5.04393220e-01 5.73580801e-01 -2.24010646e-01 1.25468516e+00
5.68291605e-01 9.56765771e-01 -1.01998731e-01 -4.45614189e-01
1.02793789e+00 -1.07716370e+00 -1.01558411e+00 -2.62331128e-01
2.03118220e-01 -9.03064907e-01 9.79214370e-01 4.08418924e-01
-1.28596532e+00 -6.45328641e-01 -1.19234812e+00 -4.04025942e-01
3.02382231e-01 1.93612948e-01 3.79850447e-01 2.34198406e-01
-1.02591002e+00 4.94965047e-01 -1.16374218e+00 -3.67422104e-02
2.81929910e-01 1.15832672e-01 -2.43373141e-01 -1.44402310e-01
-9.40122724e-01 5.89434564e-01 2.21867666e-01 4.08162475e-01
-8.82000029e-01 -5.11110246e-01 -1.00693965e+00 -1.34732172e-01
5.40038526e-01 -8.09015810e-01 1.10260057e+00 -1.04518270e+00
-1.76630950e+00 3.83492708e-01 -3.19047660e-01 -1.75151765e-01
7.58145154e-01 -3.21226150e-01 -3.39300364e-01 1.92912146e-01
-5.77018261e-02 7.10264444e-01 1.00787258e+00 -1.26724827e+00
-6.65111840e-01 3.01302318e-02 1.41384587e-01 3.24829519e-01
-2.14821845e-01 3.00741754e-02 -9.45850611e-01 -8.64976883e-01
3.94635260e-01 -9.82860446e-01 -3.18990648e-01 3.09068054e-01
-3.65859866e-01 2.34490305e-01 9.72540498e-01 -9.39014256e-01
1.36752796e+00 -2.21473813e+00 2.96293885e-01 -2.51283497e-01
2.59794563e-01 3.27350378e-01 -6.22158349e-02 1.16970532e-01
-1.78435117e-01 -2.76457928e-02 -4.21671867e-01 -7.59079635e-01
-4.06941652e-01 1.66605070e-01 -4.27089959e-01 7.07902551e-01
1.86975658e-01 7.47746348e-01 -8.75429511e-01 -2.55493253e-01
6.43377125e-01 7.02218294e-01 -6.31625056e-01 4.44200248e-01
-3.19827422e-02 1.06129897e+00 -3.54168922e-01 5.73278725e-01
9.25578117e-01 -3.27730089e-01 7.95627311e-02 -3.69224072e-01
-4.31003481e-01 2.86050260e-01 -1.25132310e+00 1.91255474e+00
-3.88350993e-01 8.10909748e-01 1.47267401e-01 -7.52418518e-01
7.26845205e-01 2.59511709e-01 4.84098077e-01 -6.62602663e-01
2.80981570e-01 3.13439108e-02 -3.38955551e-01 -4.12045062e-01
7.15126574e-01 -3.45080942e-02 2.30221927e-01 2.59460896e-01
-4.13008749e-01 -1.49048284e-01 1.52846977e-01 1.10384732e-01
6.13246560e-01 6.51768565e-01 2.40549549e-01 -1.31879523e-02
7.10550845e-01 -3.94966632e-01 1.14199686e+00 2.55928367e-01
-1.44885913e-01 1.20821333e+00 2.32590795e-01 -6.84455335e-01
-1.12291276e+00 -1.03530347e+00 1.45963147e-01 4.43125814e-01
7.10559785e-01 -4.12104756e-01 -5.80743730e-01 -2.31595233e-01
-5.01391828e-01 5.65596998e-01 -2.39872426e-01 -6.95081800e-02
-1.00254679e+00 -5.16122103e-01 -5.90861961e-02 4.29237813e-01
7.20897675e-01 -8.85249734e-01 -6.72707975e-01 3.01356405e-01
-6.89913929e-01 -1.33923137e+00 -7.05574155e-01 -4.86594409e-01
-7.63802111e-01 -8.47511232e-01 -9.24136579e-01 -5.69411337e-01
7.57951438e-01 8.46759617e-01 7.35843956e-01 4.17346865e-01
-1.86734185e-01 -1.57132700e-01 -1.63578808e-01 2.53183722e-01
-1.87254786e-01 -3.52932960e-01 4.13105823e-03 2.98121035e-01
-1.47068754e-01 -5.47183335e-01 -1.12432802e+00 4.76854891e-01
-1.36769164e+00 7.12909818e-01 2.73268670e-01 7.20785260e-01
6.31173253e-01 -1.44414544e-01 8.88058394e-02 -3.81898224e-01
2.17186376e-01 -3.25239062e-01 -9.05361593e-01 1.16561661e-02
-2.36682519e-01 -1.90729558e-01 7.50038207e-01 -3.37060422e-01
-1.29252183e+00 -1.13207921e-02 -1.42163768e-01 -8.56915832e-01
4.96491380e-02 1.97670549e-01 -1.92754224e-01 -5.71887903e-02
1.84542790e-01 3.30996543e-01 -1.21764272e-01 -3.57876331e-01
2.69795477e-01 4.57294613e-01 5.72730482e-01 -2.81604648e-01
8.64922643e-01 8.71607661e-01 -1.95735022e-01 -7.62343585e-01
-5.88816702e-01 -3.09168726e-01 -3.91542196e-01 -1.95926368e-01
9.76450384e-01 -1.08430195e+00 -6.21875644e-01 6.33761764e-01
-1.36503494e+00 -3.56219262e-01 4.12328951e-02 6.37067199e-01
-4.73665655e-01 7.18010366e-01 -7.34479249e-01 -5.50535202e-01
-1.08406663e-01 -1.54380786e+00 9.43462014e-01 5.03014445e-01
-4.73767780e-02 -7.02181041e-01 -1.53727531e-01 3.56121302e-01
3.65948647e-01 2.11405918e-01 4.36160415e-01 3.75281155e-01
-1.39312518e+00 9.33801159e-02 -3.00404876e-01 4.43612099e-01
2.85908282e-01 2.00935185e-01 -6.69110060e-01 -5.08368492e-01
2.89874911e-01 1.26412824e-01 5.81415832e-01 5.55644929e-01
1.23156214e+00 -2.77404964e-01 -1.80239335e-01 1.25284839e+00
1.43902087e+00 5.08515000e-01 9.49557364e-01 4.91418391e-01
9.96960700e-01 2.87429422e-01 6.80278301e-01 5.76830924e-01
4.02490109e-01 8.23180139e-01 3.75399947e-01 -1.86383858e-01
-2.21450269e-01 -1.65497854e-01 3.50342810e-01 8.14669907e-01
-1.72826901e-01 -3.96549910e-01 -6.08117342e-01 4.23708647e-01
-1.90480304e+00 -7.76130855e-01 -1.25970608e-02 2.44999647e+00
6.05235517e-01 -1.82265878e-01 -2.14611679e-01 -3.43319289e-02
7.90443420e-01 5.68347871e-01 -4.30438787e-01 1.27432734e-01
-9.91901979e-02 -1.64271086e-01 3.54528517e-01 6.15577638e-01
-8.88912737e-01 7.89219141e-01 5.20516777e+00 6.72231495e-01
-1.36333370e+00 1.55737266e-01 8.34806859e-01 -2.78031766e-01
-3.28818142e-01 3.33734393e-01 -5.93278170e-01 6.85728014e-01
4.23286617e-01 -9.96074751e-02 6.15516603e-01 3.53984147e-01
6.39090896e-01 -1.36358947e-01 -6.46922290e-01 1.14754283e+00
7.04014814e-03 -1.48296571e+00 9.57421735e-02 4.28565517e-02
9.81177747e-01 -2.64736474e-01 3.29963979e-03 -1.52955636e-01
-3.47253913e-03 -6.12312436e-01 9.40506101e-01 4.86100703e-01
7.42030382e-01 -6.69948757e-01 3.29298019e-01 2.15646371e-01
-1.34811449e+00 -9.55481362e-03 -3.57006192e-01 -7.03846142e-02
6.66719019e-01 4.06487286e-01 -2.62643158e-01 7.38924503e-01
7.81139791e-01 9.24706578e-01 -2.43087709e-01 1.02006042e+00
-5.25604546e-01 1.20491564e-01 -1.48795858e-01 4.56103921e-01
1.03110515e-01 -6.41747296e-01 6.42221630e-01 6.74809635e-01
5.47683239e-01 4.17123020e-01 9.54919755e-02 8.97094965e-01
-3.09696477e-02 -1.04196176e-01 -4.60870802e-01 2.56063670e-01
3.74633640e-01 1.33452129e+00 -7.62934864e-01 -3.38478714e-01
-6.17737055e-01 1.19014251e+00 1.15598172e-01 6.70865655e-01
-1.11622965e+00 -1.52764976e-01 8.10955584e-01 1.45144239e-01
1.96718901e-01 -6.00417256e-01 -3.42198163e-02 -1.61743557e+00
2.25791663e-01 -7.99437225e-01 1.21772662e-02 -9.39343095e-01
-7.55909503e-01 6.30328119e-01 -1.91908285e-01 -1.73461616e+00
-1.58393204e-01 -1.85543403e-01 -5.65417469e-01 8.01795423e-01
-1.58918619e+00 -9.23909664e-01 -7.56268978e-01 6.20404601e-01
7.16551960e-01 3.01813632e-01 1.43703327e-01 5.43719172e-01
-7.38285184e-01 1.83309734e-01 4.03929874e-02 -9.52295214e-02
5.77182531e-01 -6.50066495e-01 7.08160400e-01 1.36278880e+00
-1.00821182e-01 6.19143903e-01 5.86417496e-01 -6.27105594e-01
-1.34217405e+00 -1.10632861e+00 5.80785275e-01 -1.36254102e-01
3.88389379e-01 -1.12304345e-01 -1.06289756e+00 6.90633237e-01
1.54145479e-01 2.01439127e-01 1.93450272e-01 -6.98880255e-01
8.30149725e-02 -1.50352821e-01 -7.85715759e-01 1.01923823e+00
1.10106134e+00 -5.13544500e-01 -1.77324474e-01 1.07359953e-01
8.06094885e-01 -6.91229105e-01 -4.95762229e-01 4.39359993e-01
4.99150306e-01 -1.35054016e+00 1.08220732e+00 1.45395454e-02
5.97992420e-01 -8.03970873e-01 1.38279079e-02 -1.04664826e+00
-1.96900591e-01 -1.09392476e+00 -6.57630935e-02 1.06636500e+00
-1.81208923e-01 -6.70926809e-01 6.23910546e-01 7.69097984e-01
-1.89789444e-01 -6.81638896e-01 -9.10966098e-01 -5.97297728e-01
-5.49374163e-01 -2.40853056e-01 5.03202260e-01 1.01668930e+00
-4.08613354e-01 3.72867063e-02 -8.31423402e-01 2.72018045e-01
6.36499703e-01 2.61961281e-01 9.31574643e-01 -5.79255164e-01
-2.44299427e-01 -2.24905685e-01 -2.65568584e-01 -1.53092992e+00
-5.14049642e-03 -2.71318436e-01 1.98191121e-01 -1.45037317e+00
-2.80722119e-02 -3.15809101e-01 -2.06958637e-01 1.49413720e-01
-3.53612334e-01 4.53607529e-01 3.80604655e-01 3.52591813e-01
-4.13905680e-01 7.88311958e-01 1.58601296e+00 2.70620614e-01
-3.33154231e-01 -1.25296354e-01 -3.80805343e-01 7.87804008e-01
6.92188501e-01 -2.18207866e-01 -3.98320735e-01 -8.59581769e-01
-4.73293476e-02 5.36308527e-01 5.06573617e-01 -1.01205468e+00
2.38004282e-01 -3.31762910e-01 4.23228949e-01 -5.69449842e-01
6.31294191e-01 -6.99919999e-01 6.34830236e-01 3.74340475e-01
5.28425574e-02 3.26496661e-01 9.01824832e-02 5.59969068e-01
-3.56203735e-01 1.63927430e-03 9.37677681e-01 1.70852952e-02
-6.62084222e-01 6.69194341e-01 -1.52742848e-01 -3.88089299e-01
1.03541803e+00 -2.65603125e-01 -2.11710304e-01 -5.70638418e-01
-3.62017214e-01 7.56746531e-02 9.25361097e-01 5.94632685e-01
8.33175540e-01 -1.36201143e+00 -4.76695925e-01 5.17652154e-01
-2.20490232e-01 3.36319298e-01 5.46984076e-01 1.01298583e+00
-9.61108088e-01 3.24852854e-01 -2.05587566e-01 -6.81131244e-01
-1.08713400e+00 4.86938477e-01 1.18166789e-01 4.16110270e-02
-7.98741519e-01 6.49094462e-01 7.45125890e-01 8.38837698e-02
-1.75653864e-02 -4.34504539e-01 1.43418565e-01 -2.69346744e-01
6.91778660e-01 2.87704945e-01 -1.91707835e-01 -7.37786174e-01
-1.41257018e-01 6.82654321e-01 7.93033838e-03 -1.20559692e-01
1.18240511e+00 -5.91949344e-01 -8.63360763e-02 1.09043047e-01
1.21769738e+00 5.04867695e-02 -1.94395554e+00 -1.44023761e-01
-4.15139735e-01 -1.14608419e+00 1.70771152e-01 -1.16322838e-01
-1.42462754e+00 7.56850183e-01 3.84654135e-01 -3.32417302e-02
1.49169016e+00 -4.32449847e-01 1.13772070e+00 -1.05766356e-01
3.74703407e-01 -6.97781146e-01 3.72832045e-02 2.39728287e-01
7.52561867e-01 -1.15637898e+00 2.21306026e-01 -4.89973277e-01
-5.09248853e-01 1.02567422e+00 5.70123076e-01 -2.26420566e-01
1.38229176e-01 3.63306664e-02 1.72734946e-01 2.73129612e-01
-6.28686249e-01 1.96583048e-01 1.87514439e-01 1.97132275e-01
2.80238003e-01 -2.46823907e-01 -3.55735898e-01 5.79967201e-02
2.21787646e-01 1.93976432e-01 6.46157265e-01 9.81681645e-01
-1.16796322e-01 -1.06761992e+00 -4.02174950e-01 -6.50874674e-02
-4.33528960e-01 -1.04809575e-01 2.48338267e-01 7.72450864e-01
-7.03352615e-02 8.13584268e-01 -2.79549956e-02 -1.37436777e-01
7.89123848e-02 -5.38273036e-01 3.45783263e-01 -3.22914064e-01
-1.08079001e-01 4.13869858e-01 -1.86339483e-01 -8.79807889e-01
-5.50890565e-01 -4.65512872e-01 -1.04180467e+00 -5.28725266e-01
-3.08896333e-01 -2.05117509e-01 5.04367471e-01 7.36870527e-01
3.73361915e-01 4.80048060e-01 7.36616850e-01 -1.31497264e+00
-3.62163261e-02 -5.73082149e-01 -3.29247564e-01 5.34653366e-01
6.75560594e-01 -5.44780731e-01 -3.87898594e-01 3.14718187e-01] | [10.70122241973877, -1.5325424671173096] |
4b57de34-1321-4649-b015-c76cde908c77 | towards-automatic-short-answer-assessment-for | null | null | https://aclanthology.org/2022.bea-1.30 | https://aclanthology.org/2022.bea-1.30.pdf | Towards Automatic Short Answer Assessment for Finnish as a Paraphrase Retrieval Task | Automatic grouping of textual answers has the potential of allowing batch grading, but is challenging because the answers, especially longer essays, have many claims. To explore the feasibility of grouping together answers based on their semantic meaning, this paper investigates the grouping of short textual answers, proxies of single claims. This is approached as a paraphrase identification task, where neural and non-neural sentence embeddings and a paraphrase identification model are tested. These methods are evaluated on a dataset consisting of over 4000 short textual answers from various disciplines. The results map out the suitable question types for the paraphrase identification model and those for the neural and non-neural methods. | ['Filip Ginter', 'Jenna Kanerva', 'Li-Hsin Chang'] | null | null | null | null | naacl-bea-2022-7 | ['paraphrase-identification'] | ['natural-language-processing'] | [-6.50768876e-02 1.88717812e-01 -2.01246560e-01 -5.08291721e-01
-8.20967376e-01 -8.78515124e-01 5.56571186e-01 5.54519713e-01
-4.62452143e-01 4.92921770e-01 7.94120848e-01 -5.83985984e-01
-4.28575456e-01 -5.93379557e-01 -2.62351245e-01 -1.80108830e-01
7.36145616e-01 4.24630344e-01 1.26240224e-01 -8.70702565e-02
9.04837430e-01 3.09873819e-01 -1.44271183e+00 6.40294135e-01
1.09157658e+00 9.67067659e-01 4.01402451e-02 7.65518129e-01
-5.49125671e-01 1.33757210e+00 -9.25322473e-01 -9.98260736e-01
4.04104143e-02 -6.44814491e-01 -1.11784148e+00 -2.75575548e-01
1.16942906e+00 -1.00937746e-01 -3.35363328e-01 8.98072064e-01
6.50571883e-01 3.25123668e-01 9.58008289e-01 -9.30363595e-01
-1.35322237e+00 7.44354486e-01 -3.14682536e-02 4.78020579e-01
8.11328232e-01 -2.02557608e-01 1.53543556e+00 -9.96920109e-01
4.75018442e-01 9.66522574e-01 1.03795719e+00 4.48143840e-01
-1.10462725e+00 -2.03497037e-01 -4.81791556e-01 6.95500553e-01
-7.83470571e-01 -3.53373349e-01 9.39870954e-01 -8.20227802e-01
8.87708604e-01 2.59960771e-01 3.10928315e-01 9.91824985e-01
3.11337233e-01 7.32701361e-01 1.24036908e+00 -3.95911992e-01
3.12203348e-01 5.08037329e-01 1.10340178e+00 6.14862680e-01
1.87193289e-01 -4.48409647e-01 -6.30550146e-01 -3.40883672e-01
2.00383887e-01 7.52000585e-02 -1.37182683e-01 -1.58849895e-01
-9.17244434e-01 1.28078401e+00 4.10271943e-01 3.76064837e-01
-3.43837976e-01 -2.22025454e-01 6.29623592e-01 9.08224225e-01
3.56343508e-01 1.27271771e+00 -2.69299775e-01 6.01354390e-02
-1.35387290e+00 3.48398060e-01 1.23105311e+00 4.46735799e-01
6.35123909e-01 -2.96903163e-01 -7.86341071e-01 1.34699798e+00
-6.85444474e-02 -1.17084846e-01 1.00838554e+00 -1.12041271e+00
7.17801630e-01 1.00900710e+00 -7.03046545e-02 -1.16741252e+00
-5.29713035e-01 -2.16143236e-01 -5.66271901e-01 -8.84389207e-02
5.73224247e-01 -2.31580600e-01 -3.29917967e-01 1.36203504e+00
-1.54141992e-01 -3.57355356e-01 2.04361767e-01 6.37649417e-01
1.58617544e+00 5.24159372e-01 -3.26796532e-01 -8.57388414e-03
1.58455098e+00 -1.28727245e+00 -7.14375138e-01 -2.09426194e-01
5.82431436e-01 -7.01740324e-01 1.38034487e+00 5.12051061e-02
-1.42058110e+00 -1.07567787e+00 -8.84774148e-01 -7.92751729e-01
-5.80089808e-01 3.25293690e-01 2.88077533e-01 6.41625285e-01
-1.17867446e+00 6.91911995e-01 -4.58175986e-04 -3.77802849e-01
3.76226962e-01 1.33950338e-01 -7.77929053e-02 5.00746816e-02
-1.25231409e+00 1.28308105e+00 1.11963034e-01 -2.11149797e-01
-4.36323918e-02 -8.04282427e-01 -7.45889962e-01 5.21889508e-01
-4.67899442e-02 -1.00053942e+00 1.16375732e+00 -7.14957535e-01
-1.44828725e+00 1.15096354e+00 -1.66182652e-01 -5.41290820e-01
2.54401237e-01 1.62651725e-02 8.77741128e-02 3.85649711e-01
2.79087991e-01 3.46946239e-01 6.44047022e-01 -6.36342645e-01
-2.16801256e-01 -4.49657828e-01 2.22416550e-01 3.01767558e-01
-8.80335093e-01 2.31673092e-01 2.56371111e-01 -5.74699342e-01
-4.97896336e-02 -6.35672569e-01 6.88456744e-02 -3.96921158e-01
-2.49252319e-01 -1.02588892e+00 2.34454319e-01 -1.10948861e+00
1.38298404e+00 -1.70064747e+00 2.38379046e-01 -2.78918684e-01
4.63778436e-01 -1.07440285e-01 -1.34979501e-01 7.12117195e-01
-9.69571173e-02 3.09754889e-02 1.45505980e-01 -3.82731676e-01
3.60849202e-01 -2.53496647e-01 -4.09243524e-01 7.43659884e-02
-5.07274792e-02 1.22649288e+00 -6.39942765e-01 -5.43411553e-01
-3.04780185e-01 -4.04962540e-01 -4.03351188e-01 4.88406301e-01
2.50731874e-02 -3.41909587e-01 -2.11030751e-01 4.31042731e-01
3.33461374e-01 -1.98860794e-01 -2.97688127e-01 -5.72782680e-02
-2.12008599e-02 6.72826767e-01 -4.21713710e-01 1.36435604e+00
-2.56695777e-01 8.85408580e-01 -2.32641250e-01 -1.05144775e+00
1.23862112e+00 6.96132481e-02 1.22845098e-01 -5.43270826e-01
5.50453477e-02 2.61517644e-01 6.96902722e-02 -9.02039707e-01
9.71932232e-01 -3.17853123e-01 -4.81392771e-01 9.33587492e-01
3.07421297e-01 -5.90592206e-01 4.29595023e-01 3.63379836e-01
1.30542064e+00 -4.38616306e-01 2.39680216e-01 -3.06793064e-01
5.45490026e-01 8.98463093e-03 -3.74138393e-02 1.06986392e+00
-2.27857202e-01 8.60411048e-01 8.20822358e-01 -2.70206302e-01
-1.01436424e+00 -1.03160357e+00 1.91159844e-02 1.30723441e+00
-2.17380479e-01 -2.15576783e-01 -5.58919072e-01 -8.12953949e-01
3.51627022e-01 7.57402956e-01 -7.26153076e-01 -4.03428793e-01
-3.41610998e-01 -3.00179332e-01 4.99998152e-01 6.36900723e-01
1.56816527e-01 -1.20584297e+00 -3.17660570e-01 5.04148984e-03
-2.27465451e-01 -7.09494650e-01 -4.08718765e-01 3.95440400e-01
-8.09395015e-01 -9.88996446e-01 -8.31460714e-01 -1.19838607e+00
2.69139051e-01 3.31162214e-01 1.30639195e+00 7.75183886e-02
2.64133304e-01 5.10245323e-01 -3.68182003e-01 -3.25459063e-01
-4.92029816e-01 4.44066972e-01 -1.21898524e-01 -1.95954293e-01
7.94410408e-01 -3.56126726e-01 -4.08128560e-01 3.75018455e-02
-5.38833618e-01 -3.78136843e-01 4.12852138e-01 1.00956476e+00
-5.96922338e-02 -5.93817353e-01 1.18209589e+00 -8.35174799e-01
1.69178069e+00 -7.26122558e-01 1.80804372e-01 5.30612350e-01
-5.47809482e-01 -7.12453648e-02 9.47931051e-01 -3.94873738e-01
-8.97615135e-01 -4.65013504e-01 -2.68410891e-01 -2.15097696e-01
2.24415809e-02 7.39927828e-01 2.93928355e-01 -7.61541305e-03
9.89514828e-01 1.86903626e-01 1.78812504e-01 -5.34892023e-01
3.94216597e-01 1.11432731e+00 5.49447000e-01 -4.11655158e-01
4.56275582e-01 -2.11055085e-01 -5.02312779e-01 -7.24428236e-01
-1.30245662e+00 -8.03573132e-01 -6.58094227e-01 -3.27044398e-01
8.15391541e-01 -4.48785543e-01 -5.26226819e-01 2.33485416e-01
-1.33009923e+00 -2.45542079e-02 -4.62572604e-01 2.59342104e-01
-5.44976771e-01 7.87434757e-01 -1.13504028e+00 -2.79161006e-01
-3.23861718e-01 -8.66432428e-01 4.36445355e-01 4.37458962e-01
-8.76677692e-01 -1.15127409e+00 3.35591197e-01 1.21124768e+00
3.68684411e-01 -3.83172214e-01 1.35189533e+00 -1.36952269e+00
8.28600451e-02 -3.05978715e-01 -4.26640272e-01 6.32799983e-01
-9.62285474e-02 -4.07813728e-01 -9.15329576e-01 -7.04198256e-02
6.80521488e-01 -8.98738861e-01 1.19839883e+00 2.22002551e-01
1.05502987e+00 -5.56378365e-01 3.59022945e-01 1.03370860e-01
9.96691346e-01 -2.24298149e-01 4.47562188e-01 4.60367590e-01
6.54446542e-01 1.16177094e+00 1.29938880e-02 1.14264466e-01
5.62577009e-01 2.22453833e-01 8.04712921e-02 3.52919012e-01
-2.50800192e-01 -1.36282742e-01 4.13486451e-01 1.34483767e+00
4.40932304e-01 -1.40836760e-01 -9.07416046e-01 6.64876699e-01
-1.73687685e+00 -1.23995256e+00 -5.18708885e-01 1.79893458e+00
1.01308441e+00 -1.22762419e-01 2.82218874e-01 2.63977498e-01
5.19289732e-01 3.05026591e-01 -4.61797506e-01 -1.14427722e+00
-2.24817470e-01 3.59670013e-01 -2.15458404e-02 3.51029634e-01
-8.09302688e-01 4.88012910e-01 6.84937572e+00 7.89478302e-01
-5.52889466e-01 1.20875999e-01 5.85360885e-01 3.23864026e-03
-3.60248297e-01 -1.05409078e-01 -8.36856425e-01 6.61536098e-01
1.07981336e+00 -2.96126008e-01 9.45144892e-02 7.12158561e-01
1.35051962e-02 -2.04360932e-01 -1.29908466e+00 5.98013759e-01
7.84865737e-01 -1.53698611e+00 1.36230677e-01 -5.35848379e-01
9.98834252e-01 -2.37112835e-01 -5.02095930e-03 8.00168276e-01
2.70085186e-01 -9.90839362e-01 4.70174611e-01 7.64533222e-01
8.12253132e-02 -4.21168387e-01 1.02331674e+00 3.68767351e-01
-3.49511236e-01 -6.60904467e-01 -7.65992403e-01 -5.97253799e-01
-1.46663889e-01 3.63884449e-01 -4.99980032e-01 2.84370065e-01
5.29126406e-01 8.26413631e-01 -1.37806273e+00 1.18267751e+00
-2.81053692e-01 7.19023228e-01 1.26976669e-01 -7.25947380e-01
2.12251410e-01 -2.39345461e-01 8.09879601e-02 1.18993545e+00
3.05722862e-01 -2.55279213e-01 -9.39974785e-02 9.93860364e-01
-3.70214045e-01 3.48055661e-01 -4.75184977e-01 -4.35861349e-02
5.66679299e-01 1.13792872e+00 -5.67858696e-01 -3.94424558e-01
-3.82822186e-01 9.08592999e-01 7.16214538e-01 2.34362647e-01
-4.55252230e-01 -8.51755798e-01 7.02895671e-02 -1.21443957e-01
-3.03848926e-02 9.53706428e-02 -9.59991097e-01 -1.27845383e+00
1.65334627e-01 -8.47636819e-01 5.61139345e-01 -1.06624639e+00
-2.09632897e+00 1.54441595e-01 -2.94204265e-01 -7.81830430e-01
-2.07235858e-01 -7.28960574e-01 -1.15562451e+00 8.91247988e-01
-1.19930696e+00 -8.88425648e-01 -3.57454538e-01 1.97492763e-01
6.76131308e-01 -5.35280704e-01 5.20685732e-01 2.66809836e-02
-4.81043816e-01 7.99197376e-01 4.86130953e-01 2.40175605e-01
8.15722048e-01 -1.59180474e+00 2.14293785e-02 3.04694802e-01
2.49162316e-01 7.46227801e-01 5.51511943e-01 -3.29909295e-01
-9.57078457e-01 -6.32137597e-01 1.61273336e+00 -9.16167140e-01
1.12796271e+00 -2.28165701e-01 -1.24226439e+00 2.59701043e-01
7.73739576e-01 -8.62836957e-01 1.15429533e+00 3.87923837e-01
-3.87504071e-01 1.28490450e-02 -9.68537092e-01 5.96655309e-01
4.46054459e-01 -1.06785119e+00 -1.51657844e+00 5.16975343e-01
5.98514855e-01 1.97325736e-01 -1.08924234e+00 -1.09930709e-01
3.91036749e-01 -1.16452825e+00 1.07487011e+00 -7.60352194e-01
1.24308050e+00 3.57306540e-01 7.92148411e-02 -1.36175334e+00
-6.92186892e-01 -1.91776276e-01 -1.70632377e-01 1.35171115e+00
3.30961108e-01 -4.53559518e-01 1.15154338e+00 5.82459986e-01
-2.42399454e-01 -8.69359553e-01 -9.60643589e-01 -7.96371102e-01
7.37931073e-01 1.48310527e-01 2.68957227e-01 1.17916942e+00
5.98551214e-01 1.03872883e+00 1.41365469e-01 -6.23693824e-01
2.63242096e-01 5.50624847e-01 5.56953251e-01 -1.44819760e+00
-2.26539567e-01 -1.14103091e+00 -3.06224406e-01 -1.17374504e+00
6.37011170e-01 -1.32930624e+00 -1.82189479e-01 -1.87723231e+00
5.31774938e-01 1.50892466e-01 -1.54470578e-01 1.07982792e-01
-4.93063450e-01 2.93296635e-01 2.73151934e-01 3.67820621e-01
-6.03603721e-01 4.93161649e-01 9.54476118e-01 -3.20221663e-01
4.69415337e-02 1.91897169e-01 -8.55632126e-01 6.52392089e-01
9.54527974e-01 -4.32918996e-01 -3.02718282e-01 -3.69592935e-01
6.84218943e-01 2.80101299e-01 3.57381195e-01 -8.12139332e-01
6.55541658e-01 6.38604313e-02 1.37178421e-01 -7.25657046e-01
1.99636236e-01 -3.43855679e-01 -6.71397626e-01 1.89451486e-01
-1.09515607e+00 3.53905886e-01 -1.44012228e-01 2.79183477e-01
-4.03339803e-01 -1.27990770e+00 5.70231259e-01 -2.21479818e-01
-1.57999977e-01 -4.45525438e-01 -6.49383783e-01 4.15146887e-01
6.41315520e-01 -6.37606621e-01 -4.72651482e-01 -5.20410776e-01
-7.14955628e-01 2.66955733e-01 2.33254969e-01 4.64460224e-01
7.13867545e-01 -1.29881322e+00 -8.33232880e-01 -2.11258158e-01
1.36071309e-01 -6.55788422e-01 2.18917817e-01 7.73619831e-01
-3.50530475e-01 3.98198247e-01 -2.52283514e-01 -7.27223381e-02
-1.38215375e+00 5.90967774e-01 1.67689741e-01 -5.67242205e-01
-1.40548036e-01 9.78051066e-01 -1.62489340e-01 -7.60716617e-01
1.38528183e-01 -2.85492063e-01 -8.94179046e-01 7.95341432e-01
2.85058826e-01 7.51152754e-01 1.19027840e-02 -2.11620882e-01
2.02315316e-01 3.93647373e-01 -2.17110276e-01 2.44946584e-01
1.35164118e+00 -9.74904075e-02 -5.35675645e-01 6.97851896e-01
1.53168654e+00 3.46764573e-05 -4.37918037e-01 -1.99896425e-01
4.42081422e-01 -1.77769542e-01 -2.39346042e-01 -6.94897532e-01
-5.06258070e-01 1.17191577e+00 9.69092641e-03 8.14751446e-01
5.86876094e-01 1.07777029e-01 8.12507808e-01 7.50710368e-01
-2.05892429e-01 -1.23142242e+00 6.67310417e-01 9.44624245e-01
1.05363023e+00 -1.12396717e+00 1.01898946e-01 1.89142704e-01
-5.26710033e-01 1.56097817e+00 5.91313303e-01 -3.72245103e-01
3.11941713e-01 -3.16933990e-01 -4.03533503e-02 -4.20811713e-01
-6.08680010e-01 1.45599216e-01 5.42118132e-01 2.20422208e-01
5.23563683e-01 -3.99944335e-01 -6.76506341e-01 9.75556791e-01
-7.61945367e-01 -2.02932909e-01 1.07279134e+00 5.43012023e-01
-6.33093119e-01 -6.45209432e-01 -2.10315451e-01 1.08546638e+00
-5.65538764e-01 -1.37061924e-01 -1.04497325e+00 2.52117574e-01
-1.86532021e-01 1.22337055e+00 -9.01665762e-02 -3.59192461e-01
3.31208467e-01 4.60147887e-01 3.05746764e-01 -9.47422266e-01
-1.44723988e+00 -8.96999240e-01 2.65796006e-01 1.98515300e-02
-1.92186430e-01 -7.03596592e-01 -5.70297718e-01 -3.13399762e-01
-3.92472059e-01 5.55498064e-01 3.26127231e-01 7.89961457e-01
2.10449681e-01 3.52868110e-01 6.70740545e-01 -5.74074328e-01
-1.30114126e+00 -1.19148970e+00 -3.81107420e-01 7.70345807e-01
4.87878136e-02 -1.88507393e-01 -6.99361801e-01 -1.64716154e-01] | [11.30352783203125, 9.24051570892334] |
b357adcb-88f0-4307-907c-3be2e21faec3 | machine-learning-based-assessment-of-energy | 2111.08295 | null | https://arxiv.org/abs/2111.08295v1 | https://arxiv.org/pdf/2111.08295v1.pdf | Machine Learning-Based Assessment of Energy Behavior of RC Shear Walls | Current seismic design codes primarily rely on the strength and displacement capacity of structural members and do not account for the influence of the ground motion duration or the hysteretic behavior characteristics. The energy-based approach serves as a supplemental index to response quantities and includes the effect of repeated loads in seismic performance. The design philosophy suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Therefore, the energy dissipation behavior of the structural members should be well understood to achieve an effective energy-based design approach. This study focuses on the energy dissipation capacity of reinforced concrete (RC) shear walls that are widely used in high seismic regions as they provide significant stiffness and strength to resist lateral forces. A machine learning (Gaussian Process Regression (GPR))-based predictive model for energy dissipation capacity of shear walls is developed as a function of wall design parameters. Eighteen design parameters are shown to influence energy dissipation, whereas the most important ones are determined by applying sequential backward elimination and by using feature selection methods to reduce the complexity of the predictive model. The ability of the proposed model to make robust and accurate predictions is validated based on novel data with a prediction accuracy (the ratio of predicted/actual values) of around 1.00 and a coefficient of determination (R2) of 0.93. The outcomes of this study are believed to contribute to the energy-based approach by (i) defining the most influential wall properties on the seismic energy dissipation capacity of shear walls and (ii) providing predictive models that can enable comparisons of different wall design configurations to achieve higher energy dissipation capacity. | ['Zeynep Tuna Deger', 'Fatih Sutcu', 'Gulsen Taskin Kaya', 'Berkay Topaloglu'] | 2021-11-16 | null | null | null | null | ['gpr', 'gpr'] | ['computer-vision', 'miscellaneous'] | [-3.69268917e-02 -2.06003323e-01 4.97054867e-02 5.65789863e-02
-5.04952133e-01 -1.83435515e-01 3.38396490e-01 5.47630131e-01
-2.23649517e-01 5.38346648e-01 4.08214390e-01 -2.87884504e-01
-8.78490925e-01 -9.37717378e-01 -2.93311238e-01 -1.11083674e+00
-3.87570888e-01 4.91501987e-02 4.25641596e-01 -3.72641206e-01
6.47763193e-01 8.14984143e-01 -1.39436615e+00 5.21372743e-02
5.06141126e-01 7.51348674e-01 4.46347296e-01 3.89288247e-01
3.67686421e-01 6.25055730e-01 -2.87937045e-01 3.45146328e-01
-3.46069932e-01 -1.87512442e-01 -9.59287524e-01 -1.41808420e-01
-8.61110151e-01 -5.08965313e-01 1.93250880e-01 1.98447153e-01
6.86609030e-01 5.86980581e-01 1.06327713e+00 -2.48552203e-01
-2.11131558e-01 6.64354503e-01 -3.86771798e-01 5.22294044e-02
3.01825941e-01 -1.48201108e-01 9.28416073e-01 -1.08544445e+00
1.15525603e-01 8.38941872e-01 6.33682847e-01 1.90369144e-01
-1.38829136e+00 -1.84580222e-01 -3.86108786e-01 1.66878611e-01
-1.46774316e+00 -2.62163520e-01 1.09916484e+00 -8.41034591e-01
1.12225974e+00 4.04980958e-01 5.67992568e-01 5.10621488e-01
6.18816793e-01 -1.45273963e-02 8.36973190e-01 -5.29206514e-01
6.93482578e-01 -3.61330569e-01 2.14454364e-02 2.04954088e-01
4.61139470e-01 2.19239026e-01 -2.09289506e-01 -1.86668605e-01
6.39709949e-01 -3.72589052e-01 -3.01558226e-01 7.82188401e-02
-5.50578594e-01 8.53260100e-01 3.01177382e-01 5.37401438e-01
-4.32663888e-01 2.23941788e-01 5.09440541e-01 -2.03117251e-01
2.56572485e-01 4.14674670e-01 -4.47449178e-01 -3.43345195e-01
-9.56297100e-01 3.70758593e-01 7.50865638e-01 -7.21978396e-02
4.42669153e-01 5.22120118e-01 2.64046282e-01 8.75590742e-01
6.92365289e-01 6.53258085e-01 4.22349811e-01 -6.26863003e-01
2.29099795e-01 4.44534689e-01 5.07190004e-02 -1.07356524e+00
-6.74901783e-01 -5.45300484e-01 -3.42091113e-01 2.54170805e-01
6.00546412e-02 -2.81105936e-01 -5.14043391e-01 1.22261238e+00
1.98750868e-01 -6.14375710e-01 2.16702431e-01 7.97414899e-01
5.07936716e-01 6.48285329e-01 3.27296078e-01 -1.00523062e-01
1.04531193e+00 -1.02433912e-01 -2.64429063e-01 -6.39745444e-02
7.39522219e-01 -7.76631773e-01 7.31130004e-01 1.05429471e-01
-1.00322473e+00 -3.67631316e-01 -1.00908089e+00 6.48023665e-01
7.75060207e-02 1.04736894e-01 2.59622335e-01 6.83773100e-01
-3.40588391e-01 8.47462475e-01 -1.12085640e+00 1.60657898e-01
-1.66157261e-01 2.72099882e-01 -1.01641342e-01 3.41134191e-01
-1.03787684e+00 1.08330178e+00 4.15560216e-01 5.61852515e-01
-8.16317797e-01 -5.86225450e-01 -4.61866587e-01 3.25354934e-01
1.20293818e-01 -3.60996693e-01 8.14008772e-01 -4.72223647e-02
-1.38387406e+00 -7.35541508e-02 1.36851639e-01 -1.55427884e-02
5.31677008e-01 -3.38880926e-01 -2.53245413e-01 5.26583970e-01
-1.64384842e-01 -4.72268075e-01 2.19581336e-01 -1.42780519e+00
-4.92310859e-02 -1.53013449e-02 -4.87217069e-01 -1.83661819e-01
-2.56696016e-01 -2.08986342e-01 5.36161423e-01 -6.15012884e-01
6.08821750e-01 -9.53178644e-01 -3.22213978e-01 -8.72120976e-01
-3.44503701e-01 1.00998789e-01 7.50328660e-01 -9.61073458e-01
1.30496454e+00 -1.87970436e+00 2.40586251e-02 8.42509449e-01
-3.11806023e-01 -3.71595728e-03 5.32478690e-01 1.26997912e+00
-2.14424372e-01 5.05289994e-02 -4.16493833e-01 4.16158408e-01
-3.01969022e-01 1.20839022e-01 -1.10635608e-01 5.34617662e-01
2.43603095e-01 1.46064535e-01 -5.91906190e-01 -8.41172189e-02
2.58786559e-01 5.64108551e-01 -4.70146447e-01 4.28075716e-02
3.87011617e-01 1.74319655e-01 -8.65562439e-01 4.70092207e-01
4.24998820e-01 4.36265618e-01 9.60693359e-02 -3.29802662e-01
-4.25946414e-01 6.53075501e-02 -1.18852890e+00 7.28956282e-01
-5.92901409e-01 -2.60209590e-02 -1.68047652e-01 -1.05715811e+00
1.62252891e+00 5.67691863e-01 9.20809269e-01 -4.74584341e-01
1.55733064e-01 6.68942690e-01 1.64127722e-01 -8.85825932e-01
4.65772092e-01 -3.20511013e-01 2.10409425e-02 1.56272024e-01
-5.09074330e-01 -3.36193234e-01 6.78233132e-02 -2.70864576e-01
7.51594126e-01 1.91854879e-01 -1.55967981e-01 -7.09509790e-01
6.28636062e-01 -3.95329148e-01 4.53645825e-01 3.51772793e-02
4.20432925e-01 2.27950111e-01 3.33690017e-01 -2.81857610e-01
-1.32340872e+00 -1.00492454e+00 -4.70938027e-01 4.74054813e-01
-1.38253598e-02 2.37406924e-01 -5.65891325e-01 5.11150718e-01
-1.06227063e-02 9.73714530e-01 -3.54408294e-01 -4.45348978e-01
-8.25632691e-01 -1.01036978e+00 3.31173778e-01 7.85526872e-01
2.45670110e-01 -5.49028575e-01 -1.01273203e+00 6.24245942e-01
-1.44347608e-01 -7.15720654e-01 3.80978256e-01 4.51003015e-01
-1.27498770e+00 -1.05058777e+00 -4.22614753e-01 -3.18673611e-01
5.67769408e-01 -1.58090994e-01 4.57992733e-01 3.41342598e-01
-1.06580809e-01 3.73612970e-01 -6.19417965e-01 -3.85472998e-02
-6.05967700e-01 1.09039284e-01 -1.45225357e-02 -2.00524420e-01
-3.31473470e-01 -7.19858587e-01 -7.86873341e-01 7.54492760e-01
-8.84441555e-01 -3.07384551e-01 4.28178072e-01 7.18811274e-01
4.51396674e-01 4.46242362e-01 9.54756021e-01 -3.85262519e-01
5.92443943e-01 -6.56287909e-01 -2.35245347e-01 -2.13925280e-02
-7.44774699e-01 5.54448664e-02 5.84869981e-01 -2.72309214e-01
-1.29165685e+00 -3.25080931e-01 -4.88642216e-01 4.17555898e-01
4.39594835e-02 1.04792690e+00 -3.01153194e-02 -8.42379853e-02
5.68182647e-01 1.20601006e-01 -4.55670059e-02 -6.81680679e-01
-4.57907885e-01 2.80794322e-01 2.62374252e-01 -1.10103381e+00
6.30655766e-01 1.82851404e-01 6.60304189e-01 -1.26008344e+00
-5.75488135e-02 -2.21419320e-01 -3.35107803e-01 -6.18590057e-01
5.45188010e-01 -4.19009179e-01 -9.44291294e-01 3.30146283e-01
-5.36275506e-01 -1.61568657e-01 -1.50211483e-01 9.86517847e-01
-5.47300756e-01 5.02930701e-01 -6.01431370e-01 -1.38395751e+00
-5.68930626e-01 -1.19728696e+00 4.11799967e-01 1.48890689e-01
-4.40761536e-01 -1.03328907e+00 -8.69578347e-02 3.74797583e-01
5.88659346e-01 8.67924571e-01 1.17042887e+00 -4.13361311e-01
-2.95899175e-02 -4.07441199e-01 4.63914603e-01 3.29248965e-01
-3.09064277e-02 4.62720811e-01 -6.78006530e-01 -2.46330529e-01
2.59940207e-01 3.97752449e-02 7.35536516e-01 6.56456590e-01
5.19906044e-01 -4.31545675e-02 -1.80469424e-01 3.76736932e-02
2.01268673e+00 4.45317030e-01 6.71842873e-01 5.38570821e-01
2.91227430e-01 9.06795263e-01 3.47340494e-01 8.21447909e-01
-1.80190325e-01 3.87862980e-01 5.52611351e-01 1.94218442e-01
1.76685274e-01 -1.35765165e-01 2.20714241e-01 9.07281816e-01
-8.82069767e-01 -9.85941365e-02 -1.18936574e+00 6.49345338e-01
-1.34401536e+00 -1.14530551e+00 -6.43104494e-01 2.34959817e+00
4.76685286e-01 2.81243533e-01 -1.04445003e-01 9.26993668e-01
4.69477981e-01 -2.03609690e-01 5.57897501e-02 -9.47747946e-01
-7.61630610e-02 2.11615741e-01 5.66008627e-01 5.43039083e-01
-6.03881478e-01 -6.92525953e-02 6.21225977e+00 6.11265659e-01
-1.03012562e+00 -4.80224371e-01 4.59881455e-01 2.13928446e-01
-4.68951941e-01 2.54270136e-01 -5.50618589e-01 4.92694259e-01
1.09310269e+00 -1.08930327e-01 -5.85130341e-02 7.58088589e-01
8.86582613e-01 -7.23062336e-01 -4.50781107e-01 6.95408210e-02
-6.49439096e-01 -1.06919813e+00 -3.75175416e-01 1.89547271e-01
5.95587194e-01 -4.52355266e-01 -1.49853989e-01 -2.73970962e-01
-3.55794370e-01 -6.50044739e-01 8.50397646e-01 9.76321995e-01
2.67144322e-01 -9.91642833e-01 1.13933623e+00 1.20244749e-01
-1.38936961e+00 -5.59706271e-01 -1.10655524e-01 -2.18606174e-01
6.25587046e-01 8.64203215e-01 -7.32297421e-01 8.87661397e-01
5.98827004e-01 -8.80438536e-02 -1.19299084e-01 8.85899603e-01
2.64703948e-02 1.09824872e+00 -5.18892348e-01 -6.39788359e-02
2.25145280e-01 -1.94137886e-01 4.42052513e-01 9.85730648e-01
6.02219820e-01 2.32327193e-01 -8.56011808e-02 7.32943058e-01
8.86550069e-01 4.40452009e-01 -5.91213331e-02 1.96738899e-01
7.16428459e-01 6.84292078e-01 -9.37425673e-01 3.65192592e-01
-1.79819226e-01 -1.18282691e-01 -4.68022734e-01 3.32384408e-01
-6.33174837e-01 -2.31256887e-01 1.81829765e-01 7.27703094e-01
4.57659543e-01 -6.58905447e-01 -5.24044216e-01 -5.38510121e-02
-2.26633456e-02 8.25997144e-02 1.04394294e-01 -5.69061399e-01
-8.61274421e-01 2.75366306e-01 6.22486949e-01 -9.68146026e-01
-2.38644689e-01 -4.26979035e-01 -7.77336895e-01 1.07425547e+00
-1.07354403e+00 -1.09578490e+00 -7.35689327e-03 4.15651388e-02
2.17570260e-01 -1.30032420e-01 7.69379020e-01 1.76811695e-01
-5.02971590e-01 2.52274394e-01 6.14916503e-01 -3.29370759e-02
-1.04526170e-01 -8.31966162e-01 -2.51569718e-01 7.00639784e-01
-9.47855592e-01 5.23369610e-01 1.25309491e+00 -9.58031118e-01
-1.28936625e+00 -4.60042000e-01 5.90364695e-01 5.31755924e-01
7.21647561e-01 3.00696880e-01 -1.13307142e+00 -1.37131214e-01
-4.92466927e-01 -4.54315096e-01 9.38669086e-01 -7.35942200e-02
4.06018227e-01 -7.88182858e-03 -9.59571421e-01 4.48462456e-01
2.59108067e-01 -1.99105129e-01 -5.53964972e-01 -3.60501319e-01
-4.26037721e-02 1.33200968e-03 -1.53067529e+00 5.94734967e-01
8.36995423e-01 -7.44105577e-01 1.15733838e+00 -2.53419299e-02
7.00018406e-01 1.10425120e-02 -1.85168579e-01 -7.03795791e-01
-4.15198356e-01 -1.06442079e-01 5.57844713e-02 1.26512921e+00
6.00013018e-01 -6.34019792e-01 5.12804687e-01 9.82303083e-01
-4.70701963e-01 -1.32944047e+00 -1.06502771e+00 -7.72110343e-01
1.38094306e-01 -4.25607771e-01 3.01387668e-01 3.49945426e-01
-9.95464996e-02 -3.19637716e-01 -5.05681448e-02 1.17814772e-01
3.36720645e-01 -1.95877194e-01 1.45422235e-01 -1.16038799e+00
-2.15401858e-01 -2.47717872e-01 -3.35500330e-01 -1.07688978e-01
-4.76120859e-01 -3.06620747e-01 -9.33554098e-02 -1.52404785e+00
-1.12753943e-01 -5.46362698e-01 -6.32529184e-02 1.16369158e-01
1.89323965e-02 -3.48596424e-01 -1.67892307e-01 4.70350116e-01
9.26667213e-01 5.72859347e-01 9.76915419e-01 2.32991979e-01
-4.46542442e-01 3.51898879e-01 -1.60454467e-01 6.69987082e-01
8.42123926e-01 -4.39205527e-01 -4.72422302e-01 -1.25446975e-01
4.56598818e-01 3.50042701e-01 3.07203084e-01 -9.80032563e-01
-2.26754993e-01 -4.01982397e-01 3.19495976e-01 -6.15092874e-01
4.12725285e-02 -9.59005177e-01 8.75358999e-01 9.53481078e-01
-1.91137016e-01 6.34355620e-02 5.94155826e-02 4.10994947e-01
-1.61590308e-01 -8.11186492e-01 7.04485953e-01 3.24839026e-01
-5.57483375e-01 -4.65193152e-01 -6.78014815e-01 -5.69493175e-01
9.63767767e-01 -8.15841079e-01 -2.97893137e-02 6.37150258e-02
-9.94275808e-01 -3.44311774e-01 1.56997591e-01 -1.56965554e-01
5.95981658e-01 -8.83175313e-01 -7.56041050e-01 3.38482894e-02
-3.90680254e-01 -2.92408735e-01 7.17065573e-01 8.72238755e-01
-1.14095592e+00 1.24268010e-01 -2.46714577e-01 -3.17623138e-01
-9.17887390e-01 1.56350642e-01 4.67738777e-01 -2.23519787e-01
-5.61212301e-01 6.72055423e-01 -4.04768586e-01 6.25404537e-01
-4.69804257e-01 -1.71259165e-01 -4.48764652e-01 1.33100078e-01
1.15434282e-01 1.18821537e+00 2.75806993e-01 -7.12588310e-01
-4.42313969e-01 8.44320118e-01 4.60141361e-01 -1.14584155e-01
1.66028214e+00 -1.15077272e-01 1.02881372e-01 4.27342176e-01
1.01867151e+00 9.09856036e-02 -1.21137118e+00 2.86458343e-01
1.31864741e-01 -2.75514722e-01 2.39804193e-01 -5.23246109e-01
-6.96512640e-01 4.14947569e-01 4.88650918e-01 2.15092704e-01
1.22766149e+00 -1.83128506e-01 6.29874349e-01 5.38402535e-02
1.36138937e-02 -1.76231062e+00 8.24790820e-02 1.89648941e-01
1.00485349e+00 -5.86469710e-01 5.24097741e-01 -4.13734794e-01
-3.11242849e-01 1.63108969e+00 5.41333333e-02 -1.59142256e-01
7.24201143e-01 4.65707183e-01 -4.87886578e-01 -7.34686255e-02
-2.22222313e-01 2.29378462e-01 1.44257560e-01 2.71633774e-01
7.45651960e-01 1.76622197e-01 -1.06686687e+00 7.27566123e-01
-1.26068532e-01 -3.21919352e-01 2.70337641e-01 1.32159269e+00
-9.03602660e-01 -9.79241669e-01 -7.79015601e-01 2.83981413e-01
-5.51860094e-01 2.22182512e-01 2.66549140e-01 8.41738939e-01
-1.08984411e-01 1.09548771e+00 -2.92450488e-01 -3.73317391e-01
5.68344712e-01 -9.34872180e-02 -1.50470855e-02 -1.13330662e-01
-5.91904879e-01 2.82236189e-01 4.10723150e-01 1.03952594e-01
-3.82447451e-01 -7.90475845e-01 -1.55284107e+00 -5.09706438e-01
-6.92155421e-01 4.59696203e-01 1.02733612e+00 1.18897772e+00
-2.04321221e-01 7.36738741e-01 9.55460489e-01 -8.63245249e-01
-5.77793717e-01 -9.89933133e-01 -7.66969919e-01 2.50088751e-01
-3.85073394e-01 -9.48371410e-01 -3.32989693e-01 1.27194688e-01] | [6.323398113250732, 3.0178449153900146] |
65944591-73f0-4765-ae5b-fbf09eabd793 | a-fault-localization-and-debugging-support | 2103.02386 | null | https://arxiv.org/abs/2103.02386v1 | https://arxiv.org/pdf/2103.02386v1.pdf | A Fault Localization and Debugging Support Framework driven by Bug Tracking Data | Fault localization has been determined as a major resource factor in the software development life cycle. Academic fault localization techniques are mostly unknown and unused in professional environments. Although manual debugging approaches can vary significantly depending on bug type (e.g. memory bugs or semantic bugs), these differences are not reflected in most existing fault localization tools. Little research has gone into automated identification of bug types to optimize the fault localization process. Further, existing fault localization techniques leverage on historical data only for augmentation of suspiciousness rankings. This thesis aims to provide a fault localization framework by combining data from various sources to help developers in the fault localization process. To achieve this, a bug classification schema is introduced, benchmarks are created, and a novel fault localization method based on historical data is proposed. | ['Thomas Hirsch'] | 2021-03-03 | null | null | null | null | ['fault-localization'] | ['computer-code'] | [-4.02020603e-01 -3.86294186e-01 -2.69956082e-01 -2.71023899e-01
-3.52048934e-01 -6.11541808e-01 4.11518570e-03 5.75778782e-01
3.98824543e-01 5.94639361e-01 -2.54387796e-01 -4.03730810e-01
-5.75623035e-01 -6.37940526e-01 -3.75570863e-01 -6.33960404e-03
-5.03499694e-02 -8.43945611e-03 2.96857685e-01 -9.53378826e-02
1.02600265e+00 1.65816024e-01 -1.76101840e+00 2.19872847e-01
1.04118192e+00 4.43099290e-01 2.20488667e-01 6.33996367e-01
-2.05275178e-01 8.71484399e-01 -1.16115236e+00 1.05288724e-04
-4.32104021e-02 -4.90422249e-01 -9.27483141e-01 7.50404075e-02
1.91271305e-01 -2.11279884e-01 2.02890247e-01 1.28067267e+00
4.24566269e-02 -3.73609692e-01 4.80776355e-02 -1.71566474e+00
-4.87928092e-01 7.77855039e-01 -2.71725208e-01 4.73805279e-01
8.96412492e-01 -8.68021175e-02 9.32533681e-01 -8.10750663e-01
7.41781592e-01 8.38638008e-01 7.55223513e-01 2.16198608e-01
-9.66594279e-01 -4.09163207e-01 -8.76768157e-02 1.64704546e-01
-1.35847139e+00 -4.49302420e-02 8.05644691e-01 -8.71410668e-01
1.36454797e+00 2.19491929e-01 7.07726479e-01 9.71012414e-01
7.64775455e-01 1.61189437e-01 1.00649297e+00 -8.21434140e-01
3.61886263e-01 1.97118223e-01 7.60252655e-01 9.03529525e-01
9.94970918e-01 -3.27981144e-01 -6.79422319e-01 -4.97130007e-01
5.09408474e-01 3.34661216e-01 -3.17560077e-01 4.16475162e-02
-7.55847394e-01 7.45616972e-01 1.69442017e-02 8.94163489e-01
3.71357650e-02 2.23896742e-01 5.38021624e-01 8.36389780e-01
4.15682584e-01 9.18445051e-01 -6.52795792e-01 -6.71873987e-01
-1.14079618e+00 3.68308634e-01 1.00513792e+00 7.13164210e-01
1.01078629e+00 1.27883315e-01 1.49574585e-03 4.54270482e-01
6.75659657e-01 6.91224039e-02 5.15517354e-01 -7.57785439e-01
6.77404404e-02 1.45598972e+00 1.04549102e-01 -1.32114530e+00
-3.13018709e-01 -5.31246543e-01 1.68392494e-01 4.77900445e-01
9.95329469e-02 1.20714694e-01 -7.22857356e-01 1.16744959e+00
6.56894548e-03 1.54680731e-02 -3.43232125e-01 5.73572397e-01
4.79930609e-01 1.13200106e-01 -4.70424771e-01 -3.85544077e-02
1.23299623e+00 -8.69336724e-01 -5.99394500e-01 -3.08174908e-01
1.04193997e+00 -7.64062226e-01 1.13385189e+00 8.75393569e-01
-6.50225937e-01 -1.50353462e-01 -1.24793136e+00 4.79415804e-01
-4.09723550e-01 1.31214038e-01 8.98779690e-01 1.20591068e+00
-1.05753613e+00 8.16650093e-01 -1.22439992e+00 -4.79612142e-01
-1.24721164e-02 1.80027261e-01 -5.35147965e-01 -1.76622421e-01
-7.27897227e-01 8.86839330e-01 2.07227051e-01 -2.86401987e-01
-9.16601956e-01 -7.10593820e-01 -7.57740915e-01 -1.54923245e-01
3.23016852e-01 -4.64547724e-01 1.26776946e+00 -1.18351996e+00
-9.29196239e-01 1.33028507e-01 -2.43123733e-02 -1.78073257e-01
6.62965104e-02 -3.42504084e-01 -4.32809353e-01 -1.01884402e-01
7.51960039e-01 -1.22348957e-01 7.07611620e-01 -1.00166678e+00
-8.79868805e-01 -1.45402446e-01 2.15421885e-01 -4.87520188e-01
-3.44275236e-01 4.54278558e-01 -3.78437862e-02 -5.39530575e-01
2.50995129e-01 -5.90695202e-01 -1.11677870e-01 -6.02069080e-01
-2.02527523e-01 -9.04330462e-02 8.72701943e-01 -5.91886759e-01
1.95671666e+00 -1.83640862e+00 -2.06623301e-01 1.91595286e-01
1.97669119e-01 -3.15553099e-01 2.91226506e-01 6.75621033e-01
-4.08815891e-01 4.27394897e-01 8.25432166e-02 6.47281632e-02
4.37378660e-02 -3.86084542e-02 -1.15267515e-01 4.60210055e-01
4.02194530e-01 2.33066946e-01 -1.08998537e+00 -1.71622708e-01
-4.39689830e-02 -1.39588229e-02 -5.58992565e-01 1.36713274e-02
-1.45510018e-01 1.11373633e-01 -4.63814229e-01 1.37307036e+00
3.36524427e-01 -2.25988492e-01 -1.21266350e-01 4.13456678e-01
-3.71287763e-01 5.02938926e-01 -1.18917918e+00 1.55826616e+00
-2.12655097e-01 4.75279778e-01 -2.97729552e-01 -6.85834467e-01
9.64231610e-01 4.25750226e-01 3.55636775e-01 -1.41084999e-01
-4.02174750e-03 6.11727297e-01 1.58261821e-01 -6.28725529e-01
5.27616262e-01 3.97055328e-01 -2.15990007e-01 5.47164023e-01
2.48710737e-01 3.54527563e-01 8.13447595e-01 -1.24076672e-01
2.11915922e+00 1.45711869e-01 2.07588494e-01 -3.30580771e-01
1.93230987e-01 6.32155836e-01 7.50028133e-01 7.42231548e-01
-1.72558278e-01 6.43010974e-01 9.26961184e-01 -3.90473336e-01
-5.18424511e-01 -6.25026762e-01 -1.23655997e-01 7.86045372e-01
-6.50245845e-02 -1.16009068e+00 -9.76043820e-01 -1.05902755e+00
-4.60615754e-02 3.88276070e-01 -6.31296158e-01 -3.28786343e-01
-9.77260023e-02 -4.92024958e-01 5.20599663e-01 3.02372307e-01
-3.15221362e-02 -7.30499506e-01 -8.25167537e-01 3.88129562e-01
3.39101374e-01 -2.67344922e-01 -6.23906031e-04 4.18354541e-01
-9.83449459e-01 -1.45879495e+00 -1.45890517e-02 -4.90648627e-01
8.91364515e-01 3.37254554e-01 1.40864336e+00 5.67243218e-01
-7.35584021e-01 4.68241155e-01 -9.81406510e-01 -1.38805494e-01
-4.62011486e-01 -6.44999295e-02 -5.25892936e-02 -7.50983298e-01
6.03597283e-01 -3.82233024e-01 -2.92978019e-01 4.80610847e-01
-7.08488464e-01 -6.97952092e-01 5.59523284e-01 8.99109662e-01
1.93011239e-01 6.17071867e-01 5.55633307e-01 -9.21868682e-01
8.20357382e-01 -9.74186838e-01 -7.10181057e-01 2.26641402e-01
-1.01735485e+00 -4.45771143e-02 1.65112555e-01 -3.50914478e-01
-5.69042563e-01 -1.13573775e-01 -7.19477385e-02 -2.99185187e-01
-3.61820787e-01 1.04686856e+00 -4.07394469e-02 -4.75149244e-01
8.03636909e-01 -3.67161363e-01 -2.26922393e-01 -4.83540386e-01
-4.47810203e-01 4.85017061e-01 -5.57997413e-02 -6.08564794e-01
3.67377013e-01 -2.75909662e-01 -4.75142837e-01 -3.87929112e-01
-4.25116748e-01 -4.37377423e-01 -3.60035926e-01 -2.83587575e-01
2.90558785e-01 -5.86035550e-01 -7.66790807e-02 1.49346069e-01
-1.08101988e+00 4.42952067e-02 1.69151984e-02 4.24010843e-01
-8.75209982e-04 3.75771075e-01 -5.08910120e-01 -7.59988785e-01
2.12778747e-02 -1.58105826e+00 7.93244600e-01 2.36517116e-01
-7.22987831e-01 -9.60125327e-01 4.86299247e-01 1.13346159e-01
3.98302287e-01 2.56365955e-01 7.96284020e-01 -6.22098088e-01
-6.28115833e-01 -6.73356235e-01 2.76798368e-01 2.80377090e-01
4.27037746e-01 6.53903961e-01 -5.78804255e-01 -2.06491902e-01
1.74579233e-01 9.23001692e-02 3.11247259e-01 1.49551019e-01
5.68027854e-01 -1.39214247e-01 -4.39060718e-01 6.21407852e-02
1.64609814e+00 2.93209255e-01 5.66205919e-01 9.68865752e-01
5.22024810e-01 6.47612333e-01 1.08330667e+00 6.70714974e-01
1.63443565e-01 2.29022309e-01 6.89140201e-01 6.61735654e-01
2.62710631e-01 1.25882685e-01 6.82978570e-01 7.16144085e-01
2.38940373e-01 -2.15191722e-01 -1.47890663e+00 6.22634172e-01
-1.60796642e+00 -6.78032398e-01 -5.83131373e-01 2.06504941e+00
6.57357097e-01 4.99348491e-01 -6.24637865e-02 6.53103828e-01
5.38321614e-01 -5.21886528e-01 1.08061172e-01 -3.32744747e-01
4.26272392e-01 1.92144051e-01 2.65452623e-01 1.11112855e-01
-1.02055049e+00 6.29943550e-01 6.82020950e+00 4.10824925e-01
-1.21717405e+00 2.36236826e-01 2.81943325e-02 2.17594326e-01
-3.52741778e-01 5.12853503e-01 -7.72416949e-01 5.45736432e-01
9.57421303e-01 -4.00699414e-02 -9.06171352e-02 1.54717314e+00
5.10269292e-02 -4.96243477e-01 -1.22007346e+00 7.07285345e-01
1.62807778e-01 -1.25030816e+00 -3.57879996e-01 -1.48459181e-01
5.81485748e-01 -2.21087649e-01 -2.45343462e-01 9.67804044e-02
8.91138166e-02 -9.31146026e-01 7.72814274e-01 5.18355846e-01
1.06225193e-01 -7.21238554e-01 1.07238102e+00 -1.98277663e-02
-7.29823649e-01 -2.39073843e-01 -2.89937139e-01 -5.83331466e-01
-2.34647006e-01 8.60981286e-01 -9.46199894e-01 7.04189956e-01
1.14063156e+00 6.98992848e-01 -1.10759139e+00 1.41670251e+00
-1.57788500e-01 8.73985529e-01 5.62350117e-02 6.50967509e-02
-1.02090150e-01 7.28204241e-03 5.59049904e-01 1.04747605e+00
7.35819876e-01 -7.69501150e-01 1.88706502e-01 1.20027018e+00
5.65666616e-01 3.62970531e-02 -7.21746624e-01 -4.13272381e-01
7.17018843e-01 1.36154723e+00 -1.21788621e+00 2.51203030e-01
-6.54932857e-01 7.42781341e-01 -9.83141959e-02 -5.62199876e-02
-6.90184534e-01 -7.19899237e-01 9.12800670e-01 4.27650690e-01
-4.55665849e-02 -2.22250015e-01 -3.45909923e-01 -9.02460873e-01
2.04079419e-01 -9.90738630e-01 2.37212852e-02 -5.53954661e-01
-1.20944500e+00 5.50966024e-01 -1.32249862e-01 -1.33864486e+00
-1.79388300e-01 -6.58487856e-01 -9.48021889e-01 6.40728176e-01
-8.21386397e-01 -8.52840304e-01 -3.29584777e-01 4.02043313e-02
4.45557684e-01 -3.02230239e-01 6.96480215e-01 4.78760362e-01
-9.30296183e-01 5.08637965e-01 -3.50602627e-01 -2.20287502e-01
9.87857759e-01 -1.54849720e+00 1.20446257e-01 1.39872360e+00
-3.93736213e-02 1.28290617e+00 8.11987698e-01 -1.20232224e+00
-1.68709421e+00 -9.15228188e-01 6.91593051e-01 -7.69909263e-01
1.03379846e+00 -1.11308217e-01 -1.06407702e+00 4.61115301e-01
3.62125449e-02 1.60647612e-02 7.15038359e-01 2.09641635e-01
-3.28478724e-01 7.39173144e-02 -1.09019828e+00 1.22347459e-01
3.83796602e-01 -4.61894065e-01 -5.21026373e-01 1.36492476e-01
5.82316577e-01 -3.02976608e-01 -1.00208211e+00 9.62860435e-02
1.12314112e-01 -1.20445824e+00 3.85370761e-01 -8.61506611e-02
4.86803889e-01 -6.95219159e-01 1.35557115e-01 -9.65012372e-01
-3.54335606e-01 -4.20625120e-01 9.06634554e-02 1.56403553e+00
4.78838265e-01 -6.20059192e-01 7.23503351e-01 4.13898647e-01
-5.84117949e-01 -5.66207767e-01 -6.17285609e-01 -7.08889663e-01
-4.49362665e-01 -5.44222951e-01 4.87017393e-01 1.06721067e+00
2.71470249e-01 -8.03548694e-02 8.57670456e-02 4.03302312e-01
5.81093468e-02 -1.62854344e-01 5.73831677e-01 -1.57930517e+00
-4.73047256e-01 -5.14306366e-01 -9.31452215e-01 5.12397550e-02
-3.52562405e-02 -5.40569246e-01 1.25376418e-01 -1.41395116e+00
1.17818817e-01 -4.37138945e-01 -1.48294434e-01 8.42448175e-01
-3.41814965e-01 7.92494714e-02 -6.50973678e-01 1.74100786e-01
-6.48921311e-01 -2.75535583e-01 3.70889127e-01 1.89744547e-01
-8.72843936e-02 -1.39555097e-01 -6.04068816e-01 8.09091091e-01
7.17704356e-01 -8.38072956e-01 -5.07872164e-01 -3.49606425e-01
9.53261852e-01 3.38627398e-02 3.24637383e-01 -1.27670228e+00
4.72233295e-02 -1.11127719e-01 -1.02307089e-01 -3.92643660e-01
-6.14368737e-01 -7.30255187e-01 4.87667859e-01 5.71982622e-01
2.87514180e-01 5.79546332e-01 -2.42389715e-03 4.19100225e-01
-6.75027907e-01 -9.63560760e-01 1.78720728e-01 -1.68609887e-01
-7.59364188e-01 -2.24399492e-01 -5.75668454e-01 -3.01348835e-01
1.11389792e+00 -4.51333016e-01 -5.20549178e-01 4.01012927e-01
-3.66131335e-01 -9.58905891e-02 1.14671564e+00 5.32444954e-01
5.04879892e-01 -1.07970905e+00 -1.16508752e-01 2.48318538e-01
4.92201716e-01 -2.91105449e-01 -2.00471487e-02 9.79492188e-01
-1.01411033e+00 1.93608195e-01 -3.62216085e-01 -5.46084821e-01
-1.23232341e+00 3.82776767e-01 1.02103531e-01 -1.48124307e-01
-3.37517977e-01 9.31490600e-01 -5.17306030e-01 -1.40942365e-01
8.30446109e-02 -5.34574866e-01 -2.30203718e-01 5.25714271e-02
6.37962461e-01 5.48714101e-01 6.64723873e-01 -6.83593750e-02
-6.36215329e-01 1.36054426e-01 -4.11779284e-02 1.42636731e-01
1.27350950e+00 2.82682851e-02 -7.65432119e-01 9.16650414e-01
5.92860341e-01 1.40876964e-01 -6.44097984e-01 7.06098080e-01
9.46901798e-01 -9.17312026e-01 -1.29468217e-01 -7.42331147e-01
-7.90820241e-01 4.80570585e-01 6.31215453e-01 6.38373792e-01
8.34334075e-01 -2.14315519e-01 8.32954869e-02 1.92369446e-01
8.19332898e-01 -8.28892052e-01 2.67099947e-01 5.00976145e-01
5.57453692e-01 -1.21087587e+00 -1.73271626e-01 -3.79996896e-01
-1.27282813e-01 1.36932993e+00 8.26889157e-01 -3.33283991e-01
4.22899693e-01 7.77497411e-01 -2.13100612e-01 -4.54003364e-01
-8.26551855e-01 2.21271783e-01 2.39636991e-02 5.33294678e-01
1.07096374e+00 -2.51556605e-01 -6.06345117e-01 1.07370245e+00
5.91922402e-02 2.65935156e-02 9.93500531e-01 1.72471547e+00
-7.66036272e-01 -1.60172606e+00 -7.13215590e-01 6.91255808e-01
-7.79459953e-01 4.35614847e-02 -4.91577536e-01 6.70021176e-01
5.23857474e-01 1.17816496e+00 -3.18574727e-01 -7.48305857e-01
1.36629492e-01 5.45088910e-02 4.34846014e-01 -1.29458106e+00
-9.69301581e-01 -1.79819360e-01 6.68934360e-02 -7.95444429e-01
-1.73524637e-02 -5.86258233e-01 -9.79710937e-01 -1.68852940e-01
-8.88660073e-01 4.27316517e-01 8.13029945e-01 9.58949149e-01
4.49241400e-01 9.50721800e-01 4.08772290e-01 -4.27645832e-01
-2.53720582e-01 -9.36867595e-01 -6.06590092e-01 -5.99873066e-02
1.26223803e-01 -1.18294048e+00 -4.23306078e-01 2.93224528e-02] | [7.579617500305176, 7.70314884185791] |
0f2874c2-3515-4ab6-9158-17dcb0bcfcc8 | a-multi-purpose-audio-visual-corpus-for-multi | 2301.1018 | null | https://arxiv.org/abs/2301.10180v1 | https://arxiv.org/pdf/2301.10180v1.pdf | A Multi-Purpose Audio-Visual Corpus for Multi-Modal Persian Speech Recognition: the Arman-AV Dataset | In recent years, significant progress has been made in automatic lip reading. But these methods require large-scale datasets that do not exist for many low-resource languages. In this paper, we have presented a new multipurpose audio-visual dataset for Persian. This dataset consists of almost 220 hours of videos with 1760 corresponding speakers. In addition to lip reading, the dataset is suitable for automatic speech recognition, audio-visual speech recognition, and speaker recognition. Also, it is the first large-scale lip reading dataset in Persian. A baseline method was provided for each mentioned task. In addition, we have proposed a technique to detect visemes (a visual equivalent of a phoneme) in Persian. The visemes obtained by this method increase the accuracy of the lip reading task by 7% relatively compared to the previously proposed visemes, which can be applied to other languages as well. | ['Nasser Mozayani', 'Mohammad Reza Mohammadi', 'Hossein Zeinali', 'Ali Lashini', 'Samin Heydarian', 'Javad Peymanfard'] | 2023-01-21 | null | null | null | null | ['speaker-recognition', 'audio-visual-speech-recognition'] | ['speech', 'speech'] | [ 1.40765309e-01 3.37662771e-02 -3.39439034e-01 -8.33312608e-03
-1.17746139e+00 -2.17424765e-01 6.78792894e-01 -5.16875237e-02
-4.25256670e-01 8.28141153e-01 5.57684183e-01 -1.19926833e-01
4.36710477e-01 -3.41377467e-01 -4.18969780e-01 -7.39988148e-01
4.60181355e-01 3.75733674e-01 3.16914320e-01 1.89556271e-01
4.39540565e-01 5.31802773e-01 -2.16638088e+00 1.52228013e-01
8.77922654e-01 7.56311595e-01 6.27272069e-01 5.88922381e-01
-2.84859598e-01 2.72750616e-01 -7.26699352e-01 -2.42385983e-01
-7.37641230e-02 -3.60484987e-01 -7.27561891e-01 2.26694271e-01
8.38663518e-01 -2.84151465e-01 -8.84048939e-02 9.44483757e-01
1.17918313e+00 1.44201979e-01 7.44474471e-01 -1.19298017e+00
-5.78115642e-01 5.65063238e-01 -6.50849760e-01 -1.72868639e-01
5.66611826e-01 1.69845894e-02 7.88489640e-01 -1.08720732e+00
4.65233177e-01 1.47646487e+00 2.99271435e-01 7.59250998e-01
-6.44593954e-01 -7.40819216e-01 -3.86955470e-01 4.70825374e-01
-1.55680716e+00 -1.14524937e+00 9.74610984e-01 -3.67671937e-01
8.17008197e-01 2.00644925e-01 7.10845053e-01 8.81711841e-01
-2.41607621e-01 1.05424607e+00 1.25708365e+00 -7.60487795e-01
1.38530182e-02 2.88546920e-01 -2.18328670e-01 4.38800395e-01
1.84298918e-01 -1.62711993e-01 -7.29595482e-01 2.85705388e-01
3.39096040e-01 -4.97352481e-01 -4.24115956e-01 -2.32920095e-01
-1.28450418e+00 5.74690282e-01 -1.04572192e-01 4.29309756e-01
-1.82673082e-01 -2.73029387e-01 4.66824323e-01 -1.90462932e-01
3.61450523e-01 -6.75135106e-02 -2.66591072e-01 -2.92871356e-01
-1.19912136e+00 -1.65993020e-01 5.89684844e-01 8.55810642e-01
5.09142697e-01 1.92636132e-01 -1.46753162e-01 1.32525146e+00
4.46833432e-01 9.70678627e-01 7.82483757e-01 -6.07970059e-01
6.15660965e-01 2.62134343e-01 -1.25031367e-01 -6.49377227e-01
-2.63194412e-01 4.13867742e-01 -6.19823694e-01 2.71864891e-01
5.99198639e-01 5.47378287e-02 -7.56988704e-01 1.41090143e+00
3.38064641e-01 -4.77708727e-02 2.57341266e-01 6.03078008e-01
1.34031427e+00 7.70037472e-01 -4.27536331e-02 -5.66144586e-01
1.53100467e+00 -1.00357878e+00 -9.45704043e-01 4.03339453e-02
1.29660279e-01 -1.20326531e+00 1.33609509e+00 5.96661329e-01
-1.10375571e+00 -6.81480646e-01 -7.65857816e-01 -1.87748849e-01
-3.68226767e-01 6.17111623e-01 2.70846784e-01 1.01507235e+00
-1.35720241e+00 -2.95588434e-01 -2.27850437e-01 -7.81408370e-01
2.23545372e-01 3.00917566e-01 -5.23255408e-01 1.63922995e-01
-8.22387695e-01 7.21916258e-01 3.44782412e-01 -9.31500643e-02
-7.84786284e-01 6.21208129e-03 -1.02250445e+00 -1.33014068e-01
3.07080209e-01 1.73237491e-02 1.07432008e+00 -9.64130342e-01
-1.95279372e+00 1.18512630e+00 -6.56471074e-01 -2.73842186e-01
4.53985095e-01 -3.16900089e-02 -6.76346481e-01 3.30625027e-01
-8.50067511e-02 1.15093756e+00 1.10764539e+00 -1.13862514e+00
-4.93753195e-01 -2.89570600e-01 -4.13750291e-01 3.60826939e-01
-2.75035262e-01 4.42471176e-01 -7.95946896e-01 -6.05706632e-01
-1.70887560e-01 -7.21147716e-01 7.49369383e-01 3.82533185e-02
-3.73802483e-01 -6.08146429e-01 9.90221560e-01 -1.14305842e+00
9.27446544e-01 -2.36897588e+00 -1.28910124e-01 -1.19478747e-01
-1.87815443e-01 6.87859058e-01 -2.80442417e-01 2.42627263e-01
8.18325803e-02 4.96566631e-02 1.56489041e-04 -4.93880898e-01
-6.68327436e-02 -1.32636681e-01 1.07871387e-02 5.01291871e-01
-2.01450557e-01 7.18383133e-01 -4.57192719e-01 -9.88714516e-01
4.71261799e-01 7.35551417e-01 -2.53185868e-01 2.48889010e-02
-2.56409664e-02 1.81384817e-01 1.83394805e-01 1.06936896e+00
1.00410759e+00 4.53313887e-01 -1.26186937e-01 6.14819564e-02
-2.84303337e-01 2.71383941e-01 -1.10283160e+00 1.52157390e+00
-4.98773754e-01 1.12852514e+00 3.11716676e-01 -6.69913054e-01
1.02988255e+00 5.29406905e-01 3.08419526e-01 -4.87484157e-01
1.11381300e-01 2.37394884e-01 -1.33618429e-01 -7.78558910e-01
6.49105191e-01 -6.33827271e-03 3.55790406e-01 1.27691180e-01
-5.78575134e-02 -2.55258977e-01 3.08552325e-01 -1.71077013e-01
7.53039792e-02 -1.73352525e-01 4.37858880e-01 -2.91135490e-01
1.25837040e+00 -5.05508602e-01 2.34883025e-01 1.83548838e-01
-4.02921319e-01 5.98138511e-01 5.68685122e-02 2.50782937e-01
-6.67425632e-01 -9.82784629e-01 -3.37400645e-01 9.92218196e-01
-9.35006291e-02 -4.49382335e-01 -9.96959329e-01 -3.06151569e-01
-2.16685787e-01 5.42518198e-01 -4.76466790e-02 4.41752076e-01
-2.19206929e-01 -1.55788153e-01 8.10394287e-01 2.58110434e-01
8.84452879e-01 -1.52378523e+00 -2.25491494e-01 -7.04412237e-02
-5.75960994e-01 -1.17943311e+00 -8.63433480e-01 -4.89930421e-01
-4.94566202e-01 -1.13758075e+00 -1.36763084e+00 -1.32379365e+00
2.91867644e-01 2.90662736e-01 6.62238598e-01 -2.42469117e-01
-3.11153531e-01 4.52457756e-01 -2.31165543e-01 -7.89539814e-01
-6.41460061e-01 -6.58548102e-02 3.12306732e-01 6.55526295e-02
5.41971505e-01 1.83349505e-01 -2.33796716e-01 3.47863287e-01
-4.80477810e-01 -2.30120823e-01 6.51639104e-01 5.92865705e-01
5.49293935e-01 4.67858231e-03 7.01308548e-01 -1.52726293e-01
6.60466790e-01 1.58270359e-01 -7.48431087e-01 3.21755052e-01
-4.89860326e-01 -2.28054151e-01 2.48745993e-01 -6.01555765e-01
-1.14238524e+00 5.63638797e-03 -5.16443431e-01 -7.61779919e-02
-6.00678444e-01 9.30176228e-02 -7.11506605e-01 -8.10098872e-02
2.45438695e-01 4.54476088e-01 3.98697585e-01 -7.33142972e-01
1.47151545e-01 1.54449630e+00 6.17850959e-01 -2.37848848e-01
3.33720326e-01 6.91528469e-02 -2.41406322e-01 -1.77699101e+00
-4.22717631e-02 -7.19333291e-01 -5.70536792e-01 -4.17682439e-01
9.78662252e-01 -9.71419275e-01 -8.87993634e-01 1.20983553e+00
-1.03045404e+00 -1.32023305e-01 -1.33794472e-01 6.65248990e-01
-5.89771986e-01 8.28926146e-01 -2.42349178e-01 -1.16840672e+00
-3.76450270e-01 -1.33173609e+00 1.17926657e+00 3.27823102e-01
8.91007781e-02 -7.81234324e-01 -6.75985441e-02 7.43325114e-01
2.78322756e-01 -5.66816151e-01 5.17450273e-01 -4.43639994e-01
-2.88277507e-01 1.60753220e-01 -2.57168353e-01 5.53062499e-01
3.66355211e-01 1.43896088e-01 -1.27894890e+00 -3.09116721e-01
-3.65139246e-01 -5.60931087e-01 8.78639817e-01 6.56340778e-01
1.01147342e+00 -2.71441519e-01 -2.11208299e-01 1.66733325e-01
9.32003796e-01 4.58141208e-01 9.34288502e-01 6.15991019e-02
4.41289306e-01 6.36754155e-01 6.63577378e-01 2.89613247e-01
4.19819713e-01 8.42874229e-01 9.75733548e-02 -1.58212155e-01
-7.87142098e-01 -4.78423327e-01 7.82214165e-01 8.25940132e-01
-1.01908371e-01 -3.60766739e-01 -9.63471830e-01 8.07877421e-01
-1.12559664e+00 -1.07802474e+00 1.59187391e-02 2.37080073e+00
8.06365788e-01 -3.92701656e-01 5.58969557e-01 6.66108787e-01
1.15507352e+00 2.01619580e-01 -2.84631371e-01 -3.52966726e-01
-3.22589189e-01 1.64693952e-01 1.27532586e-01 6.69053555e-01
-1.06349432e+00 1.27231038e+00 6.99054575e+00 9.98137057e-01
-1.48886108e+00 3.88762727e-02 1.84686869e-01 2.89059728e-01
4.82543483e-02 -4.52590764e-01 -1.07142115e+00 3.12818795e-01
8.31238627e-01 9.64947604e-03 4.03734952e-01 7.29196131e-01
3.10577452e-01 -5.04886925e-01 -6.02978289e-01 1.61461771e+00
7.70116210e-01 -8.99025023e-01 4.34634350e-02 2.55230129e-01
2.84514070e-01 -8.48703086e-02 7.88019225e-02 3.66623104e-02
-4.05248284e-01 -1.00269794e+00 5.43143630e-01 1.86169431e-01
1.34583974e+00 -7.60694981e-01 6.02577627e-01 2.81061351e-01
-1.34117424e+00 1.72845334e-01 -3.50377858e-01 3.16006392e-01
1.10419691e-01 8.72753933e-02 -1.14294112e+00 1.74264535e-01
5.47554076e-01 6.45762205e-01 -5.15165091e-01 1.25241351e+00
-2.88699567e-01 6.01450682e-01 -2.79516280e-01 -2.95802176e-01
-3.30985159e-01 7.52858166e-03 5.70347488e-01 1.15503907e+00
5.13240993e-01 -3.60359281e-01 -1.23010814e-01 2.00624615e-01
-1.02286205e-01 8.32981765e-01 -8.02884281e-01 -2.28646874e-01
4.15176094e-01 1.06984651e+00 -5.20224869e-01 -2.49275088e-01
-4.81281370e-01 7.86546826e-01 -2.97477126e-01 2.42894724e-01
-4.63742763e-01 -4.21034336e-01 5.11084259e-01 1.58491671e-01
8.45305398e-02 -1.20731555e-02 3.08958720e-02 -1.11909950e+00
-4.85193580e-02 -1.16837716e+00 1.13153353e-01 -1.01291168e+00
-8.10160458e-01 5.21025240e-01 -9.41829607e-02 -1.07743096e+00
-3.45064551e-01 -7.40981042e-01 -2.91794777e-01 7.92562783e-01
-1.52594602e+00 -1.19057536e+00 -2.71078706e-01 9.49469447e-01
1.12989271e+00 -7.42434263e-01 8.88480902e-01 1.91343084e-01
-3.67108107e-01 8.01903427e-01 6.10786024e-03 1.84912488e-01
1.21416402e+00 -8.14547360e-01 -8.09933916e-02 8.06809068e-01
2.82540619e-01 2.36230865e-01 3.87286931e-01 -5.19877851e-01
-1.14097881e+00 -6.95978463e-01 1.42399645e+00 2.40085144e-02
3.00812483e-01 -3.27539116e-01 -6.13115728e-01 3.12931508e-01
6.84501588e-01 -5.19652069e-01 7.20798135e-01 -1.15779415e-01
-1.61663890e-01 -2.96826363e-01 -1.46444237e+00 3.13896596e-01
7.81135499e-01 -7.12005556e-01 -6.92498147e-01 1.30386710e-01
2.60496795e-01 -2.06941411e-01 -3.60717267e-01 7.15348199e-02
6.04590476e-01 -8.60249639e-01 9.49921489e-01 1.13934288e-02
-1.14759989e-01 -3.02086055e-01 -2.04638138e-01 -1.13243914e+00
3.38442802e-01 -6.49799585e-01 1.76502690e-01 1.76287603e+00
1.93186596e-01 -7.91406929e-01 5.19797504e-01 7.39957467e-02
4.58444878e-02 -5.05714305e-02 -1.04649210e+00 -9.00728166e-01
4.93232608e-02 -3.77946496e-01 5.54140806e-01 5.54258883e-01
1.12914890e-01 3.43148381e-01 -6.03589237e-01 -7.20150396e-02
5.57805657e-01 -2.64056548e-02 8.68025243e-01 -1.49651062e+00
1.47056319e-02 -4.06146675e-01 -5.24728656e-01 -1.09724092e+00
6.64507985e-01 -8.34307730e-01 1.49330959e-01 -1.67536402e+00
2.88550943e-01 -1.06560886e-01 1.13552250e-01 6.38398767e-01
9.98040065e-02 3.62615407e-01 3.08026403e-01 7.59818330e-02
-4.60020229e-02 3.61584306e-01 1.17136443e+00 -5.02112091e-01
-2.15021893e-01 1.87706441e-01 -4.26150054e-01 6.80013537e-01
9.35524642e-01 7.16275349e-02 -4.52323496e-01 -8.80291164e-02
-4.86205727e-01 9.03167296e-03 8.51133987e-02 -1.01038349e+00
1.14355840e-01 -1.70649271e-02 1.57382071e-01 -1.09617949e+00
7.08061874e-01 -5.61597526e-01 -1.92378685e-01 1.85751781e-01
-4.84675616e-02 -1.51455060e-01 3.82176250e-01 1.28690794e-01
-4.91352171e-01 -2.10426837e-01 1.11778748e+00 1.83464631e-01
-9.03747976e-01 3.76279140e-03 -6.86756372e-01 1.64843544e-01
1.18508041e+00 -2.77785242e-01 -2.60108203e-01 -5.85232019e-01
-5.34828901e-01 -2.22794801e-01 5.63354850e-01 4.76164252e-01
8.87669086e-01 -1.07221448e+00 -7.00772703e-01 4.32918996e-01
1.12750381e-01 -3.81145686e-01 1.48570955e-01 7.58195579e-01
-5.86394250e-01 6.71062648e-01 -5.43168485e-01 -6.31245494e-01
-2.11647391e+00 7.09536195e-01 1.00979926e-02 4.51426744e-01
-5.23658991e-01 6.09182000e-01 -1.09736398e-01 -1.42951041e-01
7.04011381e-01 -1.49124131e-01 -6.87779248e-01 4.69404608e-01
7.77899861e-01 5.00820398e-01 -6.86712861e-02 -1.34335577e+00
-4.75631177e-01 8.64379406e-01 3.04514378e-01 -4.06094909e-01
8.67646754e-01 -3.52685541e-01 -4.29330692e-02 6.10774219e-01
9.78105843e-01 8.86602700e-01 -7.40642488e-01 1.32728413e-01
-3.47716093e-01 -5.06293237e-01 5.31514883e-02 -7.16412783e-01
-9.61315095e-01 1.33952820e+00 7.68328011e-01 -1.14280105e-01
1.32506025e+00 1.20947756e-01 6.43844783e-01 1.60894662e-01
3.94496530e-01 -1.29348838e+00 -1.23058341e-01 3.31829071e-01
1.03285313e+00 -1.33761728e+00 -3.91255468e-01 -5.01541793e-01
-8.08635473e-01 1.06450725e+00 3.42163533e-01 7.23158598e-01
4.20737296e-01 2.31477067e-01 3.72864515e-01 5.08796871e-01
-2.99902111e-01 -6.45908952e-01 5.24899900e-01 1.06471777e+00
6.06802464e-01 1.57473654e-01 -6.18563533e-01 8.86895508e-02
-2.47878268e-01 1.63468167e-01 4.89135653e-01 3.84849250e-01
-6.37522578e-01 -1.26058829e+00 -6.85050189e-01 4.10929620e-02
-4.38212812e-01 -2.42836788e-01 -5.68904698e-01 8.69058788e-01
-6.63923100e-03 1.36721087e+00 -7.63510838e-02 -8.92933458e-02
-1.17193209e-03 4.29818988e-01 4.92169023e-01 -3.20697188e-01
-4.94841598e-02 4.78863806e-01 9.50126871e-02 -1.87936589e-01
-5.65157354e-01 -9.81136441e-01 -1.14108622e+00 -3.12358469e-01
-2.94603407e-01 4.84354943e-02 9.46136653e-01 5.28717875e-01
1.12310827e-01 -1.88012466e-01 3.30711186e-01 -8.60105395e-01
-2.24596292e-01 -1.25278175e+00 -8.15364957e-01 1.27340704e-01
2.95330077e-01 -7.47937560e-01 -4.76456612e-01 1.28957555e-01] | [14.312867164611816, 5.010200023651123] |
b6d9d9bd-697b-4285-92a3-a444c2e98295 | vector-quantized-semantic-communication | 2209.11519 | null | https://arxiv.org/abs/2209.11519v2 | https://arxiv.org/pdf/2209.11519v2.pdf | Vector Quantized Semantic Communication System | Although analog semantic communication systems have received considerable attention in the literature, there is less work on digital semantic communication systems. In this paper, we develop a deep learning (DL)-enabled vector quantized (VQ) semantic communication system for image transmission, named VQ-DeepSC. Specifically, we propose a convolutional neural network (CNN)-based transceiver to extract multi-scale semantic features of images and introduce multi-scale semantic embedding spaces to perform semantic feature quantization, rendering the data compatible with digital communication systems. Furthermore, we employ adversarial training to improve the quality of received images by introducing a PatchGAN discriminator. Experimental results demonstrate that the proposed VQ-DeepSC is more robustness than BPG in digital communication systems and has comparable MS-SSIM performance to the DeepJSCC method. | ['Xiaoming Tao', 'Gregory Slabaugh', 'Zhijin Qin', 'Huiqiang Xie', 'Qifan Fu'] | 2022-09-23 | null | null | null | null | ['ms-ssim'] | ['computer-vision'] | [ 4.95120555e-01 1.09259717e-01 -5.69332913e-02 -3.55968833e-01
-6.67302251e-01 -3.83335888e-01 5.03420889e-01 -2.81047523e-01
-1.93735257e-01 6.13309383e-01 2.50754923e-01 -3.79068345e-01
-8.27682465e-02 -1.13142049e+00 -6.29303932e-01 -6.42294228e-01
8.00478309e-02 -4.47226405e-01 7.13561326e-02 -4.94701922e-01
1.18582696e-01 3.81726027e-01 -7.20343590e-01 1.31070800e-02
5.56730986e-01 1.78249466e+00 2.27806374e-01 6.33535445e-01
-1.00346781e-01 6.21198237e-01 -1.08984005e+00 -6.55992985e-01
2.64457941e-01 -7.03873456e-01 -4.84654725e-01 -6.79096878e-02
8.42819922e-04 -4.74802971e-01 -1.19165015e+00 1.50854099e+00
7.78551042e-01 -5.10474920e-01 5.13319135e-01 -1.38988423e+00
-1.13456941e+00 5.18394768e-01 -6.17160974e-03 2.26865727e-02
3.75762492e-01 -3.82610522e-02 6.85689628e-01 -4.26658630e-01
1.83897704e-01 1.52618861e+00 5.94575465e-01 3.84484977e-01
-9.14708614e-01 -1.20247054e+00 -5.89851677e-01 6.03900671e-01
-1.56958127e+00 -3.08529377e-01 1.05899405e+00 2.44230986e-01
5.97876251e-01 -4.26713610e-03 6.11115754e-01 1.18315554e+00
6.67890012e-01 4.21310246e-01 1.08810413e+00 -3.27149808e-01
5.17174184e-01 8.23653564e-02 -5.34000397e-01 7.46818483e-01
-6.85210526e-02 2.37593129e-01 -3.15671861e-01 1.64192691e-02
9.17703748e-01 -6.41313717e-02 -3.99192095e-01 -9.67378262e-03
-9.95703876e-01 9.64812756e-01 8.96665215e-01 1.79199949e-01
-1.17670164e-01 9.06432569e-01 6.56011462e-01 8.71809900e-01
1.04022041e-01 2.86965460e-01 -1.59281135e-01 4.11933437e-02
-5.95764458e-01 -2.10765868e-01 5.14254630e-01 1.39449883e+00
4.82436806e-01 6.47245646e-01 -7.57089409e-04 5.69894254e-01
2.79974014e-01 8.92681837e-01 6.99950457e-01 -1.19408369e+00
2.88137048e-01 9.53121781e-02 -4.92482901e-01 -1.31543267e+00
-6.60813674e-02 -3.89500290e-01 -1.16112041e+00 1.19583786e-01
-5.10172069e-01 -6.21460639e-02 -7.35670030e-01 1.44542027e+00
-3.77128541e-01 2.16058657e-01 6.84180021e-01 1.07182634e+00
7.58664548e-01 9.50270951e-01 -1.14113845e-01 1.37291655e-01
1.14967263e+00 -5.48591554e-01 -9.48106468e-01 1.89838871e-01
1.67438969e-01 -6.33837223e-01 6.06117189e-01 2.58299738e-01
-7.10447133e-01 -7.57708490e-01 -1.71511841e+00 1.03065699e-01
-3.35802555e-01 -2.10601389e-01 4.76303190e-01 1.05267107e+00
-1.01572466e+00 4.35935378e-01 -4.51499760e-01 -1.73611641e-01
6.36178493e-01 4.89194989e-01 -1.01366840e-01 7.99799280e-04
-1.70145464e+00 5.63410044e-01 4.74113047e-01 -2.08808452e-01
-1.07660711e+00 -4.32812274e-01 -7.80626714e-01 2.36760736e-01
8.46363902e-02 -5.77195644e-01 1.03427732e+00 -1.13999093e+00
-1.99476469e+00 3.25035900e-01 4.82002079e-01 -7.28244364e-01
2.82944292e-01 3.16838861e-01 -9.71293092e-01 9.08450067e-01
-1.98695719e-01 8.10819447e-01 1.32400835e+00 -1.01184571e+00
-4.94390666e-01 -2.19035536e-01 1.44990519e-01 -1.04304954e-01
-5.28872073e-01 -1.60170838e-01 -3.20228785e-01 -1.08295572e+00
2.50640541e-01 -6.37608647e-01 -8.34733918e-02 6.86118186e-01
-4.34167832e-01 1.03752203e-01 1.46318722e+00 -6.81159437e-01
7.47587442e-01 -2.41429353e+00 -1.79780975e-01 2.66861200e-01
1.69602692e-01 4.45779115e-01 -2.28599831e-01 4.74868029e-01
3.56466204e-01 -9.66494530e-03 -2.49452829e-01 -9.73841175e-02
2.28427351e-01 3.60931516e-01 -5.88495076e-01 6.25309885e-01
1.39241800e-01 1.13138282e+00 -5.86226821e-01 -3.09863031e-01
4.81362224e-01 6.36891186e-01 -4.49789792e-01 -2.06354707e-02
-4.31465209e-02 4.18531626e-01 -7.43471682e-01 6.28875673e-01
1.01175690e+00 1.46992719e-02 3.46114561e-02 -4.56823677e-01
3.60878378e-01 -4.14331108e-02 -5.83788991e-01 1.86140466e+00
-7.89518952e-01 9.43855882e-01 1.53620556e-01 -1.20311344e+00
1.09140098e+00 2.92385727e-01 1.22585401e-01 -1.39063966e+00
4.93355721e-01 2.62240887e-01 -5.03628850e-01 -1.88897043e-01
3.46292496e-01 -3.03073525e-01 -5.19502878e-01 -1.93373680e-01
4.41888928e-01 -5.32990932e-01 -8.10174286e-01 4.04864460e-01
1.07287502e+00 -4.93965954e-01 -3.64296250e-02 -1.71373010e-01
6.39510751e-01 -4.17574167e-01 3.88145000e-01 5.72609901e-01
-2.40891293e-01 5.33544183e-01 2.87744433e-01 2.07067922e-01
-1.44233799e+00 -1.52651691e+00 -2.29477063e-01 2.71682590e-01
1.05977345e+00 -2.81484216e-01 -6.63902462e-01 -3.43833596e-01
1.48636494e-02 5.54193437e-01 7.18668699e-02 -7.82513201e-01
-2.20470220e-01 -1.65612862e-01 1.12287664e+00 3.98181468e-01
1.35236311e+00 -7.11322725e-01 -2.28399038e-01 3.68250459e-01
-4.75372821e-02 -1.52467227e+00 -4.42859858e-01 2.11673696e-02
-3.60380113e-01 -5.99541306e-01 -7.79104948e-01 -1.06967592e+00
2.66458511e-01 1.46408275e-01 3.47252488e-01 -4.50481296e-01
-3.77390236e-01 5.65684617e-01 -8.00513983e-01 -3.07885021e-01
-6.20459139e-01 -3.77733529e-01 -7.55982324e-02 5.19472174e-02
7.53433928e-02 -5.41902244e-01 -9.03983831e-01 1.65049285e-01
-9.39031661e-01 -2.93190747e-01 6.06150687e-01 7.74472237e-01
2.50891596e-01 5.35462201e-01 9.71207678e-01 -4.87139486e-02
7.18197227e-01 -2.22209811e-01 -6.61526382e-01 -1.79370761e-01
-5.44415832e-01 -7.99236521e-02 1.24078894e+00 -5.42230532e-02
-7.32254505e-01 -3.28815579e-01 -5.27491927e-01 -4.75438446e-01
3.07406515e-01 1.21093646e-01 -3.61976206e-01 -9.50926065e-01
2.35398486e-01 6.45887434e-01 2.00740725e-01 -6.55499995e-02
5.28300822e-01 1.37262452e+00 8.51211369e-01 -1.87317673e-02
1.01070762e+00 6.25381589e-01 6.21695705e-02 -1.02774644e+00
-2.04535648e-01 1.03213359e-02 8.90439525e-02 -7.98204839e-02
9.35421526e-01 -1.21917844e+00 -7.20504403e-01 6.19358718e-01
-1.10288751e+00 -2.67586261e-02 -1.37391001e-01 6.77798986e-01
-7.43793607e-01 5.89844108e-01 -7.72118986e-01 -2.16117486e-01
-5.29715061e-01 -1.15000880e+00 1.12828076e+00 6.07540980e-02
3.41512561e-01 -8.41899633e-01 -5.79652965e-01 1.41321316e-01
7.76189685e-01 1.55179411e-01 1.07073390e+00 -3.02517843e-02
-7.85162687e-01 -2.76204675e-01 -5.95878661e-01 8.49527180e-01
4.99543250e-02 -8.90361369e-01 -9.07682717e-01 -5.36824286e-01
1.15172252e-01 -3.94216239e-01 8.18164289e-01 1.29331037e-01
1.67911744e+00 -4.47339684e-01 -1.86195329e-01 1.21293688e+00
1.63229799e+00 3.82863045e-01 1.02591789e+00 1.12892948e-01
4.16301697e-01 -2.24299431e-01 2.71173030e-01 5.88512003e-01
1.60415351e-01 6.66784108e-01 6.18757963e-01 -1.10117905e-01
-4.53908712e-01 -3.93496364e-01 2.69018382e-01 8.93606067e-01
7.62794375e-01 -4.64921623e-01 -8.38770345e-02 1.94163129e-01
-1.17404985e+00 -4.71015006e-01 3.17032337e-01 1.56870580e+00
4.11249876e-01 1.18716516e-01 -5.45799851e-01 4.27168399e-01
6.64400697e-01 3.14508975e-01 -5.41614890e-01 -4.34038132e-01
-3.60667825e-01 6.83303058e-01 1.09840930e+00 1.19285278e-01
-9.23201084e-01 9.16298151e-01 6.04042006e+00 1.28310096e+00
-1.50590324e+00 3.45141023e-01 2.32930735e-01 4.39002842e-01
-4.15241718e-01 -1.89290643e-01 -9.83471200e-02 7.27521479e-01
1.01726997e+00 -3.54355991e-01 4.27876383e-01 5.99862337e-01
2.34661507e-03 4.43181336e-01 -6.36887729e-01 1.38207936e+00
7.69969001e-02 -1.29752576e+00 2.62503266e-01 -5.46239540e-02
4.59770262e-01 -2.87899822e-01 5.14048994e-01 2.31401965e-01
5.39679378e-02 -9.97051418e-01 9.35653210e-01 1.60881370e-01
1.50176489e+00 -9.43536460e-01 7.84276485e-01 -1.35073766e-01
-1.07202780e+00 -4.52674806e-01 -6.38342738e-01 1.75661564e-01
1.12103514e-01 4.15462196e-01 -3.96765590e-01 7.55953193e-01
6.30528748e-01 5.96865535e-01 -2.63656884e-01 7.30150640e-01
-1.63657427e-01 6.80512130e-01 1.08399712e-01 -2.58126885e-01
5.05088568e-01 7.48196989e-02 4.51447368e-01 9.41712558e-01
7.24782109e-01 1.76538393e-01 -9.85585749e-02 7.99731135e-01
-4.14782465e-01 -2.45122641e-01 -5.67966938e-01 -1.45002559e-01
5.33550322e-01 7.09835589e-01 -2.67974824e-01 -2.63098150e-01
-4.73033518e-01 1.73889053e+00 -5.66042960e-01 4.36101526e-01
-9.39412713e-01 -1.10804021e+00 7.25871801e-01 -4.36691940e-01
5.11387169e-01 -4.34469819e-01 -1.03251236e-02 -7.94129610e-01
-1.26874715e-01 -5.32932997e-01 -1.36868253e-01 -1.05805516e+00
-1.14393938e+00 3.15751284e-01 -5.48775613e-01 -1.31874132e+00
3.52645785e-01 -5.24781644e-01 -2.31383532e-01 7.16857255e-01
-1.96428585e+00 -9.79177654e-01 -4.81734961e-01 7.99585998e-01
3.53870660e-01 -5.26519001e-01 8.56416464e-01 4.06073779e-01
5.20844012e-02 9.61758494e-01 7.73502171e-01 3.65151197e-01
4.02726442e-01 -7.24849641e-01 4.81077522e-01 4.58041221e-01
-3.25290293e-01 3.25309262e-02 4.34763432e-01 -2.94424027e-01
-1.78872359e+00 -1.58915341e+00 3.26542370e-02 6.37169421e-01
6.13795638e-01 -4.03379470e-01 -4.88886416e-01 3.07054013e-01
4.83957618e-01 6.79298267e-02 5.06436944e-01 -1.11475194e+00
-5.03607452e-01 -4.10694152e-01 -1.60992956e+00 2.21116558e-01
9.05753553e-01 -1.11115372e+00 -2.86219746e-01 1.63618729e-01
1.36338460e+00 -3.82441729e-02 -9.48665857e-01 2.65652716e-01
4.54522491e-01 -5.35761237e-01 1.11236513e+00 1.76520646e-01
3.38157624e-01 -1.69126123e-01 -8.84757936e-01 -1.60956967e+00
-1.36366636e-01 -5.86995304e-01 3.53128761e-01 8.93581271e-01
-1.02610596e-01 -9.53773379e-01 6.97805703e-01 -6.08946085e-01
-2.95332640e-01 -1.76711187e-01 -1.24000931e+00 -1.15053606e+00
1.56348392e-01 -3.24865043e-01 7.27761209e-01 6.51174724e-01
5.44611588e-02 -3.79244015e-02 -4.19176549e-01 5.83417714e-01
9.29915905e-01 -1.49291247e-01 3.88514280e-01 -7.93912172e-01
-2.45192692e-01 -1.81559786e-01 -1.42406499e+00 -1.29128826e+00
3.16569269e-01 -1.15568781e+00 -1.61603525e-01 -1.33180118e+00
-2.55095422e-01 -2.83759981e-01 -4.21304435e-01 -1.57269254e-01
4.56315398e-01 6.20277464e-01 1.31066889e-01 -5.07954843e-02
-5.50906479e-01 1.20682418e+00 1.29563653e+00 -6.41794205e-01
4.61254328e-01 -4.39521700e-01 -6.63791001e-01 1.71932921e-01
8.33026469e-01 -1.96716592e-01 -4.77509469e-01 -2.96808213e-01
-2.41340190e-01 4.14839804e-01 6.80602729e-01 -1.53367889e+00
1.47947982e-01 3.52345943e-01 4.81085837e-01 -1.74470708e-01
5.46631396e-01 -1.01119077e+00 -4.32338305e-02 8.77353013e-01
-3.47553492e-01 -5.57896674e-01 -7.24926665e-02 8.49607885e-01
-5.27224123e-01 2.08397120e-01 1.04787946e+00 5.06776087e-02
-1.05062509e+00 3.45993578e-01 -5.27265966e-01 -3.03688139e-01
1.06604242e+00 -2.36864895e-01 -4.69431549e-01 -8.10947359e-01
-4.46440756e-01 -7.48004299e-03 2.89095908e-01 4.08259571e-01
1.22633564e+00 -1.62775075e+00 -3.23527366e-01 3.93069595e-01
2.51278818e-01 -6.62560046e-01 1.88353255e-01 1.36054114e-01
-9.38814044e-01 6.92837298e-01 -4.28623825e-01 -4.48042840e-01
-8.12871099e-01 4.20406491e-01 2.51085669e-01 7.84942269e-01
-9.63549376e-01 7.81458259e-01 -1.09660238e-01 -2.49824360e-01
3.43128204e-01 -9.05055925e-02 1.69447944e-01 -6.04601264e-01
3.73091042e-01 1.95590734e-01 -1.07389964e-01 -5.28750539e-01
-3.25054973e-01 5.91939807e-01 2.97926635e-01 -6.88307360e-02
8.85379553e-01 -4.19477820e-01 1.18060209e-01 -1.73867285e-01
1.98296070e+00 -4.71848279e-01 -1.14263093e+00 -3.74085099e-01
-5.73618352e-01 -5.17248213e-01 5.70758045e-01 -5.77681065e-01
-1.27411783e+00 9.34829593e-01 1.10598993e+00 2.04763100e-01
1.37634742e+00 5.82750700e-02 1.49796939e+00 2.77231276e-01
7.91753292e-01 -1.17421889e+00 5.78857720e-01 1.24809228e-01
6.62236154e-01 -9.28508937e-01 -3.16957384e-01 -5.71001887e-01
-2.35095531e-01 1.17501879e+00 2.73173805e-02 -1.98034063e-01
6.78703249e-01 2.69871801e-01 9.14446712e-02 -1.00373961e-01
-2.13776171e-01 9.26782936e-02 -4.10133123e-01 7.59985983e-01
-4.54044282e-01 1.90514281e-01 -1.87092647e-01 4.52823758e-01
-4.65509087e-01 2.96512106e-03 6.49560273e-01 7.87619174e-01
-5.59324861e-01 -8.00566971e-01 -3.25534910e-01 3.44408005e-01
-5.50720751e-01 -5.01387939e-02 -2.60859191e-01 2.15408519e-01
-1.24184228e-03 1.13751078e+00 1.38562068e-01 -9.60028708e-01
1.86243623e-01 -6.01591110e-01 6.24837220e-01 3.57679208e-03
9.86765996e-02 -2.18991056e-01 -2.06822127e-01 -6.71037078e-01
-1.19784527e-01 1.14411265e-01 -1.45700622e+00 -4.79372561e-01
-2.02013358e-01 1.33016007e-02 1.19190216e+00 8.32912326e-01
3.57821405e-01 8.19492161e-01 1.31958675e+00 -3.81682396e-01
-6.97887540e-01 -4.43532616e-01 -9.40586746e-01 2.04200938e-01
6.35336936e-01 -3.21339756e-01 -4.27120835e-01 -2.04056188e-01] | [11.285303115844727, -1.7512351274490356] |
1b9c82bb-4ad2-45e6-b434-08b1eceb6c6b | neural-semi-markov-crf-for-monolingual-word | 2106.02569 | null | https://arxiv.org/abs/2106.02569v2 | https://arxiv.org/pdf/2106.02569v2.pdf | Neural semi-Markov CRF for Monolingual Word Alignment | Monolingual word alignment is important for studying fine-grained editing operations (i.e., deletion, addition, and substitution) in text-to-text generation tasks, such as paraphrase generation, text simplification, neutralizing biased language, etc. In this paper, we present a novel neural semi-Markov CRF alignment model, which unifies word and phrase alignments through variable-length spans. We also create a new benchmark with human annotations that cover four different text genres to evaluate monolingual word alignment models in more realistic settings. Experimental results show that our proposed model outperforms all previous approaches for monolingual word alignment as well as a competitive QA-based baseline, which was previously only applied to bilingual data. Our model demonstrates good generalizability to three out-of-domain datasets and shows great utility in two downstream applications: automatic text simplification and sentence pair classification tasks. | ['Wei Xu', 'Chao Jiang', 'Wuwei Lan'] | 2021-06-04 | null | https://aclanthology.org/2021.acl-long.531 | https://aclanthology.org/2021.acl-long.531.pdf | acl-2021-5 | ['sentence-pair-classification'] | ['natural-language-processing'] | [ 6.03534102e-01 3.77810746e-02 -2.51633108e-01 -4.65116888e-01
-1.22403324e+00 -5.96916676e-01 6.88650608e-01 1.50880232e-01
-5.92247367e-01 1.22006333e+00 5.75064540e-01 -6.71002030e-01
4.26032305e-01 -4.64553446e-01 -6.91348255e-01 -3.57700020e-01
7.45920539e-01 1.05901337e+00 -3.56108010e-01 -7.58400023e-01
3.21951807e-01 1.55693039e-01 -8.40371490e-01 3.14994782e-01
1.45188618e+00 -1.84604853e-01 4.14946318e-01 5.81189752e-01
-2.51014829e-01 4.19628978e-01 -9.25003290e-01 -9.39640641e-01
2.01572672e-01 -5.41902840e-01 -1.08350992e+00 -3.75136405e-01
9.14229810e-01 -7.76020288e-02 -5.60608543e-02 1.10161436e+00
8.67700994e-01 1.03825450e-01 7.72437692e-01 -6.74756944e-01
-9.82893467e-01 1.08581293e+00 -5.30445695e-01 2.91818976e-01
7.33024657e-01 -1.21638529e-01 1.28778660e+00 -9.10211384e-01
9.01626170e-01 1.51939249e+00 7.63306856e-01 7.43927658e-01
-1.25750375e+00 -6.37201428e-01 9.24014598e-02 1.16504326e-01
-1.14029789e+00 -5.92743278e-01 2.63618946e-01 -2.45133385e-01
1.50874186e+00 3.81203771e-01 2.93208748e-01 1.33214712e+00
6.16802633e-01 8.71471465e-01 1.01988363e+00 -9.82565582e-01
-4.04817879e-01 -2.28660449e-01 1.22112177e-01 2.74008930e-01
2.47295097e-01 -4.21721101e-01 -4.81036484e-01 -9.60175321e-02
3.75660509e-01 -6.63139224e-01 -8.51036087e-02 2.20775217e-01
-1.61129522e+00 8.93993437e-01 -2.98328012e-01 3.50840658e-01
-1.79413125e-01 -2.13666826e-01 5.06577194e-01 6.23272419e-01
6.19487941e-01 9.36025620e-01 -3.99248391e-01 -2.31964454e-01
-1.01136541e+00 5.56589127e-01 7.85981238e-01 1.42374647e+00
5.18823564e-01 2.05511868e-01 -8.33209336e-01 1.20023918e+00
-3.72327507e-01 9.44113791e-01 7.36134648e-01 -7.09996402e-01
9.64495599e-01 2.25417335e-02 3.80151421e-02 -3.57036322e-01
-3.28197926e-01 -1.62084937e-01 -9.79682028e-01 -6.05658948e-01
3.61845464e-01 -2.46622562e-01 -7.29609311e-01 1.86762464e+00
6.61469549e-02 -4.16529477e-01 3.76772098e-02 5.23501515e-01
8.15974414e-01 5.18658876e-01 1.87583398e-02 -4.53257889e-01
1.24601710e+00 -1.32145429e+00 -1.03222191e+00 -3.63112032e-01
9.63039100e-01 -1.49475849e+00 1.26078093e+00 3.39320660e-01
-1.39651716e+00 -5.51893890e-01 -6.88629985e-01 -6.57536864e-01
-2.56253749e-01 1.34769574e-01 5.79162478e-01 5.04781187e-01
-1.07527328e+00 6.32240057e-01 -5.09227455e-01 -6.05229557e-01
-9.27004069e-02 2.25462422e-01 -3.19598526e-01 -7.28021264e-02
-1.51982641e+00 1.40740740e+00 2.78698832e-01 -1.31290361e-01
-4.04076248e-01 -5.75609922e-01 -9.25442219e-01 -8.25354755e-02
-1.65862978e-01 -1.23703408e+00 1.65112710e+00 -9.84829843e-01
-1.66694212e+00 1.12887621e+00 -6.99405253e-01 -6.37867153e-01
4.72945750e-01 -6.19124830e-01 -3.27051371e-01 -5.77107370e-01
3.56386095e-01 7.51215398e-01 7.38686323e-01 -6.29000843e-01
-6.50859714e-01 -9.79034379e-02 -5.56212477e-02 6.51041448e-01
-2.05440924e-01 4.73960489e-01 -1.23596035e-01 -1.16785097e+00
-4.67652649e-01 -1.03360128e+00 -4.00749177e-01 -1.00693560e+00
-6.40193582e-01 -3.14963669e-01 -4.19809818e-02 -1.25010967e+00
1.51465642e+00 -1.40667653e+00 7.05539763e-01 -2.17436343e-01
-1.91415921e-01 3.20099741e-01 -5.43180645e-01 8.82353902e-01
-2.35370338e-01 2.16209605e-01 -3.76418054e-01 -6.47570789e-01
2.78496388e-02 8.58308598e-02 -4.12107319e-01 4.74129841e-02
8.61643031e-02 1.17129695e+00 -9.57111180e-01 -7.00296760e-01
-4.67426889e-02 2.48165149e-02 -5.07614076e-01 1.01890929e-01
-6.45212978e-02 5.88229537e-01 -1.61187015e-02 5.16373515e-01
4.49051678e-01 4.52156544e-01 2.87488043e-01 1.49061784e-01
-7.47910216e-02 7.44539499e-01 -4.78334486e-01 2.20500350e+00
-8.91205370e-01 7.91218400e-01 -2.89673120e-01 -6.38891757e-01
7.18816042e-01 2.51589090e-01 -9.23081115e-02 -8.93455803e-01
1.45912677e-01 2.55720347e-01 2.39740610e-01 -2.13489473e-01
1.28118730e+00 2.36878693e-02 -3.59201699e-01 6.42568409e-01
1.34918571e-01 -5.93697786e-01 7.83014297e-01 3.44654083e-01
7.85612822e-01 2.06304878e-01 6.97588086e-01 -4.63804275e-01
7.03027487e-01 8.12869295e-02 5.07810414e-01 1.01266253e+00
1.47468179e-01 6.59377515e-01 1.67702615e-01 -2.00745076e-01
-1.45175004e+00 -9.44037080e-01 -7.27661103e-02 1.38775098e+00
-9.69639868e-02 -5.25662541e-01 -1.16436958e+00 -5.97674966e-01
-2.17715561e-01 1.16479838e+00 -1.00108363e-01 -4.15717028e-02
-1.34483433e+00 -9.48002994e-01 8.46052945e-01 2.86179602e-01
-1.06750481e-01 -1.27112818e+00 2.62551814e-01 3.61654431e-01
-9.16868269e-01 -1.15537262e+00 -1.07849145e+00 -9.92168859e-02
-9.13302004e-01 -6.56276703e-01 -6.81532085e-01 -1.19049120e+00
5.13386071e-01 1.63692638e-01 1.63603306e+00 -1.61371455e-01
3.35273221e-02 -8.83215442e-02 -4.06636715e-01 -5.97885489e-01
-9.14624870e-01 7.73329556e-01 2.36815453e-01 -5.32122970e-01
5.08248568e-01 -4.39973891e-01 -9.73935872e-02 -1.98530015e-02
-7.15697825e-01 2.59542733e-01 7.40818977e-01 1.23287380e+00
5.83712518e-01 -8.65831614e-01 7.20642745e-01 -1.29763472e+00
1.46142411e+00 -1.26598701e-01 -2.63982087e-01 6.63404644e-01
-5.25612950e-01 2.22456649e-01 8.78351331e-01 -3.64021420e-01
-1.36544728e+00 -3.59656781e-01 -4.09954011e-01 2.95099705e-01
-1.22763589e-01 4.35858369e-01 -2.86569208e-01 3.13819110e-01
7.02691972e-01 3.42479885e-01 -3.06171656e-01 -5.49144089e-01
7.54781544e-01 8.90947163e-01 6.72527194e-01 -6.93547368e-01
8.94827366e-01 1.90822128e-02 -2.38482982e-01 -7.24016607e-01
-7.24585593e-01 -2.74222434e-01 -1.00001907e+00 3.83574933e-01
7.00402200e-01 -9.65949774e-01 1.98138114e-02 4.63563293e-01
-1.76994824e+00 -2.85561532e-01 -2.05434710e-01 3.91444534e-01
-6.54723763e-01 7.90591776e-01 -9.43802893e-01 -1.56486228e-01
-1.08150899e+00 -1.12058377e+00 1.26908374e+00 -2.96472702e-02
-8.98655891e-01 -1.03242064e+00 5.75244486e-01 6.01016760e-01
2.48747244e-01 -2.58347750e-01 1.26293349e+00 -8.36121261e-01
-1.36517763e-01 1.01700470e-01 1.84838429e-01 3.89769822e-01
3.97556908e-02 -5.72201386e-02 -4.33981866e-01 -3.79703194e-01
-2.94369012e-01 -3.26007098e-01 8.29601288e-01 3.67298186e-01
7.91941524e-01 -2.85619587e-01 -1.58958763e-01 6.43480420e-01
7.24742532e-01 1.06562771e-01 7.35111952e-01 4.23711121e-01
9.00366247e-01 5.80633223e-01 8.55400741e-01 -5.57429418e-02
4.54784960e-01 8.24709415e-01 -6.92995787e-02 -3.29568714e-01
-3.64498019e-01 -1.28280893e-01 5.57163358e-01 1.67405558e+00
1.19281244e-02 -5.79785466e-01 -6.92379773e-01 7.30999231e-01
-1.85021019e+00 -9.67654288e-01 -4.40410644e-01 2.09497833e+00
1.42650664e+00 -1.14943445e-01 -1.68927714e-01 -2.94098914e-01
9.82260942e-01 1.39981121e-01 -4.54245619e-02 -1.26475990e+00
-5.28970838e-01 8.74109507e-01 4.58691806e-01 8.69549572e-01
-9.82611537e-01 1.73169494e+00 6.56001377e+00 1.25283027e+00
-6.69540644e-01 3.10753345e-01 3.72322112e-01 3.18010151e-02
-4.96423811e-01 -6.85764104e-02 -9.63611424e-01 2.39447519e-01
8.66665959e-01 -3.61053646e-01 6.56781614e-01 5.35136223e-01
3.26302558e-01 1.75836846e-01 -1.45307553e+00 7.13776469e-01
3.64205211e-01 -1.06067002e+00 6.37584090e-01 -4.18332994e-01
1.11607289e+00 1.19268835e-01 -2.25955471e-01 4.78400797e-01
6.76538587e-01 -1.31111479e+00 6.00212038e-01 3.27809423e-01
1.01394701e+00 -7.93075621e-01 8.05392146e-01 3.18629593e-01
-7.87752450e-01 4.79201466e-01 -3.79500359e-01 -2.31587067e-01
6.20086074e-01 4.21404779e-01 -9.69816923e-01 8.13822508e-01
1.56472042e-01 7.82174587e-01 -5.30628920e-01 6.77803099e-01
-4.98930395e-01 4.74254072e-01 1.20411739e-01 -5.42986095e-02
-2.65814234e-02 -4.19072062e-01 8.11408162e-01 1.81520617e+00
3.24370772e-01 -4.67380792e-01 -1.05678611e-01 4.21679109e-01
-2.99163640e-01 7.12715745e-01 -4.47913319e-01 5.36608770e-02
6.24747217e-01 1.20836365e+00 -1.20135985e-01 -4.06656802e-01
-3.44541728e-01 1.39593065e+00 6.77897751e-01 3.20837319e-01
-7.00909197e-01 -7.95681059e-01 6.63122177e-01 -3.42238933e-01
1.03384532e-01 -2.58538783e-01 -4.86295313e-01 -1.48386180e+00
3.79777178e-02 -1.54028428e+00 1.08307697e-01 -6.49341166e-01
-1.45433235e+00 8.38088930e-01 3.00279092e-02 -1.00796926e+00
-6.80134475e-01 -3.41563255e-01 -7.09334970e-01 1.38634336e+00
-1.52230477e+00 -1.40860176e+00 2.10128874e-02 4.98236895e-01
9.93164241e-01 -3.39478284e-01 1.06445158e+00 3.94127190e-01
-6.21797502e-01 1.00655222e+00 4.64893967e-01 1.02715634e-01
1.44543111e+00 -1.39648712e+00 1.28429377e+00 1.08583105e+00
3.80628884e-01 8.34878683e-01 8.10207605e-01 -8.18727434e-01
-7.90896535e-01 -1.20546281e+00 1.81384861e+00 -7.29976952e-01
6.36633158e-01 -5.19488275e-01 -6.97985470e-01 9.88305628e-01
8.20724547e-01 -1.06098533e+00 6.43217862e-01 3.17674190e-01
-1.06007069e-01 7.65784681e-02 -6.73910141e-01 1.17584217e+00
1.42845654e+00 -4.51977223e-01 -9.90178347e-01 8.28620255e-01
8.80921245e-01 -7.77903140e-01 -7.87770450e-01 3.14831048e-01
5.12702584e-01 -4.50449169e-01 8.14515531e-01 -1.00796735e+00
6.39390469e-01 1.19477130e-01 1.44047245e-01 -1.94280326e+00
-5.38397908e-01 -1.01927578e+00 2.87521362e-01 1.36820459e+00
6.15914166e-01 -5.46045303e-01 2.47128025e-01 -1.27312094e-01
-5.13756216e-01 -4.84728694e-01 -9.02526319e-01 -7.31975794e-01
8.18946362e-01 -4.80916649e-02 8.30080152e-01 1.04914629e+00
6.38560429e-02 8.81366551e-01 -6.41824663e-01 -3.63295525e-01
2.63540179e-01 1.65684730e-01 1.05385458e+00 -9.36922967e-01
-2.65582055e-01 -6.44814074e-01 2.59988457e-01 -1.36029899e+00
7.01541722e-01 -1.29846597e+00 3.24429870e-02 -1.56195855e+00
2.68514931e-01 -1.67857662e-01 2.39149705e-01 2.23496571e-01
-6.48642361e-01 2.43236825e-01 1.46013126e-01 3.04846644e-01
-3.47959906e-01 6.27187610e-01 1.28877234e+00 -2.50964761e-01
-1.40342176e-01 -6.96218163e-02 -5.66254199e-01 5.27473569e-01
9.03784394e-01 -6.60611987e-01 3.17657292e-02 -1.08506870e+00
2.37186924e-01 -7.82679990e-02 -4.60938722e-01 -3.65248710e-01
-3.12638842e-02 -3.00394237e-01 8.62472691e-03 -3.94744098e-01
2.63898540e-02 -1.40958250e-01 -6.79758042e-02 2.22528294e-01
-6.02235317e-01 7.68340707e-01 -3.93097382e-03 5.80318719e-02
-2.39787057e-01 -5.83283663e-01 5.13164997e-01 -2.29839474e-01
-1.80425078e-01 -7.98706636e-02 -5.14054298e-01 5.78813016e-01
6.01988316e-01 -2.90222801e-02 -4.79154795e-01 -4.33585227e-01
-3.28055203e-01 3.16989034e-01 4.17856097e-01 7.55367339e-01
3.66704836e-02 -1.16612732e+00 -1.37104654e+00 -1.12970196e-01
8.01506117e-02 -1.11067317e-01 -1.43518925e-01 8.08694422e-01
-7.29279518e-01 8.16279054e-01 -2.93807417e-01 -4.26336884e-01
-1.49794424e+00 1.25062257e-01 1.84711218e-01 -9.87472117e-01
-1.11364737e-01 6.93562567e-01 1.55089274e-01 -8.94307077e-01
9.05709192e-02 -2.58188039e-01 -1.34573996e-01 -8.56217444e-02
3.26561660e-01 3.81240070e-01 4.23230380e-01 -8.23998451e-01
-4.28067110e-02 4.52796966e-01 -6.56894982e-01 -1.20111518e-01
7.91121602e-01 -4.04480487e-01 -5.03051221e-01 1.93575218e-01
5.62654853e-01 4.15470690e-01 -2.72128612e-01 -2.95555681e-01
2.09334821e-01 -1.23593792e-01 -6.48541987e-01 -7.41524696e-01
-4.28272694e-01 9.58955884e-01 -7.44335502e-02 -2.90529966e-01
8.49384665e-01 -3.59299302e-01 1.21237254e+00 7.68496871e-01
1.92354813e-01 -1.41840816e+00 -2.87866950e-01 1.22220874e+00
1.04003310e+00 -1.17640638e+00 -1.52271409e-02 -3.09373736e-01
-8.04035366e-01 9.85764563e-01 7.23671019e-01 1.06291406e-01
-1.79908067e-01 2.43332125e-02 2.15033785e-01 4.85638201e-01
-6.87018454e-01 6.28049020e-03 2.60401011e-01 7.27767348e-01
9.38922703e-01 1.18817516e-01 -1.22496021e+00 4.17810708e-01
-8.96420538e-01 -3.66533518e-01 7.18135357e-01 5.53125083e-01
-4.00344320e-02 -1.78885257e+00 -2.75836080e-01 3.84572536e-01
-7.28984892e-01 -1.01407158e+00 -7.67718852e-01 7.43770003e-01
-3.85322720e-02 8.00721407e-01 1.82049885e-01 -6.37580222e-03
3.36968452e-01 2.47226357e-01 7.17115879e-01 -8.80622327e-01
-1.12577951e+00 -1.53934494e-01 6.19038999e-01 -2.03785673e-01
-2.17262954e-01 -7.60164201e-01 -8.77380371e-01 -4.02712435e-01
-3.73826385e-01 1.38653055e-01 5.10133564e-01 1.04610169e+00
2.67889231e-01 4.43926424e-01 3.14958423e-01 -8.65516543e-01
-6.50028050e-01 -1.60231721e+00 -4.37363870e-02 5.61532974e-01
4.84992517e-03 -3.59764360e-02 -1.74009036e-02 1.85909286e-01] | [11.333330154418945, 10.261322021484375] |
40fc8c70-a5dd-46be-8fba-dc7f94a60315 | evaluation-of-dynamic-causal-modelling-and | 2306.15859 | null | https://arxiv.org/abs/2306.15859v1 | https://arxiv.org/pdf/2306.15859v1.pdf | Evaluation of dynamic causal modelling and Bayesian model selection using simulations of networks of spiking neurons | Inferring the mechanisms underlying physiological and pathological processes in the brain from recorded electrical activity is challenging. Bayesian model selection and dynamic causal modelling aim to identify likely biophysical models to explain data and to fit the model parameters. Here, we use data generated by simulations to investigate the effectiveness of Bayesian model selection and dynamic causal modelling when applied at steady state in the frequency domain to identify and fit Jansen-Rit models. We first investigate the impact of the necessary assumption of linearity on the dynamics of the Jansen-Rit model. We then apply dynamic causal modelling and Bayesian model selection to data generated from simulations of linear neural mass models, non-linear neural mass models, and networks of discrete spiking neurons. Action potentials are a characteristic feature of neuronal dynamics but have not previously been explicitly included in simulations used to test Bayesian model selection or dynamic causal modelling. We find that the assumption of linearity abolishes the qualitative transitions seen as a function of the connectivity parameter in the original Jansen-Rit model. As with previous work, we find that the recovery procedures are effective when applied to data from linear Jansen-Rit neural mass models, however, when applying them to non-linear neural mass models and networks of discrete spiking neurons we find that their effectiveness is significantly reduced, suggesting caution is required when applying these methods. | ['Matthew G. Thomas'] | 2023-06-28 | null | null | null | null | ['model-selection'] | ['methodology'] | [ 6.17134929e-01 -7.26686567e-02 2.09118709e-01 1.39794827e-01
4.48861942e-02 -3.33966136e-01 8.83858323e-01 2.59566102e-02
-6.62295640e-01 1.02317131e+00 5.73828742e-02 -5.97996414e-01
-7.19671309e-01 -3.90205622e-01 -8.52814078e-01 -1.05392337e+00
-3.32415909e-01 4.19183314e-01 5.07016361e-01 2.16815948e-01
4.65942144e-01 5.74573696e-01 -1.33455253e+00 -1.25789316e-02
5.52600205e-01 4.49924201e-01 2.24172294e-01 7.12895095e-01
2.32794315e-01 4.30598676e-01 -4.95375186e-01 3.18845540e-01
-6.29330985e-03 -7.11033523e-01 -5.08511961e-01 -4.43327636e-01
4.15489711e-02 4.54409085e-02 -4.66455311e-01 8.29645455e-01
6.47614956e-01 -7.27163479e-02 1.11932909e+00 -1.09590900e+00
-4.20169234e-02 8.77966762e-01 -3.48788321e-01 6.68401539e-01
-2.12421939e-01 2.74987251e-01 3.65173668e-01 -2.64827549e-01
5.81277907e-01 1.29619920e+00 8.39742362e-01 3.97472471e-01
-2.15489745e+00 -9.33115482e-01 8.96673575e-02 -1.48190290e-01
-1.43051374e+00 -6.82278156e-01 3.71853054e-01 -5.87346911e-01
1.26434577e+00 -9.78347473e-03 1.00237119e+00 1.15191770e+00
8.15683782e-01 -1.20870464e-01 1.24018645e+00 -3.82405102e-01
4.84682620e-01 -4.15008187e-01 2.36207813e-01 1.56721577e-01
5.02511978e-01 4.30551082e-01 -6.55944705e-01 -8.53993237e-01
1.17386007e+00 -4.97837782e-01 -2.55360067e-01 1.56217888e-01
-1.15667498e+00 6.46875679e-01 -2.47619897e-01 3.61193776e-01
-5.19549131e-01 8.48668754e-01 2.54016340e-01 1.11202404e-01
1.92346737e-01 5.31449318e-01 -4.61951643e-01 -1.51580751e-01
-1.00323093e+00 5.13188183e-01 8.41978908e-01 3.82409185e-01
1.54873669e-01 2.73961127e-01 3.60548526e-01 6.25299633e-01
4.46408123e-01 5.46876073e-01 2.94713467e-01 -1.33120334e+00
-3.36113393e-01 1.47442549e-01 -9.58638564e-02 -4.29826856e-01
-6.17229998e-01 -4.03162330e-01 -6.73037648e-01 2.56026536e-01
7.99427450e-01 -7.55739063e-02 -9.17208433e-01 1.87593269e+00
-2.03949973e-01 5.23116767e-01 1.05273426e-02 3.87522757e-01
3.64837170e-01 7.40961909e-01 3.19479793e-01 -8.73022735e-01
9.43030596e-01 4.16275442e-01 -5.47793448e-01 -3.12112141e-02
5.29228926e-01 -5.66635489e-01 4.70967084e-01 4.11960483e-01
-1.16510904e+00 1.10524811e-01 -8.18307400e-01 6.07456148e-01
1.04386620e-01 -4.74312425e-01 5.50853074e-01 2.42716894e-01
-9.26597118e-01 9.40957665e-01 -1.12592661e+00 -5.74952245e-01
2.06522688e-01 6.08580410e-01 4.67009982e-03 2.66733944e-01
-1.08845568e+00 1.07174349e+00 1.84781551e-01 6.24766871e-02
-7.19881833e-01 -6.28725827e-01 -9.09789726e-02 -5.85158616e-02
-2.08067268e-01 -8.21392596e-01 1.01299012e+00 -5.42938411e-01
-1.17219448e+00 4.82722282e-01 -2.82916725e-01 -7.06304014e-01
4.06930447e-02 6.26073062e-01 -1.20072260e-01 1.13862917e-01
-4.01053101e-01 7.06233561e-01 3.44058573e-01 -1.28889346e+00
1.15830630e-01 -1.54149473e-01 -4.77090627e-01 -2.00609729e-01
3.81525815e-01 1.62692219e-01 1.84439003e-01 -5.35206258e-01
4.70659554e-01 -1.14768207e+00 -2.08460912e-01 -1.24696307e-01
-7.36848414e-02 1.23929553e-01 4.11860555e-01 -4.31680530e-01
9.43966568e-01 -1.95497227e+00 1.03424661e-01 6.43868566e-01
1.34900868e-01 -1.28174976e-01 -8.10702294e-02 6.33470953e-01
-2.48559102e-01 3.08574915e-01 -5.94995856e-01 2.91590005e-01
-2.30358541e-01 3.50655496e-01 -2.74777859e-01 7.42704988e-01
9.87586975e-02 5.18257737e-01 -4.17024046e-01 -3.26424062e-01
1.33948639e-01 7.05669582e-01 -4.46452141e-01 -2.80025542e-01
-5.65783717e-02 3.54061812e-01 -1.47525566e-02 1.28866434e-01
3.16236347e-01 -4.56395522e-02 1.50370941e-01 -1.07111849e-01
-4.10805583e-01 5.98466754e-01 -9.39345419e-01 7.66395092e-01
-2.09003702e-01 8.26844752e-01 1.39772566e-03 -1.18370676e+00
8.48558843e-01 4.22833204e-01 4.71592188e-01 -5.92552125e-01
2.61104017e-01 4.81119424e-01 1.15922010e+00 -1.22285880e-01
-3.32179785e-01 -5.46900928e-01 3.15497994e-01 6.22391343e-01
7.13508725e-02 -3.53913307e-01 1.10145524e-01 2.26700544e-01
1.28139436e+00 1.19462721e-01 1.22583844e-01 -9.38811898e-01
-2.41540089e-01 -1.13104478e-01 4.37798321e-01 8.79178584e-01
-9.22625419e-03 4.07199413e-01 8.62343788e-01 -3.19139124e-03
-1.14577937e+00 -9.77588952e-01 -9.14937437e-01 4.34548765e-01
-7.72304833e-02 -1.12111188e-01 -6.66682065e-01 4.90611911e-01
-1.87857971e-02 9.34001029e-01 -7.62689352e-01 -6.60504997e-01
-4.53284264e-01 -1.55699599e+00 6.70854628e-01 1.89266652e-01
-1.60718918e-01 -1.14988470e+00 -9.52802658e-01 5.30629277e-01
1.71742454e-01 -7.70137489e-01 1.37457743e-01 1.01162875e+00
-1.15496290e+00 -8.11731398e-01 -3.41597587e-01 -3.14836234e-01
4.90559906e-01 -6.01006150e-01 6.91806138e-01 1.74302474e-01
-5.14481962e-01 1.95162296e-01 1.04804508e-01 -4.67720836e-01
-7.54328310e-01 -2.64634162e-01 3.24820817e-01 -6.29172802e-01
1.41131639e-01 -1.08725357e+00 -5.16251445e-01 3.69379252e-01
-9.26793516e-01 -2.45299023e-02 3.44921410e-01 7.37721384e-01
4.74242270e-01 3.56329158e-02 8.65938187e-01 -6.21593952e-01
6.30011082e-01 -5.18092930e-01 -5.13697326e-01 -2.13956222e-01
-7.82901168e-01 2.22637191e-01 2.48049632e-01 -1.01284945e+00
-6.96142137e-01 -9.43428650e-02 -9.66207832e-02 -5.80693334e-02
-1.40506133e-01 6.47279501e-01 2.60456562e-01 -2.30088428e-01
7.94663906e-01 1.35654420e-01 1.93868041e-01 -8.28481987e-02
-3.97667527e-01 2.87934959e-01 3.02317649e-01 -7.00426221e-01
2.13138849e-01 5.00383973e-01 4.36629325e-01 -9.25070167e-01
1.09290093e-01 1.39049232e-01 -3.44749182e-01 -2.54778951e-01
3.74171197e-01 -4.37360018e-01 -9.25873697e-01 6.03515029e-01
-1.18652833e+00 -8.34001601e-01 -1.41062230e-01 8.32993448e-01
-1.10971141e+00 -1.23762690e-01 -7.93742239e-01 -1.17560613e+00
1.08256504e-01 -1.02110934e+00 5.21104455e-01 -5.24622239e-02
-7.15127587e-01 -1.16843104e+00 1.10056706e-01 -4.08811271e-01
4.61565465e-01 1.61163047e-01 1.41036916e+00 -4.22772288e-01
-2.55366683e-01 1.15717109e-02 3.30567136e-02 -2.85012692e-01
-1.11736566e-01 6.63176358e-01 -8.58120084e-01 -6.18013665e-02
1.72834069e-01 4.48693261e-02 1.05623448e+00 1.19139242e+00
6.85397565e-01 -2.11567372e-01 -5.77228546e-01 3.52996826e-01
1.30707991e+00 4.66485739e-01 6.46236718e-01 1.14080451e-01
2.13582948e-01 8.30914378e-01 -1.75057679e-01 1.87550530e-01
-2.57238418e-01 5.93978345e-01 4.27509427e-01 1.59140274e-01
1.32465005e-01 5.04025444e-02 3.16004008e-01 7.91294396e-01
-2.68022716e-02 -1.90116405e-01 -1.10302401e+00 5.42535126e-01
-1.87354529e+00 -1.21300805e+00 -5.96740544e-01 2.32832885e+00
1.00120735e+00 5.91196954e-01 3.02094847e-01 1.06973812e-01
7.46317208e-01 -4.43865657e-01 -7.54733741e-01 -6.01701498e-01
-3.35065633e-01 1.67578653e-01 8.08069706e-01 5.28075159e-01
-3.07268679e-01 3.69834006e-01 7.78090858e+00 6.45588338e-01
-9.03738260e-01 -1.02100417e-01 4.56730604e-01 -3.53896677e-01
-3.39287043e-01 4.96797770e-01 -8.00612867e-01 5.50161362e-01
1.71239781e+00 -3.93202960e-01 5.62151551e-01 -3.22918296e-01
8.21332693e-01 -7.04985917e-01 -9.70448434e-01 4.82220411e-01
-6.15322649e-01 -1.28601491e+00 -2.28269920e-01 5.30374944e-01
5.82135975e-01 1.47923395e-01 -2.32495382e-01 -3.04954052e-01
4.09873128e-01 -1.18222022e+00 6.54213727e-01 9.46126997e-01
3.60065162e-01 -6.30641520e-01 6.00637794e-01 6.38841510e-01
-6.53184652e-01 1.59045786e-01 -4.02629107e-01 -3.59936178e-01
2.98342735e-01 8.55276942e-01 -5.39487362e-01 -3.52326035e-01
6.30659401e-01 4.08303261e-01 -1.88792095e-01 1.31076980e+00
4.56102580e-01 1.34329128e+00 -1.00588155e+00 -3.58941816e-02
-2.56431773e-02 -8.36872086e-02 5.95110118e-01 1.12826133e+00
3.40747029e-01 8.94940807e-04 -5.99836588e-01 1.37516153e+00
6.38751209e-01 -3.32848400e-01 -5.91848850e-01 -3.67299080e-01
5.98820150e-01 6.49811983e-01 -1.16978121e+00 5.26273251e-02
-4.57944386e-02 5.03122769e-02 -1.46850705e-01 5.16040623e-01
-5.16528964e-01 2.26082243e-02 3.16631556e-01 5.32224178e-01
8.12844038e-02 -3.71448070e-01 -3.65677893e-01 -5.18336594e-01
-5.11940598e-01 -6.67269170e-01 -1.13667272e-01 -8.44069421e-01
-1.32606351e+00 1.77901268e-01 6.90034032e-01 -5.07228673e-01
-4.90958571e-01 -5.12004435e-01 -7.71563351e-01 1.17841792e+00
-7.47586012e-01 -4.16471153e-01 5.10016680e-01 2.75184512e-01
-4.65708412e-02 3.50372344e-01 8.15721571e-01 -1.96798965e-01
-3.77553254e-01 -3.98337133e-02 3.70364696e-01 -5.22198379e-01
4.73645627e-01 -8.98792446e-01 4.50303584e-01 6.36640131e-01
-1.29141852e-01 1.06309366e+00 1.36687219e+00 -9.38738048e-01
-9.53522384e-01 -6.46465600e-01 5.06951511e-01 7.83827435e-03
7.47663438e-01 -4.44866270e-01 -1.32145298e+00 2.56335288e-01
1.25518247e-01 -2.71260530e-01 5.54792941e-01 -1.49823159e-01
1.10740088e-01 3.76892328e-01 -8.43028605e-01 6.48504078e-01
1.05874658e+00 -3.83491278e-01 -4.89559174e-01 -1.90094616e-02
3.50610077e-01 3.49975318e-01 -8.70631933e-01 6.77846074e-01
8.60210121e-01 -6.20675087e-01 6.83730602e-01 -3.57999623e-01
-9.48376730e-02 -2.76125342e-01 -5.93747124e-02 -1.40212977e+00
-2.80316740e-01 -5.18657029e-01 1.12091772e-01 1.11985815e+00
5.84708035e-01 -9.83011007e-01 2.56571561e-01 5.83634257e-01
5.94751574e-02 -5.61254501e-01 -1.25288725e+00 -8.08472157e-01
6.04784608e-01 -3.60093117e-01 -2.78153956e-01 7.29491949e-01
1.92566365e-01 3.78764011e-02 1.53228730e-01 -6.84928745e-02
8.21744025e-01 -3.65786523e-01 8.72510001e-02 -1.53385019e+00
-4.23158616e-01 -8.09422493e-01 -4.51442242e-01 -4.57354367e-01
1.93667099e-01 -5.00249267e-01 3.03634167e-01 -1.51079011e+00
3.62213492e-01 -4.63781029e-01 -3.51329595e-02 3.25645745e-01
7.81296343e-02 7.92006552e-02 -2.43220255e-01 5.77673912e-01
4.37873125e-01 2.37635657e-01 7.36846507e-01 3.48409414e-01
-1.65049896e-01 1.98402721e-02 -3.79576415e-01 8.59089136e-01
8.11616659e-01 -9.42412257e-01 -4.28470135e-01 2.73456693e-01
6.47984147e-01 1.23850688e-01 8.33463013e-01 -8.75977039e-01
3.45369130e-01 -3.04412425e-01 3.38506907e-01 -3.59987289e-01
2.83870935e-01 -5.73058665e-01 6.31857276e-01 6.06559992e-01
-4.82562542e-01 1.68907233e-02 7.64384568e-01 5.85239708e-01
2.72843301e-01 -4.95921195e-01 9.24868822e-01 -5.17487759e-03
2.11441796e-02 -1.97809950e-01 -1.35225844e+00 -1.20942183e-01
5.31686842e-01 -3.43781918e-01 -3.83428186e-01 -3.46905053e-01
-9.58959758e-01 -2.11193502e-01 6.30160093e-01 -2.64167696e-01
3.31138611e-01 -8.78357410e-01 -5.32314837e-01 1.38405971e-02
-3.20514619e-01 -4.65081543e-01 -1.76274590e-03 1.36518884e+00
-3.06034982e-01 3.66095781e-01 -3.04705262e-01 -6.61656082e-01
-9.27875936e-01 1.84057757e-01 7.53449082e-01 3.27811599e-01
-3.08161914e-01 5.07528424e-01 2.38567889e-01 -4.19099405e-02
-9.99274775e-02 -4.16818053e-01 1.18113674e-01 -1.15571246e-01
-7.56161287e-02 2.34066829e-01 -1.85851872e-01 -4.79238212e-01
-4.53643709e-01 5.17323434e-01 2.58993387e-01 -6.21804833e-01
1.28775418e+00 -1.88650206e-01 -1.71439081e-01 1.12380958e+00
7.52062857e-01 -3.53317469e-01 -1.43962443e+00 1.99418262e-01
-1.56414136e-01 2.45118722e-01 2.91301012e-01 -7.11974800e-01
-5.39349139e-01 1.01080298e+00 5.52158773e-01 3.02900165e-01
7.47688711e-01 1.30968392e-01 7.23636337e-03 1.63578212e-01
2.56382823e-01 -8.05322647e-01 -5.32223582e-01 3.02828223e-01
8.41964781e-01 -3.97553802e-01 8.91129449e-02 -4.08055872e-01
3.72378677e-02 1.08393419e+00 3.53201419e-01 -4.68436718e-01
8.93076718e-01 8.28927696e-01 -3.20671648e-01 -2.17098251e-01
-1.43811619e+00 -2.26731412e-02 -1.42980471e-01 5.29481649e-01
5.33319592e-01 -1.61430597e-01 -5.59832990e-01 2.67066300e-01
-1.29822083e-02 1.04179189e-01 8.53791237e-01 8.83021653e-01
-4.47462112e-01 -8.10592890e-01 -3.97090912e-01 8.56381357e-01
-3.54250520e-01 -5.32471478e-01 -5.12540519e-01 9.27966177e-01
-4.98977564e-02 8.41204345e-01 5.12907982e-01 -1.07103840e-01
5.73572554e-02 3.86892647e-01 7.82654583e-01 -5.44140756e-01
-4.32652295e-01 6.42407537e-01 1.15970805e-01 -9.72278300e-04
-5.94220638e-01 -1.15459931e+00 -1.57950938e+00 -3.96545410e-01
-7.46853590e-01 -4.95110787e-02 7.02164948e-01 1.16960919e+00
1.81290388e-01 7.69140482e-01 -2.10959241e-01 -8.38392019e-01
-3.40071768e-01 -1.09541082e+00 -7.32702196e-01 -1.56457350e-01
1.52346432e-01 -7.67495513e-01 -9.97895002e-01 1.91033632e-01] | [7.873845100402832, 3.036752223968506] |
922fc2cb-f1f0-4067-a233-d0ab789c2b2e | 2305-14386 | 2305.14386 | null | https://arxiv.org/abs/2305.14386v1 | https://arxiv.org/pdf/2305.14386v1.pdf | Let GPT be a Math Tutor: Teaching Math Word Problem Solvers with Customized Exercise Generation | In this paper, we present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models. Our approach is designed to consider the student model's weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational science principles, such as knowledge tracing and personalized learning. Concretely, we let GPT-3 be a math tutor and run two steps iteratively: 1) assessing the student model's current learning status on a GPT-generated exercise book, and 2) improving the student model by training it with tailored exercise samples generated by GPT-3. Experimental results reveal that our approach outperforms LLMs (e.g., GPT-3 and PaLM) in accuracy across three distinct benchmarks while employing significantly fewer parameters. Furthermore, we provide a comprehensive analysis of the various components within our methodology to substantiate their efficacy. | ['Ashwin Kaylan', 'Xiangliang Zhang', 'Peter Clark', 'Tanmay Rajpurohit', 'Wenhao Yu', 'Zhenwen Liang'] | 2023-05-22 | null | null | null | null | ['math-word-problem-solving', 'knowledge-tracing', 'math-word-problem-solving', 'math-word-problem-solving'] | ['knowledge-base', 'miscellaneous', 'reasoning', 'time-series'] | [ 1.95947126e-01 2.29217276e-01 -2.58670717e-01 -1.57395303e-01
-8.12785327e-01 -9.60997045e-01 3.83895129e-01 3.89855534e-01
-3.04239392e-01 5.98344207e-01 4.28726338e-02 -1.04049361e+00
-4.64837551e-01 -1.31308103e+00 -7.98291028e-01 5.19424044e-02
3.19320232e-01 4.04505372e-01 3.90027732e-01 -3.21170568e-01
4.37010109e-01 4.52629596e-01 -1.64827919e+00 1.55158073e-01
1.62464333e+00 5.10377347e-01 1.68239936e-01 1.02124703e+00
-6.55100107e-01 1.51124716e+00 -8.05704176e-01 -6.80965841e-01
-1.37434795e-01 -6.55075312e-01 -1.29214799e+00 -3.24457824e-01
7.44494855e-01 -2.19886735e-01 -1.36256039e-01 8.47353876e-01
2.48252168e-01 5.42186737e-01 4.41066772e-01 -9.24878597e-01
-6.65674448e-01 9.78102803e-01 -2.00394362e-01 8.77379850e-02
6.09030128e-01 3.42783719e-01 7.68850148e-01 -5.91998279e-01
3.56725872e-01 1.04999542e+00 9.07679141e-01 7.15608358e-01
-1.18739855e+00 -5.11923254e-01 6.91041499e-02 6.74137548e-02
-1.14149475e+00 -7.77331367e-02 6.33489549e-01 -6.33046269e-01
6.34635687e-01 5.10059834e-01 1.06665182e+00 7.64490426e-01
-1.14793457e-01 1.03323746e+00 1.26542890e+00 -6.57020569e-01
1.35437638e-01 4.59916741e-01 5.26959479e-01 9.54199553e-01
2.45891586e-01 -1.57628939e-01 -6.43194437e-01 -9.32550877e-02
5.50753057e-01 -3.10215354e-01 -2.42672890e-01 -2.04968855e-01
-8.38971853e-01 6.23259842e-01 -2.30320737e-01 3.32243085e-01
-4.73990254e-02 2.42108684e-02 6.68502450e-02 5.51323354e-01
2.23443732e-02 9.29955959e-01 -6.45821691e-01 -5.92268407e-01
-1.24942684e+00 4.93817925e-01 1.14650190e+00 1.27410579e+00
4.98601794e-01 1.00449540e-01 -5.61064720e-01 6.06495678e-01
3.88669938e-01 2.66933292e-01 7.02800453e-01 -9.45738316e-01
4.96219277e-01 9.42670822e-01 -2.21463978e-01 -6.66149795e-01
6.39634430e-02 -5.98457932e-01 -8.04542750e-02 8.01654086e-02
6.96128666e-01 -2.88715482e-01 -6.73379183e-01 1.58472836e+00
7.78132454e-02 5.91910362e-01 3.94932687e-01 1.73012927e-01
1.33317530e+00 5.68597198e-01 6.49263144e-01 2.46859789e-01
1.31018138e+00 -1.09197152e+00 -4.18391466e-01 -1.92194924e-01
1.14590752e+00 -6.88261807e-01 1.42633843e+00 6.23825312e-01
-1.63028121e+00 -8.06101680e-01 -7.24804461e-01 -6.17795363e-02
-3.59364927e-01 4.75316425e-04 3.01940024e-01 1.17133558e+00
-1.08160460e+00 7.59415925e-01 -4.38967943e-01 -5.90523444e-02
3.79482120e-01 -2.14689095e-02 1.72556818e-01 -3.75219099e-02
-1.04825842e+00 8.61276984e-01 4.84753013e-01 -7.57641256e-01
-9.44540977e-01 -1.49166787e+00 -9.17768836e-01 5.52721500e-01
3.00679803e-01 -5.59777915e-01 1.66434693e+00 -5.30957758e-01
-2.04034829e+00 7.58090436e-01 1.24801479e-01 -1.88093945e-01
7.46155441e-01 -3.23180288e-01 2.12523386e-01 -1.80969723e-02
-3.13683957e-01 3.23377132e-01 -1.54420584e-02 -1.11329532e+00
-4.64500099e-01 7.85813406e-02 4.07586753e-01 4.06401873e-01
-5.53963006e-01 2.92321388e-02 -3.17181438e-01 -4.64671582e-01
1.34221623e-02 -4.09865886e-01 -3.30379516e-01 -5.15368164e-01
-2.31059849e-01 -6.89849257e-01 2.74420619e-01 -5.52536428e-01
1.74760067e+00 -1.50395668e+00 -3.57090943e-02 4.90322411e-01
4.21191722e-01 6.23147368e-01 -2.58177817e-01 4.53850895e-01
-5.96063957e-03 3.84305418e-01 1.88939974e-01 -1.38810262e-01
2.64765710e-01 -1.07404716e-01 -2.92915136e-01 -3.97373438e-01
-1.30382344e-01 1.02864540e+00 -1.40446615e+00 -6.28039658e-01
3.72857004e-01 9.24173295e-02 -9.13221598e-01 6.26819909e-01
-4.90804970e-01 3.57940346e-01 -5.17971456e-01 4.49919075e-01
2.58156121e-01 -1.93761572e-01 2.37762764e-01 5.57989359e-01
-1.51649222e-01 7.45680332e-01 -1.32303166e+00 1.49960971e+00
-7.11405218e-01 5.34588695e-01 -4.17370766e-01 -7.41677761e-01
1.11362720e+00 2.18454078e-01 4.66444157e-02 -5.45494914e-01
-7.04933926e-02 4.09832224e-02 1.72668453e-02 -8.01302612e-01
7.21923351e-01 6.93278015e-02 1.90779358e-01 7.89318323e-01
4.68997031e-01 -4.05995458e-01 3.61089051e-01 4.53811556e-01
1.02260458e+00 4.50834125e-01 1.01044677e-01 -3.36221933e-01
7.24993467e-01 -9.05771703e-02 6.91791028e-02 1.17476153e+00
-1.46177039e-01 -2.22217254e-02 2.99024999e-01 1.32222697e-01
-4.32377160e-01 -1.01989424e+00 2.22577050e-01 1.51252067e+00
-4.06882346e-01 -8.65285039e-01 -1.10561848e+00 -7.89605141e-01
-1.00072540e-01 1.23186862e+00 -2.91267216e-01 -2.57944494e-01
-6.55947566e-01 -2.27089405e-01 9.05772209e-01 5.79944611e-01
5.07218122e-01 -1.02110422e+00 -7.51650274e-01 1.21325500e-01
-1.04874752e-01 -7.12178648e-01 -1.06416009e-01 -6.79280758e-02
-9.04773593e-01 -1.06020164e+00 -4.43702489e-01 -8.28901947e-01
7.86436856e-01 5.16888350e-02 1.60051370e+00 7.05210745e-01
-3.34861614e-02 9.94318128e-01 -2.26438299e-01 -4.73867953e-01
-6.52519464e-01 2.64848143e-01 -1.99289396e-01 -7.63866842e-01
6.89498842e-01 -4.50252771e-01 -2.86496103e-01 -2.12297305e-01
-8.07774544e-01 2.52743870e-01 3.75547498e-01 4.01776493e-01
1.62456825e-01 2.26069823e-01 5.31849325e-01 -1.27435982e+00
1.11792600e+00 -4.37350452e-01 -6.23477161e-01 5.86377382e-01
-8.88921976e-01 -9.36088637e-02 6.74995065e-01 -5.44706166e-01
-1.25124002e+00 -4.49393451e-01 -4.05907303e-01 -1.21677771e-01
-3.23393434e-01 9.88185883e-01 -4.40342017e-02 -4.35888499e-01
8.05091500e-01 6.25776887e-01 -4.05406982e-01 -4.48636472e-01
2.70782590e-01 3.70098025e-01 4.29078639e-01 -1.49807262e+00
1.10730815e+00 -6.34171724e-01 -3.54549021e-01 -6.53361201e-01
-1.18698549e+00 -2.15533316e-01 -5.37811100e-01 -5.26266456e-01
3.04391444e-01 -7.29147017e-01 -1.10079181e+00 4.90178943e-01
-8.31561446e-01 -1.06460428e+00 -6.14154577e-01 4.26955014e-01
-3.89713347e-01 1.20369285e-01 -8.13435972e-01 -8.56372416e-01
-1.01960361e-01 -1.21767640e+00 2.14960411e-01 9.42296922e-01
-6.55708373e-01 -1.54257989e+00 2.94632375e-01 8.84783745e-01
5.27920425e-01 -3.09522808e-01 1.27091086e+00 -1.14878702e+00
-5.42229295e-01 1.01841204e-02 2.34048337e-01 2.92324901e-01
-2.89779931e-01 2.28633612e-01 -9.69186306e-01 3.11151613e-02
-1.73311219e-01 -6.08518004e-01 2.75476515e-01 -5.21666184e-02
1.56736994e+00 -4.12883818e-01 3.37635390e-02 6.12580061e-01
1.29157066e+00 -7.15470454e-03 4.89585012e-01 6.79150283e-01
5.26606619e-01 8.01272094e-01 3.46436739e-01 -5.65331914e-02
6.23138607e-01 9.97360870e-02 -6.38265684e-02 4.55583453e-01
-1.57994404e-01 -7.97338545e-01 4.87807035e-01 1.18138111e+00
-1.06790781e-01 -9.24871936e-02 -1.24182415e+00 6.65850401e-01
-1.31466544e+00 -7.83164799e-01 -2.97858417e-01 2.08309484e+00
1.50609028e+00 1.51454538e-01 -7.14734644e-02 -8.83961245e-02
-1.22989200e-01 1.14005730e-02 -7.83712640e-02 -6.05937600e-01
3.30142051e-01 1.04317510e+00 1.30144238e-01 8.53054881e-01
-2.95571744e-01 1.23844552e+00 6.87599659e+00 8.94182682e-01
-5.78664839e-01 -2.01480344e-01 4.17045087e-01 9.86632481e-02
-7.46074259e-01 -2.42631599e-01 -9.80157077e-01 1.99001461e-01
1.42499900e+00 -6.15247428e-01 2.68030763e-01 7.47751594e-01
1.15268549e-03 3.28844450e-02 -1.09484041e+00 2.67586827e-01
-6.36165589e-02 -1.53265023e+00 3.18148643e-01 -2.97799677e-01
9.94263709e-01 -6.41676307e-01 1.14338748e-01 1.06296682e+00
8.69452536e-01 -1.38143361e+00 6.41178727e-01 6.29306495e-01
2.69262224e-01 -8.76501441e-01 5.01928568e-01 7.24336863e-01
-8.84405017e-01 1.23993918e-01 -1.07830159e-01 -2.88173229e-01
-5.08052826e-01 -4.06132005e-02 -8.03416014e-01 4.61163074e-01
6.20832145e-01 2.97484905e-01 -9.11622107e-01 1.14161921e+00
-6.55227661e-01 1.20105112e+00 6.55684322e-02 -3.41309160e-01
1.49469599e-01 -3.44244808e-01 2.03485638e-01 1.30585408e+00
4.11343873e-01 6.41997814e-01 3.09194505e-01 1.28401947e+00
-1.47705659e-01 3.10318947e-01 -3.26132357e-01 -2.28606358e-01
8.69901240e-01 1.19362342e+00 -3.23772401e-01 -5.81738174e-01
-4.52303857e-01 4.37473685e-01 5.43759346e-01 4.16137457e-01
-4.33229268e-01 -4.92451847e-01 4.45475727e-01 1.95174098e-01
-6.63668066e-02 -1.01443671e-01 -4.35126483e-01 -9.27410722e-01
-3.35174739e-01 -1.27636063e+00 2.59361893e-01 -9.27589893e-01
-8.98346305e-01 1.87284857e-01 2.57370565e-02 -7.31189728e-01
-1.58847660e-01 -6.71695828e-01 -1.16292417e+00 1.30940747e+00
-1.47372651e+00 -7.07388461e-01 -5.57786763e-01 4.83538687e-01
4.26228702e-01 -2.53308415e-01 9.26840544e-01 -3.14706527e-02
-6.46636963e-01 1.07608247e+00 -2.34854132e-01 2.84263641e-01
5.03374636e-01 -1.66714168e+00 2.69447625e-01 8.28994811e-01
-3.79977934e-02 1.02790117e+00 7.98045039e-01 -7.28321612e-01
-1.41150188e+00 -9.73046720e-01 1.08249748e+00 -7.69783497e-01
9.00600672e-01 1.71522692e-01 -1.21369088e+00 9.61197555e-01
2.59372801e-01 -5.98070979e-01 1.29311264e+00 8.76626745e-02
-2.09620282e-01 4.58633602e-01 -1.14210153e+00 8.66950214e-01
7.95814812e-01 -3.94733667e-01 -1.13843131e+00 2.17101797e-01
5.52836835e-01 -9.66011167e-01 -1.43423772e+00 1.44073233e-01
3.32872897e-01 -8.06469738e-01 1.05469966e+00 -1.10961175e+00
7.57089913e-01 1.45164475e-01 2.42302150e-01 -1.45104468e+00
-4.48787138e-02 -7.61991262e-01 -5.15313804e-01 1.43965673e+00
1.14712119e-01 -3.43015522e-01 1.19174743e+00 8.37365985e-01
-1.13695867e-01 -1.05190468e+00 -1.75063014e-01 -6.42349839e-01
7.34812200e-01 -5.57474554e-01 6.78635418e-01 1.29651749e+00
1.80427536e-01 1.34960070e-01 2.89239347e-01 9.17043090e-02
5.65640271e-01 1.60944477e-01 1.06850648e+00 -1.54146528e+00
-3.68724525e-01 -8.80723953e-01 2.09153786e-01 -1.35304236e+00
1.78221583e-01 -1.01251471e+00 -5.29090762e-02 -1.28498793e+00
1.24687091e-01 -6.88018680e-01 -2.08418518e-01 4.77511257e-01
-5.44486225e-01 -1.68718114e-01 1.05519310e-01 -3.44563425e-01
-7.00590909e-01 1.68731317e-01 1.38551295e+00 1.47786334e-01
-3.27928215e-01 1.79994166e-01 -1.07271683e+00 1.04361403e+00
8.10918212e-01 -2.46571645e-01 -6.73781335e-01 -2.59212941e-01
2.65497863e-01 3.55967432e-02 1.59053341e-01 -1.13416266e+00
5.68070531e-01 -7.25604236e-01 4.09977943e-01 -2.20699534e-01
-2.21467659e-01 -4.96127695e-01 -4.91698176e-01 4.02455002e-01
-8.89970601e-01 -6.45226389e-02 6.68772995e-01 4.47520695e-04
1.25938107e-03 -1.06614351e+00 6.43166542e-01 -1.92298472e-01
-5.03109336e-01 2.80243102e-02 -5.44192731e-01 4.56951082e-01
1.01854467e+00 -2.55357653e-01 -5.75511634e-01 -2.88985580e-01
-6.03524566e-01 7.36406624e-01 2.37091064e-01 2.64402002e-01
5.85692346e-01 -1.07272220e+00 -6.86353326e-01 2.68333882e-01
7.56737590e-03 1.87377438e-01 2.93312699e-01 6.64992034e-01
-7.97320545e-01 7.31772602e-01 2.74781324e-02 -3.26093197e-01
-1.61622739e+00 1.35604113e-01 5.53362370e-01 -9.03086245e-01
-3.44080240e-01 1.17600727e+00 -2.97508657e-01 -1.21269536e+00
5.22693515e-01 -5.06888747e-01 -6.02994204e-01 -4.15478311e-02
9.02112305e-01 4.75764602e-01 -1.72967266e-03 3.57032567e-02
3.55885535e-01 3.13436061e-01 -8.93915147e-02 8.53889138e-02
1.31471348e+00 1.94617331e-01 1.69438660e-01 3.25550705e-01
4.80706155e-01 4.95116770e-01 -9.76036608e-01 -4.81405646e-01
3.62953752e-01 -2.35664994e-01 1.63972415e-02 -1.27931178e+00
-7.57399797e-01 7.93069303e-01 1.34169981e-01 1.31553054e-01
8.12972963e-01 -2.60530472e-01 4.61412102e-01 5.54467857e-01
2.03085721e-01 -8.28151822e-01 1.77874997e-01 8.99414241e-01
2.77484596e-01 -7.79940069e-01 -1.61036849e-01 -3.26641023e-01
-2.49539405e-01 1.26185513e+00 1.34428060e+00 1.97028130e-01
2.13584036e-01 -2.12683082e-02 9.58101451e-02 -2.01479524e-01
-8.95502627e-01 2.14235904e-03 5.80721676e-01 3.51126432e-01
1.02570987e+00 -1.06740199e-01 6.25419542e-02 9.90354300e-01
-8.20612669e-01 2.68284023e-01 6.72124088e-01 1.22140384e+00
-7.33031154e-01 -1.12528956e+00 -4.29074019e-01 3.56097490e-01
-4.05169457e-01 -4.95188206e-01 -4.47807521e-01 8.40263069e-01
-1.27679914e-01 7.94537246e-01 -2.88575441e-01 -3.13950330e-01
5.61676145e-01 7.00481534e-01 8.58408988e-01 -1.06139457e+00
-1.33392859e+00 -6.93738520e-01 -1.89103290e-01 -2.23319635e-01
5.06047979e-02 -4.07678306e-01 -1.11318898e+00 -6.08775198e-01
8.70569609e-03 6.66047215e-01 1.94556653e-01 1.17876863e+00
-8.10114443e-02 1.03599668e+00 -1.20012105e-01 -2.48515725e-01
-8.92856658e-01 -9.81705308e-01 -1.85491785e-01 5.47005013e-02
4.73328829e-02 -2.70413160e-01 -2.17534885e-01 -2.84154434e-02] | [10.005475044250488, 7.333791255950928] |
9d323f76-b661-40df-993e-5c83ab051b89 | a-single-image-dehazing-technique-using-the | null | null | https://ieeexplore.ieee.org/document/9458242 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9458242 | A Single Image Dehazing Technique Using the Dual Transmission Maps Strategy and Gradient-Domain Guided Image Filtering | In this paper, a single image dehazing technique using dual transmission maps strategy and gradient-domain guided image filtering is presented. A new strategy is adopted to compute the dual transmission maps using the dark channel and atmospheric light. Further, the transmission maps are refined to remove any remaining ill effects using the gradient-domain-guided filter. Finally, using the dark channel, atmospheric light, and refined transmission map, the haze-free image is obtained. The dual transmission maps strategy not only removes halo artifacts and reduces the saturation but also ensures the natural appearance in the recovered images. Furthermore, the proposed scheme is evaluated using a wide range of images and compared with state-of-the-art schemes. The comparison shows the superiority of the proposed technique in terms of recovering haze-free images. | ['A. Ullah and E. Elbasi', 'M. Imran', 'S. M. Ehsan'] | 2021-07-17 | null | null | null | journal-2021-7 | ['image-dehazing'] | ['computer-vision'] | [ 4.00193006e-01 -6.01149261e-01 7.96301007e-01 -3.14958543e-02
-2.20337614e-01 -7.98237398e-02 4.25179899e-01 -3.97268355e-01
-4.39967841e-01 8.98756981e-01 -4.03910391e-02 6.63505122e-03
-1.58257574e-01 -9.16657269e-01 -2.51373559e-01 -1.37866890e+00
-4.04264554e-02 -4.72215921e-01 7.80439317e-01 -4.90397364e-01
4.45000112e-01 2.06464276e-01 -1.72354293e+00 2.25112643e-02
1.32719588e+00 9.68708634e-01 6.03571653e-01 6.56246006e-01
1.11623667e-01 6.88235164e-01 -6.32856607e-01 -6.09996216e-03
6.15498602e-01 -5.06529570e-01 -2.41465017e-01 4.36777472e-01
5.29935956e-01 -6.94027305e-01 -3.16287279e-01 1.42157638e+00
3.40981752e-01 5.23792386e-01 3.45176846e-01 -6.46031320e-01
-7.73563862e-01 -5.43183684e-01 -8.50395858e-01 3.18107754e-01
1.22811049e-01 2.29441002e-01 1.87430769e-01 -1.10347223e+00
4.18669343e-01 1.00992465e+00 2.61594951e-01 1.43192425e-01
-9.37874675e-01 -6.63093686e-01 -2.46763304e-01 3.62497151e-01
-1.47237730e+00 -3.36910874e-01 7.50283241e-01 -1.99621886e-01
5.83476126e-01 3.11913252e-01 6.67338967e-01 -1.45398274e-01
6.20533407e-01 6.05553873e-02 1.70277703e+00 -7.52705574e-01
-7.86907747e-02 2.24637285e-01 -1.64155848e-02 8.07717025e-01
5.06701529e-01 3.03770185e-01 -3.79591823e-01 7.91725442e-02
4.04095531e-01 3.76783431e-01 -7.62085736e-01 2.09418103e-01
-8.57099533e-01 4.03041333e-01 3.61387432e-01 1.41580194e-01
-4.73647565e-01 -3.54352027e-01 -2.66887486e-01 3.03279698e-01
8.71325910e-01 2.74204195e-01 8.72024521e-02 5.64827681e-01
-1.21603549e+00 1.55905589e-01 3.58290583e-01 6.40129745e-01
1.26255023e+00 4.27294791e-01 -7.52682984e-02 8.84635627e-01
6.17431700e-01 1.00255442e+00 1.79375913e-02 -9.89480376e-01
8.25355798e-02 2.44928718e-01 4.74226713e-01 -7.46188700e-01
2.01918170e-01 -3.25051159e-01 -1.02911437e+00 9.12078857e-01
-2.86255591e-02 -1.24940403e-01 -1.39495039e+00 1.01292288e+00
3.70483577e-01 3.50365728e-01 4.39339578e-01 9.49209452e-01
7.29072690e-01 1.24422240e+00 -5.49684703e-01 -5.83984494e-01
1.03696144e+00 -1.04396439e+00 -1.25875938e+00 -1.07515074e-01
-1.61908492e-01 -1.34937072e+00 5.45658827e-01 7.06739783e-01
-1.43174291e+00 -5.98889649e-01 -1.27918899e+00 7.33453929e-02
-1.92955703e-01 -1.32950649e-01 1.27682492e-01 6.25133336e-01
-1.31555176e+00 3.84700507e-01 -3.87998760e-01 -2.04084918e-01
-1.16544738e-01 1.15151875e-01 -8.27938169e-02 -6.30572379e-01
-1.26418102e+00 1.00799632e+00 3.12322587e-01 4.21865016e-01
-9.29833472e-01 -5.50914168e-01 -7.45318472e-01 -2.24903867e-01
1.08175054e-01 -4.62496519e-01 5.27332664e-01 -6.43837154e-01
-1.47775292e+00 5.31110704e-01 -3.77477556e-01 -2.18860671e-01
2.62477309e-01 -2.03152359e-01 -7.00526178e-01 5.43549359e-01
-1.52828798e-01 1.06403895e-01 1.48718524e+00 -1.62599337e+00
-8.75710964e-01 -1.37810081e-01 -5.03702052e-02 5.57397604e-01
-1.49663761e-02 -9.98400226e-02 -6.91384614e-01 -3.61440957e-01
1.61956459e-01 -7.75483668e-01 -4.69101556e-02 2.91563850e-02
-2.79694676e-01 5.84571183e-01 1.20596623e+00 -9.22144771e-01
1.36417949e+00 -2.49624109e+00 -1.88709378e-01 2.00993389e-01
2.04817101e-01 4.90017831e-01 6.31575733e-02 4.39982384e-01
2.28912592e-01 -2.36802936e-01 -6.07970417e-01 -2.77808070e-01
-6.17255628e-01 6.48393407e-02 -6.72621280e-02 8.03702950e-01
-8.92425105e-02 1.29063159e-01 -5.95112205e-01 -4.77511942e-01
7.73410201e-01 9.05175030e-01 -2.10205391e-01 3.75898480e-01
2.02266082e-01 6.21583045e-01 3.51087027e-03 4.50285465e-01
1.69857430e+00 3.29074532e-01 -2.35307172e-01 -1.97632313e-01
-7.92655766e-01 -2.30696827e-01 -1.06994224e+00 9.37233746e-01
-4.44838911e-01 7.64026403e-01 5.65766394e-01 -2.89553881e-01
1.03327680e+00 2.30335683e-01 1.07959300e-01 -8.65584791e-01
-6.31133914e-02 3.33727032e-01 -1.74650282e-01 -7.68437207e-01
6.13450348e-01 -3.90401900e-01 7.96651483e-01 1.43133193e-01
-4.30620819e-01 -4.82496232e-01 1.98312879e-01 1.74216509e-01
5.80977798e-01 -1.93215162e-02 -6.88306466e-02 -4.52911377e-01
1.00806677e+00 -2.90580820e-02 3.66142720e-01 4.86874372e-01
-1.58646107e-01 6.69218540e-01 -4.12355036e-01 -3.03424031e-01
-9.56157327e-01 -1.10259461e+00 -3.04643452e-01 5.90412080e-01
9.24264133e-01 2.45734714e-02 -7.19059527e-01 1.91299975e-01
-3.28064293e-01 7.38872170e-01 -5.05806744e-01 -1.30838811e-01
-4.34452116e-01 -1.04644024e+00 -6.75714090e-02 -6.69822752e-01
1.44235134e+00 -6.88458025e-01 -4.48735237e-01 -1.34476408e-01
-3.83825958e-01 -1.02193427e+00 -2.13229284e-01 -3.80209327e-01
-8.35403264e-01 -9.57455099e-01 -9.18132365e-01 -8.93770278e-01
6.88577890e-01 1.28585887e+00 6.61468685e-01 6.65155828e-01
-1.17200896e-01 1.15559779e-01 -3.13672245e-01 -1.83777452e-01
-3.47312838e-01 -8.23758543e-01 -3.71062040e-01 5.36457300e-01
-3.97319570e-02 -3.60893071e-01 -1.22926843e+00 2.70826519e-01
-1.13011622e+00 1.67855591e-01 6.03832781e-01 6.82757556e-01
4.14394617e-01 9.64532912e-01 -1.48496479e-01 -6.53461576e-01
4.93264645e-01 -2.78586149e-01 -8.73553514e-01 5.53724617e-02
-9.20537591e-01 -3.36330235e-01 4.47232097e-01 -8.95073712e-02
-1.87883162e+00 -4.70880777e-01 2.42839903e-01 -2.27955282e-01
-2.88894698e-02 2.17871636e-01 2.37277135e-01 -5.85286558e-01
4.45440799e-01 7.41645813e-01 9.72380340e-02 -5.28204024e-01
-1.22009814e-02 6.64874196e-01 7.13651359e-01 1.24033187e-02
1.30655909e+00 9.99012768e-01 1.64959267e-01 -1.31590629e+00
-5.29312015e-01 -6.07262313e-01 -3.77816707e-01 -4.11966681e-01
1.15904474e+00 -1.01316249e+00 -4.10991758e-01 9.47847724e-01
-1.01053476e+00 -2.08097711e-01 2.99019933e-01 6.77848339e-01
8.56348798e-02 6.92473233e-01 -6.83750033e-01 -1.28505480e+00
-3.97075325e-01 -1.20768523e+00 6.08557880e-01 4.35537934e-01
8.11642885e-01 -9.89335597e-01 -7.45859146e-02 2.61067480e-01
8.38755846e-01 1.42832369e-01 7.17619181e-01 5.33253074e-01
-1.21287429e+00 -7.85880163e-03 -4.92328495e-01 6.25735462e-01
3.66352469e-01 1.35745361e-01 -1.01989949e+00 -4.06871378e-01
3.44220459e-01 3.49824876e-01 9.86245334e-01 5.04237115e-01
4.54069674e-01 -6.99077919e-02 1.18766196e-01 1.01733923e+00
1.98748422e+00 3.55493158e-01 1.22858715e+00 6.65408611e-01
3.56241733e-01 5.50973654e-01 8.16117287e-01 2.82625228e-01
-4.89785336e-04 3.78573447e-01 6.70097709e-01 -7.96291411e-01
-4.65992302e-01 4.67927426e-01 1.35363117e-01 6.18523717e-01
-4.19799805e-01 -4.58466709e-01 -3.44610333e-01 6.01369858e-01
-1.34914577e+00 -9.40169930e-01 -6.85829639e-01 2.36145115e+00
7.03191578e-01 -1.41327038e-01 -5.51235557e-01 8.83692354e-02
7.89776862e-01 3.31498116e-01 -9.76213738e-02 -2.77945280e-01
-3.29774588e-01 2.95165926e-01 7.88018942e-01 1.01704872e+00
-8.94826174e-01 7.22079217e-01 6.33487558e+00 5.07540643e-01
-1.21108675e+00 2.40900636e-01 1.61810070e-01 3.33862811e-01
-1.47162393e-01 7.15942010e-02 -3.81915569e-01 6.67745352e-01
5.84475398e-01 -6.89029694e-02 6.72048509e-01 -1.71670131e-02
7.06017733e-01 -8.81718576e-01 2.44103023e-03 9.56029654e-01
1.38742909e-01 -8.76267314e-01 4.42672670e-02 1.61035523e-01
1.06394184e+00 -1.02329761e-01 2.51319468e-01 -4.00887996e-01
1.07768126e-01 -5.95029175e-01 4.50536609e-01 7.38373339e-01
8.26838017e-01 -6.27964556e-01 9.12593722e-01 1.46366477e-01
-1.05824542e+00 1.47315741e-01 -4.62987632e-01 -7.16575906e-02
1.73679024e-01 7.87672281e-01 -3.48943025e-01 8.24018776e-01
9.22738433e-01 4.93036628e-01 -4.87826735e-01 1.32937634e+00
-2.91304499e-01 5.46907783e-01 -1.14991456e-01 5.47711313e-01
2.96374112e-01 -9.15092766e-01 5.24965942e-01 1.20438993e+00
5.49084783e-01 5.46203494e-01 -8.87972564e-02 6.77519262e-01
3.81933570e-01 -1.79711998e-01 -5.23127735e-01 5.35351157e-01
1.11096479e-01 1.08180273e+00 -3.88011038e-01 -5.22196472e-01
-5.44642508e-01 1.25457370e+00 -6.34121656e-01 1.00860620e+00
-4.65960383e-01 -7.71353900e-01 5.30243754e-01 1.33127406e-01
3.15561086e-01 -2.93897361e-01 1.80220734e-02 -1.05387640e+00
-2.60033518e-01 -6.54218674e-01 -4.79355864e-02 -1.22320127e+00
-7.46886730e-01 6.39584124e-01 1.83561087e-01 -1.27933431e+00
4.32310134e-01 -3.78435969e-01 -7.59804964e-01 1.46769285e+00
-2.36105466e+00 -8.35570991e-01 -9.12635326e-01 1.00130928e+00
6.14996195e-01 1.80319980e-01 3.89501363e-01 4.01795179e-01
-4.31504250e-01 -1.06265835e-01 6.39753222e-01 -5.09598553e-01
8.48011434e-01 -9.74316001e-01 -2.65526891e-01 1.50556517e+00
-8.34281147e-01 7.81656265e-01 1.00275266e+00 -7.40576267e-01
-1.21620154e+00 -9.73746240e-01 3.87910217e-01 2.96333224e-01
2.11536124e-01 3.23881358e-02 -1.23316014e+00 2.12251008e-01
9.32727039e-01 -6.92005530e-02 3.02278638e-01 -8.88143480e-01
-1.06094465e-01 -3.90351653e-01 -1.48628843e+00 4.40708250e-01
1.48095801e-01 -3.07493806e-01 -3.62240881e-01 2.15415820e-01
5.96536636e-01 -3.35943848e-01 -5.69220841e-01 3.49647015e-01
5.15714943e-01 -1.44536662e+00 9.26266909e-01 4.49129611e-01
1.81459263e-01 -9.67772305e-01 -3.23065877e-01 -1.33259249e+00
-5.26740551e-01 -8.13196421e-01 3.02872926e-01 8.93801749e-01
3.13684434e-01 -9.53998983e-01 1.87684372e-01 1.58897758e-01
-2.86646426e-01 -1.19051568e-01 -3.55980814e-01 -4.25009876e-01
-4.30892199e-01 2.39842594e-01 3.32135022e-01 7.05932677e-01
-5.84597170e-01 3.19789946e-02 -9.56272066e-01 6.96733057e-01
1.34320331e+00 -6.04246138e-03 6.19464517e-01 -1.04556656e+00
1.12659715e-01 2.90845811e-01 -1.90150559e-01 -6.31138325e-01
-4.84116435e-01 -2.24652514e-01 3.30776453e-01 -1.76178396e+00
1.70252681e-01 -2.84715816e-02 -4.32141989e-01 -1.25844434e-01
-4.25244778e-01 7.85225034e-01 2.33605132e-01 6.01529241e-01
-2.42512167e-01 2.97170520e-01 1.50383413e+00 -9.93235335e-02
-2.31207088e-01 -1.43383205e-01 -3.54835093e-01 4.48828131e-01
8.25014830e-01 -1.95339233e-01 -5.44943511e-01 -6.27291858e-01
-1.12040557e-01 -2.58558393e-01 3.72594506e-01 -1.12162447e+00
1.64734051e-01 -2.51142263e-01 4.83255088e-01 -6.61755621e-01
7.64944971e-01 -8.84123743e-01 1.70999408e-01 5.92904449e-01
2.94111788e-01 -2.97463179e-01 1.07688904e-01 6.24516070e-01
-4.01935011e-01 -2.38217160e-01 1.39902353e+00 -2.95581102e-01
-8.49272907e-01 1.16390266e-01 -5.81868529e-01 -4.83413786e-01
9.89746213e-01 -7.00105786e-01 -6.43534660e-01 -5.70347190e-01
-4.29461390e-01 -5.98225323e-03 8.29000413e-01 -2.86793262e-01
1.14218438e+00 -7.73507237e-01 -8.16058517e-01 4.75382209e-01
-5.40565811e-02 -1.76240161e-01 6.38171911e-01 1.10717797e+00
-1.13772261e+00 -4.67287339e-02 -1.54152006e-01 -4.39891666e-01
-1.56032062e+00 4.05589074e-01 3.23100686e-01 1.37823597e-01
-8.25701892e-01 5.77785313e-01 6.43491983e-01 1.71684012e-01
-1.37321025e-01 1.04642585e-01 -3.69775780e-02 -6.34493411e-01
1.01070976e+00 6.58862948e-01 -4.16796282e-02 -8.03764343e-01
-7.49506280e-02 9.12187457e-01 1.30703285e-01 -3.15761387e-01
1.27257979e+00 -9.26642835e-01 -6.85802817e-01 4.08826508e-02
9.58221316e-01 4.27165926e-01 -1.18057120e+00 -1.74453408e-01
-6.68551385e-01 -1.19096696e+00 6.49310708e-01 -7.16854632e-01
-1.18459070e+00 9.99496639e-01 1.02055609e+00 3.68298143e-01
1.71724856e+00 -7.14895010e-01 8.06186080e-01 -3.89908552e-02
2.50688754e-02 -7.58062184e-01 -5.30594289e-02 3.06427747e-01
4.61704403e-01 -1.14679790e+00 4.10960168e-01 -6.49886072e-01
-3.46766770e-01 1.02169776e+00 3.43063504e-01 -6.37194812e-02
7.61199772e-01 5.81327714e-02 3.08826804e-01 -2.33796388e-01
-4.67817038e-01 -4.82978344e-01 1.10344887e-01 8.06005418e-01
2.76811123e-01 -3.30248713e-01 -3.77805144e-01 -7.42106318e-01
4.21153069e-01 -2.80215275e-02 9.29800510e-01 7.97274768e-01
-1.07201815e+00 -5.40287256e-01 -1.08213508e+00 7.29965493e-02
-6.15339220e-01 -3.58040482e-01 9.30147991e-02 6.56767547e-01
3.66604984e-01 1.64274931e+00 -2.52393514e-01 -1.78488672e-01
6.29582331e-02 -2.29155436e-01 3.93303424e-01 -3.01974177e-01
-9.12815407e-02 5.36884189e-01 -1.13542251e-01 -1.56292617e-01
-7.89084494e-01 1.84063762e-02 -1.02565944e+00 -5.03492355e-01
-6.63740873e-01 3.46228242e-01 7.72739768e-01 5.07528901e-01
1.08622566e-01 4.02011454e-01 9.91772711e-01 -8.93243313e-01
2.54930943e-01 -9.71090078e-01 -1.06428599e+00 3.68454784e-01
9.56275403e-01 -6.37150943e-01 -8.25157464e-01 1.96124360e-01] | [10.846946716308594, -3.1593830585479736] |
0033596c-ac93-48ed-b71a-53208359c5c8 | enhance-enriching-health-data-by-annotations | 2107.12734 | null | https://arxiv.org/abs/2107.12734v2 | https://arxiv.org/pdf/2107.12734v2.pdf | ENHANCE (ENriching Health data by ANnotations of Crowd and Experts): A case study for skin lesion classification | We present ENHANCE, an open dataset with multiple annotations to complement the existing ISIC and PH2 skin lesion classification datasets. This dataset contains annotations of visual ABC (asymmetry, border, colour) features from non-expert annotation sources: undergraduate students, crowd workers from Amazon MTurk and classic image processing algorithms. In this paper we first analyse the correlations between the annotations and the diagnostic label of the lesion, as well as study the agreement between different annotation sources. Overall we find weak correlations of non-expert annotations with the diagnostic label, and low agreement between different annotation sources. We then study multi-task learning (MTL) with the annotations as additional labels, and show that non-expert annotations can improve (ensembles of) state-of-the-art convolutional neural networks via MTL. We hope that our dataset can be used in further research into multiple annotations and/or MTL. All data and models are available on Github: https://github.com/raumannsr/ENHANCE. | ['Veronika Cheplygina', 'Josien P. W. Pluim', 'Max Joosten', 'Gerard Schouten', 'Ralf Raumanns'] | 2021-07-27 | null | null | null | null | ['skin-lesion-classification'] | ['medical'] | [ 8.92293304e-02 1.75475180e-01 -2.64212549e-01 -2.39569157e-01
-9.62058127e-01 -1.03559470e+00 5.71181536e-01 5.32693565e-01
-6.00200891e-01 5.47780633e-01 1.29655540e-01 2.77462490e-02
-1.48021847e-01 -3.28106016e-01 -3.68848622e-01 -6.77240968e-01
2.42445111e-01 4.70255047e-01 7.60933936e-01 -5.37714846e-02
2.65473485e-01 3.00741613e-01 -1.42931974e+00 1.01046705e+00
5.87689817e-01 1.23979986e+00 -3.99519578e-02 7.84220994e-01
5.33798039e-02 9.43062603e-01 -4.36438829e-01 -7.35096455e-01
9.16605219e-02 -5.94806578e-03 -1.25079191e+00 -1.08852416e-01
8.86098742e-01 1.52863443e-01 1.31600853e-02 1.00825787e+00
8.66445303e-01 -4.18270707e-01 7.41179466e-01 -1.38904262e+00
-9.50933158e-01 2.04879612e-01 -8.80774558e-01 2.82672584e-01
2.44880185e-01 2.14342102e-01 8.33844841e-01 -7.29949951e-01
9.98724401e-01 9.13496673e-01 1.15022361e+00 5.63158512e-01
-8.37180972e-01 -4.77147579e-01 -3.07920545e-01 5.81480205e-01
-1.61576235e+00 -3.37238431e-01 3.23128730e-01 -6.05938494e-01
6.96284950e-01 3.61294240e-01 4.56872851e-01 1.42908561e+00
-9.20986310e-02 9.41946387e-01 1.81283522e+00 -5.53617656e-01
-1.17288388e-01 5.32427013e-01 -4.52386774e-02 1.10910463e+00
-1.75596867e-02 -1.03546277e-01 -5.83963394e-01 -3.59261967e-02
5.87173402e-01 -3.51922810e-01 -6.13067448e-02 -1.12558767e-01
-1.08674181e+00 6.88849390e-01 4.82553691e-01 3.91840398e-01
-1.36861712e-01 1.63390040e-01 6.07868731e-01 1.64709285e-01
6.35109663e-01 2.01145262e-01 -6.72038376e-01 3.95763442e-02
-9.46101308e-01 -1.12847522e-01 7.91973770e-01 5.28234720e-01
6.06489718e-01 -5.11127830e-01 -4.14116055e-01 1.25573730e+00
6.86488375e-02 1.82299748e-01 5.47788560e-01 -1.13746548e+00
-9.07934904e-02 6.03264332e-01 -2.28628501e-01 -5.48113585e-01
-6.71653926e-01 -1.88729554e-01 -5.58275461e-01 5.25385678e-01
8.15044582e-01 -1.81664973e-01 -9.54152524e-01 1.19921768e+00
2.15227246e-01 -1.45182699e-01 -3.80817652e-01 8.27073991e-01
1.39783299e+00 -2.42704198e-01 2.74408996e-01 2.98863113e-01
1.68568695e+00 -1.29338062e+00 -4.94413018e-01 -7.42074847e-02
9.05784070e-01 -1.03211141e+00 8.01587939e-01 6.08005524e-01
-8.95048857e-01 -3.49294931e-01 -4.75492418e-01 -2.17301711e-01
-8.82423341e-01 6.20838523e-01 4.55090404e-01 6.84388876e-01
-1.43123960e+00 4.69832569e-01 -5.53693473e-01 -7.72784412e-01
7.92010307e-01 1.83400095e-01 -8.21506500e-01 -6.41660243e-02
-8.13045502e-01 1.34416604e+00 2.60241210e-01 -1.14680238e-01
-7.65984356e-01 -8.33700061e-01 -5.42930007e-01 -6.18616223e-01
4.59819585e-01 -2.65089095e-01 1.26744258e+00 -1.28132832e+00
-9.34692800e-01 1.78254783e+00 2.21071150e-02 -5.06070890e-02
8.13890457e-01 7.23226070e-02 -2.91159689e-01 3.67661327e-01
1.46604508e-01 9.95598733e-01 5.04062653e-01 -1.28519976e+00
-7.63781846e-01 -3.33656609e-01 4.93446141e-02 -6.67585433e-02
-2.00357467e-01 3.44861984e-01 -4.92785215e-01 -4.74146426e-01
-5.75376868e-01 -1.10902321e+00 -8.46596882e-02 5.29727101e-01
-5.57525635e-01 -5.24712622e-01 7.33047247e-01 -8.78521621e-01
8.17700088e-01 -1.98297119e+00 3.27832364e-02 1.50979146e-01
4.93472308e-01 4.26892519e-01 -3.31767678e-01 3.07893902e-01
-3.11895341e-01 5.69975793e-01 -1.15225529e-02 -4.27942961e-01
-2.26887092e-01 6.94791600e-02 5.87148249e-01 5.72560489e-01
2.95837432e-01 1.00165403e+00 -6.94979012e-01 -8.69942069e-01
3.44292343e-01 5.08547902e-01 -1.93267036e-03 -2.24826872e-01
6.89909384e-02 4.77053732e-01 -4.94350493e-02 1.12662160e+00
3.79659504e-01 -4.44783896e-01 -1.46555036e-01 -5.27109385e-01
-9.90291238e-02 -4.68525201e-01 -1.04427922e+00 1.50464737e+00
-4.38821197e-01 8.68905485e-01 2.75015175e-01 -5.81252933e-01
5.44066668e-01 4.07376528e-01 5.46686888e-01 -5.48585713e-01
1.90975606e-01 3.22214633e-01 1.29793547e-02 -8.36281061e-01
1.84099063e-01 1.16718970e-01 1.81571096e-01 3.26169401e-01
5.72484791e-01 5.99471554e-02 3.62334549e-01 8.28800872e-02
1.15637600e+00 -6.53189495e-02 5.26872873e-01 -1.52454868e-01
4.80615199e-01 8.82973522e-02 2.17649311e-01 5.52352071e-01
-6.44771457e-01 8.15333903e-01 7.35595763e-01 -5.46093881e-01
-1.10080147e+00 -8.90570879e-01 -4.59021211e-01 1.41714716e+00
-2.99771845e-01 -5.43686152e-01 -6.79050326e-01 -9.78086233e-01
5.64594120e-02 1.07793599e-01 -1.25928950e+00 2.73118556e-01
4.35147993e-02 -8.40852857e-01 1.16701174e+00 7.22388744e-01
3.86514872e-01 -1.07323492e+00 -3.62991929e-01 -4.40126836e-01
-1.12268321e-01 -1.12426877e+00 -1.16730139e-01 2.40416497e-01
-1.47892237e-01 -1.46096170e+00 -9.66446638e-01 -7.01278150e-01
6.82360172e-01 -2.75647819e-01 1.01607883e+00 4.47044551e-01
-9.49503481e-01 5.72386682e-01 -6.02044702e-01 -4.78796482e-01
-3.05214465e-01 2.82108426e-01 -3.56612504e-01 -4.19488847e-02
2.28056788e-01 -1.52654812e-01 -6.63841724e-01 5.72464764e-01
-1.07738495e+00 6.72844350e-02 5.86778045e-01 5.85604787e-01
6.23427570e-01 -3.85748804e-01 4.31772321e-01 -1.09050786e+00
4.57686126e-01 -4.20209676e-01 -6.50220960e-02 5.16018212e-01
-3.23325127e-01 -3.10440928e-01 -3.66911362e-03 -3.68787259e-01
-9.56706345e-01 2.89822310e-01 -2.04686835e-01 -4.31947857e-01
-6.77565217e-01 2.28084922e-01 4.36360687e-01 -6.82247043e-01
9.62681353e-01 -3.67219806e-01 -8.33760649e-02 -4.02778894e-01
5.62058032e-01 8.44130874e-01 4.46438938e-01 -4.10620958e-01
3.78192693e-01 4.36914265e-01 1.39771581e-01 -6.16488278e-01
-1.16549253e+00 -8.06516945e-01 -1.24714732e+00 -5.61452091e-01
1.06980240e+00 -7.22647905e-01 -4.37443197e-01 7.75358737e-01
-9.65749800e-01 -6.58292353e-01 -1.08691923e-01 -9.42861363e-02
-3.95365894e-01 3.94989341e-01 -6.38201773e-01 -6.75893247e-01
-2.68158615e-01 -1.10432613e+00 1.34045100e+00 4.63447124e-01
-4.82497394e-01 -1.45758784e+00 6.42247647e-02 9.22417700e-01
4.18102950e-01 6.08130932e-01 4.85732734e-01 -8.96923065e-01
1.61733031e-01 -4.54974920e-01 -5.91706038e-01 3.50738496e-01
-1.91211980e-02 3.56219858e-01 -1.34890211e+00 -1.56058207e-01
-8.43805909e-01 -9.10381973e-01 1.20990193e+00 2.33040556e-01
1.44046915e+00 -1.63158961e-02 -4.94645119e-01 4.62049067e-01
1.46386218e+00 -3.69327247e-01 4.92018849e-01 2.94115454e-01
7.83865154e-01 9.08229530e-01 3.26306909e-01 2.19246939e-01
3.87141317e-01 5.32880545e-01 3.77599835e-01 -4.24576491e-01
-6.55444920e-01 2.15525538e-01 -3.57642248e-02 3.09092134e-01
-6.92424893e-01 -1.16372794e-01 -1.34405577e+00 7.32247889e-01
-1.77156615e+00 -6.48554325e-01 -5.59347630e-01 1.78619504e+00
9.66349900e-01 -2.80447990e-01 3.81385267e-01 6.80936724e-02
8.43670011e-01 -1.67766921e-02 -2.44887993e-01 -4.02245551e-01
-3.38211656e-01 4.51712698e-01 8.66809845e-01 3.13603163e-01
-1.42537010e+00 9.58377540e-01 6.31502438e+00 1.25331867e+00
-1.11744618e+00 7.24436045e-01 7.05946505e-01 -1.44999370e-01
3.35291654e-01 -3.51471096e-01 -6.39313400e-01 3.72381330e-01
8.28038096e-01 2.47442678e-01 2.19982639e-01 6.32662952e-01
-2.43073389e-01 -3.54239583e-01 -9.51253235e-01 7.03759432e-01
4.32510316e-01 -1.21599638e+00 -4.91231024e-01 9.83879343e-02
8.24309945e-01 3.60443383e-01 1.67605087e-01 -1.60691869e-02
2.81758785e-01 -1.08574259e+00 5.03215730e-01 7.44857371e-01
1.05504024e+00 -1.92693666e-01 1.06057918e+00 -5.08199669e-02
-1.01075053e+00 -1.31328076e-01 2.09955145e-02 3.56485903e-01
-1.14685521e-01 3.47282708e-01 -7.32237816e-01 4.53019798e-01
1.13591945e+00 7.33973145e-01 -1.66547716e+00 1.37180233e+00
-4.42474514e-01 3.61437559e-01 -2.80437201e-01 1.10769264e-01
2.01895699e-01 3.54405671e-01 1.08567759e-01 1.50717628e+00
-1.93648748e-02 -3.53943080e-01 2.17811227e-01 4.32655722e-01
1.03807248e-01 2.91825205e-01 -4.23092932e-01 8.47851261e-02
2.66624205e-02 1.95470357e+00 -9.91432905e-01 -1.47624061e-01
-4.79261905e-01 1.20976055e+00 4.59462494e-01 2.71002855e-02
-7.12250173e-01 -2.32338190e-01 1.47922903e-01 2.23485574e-01
1.28557533e-02 3.83484483e-01 -3.20722491e-01 -8.37173104e-01
-1.94459036e-01 -6.31695569e-01 8.22352827e-01 -1.24389672e+00
-1.83270574e+00 4.36921120e-01 -1.60888344e-01 -8.96780074e-01
2.11992353e-01 -1.10707629e+00 -6.15434647e-01 6.06544554e-01
-1.59938562e+00 -1.88968921e+00 -6.71997964e-01 7.10667014e-01
2.64766246e-01 -1.03092656e-01 9.77786779e-01 3.99158090e-01
-6.30237937e-01 6.67351127e-01 -1.55125737e-01 5.85332930e-01
1.43426526e+00 -1.60897303e+00 -2.42633507e-01 2.01145917e-01
4.44257259e-02 -5.42854145e-02 5.48194721e-02 -5.14342368e-01
-4.80561167e-01 -1.12500954e+00 4.52465832e-01 -9.58631516e-01
9.68048692e-01 1.42586485e-01 -6.62083209e-01 6.70528293e-01
6.40562892e-01 5.53542852e-01 1.22667980e+00 2.21697956e-01
-6.84788167e-01 1.31886616e-01 -1.29728651e+00 5.48126549e-02
8.77596021e-01 -5.68564355e-01 -1.98794410e-01 8.00963759e-01
1.20606318e-01 -5.02395093e-01 -1.23736262e+00 4.18949544e-01
7.58747876e-01 -9.55942750e-01 8.53715539e-01 -5.81324339e-01
6.72828555e-01 -1.97527073e-02 -5.70946783e-02 -1.42994010e+00
-2.32230753e-01 6.46680444e-02 2.62087315e-01 1.32676339e+00
7.22011149e-01 -3.77518177e-01 6.17946327e-01 4.08327281e-01
-1.03185005e-01 -9.05726671e-01 -1.05147982e+00 -5.46996713e-01
3.54505062e-01 -2.79974937e-01 -2.52106607e-01 1.15586877e+00
-6.92544132e-02 -4.67597019e-05 -1.83438271e-01 2.35874634e-02
5.17964363e-01 -4.79101896e-01 3.40375543e-01 -1.42624295e+00
-1.24362633e-01 -7.19569325e-01 -5.52749097e-01 3.87179881e-01
1.20948635e-01 -1.26055264e+00 -2.91618675e-01 -1.79532421e+00
3.95753950e-01 -4.34687048e-01 -3.41328591e-01 1.37308109e+00
-2.19533015e-02 1.14738226e+00 2.54915029e-01 2.28242129e-01
-1.03381956e+00 -2.73572534e-01 1.27525175e+00 -7.32436329e-02
3.47080141e-01 -3.72630149e-01 -6.19631767e-01 1.00867951e+00
9.32719111e-01 -3.25544804e-01 2.84879565e-01 -3.85286868e-01
3.03706765e-01 -4.41851646e-01 7.84831882e-01 -1.09134579e+00
3.00621331e-01 1.44043833e-01 8.58695209e-01 -7.79790431e-02
3.33747506e-01 -6.05993629e-01 -1.47113204e-01 2.51138091e-01
-4.78395969e-01 -1.12363681e-01 3.18305284e-01 1.86059743e-01
2.70917397e-02 -5.50555885e-01 9.53733087e-01 -5.22363782e-01
-8.29700947e-01 1.33345395e-01 -3.27369809e-01 7.97102377e-02
1.23007309e+00 3.58108915e-02 -9.86647308e-01 -1.04561105e-01
-1.29134369e+00 2.78683662e-01 5.14055848e-01 5.18531084e-01
1.51443347e-01 -1.23283005e+00 -8.00748706e-01 -2.99527407e-01
4.88596499e-01 -3.40754181e-01 3.86346549e-01 1.35622370e+00
-5.96811593e-01 2.14127660e-01 -6.74327433e-01 -5.75205088e-01
-1.77776337e+00 2.07281455e-01 5.02077579e-01 -1.73413768e-01
5.09431437e-02 9.26617503e-01 -3.61171305e-01 -7.71370411e-01
1.57746345e-01 1.45427272e-01 -3.32181752e-01 6.50561154e-01
4.86828446e-01 4.71190155e-01 1.94749251e-01 -6.69529736e-01
-4.33288425e-01 7.38523960e-01 -8.62412527e-02 -1.98245533e-02
1.25668359e+00 1.10234819e-01 -3.55592012e-01 4.80110645e-01
1.01884770e+00 -1.17989697e-01 -6.42449021e-01 -1.10953718e-01
1.10791467e-01 -3.36100519e-01 1.34556547e-01 -1.57171392e+00
-1.26394546e+00 9.01529968e-01 1.10169601e+00 2.16228873e-01
1.03093970e+00 4.20822650e-01 2.26712197e-01 1.24090843e-01
1.30879894e-01 -1.29293048e+00 3.41256618e-01 9.29492787e-02
8.90347958e-01 -1.54535222e+00 -5.45551395e-03 -5.85195601e-01
-1.00754023e+00 1.12012506e+00 9.51366603e-01 1.55489810e-03
6.56223118e-01 3.83635074e-01 4.63614583e-01 -4.13939625e-01
-6.38647556e-01 -7.56444156e-01 5.21376133e-01 1.00082362e+00
7.42841780e-01 6.34856448e-02 -3.76823246e-01 4.99371678e-01
5.26068397e-02 1.22583121e-01 5.61493456e-01 6.50605559e-01
-1.32197216e-01 -1.27820325e+00 -3.16427171e-01 6.74579501e-01
-8.89418006e-01 -7.44200274e-02 -1.05379951e+00 8.65289867e-01
9.04241443e-01 7.33301461e-01 2.76795961e-02 -1.71423972e-01
1.94465801e-01 2.74976254e-01 6.70669615e-01 -6.41647339e-01
-8.51731658e-01 -1.21084198e-01 5.15828133e-01 -5.63757122e-01
-7.26229429e-01 -7.25674808e-01 -7.86109388e-01 3.39868083e-03
-2.44688660e-01 -3.05038631e-01 6.83484256e-01 7.78865397e-01
2.55331267e-02 4.34742093e-01 8.24666470e-02 -7.16742396e-01
2.50979781e-01 -1.16430163e+00 -4.84137297e-01 4.92583126e-01
1.95133854e-02 -7.35247314e-01 -3.14323157e-01 2.42606580e-01] | [15.663431167602539, -2.9090678691864014] |
4acb536c-2a26-4d6f-a139-6c42f615885d | eusdisparser-improving-an-under-resourced | null | null | https://aclanthology.org/W19-2709 | https://aclanthology.org/W19-2709.pdf | EusDisParser: improving an under-resourced discourse parser with cross-lingual data | Development of discourse parsers to annotate the relational discourse structure of a text is crucial for many downstream tasks. However, most of the existing work focuses on English, assuming a quite large dataset. Discourse data have been annotated for Basque, but training a system on these data is challenging since the corpus is very small. In this paper, we create the first demonstrator based on RST for Basque, and we investigate the use of data in another language to improve the performance of a Basque discourse parser. More precisely, we build a monolingual system using the small set of data available and investigate the use of multilingual word embeddings to train a system for Basque using data annotated for another language. We found that our approach to building a system limited to the small set of data available for Basque allowed us to get an improvement over previous approaches making use of many data annotated in other languages. At best, we get 34.78 in F1 for the full discourse structure. More data annotation is necessary in order to improve the results obtained with these techniques. We also describe which relations match with the gold standard, in order to understand these results. | ["Chlo{\\'e} Braud", 'Mikel Iruskieta'] | 2019-06-01 | null | null | null | ws-2019-6 | ['multilingual-word-embeddings'] | ['methodology'] | [-1.81237325e-01 7.28531837e-01 5.57918698e-02 -4.11790371e-01
-9.30762053e-01 -8.60814035e-01 9.82861817e-01 5.29202580e-01
-7.01155782e-01 1.11867988e+00 7.57769823e-01 -4.21433032e-01
2.08557293e-01 -7.29247153e-01 -5.53616822e-01 -4.30265903e-01
1.44028133e-02 8.97635996e-01 6.74888372e-01 -8.64172876e-01
2.25620866e-01 5.20651191e-02 -1.19912505e+00 7.36757755e-01
6.94026768e-01 1.61597416e-01 5.85184515e-01 7.56338477e-01
-3.15137267e-01 1.14338756e+00 -1.04278445e+00 -4.04208750e-01
-1.72665268e-01 -5.57238817e-01 -1.52675855e+00 -3.44504207e-01
2.85196245e-01 -1.55436501e-01 3.57755576e-03 5.75798213e-01
4.18969095e-01 1.64424941e-01 5.02888381e-01 -7.24408805e-01
-5.13990879e-01 1.11737692e+00 3.76923871e-03 5.08251846e-01
7.08862066e-01 -4.87388015e-01 1.08639538e+00 -4.24803615e-01
1.20416307e+00 1.37877607e+00 3.54160368e-01 6.08059525e-01
-1.11744964e+00 -3.19555789e-01 -6.17245631e-03 3.53153735e-01
-1.01032782e+00 -7.90409684e-01 6.65168583e-01 -5.53350329e-01
1.46207023e+00 2.29096338e-01 4.63164002e-01 9.80715930e-01
-3.19686562e-01 5.75404465e-01 1.16533065e+00 -9.34125304e-01
-1.74733266e-01 3.32079381e-01 2.75218755e-01 4.09486622e-01
-1.25114366e-01 -1.91027895e-01 -3.58022034e-01 5.25870919e-02
4.44960415e-01 -1.13625491e+00 -2.51540035e-01 3.70239019e-02
-1.30788994e+00 9.75484669e-01 3.48991871e-01 9.84399259e-01
1.67588726e-01 -2.76231468e-01 9.42883134e-01 6.25887513e-01
6.98475957e-01 9.32167411e-01 -4.62193966e-01 -5.86532354e-01
-5.11894941e-01 3.81512165e-01 1.21659338e+00 7.01112330e-01
2.50103742e-01 -2.25457966e-01 2.17397347e-01 1.21668947e+00
5.53727895e-02 -1.96108762e-02 4.10443038e-01 -1.09578657e+00
1.03843999e+00 5.57028592e-01 5.57236932e-02 -7.12576151e-01
-5.04782796e-01 3.57972234e-01 2.24534143e-02 9.81890485e-02
1.05032909e+00 -4.31058675e-01 -3.36564660e-01 1.63509154e+00
3.73899937e-01 -5.05991995e-01 5.07109463e-01 7.73593485e-01
9.23276663e-01 7.69399762e-01 -3.97023372e-02 -3.53228986e-01
1.42490900e+00 -8.36343706e-01 -9.16075230e-01 1.08726695e-01
1.28368163e+00 -1.06486058e+00 9.79509890e-01 2.76286244e-01
-1.09652138e+00 -3.42696607e-01 -1.20894885e+00 -4.68394756e-01
-5.02682507e-01 -7.40410984e-02 4.18716460e-01 5.97995341e-01
-8.60949814e-01 3.72521907e-01 -1.04965127e+00 -6.82745159e-01
2.72933785e-02 1.83282226e-01 -4.13794518e-01 3.26538906e-02
-1.32885420e+00 1.60343707e+00 9.35743034e-01 -2.63031721e-01
-3.52640569e-01 -2.37442285e-01 -1.04667568e+00 -2.21220255e-01
4.93176699e-01 5.34288883e-02 1.41570628e+00 -8.89983714e-01
-1.45805848e+00 1.18019509e+00 -1.63880661e-01 -4.75590318e-01
4.30196792e-01 -2.32846752e-01 -2.16692165e-01 1.12965321e-02
1.48171604e-01 3.96513462e-01 1.91424545e-02 -1.21014917e+00
-9.09252048e-01 -3.27879280e-01 6.68503761e-01 2.51483798e-01
-2.37797514e-01 7.15960205e-01 -8.58766679e-03 -3.08474362e-01
-2.39221171e-01 -9.24320996e-01 2.06903845e-01 -8.34675431e-01
4.63586971e-02 -7.40183294e-01 7.34477043e-01 -1.00934982e+00
1.41272998e+00 -1.90788376e+00 3.02281380e-01 -2.19627097e-01
-8.00833032e-02 4.47194844e-01 3.18421647e-02 7.79210329e-01
-1.23774797e-01 2.24438637e-01 -5.83502278e-02 5.09081073e-02
-2.01876059e-01 5.26701689e-01 -2.34323628e-02 2.21682280e-01
4.56812322e-01 6.25051737e-01 -9.08629715e-01 -6.52587950e-01
9.38336998e-02 2.82502502e-01 -4.35095847e-01 2.67809421e-01
-3.29654217e-01 5.16653836e-01 -3.51504415e-01 1.33810505e-01
1.30039267e-02 3.18437576e-01 7.06569791e-01 1.37673393e-01
-4.87640977e-01 9.43623245e-01 -9.49784040e-01 1.62621593e+00
-7.20790982e-01 1.11141276e+00 2.27591947e-01 -1.14009476e+00
8.02871644e-01 8.24871778e-01 3.33545655e-01 -6.33055210e-01
3.15213740e-01 5.87697566e-01 7.06079602e-01 -8.35826814e-01
8.38886023e-01 -1.21094413e-01 -2.15325668e-01 5.18032372e-01
8.47565755e-02 -1.75524622e-01 8.78426015e-01 -4.93060127e-02
9.72173750e-01 2.58586854e-01 4.50999290e-01 -4.70338792e-01
7.43661642e-01 7.48022437e-01 3.27034652e-01 9.32053179e-02
-1.24119138e-02 4.33371365e-01 8.44787538e-01 -2.71874160e-01
-1.41683400e+00 -5.65967321e-01 -4.90210801e-01 1.35230732e+00
-2.46140972e-01 -7.37167537e-01 -9.22150075e-01 -6.91362739e-01
-4.87123877e-01 9.16790605e-01 -4.24777567e-01 8.35020423e-01
-1.50317645e+00 -8.13123703e-01 7.49484301e-01 4.67404246e-01
3.67848694e-01 -1.20039332e+00 -5.79644442e-01 6.04443729e-01
-2.94317812e-01 -1.04704654e+00 2.02017397e-01 1.14632167e-01
-3.54713321e-01 -1.52690756e+00 -4.09866363e-01 -1.06187820e+00
1.47026449e-01 -3.57206315e-01 1.06772244e+00 1.37198284e-01
3.26302260e-01 -5.90575077e-02 -7.84421086e-01 -5.20674050e-01
-1.04952908e+00 4.92811680e-01 -4.11442578e-01 -8.83360684e-01
5.26142120e-01 -4.02366668e-02 3.18161935e-01 -9.76577178e-02
-7.80078173e-01 -8.48881006e-02 -1.10515706e-01 1.12668824e+00
-1.83321029e-01 -6.36468977e-02 6.57405615e-01 -1.39372396e+00
9.53521073e-01 -4.35886234e-01 -4.69728798e-01 1.79552540e-01
-8.32224190e-02 6.50849789e-02 6.18511796e-01 -4.08405155e-01
-1.41777003e+00 -3.06906939e-01 -6.69131160e-01 5.79951167e-01
-6.51775375e-02 6.83788240e-01 -1.94886625e-01 5.34864902e-01
8.58006299e-01 -6.27124190e-01 -2.30808537e-02 -4.47026253e-01
4.99569505e-01 9.46197093e-01 2.50719696e-01 -8.98849547e-01
2.27744773e-01 -9.85094383e-02 -3.55964631e-01 -1.12135363e+00
-6.84677064e-01 -4.62140173e-01 -1.01453888e+00 4.50128615e-02
1.05929077e+00 -9.05856311e-01 -5.24343669e-01 -1.05816670e-01
-1.44923842e+00 -6.26659214e-01 -2.26447120e-01 4.85718966e-01
-5.69135964e-01 5.75038120e-02 -7.67791331e-01 -6.82003736e-01
8.88334289e-02 -1.21216929e+00 6.78014934e-01 -2.62137920e-01
-8.19586217e-01 -1.31864142e+00 4.52890098e-01 4.94871348e-01
1.50357395e-01 2.61877507e-01 1.08891070e+00 -1.08148909e+00
-1.18777283e-01 2.63722539e-01 -2.68950731e-01 3.53255451e-01
1.33683383e-01 6.34721341e-03 -9.16661739e-01 -3.19732189e-01
-1.14528932e-01 -7.44916916e-01 4.93995905e-01 -3.69018055e-02
2.90110469e-01 -9.17405188e-02 -1.35234207e-01 -1.20097034e-01
1.16081536e+00 4.39438850e-01 4.75338459e-01 8.58079314e-01
7.88518727e-01 1.13153160e+00 8.40255499e-01 -1.04302503e-01
7.21136153e-01 7.23093331e-01 -1.36207938e-01 2.78841972e-01
-3.14386249e-01 9.20613334e-02 5.86018980e-01 1.27915871e+00
-2.89049536e-01 -1.88017711e-01 -1.12537837e+00 1.02112103e+00
-1.88248348e+00 -8.60981643e-01 -4.43410665e-01 1.78399575e+00
1.15354931e+00 1.82918727e-01 2.48065084e-01 1.26730919e-01
4.24670577e-01 3.15119922e-01 2.87646532e-01 -8.79513443e-01
-1.11762084e-01 4.43246216e-01 2.05998525e-01 9.27733302e-01
-1.17051399e+00 1.08440447e+00 6.13951874e+00 4.95087296e-01
-9.98601973e-01 3.61683607e-01 2.33825203e-02 1.97098389e-01
-1.02374911e-01 2.17276737e-01 -8.12050641e-01 2.90787667e-01
1.37721264e+00 -1.56883180e-01 2.20545098e-01 5.15514195e-01
1.22830816e-01 -2.40675956e-01 -1.29352832e+00 4.65841651e-01
3.27508241e-01 -1.35883772e+00 -5.14281273e-01 -1.33385673e-01
5.61951876e-01 1.95701897e-01 -7.97362804e-01 5.54071546e-01
5.11085212e-01 -1.00086951e+00 5.15768468e-01 -5.83984964e-02
5.39773405e-01 -5.90987206e-01 1.04294014e+00 4.77944314e-01
-7.91688621e-01 1.00488096e-01 -2.39818051e-01 -3.85245711e-01
3.74242902e-01 -9.06349644e-02 -1.45908415e+00 6.02290869e-01
4.58088011e-01 4.14897084e-01 -5.07800937e-01 5.08645058e-01
-5.06777763e-01 7.71418333e-01 -5.39180875e-01 -3.40723813e-01
2.38786995e-01 -9.09060538e-02 6.50974631e-01 1.32755625e+00
1.67933062e-01 6.67342991e-02 4.63744342e-01 3.51346701e-01
-2.93780416e-02 5.31538665e-01 -6.41001821e-01 5.93963033e-03
4.09750998e-01 8.68055880e-01 -5.11841416e-01 -4.16131437e-01
-5.08210063e-01 4.70457971e-01 7.75509953e-01 -1.03543900e-01
-3.58887672e-01 -4.35877919e-01 1.20244414e-01 3.19339454e-01
2.73418631e-02 -5.00544965e-01 1.46114854e-02 -1.06074953e+00
3.00072618e-02 -1.13492250e+00 4.24814254e-01 -4.99702424e-01
-1.08605742e+00 8.66448641e-01 4.52885211e-01 -6.19657636e-01
-7.84027874e-01 -7.79937088e-01 -4.77854550e-01 9.04420137e-01
-1.43087208e+00 -1.29325426e+00 1.64955676e-01 -3.45999375e-02
8.84511113e-01 -2.67615795e-01 1.16275430e+00 3.48048300e-01
-3.91913414e-01 1.97804511e-01 8.03203508e-02 6.02663040e-01
1.06057000e+00 -1.54555893e+00 1.41119035e-02 6.51420057e-01
2.11483762e-01 5.37109077e-01 7.79267669e-01 -5.51799834e-01
-7.58313596e-01 -4.92319912e-01 1.41812778e+00 -8.51715028e-01
1.28082263e+00 -2.34465301e-01 -1.18400884e+00 8.77588630e-01
9.62039173e-01 -7.24124908e-01 7.11258888e-01 7.29554296e-01
4.92431931e-02 4.03634340e-01 -8.67205143e-01 4.20973539e-01
7.41904616e-01 -4.85415220e-01 -1.46815825e+00 3.60147297e-01
6.29313111e-01 -7.51947880e-01 -1.40585732e+00 8.88888240e-02
3.42810512e-01 -6.63575113e-01 4.74948406e-01 -7.11736858e-01
6.61264181e-01 -2.79087424e-01 -2.41927415e-01 -1.49351466e+00
1.94453031e-01 -3.55543405e-01 2.78423518e-01 1.63699830e+00
6.98220789e-01 -6.10919237e-01 5.29488266e-01 4.21982884e-01
-3.54300708e-01 -3.50566804e-01 -1.01202691e+00 -5.43970525e-01
8.19417477e-01 -2.33419567e-01 4.65004742e-01 1.23643446e+00
6.00579500e-01 8.45758677e-01 1.58788174e-01 -1.69999778e-01
-1.41220272e-01 -3.45425843e-03 9.27746952e-01 -1.16039777e+00
-1.19615972e-01 -1.35293871e-01 -1.31794825e-01 -6.95516884e-01
7.09124386e-01 -1.11474741e+00 9.76230875e-02 -1.54547274e+00
-9.91410166e-02 -7.79176593e-01 2.86387801e-01 3.79343927e-01
-1.08621232e-01 1.52640909e-01 3.64831120e-01 9.11024585e-02
-1.59064054e-01 1.46120757e-01 1.13064849e+00 1.95682365e-02
-4.91302818e-01 -4.30824906e-01 -5.01168549e-01 8.97070050e-01
8.36216569e-01 -4.43820804e-01 -4.31546509e-01 -7.53473520e-01
1.25875592e-01 7.66315535e-02 -1.57306716e-01 -5.39323807e-01
8.06649998e-02 -1.16598327e-02 5.35200126e-02 -4.31862235e-01
3.89564514e-01 -5.57195842e-01 -1.91150635e-01 4.75121103e-02
-4.34716195e-01 1.04308262e-01 2.71210730e-01 -2.05198348e-01
-6.47936642e-01 -7.44619489e-01 4.41756755e-01 -2.58662224e-01
-8.17090333e-01 -6.53639615e-01 -4.59607005e-01 4.39224571e-01
1.09883559e+00 6.85850829e-02 -7.50118375e-01 1.42513337e-02
-8.72794271e-01 3.75962228e-01 6.16148651e-01 4.69814837e-01
-3.33581157e-02 -1.09410989e+00 -9.59372342e-01 -6.23929836e-02
1.00341618e-01 1.88702926e-01 -3.98878872e-01 6.46082222e-01
-1.01609170e+00 5.65112352e-01 -4.54987496e-01 -2.69253463e-01
-1.66884768e+00 2.79539913e-01 -7.26051554e-02 -4.68245655e-01
-6.19275928e-01 4.48154569e-01 -4.22268271e-01 -5.95261455e-01
-2.10879028e-01 -2.11532325e-01 -9.10100579e-01 7.45177329e-01
2.92467892e-01 2.37626985e-01 4.51861024e-02 -1.06690884e+00
-1.83158979e-01 1.19693451e-01 -1.78670034e-01 -4.93230939e-01
1.61129320e+00 -9.00599584e-02 -4.16166484e-01 7.89224446e-01
1.08958209e+00 5.44100106e-01 -6.57290339e-01 8.41974765e-02
4.91303444e-01 -3.44888061e-01 -2.07943439e-01 -5.43440044e-01
-2.62152553e-01 7.36344337e-01 4.58843261e-02 6.55251086e-01
6.58583462e-01 1.97295427e-01 6.88244879e-01 5.08717120e-01
2.31475443e-01 -1.35492969e+00 -3.28659624e-01 1.05960524e+00
9.17244554e-01 -1.39788544e+00 1.25946552e-01 -5.40776193e-01
-6.29595459e-01 1.26763129e+00 5.45588255e-01 -2.40691945e-01
3.85799021e-01 2.22268671e-01 4.12045449e-01 -2.98137814e-01
-6.84889197e-01 -3.01377267e-01 -1.81393269e-02 7.57537007e-01
1.20456421e+00 6.97600022e-02 -8.82029414e-01 1.90181091e-01
-8.30541253e-01 -3.15856189e-01 9.43936527e-01 9.98763442e-01
-2.93701410e-01 -1.86860085e+00 -4.12651688e-01 2.00696498e-01
-9.18082952e-01 6.75372928e-02 -6.29573464e-01 1.49726880e+00
1.91693783e-01 1.10538304e+00 2.29558721e-01 1.15118772e-01
4.70057607e-01 2.27325231e-01 7.76411057e-01 -1.10957980e+00
-6.52963936e-01 7.14810491e-02 1.36986732e+00 -9.79331359e-02
-1.04782498e+00 -8.18273962e-01 -1.42089367e+00 -4.01890904e-01
-3.63776535e-01 4.01172847e-01 4.65059817e-01 1.15533054e+00
-4.28889930e-01 7.58499861e-01 1.33307725e-01 -6.76913738e-01
-1.91908672e-01 -1.33270800e+00 -1.05363436e-01 5.83713233e-01
8.92469287e-02 -6.24874234e-01 4.92194891e-02 2.82472879e-01] | [10.768061637878418, 9.513350486755371] |
a2c7aed5-adda-4cb9-b032-09b583372b06 | implicit-feedback-deep-collaborative | 2009.0895 | null | https://arxiv.org/abs/2009.08950v2 | https://arxiv.org/pdf/2009.08950v2.pdf | Implicit Feedback Deep Collaborative Filtering Product Recommendation System | In this paper, several Collaborative Filtering (CF) approaches with latent variable methods were studied using user-item interactions to capture important hidden variations of the sparse customer purchasing behaviours. The latent factors are used to generalize the purchasing pattern of the customers and to provide product recommendations. CF with Neural Collaborative Filtering(NCF) was shown to produce the highest Normalized Discounted Cumulative Gain (NDCG) performance on the real-world proprietary dataset provided by a large parts supply company. Different hyperparameters were tested using Bayesian Optimization (BO) for applicability in the CF framework. External data sources like click-data and metrics like Clickthrough Rate (CTR) were reviewed for potential extensions to the work presented. The work shown in this paper provides techniques the Company can use to provide product recommendations to enhance revenues, attract new customers, and gain advantages over competitors. | ['Yuri Lawryshyn', 'Deepa Kundur', 'Karthik Raja Kalaiselvi Bhaskar'] | 2020-09-08 | null | null | null | null | ['product-recommendation'] | ['miscellaneous'] | [ 4.70125377e-02 -1.63473248e-01 -6.90302610e-01 -9.80174303e-01
-2.28263170e-01 -3.42306942e-01 4.78928715e-01 1.80929840e-01
-2.43047073e-01 6.78891838e-01 4.61216241e-01 -5.22276759e-01
-7.30656683e-01 -7.58310080e-01 -1.04499944e-01 -5.81866682e-01
-3.29137176e-01 4.45619315e-01 -2.57996917e-01 -2.64510423e-01
8.35529864e-01 3.45031947e-01 -1.70952332e+00 8.09831917e-01
7.79081047e-01 9.35265481e-01 5.70068061e-01 5.84960461e-01
-1.97153926e-01 7.39833936e-02 -5.95781982e-01 -3.92959327e-01
6.25046790e-01 -1.22337043e-01 -6.84593394e-02 9.75947231e-02
3.68278354e-01 -2.78081954e-01 1.21948466e-01 7.22758293e-01
4.22070742e-01 7.44582593e-01 4.91704136e-01 -9.97583926e-01
-1.08610058e+00 9.89209294e-01 -1.81447640e-01 3.95352036e-01
4.53350335e-01 -2.43734017e-01 1.16311896e+00 -9.43643689e-01
5.53008556e-01 1.30039811e+00 5.50614059e-01 2.98351794e-01
-1.39194691e+00 -8.85551155e-01 5.26940465e-01 1.26298562e-01
-9.05574083e-01 1.44559890e-01 3.60282838e-01 -2.93404430e-01
1.22146082e+00 4.40033048e-01 7.20907092e-01 1.26630473e+00
4.89582419e-01 9.53642368e-01 1.11145806e+00 -4.41842437e-01
5.89165330e-01 6.57094657e-01 7.16212630e-01 -2.32207596e-01
3.58382195e-01 3.44404817e-01 -5.66142023e-01 -3.92533362e-01
7.81677604e-01 6.72180355e-01 1.65078595e-01 -7.16817230e-02
-5.92274010e-01 1.51124501e+00 1.99333638e-01 3.02463382e-01
-8.11689019e-01 -3.33003134e-01 -4.78555914e-03 4.38448966e-01
7.08877027e-01 4.92194325e-01 -9.05571342e-01 -9.55246538e-02
-9.36825514e-01 5.72400749e-01 1.37038589e+00 1.12827814e+00
2.38526732e-01 -1.03700310e-02 -2.84469426e-01 5.12322307e-01
1.11221969e+00 1.44598156e-01 5.47548950e-01 -9.97603536e-01
2.47384101e-01 9.70359966e-02 4.87597972e-01 -1.12751615e+00
-1.23105936e-01 -9.29807007e-01 -2.06178978e-01 6.68989420e-02
3.60100210e-01 -1.86161399e-01 -7.62658060e-01 8.57126713e-01
2.33047698e-02 -3.60776007e-01 -1.10995054e-01 6.15323722e-01
3.90445083e-01 6.69480801e-01 1.39225662e-01 -6.26841068e-01
8.34819257e-01 -9.07413960e-01 -1.15565979e+00 -3.72582264e-02
4.54627991e-01 -1.17074931e+00 5.61578631e-01 1.26374006e+00
-1.13794458e+00 -7.80091524e-01 -9.36603189e-01 6.18501961e-01
-5.54481566e-01 -2.42935002e-01 1.42785668e+00 1.19606781e+00
-4.85511869e-01 8.19046497e-01 -6.63772702e-01 -6.31668568e-02
3.66868377e-01 5.79755843e-01 5.89600086e-01 -2.51923084e-01
-1.02434015e+00 5.35619199e-01 1.59023896e-01 1.27257273e-01
-5.64759552e-01 -6.88205600e-01 -2.62846053e-01 2.29939282e-01
2.52156973e-01 -5.99899769e-01 1.27921116e+00 -9.67253804e-01
-1.54700577e+00 -4.62212324e-01 -1.08459644e-01 -8.22421372e-01
3.71345252e-01 -6.03110671e-01 -8.72703552e-01 -5.17328739e-01
-1.27671108e-01 3.73310417e-01 6.47188485e-01 -1.01557982e+00
-1.06086159e+00 -5.26008725e-01 -1.72347113e-01 -1.01875611e-01
-1.74967915e-01 6.06557801e-02 -1.15468442e-01 -7.98499405e-01
1.92361429e-01 -8.09958696e-01 -7.20589936e-01 -9.12871599e-01
7.62932971e-02 -2.95870692e-01 6.12767100e-01 -6.81604564e-01
1.53408051e+00 -1.74342787e+00 -3.74497861e-01 6.99292243e-01
-2.06700280e-01 -5.59909903e-02 2.11328790e-02 7.79296160e-01
4.41163890e-02 1.71737358e-01 8.02282333e-01 -1.25041932e-01
3.01769346e-01 3.48553121e-01 -1.07106164e-01 2.73333400e-01
-4.01801646e-01 7.42899239e-01 -6.07957482e-01 3.50512534e-01
1.01424284e-01 5.03590822e-01 -9.86122310e-01 -1.58844277e-01
-3.77220482e-01 1.88352317e-01 -4.13878858e-01 6.80617452e-01
6.94425702e-01 -6.98477328e-02 2.10829914e-01 -1.21811762e-01
-1.68027773e-01 1.18303448e-01 -1.42750573e+00 1.46233916e+00
-5.89551330e-01 3.56016487e-01 -1.19223163e-01 -5.33470035e-01
1.08148766e+00 -7.75110945e-02 4.31622654e-01 -6.83941066e-01
1.97729275e-01 -1.28490373e-01 8.40885043e-02 -3.18268180e-01
8.00965250e-01 1.46647826e-01 2.67441660e-01 2.64401376e-01
1.32829830e-01 8.55558872e-01 3.50786746e-01 2.51100034e-01
5.72493434e-01 4.39103730e-02 7.40830675e-02 -2.68847525e-01
-2.80797370e-02 -3.98865193e-02 3.85623842e-01 1.31184483e+00
1.65044621e-01 5.84073132e-03 -2.44460374e-01 -2.34087497e-01
-7.86745250e-01 -9.11158800e-01 -2.10164160e-01 1.29946256e+00
-2.82110721e-01 -5.60351133e-01 6.90975785e-02 -4.48097497e-01
2.26183981e-01 1.27074027e+00 -6.03705287e-01 1.79907620e-01
1.26300454e-01 -6.54735386e-01 -4.95616287e-01 7.53701746e-01
5.54406531e-02 -6.20650232e-01 -2.27548912e-01 7.86208272e-01
3.01454186e-01 -4.16904211e-01 -3.79396021e-01 4.11049694e-01
-1.34305215e+00 -5.10042310e-01 -5.67265570e-01 -2.38701209e-01
3.18501413e-01 2.79253691e-01 9.16618705e-01 -5.20592570e-01
-1.40076771e-01 3.43354672e-01 -6.76904857e-01 -7.36385465e-01
-1.21022440e-01 -2.01361254e-01 8.15034956e-02 -1.34742483e-01
1.05774999e+00 -2.62199938e-01 -7.68216193e-01 6.94244862e-01
-6.79375768e-01 -6.53963923e-01 5.33900678e-01 8.49319994e-01
4.07829225e-01 6.24686539e-01 6.89091265e-01 -1.21636367e+00
1.15786946e+00 -8.14277649e-01 -6.83449984e-01 -1.41959980e-01
-1.52545726e+00 -3.09892803e-01 -1.04218595e-01 -9.01946366e-01
-1.52668893e+00 -1.88253745e-01 2.37121023e-02 3.16317566e-02
-5.25428116e-01 9.62123692e-01 1.37675852e-01 3.31733972e-01
5.29205024e-01 -3.41656357e-01 -1.24740779e-01 -9.27259147e-01
4.83551472e-01 7.85124302e-01 -1.84548832e-02 1.23956747e-01
1.04290180e-01 2.35978872e-01 -3.43979627e-01 -3.60300630e-01
-7.64683604e-01 -1.18851495e+00 -6.14015400e-01 -9.08386782e-02
3.70027870e-01 -7.60070324e-01 -8.86600137e-01 -2.88362771e-01
-5.69180191e-01 3.83841433e-03 -4.50587183e-01 1.29003608e+00
-3.47591132e-01 1.67963449e-02 -5.76978147e-01 -1.41338789e+00
-7.90668577e-02 -7.35166192e-01 3.50713491e-01 4.23668355e-01
-5.05556285e-01 -1.21148372e+00 -1.31186989e-05 6.81382596e-01
8.72518182e-01 -2.18843102e-01 5.46477616e-01 -1.26460373e+00
-5.56354523e-01 -6.11475945e-01 2.11215377e-01 3.96794826e-01
3.64941955e-02 -3.19778174e-02 -4.38440055e-01 -4.80857044e-01
1.63303778e-01 4.73138899e-01 5.97701073e-01 1.09733903e+00
5.56154370e-01 -4.36406195e-01 -3.68288755e-01 9.03781578e-02
1.63014889e+00 8.81814837e-01 6.20544434e-01 3.94192338e-01
2.18741838e-02 8.36420894e-01 1.05306351e+00 8.28482866e-01
-1.03556268e-01 4.44724858e-01 1.85736924e-01 4.20253605e-01
3.45758021e-01 -1.56789139e-01 4.64237064e-01 7.43533909e-01
-1.85163736e-01 -4.06126827e-01 -2.51086682e-01 5.63996918e-02
-1.99147975e+00 -1.09217215e+00 -5.30363500e-01 2.06871605e+00
5.81118613e-02 4.28840458e-01 4.08303410e-01 -1.16614148e-01
6.20524347e-01 -6.82931304e-01 -4.37840313e-01 -8.66054654e-01
7.71611407e-02 3.05121958e-01 1.07303059e+00 4.18307453e-01
-6.58243001e-01 4.67175484e-01 7.09266376e+00 8.67608845e-01
-3.17705959e-01 2.73880869e-01 4.32365954e-01 -3.59809816e-01
-4.19818968e-01 1.12501122e-01 -1.63070929e+00 3.99125636e-01
1.59020126e+00 4.17344086e-02 4.18532372e-01 9.31087613e-01
6.65810883e-01 -2.36105964e-01 -8.02428484e-01 5.63924670e-01
4.77311946e-02 -1.40777135e+00 -9.95136648e-02 6.35748446e-01
1.12284505e+00 1.39223384e-02 4.16851223e-01 5.02293766e-01
7.44996428e-01 -7.30601013e-01 1.99795365e-01 9.92857516e-01
-3.53373885e-01 -9.57235217e-01 1.05495203e+00 3.26597124e-01
-6.52914643e-01 -7.89826512e-01 -4.37132925e-01 -3.35836530e-01
5.06564200e-01 5.95187843e-01 -8.73172581e-01 4.96622086e-01
9.07944798e-01 7.02665031e-01 -2.14799836e-01 1.42340505e+00
3.74664545e-01 7.71647692e-01 -2.57000208e-01 -4.78679597e-01
4.29108620e-01 -5.08045018e-01 3.28874588e-01 1.05624557e+00
3.74738336e-01 -2.08141372e-01 1.20583214e-01 8.20421338e-01
5.52881718e-01 5.00122309e-01 -3.06110412e-01 -3.08280528e-01
2.80412823e-01 9.39485073e-01 -8.87196779e-01 -1.73032489e-02
-6.04969800e-01 6.20045900e-01 -7.67268300e-01 5.19937932e-01
-5.05961180e-01 -1.28220171e-01 1.60987452e-01 1.51507303e-01
9.98895526e-01 -3.66158783e-01 -3.24098825e-01 -6.20947242e-01
-5.70373893e-01 -7.25063980e-01 3.38815987e-01 -4.94926721e-01
-1.75661540e+00 1.74334303e-01 3.29315931e-01 -9.53383684e-01
-2.25733161e-01 -5.27008176e-01 -2.45254919e-01 1.19101667e+00
-8.48597825e-01 -6.77474618e-01 1.02768764e-02 4.09125179e-01
1.15325344e+00 -6.39005840e-01 6.10634923e-01 4.21147764e-01
-1.67191908e-01 4.39702839e-01 7.69533992e-01 -7.32507944e-01
4.65373188e-01 -1.24118972e+00 1.16263762e-01 3.33673149e-01
1.95500940e-01 1.44448638e+00 9.14367139e-01 -1.30402172e+00
-1.13329077e+00 -5.23428798e-01 8.15479279e-01 -4.12326902e-01
6.12088978e-01 -3.43684971e-01 -5.11216760e-01 5.57530999e-01
4.33859497e-01 -9.61736977e-01 1.42770731e+00 7.82085061e-01
3.83085608e-02 1.54844690e-02 -1.15987146e+00 3.86990994e-01
4.93021458e-01 1.70928519e-02 -4.45158601e-01 3.01849514e-01
4.94857371e-01 3.27671587e-01 -1.38358569e+00 -7.36632384e-03
1.00575244e+00 -9.43822384e-01 1.03891885e+00 -8.68297935e-01
-1.50131777e-01 3.14537406e-01 -4.83435392e-01 -1.17614090e+00
-8.84635448e-01 -8.15184832e-01 -3.00079346e-01 1.23279750e+00
8.58153462e-01 -8.63749087e-01 1.09015715e+00 9.38075125e-01
9.01608467e-02 -8.22027326e-01 -3.43576849e-01 -6.97748661e-01
-2.44191870e-01 -6.11186028e-01 5.39484322e-01 6.44807696e-01
-1.15633287e-01 3.09731781e-01 -4.15998876e-01 -1.84926223e-02
5.34704685e-01 1.68167904e-01 6.91292107e-01 -1.40468347e+00
-8.51079464e-01 -2.90552497e-01 -8.96690320e-03 -1.35152185e+00
-5.72618127e-01 -5.91090798e-01 -5.14716327e-01 -1.26460171e+00
-9.11153108e-02 -3.94468576e-01 -7.22177863e-01 -2.70266801e-01
4.65090215e-01 -1.55042168e-02 1.85276031e-01 3.53597850e-01
-1.95784003e-01 -5.36887236e-02 1.13493371e+00 3.55370045e-02
-6.92672014e-01 9.09575343e-01 -9.70938563e-01 4.07755256e-01
8.60401332e-01 -5.31606019e-01 -6.03704095e-01 2.91696399e-01
6.84730053e-01 1.78084806e-01 -2.99408764e-01 -2.78322041e-01
3.96854222e-01 -9.10821110e-02 8.58300149e-01 -1.24077332e+00
3.69522601e-01 -1.08556044e+00 6.02184713e-01 3.65034521e-01
-8.08398008e-01 2.07266673e-01 -6.35385066e-02 1.17422044e+00
3.41570601e-02 -6.28000736e-01 1.33625548e-02 -2.69832522e-01
-2.78277129e-01 2.38707033e-03 -8.46148610e-01 -9.94399488e-01
7.80248344e-01 -6.29164577e-01 8.02224949e-02 -7.00806916e-01
-1.40324926e+00 -4.96964008e-02 -2.51703829e-01 6.52630925e-01
3.79183829e-01 -1.15822709e+00 -5.25142193e-01 3.32684696e-01
-1.30470067e-01 -8.60755444e-01 2.71178484e-01 7.25541592e-01
-5.05962148e-02 9.33205187e-01 -3.17372054e-01 -2.51379728e-01
-1.14038754e+00 7.10822523e-01 -3.19889605e-01 -2.04787850e-01
-1.92021415e-01 9.89544630e-01 -4.64551032e-01 3.88994217e-02
5.42040884e-01 -2.69174904e-01 -5.34410477e-01 5.53047061e-01
4.39846307e-01 8.75881016e-01 1.54940426e-01 -2.53203928e-01
1.50110513e-01 -3.09048146e-01 -6.93433523e-01 -2.21774608e-01
1.48399770e+00 -6.04847133e-01 5.66237867e-01 5.42705476e-01
1.03697717e+00 6.56844825e-02 -1.17763007e+00 -2.43009210e-01
1.86804116e-01 -1.04686952e+00 6.98712647e-01 -1.37683654e+00
-9.30121183e-01 2.80012548e-01 1.25675321e+00 6.38692558e-01
7.80335009e-01 -2.76642114e-01 6.36491418e-01 3.05763811e-01
3.72163236e-01 -1.39691138e+00 -1.92475542e-01 -2.40945779e-02
4.03661907e-01 -1.02687085e+00 8.95512998e-02 -1.66052863e-01
-7.28270411e-01 1.24862540e+00 7.60511085e-02 -2.00656101e-01
1.15442717e+00 1.19531648e-02 -7.29165226e-02 -2.13146031e-01
-8.67053688e-01 1.60730444e-02 3.32997829e-01 5.07566810e-01
6.80257738e-01 1.29980966e-01 -9.15520608e-01 8.55135858e-01
1.27632990e-01 1.98570460e-01 3.36773872e-01 1.07331371e+00
-3.83800417e-01 -1.44495249e+00 -1.52886420e-01 9.29792285e-01
-8.06917489e-01 -2.69501537e-01 -8.99757743e-02 6.54219925e-01
1.56921104e-01 1.36866927e+00 -6.64729923e-02 -3.44846815e-01
1.55724272e-01 -5.65439053e-02 3.70987654e-01 -7.85526574e-01
-1.11756384e+00 9.18738246e-01 2.87172496e-01 -5.19711077e-01
-4.71853018e-01 -1.11683679e+00 -5.30067503e-01 -7.35244155e-02
-1.26285720e+00 4.08190578e-01 1.33109701e+00 6.57749712e-01
3.34102780e-01 5.79764664e-01 6.41449451e-01 -6.76714838e-01
-7.79972076e-01 -1.16060996e+00 -9.62791443e-01 1.49943620e-01
-4.05119002e-01 -6.53994203e-01 -5.16965985e-01 -5.43278456e-02] | [10.007655143737793, 5.7537150382995605] |
d8109521-21d5-4583-b53d-37b14ce6479f | real-word-error-correction-with-trigrams | 2302.04096 | null | https://arxiv.org/abs/2302.04096v1 | https://arxiv.org/pdf/2302.04096v1.pdf | Real-Word Error Correction with Trigrams: Correcting Multiple Errors in a Sentence | Spelling correction is a fundamental task in Text Mining. In this study, we assess the real-word error correction model proposed by Mays, Damerau and Mercer and describe several drawbacks of the model. We propose a new variation which focuses on detecting and correcting multiple real-word errors in a sentence, by manipulating a Probabilistic Context-Free Grammar (PCFG) to discriminate between items in the search space. We test our approach on the Wall Street Journal corpus and show that it outperforms Hirst and Budanitsky's WordNet-based method and Wilcox-O'Hearn, Hirst, and Budanitsky's fixed windows size method.-O'Hearn, Hirst, and Budanitsky's fixed windows size method. | ['Seyed MohammadSadegh Dashti'] | 2023-02-07 | null | null | null | null | ['spelling-correction'] | ['natural-language-processing'] | [ 1.33783549e-01 -1.18352294e-01 -3.98343243e-02 -2.39406079e-01
-6.96848571e-01 -2.60478884e-01 3.93198401e-01 8.36310387e-01
-9.63231087e-01 1.05292201e+00 1.69906661e-01 -6.95884049e-01
-5.45513034e-01 -6.56329155e-01 -2.11975887e-01 -6.95759207e-02
1.28248528e-01 4.28015321e-01 6.08578980e-01 -3.68941724e-01
1.03783393e+00 1.92626283e-01 -1.58586633e+00 1.17526151e-01
1.13032019e+00 3.57220054e-01 6.31968975e-01 9.77948368e-01
-4.90684927e-01 3.88942778e-01 -7.74855673e-01 -4.14535701e-01
-1.10485934e-01 -4.08435762e-01 -9.27347660e-01 -6.18977487e-01
3.49358171e-01 4.03824985e-01 1.33461937e-01 1.19421411e+00
3.24953675e-01 3.71100754e-01 6.46791875e-01 -6.04226708e-01
-5.63129723e-01 7.39251971e-01 -3.61655772e-01 6.23579621e-01
5.49035251e-01 -2.31670856e-01 1.11164379e+00 -8.78856003e-01
7.15501249e-01 1.13981175e+00 8.29110324e-01 6.25429273e-01
-8.43209386e-01 -5.49502492e-01 2.15885833e-01 4.34477627e-01
-1.45364094e+00 -1.13565207e-01 1.76942855e-01 -3.28525960e-01
1.36954451e+00 6.22115612e-01 3.43199342e-01 6.87821388e-01
3.52026999e-01 9.06787574e-01 1.06008315e+00 -1.26882100e+00
2.77030438e-01 -2.08701760e-01 6.42382741e-01 5.08701563e-01
6.29989028e-01 -3.40284407e-02 -5.28411269e-01 -3.72409642e-01
8.69252980e-02 -1.83452040e-01 -1.44886479e-01 2.44276762e-01
-6.73978508e-01 8.95764351e-01 -4.63372409e-01 7.40890861e-01
-2.43660882e-01 1.89268868e-02 3.27021360e-01 2.84224659e-01
6.86221123e-01 5.73413372e-01 -7.54100442e-01 -5.37848234e-01
-1.13196051e+00 6.40305340e-01 8.57554793e-01 9.18619514e-01
2.01011851e-01 -1.96031928e-01 -3.07885647e-01 8.53762805e-01
5.21942794e-01 4.55965281e-01 9.19037223e-01 -3.30129534e-01
4.55520153e-01 4.43813711e-01 1.76019162e-01 -8.04542542e-01
-2.60871321e-01 -2.00807258e-01 -1.41704246e-01 7.59886205e-02
5.04706025e-01 8.38803798e-02 -8.34775925e-01 1.42902446e+00
-6.17731828e-03 -1.89479202e-01 2.75807679e-02 6.08387887e-01
5.04949093e-01 4.86945927e-01 3.37794960e-01 -4.88000393e-01
1.23282552e+00 -6.34322941e-01 -8.03894043e-01 -2.52374232e-01
8.54533195e-01 -1.08042812e+00 1.11547875e+00 7.95625389e-01
-1.15815413e+00 -2.96522051e-01 -9.55428123e-01 3.58232148e-02
-3.09108645e-01 -1.30497967e-03 6.13988221e-01 9.60385919e-01
-7.00975776e-01 7.91672111e-01 -5.20861268e-01 -5.66362083e-01
-5.60503714e-02 2.12534927e-02 -3.52419168e-02 1.67089492e-01
-1.13030970e+00 1.01702380e+00 4.42125618e-01 -4.24996376e-01
-2.14740992e-01 -2.50280529e-01 -7.00526774e-01 3.97103131e-02
4.06484693e-01 -2.36583084e-01 1.41046774e+00 -7.54197598e-01
-1.12649763e+00 7.64580488e-01 -5.11707962e-01 -5.83233058e-01
3.02623212e-01 -1.96009681e-01 -8.58115673e-01 -1.70426905e-01
1.88813210e-01 -2.79234320e-01 3.66029292e-01 -7.78256297e-01
-8.59526634e-01 -4.03657913e-01 -3.61296654e-01 7.89824128e-02
-6.05120249e-02 6.36636198e-01 9.87608358e-02 -9.70200419e-01
2.25258976e-01 -5.88997960e-01 -2.16092676e-01 -5.67959309e-01
-1.75310031e-01 -4.70595449e-01 5.54120764e-02 -7.30521381e-01
1.87356186e+00 -1.97201788e+00 -3.33879769e-01 4.96341228e-01
1.28492922e-01 7.17168212e-01 -1.89325169e-01 5.93499959e-01
-1.50923774e-01 3.93814474e-01 -3.66975069e-01 -9.03235525e-02
3.72997932e-02 3.78787607e-01 -7.51346499e-02 5.11034243e-02
-2.28327557e-01 4.08893496e-01 -1.02721906e+00 -4.59450245e-01
-1.70308456e-01 1.29402028e-02 -3.66489470e-01 -1.57874480e-01
-1.63740158e-01 -3.09573472e-01 -2.77963072e-01 4.80516821e-01
3.37122023e-01 2.54137903e-01 2.93755323e-01 6.07063949e-01
-4.96660084e-01 9.66758549e-01 -1.51447988e+00 1.14622176e+00
-3.30089122e-01 5.65271735e-01 -3.42254788e-01 -6.69421434e-01
1.12334931e+00 1.25817627e-01 -6.49848953e-02 -7.13451684e-01
1.31259948e-01 5.86095929e-01 -1.59526281e-02 -5.42342961e-01
8.60427260e-01 -1.41338319e-01 -8.53998661e-02 5.35809875e-01
-2.51721978e-01 9.33382958e-02 6.81579173e-01 1.76766902e-01
1.27788699e+00 -4.19218466e-02 7.80196369e-01 -5.73255539e-01
5.30880332e-01 4.74060792e-03 6.14423633e-01 1.14926600e+00
-8.96258950e-02 5.06111801e-01 2.98804581e-01 -3.41315091e-01
-7.84588635e-01 -8.98904443e-01 -2.58574784e-01 1.38949764e+00
-1.27899677e-01 -7.23458588e-01 -7.05098808e-01 -6.93730056e-01
1.56428423e-02 1.42522085e+00 -4.40247387e-01 2.38279104e-02
-4.36331689e-01 -7.68210292e-01 7.51292109e-01 6.26960620e-02
2.10472997e-02 -1.09746575e+00 -8.16666961e-01 2.97059774e-01
-2.09351689e-01 -3.65232736e-01 -6.03621066e-01 2.94277370e-01
-8.90159607e-01 -1.05267096e+00 -1.36094421e-01 -5.47500372e-01
3.31291825e-01 -1.49698377e-01 1.20539916e+00 4.29293245e-01
-4.56673443e-01 -1.64804403e-02 -8.46079707e-01 -8.87560070e-01
-7.29684830e-01 1.31312909e-03 1.21502377e-01 -6.94715381e-01
1.00746977e+00 -2.74318159e-01 -8.36899504e-02 -7.31555000e-02
-7.86597729e-01 -5.30686498e-01 5.48438370e-01 8.09282899e-01
3.20759356e-01 -1.05701402e-01 3.82408440e-01 -9.90131199e-01
9.97378349e-01 -2.31941074e-01 -5.48822343e-01 2.56741941e-01
-1.34318352e+00 2.05147311e-01 1.71708629e-01 -2.69255549e-01
-8.41122508e-01 -3.05675566e-01 -6.33308232e-01 3.65825474e-01
-1.60402089e-01 5.04872501e-01 4.55435216e-02 -1.10212348e-01
8.80528808e-01 2.34734774e-01 -3.78298700e-01 -8.16493988e-01
-5.39611094e-02 8.94511044e-01 2.49917746e-01 -3.55028123e-01
5.11620343e-01 -1.74620539e-01 -3.21648031e-01 -6.04872048e-01
-6.94682717e-01 -7.40979314e-01 -3.83817524e-01 1.41310785e-02
6.13252103e-01 -4.13008273e-01 -6.01860166e-01 2.09857658e-01
-1.24028349e+00 -2.19826624e-02 -3.28769535e-01 6.75098181e-01
-2.30696797e-01 7.80480266e-01 -5.89308918e-01 -1.19559538e+00
-2.76008427e-01 -5.01065135e-01 5.98086715e-01 4.25569192e-02
-7.04088807e-01 -7.71156669e-01 4.02883917e-01 5.25880158e-02
5.30237183e-02 -3.04681957e-01 9.65672314e-01 -1.29014432e+00
1.67287618e-01 -2.24268720e-01 -2.12611863e-03 3.81901920e-01
-2.15302065e-01 7.07577989e-02 -4.14889991e-01 5.67270741e-02
1.72309965e-01 2.86862046e-01 8.65842044e-01 1.13386050e-01
9.82361197e-01 -3.57898325e-01 -1.36517957e-01 1.68285608e-01
1.45266652e+00 4.20669168e-01 8.00347686e-01 7.74158299e-01
1.64117485e-01 3.29128325e-01 8.35077584e-01 4.55471665e-01
2.05281228e-01 3.73075068e-01 -2.33919913e-04 6.26273155e-01
1.08062886e-01 -4.20351803e-01 1.52064711e-01 1.02028453e+00
-1.69240624e-01 -5.11222243e-01 -9.10667896e-01 7.25053430e-01
-1.84193647e+00 -1.07790244e+00 -7.11474597e-01 2.11651802e+00
9.05923367e-01 4.71816450e-01 -1.60879061e-01 5.40136456e-01
6.77961528e-01 -5.09009473e-02 3.18125755e-01 -1.07250369e+00
-1.76281616e-01 6.24385059e-01 7.54939973e-01 9.17793870e-01
-6.39238954e-01 9.05345619e-01 6.43080759e+00 9.42397714e-01
-3.60619426e-01 1.33719757e-01 -8.33459012e-03 8.20898712e-02
-4.61731344e-01 1.06670305e-01 -1.07036090e+00 6.54716611e-01
1.05376232e+00 -1.99749619e-01 1.49676129e-01 6.20118260e-01
1.98194981e-01 -7.40992546e-01 -7.30358362e-01 6.85080290e-01
4.66962516e-01 -9.71643627e-01 -2.31151968e-01 -1.88712671e-01
4.80634749e-01 -1.66631684e-01 -4.14729595e-01 2.42266774e-01
4.52533901e-01 -6.13453984e-01 6.75029218e-01 6.02426171e-01
2.57126361e-01 -7.32087851e-01 7.65737712e-01 6.64037526e-01
-6.46192193e-01 6.75304513e-03 -4.07077402e-01 -5.97245216e-01
-4.43861298e-02 8.92560959e-01 -7.84097016e-01 4.55705553e-01
4.12155002e-01 -3.47604416e-02 -5.23618817e-01 1.10142207e+00
-4.06781375e-01 9.60660934e-01 -1.49120852e-01 -6.75075531e-01
6.42786324e-02 -7.34321326e-02 5.78983665e-01 1.53879845e+00
5.24152994e-01 3.87637079e-01 -1.00127116e-01 2.19191313e-01
3.50321829e-01 5.15049934e-01 -1.24898516e-01 1.45879656e-01
5.25822341e-01 6.70689702e-01 -6.49535239e-01 -3.51007134e-01
-2.43490845e-01 7.58504033e-01 7.78298378e-02 7.44682783e-03
-3.12323511e-01 -9.60565746e-01 4.57760155e-01 1.49521187e-01
3.78846616e-01 -2.12818667e-01 -6.91287637e-01 -9.07921970e-01
1.11509398e-01 -7.97017395e-01 5.66914916e-01 -6.00738347e-01
-1.10308039e+00 4.71958637e-01 5.31783812e-02 -6.68303370e-01
-2.88368881e-01 -8.48463058e-01 -5.02263725e-01 1.29473424e+00
-1.28529334e+00 -4.59354579e-01 2.65242100e-01 2.46090457e-01
7.51838088e-01 -1.68384016e-01 7.82474339e-01 1.92126185e-01
-2.55632222e-01 7.05804765e-01 3.45912218e-01 2.25804038e-02
7.66650379e-01 -1.32091439e+00 6.43720508e-01 1.01720202e+00
2.05498844e-01 6.33897662e-01 1.11418414e+00 -1.10179687e+00
-9.13047016e-01 -7.08894551e-01 2.08834958e+00 -5.43383181e-01
5.42450428e-01 -1.08622931e-01 -1.18631566e+00 4.95921135e-01
7.93430656e-02 -6.73723936e-01 8.11403573e-01 2.24791437e-01
-4.51908499e-01 9.86369029e-02 -1.19005513e+00 4.24676567e-01
1.00567150e+00 -2.99819469e-01 -1.41285205e+00 3.67897242e-01
3.86317194e-01 -1.60598323e-01 -2.66278565e-01 1.81879520e-01
6.27183020e-01 -9.55117226e-01 2.65870214e-01 -6.48622334e-01
1.97252944e-01 -2.04763800e-01 -1.03659652e-01 -1.31578970e+00
-3.36427301e-01 -4.26163495e-01 4.63738054e-01 1.06044412e+00
6.68320060e-01 -6.98961735e-01 2.67224938e-01 3.05031031e-01
-4.49492365e-01 -4.34772968e-01 -1.00011611e+00 -1.01978278e+00
1.08253300e-01 -8.17021966e-01 3.63411039e-01 7.23973274e-01
4.74358857e-01 1.49073273e-01 -1.76345319e-01 -8.41809958e-02
3.83173764e-01 -4.43757921e-01 3.99772346e-01 -1.46628439e+00
-4.50551510e-01 -4.63786513e-01 -2.23958164e-01 -7.01797128e-01
2.37674247e-02 -6.76693261e-01 4.39591348e-01 -1.58848798e+00
-3.13197374e-02 -2.97471255e-01 -3.82240176e-01 3.52571428e-01
-2.50646472e-01 3.08091976e-02 1.12287663e-01 6.89270347e-02
-6.10451996e-01 -4.86168452e-02 6.19819283e-01 1.37765914e-01
-2.47715443e-01 -8.38694796e-02 -6.86569095e-01 8.27863038e-01
7.45452523e-01 -9.23986733e-01 -7.83646107e-02 -4.99165118e-01
7.17574596e-01 -1.10596322e-01 -7.85610527e-02 -6.79598987e-01
3.96099567e-01 -3.89256328e-01 1.59572646e-01 -4.50341165e-01
-3.36710989e-01 -2.72816539e-01 4.25703600e-02 7.99986482e-01
-4.58571821e-01 5.47677994e-01 1.62786961e-01 5.84358811e-01
4.06710505e-02 -1.07041109e+00 7.63897181e-01 -2.56670296e-01
-5.62218964e-01 -1.76709294e-01 -7.89350390e-01 1.09810397e-01
8.50074768e-01 -1.94921181e-01 -1.14482999e-01 -7.51212751e-03
-5.84827721e-01 1.21767092e-02 3.08013260e-01 3.80993903e-01
7.20233083e-01 -8.50310981e-01 -7.46300220e-01 3.53810370e-01
2.41221100e-01 -5.50620794e-01 -1.25713423e-01 7.05741882e-01
-6.75424933e-01 4.26512152e-01 8.39194208e-02 8.62926766e-02
-1.59931648e+00 4.34141457e-01 -1.09146319e-01 -3.94081026e-01
-3.63914371e-01 1.02321649e+00 -5.62562346e-01 -2.39731550e-01
-5.06642535e-02 -4.43490326e-01 -3.25773984e-01 4.86955419e-03
6.65210903e-01 6.27485216e-01 3.12248558e-01 -3.49103868e-01
-5.97900271e-01 2.20218331e-01 -1.87114954e-01 -2.78823704e-01
9.43048358e-01 -3.06246668e-01 -2.16129690e-01 8.10967445e-01
6.03680491e-01 4.78427708e-01 7.23567754e-02 -2.06907108e-01
7.46452451e-01 -7.61576355e-01 -1.96869180e-01 -9.94994640e-01
-3.94812748e-02 5.62396526e-01 5.58960438e-01 4.23463047e-01
1.01564348e+00 -2.05550507e-01 7.09059775e-01 5.40979922e-01
4.24242586e-01 -1.60229337e+00 -6.45540237e-01 8.13963056e-01
4.03667271e-01 -9.02919173e-01 3.60471047e-02 -4.70294476e-01
-5.37485719e-01 1.07801592e+00 2.37768501e-01 5.46671152e-02
5.67051828e-01 3.08572706e-02 2.44019385e-02 1.06225230e-01
-9.80934322e-01 -4.56477553e-01 1.88247323e-01 4.80876267e-01
6.93806350e-01 1.50104672e-01 -1.69411623e+00 8.23194504e-01
-3.10985476e-01 5.54389246e-02 7.11369038e-01 1.00136352e+00
-9.87982392e-01 -1.49075007e+00 -5.58172226e-01 8.06195438e-01
-6.70772493e-01 -5.53670585e-01 -4.72312987e-01 7.39986539e-01
2.81204134e-01 1.14639688e+00 -1.55713156e-01 -1.92563921e-01
5.25941253e-01 4.58864272e-01 4.00851727e-01 -9.27883506e-01
-8.24884593e-01 1.48067504e-01 4.04293001e-01 -1.20164588e-01
-9.75002199e-02 -9.48472023e-01 -1.09274745e+00 -3.51796389e-01
-4.98065531e-01 7.99610317e-01 8.12657654e-01 1.34879613e+00
-3.60847637e-02 2.22762033e-01 2.43448094e-01 2.20115066e-01
-9.28247809e-01 -1.14198291e+00 -8.72789562e-01 1.70314789e-01
1.46911263e-01 -4.08500105e-01 -4.73941982e-01 -1.91606104e-01] | [10.878190994262695, 10.62899398803711] |
c86f7ce9-f99b-4777-9984-8c0f4b89ee9e | is-it-possible-not-to-cheat-on-the-turing | 2206.14672 | null | https://arxiv.org/abs/2206.14672v4 | https://arxiv.org/pdf/2206.14672v4.pdf | Not Cheating on the Turing Test: Towards Grounded Language Learning in Artificial Intelligence | Recent hype surrounding the increasing sophistication of language processing models has renewed optimism regarding machines achieving a human-like command of natural language. Research in the area of natural language understanding (NLU) in artificial intelligence claims to have been making great strides in this area, however, the lack of conceptual clarity/consistency in how 'understanding' is used in this and other disciplines makes it difficult to discern how close we actually are. In this interdisciplinary research thesis, I integrate insights from cognitive science/psychology, philosophy of mind, and cognitive linguistics, and evaluate it against a critical review of current approaches in NLU to explore the basic requirements--and remaining challenges--for developing artificially intelligent systems with human-like capacities for language use and comprehension. | ['Lize Alberts'] | 2022-06-29 | null | null | null | null | ['grounded-language-learning'] | ['natural-language-processing'] | [ 3.54529798e-01 6.08104408e-01 -1.97544217e-01 -4.20493722e-01
1.02586458e-02 -6.38191879e-01 7.14903772e-01 6.38046086e-01
-3.46164912e-01 2.55951554e-01 3.98118049e-01 -1.01891756e+00
-1.75832957e-01 -6.90466285e-01 -2.64528215e-01 -1.83084402e-02
3.70335191e-01 2.74724036e-01 -1.85180813e-01 -6.25024319e-01
6.87608898e-01 2.46724576e-01 -1.40956008e+00 8.02437291e-02
1.02132630e+00 1.76296294e-01 4.12313640e-01 4.78266180e-01
-5.71299314e-01 1.25830472e+00 -3.51633638e-01 -2.32417792e-01
-3.07271034e-01 -6.42809868e-01 -1.46994948e+00 1.15218438e-01
-2.12242231e-01 -9.72260535e-02 -6.13161027e-02 9.07788277e-01
-2.40786821e-02 -4.64076474e-02 3.73476505e-01 -7.92288423e-01
-1.01231825e+00 5.20266533e-01 -1.30326584e-01 2.87915707e-01
8.97384763e-01 1.85298175e-01 7.57986963e-01 -3.28628629e-01
5.97177744e-01 1.72057438e+00 3.75812948e-01 7.88346350e-01
-1.16034031e+00 -9.54570249e-02 1.71899050e-01 -1.41121849e-01
-1.06743479e+00 -4.94772822e-01 2.58948356e-01 -7.12652266e-01
1.33271790e+00 -1.43111628e-02 6.25303864e-01 6.15675330e-01
3.95703048e-01 7.75702477e-01 1.21682382e+00 -1.09316087e+00
3.51473019e-02 5.78740835e-01 6.86735094e-01 6.28307700e-01
3.68945926e-01 2.97960248e-02 -4.89777595e-01 2.52214432e-01
8.16732764e-01 -5.41205049e-01 -9.78607014e-02 9.88832265e-02
-1.20344734e+00 9.47445095e-01 -2.42342409e-02 1.01506078e+00
-3.34876925e-01 -3.25920612e-01 5.72217166e-01 5.14954031e-01
1.58246890e-01 8.21389496e-01 -3.90614420e-01 -5.14700651e-01
-5.17564893e-01 2.82079130e-01 1.09730637e+00 6.86586142e-01
4.73766804e-01 3.37591738e-01 5.10888338e-01 7.29629159e-01
5.80162704e-01 3.10794413e-01 6.81159317e-01 -9.95795786e-01
-1.85273625e-02 9.76522148e-01 7.43496493e-02 -1.05916488e+00
-4.32262301e-01 -7.45378062e-02 -1.69766799e-01 2.77285576e-01
3.84448141e-01 -1.41306460e-01 -5.86116850e-01 1.82552445e+00
5.11133485e-02 -7.93249071e-01 5.16899765e-01 6.36503696e-01
5.19959867e-01 7.61986971e-01 7.31657386e-01 -3.05035859e-01
1.35422933e+00 -5.24086118e-01 -6.89867318e-01 -9.51761186e-01
9.63015437e-01 -5.19020617e-01 1.28793359e+00 1.82592586e-01
-1.25770104e+00 -4.64821011e-01 -1.15098000e+00 -4.39369649e-01
-4.45565939e-01 -3.48465741e-01 1.10859311e+00 1.02345252e+00
-1.10848045e+00 2.01813161e-01 -7.31064081e-01 -8.70806217e-01
-2.82413606e-02 -1.70588568e-02 -2.87747353e-01 -9.70017388e-02
-1.11903298e+00 1.37565589e+00 9.77391005e-01 -8.09915140e-02
-1.69061333e-01 -3.25754017e-01 -1.17414653e+00 -1.45434394e-01
4.30981696e-01 -7.08871126e-01 1.35129547e+00 -1.16475964e+00
-1.08898544e+00 1.30470383e+00 -4.44426984e-01 -5.27988434e-01
-5.76107502e-02 -2.42435202e-01 -5.12784421e-01 1.14657721e-02
1.90552324e-01 4.77767020e-01 2.82227769e-02 -1.23535383e+00
-6.79702222e-01 -6.18908465e-01 5.06411433e-01 3.21264803e-01
-1.51156694e-01 5.61730385e-01 7.68335629e-03 -4.23739135e-01
4.86072868e-01 -4.48305964e-01 1.56224957e-02 -2.14496300e-01
3.25636238e-01 -5.65586329e-01 3.11231881e-01 -6.83085859e-01
1.46811724e+00 -1.81611681e+00 -1.34043485e-01 -5.43332808e-02
3.72973233e-01 2.27910712e-01 9.44095999e-02 8.34381878e-01
4.32060845e-02 4.91504192e-01 -8.30281675e-02 2.59414047e-01
2.76809305e-01 5.72126687e-01 -3.26128215e-01 -7.38615403e-04
5.71935214e-02 8.94008934e-01 -1.10388494e+00 -3.56219023e-01
4.19018745e-01 2.69509584e-01 -3.18584323e-01 1.63010377e-02
-2.66394347e-01 2.48917311e-01 -7.09285498e-01 6.72980726e-01
1.74095243e-01 -2.14291796e-01 4.24200088e-01 6.57434464e-01
-5.16598523e-01 7.55620837e-01 -5.92594862e-01 1.64774716e+00
-4.96666580e-01 8.42530072e-01 1.79374680e-01 -9.38531280e-01
7.45550454e-01 6.43341720e-01 -1.64085492e-01 -8.03502142e-01
3.70103419e-01 1.42589107e-01 6.61144733e-01 -9.66998100e-01
2.80931741e-01 -6.62653089e-01 -3.57439555e-02 8.07919383e-01
-2.84958184e-01 -4.59673196e-01 2.84218758e-01 2.42978573e-01
5.87178946e-01 2.00889558e-01 6.16337299e-01 -7.32206881e-01
6.45974934e-01 4.23539191e-01 2.82148391e-01 7.51551986e-01
-3.29061449e-01 -1.77156240e-01 3.85271639e-01 -5.06305337e-01
-9.99171972e-01 -8.63443971e-01 -2.56319344e-01 1.28942895e+00
-1.64594278e-02 -2.80845821e-01 -1.21194994e+00 2.61600316e-02
-4.55858201e-01 1.57562351e+00 -2.20783994e-01 -7.28815049e-02
-3.21243912e-01 -4.72086668e-01 6.38311267e-01 4.59450901e-01
4.67868388e-01 -1.31434095e+00 -1.15313208e+00 4.41095859e-01
-1.00150265e-01 -1.15208113e+00 5.49359500e-01 -1.86355054e-01
-8.17947447e-01 -8.37918460e-01 2.24739145e-02 -8.74946058e-01
5.66970825e-01 3.83576632e-01 1.20153809e+00 5.16217232e-01
3.90833355e-02 6.97292387e-01 -5.55353105e-01 -8.83536041e-01
-1.06900358e+00 -2.50669867e-01 -1.26161976e-02 -7.69358158e-01
1.07789600e+00 -4.10001904e-01 4.66382988e-02 -1.18136495e-01
-1.33867443e+00 3.18563312e-01 2.68424958e-01 4.70651537e-01
-3.37691903e-01 1.32886589e-01 6.94990396e-01 -9.84710515e-01
1.06854439e+00 -5.22427797e-01 4.46849726e-02 4.12688375e-01
-5.98550558e-01 -1.02108285e-01 2.47302517e-01 2.21532937e-02
-1.22339594e+00 -8.04586709e-01 -1.49917573e-01 6.70202792e-01
-6.73961997e-01 8.37280571e-01 -2.13269591e-01 7.89642483e-02
8.14334691e-01 2.59404868e-01 3.09737265e-01 -4.68306355e-02
3.03635031e-01 7.21146822e-01 5.51498592e-01 -1.00293851e+00
4.64047045e-01 8.51691216e-02 -5.70481837e-01 -1.40520477e+00
-8.83647323e-01 -2.68002659e-01 -4.71659213e-01 -1.50615871e-01
8.96889567e-01 -7.86203206e-01 -7.45700598e-01 1.46184042e-01
-1.08109617e+00 -3.14056993e-01 -1.51687011e-01 5.17013609e-01
-6.92088604e-01 5.42302787e-01 -5.02663016e-01 -1.21434855e+00
-2.19062507e-01 -9.72877920e-01 4.91828471e-01 4.70286250e-01
-9.69581366e-01 -1.46160054e+00 -1.68636397e-01 7.32283056e-01
4.51655030e-01 1.36891663e-01 1.47431278e+00 -7.41382897e-01
-2.39455774e-02 -2.30345502e-01 -6.77792206e-02 3.39944720e-01
1.07249379e-01 -2.63004959e-01 -8.69781911e-01 2.94380933e-02
8.43251586e-01 -7.18871772e-01 -1.30108058e-01 8.26226696e-02
3.83348942e-01 -3.51474255e-01 -6.81840405e-02 -1.76421732e-01
1.57103837e+00 6.28342867e-01 6.63280368e-01 5.34159362e-01
-2.20901202e-02 1.19679856e+00 5.85340559e-01 1.37573645e-01
6.61273718e-01 1.44474665e-02 -3.63794476e-01 2.08842486e-01
3.78729463e-01 -2.05035403e-01 2.14651316e-01 7.84762800e-01
-7.54035935e-02 -3.32307369e-01 -1.58936572e+00 6.20702744e-01
-1.75495505e+00 -9.15075362e-01 9.38387513e-02 1.88078415e+00
7.95034766e-01 3.96196812e-01 -3.12205911e-01 1.25688985e-01
5.31483710e-01 1.46761343e-01 -1.32227033e-01 -1.04889631e+00
-8.36382732e-02 -1.32750757e-02 -2.91359961e-01 8.42984676e-01
-5.38539529e-01 1.40757370e+00 7.39371872e+00 3.02603900e-01
-8.34324598e-01 -2.08855316e-01 6.06726348e-01 5.63943863e-01
-6.12331927e-01 2.81218551e-02 -3.13833326e-01 -9.05956030e-02
1.13305545e+00 -5.21853864e-01 4.52702075e-01 4.77918774e-01
6.96102679e-01 -5.42861760e-01 -1.14616168e+00 3.96881908e-01
3.05070996e-01 -9.24542844e-01 4.19202745e-01 -1.88499600e-01
1.40727967e-01 -3.07454795e-01 -2.34955028e-01 1.57084107e-01
3.29085261e-01 -1.26569664e+00 8.18719566e-01 2.88987130e-01
1.61310211e-01 -5.35422385e-01 5.29840529e-01 9.41999674e-01
-5.53176165e-01 -6.36062399e-02 -4.00760621e-01 -9.45346653e-01
2.24583760e-01 -1.77150905e-01 -6.82812870e-01 1.58972174e-01
2.13782892e-01 -2.68316106e-03 -2.97037125e-01 2.93458790e-01
-3.06207091e-01 5.64386547e-01 -1.91688150e-01 -2.09885627e-01
4.11767781e-01 -3.81888330e-01 4.56272334e-01 1.14808500e+00
-2.55596340e-01 7.04131365e-01 1.88028827e-01 8.88334632e-01
6.04014099e-01 3.02145332e-01 -7.95481443e-01 -6.98319674e-01
4.79230523e-01 6.71604991e-01 -8.05954754e-01 -4.63769823e-01
-6.95271552e-01 5.14862776e-01 3.21322717e-02 1.35145694e-01
-2.84522086e-01 -7.53362700e-02 4.67186600e-01 2.75293469e-01
-5.85178077e-01 -6.90492153e-01 -8.09869289e-01 -9.62155819e-01
-1.33841306e-01 -1.18688762e+00 -6.26384979e-03 -9.70101058e-01
-7.90189326e-01 4.94635344e-01 2.09580213e-01 -2.03172192e-01
-6.32125318e-01 -9.09090579e-01 -4.90852416e-01 1.08546972e+00
-9.25000608e-01 -1.26716352e+00 1.29127398e-01 -1.42307878e-02
8.79021645e-01 7.86160901e-02 1.22063792e+00 -4.96132642e-01
-2.92109251e-01 1.32698163e-01 -2.05477193e-01 -2.67395601e-02
9.25910696e-02 -1.00886285e+00 5.82144380e-01 7.13561296e-01
-7.12924972e-02 1.27943194e+00 9.27830756e-01 -5.53003252e-01
-1.47663903e+00 -8.73681977e-02 1.35886550e+00 -5.59020996e-01
9.10645723e-01 1.58213601e-01 -1.07307446e+00 9.06102657e-01
6.76522911e-01 -1.15526533e+00 1.08412290e+00 -3.33691873e-02
-2.09890261e-01 5.90160966e-01 -1.21451569e+00 7.55349398e-01
7.49978960e-01 -6.78575456e-01 -1.42056024e+00 2.45614275e-01
7.10723579e-01 7.75990784e-02 -9.83177304e-01 1.94107503e-01
6.44402802e-01 -7.92546749e-01 7.47280121e-01 -7.86455929e-01
3.51627767e-01 -1.51423171e-01 -5.74687272e-02 -7.03599215e-01
-2.35564813e-01 -6.61400676e-01 7.23189592e-01 1.18564546e+00
3.14600885e-01 -1.01124334e+00 4.43368763e-01 1.48142123e+00
-2.06328139e-01 -4.71156448e-01 -4.32516426e-01 -1.05631500e-01
6.18636191e-01 -9.69235122e-01 1.90619782e-01 1.13235927e+00
9.05755639e-01 7.28907168e-01 3.23413610e-01 2.43291818e-02
3.85125041e-01 -2.53243327e-01 6.18623435e-01 -1.37747288e+00
-2.28578150e-02 -5.88103533e-01 -2.67141819e-01 -9.83374834e-01
2.08645388e-01 -6.33889079e-01 -1.37059107e-01 -1.80069113e+00
1.83989927e-02 -2.99914042e-03 2.85755277e-01 4.23730135e-01
7.57353604e-02 -3.72338891e-01 3.50729376e-01 1.79807007e-01
-8.82905126e-02 1.14416994e-01 1.07858777e+00 2.36898705e-01
-2.57076770e-01 -5.15410960e-01 -1.28647292e+00 1.26586556e+00
9.49872494e-01 1.11981288e-01 -6.62183285e-01 -7.23426402e-01
4.44022983e-01 1.19616330e-01 9.35012754e-03 -9.74249065e-01
1.80326745e-01 -5.29612780e-01 1.00008354e-01 -5.29060923e-02
4.85101268e-02 -6.24765873e-01 -1.82621136e-01 4.84475225e-01
-4.71893013e-01 3.87033314e-01 6.04711294e-01 1.82069500e-03
-2.00870708e-01 -7.26196289e-01 6.88825071e-01 -5.87318242e-01
-1.08605754e+00 -6.01590931e-01 -1.10789299e+00 1.73846081e-01
9.95612383e-01 -6.91312551e-01 -1.29931733e-01 -4.15534586e-01
-7.18972802e-01 4.02022958e-01 8.38093638e-01 4.60977852e-01
4.14865226e-01 -4.32430774e-01 -4.79367077e-01 1.17486231e-02
9.81213078e-02 -1.43441603e-01 2.34340519e-01 3.71366531e-01
-1.04277301e+00 8.83096218e-01 -1.40490443e-01 -1.25180949e-02
-9.12136734e-01 5.59929013e-01 2.53262013e-01 7.69645125e-02
-4.55139369e-01 4.66067851e-01 5.12727082e-01 -3.11097682e-01
-3.15779522e-02 1.47621527e-01 -4.31089252e-01 -2.76904851e-01
6.77220225e-01 1.67154700e-01 -6.20301604e-01 -8.09897065e-01
-1.12471022e-01 2.91771173e-01 -1.45157397e-01 -4.33387995e-01
1.06820500e+00 -4.76467550e-01 -6.35649800e-01 8.03481042e-01
5.86329699e-01 -2.93033093e-01 -2.99467295e-01 -1.69786781e-01
4.15474772e-01 -2.81610399e-01 -1.32717922e-01 -8.88666451e-01
-1.51968375e-02 9.84417737e-01 1.09733678e-02 6.98439240e-01
7.84416080e-01 3.86018082e-02 3.93163323e-01 5.86444139e-01
4.40826863e-01 -1.27308345e+00 -4.30393636e-01 6.98180199e-01
9.48596776e-01 -9.18712795e-01 2.71658134e-02 -4.56217796e-01
-7.73881972e-01 1.22699451e+00 7.01133609e-01 2.10904479e-01
5.29142797e-01 1.31322160e-01 3.27491969e-01 -2.66795397e-01
-8.09552670e-01 -1.61324590e-01 -2.59423643e-01 5.92522383e-01
9.93989885e-01 3.26616354e-02 -1.03972054e+00 2.30311632e-01
-6.35030389e-01 8.38293955e-02 5.93326807e-01 1.18051517e+00
-9.47022855e-01 -1.09824836e+00 -5.91264606e-01 -2.90271919e-02
-5.72567105e-01 -6.65888116e-02 -6.05794370e-01 1.03659892e+00
7.68484920e-02 1.42889369e+00 1.80591457e-03 -1.94861125e-02
-1.85694043e-02 5.00210941e-01 4.25055027e-01 -7.89410174e-01
-7.00114369e-01 1.20531708e-01 4.87550408e-01 -1.37040436e-01
-6.27878368e-01 -5.74545503e-01 -1.45855284e+00 -5.82338691e-01
-6.76781908e-02 3.59799623e-01 6.17366552e-01 1.38989508e+00
-1.15282819e-01 1.73329011e-01 -9.70893130e-02 -2.06961408e-01
-4.81976122e-01 -9.78264809e-01 -3.54966730e-01 6.67129457e-02
-6.33191764e-02 -8.04693177e-02 -1.27029955e-01 1.88911259e-01] | [10.18826961517334, 8.341496467590332] |
8deb673f-143b-473e-83b4-dc920cae584e | attribute-based-chinese-named-entity | null | null | https://aclanthology.org/W12-6324 | https://aclanthology.org/W12-6324.pdf | Attribute based Chinese Named Entity Recognition and Disambiguation | null | ['Zhenni Huang', 'Wei Han', 'Guang Liu', 'Yuzhao Mao'] | 2012-12-01 | attribute-based-chinese-named-entity-1 | https://aclanthology.org/W12-6324 | https://aclanthology.org/W12-6324.pdf | ws-2012-12 | ['chinese-named-entity-recognition'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.419615268707275, 3.7974092960357666] |
abfdc6d5-0f5f-4d3b-803f-855b7802f4cc | large-scale-learning-on-non-homophilous | 2110.14446 | null | https://arxiv.org/abs/2110.14446v1 | https://arxiv.org/pdf/2110.14446v1.pdf | Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods | Many widely used datasets for graph machine learning tasks have generally been homophilous, where nodes with similar labels connect to each other. Recently, new Graph Neural Networks (GNNs) have been developed that move beyond the homophily regime; however, their evaluation has often been conducted on small graphs with limited application domains. We collect and introduce diverse non-homophilous datasets from a variety of application areas that have up to 384x more nodes and 1398x more edges than prior datasets. We further show that existing scalable graph learning and graph minibatching techniques lead to performance degradation on these non-homophilous datasets, thus highlighting the need for further work on scalable non-homophilous methods. To address these concerns, we introduce LINKX -- a strong simple method that admits straightforward minibatch training and inference. Extensive experimental results with representative simple methods and GNNs across our proposed datasets show that LINKX achieves state-of-the-art performance for learning on non-homophilous graphs. Our codes and data are available at https://github.com/CUAI/Non-Homophily-Large-Scale. | ['Ser-Nam Lim', 'Omkar Bhalerao', 'Vaishnavi Gupta', 'Sijia Linda Huang', 'Xiuyu Li', 'Felix Hohne', 'Derek Lim'] | 2021-10-27 | null | http://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html | http://proceedings.neurips.cc/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf | neurips-2021-12 | ['node-classification-on-non-homophilic'] | ['graphs'] | [-1.87386498e-01 3.34427267e-01 -6.08152628e-01 -2.35434428e-01
-9.71537679e-02 -4.79865402e-01 5.73491454e-01 3.32637519e-01
1.28255352e-01 9.17236328e-01 -2.65524298e-01 -7.41807401e-01
-2.48579741e-01 -1.12538934e+00 -8.37506175e-01 -5.05868435e-01
-8.13753486e-01 8.13698411e-01 4.75601137e-01 -1.38273714e-02
-2.06892058e-01 2.84683108e-01 -8.84666741e-01 -1.03924863e-01
6.00029051e-01 5.68464875e-01 -2.12782949e-01 7.72557259e-01
1.46600872e-01 8.71133149e-01 -1.94945887e-01 -5.73056519e-01
4.90451038e-01 -2.21593767e-01 -8.06767821e-01 -1.69252351e-01
7.95849502e-01 2.94325780e-03 -8.86317909e-01 1.02059567e+00
3.78594279e-01 7.52663538e-02 6.58412516e-01 -1.67071378e+00
-8.60609412e-01 1.23688889e+00 -9.51477051e-01 1.84394971e-01
4.73374064e-04 4.82163057e-02 1.51720881e+00 -4.76363629e-01
7.28450477e-01 1.28901601e+00 9.36663449e-01 3.44146192e-01
-1.09836888e+00 -9.54448462e-01 2.25351542e-01 1.47410855e-01
-1.42980289e+00 -1.39730498e-02 8.98728251e-01 -8.57230425e-02
9.77887392e-01 1.14153758e-01 7.99284518e-01 1.09129322e+00
1.66900724e-01 6.11886919e-01 1.07989609e+00 -1.71810925e-01
2.74657160e-02 -1.79639965e-01 4.58852977e-01 1.16175902e+00
8.65667701e-01 -7.04501644e-02 -3.07266563e-01 -1.95886150e-01
8.67565691e-01 1.45515203e-01 -1.20084837e-01 -6.61371648e-01
-7.20694482e-01 8.95606041e-01 1.00432038e+00 1.53305635e-01
-1.45390928e-01 5.76837361e-01 6.17482483e-01 7.10970342e-01
5.38043559e-01 3.29459101e-01 -3.90431583e-01 1.10523447e-01
-4.46066916e-01 -2.82371044e-01 1.33768487e+00 1.25066805e+00
9.88669336e-01 9.93818566e-02 3.14121366e-01 6.49968863e-01
1.12848453e-01 1.11671418e-01 -2.86692213e-02 -4.17581797e-01
7.32803166e-01 9.57075179e-01 -5.84701598e-01 -1.40568912e+00
-4.35918570e-01 -5.33246577e-01 -1.39737701e+00 -2.62576103e-01
3.16491038e-01 -1.26429677e-01 -9.31887746e-01 1.64116955e+00
4.47449058e-01 6.38599336e-01 -2.40294576e-01 4.57428366e-01
1.18529320e+00 5.01833677e-01 -1.33541385e-02 1.16182238e-01
9.08554077e-01 -1.20182455e+00 -2.52313256e-01 -1.85990319e-01
1.01754653e+00 -2.56770939e-01 1.29741919e+00 4.81408685e-02
-8.18576038e-01 -1.05141282e-01 -9.54223514e-01 1.22403309e-01
-6.82799280e-01 -5.05897105e-01 1.17260611e+00 6.91743910e-01
-1.55420113e+00 8.61509979e-01 -7.51682460e-01 -6.33174956e-01
5.78266263e-01 3.72664094e-01 -5.98837912e-01 -2.74898171e-01
-1.12614703e+00 5.03470421e-01 6.08282804e-01 -2.55167574e-01
-9.63623285e-01 -6.18146539e-01 -9.54663932e-01 2.80612081e-01
7.77266741e-01 -6.59303427e-01 6.76744640e-01 -4.92037803e-01
-1.02658021e+00 7.58173168e-01 4.52845246e-01 -6.35316551e-01
3.88454497e-01 1.13627464e-01 -3.22938740e-01 2.11730912e-01
-1.30685270e-01 5.25522411e-01 4.04324830e-01 -1.18154144e+00
-1.06865317e-01 -1.83998600e-01 1.79773971e-01 1.33702606e-01
-6.88495338e-01 -3.67525101e-01 -8.17965031e-01 -3.18686575e-01
-1.50802970e-01 -1.29310441e+00 -1.00156039e-01 -1.18477546e-01
-9.67239738e-01 -5.80439568e-01 9.33255792e-01 6.31960109e-02
1.30477798e+00 -1.63720226e+00 -2.47304663e-01 5.81370533e-01
1.10028243e+00 2.99653053e-01 -4.38311219e-01 8.17474723e-01
-1.26536578e-01 2.58651584e-01 -3.63728665e-02 -2.32749879e-01
-8.01339149e-02 2.99243748e-01 1.32589415e-01 6.69851542e-01
-3.48874211e-01 1.08688259e+00 -1.05860114e+00 -6.43936217e-01
1.96928561e-01 2.44687751e-01 -3.64442199e-01 8.59824866e-02
-7.89316446e-02 -7.51388520e-02 -2.69386649e-01 8.62532139e-01
5.58017969e-01 -1.16613758e+00 7.25452006e-01 1.27261251e-01
7.73165107e-01 2.13578328e-01 -9.71353769e-01 1.28493023e+00
-2.11820468e-01 7.20740318e-01 5.76750264e-02 -1.13742566e+00
8.63660038e-01 -1.57653112e-02 5.43089271e-01 -2.42109984e-01
2.40657374e-01 9.99806225e-02 3.01731318e-01 -5.53533249e-02
1.13285862e-01 3.22914124e-01 2.24794447e-01 6.31796122e-01
6.81286082e-02 1.50810525e-01 6.14484429e-01 8.34427834e-01
1.82189751e+00 -4.88605738e-01 3.85385633e-01 -5.43157399e-01
-4.76107039e-02 -2.73339123e-01 2.08361596e-01 1.13120282e+00
-3.08985561e-01 2.60576189e-01 8.18595588e-01 -6.44028008e-01
-7.97984123e-01 -1.04514337e+00 1.25118971e-01 1.08947706e+00
2.58325696e-01 -8.89752984e-01 -4.45347816e-01 -1.03512943e+00
3.25571388e-01 1.24937557e-01 -7.61377394e-01 -1.02715306e-01
-4.03547496e-01 -9.19084370e-01 5.74602962e-01 4.84340876e-01
3.82918894e-01 -9.06256080e-01 3.09352368e-01 6.44740686e-02
4.02266771e-01 -1.26544034e+00 -4.35745239e-01 3.79373059e-02
-9.99317050e-01 -1.64597774e+00 -5.19012332e-01 -1.05396819e+00
9.71826851e-01 6.72947764e-01 1.57855511e+00 7.45496392e-01
-2.45360717e-01 3.58229965e-01 -3.05756480e-01 1.22496188e-02
-3.04504216e-01 6.10754728e-01 -9.37437043e-02 -3.36940080e-01
2.79648632e-01 -1.20327604e+00 -6.03200376e-01 2.61642992e-01
-5.70896089e-01 9.47486907e-02 5.16163290e-01 6.42858982e-01
2.98089325e-01 7.19710737e-02 6.01990640e-01 -1.76127577e+00
8.43224049e-01 -8.89742076e-01 -6.05909884e-01 2.60480434e-01
-1.14883757e+00 -1.82788506e-01 8.49979818e-01 -4.56382394e-01
-3.08916569e-01 -4.12101984e-01 2.80005157e-01 -4.49296296e-01
1.54068187e-01 7.38199174e-01 2.27224931e-01 -4.23221380e-01
6.87367201e-01 -2.93936849e-01 -3.70437279e-03 -7.87877962e-02
4.51338619e-01 3.16668749e-01 1.50142044e-01 -5.69148481e-01
1.02962732e+00 3.76145631e-01 5.25862038e-01 -8.12552154e-01
-5.19403338e-01 -5.64448893e-01 -3.78510982e-01 -2.65009105e-01
1.92973405e-01 -9.01364863e-01 -8.43340397e-01 4.74570036e-01
-6.54635251e-01 -1.01678681e+00 1.13704406e-01 3.36908281e-01
-2.22397540e-02 6.31601453e-01 -1.09975433e+00 -4.88794833e-01
-7.94421017e-01 -6.77264750e-01 6.30419135e-01 5.22718616e-02
-9.16982517e-02 -1.72982240e+00 1.01569816e-01 7.58911595e-02
3.12154710e-01 3.76733810e-01 1.06413102e+00 -9.09311175e-01
-8.05742323e-01 -3.52466941e-01 -6.02836967e-01 -2.66332645e-02
2.50894576e-01 5.31457067e-02 -3.31778735e-01 -8.43721986e-01
-1.01361597e+00 -6.80602372e-01 9.45472240e-01 2.92800039e-01
1.09289813e+00 -3.22363645e-01 -6.66703761e-01 7.32016981e-01
1.63024318e+00 -3.35093558e-01 4.22309905e-01 -4.86980863e-02
1.38230336e+00 3.09097946e-01 -5.35641536e-02 7.13727251e-02
6.77783072e-01 1.83404267e-01 6.09561861e-01 -3.35718364e-01
-4.17991489e-01 -5.10208488e-01 4.79621924e-02 1.21151030e+00
1.66341495e-02 -8.50959182e-01 -1.18591857e+00 7.12313712e-01
-1.99364305e+00 -6.36627734e-01 -4.99226958e-01 1.87700939e+00
6.94536746e-01 4.23576385e-01 2.34660715e-01 -3.10895532e-01
1.07473731e+00 4.61133361e-01 -7.19907463e-01 -8.27642679e-02
-3.13249268e-02 1.56514138e-01 7.26815701e-01 4.99438614e-01
-9.41684902e-01 1.28357112e+00 5.93422794e+00 8.31882656e-01
-8.77020359e-01 2.48992387e-02 7.38879740e-01 1.24506697e-01
-3.00085992e-01 3.52707803e-01 -5.57375729e-01 3.37856948e-01
8.57251644e-01 -2.65361875e-01 5.05153775e-01 1.14957500e+00
-3.62926811e-01 8.23621675e-02 -1.08625877e+00 9.80992615e-01
-1.14035822e-01 -1.47209549e+00 4.01073731e-02 2.10685357e-01
1.14908385e+00 6.53064728e-01 -2.14167833e-01 5.41641772e-01
1.15003133e+00 -9.75488842e-01 -2.83021331e-01 -5.77994734e-02
9.57181633e-01 -5.04868805e-01 5.48441052e-01 1.22318625e-01
-1.66477692e+00 1.98647156e-01 -5.39394379e-01 -1.64746255e-01
-1.18650436e-01 7.51472175e-01 -1.07365835e+00 5.32273233e-01
7.55988240e-01 1.04208684e+00 -8.59343708e-01 9.39138412e-01
-2.63450980e-01 9.07077849e-01 -5.12786269e-01 -4.69457388e-01
3.25445175e-01 -3.40196431e-01 3.13488483e-01 1.12515914e+00
1.59128398e-01 -2.19260737e-01 4.04908121e-01 5.86635172e-01
-8.12254965e-01 2.47777611e-01 -1.19430149e+00 -2.45626792e-01
8.46503317e-01 1.51451552e+00 -1.18513298e+00 -5.13570607e-01
-4.94987518e-01 4.11388934e-01 1.04433525e+00 3.79007459e-01
-7.45237947e-01 -6.92934990e-01 3.37457776e-01 3.95495206e-01
7.74187744e-02 -2.52227217e-01 -1.25522157e-02 -1.15774655e+00
-1.27157092e-01 -7.50973284e-01 8.53603482e-01 -5.10739267e-01
-1.75405979e+00 6.35402501e-01 9.25049558e-03 -6.96698904e-01
-1.20761823e-02 -6.09354317e-01 -1.13646710e+00 2.62493432e-01
-1.45529962e+00 -1.32602441e+00 -5.57134211e-01 7.01972306e-01
2.34193280e-02 -2.85194010e-01 5.01432776e-01 3.01874280e-01
-6.05282545e-01 7.16205120e-01 8.20256025e-02 3.99264276e-01
6.62873805e-01 -1.51653850e+00 9.34525013e-01 8.47932220e-01
2.13804543e-01 6.92629635e-01 3.95482898e-01 -1.11369050e+00
-1.62461579e+00 -1.27803957e+00 5.24706066e-01 -2.63429165e-01
1.09701681e+00 -7.34928846e-01 -9.42903697e-01 1.04539084e+00
3.12263399e-01 4.45709080e-01 4.28624421e-01 6.94452703e-01
-4.59525913e-01 -3.36476445e-01 -7.79378772e-01 8.59885693e-01
1.63066363e+00 -5.57840168e-01 1.73036754e-01 8.35375249e-01
6.01210177e-01 -2.43277371e-01 -9.39441383e-01 4.49950129e-01
1.81958601e-01 -8.07470679e-01 8.22552145e-01 -6.43208265e-01
1.59915850e-01 9.34347287e-02 3.44978720e-01 -1.33108819e+00
-3.38894486e-01 -1.06444561e+00 -5.30544698e-01 8.77406001e-01
4.41249549e-01 -1.05169284e+00 1.35509253e+00 3.11650664e-01
-2.40065660e-02 -1.00847423e+00 -6.33173347e-01 -1.06209004e+00
2.86035286e-03 5.04141524e-02 5.17125070e-01 1.31800926e+00
6.34510517e-02 8.53369772e-01 -5.58702290e-01 1.02096774e-01
8.42640102e-01 3.71538550e-01 1.28053117e+00 -1.41364634e+00
-2.01738894e-01 -3.85060608e-01 -5.00335336e-01 -9.99409199e-01
4.48768795e-01 -1.52919221e+00 -3.74451578e-01 -1.73587501e+00
4.81599033e-01 -5.78845620e-01 -1.57528743e-01 7.31284022e-01
-1.98827490e-01 3.18785071e-01 -1.00666948e-01 2.38847166e-01
-9.89253521e-01 4.33928341e-01 1.39073384e+00 -2.06648737e-01
-1.48106992e-01 -8.47245678e-02 -6.02616966e-01 4.58111256e-01
1.02226114e+00 -6.07674003e-01 -9.94836748e-01 -2.75424868e-01
4.61294830e-01 -1.75758362e-01 2.30456546e-01 -1.07453334e+00
3.74088824e-01 1.01578953e-02 -4.99652512e-02 -2.71622926e-01
6.32947758e-02 -6.02224112e-01 1.03082038e-01 5.32770932e-01
-1.79932132e-01 4.86646563e-01 -1.82857797e-01 9.72058237e-01
1.23110645e-01 1.85855404e-01 6.47106588e-01 -2.72206068e-01
-4.84992474e-01 1.00249398e+00 2.53725171e-01 4.70806211e-01
1.13454235e+00 -9.22566578e-02 -8.68179202e-01 -8.54095519e-01
-3.61463875e-01 4.99898791e-01 4.41803247e-01 1.93418607e-01
4.56187516e-01 -1.14043903e+00 -7.00346649e-01 -1.68960512e-01
6.85112402e-02 -5.70478989e-03 8.55964646e-02 8.11691225e-01
-7.34372854e-01 1.32288635e-01 -1.01512164e-01 -5.21610916e-01
-1.31990647e+00 6.88373685e-01 1.77361801e-01 -5.19754529e-01
-8.48847866e-01 9.09158468e-01 1.85953587e-01 -6.33643925e-01
2.91282952e-01 -8.42590164e-03 1.54830039e-01 -2.77975738e-01
-1.85290217e-01 5.30308723e-01 -7.42262378e-02 -2.61588663e-01
-2.08441302e-01 9.97570381e-02 -4.78766322e-01 5.99309862e-01
1.46024561e+00 9.36354399e-02 -2.50557899e-01 2.29364634e-01
1.34217703e+00 -1.99572861e-01 -1.09150589e+00 -4.32042480e-01
-6.04374669e-02 -2.95954198e-01 -2.80279011e-01 -3.52047235e-01
-1.40135920e+00 7.20751643e-01 5.52671170e-03 7.38414288e-01
7.16672957e-01 2.11831406e-01 8.84891450e-01 7.78082371e-01
4.69740331e-01 -9.34575975e-01 3.12779158e-01 5.76169670e-01
5.58846593e-01 -1.31009233e+00 4.07258213e-01 -8.09792042e-01
-2.68506885e-01 8.64247978e-01 1.06742978e+00 -4.30939585e-01
1.08244824e+00 7.12705180e-02 -1.19432732e-01 -7.15364277e-01
-9.74143267e-01 -4.65814471e-02 6.34199828e-02 5.66185415e-01
1.92930475e-01 3.18256617e-01 -2.81312522e-02 -9.75165144e-02
-1.29391074e-01 -5.37301600e-01 6.02922261e-01 7.24221170e-01
-9.99913216e-02 -1.04902029e+00 4.06790525e-01 9.55694735e-01
-7.35181868e-02 -4.29382443e-01 -8.11005294e-01 1.25276566e+00
-7.13045359e-01 7.58021474e-01 -1.13058552e-01 -5.25101006e-01
-1.70960635e-01 -4.12036031e-01 3.23459387e-01 -6.39574707e-01
-4.01925564e-01 -2.86147296e-01 3.74477148e-01 -4.74696666e-01
-5.11505269e-02 4.71555181e-02 -1.08022046e+00 -1.01947260e+00
-4.57622796e-01 1.99931115e-01 2.41523951e-01 4.10970300e-01
6.09684169e-01 3.47049624e-01 4.99208570e-01 -6.14022195e-01
-3.89956892e-01 -1.06266654e+00 -8.96785200e-01 6.13599718e-01
-2.51858812e-02 -4.98624742e-01 -5.96094191e-01 -6.32122695e-01] | [6.975368499755859, 6.186704158782959] |
b8de7f9f-3aab-4232-aa66-37d734bec43f | exploring-efficient-volumetric-medical-image | 2010.06163 | null | https://arxiv.org/abs/2010.06163v2 | https://arxiv.org/pdf/2010.06163v2.pdf | Bridging 2D and 3D Segmentation Networks for Computation Efficient Volumetric Medical Image Segmentation: An Empirical Study of 2.5D Solutions | Recently, deep convolutional neural networks have achieved great success for medical image segmentation. However, unlike segmentation of natural images, most medical images such as MRI and CT are volumetric data. In order to make full use of volumetric information, 3D CNNs are widely used. However, 3D CNNs suffer from higher inference time and computation cost, which hinders their further clinical applications. Additionally, with the increased number of parameters, the risk of overfitting is higher, especially for medical images where data and annotations are expensive to acquire. To issue this problem, many 2.5D segmentation methods have been proposed to make use of volumetric spatial information with less computation cost. Despite these works lead to improvements on a variety of segmentation tasks, to the best of our knowledge, there has not previously been a large-scale empirical comparison of these methods. In this paper, we aim to present a review of the latest developments of 2.5D methods for volumetric medical image segmentation. Additionally, to compare the performance and effectiveness of these methods, we provide an empirical study of these methods on three representative segmentation tasks involving different modalities and targets. Our experimental results highlight that 3D CNNs may not always be the best choice. Despite all these 2.5D methods can bring performance gains to 2D baseline, not all the methods hold the benefits on different datasets. We hope the results and conclusions of our study will prove useful for the community on exploring and developing efficient volumetric medical image segmentation methods. | ['Jicong Zhang', 'Le Ding', 'Qingcheng Liao', 'Yichi Zhang'] | 2020-10-13 | null | null | null | null | ['volumetric-medical-image-segmentation'] | ['medical'] | [ 8.42434242e-02 1.97113752e-01 -3.02746445e-01 -4.24773872e-01
-6.44400656e-01 -2.62697786e-01 1.74036846e-01 3.45743269e-01
-5.73426008e-01 6.36735260e-01 -1.44224539e-01 -4.51176077e-01
5.96024059e-02 -8.59675467e-01 -4.31563199e-01 -6.12644672e-01
-3.23836386e-01 5.84212184e-01 5.52686334e-01 8.83216634e-02
4.98252809e-02 8.61816406e-01 -1.17051339e+00 -1.65508352e-02
7.72746503e-01 1.19983542e+00 2.37954333e-01 2.36186087e-01
-3.56026471e-01 2.63379306e-01 -4.30628628e-01 -1.80730984e-01
3.62432122e-01 -3.46961230e-01 -9.88776505e-01 1.77244782e-01
3.38232666e-01 -6.84924424e-01 -1.32308558e-01 8.62707675e-01
8.06341410e-01 6.27016416e-03 6.43430173e-01 -9.21104491e-01
-4.07997400e-01 3.37557942e-01 -7.03281343e-01 4.69051600e-01
1.02700070e-02 1.04699947e-01 4.97886807e-01 -6.67967319e-01
5.68026662e-01 8.98609161e-01 9.12442684e-01 4.88674134e-01
-1.01274490e+00 -3.58166367e-01 -9.91214514e-02 -2.41528988e-01
-1.16328537e+00 1.01352576e-03 7.24617481e-01 -4.60355252e-01
8.99509311e-01 2.21297428e-01 8.68095934e-01 7.29928255e-01
1.64240688e-01 9.91398036e-01 1.25909102e+00 -2.10433975e-01
4.64116186e-02 1.02918513e-01 -1.00765694e-02 8.17590594e-01
3.29298556e-01 -1.61447406e-01 -4.72134948e-02 -4.57478128e-03
9.89705563e-01 3.91253866e-02 -3.41754228e-01 -5.13299763e-01
-1.09494126e+00 9.38494503e-01 7.26167798e-01 6.35424614e-01
-3.65864992e-01 1.26387805e-01 5.03306270e-01 -1.35736197e-01
8.31308484e-01 3.52163106e-01 -2.18562543e-01 -1.53450677e-02
-1.21959269e+00 2.28907585e-01 4.37986434e-01 6.66070402e-01
3.99521023e-01 -1.90862313e-01 -1.75653696e-01 9.44452465e-01
2.03621015e-01 3.65129113e-01 4.65178519e-01 -7.64540553e-01
3.48634720e-01 6.85225964e-01 -2.83944637e-01 -1.09176219e+00
-9.53881383e-01 -4.14684117e-01 -1.01698995e+00 1.82432473e-01
6.22025788e-01 1.03659183e-01 -1.15796387e+00 1.18280816e+00
3.48592281e-01 -9.66955349e-02 -3.96223247e-01 1.18513012e+00
1.12879050e+00 1.52874976e-01 6.41215444e-02 7.59353163e-03
1.26990116e+00 -7.33012378e-01 -6.15510523e-01 -5.18393964e-02
8.12290847e-01 -7.91924894e-01 8.67540419e-01 1.63648263e-01
-1.32554221e+00 -3.38497907e-01 -9.75522637e-01 -1.62115648e-01
-3.07839513e-01 -1.65127859e-01 9.16394711e-01 8.93741786e-01
-1.00901747e+00 6.77262604e-01 -1.19185770e+00 -5.11366963e-01
1.04815602e+00 4.62125957e-01 -2.49741212e-01 -1.22815356e-01
-1.08429754e+00 1.05263448e+00 3.03780675e-01 2.01060176e-01
-5.02261400e-01 -8.37374687e-01 -7.81596303e-01 -3.46906483e-01
2.65566498e-01 -6.57212019e-01 1.33041692e+00 -4.92732882e-01
-1.16334605e+00 1.29144597e+00 7.34082237e-02 -5.25552094e-01
7.50781178e-01 5.61227873e-02 2.03404769e-01 3.06121141e-01
1.11405984e-01 9.66216207e-01 1.50216296e-01 -1.13589394e+00
-4.14904952e-01 -5.59449077e-01 2.07009062e-01 1.89569339e-01
-4.12245989e-02 -1.13932811e-01 -7.34078228e-01 -5.09359479e-01
4.08065885e-01 -9.53056991e-01 -5.25090396e-01 3.18961471e-01
-4.68016356e-01 -4.52740043e-02 6.99945152e-01 -5.72428882e-01
8.92264068e-01 -1.89168429e+00 -6.29341751e-02 2.72921305e-02
5.89026332e-01 3.55620861e-01 3.21370333e-01 -1.55319080e-01
3.19855720e-01 4.68972951e-01 -6.10289037e-01 -4.04636264e-01
-2.85948128e-01 1.94813281e-01 3.22976768e-01 5.87647498e-01
1.45887032e-01 1.13427424e+00 -7.55705476e-01 -8.98001254e-01
5.94611466e-01 7.53891587e-01 -4.49042916e-01 -6.10638037e-02
2.97127087e-02 8.23169172e-01 -6.25637472e-01 6.47755921e-01
7.71628439e-01 -4.94878769e-01 -7.91173056e-02 -2.19362661e-01
5.63549064e-02 1.07232444e-01 -6.88146532e-01 1.76438665e+00
-2.94034779e-01 5.11178017e-01 -6.31635785e-02 -1.31804967e+00
6.40245378e-01 3.52897376e-01 9.48837101e-01 -9.42292273e-01
3.93703699e-01 5.11407614e-01 1.08656876e-01 -5.83008349e-01
2.35302180e-01 -4.62613463e-01 1.75727203e-01 1.81123599e-01
-1.53333217e-01 -5.62953591e-01 1.70034543e-01 8.13118368e-02
7.58752167e-01 6.80047721e-02 2.09975988e-01 -1.62805364e-01
2.92764783e-01 2.61792392e-01 3.01688433e-01 7.10943222e-01
-4.82032925e-01 1.00314105e+00 5.53581834e-01 -5.61427951e-01
-1.01515889e+00 -8.35771263e-01 -5.22317350e-01 3.16734880e-01
2.57989615e-01 -2.83175632e-02 -8.25214028e-01 -6.84994161e-01
-7.96128511e-02 2.84603417e-01 -6.83650494e-01 3.02311480e-01
-6.89615071e-01 -1.18513107e+00 6.76232874e-01 7.27976203e-01
6.41171157e-01 -9.08707082e-01 -1.03995538e+00 3.34903598e-01
-2.27127433e-01 -1.40544832e+00 -2.37839669e-01 7.15259090e-02
-1.51000428e+00 -1.12185156e+00 -1.17737055e+00 -6.41515553e-01
6.39636993e-01 2.82535642e-01 1.20539892e+00 5.54409206e-01
-4.42484438e-01 2.60582805e-01 -3.39067578e-01 -5.48596919e-01
-2.84752935e-01 3.54227960e-01 -3.65202665e-01 -5.73692679e-01
1.86953723e-01 -4.88367260e-01 -9.22909498e-01 1.63782954e-01
-1.02867031e+00 2.71548569e-01 5.64036846e-01 5.99289894e-01
9.07254219e-01 -5.67425862e-02 3.31465125e-01 -1.00559461e+00
4.41326737e-01 -3.53138804e-01 -4.52650040e-01 -7.08959103e-02
-6.65593266e-01 -2.70887047e-01 3.20852607e-01 -8.57787803e-02
-7.97852874e-01 3.22812684e-02 -4.22709107e-01 -3.64653438e-01
-2.56765068e-01 7.25203276e-01 3.93150419e-01 -8.73475969e-02
4.90994960e-01 1.09501891e-02 2.75863945e-01 -5.60584247e-01
-3.59177701e-02 3.82706493e-01 1.22518606e-01 -2.90598422e-01
3.79824132e-01 7.76168704e-01 3.14337105e-01 -8.26402009e-01
-9.13272142e-01 -4.86523479e-01 -8.33078802e-01 -2.58801550e-01
1.23476827e+00 -4.44873542e-01 -2.40655378e-01 5.46932757e-01
-1.01623511e+00 -4.09508407e-01 -2.27872863e-01 4.65570837e-01
-5.10494053e-01 5.93383372e-01 -7.79411674e-01 -5.56317925e-01
-3.69403511e-01 -1.88598311e+00 1.15133488e+00 2.86889613e-01
-1.16041787e-01 -1.36771941e+00 -2.48881429e-01 5.54899156e-01
6.83598340e-01 6.58139884e-01 9.03370500e-01 -4.52451974e-01
-5.44226408e-01 -2.28712812e-01 -3.29737306e-01 2.17780754e-01
1.79704264e-01 -2.11860538e-01 -9.01379049e-01 -1.37118444e-01
-8.23224634e-02 -2.90093482e-01 7.62148440e-01 9.11792934e-01
1.53052449e+00 3.37601006e-01 -5.47018170e-01 5.89751840e-01
1.36097848e+00 2.71010339e-01 6.46308303e-01 3.51055592e-01
6.89763665e-01 4.90176409e-01 4.93294746e-01 3.62090431e-02
2.90104389e-01 6.84539497e-01 6.31090820e-01 -6.98117375e-01
-4.33093786e-01 1.29725799e-01 -4.41125154e-01 7.05223560e-01
-4.33525443e-01 -1.40548810e-01 -1.21533573e+00 4.95187551e-01
-1.39509845e+00 -6.24457002e-01 -3.67230713e-01 2.11223173e+00
7.83549368e-01 1.78044438e-01 1.77565143e-01 1.82792649e-01
4.77513462e-01 2.15913318e-02 -5.86866677e-01 -1.53548136e-01
-5.17035322e-03 4.17342603e-01 6.21532440e-01 2.49007955e-01
-1.20579112e+00 6.11696899e-01 6.18969584e+00 7.87850797e-01
-1.41616452e+00 2.16460153e-01 1.07358587e+00 -9.66307223e-02
-8.48190263e-02 -2.93047667e-01 -5.50884724e-01 3.17816675e-01
5.33360004e-01 4.09272969e-01 -6.03793114e-02 6.50564313e-01
2.64737517e-01 -4.22562122e-01 -9.24197197e-01 9.38152015e-01
-2.18105167e-01 -1.34410882e+00 -3.18164438e-01 2.48130396e-01
6.70830250e-01 1.76576927e-01 -3.04174479e-02 1.21755049e-01
-2.22789869e-01 -1.33608806e+00 3.75311017e-01 2.01988444e-01
6.98029160e-01 -5.96984982e-01 1.03632426e+00 2.36597821e-01
-8.96961391e-01 5.50274432e-01 -2.45420575e-01 1.80137858e-01
4.51676995e-01 9.49792147e-01 -9.16430771e-01 5.40544271e-01
9.17160213e-01 5.11595964e-01 -4.71009076e-01 1.35587347e+00
6.58084750e-02 4.13252711e-01 -3.50055993e-01 1.60266832e-03
5.20305872e-01 -1.06385618e-01 2.68102348e-01 1.13406551e+00
3.06890488e-01 1.18673056e-01 2.95579165e-01 9.07552123e-01
-8.92216489e-02 3.16901952e-01 -6.36177301e-01 1.57191250e-02
1.15044853e-02 1.16683197e+00 -1.45602417e+00 -3.21301281e-01
-6.54170692e-01 7.72416472e-01 1.73431471e-01 8.60209763e-02
-9.23574448e-01 -5.57082333e-02 2.31777966e-01 4.64353174e-01
1.72596406e-02 -2.58734882e-01 -6.06802583e-01 -6.99719369e-01
-1.35170966e-01 -5.20860255e-01 3.19682449e-01 -5.43794036e-01
-1.33565807e+00 4.72725272e-01 2.95941442e-01 -1.01943660e+00
8.33063349e-02 -6.42768025e-01 -1.93885162e-01 7.88965106e-01
-1.64684737e+00 -8.47583413e-01 -3.40991884e-01 2.08172008e-01
5.51798582e-01 2.56999731e-01 6.31026924e-01 4.51630861e-01
-3.74943435e-01 2.66305059e-01 -7.48587623e-02 3.36578161e-01
4.85607892e-01 -1.25361753e+00 2.28368357e-01 3.40116292e-01
-2.29868338e-01 4.70610559e-01 3.25890243e-01 -6.99838340e-01
-1.08814108e+00 -9.25351024e-01 5.00195980e-01 -3.20446104e-01
2.96020657e-01 5.45204096e-02 -9.29946721e-01 6.30226612e-01
8.62623230e-02 2.37352818e-01 6.27053916e-01 -7.48966262e-02
1.60906255e-01 2.73897976e-01 -1.42230785e+00 4.50271875e-01
1.04145718e+00 8.13539606e-03 -3.48178834e-01 4.16836798e-01
4.90053475e-01 -1.00736892e+00 -1.25397933e+00 8.57473791e-01
4.26069975e-01 -1.23170769e+00 1.13490260e+00 -8.04869905e-02
6.19931698e-01 -7.10382387e-02 1.06872626e-01 -1.06202805e+00
-1.64493844e-02 2.29914159e-01 1.13506906e-01 7.14912236e-01
2.90590882e-01 -5.86915195e-01 9.59343493e-01 6.52297914e-01
-4.07733589e-01 -1.24280238e+00 -1.08097780e+00 -7.39093244e-01
5.10607600e-01 -5.42998135e-01 4.83936340e-01 9.17594671e-01
-3.85798097e-01 2.35979632e-02 1.24745118e-02 -1.80639818e-01
6.32499754e-01 1.59306929e-01 3.98129731e-01 -1.11217380e+00
3.25126544e-04 -8.68405759e-01 -5.40996134e-01 -9.19036865e-01
-1.84179172e-01 -1.13683605e+00 -1.18868500e-01 -1.97619033e+00
3.72614443e-01 -7.43051887e-01 -8.33983868e-02 4.00701404e-01
-1.72536254e-01 8.07285249e-01 7.17404261e-02 2.63174951e-01
-2.63518333e-01 2.87307590e-01 1.94822216e+00 -2.67085850e-01
-2.47287616e-01 3.11663393e-02 -4.72942740e-01 7.80201793e-01
1.25952291e+00 -3.81291449e-01 -5.27397156e-01 -5.25281250e-01
-1.56637281e-01 1.72016606e-01 3.32381099e-01 -8.83655310e-01
-6.81933314e-02 3.67509648e-02 5.83929420e-01 -8.57071280e-01
3.53547901e-01 -7.20626175e-01 -6.87602907e-02 7.66764820e-01
5.55526800e-02 -6.91606626e-02 3.82927954e-01 1.93016648e-01
-2.78276205e-01 -3.20675820e-01 1.06103063e+00 -5.80109894e-01
-3.96203876e-01 6.36195540e-01 -3.54485840e-01 1.90317109e-01
1.04918087e+00 -5.82209468e-01 1.35394081e-01 -1.48715138e-01
-7.11562276e-01 1.99129045e-01 3.87021124e-01 1.80113792e-01
6.01935804e-01 -1.08933640e+00 -5.46762168e-01 -1.80356935e-01
-1.32125929e-01 6.29129291e-01 5.08045852e-01 1.44545424e+00
-9.27542567e-01 6.60413921e-01 -2.09253728e-01 -1.02643883e+00
-1.06947541e+00 4.09096122e-01 7.43251741e-01 -4.95253175e-01
-9.01763737e-01 8.12318802e-01 2.07362264e-01 -4.67567176e-01
2.48734057e-01 -6.27133906e-01 -2.79440820e-01 -3.48677523e-02
2.17786238e-01 2.35771850e-01 3.91766310e-01 -5.55743873e-01
-5.09101093e-01 5.81646323e-01 -5.55149168e-02 1.47982419e-01
1.35816216e+00 3.00686946e-03 -1.47800907e-01 3.23923826e-01
1.19913256e+00 -2.54323989e-01 -1.05920529e+00 -2.83237882e-02
-1.10975698e-01 -4.03129488e-01 3.41052562e-01 -6.61960602e-01
-1.77347434e+00 1.13309264e+00 7.71492302e-01 3.43775481e-01
1.12740803e+00 1.36731297e-01 1.05353904e+00 -2.72022635e-01
4.27245378e-01 -8.08445096e-01 -5.25322035e-02 2.15651333e-01
6.42189562e-01 -1.52026987e+00 1.99865669e-01 -6.46086574e-01
-3.65590751e-01 1.09258866e+00 6.05744302e-01 8.85347575e-02
7.27738678e-01 3.20791245e-01 1.08699225e-01 -4.76642996e-01
1.92237809e-01 -3.00262660e-01 3.71649027e-01 6.68505192e-01
8.59498322e-01 4.00449615e-04 -6.20682061e-01 2.27737993e-01
-4.35211621e-02 1.21532962e-01 3.40687543e-01 9.29676056e-01
-2.33414918e-01 -1.16293967e+00 -3.52431178e-01 6.94585443e-01
-8.62773538e-01 1.00973025e-02 -1.25679702e-01 1.20861697e+00
1.74011186e-01 7.18654275e-01 -4.65572774e-02 1.35012940e-01
3.95433366e-01 -1.02454558e-01 7.99778998e-01 -5.35095930e-01
-5.27375340e-01 7.85712898e-02 -1.42991394e-01 -5.20250797e-01
-8.29131186e-01 -5.70042789e-01 -1.60937679e+00 -4.03908223e-01
-1.40782177e-01 -1.98233679e-01 7.23069489e-01 8.44612896e-01
3.72892953e-02 6.24865949e-01 5.70713542e-02 -9.77492750e-01
-2.86013573e-01 -8.25021625e-01 -5.87867975e-01 5.43144524e-01
-9.63902287e-03 -8.49669874e-01 -1.72979590e-02 -2.27697432e-01] | [14.445869445800781, -2.4330620765686035] |
16dc90f8-d8d9-4d9a-b214-2eb544090b7b | variance-covariance-regularization-improves | 2306.13292 | null | https://arxiv.org/abs/2306.13292v1 | https://arxiv.org/pdf/2306.13292v1.pdf | Variance-Covariance Regularization Improves Representation Learning | Transfer learning has emerged as a key approach in the machine learning domain, enabling the application of knowledge derived from one domain to improve performance on subsequent tasks. Given the often limited information about these subsequent tasks, a strong transfer learning approach calls for the model to capture a diverse range of features during the initial pretraining stage. However, recent research suggests that, without sufficient regularization, the network tends to concentrate on features that primarily reduce the pretraining loss function. This tendency can result in inadequate feature learning and impaired generalization capability for target tasks. To address this issue, we propose Variance-Covariance Regularization (VCR), a regularization technique aimed at fostering diversity in the learned network features. Drawing inspiration from recent advancements in the self-supervised learning approach, our approach promotes learned representations that exhibit high variance and minimal covariance, thus preventing the network from focusing solely on loss-reducing features. We empirically validate the efficacy of our method through comprehensive experiments coupled with in-depth analytical studies on the learned representations. In addition, we develop an efficient implementation strategy that assures minimal computational overhead associated with our method. Our results indicate that VCR is a powerful and efficient method for enhancing transfer learning performance for both supervised learning and self-supervised learning, opening new possibilities for future research in this domain. | ['Yann Lecun', 'Yubei Chen', 'Ravid Shwartz-Ziv', 'Jiachen Zhu'] | 2023-06-23 | null | null | null | null | ['self-supervised-learning', 'transfer-learning'] | ['computer-vision', 'miscellaneous'] | [ 4.12173390e-01 -4.40424532e-02 -2.83337474e-01 -5.05201697e-01
-5.18060565e-01 -3.14030528e-01 4.59888309e-01 1.98236987e-01
-4.98404980e-01 9.10470903e-01 -9.42092538e-02 -1.56520113e-01
-4.29727852e-01 -8.63969445e-01 -7.64349520e-01 -6.59429371e-01
6.26884922e-02 4.84656654e-02 7.67802522e-02 -2.50055939e-01
2.28395477e-01 6.16209865e-01 -1.57520700e+00 1.50982574e-01
1.15977430e+00 1.00036502e+00 3.10781628e-01 3.68785337e-02
-6.59413636e-02 7.18231559e-01 -4.44297671e-01 -3.16438615e-01
2.09345296e-01 -4.85090166e-01 -6.69428587e-01 2.10454520e-02
3.45292896e-01 7.48997414e-03 -1.39876366e-01 9.15468812e-01
4.40949976e-01 4.97424573e-01 8.78345132e-01 -1.01059461e+00
-7.19212949e-01 3.88547391e-01 -4.69013959e-01 2.57246286e-01
-3.29123177e-02 8.06800053e-02 1.06930923e+00 -8.67888689e-01
2.63162553e-01 9.21643257e-01 7.77231157e-01 6.66893780e-01
-1.48900044e+00 -7.89858043e-01 2.62252688e-01 5.00963926e-02
-1.26371753e+00 -2.97221392e-01 1.05961096e+00 -4.32979733e-01
7.70490468e-01 -3.34661864e-02 4.32183772e-01 9.73013341e-01
2.36220077e-01 8.13292027e-01 1.17107868e+00 -7.14693427e-01
2.17300326e-01 6.98504925e-01 9.55414772e-02 5.46682775e-01
3.23185116e-01 2.72190601e-01 -5.81449270e-01 1.62728652e-02
7.36445725e-01 -9.28911287e-03 -1.46221563e-01 -7.47150302e-01
-6.08885765e-01 1.07782662e+00 6.91769361e-01 4.98675555e-01
-4.54836756e-01 -1.35867119e-01 3.57478589e-01 6.51246369e-01
6.70912743e-01 6.55377150e-01 -4.47895586e-01 8.03748593e-02
-7.31085062e-01 -1.40739139e-03 5.28708220e-01 5.71813643e-01
1.14012408e+00 1.25066727e-01 -6.90087005e-02 1.08667052e+00
1.68297932e-01 2.02933311e-01 5.44202328e-01 -7.21071005e-01
4.24767196e-01 8.42454016e-01 -3.47647607e-01 -1.02568817e+00
-1.56550944e-01 -8.74381363e-01 -7.85443306e-01 4.32889491e-01
2.81761974e-01 -1.96803108e-01 -5.01563489e-01 2.05238986e+00
1.93882406e-01 -2.50969641e-02 8.51243436e-02 6.52106702e-01
2.60921389e-01 3.86925399e-01 2.50665873e-01 -2.53640890e-01
7.50876606e-01 -7.16222107e-01 -4.45702612e-01 -3.37885559e-01
7.87614822e-01 -3.98973107e-01 1.28110588e+00 3.82427335e-01
-9.07716870e-01 -6.49051905e-01 -9.38766003e-01 2.63632894e-01
-2.41808310e-01 -6.71713278e-02 8.16029251e-01 5.81899107e-01
-8.21752250e-01 9.67930734e-01 -6.50813758e-01 -2.70751297e-01
7.74221122e-01 5.17713070e-01 -4.13373202e-01 -1.38908803e-01
-1.08437872e+00 9.41595852e-01 5.13506114e-01 -1.65116582e-02
-4.95024800e-01 -9.57952082e-01 -6.48401797e-01 3.19907427e-01
3.17327619e-01 -4.74757701e-01 9.87536073e-01 -1.36319363e+00
-1.49678588e+00 6.10990942e-01 2.16493979e-01 -5.94091356e-01
4.33096856e-01 -3.21042508e-01 -8.41907933e-02 5.78320883e-02
-1.38657436e-01 4.71458644e-01 1.02127182e+00 -1.28639317e+00
-5.12561798e-01 -3.38012487e-01 -1.50363088e-01 3.42962682e-01
-1.00954461e+00 -2.74325669e-01 -3.26907597e-02 -6.53065383e-01
-1.67404175e-01 -7.91289330e-01 -1.51321113e-01 -8.35656971e-02
9.70566645e-02 -2.88122594e-01 5.93370795e-01 -1.98369101e-01
1.20773077e+00 -2.32588530e+00 1.15856647e-01 4.77868378e-01
1.56695098e-01 5.82173645e-01 -1.66571155e-01 3.97596627e-01
-8.74566585e-02 -3.84212099e-02 -2.97146618e-01 -9.23958644e-02
-2.65300721e-01 1.91637978e-01 -2.59299845e-01 2.98334271e-01
5.14360785e-01 8.45168829e-01 -9.28982258e-01 -3.24799001e-01
1.25150904e-01 5.13118446e-01 -7.27054417e-01 4.17262584e-01
4.26396839e-02 5.64883113e-01 -6.06312931e-01 2.76637912e-01
4.34959054e-01 -2.85834938e-01 2.45635688e-01 -1.94204412e-02
1.41944394e-01 1.86418518e-01 -8.63903165e-01 1.40577483e+00
-7.10841119e-01 5.48987448e-01 -1.00754693e-01 -1.53916585e+00
1.26384294e+00 -3.77840362e-02 4.46505994e-01 -8.13126206e-01
1.38829365e-01 1.86690375e-01 1.31103516e-01 -2.71527171e-01
8.92919227e-02 -2.21381411e-01 2.47926667e-01 4.69812751e-01
2.03167543e-01 6.93877554e-03 8.45975801e-02 -8.12202096e-02
9.32598710e-01 1.21666990e-01 2.22911954e-01 -3.10976297e-01
6.64350033e-01 -1.03848130e-01 4.73196685e-01 6.59599245e-01
-2.16552436e-01 2.25680590e-01 3.31667393e-01 -2.78405458e-01
-8.37462187e-01 -9.16297138e-01 -2.57717431e-01 1.39330518e+00
-2.52639413e-01 -1.64111823e-01 -6.14294350e-01 -9.57563162e-01
3.13206762e-01 6.27518177e-01 -7.51463950e-01 -7.75897741e-01
-5.58922410e-01 -6.42908573e-01 1.63743123e-01 6.54676855e-01
4.60477591e-01 -1.20154715e+00 -3.41634303e-01 1.36899263e-01
2.02492416e-01 -6.92939997e-01 -2.19509810e-01 4.53435212e-01
-1.36420643e+00 -1.05033898e+00 -6.16417050e-01 -8.78917277e-01
1.01587772e+00 3.63719702e-01 1.06565785e+00 1.71293139e-01
-2.28590131e-01 4.94197041e-01 -3.23112786e-01 -2.77658731e-01
-4.61453825e-01 3.63668501e-01 1.10914491e-01 1.05417199e-01
5.30219018e-01 -7.61532784e-01 -5.17487228e-01 3.06194454e-01
-8.99508476e-01 -2.16963053e-01 8.87050688e-01 1.18925977e+00
4.04586077e-01 2.12017909e-01 1.03224051e+00 -1.09350002e+00
1.00189650e+00 -6.01221621e-01 -4.67465550e-01 2.51317352e-01
-1.08003914e+00 2.63171345e-01 8.30648124e-01 -6.85544491e-01
-1.22240901e+00 2.28253826e-02 1.11145914e-01 -4.60497290e-01
3.94940339e-02 7.54891574e-01 7.11779594e-02 -3.36184382e-01
9.80516672e-01 2.60244191e-01 5.02845109e-01 -4.74011391e-01
1.86286777e-01 5.22140026e-01 1.48721009e-01 -7.12176144e-01
8.41498256e-01 1.48573533e-01 -6.44661486e-02 -7.28054643e-01
-1.03823888e+00 -3.29031676e-01 -7.17123687e-01 -1.05667852e-01
3.32035571e-01 -8.06354582e-01 -4.98760134e-01 2.24869668e-01
-5.40571570e-01 -5.10401547e-01 -4.67679292e-01 6.48781717e-01
-5.84626317e-01 1.11560650e-01 -2.10639030e-01 -8.13762605e-01
-2.30754256e-01 -8.51225078e-01 3.97545993e-01 1.93758771e-01
-2.94832349e-01 -1.41869676e+00 1.34975389e-01 1.68190569e-01
6.04678392e-01 -9.88211110e-02 1.02623010e+00 -9.12027776e-01
-2.35246316e-01 -1.62511274e-01 -2.06685856e-01 9.11449790e-01
4.69461471e-01 -3.03016186e-01 -9.42989290e-01 -5.52470446e-01
1.29675111e-02 -7.42703319e-01 1.06410897e+00 2.33009875e-01
1.14004850e+00 -4.58158217e-02 -1.48415357e-01 4.44116503e-01
1.41717744e+00 -4.14919518e-02 4.10094172e-01 5.75843990e-01
4.89860058e-01 7.91916728e-01 5.13748348e-01 2.88852483e-01
2.33272347e-03 4.74879920e-01 2.17117399e-01 -1.46340802e-01
-1.20350726e-01 -3.61880571e-01 2.68879235e-01 6.61964238e-01
-9.29297805e-02 1.87444493e-01 -8.15287173e-01 3.76007557e-01
-1.75215161e+00 -7.28376031e-01 3.71085674e-01 2.38834500e+00
1.10398066e+00 1.79268524e-01 4.12584562e-03 2.45873228e-01
5.45125246e-01 -1.09270856e-01 -6.26049995e-01 -3.59597415e-01
1.22324586e-01 3.29467684e-01 2.36377746e-01 1.78180754e-01
-1.08005643e+00 9.97094214e-01 6.75186253e+00 8.23715031e-01
-1.23396945e+00 -2.83256173e-01 4.69963431e-01 1.44409239e-01
-2.54360855e-01 -2.78427303e-01 -7.90879965e-01 2.89097518e-01
9.24171090e-01 -3.46397340e-01 4.25825328e-01 1.08888507e+00
6.80706948e-02 2.19040662e-02 -1.15269959e+00 7.01346099e-01
-4.79580648e-02 -1.12261117e+00 1.21862769e-01 -1.27780410e-02
7.94014871e-01 -2.08584160e-01 3.14774215e-01 6.51817679e-01
1.32813618e-01 -9.58687365e-01 1.66239455e-01 3.32572728e-01
6.52964890e-01 -1.02589202e+00 6.37603581e-01 4.19833809e-01
-7.86459744e-01 -3.67824703e-01 -6.19126201e-01 -9.83269736e-02
-4.03854817e-01 6.06455088e-01 -9.93745685e-01 3.95666897e-01
4.42409039e-01 8.16839814e-01 -6.21982336e-01 8.93336475e-01
-2.04554051e-01 7.77542770e-01 1.91587768e-02 -4.95671257e-02
1.11281238e-01 -3.49385202e-01 2.05607310e-01 1.12596595e+00
1.58484399e-01 -1.39735937e-01 2.07185715e-01 8.09149444e-01
-1.23320036e-01 3.88192028e-01 -9.42191124e-01 -5.19300885e-02
3.55936289e-01 1.06427324e+00 -4.67627853e-01 1.03603455e-03
-4.95860368e-01 6.07163966e-01 8.17150354e-01 3.51054102e-01
-5.14688194e-01 -3.22876245e-01 5.06402671e-01 1.67189345e-01
4.67881680e-01 -2.09273905e-01 -3.85991067e-01 -9.82482970e-01
-4.62953076e-02 -8.73695433e-01 3.28512281e-01 -1.86181560e-01
-1.62262785e+00 5.69616497e-01 -3.39729935e-02 -1.26223612e+00
-3.24060798e-01 -6.38734698e-01 -5.51772356e-01 8.27286363e-01
-1.88604069e+00 -8.81172061e-01 -8.44570696e-02 7.22950876e-01
3.97457957e-01 -5.04477799e-01 7.19165325e-01 3.16388994e-01
-5.88411689e-01 8.52932751e-01 3.47967684e-01 -3.56013663e-02
8.79660904e-01 -1.06310415e+00 -2.24919692e-01 4.34160173e-01
1.15351431e-01 8.00418198e-01 4.50726122e-01 -5.07230520e-01
-1.21232080e+00 -1.11971307e+00 4.96097803e-01 -1.95299476e-01
6.73894107e-01 -2.23597631e-01 -1.31117237e+00 4.70999032e-01
-1.13841265e-01 -4.35204245e-02 1.01999390e+00 4.74342644e-01
-3.90132278e-01 -3.34881097e-01 -1.05714965e+00 3.26277196e-01
8.09109509e-01 -5.82313359e-01 -7.41954386e-01 1.13188602e-01
3.79889190e-01 4.23466600e-02 -7.94328690e-01 3.84607822e-01
4.87416238e-01 -8.85155201e-01 8.58628571e-01 -8.07827234e-01
4.70124960e-01 2.38330603e-01 2.91202571e-02 -1.60693550e+00
-4.59861279e-01 -3.78517210e-01 -2.10113764e-01 1.23731863e+00
4.49230403e-01 -6.75110817e-01 9.20963466e-01 6.20516479e-01
-6.64782077e-02 -7.79411674e-01 -5.64167440e-01 -1.06635010e+00
4.64408457e-01 -3.63924205e-01 9.18867812e-02 9.85494554e-01
-1.37910724e-01 3.51243138e-01 -2.22036123e-01 -1.73523694e-01
6.08026683e-01 1.84427556e-02 6.47986591e-01 -1.67165780e+00
-2.56963015e-01 -3.48778278e-01 -2.71602333e-01 -8.00094247e-01
5.82211018e-01 -1.11337483e+00 3.13562229e-02 -1.01633990e+00
2.30237633e-01 -6.74416423e-01 -6.98628604e-01 5.67811072e-01
-2.91577458e-01 1.65469095e-01 1.13743775e-01 2.83672512e-01
-4.45680708e-01 7.49850631e-01 1.33949578e+00 7.18651190e-02
-4.93572146e-01 3.27424109e-01 -9.71099019e-01 7.09066451e-01
9.57988679e-01 -6.08462393e-01 -8.08437705e-01 -2.46464863e-01
6.60269484e-02 -4.68704283e-01 1.11362137e-01 -9.62367773e-01
1.09963022e-01 -2.27287069e-01 5.58056712e-01 5.63593358e-02
1.20238476e-01 -9.60450292e-01 -4.17236090e-01 5.01532018e-01
-6.20773435e-01 -3.85675192e-01 3.54839295e-01 6.16539657e-01
-2.99887717e-01 -3.71273220e-01 9.32146966e-01 3.77015620e-02
-6.26774251e-01 1.84946805e-01 -3.00762326e-01 1.04490459e-01
1.02585161e+00 -2.48038679e-01 1.24552585e-01 -2.00993791e-01
-6.83936238e-01 1.77788928e-01 2.75718600e-01 3.53151083e-01
6.70271039e-01 -1.38329792e+00 -6.26845479e-01 4.71839786e-01
6.17797598e-02 -2.26716980e-01 7.74056166e-02 6.73526943e-01
-5.61615676e-02 3.00890684e-01 -5.41655421e-01 -5.32124221e-01
-1.04000735e+00 5.39969862e-01 1.74534649e-01 -4.06978071e-01
-5.89566112e-01 7.90107727e-01 3.38946015e-01 -4.83218461e-01
3.05349350e-01 4.00884673e-02 -3.76531959e-01 1.46574751e-01
5.06991982e-01 3.55685472e-01 2.13792905e-01 -2.15804338e-01
-1.90025449e-01 4.08609092e-01 -4.82792705e-01 1.57762840e-01
1.63129342e+00 -2.10327143e-03 1.75208330e-01 4.14324135e-01
1.34117639e+00 -1.87997445e-01 -1.56640911e+00 -4.56928819e-01
1.38513759e-01 -5.23679912e-01 2.35425934e-01 -6.40738368e-01
-9.78887618e-01 8.63795698e-01 5.51800966e-01 1.69318765e-01
1.30774307e+00 -2.21017376e-01 3.51314813e-01 7.07250059e-01
3.35446090e-01 -1.21926308e+00 4.60355610e-01 5.23283005e-01
8.08866501e-01 -1.48561478e+00 4.63253185e-02 -3.80901605e-01
-7.49427199e-01 1.08462906e+00 7.90265322e-01 -3.95964414e-01
5.76903701e-01 -3.76982009e-03 -5.70251942e-02 1.98189709e-02
-7.24396050e-01 -1.55549332e-01 5.00157833e-01 7.51944125e-01
5.97556174e-01 -3.82852107e-01 -1.92231208e-01 4.39534962e-01
1.44940510e-01 1.14807479e-01 1.92772135e-01 1.14237046e+00
-5.46036422e-01 -1.41562271e+00 -1.30412057e-01 5.42168915e-01
-3.55475128e-01 -3.78046483e-02 -4.08910573e-01 8.92831504e-01
-1.95365146e-01 7.78147936e-01 3.41072083e-02 -2.79293269e-01
3.81720543e-01 2.28994712e-01 5.61294317e-01 -8.15905809e-01
-6.61188781e-01 -1.26336291e-01 -2.81863064e-01 -3.99074346e-01
-4.12841439e-01 -4.68092740e-01 -1.06005549e+00 -1.03633277e-01
-5.10849714e-01 3.31682086e-01 5.14919698e-01 9.09873426e-01
4.28277791e-01 6.72296464e-01 9.93220627e-01 -6.35820508e-01
-1.03346777e+00 -8.04600120e-01 -6.21113956e-01 5.62857687e-01
2.90046424e-01 -9.54842925e-01 -4.94438261e-01 -5.32011501e-02] | [9.511385917663574, 3.0520811080932617] |
91a8da5e-7081-438b-b3e3-c17d8315f5a5 | efficient-and-accurate-monitoring-of-the | 1706.08088 | null | http://arxiv.org/abs/1706.08088v1 | http://arxiv.org/pdf/1706.08088v1.pdf | Efficient and accurate monitoring of the depth information in a Wireless Multimedia Sensor Network based surveillance | Wireless Multimedia Sensor Network (WMSN) is a promising technology capturing
rich multimedia data like audio and video, which can be useful to monitor an
environment under surveillance. However, many scenarios in real time monitoring
requires 3D depth information. In this research work, we propose to use the
disparity map that is computed from two or multiple images, in order to monitor
the depth information in an object or event under surveillance using WMSN. Our
system is based on distributed wireless sensors allowing us to notably reduce
the computational time needed for 3D depth reconstruction, thus permitting the
success of real time solutions. Each pair of sensors will capture images for a
targeted place/object and will operate a Stereo Matching in order to create a
Disparity Map. Disparity maps will give us the ability to decrease traffic on
the bandwidth, because they are of low size. This will increase WMSN lifetime.
Any event can be detected after computing the depth value for the target object
in the scene, and also 3D scene reconstruction can be achieved with a disparity
map and some reference(s) image(s) taken by the node(s). | ['Rony Darazi', 'Anthony Tannoury', 'Christophe Guyeux', 'Abdallah Makhoul'] | 2017-06-25 | null | null | null | null | ['3d-scene-reconstruction'] | ['computer-vision'] | [ 8.01336706e-01 5.72316535e-02 1.37308657e-01 -2.59481758e-01
-2.28726357e-01 -3.76769990e-01 3.79475683e-01 4.31508303e-01
-6.86455965e-01 4.06131595e-01 -2.39557952e-01 1.07134625e-01
-1.11616261e-01 -1.53837800e+00 -3.36558998e-01 -9.73408163e-01
-4.38794255e-01 5.37358187e-02 1.04162180e+00 3.66592743e-02
2.27564991e-01 6.45395041e-01 -1.83597004e+00 8.86092857e-02
2.12673292e-01 1.60982144e+00 7.56070554e-01 7.08932221e-01
-1.81581810e-01 5.71769893e-01 -7.37039447e-01 1.11090392e-01
3.66510779e-01 -3.00929639e-02 -2.76134163e-01 2.62562707e-02
9.81482640e-02 -8.12716067e-01 -9.22789648e-02 1.01709855e+00
6.05800867e-01 -1.34221613e-01 3.58770877e-01 -1.20906675e+00
6.32743120e-01 3.23047519e-01 -8.42413664e-01 1.66166797e-01
8.85644913e-01 -5.00831828e-02 6.70849234e-02 -8.90937150e-02
6.50738060e-01 1.14214540e+00 4.36169922e-01 4.87031668e-01
-4.35428977e-01 -4.68921959e-01 -1.07992254e-01 5.55355608e-01
-1.23300755e+00 -3.56455773e-01 9.58436847e-01 1.13551214e-01
4.27191228e-01 3.75289977e-01 9.29800391e-01 5.30015230e-01
3.15018326e-01 2.65505373e-01 6.44262314e-01 -4.79555011e-01
4.93806630e-01 -1.56979159e-01 -3.78500074e-01 4.18679506e-01
4.29936081e-01 -7.01935366e-02 -6.14609838e-01 -9.74896327e-02
7.52549648e-01 4.38689053e-01 -3.91773790e-01 -1.32197723e-01
-1.20896959e+00 4.25353408e-01 5.55084109e-01 4.14508164e-01
-8.35960925e-01 2.29308203e-01 9.14629623e-02 2.60768116e-01
2.51000792e-01 -3.01491022e-01 -2.40712962e-03 -4.03193608e-02
-7.03162432e-01 -2.01828972e-01 5.99711478e-01 6.41385734e-01
9.13158536e-01 -2.74404496e-01 3.30585837e-01 1.93058237e-01
4.74174738e-01 1.08174205e+00 1.34973183e-01 -1.27187264e+00
4.31653023e-01 7.13844895e-01 -6.20310605e-02 -1.36844265e+00
-6.90531969e-01 2.91248232e-01 -9.50224996e-01 5.55170059e-01
9.40941200e-02 -2.41316929e-01 -4.71952915e-01 1.36151958e+00
8.97302866e-01 3.50473255e-01 3.48609686e-01 8.53243172e-01
9.27666903e-01 1.06077254e+00 -7.61849806e-02 -5.08449137e-01
1.33781731e+00 -1.36088565e-01 -5.28882504e-01 -2.49257520e-01
2.10177451e-01 -6.61974251e-01 2.49684379e-02 6.11174464e-01
-1.14660668e+00 -4.83809710e-01 -1.00454700e+00 5.00666440e-01
-4.06093776e-01 -6.12509608e-01 2.46693254e-01 5.31799018e-01
-1.22264016e+00 1.91189587e-01 -7.83192456e-01 -7.17646837e-01
1.11968480e-01 4.26170766e-01 -2.94864327e-01 -3.65426123e-01
-1.12882197e+00 7.64031470e-01 3.82975459e-01 9.47391763e-02
-1.04373097e+00 -3.31827819e-01 -7.51037180e-01 -2.17024416e-01
3.17277580e-01 -6.66254163e-01 8.36572289e-01 -5.78629017e-01
-1.03259540e+00 7.49923587e-01 -2.69018561e-01 -4.77436483e-01
2.33063981e-01 4.36601251e-01 -4.16729003e-01 8.35608244e-01
1.53279319e-01 8.30180228e-01 6.60825431e-01 -1.12240314e+00
-1.10895848e+00 -6.97882295e-01 2.75366366e-01 2.64066100e-01
-4.94954526e-01 3.36176902e-02 -2.40857825e-01 1.08963378e-01
5.51146388e-01 -3.31779778e-01 -4.55041856e-01 5.60397625e-01
2.54958197e-02 8.79730955e-02 1.25514829e+00 -3.49890053e-01
7.09492981e-01 -2.16165829e+00 -2.72183418e-01 3.29516768e-01
2.00957537e-01 1.54983044e-01 1.65096223e-02 3.39955598e-01
7.02600598e-01 -2.85454124e-01 -1.50068671e-01 -2.38749146e-01
-7.67549992e-01 3.66177619e-01 2.59787917e-01 5.86674273e-01
-2.43458286e-01 3.88370752e-02 -7.90605187e-01 -8.08859110e-01
4.67686296e-01 6.53062582e-01 -6.68884665e-02 2.91474789e-01
-1.36854097e-01 4.44484174e-01 -8.45695257e-01 5.85344672e-01
1.09732389e+00 2.11616218e-01 1.63490728e-01 -1.49633437e-01
-5.38930833e-01 -1.17488049e-01 -1.42418242e+00 1.71100879e+00
-3.80418777e-01 5.36221683e-01 6.53729618e-01 -9.97022331e-01
1.09403241e+00 6.98510885e-01 9.65112507e-01 -1.00180995e+00
1.93008736e-01 4.42298912e-02 -7.66587853e-01 -7.74013758e-01
2.08505675e-01 1.76673576e-01 -3.31434198e-02 4.14688855e-01
-5.95634878e-01 7.43776676e-04 5.35472855e-03 -3.54337879e-02
1.39607322e+00 -4.02311921e-01 1.87360585e-01 5.76682538e-02
5.04691660e-01 1.67131618e-01 5.88280916e-01 5.90878606e-01
-1.54216871e-01 -1.21124526e-02 -8.73882994e-02 -4.91749018e-01
-6.29399598e-01 -1.10995078e+00 -4.68699448e-02 4.27737802e-01
9.40562487e-01 1.92763150e-01 -4.56541777e-01 3.61519679e-02
-3.49311292e-01 3.29145119e-02 -1.85385138e-01 8.76769498e-02
-5.97310662e-01 -4.69004810e-01 2.08722010e-01 2.65190527e-02
9.31451976e-01 -1.01594222e+00 -1.77455533e+00 4.69844043e-01
-3.38902980e-01 -1.25625026e+00 2.16443360e-01 -2.95558292e-02
-1.21149886e+00 -1.34244311e+00 -4.88014668e-01 -6.40828490e-01
6.71410203e-01 9.52311993e-01 7.33686924e-01 -6.52156994e-02
-3.43093395e-01 7.90547192e-01 -5.31944633e-01 -7.79295206e-01
-2.54786909e-01 -4.54213381e-01 -1.05518460e-01 7.45211542e-02
3.25880080e-01 -6.43373907e-01 -9.04263437e-01 2.76265532e-01
-1.28928256e+00 -9.40550417e-02 2.45311812e-01 -2.39649683e-01
5.83954394e-01 5.20130396e-01 3.17718774e-01 -2.86584705e-01
-5.99480420e-02 -6.80992246e-01 -1.04018581e+00 -5.09436168e-02
-6.74661482e-03 -5.81443131e-01 1.88557580e-01 -2.09331289e-01
-8.55090976e-01 1.47034243e-01 -9.97223426e-03 -1.13051847e-01
-2.54832685e-01 1.89439923e-01 -3.50089401e-01 -2.42375717e-01
2.37938270e-01 1.04371205e-01 2.18900815e-01 -3.46681803e-01
-2.65408367e-01 7.76120842e-01 5.23812830e-01 3.59571904e-01
5.75899065e-01 1.06810868e+00 6.33078516e-01 -1.14714348e+00
-2.59572536e-01 -5.59776664e-01 -4.30246323e-01 -8.88089299e-01
9.45529819e-01 -1.03959060e+00 -1.03916681e+00 4.40673500e-01
-1.52700734e+00 1.02556050e-01 6.45504370e-02 5.24546325e-01
-9.31411162e-02 3.70397925e-01 -1.69940367e-01 -1.21158290e+00
-3.55239868e-01 -8.84653568e-01 9.99907970e-01 5.01345813e-01
2.19618559e-01 -1.00498307e+00 -1.16569139e-01 1.50420114e-01
6.90097153e-01 7.92196095e-01 2.28077665e-01 8.59789997e-02
-1.04211628e+00 -3.39250803e-01 -9.09773111e-02 -1.10698223e-01
1.78019807e-01 -2.07788542e-01 -1.01292658e+00 -1.68642700e-01
3.58943790e-01 3.17322671e-01 6.01458609e-01 7.70830154e-01
9.10766184e-01 -9.23086554e-02 -6.37210250e-01 4.67724830e-01
1.76650906e+00 6.26918018e-01 7.05529332e-01 3.90884072e-01
2.46472687e-01 8.42903078e-01 8.86100173e-01 8.61142576e-01
4.44635123e-01 7.00901747e-01 1.31621027e+00 -2.07854658e-01
-7.08613247e-02 2.44271934e-01 5.48073471e-01 2.45308504e-01
8.23592320e-02 -4.70524043e-01 -5.50278544e-01 3.83145481e-01
-1.60250843e+00 -1.14415967e+00 -3.30654055e-01 2.37277579e+00
1.49141759e-01 5.29910289e-02 6.60661682e-02 5.19958675e-01
1.01351547e+00 3.27666909e-01 -4.67100203e-01 -1.30791143e-01
-8.16411749e-02 -1.29814029e-01 6.84750021e-01 2.88821340e-01
-6.75807655e-01 1.92666531e-01 5.65935659e+00 4.11503196e-01
-1.16573274e+00 1.18325070e-01 8.77038687e-02 -1.69096559e-01
-2.42224276e-01 -2.36809194e-01 -6.53513551e-01 4.92993832e-01
9.10778046e-01 -3.70009653e-02 6.56051114e-02 6.23288572e-01
7.53919244e-01 -1.03045309e+00 -5.87987065e-01 1.04524052e+00
8.08919147e-02 -1.16183817e+00 -1.31497428e-01 1.49694845e-01
3.52358282e-01 8.86084363e-02 -4.06537175e-01 -7.12021351e-01
-1.39033273e-01 -3.16665351e-01 5.05588055e-01 4.93950993e-01
6.55514300e-01 -7.89515316e-01 8.02726865e-01 7.57544756e-01
-1.46950912e+00 -8.97754729e-02 -6.75344408e-01 -6.13082349e-02
5.15255034e-01 1.05365920e+00 -6.69904828e-01 5.64297497e-01
1.09456193e+00 5.58124423e-01 -1.24489240e-01 1.35007739e+00
2.33161688e-01 5.91665618e-02 -8.02065432e-01 -3.30001086e-01
6.17181659e-02 5.07810116e-02 8.12956333e-01 7.93461144e-01
7.19080806e-01 2.13100582e-01 1.46631449e-01 3.92225325e-01
2.23016202e-01 -2.89200038e-01 -1.04801261e+00 8.49538565e-01
6.78093851e-01 1.10281980e+00 -7.26004004e-01 -3.37853193e-01
-3.55681121e-01 7.91450262e-01 -6.35012925e-01 -4.86986600e-02
-5.53656638e-01 -4.68284905e-01 4.57533836e-01 3.10197443e-01
6.30519316e-02 -2.59923905e-01 -3.86753455e-02 -5.05476177e-01
1.44780084e-01 -1.39220104e-01 4.22960997e-01 -7.43367434e-01
-5.08264601e-01 6.40253723e-01 8.94956812e-02 -1.50955129e+00
-3.46735358e-01 -2.34792113e-01 -7.38111198e-01 4.07416821e-01
-1.73489928e+00 -5.74910939e-01 -1.04663289e+00 1.14092410e+00
3.11208606e-01 1.96254954e-01 6.38880014e-01 6.09110653e-01
-1.20462053e-01 -2.56078631e-01 -1.43451288e-01 -1.85085148e-01
3.20940375e-01 -4.47041869e-01 -2.19992220e-01 8.74314904e-01
-3.02700311e-01 -3.46960902e-01 6.79937601e-01 -6.99598074e-01
-1.70054102e+00 -7.68258810e-01 6.59542680e-01 -1.32845536e-01
1.36660591e-01 6.83457926e-02 -3.20149302e-01 6.68380857e-02
1.18638195e-01 -1.34692103e-01 4.39849079e-01 -8.64429891e-01
2.81464934e-01 -6.78343475e-01 -1.88282919e+00 1.71446815e-01
9.24114406e-01 -3.03960666e-02 -1.22932553e-01 1.81798428e-01
6.95224047e-01 1.45508582e-02 -7.08770692e-01 5.57228208e-01
5.40313065e-01 -1.32827449e+00 9.55553293e-01 4.72043991e-01
2.08569579e-02 -5.50500274e-01 -3.62046182e-01 -8.23771179e-01
2.60746777e-01 -3.19050938e-01 1.17829993e-01 1.16832697e+00
7.28990287e-02 -6.46638513e-01 8.57665181e-01 4.40587997e-01
1.17063574e-01 -1.32624656e-01 -1.51578844e+00 -5.28658450e-01
-8.53188157e-01 -7.88404405e-01 7.17187583e-01 2.69939244e-01
-9.93403867e-02 -3.03913146e-01 -1.27498269e-01 7.46046126e-01
1.22865927e+00 -2.28228364e-02 6.94676399e-01 -1.59392750e+00
2.86625683e-01 -5.36025912e-02 -7.95731485e-01 -1.00765550e+00
-4.87896085e-01 -1.99566439e-01 -7.32257664e-02 -1.91536391e+00
2.86714900e-02 -5.08642197e-01 1.32994741e-01 1.01370201e-01
5.04106700e-01 4.49694097e-01 1.46194071e-01 1.50884077e-01
-8.13732326e-01 6.97219418e-03 1.01039386e+00 -8.61410890e-03
-4.70794626e-02 3.30142438e-01 -8.63075927e-02 7.65303671e-01
8.49496186e-01 -5.72483063e-01 -3.90511811e-01 -7.19022214e-01
9.18031186e-02 7.16104805e-01 6.34048164e-01 -1.49397528e+00
7.82943130e-01 -1.57082766e-01 4.41732854e-01 -9.48628664e-01
7.75705516e-01 -1.74837399e+00 5.09710491e-01 9.12501514e-01
2.27984816e-01 7.83376843e-02 -6.97398856e-02 5.83882451e-01
-2.70767957e-01 -4.34105635e-01 7.57015049e-01 -3.16485912e-01
-1.01301515e+00 3.08239788e-01 -7.01961935e-01 -7.00502932e-01
1.50892115e+00 -6.97358191e-01 -1.38406932e-01 -4.97480780e-01
-3.39178145e-01 2.99906790e-01 3.92010748e-01 -2.42588408e-02
9.88727033e-01 -1.04135895e+00 -4.18246806e-01 3.26219290e-01
-1.02173695e-02 3.09900820e-01 4.21731621e-01 5.48666894e-01
-8.49837899e-01 2.09156245e-01 -3.72247100e-01 -8.38860631e-01
-1.51035571e+00 3.76280785e-01 1.13805994e-01 8.52050632e-02
-4.17925000e-01 5.30607879e-01 -2.48040080e-01 2.82106608e-01
5.57350338e-01 -1.34067148e-01 -4.50592518e-01 9.03368220e-02
1.04810238e+00 6.35440588e-01 -1.23167112e-01 -5.22685945e-01
-6.19876325e-01 1.20086873e+00 6.78674877e-01 -2.80333221e-01
1.28470552e+00 -7.50700831e-01 -2.98842847e-01 5.31239377e-04
1.09040320e+00 -1.03032999e-01 -1.19890511e+00 -2.56108552e-01
-1.61849946e-01 -5.75250745e-01 3.30137610e-01 -1.98434755e-01
-1.37824905e+00 5.76273799e-01 1.04064488e+00 7.24892676e-01
1.80656457e+00 1.81950763e-01 9.60648775e-01 2.59816527e-01
1.20287514e+00 -8.45087290e-01 -9.32689384e-02 -1.21655732e-01
2.61757612e-01 -1.15945363e+00 -1.85473353e-01 -4.94454980e-01
-1.39238626e-01 1.34039938e+00 2.51478344e-01 2.28634238e-01
8.13982725e-01 6.42410159e-01 1.18298419e-01 -3.65740687e-01
-5.51111102e-01 -3.27715874e-01 -5.38644493e-01 1.13260937e+00
-3.17768991e-01 -1.70202896e-01 4.62333038e-02 -2.62892157e-01
2.25770175e-01 -3.90902758e-02 5.97680449e-01 1.11030543e+00
-1.30123127e+00 -1.01706803e+00 -8.90644550e-01 1.52806401e-01
-4.07906801e-01 4.17773664e-01 -5.54160494e-03 3.92292380e-01
3.31033409e-01 1.55687273e+00 4.19230849e-01 -3.11347663e-01
3.39892298e-01 -6.97298527e-01 3.35535169e-01 -2.43121222e-01
-1.79051593e-01 -9.50260237e-02 -2.54877377e-02 -8.60236824e-01
-9.75608587e-01 -5.43336093e-01 -1.37595713e+00 -5.56778252e-01
7.70957023e-02 2.88202427e-02 1.24377978e+00 5.72847426e-01
9.14879367e-02 2.20583037e-01 1.06714296e+00 -1.00859618e+00
3.01784903e-01 -4.82300222e-01 -6.95278704e-01 4.44570109e-02
5.55967569e-01 -4.28605139e-01 -4.62463111e-01 1.24081457e-02] | [8.581315994262695, -1.271619200706482] |
9dae68fe-3b8c-441e-a6a9-a8ad12154bc7 | point-spread-function-estimation-for-blind | 2112.11004 | null | https://arxiv.org/abs/2112.11004v1 | https://arxiv.org/pdf/2112.11004v1.pdf | Point spread function estimation for blind image deblurring problems based on framelet transform | One of the most important issues in the image processing is the approximation of the image that has been lost due to the blurring process. These types of matters are divided into non-blind and blind problems. The second type of problem is more complex in terms of calculations than the first problems due to the unknown of original image and point spread function estimation. In the present paper, an algorithm based on coarse-to-fine iterative by $l_0-\alpha l_1$ regularization and framelet transform is introduced to approximate the spread function estimation. Framelet transfer improves the restored kernel due to the decomposition of the kernel to different frequencies. Also in the proposed model fraction gradient operator is used instead of ordinary gradient operator. The proposed method is investigated on different kinds of images such as text, face, natural. The output of the proposed method reflects the effectiveness of the proposed algorithm in restoring the images from blind problems. | ['Reza Parvaz'] | 2021-12-21 | null | null | null | null | ['blind-image-deblurring'] | ['computer-vision'] | [-6.13888167e-02 -3.17041993e-01 5.78326583e-01 -1.15505278e-01
1.49757624e-01 -1.54848188e-01 2.67733753e-01 -2.68465310e-01
-4.66781795e-01 1.05113220e+00 5.81822574e-01 1.06845617e-01
-4.47522223e-01 -3.54250342e-01 -2.77523488e-01 -5.24839818e-01
2.54777938e-01 2.41332818e-02 8.93476531e-02 -2.05316275e-01
6.25767589e-01 4.37259883e-01 -1.67145836e+00 3.02747991e-02
9.94778693e-01 7.78103411e-01 3.80353332e-01 5.92037022e-01
-2.64163673e-01 8.16584826e-01 -4.89770591e-01 9.43336170e-03
4.06869918e-01 -7.52728283e-01 -5.17118812e-01 3.30080926e-01
1.33833766e-01 -5.63830316e-01 -4.96215299e-02 1.41407633e+00
6.55319035e-01 4.18407470e-01 1.01471043e+00 -4.95054394e-01
-7.60598242e-01 1.69770683e-05 -9.98190284e-01 5.10457993e-01
4.52822685e-01 -1.29263088e-01 -4.15821299e-02 -9.41212952e-01
3.91718864e-01 1.38607991e+00 7.13211656e-01 2.94929743e-01
-9.93989289e-01 -2.57732958e-01 -5.95045984e-01 7.15507090e-01
-1.27311480e+00 -5.11165142e-01 6.94702804e-01 -4.88606274e-01
4.74408031e-01 2.47854739e-01 3.79969150e-01 -5.04911542e-02
1.79326147e-01 7.16415197e-02 1.76473224e+00 -8.43368053e-01
-1.07050892e-02 3.79806936e-01 4.45140094e-01 6.72787845e-01
3.48696053e-01 2.13032961e-01 -9.69632491e-02 1.61461141e-02
7.21180677e-01 -9.65701882e-03 -9.83098328e-01 2.83611238e-01
-6.96278095e-01 5.25999486e-01 3.27695400e-01 8.13454390e-01
-4.43855911e-01 -3.02094340e-01 3.10596847e-03 1.28787413e-01
4.68339533e-01 1.92439005e-01 -1.98971063e-01 -5.51073533e-03
-1.20941806e+00 -6.82123601e-02 7.92243481e-01 4.95602220e-01
7.63231039e-01 1.37246981e-01 -4.53125425e-02 9.55879807e-01
3.02690774e-01 3.84986550e-01 5.84325135e-01 -6.74043536e-01
-1.35612935e-01 3.13173592e-01 4.80253577e-01 -8.62627923e-01
-2.15345100e-01 -3.81549627e-01 -7.76517987e-01 8.86749268e-01
6.12654626e-01 -2.26177663e-01 -1.04436731e+00 1.14955306e+00
3.13026398e-01 2.09749609e-01 -2.62473114e-02 1.15471065e+00
6.65258050e-01 1.04058933e+00 -2.48775765e-01 -5.93511343e-01
1.36347759e+00 -8.40669215e-01 -1.16583943e+00 9.24424902e-02
-2.47530863e-01 -1.54866636e+00 6.00057185e-01 3.44369471e-01
-1.08182693e+00 -7.57920861e-01 -8.30215216e-01 2.10773032e-02
-1.08300447e-01 5.06766796e-01 9.38307941e-02 6.25199795e-01
-1.12158978e+00 5.62414348e-01 -2.39298910e-01 -7.35578895e-01
9.47786570e-02 2.58918852e-01 -2.36588836e-01 -2.31159911e-01
-6.04246318e-01 1.31658709e+00 3.37166190e-01 2.38333300e-01
-1.55942246e-01 -4.86802965e-01 -2.20812753e-01 7.27910697e-02
-2.39364877e-01 -4.44840968e-01 8.17010522e-01 -1.20263898e+00
-1.27792537e+00 6.40477657e-01 -4.01457995e-01 -1.33102074e-01
4.87789184e-01 -1.59620509e-01 -2.98414409e-01 2.46667683e-01
-6.92054396e-03 -1.06973156e-01 1.32256615e+00 -1.10399318e+00
-5.13692439e-01 -4.43228185e-01 -3.71612847e-01 4.67127234e-01
5.08542098e-02 7.95824677e-02 -8.75148252e-02 -7.59550989e-01
7.49266744e-02 -5.72665155e-01 2.21620947e-01 6.56726584e-02
-4.00725529e-02 1.49134636e-01 1.02548349e+00 -1.27075839e+00
9.82126534e-01 -2.43560600e+00 3.73983756e-02 -1.60793122e-02
1.70309525e-02 4.96962994e-01 3.78616631e-01 4.21800882e-01
-1.20355412e-01 -3.88789594e-01 -4.22260463e-01 7.89390504e-02
-5.66052854e-01 -2.09291548e-01 5.32333627e-02 8.49106491e-01
-5.99078953e-01 -1.82316333e-01 -2.74788767e-01 -5.05169809e-01
5.08681238e-01 7.35156059e-01 -9.94228646e-02 1.65436730e-01
2.11634278e-01 7.96426356e-01 -1.98412940e-01 3.34580958e-01
1.26983154e+00 3.45613122e-01 -4.94237751e-01 -7.30940938e-01
-4.66419190e-01 -6.38160110e-01 -1.19242942e+00 1.24247253e+00
-2.97136277e-01 6.34163141e-01 5.54348111e-01 -1.01865458e+00
9.61438060e-01 5.30324221e-01 3.29356164e-01 -3.66944253e-01
3.15998495e-01 4.14438933e-01 -1.03954524e-01 -8.43205452e-01
1.62447110e-01 -4.61962134e-01 1.05024362e+00 3.25406432e-01
-5.90194687e-02 1.28053008e-02 2.20249832e-01 -3.91211301e-01
5.61577678e-01 1.20064825e-01 4.33142334e-01 -6.45436108e-01
9.82168376e-01 -9.09853205e-02 3.35999578e-01 3.26439828e-01
-3.03886026e-01 4.22452956e-01 -9.42159668e-02 -3.01059365e-01
-1.14084768e+00 -6.00396454e-01 -6.37609065e-01 5.07214010e-01
4.41252768e-01 4.21286345e-01 -1.03103125e+00 -6.61370903e-02
-1.67534482e-02 6.21419013e-01 -1.90531760e-01 9.29560512e-02
-3.52513224e-01 -9.93780732e-01 1.08411111e-01 -3.61115783e-01
1.12838936e+00 -9.74791646e-01 -5.54448426e-01 1.36095569e-01
-9.38034281e-02 -7.90675819e-01 -3.95503551e-01 -5.98048210e-01
-1.11463273e+00 -1.24609041e+00 -1.25145614e+00 -1.08350718e+00
9.91609156e-01 3.98172349e-01 3.29791397e-01 2.01005459e-01
-5.12307346e-01 3.39031786e-01 -4.58054423e-01 -2.91637063e-01
-3.43268037e-01 -7.45162964e-01 -8.67212787e-02 5.16970932e-01
3.82729679e-01 -5.26008546e-01 -8.94114017e-01 1.74980044e-01
-8.64136219e-01 -1.95046708e-01 6.03183389e-01 7.27591217e-01
-1.48629537e-02 6.77816391e-01 3.13031405e-01 -4.59492624e-01
1.01146281e+00 6.25151247e-02 -7.64019072e-01 1.05446356e-03
-6.22007608e-01 2.21894965e-01 5.97916365e-01 -2.55265892e-01
-1.52971506e+00 -1.73722848e-01 1.55051097e-01 2.54260134e-02
-2.84900695e-01 2.00487018e-01 4.06385720e-01 -5.80141962e-01
7.77636290e-01 4.47738081e-01 4.37458247e-01 -9.44086373e-01
-4.26873080e-02 8.49652827e-01 5.86475551e-01 -7.33117908e-02
7.58904576e-01 5.13112545e-01 1.62004724e-01 -1.34605944e+00
-2.70175010e-01 -6.46013021e-01 -6.55398518e-02 -4.20641541e-01
9.75445151e-01 -5.81630290e-01 -7.83675551e-01 8.38302433e-01
-1.37177372e+00 2.96366215e-01 -5.91856316e-02 1.03777540e+00
-2.43516579e-01 7.70360827e-01 -7.92096376e-01 -1.10729444e+00
-5.98908782e-01 -1.15503836e+00 1.97378144e-01 6.75076008e-01
3.75147700e-01 -7.40926623e-01 -1.24883488e-01 2.90830851e-01
7.93333054e-01 -1.39621841e-02 8.79130483e-01 1.10921361e-01
-3.78587812e-01 -1.95973635e-01 -4.80603456e-01 5.37254274e-01
5.30836701e-01 -3.45262587e-01 -9.61802959e-01 -3.99708658e-01
9.39700067e-01 2.09474772e-01 8.37303817e-01 9.02606905e-01
4.13502306e-01 -3.99268121e-01 -1.13519048e-02 6.44728541e-01
2.02891374e+00 4.49046552e-01 9.37927008e-01 3.60275090e-01
1.97244093e-01 5.77788472e-01 4.45745885e-01 3.07037324e-01
-4.61331695e-01 4.14171368e-01 2.42828533e-01 -2.56669939e-01
-6.28585994e-01 3.34316075e-01 1.65083885e-01 5.32446027e-01
-5.74425519e-01 5.44284247e-02 -4.12162542e-01 4.45283592e-01
-1.52806139e+00 -1.21089077e+00 -5.15164673e-01 2.38175511e+00
5.82836866e-01 -2.70956755e-01 -2.26787671e-01 4.83637989e-01
1.33923316e+00 -9.60601717e-02 -3.50422747e-02 -4.08365607e-01
2.15274803e-02 3.90769452e-01 4.69392598e-01 1.14784908e+00
-7.63121068e-01 3.88114929e-01 5.31471348e+00 8.96673977e-01
-1.24392176e+00 2.08235428e-01 3.64725262e-01 3.95473033e-01
2.82808870e-01 2.49346584e-01 -3.90937150e-01 9.09612417e-01
2.62423813e-01 -1.51020214e-01 8.67860615e-01 2.88282901e-01
3.96548927e-01 -8.36263597e-01 -3.32956135e-01 1.26185095e+00
2.05965534e-01 -6.80698752e-01 -8.50394666e-02 -7.80252963e-02
5.10169625e-01 -4.81424958e-01 -1.24264553e-01 -4.19543654e-01
-4.16323215e-01 -9.31871951e-01 3.46101582e-01 9.13592696e-01
7.66350627e-01 -7.07791507e-01 8.54726255e-01 4.70431089e-01
-9.32292640e-01 -1.94735438e-01 -5.88651776e-01 -1.56977445e-01
3.47370654e-01 8.41173291e-01 -7.18488038e-01 3.46364349e-01
5.74278891e-01 4.26931083e-01 -3.34201157e-01 1.67912078e+00
1.54710233e-01 2.85371602e-01 -3.78664583e-01 9.42871124e-02
-9.06297415e-02 -8.94275784e-01 9.06160355e-01 9.20921385e-01
7.44288266e-01 4.26557183e-01 -4.10201520e-01 8.08438838e-01
2.67609835e-01 4.32079524e-01 -5.85319340e-01 4.24288601e-01
1.53310284e-01 1.02491629e+00 -5.95412970e-01 -2.09735692e-01
-3.93218249e-01 1.07940805e+00 -4.11353886e-01 6.86340630e-01
-3.55306059e-01 -7.94755816e-01 1.04351016e-02 4.37744260e-01
1.87739879e-01 -1.04095191e-01 9.19983815e-03 -9.35754120e-01
-6.89733326e-02 -6.91024125e-01 1.77980494e-02 -1.00709069e+00
-9.77882802e-01 6.19428635e-01 -1.06517963e-01 -1.18226194e+00
2.51230836e-01 -6.79662168e-01 -5.68442225e-01 1.53571856e+00
-1.32639587e+00 -8.16881478e-01 -4.75732833e-01 7.80902326e-01
7.89124846e-01 -3.79958898e-01 5.73048770e-01 3.63349229e-01
-4.78630029e-02 -2.93775275e-02 6.30985618e-01 -2.81598300e-01
8.30345750e-01 -9.28922236e-01 -5.55480063e-01 1.11969399e+00
-5.18887699e-01 3.94851029e-01 1.15952051e+00 -7.19159007e-01
-7.90326953e-01 -2.60066807e-01 7.66299188e-01 2.45619759e-01
1.88210770e-01 4.24510628e-01 -7.18871891e-01 2.58739024e-01
5.34879923e-01 -2.24036220e-02 1.67623147e-01 -6.20756924e-01
2.69746542e-01 -3.77699524e-01 -1.64964545e+00 4.27343249e-02
1.00616679e-01 -3.44309419e-01 -7.11217403e-01 2.86958516e-01
-7.50042722e-02 -1.18424341e-01 -5.68058968e-01 1.31872058e-01
3.68104964e-01 -1.58616424e+00 9.24138963e-01 6.97676539e-02
2.04049107e-02 -6.11893296e-01 -9.22897190e-04 -1.26161838e+00
-4.99503583e-01 -4.84811872e-01 3.70090455e-01 1.16872382e+00
1.04937553e-02 -7.61717916e-01 3.83173883e-01 2.34596863e-01
4.53223661e-02 -1.12670034e-01 -8.40943694e-01 -2.34792605e-01
-5.69730639e-01 6.04537368e-01 3.27159576e-02 7.63495982e-01
-2.36601710e-01 2.24265561e-01 -4.86392200e-01 1.52369931e-01
1.15738440e+00 -2.00814694e-01 2.59423375e-01 -1.34554589e+00
-4.90970403e-01 -1.62593368e-02 -4.92187738e-01 -7.15493500e-01
-3.34735125e-01 -3.22941601e-01 -3.47912200e-02 -1.72589850e+00
3.90268601e-02 -2.10399047e-01 1.58814177e-01 -2.43900180e-01
-1.64419502e-01 1.58500507e-01 4.53388467e-02 5.76353908e-01
4.57274646e-01 2.27551594e-01 1.51202869e+00 -5.10944240e-02
-1.91495344e-01 2.25342512e-01 -2.51999915e-01 7.36211717e-01
6.51270747e-01 -1.51257694e-01 -4.87193286e-01 -5.29852629e-01
-2.58097053e-01 3.59037161e-01 3.14760357e-01 -1.13841677e+00
3.13270360e-01 1.63091525e-01 5.50621033e-01 -1.87423289e-01
5.00370264e-01 -1.06788909e+00 3.21648210e-01 5.72961748e-01
1.89977497e-01 -1.07679836e-01 9.03993845e-02 5.40931940e-01
-3.36548418e-01 -7.98154294e-01 1.33711910e+00 -4.26124394e-01
-6.64889991e-01 -2.50541598e-01 -2.25333244e-01 -3.62800270e-01
9.18966711e-01 -5.48554122e-01 -5.68162560e-01 -5.97701371e-01
-8.17549348e-01 -5.53710938e-01 3.89661491e-01 -3.80103618e-01
5.14164031e-01 -9.24589097e-01 -9.57815409e-01 7.50384182e-02
-5.34261465e-01 -3.85432422e-01 5.00092506e-01 1.07312047e+00
-1.38694763e+00 7.69568607e-02 -6.97567701e-01 -7.94056430e-02
-1.48862398e+00 5.92877805e-01 4.71376151e-01 1.79053769e-01
-6.00218713e-01 6.56585217e-01 7.57597834e-02 3.82501841e-01
1.73860341e-01 1.26949027e-01 -5.48698545e-01 -3.19564283e-01
5.69402039e-01 9.50862765e-01 -1.03460744e-01 -8.58993888e-01
-6.66762292e-02 1.08843851e+00 1.24592315e-02 -3.71980816e-01
1.17566192e+00 -3.54516149e-01 -8.60876262e-01 4.16877083e-02
9.30258334e-01 3.55697304e-01 -9.87801433e-01 1.39811561e-01
-3.35434377e-01 -7.42132545e-01 4.01340365e-01 -9.68017220e-01
-7.15386510e-01 6.75456882e-01 1.26092780e+00 2.41036266e-01
1.40099573e+00 -6.59367204e-01 5.65515637e-01 -1.21648520e-01
1.42890260e-01 -1.05590177e+00 -3.59743088e-01 8.30694288e-02
9.69914258e-01 -9.58737910e-01 3.32992375e-01 -3.34071755e-01
-1.02464698e-01 1.31364846e+00 2.48238757e-01 -3.27804208e-01
8.73546302e-01 6.46910816e-03 6.91433251e-02 1.34234160e-01
2.19631284e-01 -1.98548183e-01 1.07975744e-01 7.21402049e-01
6.35467470e-01 -3.30332309e-01 -1.25729418e+00 1.27024762e-02
1.27955675e-01 4.32862341e-01 8.42945039e-01 8.30560327e-01
-9.39345181e-01 -7.97709465e-01 -1.39827359e+00 4.46291566e-01
-7.60850787e-01 -2.90040821e-02 1.53356269e-01 4.27315414e-01
3.82974982e-01 1.33011508e+00 -2.73927867e-01 8.63213167e-02
1.30425349e-01 -1.43675599e-02 6.96587026e-01 2.64418125e-03
-2.35704362e-01 2.82349378e-01 -1.40079468e-01 1.39819890e-01
-6.35792732e-01 -3.99804771e-01 -1.06251097e+00 -4.06480938e-01
-3.87518197e-01 6.24443531e-01 9.59763944e-01 6.66753352e-01
-4.11114916e-02 1.66039169e-01 5.04271388e-01 -7.98992872e-01
-4.63257402e-01 -1.36696732e+00 -1.04934025e+00 6.24086380e-01
6.70755029e-01 -5.91489196e-01 -8.38648736e-01 2.67158508e-01] | [11.599422454833984, -2.660295009613037] |
cbf77879-58cc-4aac-a7db-76cc57fbcee7 | ordinal-depth-supervision-for-3d-human-pose | 1805.04095 | null | http://arxiv.org/abs/1805.04095v1 | http://arxiv.org/pdf/1805.04095v1.pdf | Ordinal Depth Supervision for 3D Human Pose Estimation | Our ability to train end-to-end systems for 3D human pose estimation from
single images is currently constrained by the limited availability of 3D
annotations for natural images. Most datasets are captured using Motion Capture
(MoCap) systems in a studio setting and it is difficult to reach the
variability of 2D human pose datasets, like MPII or LSP. To alleviate the need
for accurate 3D ground truth, we propose to use a weaker supervision signal
provided by the ordinal depths of human joints. This information can be
acquired by human annotators for a wide range of images and poses. We showcase
the effectiveness and flexibility of training Convolutional Networks (ConvNets)
with these ordinal relations in different settings, always achieving
competitive performance with ConvNets trained with accurate 3D joint
coordinates. Additionally, to demonstrate the potential of the approach, we
augment the popular LSP and MPII datasets with ordinal depth annotations. This
extension allows us to present quantitative and qualitative evaluation in
non-studio conditions. Simultaneously, these ordinal annotations can be easily
incorporated in the training procedure of typical ConvNets for 3D human pose.
Through this inclusion we achieve new state-of-the-art performance for the
relevant benchmarks and validate the effectiveness of ordinal depth supervision
for 3D human pose. | ['Xiaowei Zhou', 'Georgios Pavlakos', 'Kostas Daniilidis'] | 2018-05-10 | ordinal-depth-supervision-for-3d-human-pose-1 | http://openaccess.thecvf.com/content_cvpr_2018/html/Pavlakos_Ordinal_Depth_Supervision_CVPR_2018_paper.html | http://openaccess.thecvf.com/content_cvpr_2018/papers/Pavlakos_Ordinal_Depth_Supervision_CVPR_2018_paper.pdf | cvpr-2018-6 | ['monocular-3d-human-pose-estimation'] | ['computer-vision'] | [-1.33768901e-01 1.58299685e-01 -1.51682273e-01 -2.80557513e-01
-7.44655430e-01 -6.36120737e-01 5.99699020e-01 -2.36923695e-01
-9.15813267e-01 5.29294550e-01 2.72035480e-01 3.69408101e-01
7.73254037e-02 -1.59771353e-01 -7.28153527e-01 -2.60674953e-01
-2.67700851e-01 7.96716154e-01 4.11368966e-01 -4.68499005e-01
-2.55103350e-01 6.58410192e-01 -1.42354965e+00 5.46885394e-02
1.29183039e-01 1.02549469e+00 -3.61314528e-02 6.82663918e-01
5.86315095e-01 3.33910972e-01 -5.56627333e-01 -3.19586337e-01
5.91864049e-01 -4.68289703e-02 -7.70818830e-01 2.03377649e-01
8.73266757e-01 -6.69115901e-01 -4.51137543e-01 5.21095157e-01
8.37472379e-01 1.61199942e-02 3.98191720e-01 -1.27950454e+00
4.75860462e-02 8.68942067e-02 -3.88947487e-01 9.82639380e-04
8.41292977e-01 4.33044612e-01 8.81334901e-01 -8.29909682e-01
8.99151444e-01 1.30976570e+00 8.96174073e-01 5.97571790e-01
-1.17908812e+00 -2.23263919e-01 -6.73508346e-02 1.17305750e-02
-1.32101429e+00 -3.85502845e-01 7.62336552e-01 -4.34420198e-01
1.00653911e+00 6.59998804e-02 8.04398894e-01 1.60821068e+00
6.43391535e-02 9.39070582e-01 9.04371381e-01 -2.78715998e-01
-6.04553409e-02 -2.51160473e-01 -2.48538196e-01 6.86103642e-01
-3.77231687e-02 1.90795854e-01 -7.46068776e-01 1.13973856e-01
9.96474385e-01 -1.06703997e-01 -2.97745615e-01 -9.48714435e-01
-1.53912473e+00 4.92703974e-01 7.66733587e-01 7.71360919e-02
-2.46703506e-01 5.08222044e-01 5.84399104e-01 1.55498922e-01
3.38718206e-01 5.59098482e-01 -6.71613395e-01 -3.52077603e-01
-8.37128282e-01 5.70009708e-01 5.77681899e-01 8.28613758e-01
4.04982746e-01 -2.80509531e-01 -1.77942008e-01 5.19257665e-01
2.41514772e-01 2.95742273e-01 3.09775829e-01 -1.29752183e+00
5.02001047e-01 3.49008620e-01 4.38743234e-01 -8.19332838e-01
-8.65341365e-01 -5.06749332e-01 -4.65746045e-01 3.82244200e-01
9.14963305e-01 1.40515147e-02 -9.11102355e-01 1.80463707e+00
4.53383535e-01 -2.51195252e-01 -3.35112959e-01 1.37247622e+00
6.16634905e-01 1.83905587e-02 -5.21553755e-02 3.83366734e-01
1.37460256e+00 -9.26125944e-01 -3.64767790e-01 -3.51725012e-01
7.15131402e-01 -5.44135213e-01 1.27674234e+00 5.31968772e-01
-1.00783539e+00 -6.87579155e-01 -1.01351750e+00 -3.34070951e-01
-1.76391974e-01 3.08278769e-01 6.15601897e-01 4.24148947e-01
-9.67574000e-01 6.96309388e-01 -1.31579936e+00 -4.28922832e-01
2.92459786e-01 5.82291305e-01 -9.21491802e-01 6.95856288e-02
-1.21088743e+00 1.11494672e+00 2.31422395e-01 4.42890018e-01
-8.65622103e-01 -5.05321622e-01 -1.01296830e+00 -3.40887010e-01
4.83852297e-01 -9.37997997e-01 1.19965804e+00 -5.56504369e-01
-1.40467846e+00 1.14698541e+00 2.69295186e-01 -5.06083488e-01
1.18207705e+00 -8.07853162e-01 3.26947540e-01 4.79335517e-01
1.43651947e-01 1.15526378e+00 5.44906795e-01 -1.14521098e+00
-1.34579688e-01 -5.93108296e-01 3.13021779e-01 2.06782907e-01
-1.03701375e-01 -1.84982568e-01 -7.78145134e-01 -4.72283661e-01
-4.05785330e-02 -1.34635329e+00 -2.23058656e-01 4.51008946e-01
-4.24110472e-01 -1.39100805e-01 7.14043200e-01 -5.94646931e-01
5.84325016e-01 -1.97420597e+00 5.01941621e-01 4.44150157e-03
1.91101104e-01 2.26224557e-01 -1.40137702e-01 2.89847314e-01
5.12479283e-02 -2.43730292e-01 -3.82582955e-02 -8.27463269e-01
2.06045270e-01 2.31699124e-01 2.21801877e-01 6.61613345e-01
3.29900473e-01 1.05995572e+00 -7.71468282e-01 -5.15917838e-01
4.40255970e-01 6.90874100e-01 -5.87150276e-01 2.76650339e-01
-1.07204169e-01 8.62880051e-01 -2.08661050e-01 5.38933218e-01
1.77108824e-01 -2.87947714e-01 -3.09796277e-02 -3.88899475e-01
2.45903224e-01 2.35225707e-01 -1.19605649e+00 2.35067725e+00
-3.96792799e-01 5.21976829e-01 3.66891827e-03 -7.19246209e-01
6.39030278e-01 4.81906384e-01 6.54316366e-01 -3.47456008e-01
2.65058905e-01 2.01933488e-01 -2.97961980e-02 -3.41650665e-01
3.85354757e-01 -6.28443658e-02 -3.79995614e-01 8.34016055e-02
3.74515682e-01 -2.15890616e-01 6.11442849e-02 -1.13399424e-01
1.05064154e+00 6.86139107e-01 6.36682138e-02 -7.88142160e-02
2.76887000e-01 8.31546709e-02 1.73508927e-01 4.92055029e-01
-4.36054230e-01 1.07022870e+00 4.89542633e-01 -5.72919965e-01
-1.36056411e+00 -1.28535032e+00 -1.25847712e-01 1.01224124e+00
-5.09889312e-02 -3.71593505e-01 -6.51019096e-01 -6.04547799e-01
-1.15970895e-01 -1.39382914e-01 -7.75852621e-01 2.42532697e-02
-8.43107700e-01 -3.85171294e-01 7.86310315e-01 8.45102012e-01
5.56787312e-01 -7.75943637e-01 -1.07052624e+00 5.56943454e-02
-2.99889356e-01 -1.53673780e+00 -3.31382662e-01 1.88878179e-01
-6.47070825e-01 -1.06528139e+00 -9.40305114e-01 -5.29272497e-01
2.94290960e-01 -2.14112222e-01 1.20312643e+00 -1.84196085e-01
-2.82336146e-01 5.32031775e-01 -3.08167189e-01 1.87704787e-02
6.76032528e-02 3.88491184e-01 3.03894043e-01 -3.22877586e-01
-1.45160547e-03 -6.18021190e-01 -8.25096905e-01 5.08399725e-01
-5.81828773e-01 -3.34654599e-02 4.68197972e-01 8.21087599e-01
4.41131175e-01 -4.98963296e-01 1.46420330e-01 -4.18782264e-01
1.79754183e-01 4.87255566e-02 -3.86546701e-01 -2.66334295e-01
1.12498989e-02 7.88460597e-02 3.09539378e-01 -4.60229278e-01
-6.13026798e-01 5.32731056e-01 -4.26422805e-01 -6.22722983e-01
-4.15495217e-01 2.92068899e-01 -1.44974202e-01 -1.46447748e-01
8.74365747e-01 -3.34441662e-01 1.91340312e-01 -5.68760693e-01
3.78660321e-01 2.28703812e-01 1.01730728e+00 -5.98791897e-01
6.68584645e-01 5.94275415e-01 2.35723063e-01 -5.09481490e-01
-9.22557056e-01 -4.11665082e-01 -1.18645620e+00 -3.21499914e-01
1.07536244e+00 -1.24710262e+00 -7.85959423e-01 4.57567394e-01
-1.12575090e+00 -4.33231682e-01 -1.10522948e-01 6.72098935e-01
-8.86094928e-01 3.81484479e-01 -7.99982250e-01 -5.37382960e-01
-1.27243221e-01 -1.40206218e+00 1.74162686e+00 -3.43418330e-01
-6.64511263e-01 -8.90063643e-01 -3.36339436e-02 4.69973773e-01
3.79885957e-02 9.00428772e-01 3.08351159e-01 -4.52847391e-01
-3.34714502e-01 -6.55274928e-01 1.08356133e-01 2.08077312e-01
-1.37929395e-01 -3.13046008e-01 -9.39185202e-01 -4.50280249e-01
-3.62238973e-01 -7.81266809e-01 7.39909768e-01 2.93048084e-01
7.73733556e-01 9.41483974e-02 -1.86178461e-01 5.23342550e-01
9.50869441e-01 -7.00471461e-01 5.16421795e-01 4.82180864e-01
1.06670392e+00 8.25249732e-01 6.29375875e-01 3.81960481e-01
2.95850694e-01 1.28511226e+00 6.41191721e-01 -1.39548346e-01
-2.96134353e-01 -2.28733033e-01 1.84646308e-01 3.04454058e-01
-3.65088463e-01 2.79054102e-02 -1.01032913e+00 5.29309154e-01
-1.77682829e+00 -6.53269589e-01 -8.04399140e-03 2.23956895e+00
8.65108550e-01 4.59210962e-01 5.72590292e-01 3.29822451e-01
3.12958062e-01 1.83093697e-01 -3.01306665e-01 7.36215860e-02
1.22670569e-01 1.34810999e-01 5.16630173e-01 4.30646509e-01
-1.25149703e+00 7.91947007e-01 6.08862209e+00 4.79273885e-01
-1.13649726e+00 5.49738519e-02 2.63791203e-01 -5.81384361e-01
2.37259045e-01 -2.62912899e-01 -7.79379666e-01 2.11592600e-01
7.00477421e-01 6.61881506e-01 -4.74198023e-03 9.26420212e-01
2.51990497e-01 -1.53761571e-02 -1.59850287e+00 1.09006166e+00
-1.55221283e-01 -8.53492737e-01 -4.26919281e-01 1.46579161e-01
5.15801966e-01 2.68721998e-01 -2.14081239e-02 2.13613018e-01
-7.50510162e-03 -1.14630973e+00 8.16631079e-01 4.23844576e-01
8.71137321e-01 -6.34745777e-01 7.74934649e-01 4.75264907e-01
-9.64919150e-01 1.84969202e-01 -1.35234237e-01 -2.13457718e-01
3.25179070e-01 2.73749053e-01 -8.54306161e-01 4.73782450e-01
8.11837554e-01 5.99564970e-01 -7.85092592e-01 8.93122137e-01
-2.93443710e-01 2.10134983e-02 -7.32944846e-01 1.55042961e-01
3.74702334e-01 3.93617272e-01 4.73006696e-01 1.03603792e+00
2.13432498e-02 -3.51988047e-01 2.95709431e-01 5.27357757e-01
5.32587990e-02 -3.32335114e-01 -6.39813602e-01 2.90679365e-01
1.23278677e-01 1.13394892e+00 -5.96875668e-01 -1.83366649e-02
-9.75039303e-02 1.19815803e+00 3.86354089e-01 1.04103498e-01
-8.41086984e-01 -5.11676669e-02 6.16516352e-01 3.68990213e-01
2.16818064e-01 -7.68094778e-01 -1.98264718e-01 -1.14081585e+00
4.15174097e-01 -8.63995314e-01 2.24122137e-01 -8.98807824e-01
-1.11807609e+00 6.23047948e-01 4.52512860e-01 -1.34551811e+00
-7.20303237e-01 -9.34747815e-01 -1.69537678e-01 6.50050282e-01
-9.60130155e-01 -1.27346802e+00 -5.54214001e-01 6.17738128e-01
2.55020201e-01 2.25112945e-01 6.87969148e-01 3.21019500e-01
-1.31402418e-01 7.32899010e-01 -5.36767542e-01 3.50545526e-01
9.56634402e-01 -1.28560317e+00 5.89433074e-01 5.10860026e-01
2.30340406e-01 5.13876021e-01 9.17175353e-01 -3.05891395e-01
-1.35679758e+00 -7.29891896e-01 6.99348211e-01 -1.16963279e+00
4.08182651e-01 -7.03198433e-01 -5.72195768e-01 7.58324087e-01
-2.07139269e-01 3.33831012e-01 2.87894547e-01 1.84716672e-01
-3.04044932e-01 4.36209440e-02 -9.19434190e-01 6.11863852e-01
1.32001138e+00 -5.14283061e-01 -6.63675547e-01 4.43958431e-01
7.54048169e-01 -8.59111488e-01 -1.01667106e+00 6.89381182e-01
8.06605637e-01 -9.37016428e-01 1.21539748e+00 -4.68761265e-01
5.02342880e-01 -3.76028836e-01 -6.33257180e-02 -1.03039479e+00
4.22973521e-02 -3.52329046e-01 -3.75483297e-02 7.33081460e-01
1.93179265e-01 -8.74719694e-02 1.12066340e+00 5.99043012e-01
-2.21159812e-02 -8.49206448e-01 -1.16091752e+00 -7.37436831e-01
3.64362299e-02 -5.28530240e-01 1.28002495e-01 5.49624622e-01
-1.58120140e-01 2.63734370e-01 -6.54049277e-01 1.14276238e-01
5.38085461e-01 -3.23572755e-01 1.20100605e+00 -1.13322175e+00
-6.03181481e-01 -2.61816442e-01 -8.54947567e-01 -1.24291074e+00
1.49110347e-01 -5.19247949e-01 8.66700709e-02 -1.19778430e+00
-1.40353620e-01 -9.95073691e-02 8.29492584e-02 5.17741323e-01
1.54322740e-02 8.87354434e-01 3.13945562e-01 3.98578197e-01
-7.86455631e-01 5.94827354e-01 1.30268490e+00 2.03170955e-01
1.43095693e-02 -1.96382746e-01 5.32993786e-02 8.15849245e-01
4.90589976e-01 -2.94861376e-01 -2.34940812e-01 -5.65932274e-01
1.51620254e-01 1.10970639e-01 9.85893071e-01 -1.32494128e+00
3.06169260e-02 3.65092665e-01 7.95836568e-01 -6.09043658e-01
7.58439898e-01 -7.65066564e-01 1.49037287e-01 5.29704511e-01
-3.48005831e-01 1.14750795e-01 7.25688487e-02 4.30419326e-01
-9.29699391e-02 1.54822186e-01 5.97199857e-01 -3.08503568e-01
-7.68456221e-01 3.97717267e-01 8.49149227e-02 1.48157030e-01
7.03950822e-01 -3.59806418e-01 1.04016669e-01 -3.60940784e-01
-9.94727373e-01 2.20351338e-01 7.16193259e-01 5.55700481e-01
3.50697041e-01 -1.47227812e+00 -5.17035425e-01 1.25067150e-02
2.94485152e-01 2.50566125e-01 2.41654497e-02 9.98757422e-01
-7.64026940e-01 5.10571361e-01 -5.15004814e-01 -1.01907206e+00
-1.06022096e+00 2.82533914e-01 5.33979297e-01 -3.76077175e-01
-5.78360260e-01 7.05107689e-01 8.75877291e-02 -5.99026322e-01
3.89069170e-01 -2.25955874e-01 1.99275225e-01 -2.74690211e-01
1.59084767e-01 9.83234793e-02 1.87478140e-01 -7.21838593e-01
-6.18016183e-01 5.36626279e-01 1.15004584e-01 -4.48434055e-01
1.21738672e+00 -3.77070010e-02 3.37811321e-01 4.28036660e-01
1.46996760e+00 -1.26818895e-01 -1.85806227e+00 -5.55638522e-02
-1.02218404e-01 -3.94038200e-01 -3.21304142e-01 -7.26867795e-01
-9.02041912e-01 9.84808087e-01 7.23064840e-01 -4.26165193e-01
7.09228218e-01 1.50775388e-01 8.27288330e-01 4.10808355e-01
6.31824017e-01 -9.62840497e-01 4.56521332e-01 3.07224751e-01
9.83684897e-01 -1.40531623e+00 -9.16306861e-03 -2.28379995e-01
-4.55209225e-01 1.02185774e+00 6.27365708e-01 -4.41778898e-01
3.20868134e-01 1.65365860e-01 2.14510709e-01 -2.42869347e-01
-4.39358741e-01 -2.70000130e-01 6.30474210e-01 6.33729577e-01
6.71869636e-01 -1.81737274e-01 -2.57919073e-01 2.79834956e-01
-4.86795574e-01 -7.53176957e-02 2.22644329e-01 9.84856367e-01
-1.05400778e-01 -1.08089709e+00 -3.58330846e-01 -8.10789987e-02
-6.14012241e-01 2.50621736e-01 -4.58960474e-01 1.19007623e+00
6.74542114e-02 6.50140226e-01 -9.86640975e-02 -4.05340374e-01
5.77480733e-01 7.84857039e-05 8.81917715e-01 -5.67408144e-01
-5.58005154e-01 1.32837638e-01 2.29233161e-01 -9.63432372e-01
-5.24874091e-01 -5.04881084e-01 -1.02556360e+00 -1.89310625e-01
8.48513376e-03 -2.65133232e-01 5.31115294e-01 1.05941248e+00
1.60679758e-01 4.31981236e-01 -1.25332978e-02 -1.57020903e+00
-6.54290259e-01 -1.03934658e+00 -3.77883017e-01 7.72963941e-01
3.81823808e-01 -1.08899426e+00 -1.43051594e-01 -9.74993221e-03] | [7.0401105880737305, -0.895715057849884] |
9d8ed2f7-3b3c-4b06-86e8-01c36f488b9a | an-open-source-part-of-speech-tagger-for | null | null | https://aclanthology.org/L14-1622 | https://aclanthology.org/L14-1622.pdf | An open source part-of-speech tagger for Norwegian: Building on existing language resources | This paper presents an open source part-of-speech tagger for the Norwegian language. It describes how an existing language processing library (FreeLing) was used to build a new part-of-speech tagger for this language. This part-of-speech tagger has been built on already available resources, in particular a Norwegian dictionary and gold standard corpus, which were partly customized for the purposes of this paper. The results of a careful evaluation show that this tagger yields an accuracy close to state-of-the-art taggers for other languages. | ["Cristina S{\\'a}nchez Marco"] | 2014-05-01 | null | null | null | lrec-2014-5 | ['morphological-tagging'] | ['natural-language-processing'] | [-3.74535829e-01 4.07532632e-01 1.45624861e-01 -5.04455745e-01
-9.98105109e-01 -5.91588557e-01 7.79316008e-01 4.60913628e-01
-7.68449008e-01 5.41854620e-01 6.57770574e-01 -3.73046458e-01
1.59348100e-01 -5.90367734e-01 6.20527891e-04 -2.41653457e-01
-8.02238658e-02 8.95094454e-01 7.49418318e-01 -8.01028490e-01
3.73857431e-02 2.21699730e-01 -1.50503993e+00 5.79630971e-01
3.21795136e-01 1.80842385e-01 5.67130089e-01 4.48708206e-01
-7.19458401e-01 3.61024171e-01 -6.30613923e-01 -3.27040225e-01
1.32522538e-01 -3.07649851e-01 -1.11670721e+00 -2.27726340e-01
-3.57903183e-01 2.62602121e-01 -1.58197433e-01 9.54104662e-01
4.71955806e-01 3.32565844e-01 1.88270986e-01 -5.30782759e-01
-4.18926105e-02 1.24904788e+00 4.78416026e-01 3.81638795e-01
7.95574903e-01 -5.23265123e-01 9.20250177e-01 -7.58596778e-01
8.77350986e-01 1.27007580e+00 5.57979941e-01 5.40907741e-01
-4.82704222e-01 -3.07550013e-01 -2.63917774e-01 -4.31358665e-01
-1.49925113e+00 -6.51487648e-01 4.54513162e-01 -4.87005472e-01
1.66592860e+00 1.21074975e-01 6.29258990e-01 7.82992780e-01
2.76464343e-01 7.59307683e-01 1.15194833e+00 -1.20584977e+00
1.26888782e-01 1.92104176e-01 1.53007150e-01 4.87357825e-01
3.83614987e-01 8.27188194e-02 -3.43266308e-01 -1.95867389e-01
4.89034712e-01 -3.31901550e-01 3.27614665e-01 -5.92282554e-03
-1.13753319e+00 5.83799541e-01 -3.93014938e-01 1.31166875e+00
-2.40856320e-01 -1.89475983e-01 8.05538535e-01 1.67891622e-01
9.02394354e-01 1.83323309e-01 -1.01289904e+00 -7.05817461e-01
-9.17932034e-01 -2.77102087e-03 1.26401699e+00 1.00326371e+00
6.64978981e-01 1.60087757e-02 1.01209275e-01 1.01828003e+00
6.60315454e-01 4.54144031e-01 9.76136208e-01 -3.17824394e-01
5.30942559e-01 6.10208392e-01 -5.81290610e-02 -5.99953569e-02
-4.94336277e-01 -2.50995219e-01 -1.97590999e-02 -3.41977835e-01
3.62408191e-01 -2.37652734e-01 -1.08851826e+00 1.02299047e+00
2.67298102e-01 -5.25145292e-01 5.73015749e-01 3.01931798e-01
1.14611590e+00 5.95232248e-01 3.19010586e-01 -1.47055984e-01
1.69359136e+00 -7.91972458e-01 -1.00481451e+00 -5.48203528e-01
1.13759983e+00 -1.20509887e+00 5.81912816e-01 2.16112569e-01
-9.77910638e-01 -3.98295760e-01 -7.77771950e-01 -5.80526777e-02
-9.93507564e-01 3.87628712e-02 7.34391212e-01 1.07862771e+00
-1.34269857e+00 2.42052868e-01 -9.92603004e-01 -1.05167103e+00
-5.21702766e-01 5.13504781e-02 -6.15377784e-01 1.30142823e-01
-1.48830235e+00 7.81741977e-01 9.87947464e-01 -3.30909252e-01
-3.61019135e-01 9.79305580e-02 -1.21049881e+00 -2.85549670e-01
3.58934224e-01 -1.27907127e-01 1.79347205e+00 -7.70859003e-01
-1.67036188e+00 1.50906217e+00 -5.42066991e-02 -3.22069645e-01
1.76881656e-01 -1.12480007e-01 -1.11414421e+00 -1.95635855e-01
3.75267357e-01 6.34317994e-02 2.40185782e-01 -7.60364294e-01
-9.63022172e-01 -2.60237962e-01 -3.35908026e-01 4.38678116e-02
1.44071490e-01 1.13714671e+00 -4.34192568e-01 -1.07202625e+00
1.66891813e-01 -5.95524549e-01 -2.04711631e-01 -1.14471674e+00
4.68904078e-02 -3.11630517e-01 1.34918854e-01 -9.42478955e-01
1.68248594e+00 -2.12865162e+00 -5.61872125e-01 5.16057611e-02
-3.18361700e-01 6.24628961e-01 5.20781428e-02 1.28263509e+00
-2.78967708e-01 1.77720636e-01 -4.66795489e-02 -4.11846071e-01
1.81783978e-02 8.90947700e-01 3.27780098e-02 3.03741038e-01
-3.62919956e-01 6.22717857e-01 -1.26782322e+00 -4.65598524e-01
2.48401582e-01 2.80234516e-01 9.31078196e-02 3.13370712e-02
1.39004037e-01 -1.43959314e-01 -5.57084739e-01 5.78207135e-01
1.81042656e-01 7.93405414e-01 4.22318757e-01 6.04810417e-01
-7.65683651e-01 1.07019520e+00 -1.09626985e+00 1.80668604e+00
-3.88030082e-01 2.10445136e-01 7.10062310e-03 -7.51485765e-01
1.16464984e+00 9.74534392e-01 3.14818054e-01 -3.03013951e-01
1.92900732e-01 9.08802748e-01 4.86852080e-02 -3.33335191e-01
9.41310346e-01 -2.63197333e-01 -5.72114229e-01 2.79624671e-01
5.20220876e-01 -3.62253264e-02 4.77790296e-01 -4.37176339e-02
1.03391504e+00 3.15106004e-01 1.09567726e+00 -7.00001717e-01
8.10094178e-01 2.24661216e-01 4.93894041e-01 2.92282760e-01
-2.31664047e-01 3.46775234e-01 6.50637001e-02 -5.12342155e-01
-1.12445331e+00 -4.97605830e-01 -6.15285635e-02 1.39980924e+00
-6.71661377e-01 -8.64064813e-01 -8.67891610e-01 -5.90862811e-01
-5.49936056e-01 7.05935001e-01 -2.11178511e-01 6.00314379e-01
-6.83539212e-01 -2.29939327e-01 8.89660895e-01 2.89520979e-01
2.70450175e-01 -1.41641212e+00 -1.14476845e-01 6.86691999e-01
2.97528356e-02 -1.24314022e+00 -1.92261487e-01 3.22429568e-01
-6.24428809e-01 -8.24813008e-01 -5.21032035e-01 -1.22206020e+00
2.36731812e-01 3.63822728e-02 1.16860533e+00 -5.80789074e-02
3.05177748e-01 2.96744764e-01 -1.13979077e+00 -6.05456591e-01
-1.21250558e+00 3.85504842e-01 -1.25497282e-01 -5.46428442e-01
8.31819713e-01 -4.62100171e-02 3.19949448e-01 1.40068814e-01
-9.89471555e-01 -6.08147383e-01 4.08634126e-01 3.43181968e-01
4.05563027e-01 1.26023274e-02 -1.37737133e-02 -1.12784660e+00
6.00067854e-01 -1.65541396e-01 -4.91719812e-01 3.36050913e-02
-3.13598633e-01 -1.01891728e-02 3.67238373e-01 1.74721956e-01
-1.05383325e+00 3.89676124e-01 -9.25781369e-01 4.08544093e-01
-4.08124089e-01 6.37562752e-01 -4.15920764e-01 -2.46319529e-02
2.86777794e-01 2.48726964e-01 -1.43184945e-01 -1.05203485e+00
2.84764737e-01 1.15510046e+00 4.59030330e-01 -4.32929128e-01
2.99426615e-01 -9.76365134e-02 -3.24182451e-01 -1.07309377e+00
-6.31707251e-01 -1.53615236e+00 -9.09611821e-01 7.46151954e-02
6.43366218e-01 -1.17942667e+00 3.95648368e-03 6.56164408e-01
-1.04478073e+00 -3.36656243e-01 -3.95243913e-01 5.57071984e-01
-2.36633554e-01 5.26214838e-01 -6.01742446e-01 -7.52712965e-01
-3.95672709e-01 -7.09869504e-01 1.10643351e+00 -2.08511248e-01
-2.97671765e-01 -1.39954245e+00 6.10797524e-01 1.09932080e-01
5.44739142e-02 -2.23338827e-01 2.24169165e-01 -1.48532581e+00
5.06384671e-01 -4.63952512e-01 4.42943007e-01 3.75346422e-01
4.27451842e-02 3.44621949e-02 -7.80208528e-01 -8.31971839e-02
-2.60237455e-01 3.77975583e-01 6.99185371e-01 1.40037043e-02
-5.80122024e-02 -3.39447290e-01 -3.43568951e-01 -3.45210247e-02
1.42217410e+00 3.40762705e-01 6.76921785e-01 7.90507436e-01
3.01243067e-01 5.31380415e-01 8.93997252e-01 4.29993033e-01
5.56655347e-01 6.54803157e-01 -1.09660044e-01 3.12494546e-01
3.16228531e-02 -4.68856812e-01 6.95902526e-01 1.36912441e+00
2.81174839e-01 -3.60476911e-01 -1.50142121e+00 1.01090646e+00
-1.88277936e+00 -6.89083755e-01 -4.35255855e-01 2.03975081e+00
7.09667921e-01 1.94119468e-01 3.68932873e-01 1.91483378e-01
6.95695102e-01 2.22463727e-01 9.23813879e-01 -9.28873956e-01
-1.14232868e-01 4.69621003e-01 7.61905551e-01 9.76016819e-01
-1.22081971e+00 1.58569312e+00 7.48863029e+00 1.00366354e+00
-7.39943683e-01 4.95730966e-01 -1.97790548e-01 7.50187635e-01
-1.70103520e-01 3.87311190e-01 -1.19442189e+00 2.35371634e-01
1.47652137e+00 -3.42993885e-02 -2.23302264e-02 1.02036464e+00
4.36089963e-01 -1.59166455e-01 -5.14217257e-01 6.38342023e-01
4.75669391e-02 -9.19066608e-01 -1.86855182e-01 2.19942331e-01
3.13397914e-01 5.83577633e-01 -9.17648315e-01 4.22661155e-01
5.54842472e-01 -3.41853261e-01 1.10156059e+00 2.04719141e-01
7.51284003e-01 -6.62456095e-01 1.35086846e+00 4.22144294e-01
-1.41756189e+00 3.59860241e-01 -3.97777915e-01 -2.63756007e-01
3.93958628e-01 7.72041142e-01 -9.59708571e-01 7.86918402e-01
4.71199334e-01 3.83453578e-01 -3.76041472e-01 9.31269348e-01
-6.45878494e-01 8.38165760e-01 -3.82284582e-01 -2.70878792e-01
5.02260566e-01 1.12595394e-01 8.23838472e-01 1.91424024e+00
5.37545979e-01 2.25927338e-01 5.75835228e-01 -1.50208637e-01
3.58258098e-01 6.54852688e-01 -3.81158471e-01 -4.14497405e-01
5.24492741e-01 1.19773245e+00 -8.80288303e-01 -5.95925331e-01
-4.23060685e-01 7.28405714e-01 -1.33796737e-01 -2.40150049e-01
2.03905061e-01 -6.00615680e-01 5.94032705e-01 4.49052870e-01
5.02704203e-01 -5.38351953e-01 2.25865841e-01 -9.98519242e-01
-1.31990746e-01 -6.01433456e-01 7.18613207e-01 -6.68860018e-01
-1.02031159e+00 9.66809988e-01 3.51331294e-01 -1.00233269e+00
-9.94156659e-01 -9.30584133e-01 -3.29232812e-01 9.26919281e-01
-9.88283932e-01 -1.29335034e+00 3.62409204e-01 1.47910967e-01
5.23526847e-01 -4.25835043e-01 1.20736623e+00 1.39774889e-01
-1.93313152e-01 1.46557778e-01 1.16575502e-01 6.10469401e-01
5.04769921e-01 -1.25785148e+00 1.00622511e+00 1.02912855e+00
2.61235684e-01 5.66373050e-01 9.50512588e-01 -8.88900340e-01
-9.84744787e-01 -7.22859859e-01 2.14563298e+00 -3.69886518e-01
1.14134312e+00 -5.07642269e-01 -7.93278515e-01 7.38918245e-01
2.70111889e-01 1.11018140e-02 8.68683279e-01 1.02584243e-01
-1.06042594e-01 6.96153864e-02 -1.11028850e+00 -7.65535757e-02
9.18976605e-01 -6.14100277e-01 -1.21194959e+00 2.25287795e-01
5.77831089e-01 -4.00866181e-01 -9.94230330e-01 -9.77007300e-02
4.67260778e-01 -6.38426423e-01 3.85629088e-01 -2.73171663e-01
-3.61763239e-01 -3.09268594e-01 -1.83060884e-01 -1.31773686e+00
-2.86925346e-01 -1.29113865e+00 5.26628494e-01 1.51014042e+00
4.77657676e-01 -8.93646896e-01 2.37060398e-01 1.11716166e-01
-7.37905741e-01 -2.65833251e-02 -1.30861950e+00 -1.04185224e+00
-1.21141531e-01 -8.11507225e-01 6.51746392e-01 7.09649920e-01
6.57758474e-01 3.95859599e-01 1.90863490e-01 -1.31923109e-01
-7.70448297e-02 -6.08290493e-01 4.15639818e-01 -1.32729375e+00
-2.45434597e-01 -1.77303553e-01 -8.34226549e-01 -5.41948915e-01
3.28846574e-01 -7.65048623e-01 3.97067606e-01 -1.75386858e+00
-3.26514274e-01 -2.67719656e-01 -4.98373769e-02 1.17875838e+00
2.33469561e-01 9.20923054e-02 -1.48401828e-02 1.09842479e-01
-3.84336650e-01 1.65990680e-01 4.90890086e-01 3.82049978e-01
-2.76262999e-01 -3.72333042e-02 -4.33055252e-01 6.36381686e-01
7.11198747e-01 -8.42233896e-01 1.31563440e-01 -1.29294261e-01
5.38580656e-01 -2.01222226e-01 -2.40877569e-01 -8.87670219e-01
-1.91871256e-01 7.40402564e-02 -2.89906412e-01 -5.97031295e-01
-3.06429639e-02 -7.30732918e-01 1.94280535e-01 5.89618921e-01
3.79549176e-01 2.89723665e-01 4.54440951e-01 4.53831330e-02
-4.41243351e-01 -8.64999950e-01 4.74319249e-01 -5.89598417e-01
-1.31129920e+00 -8.67045373e-02 -9.72600698e-01 1.40523702e-01
8.73590946e-01 -4.39325422e-01 -8.10474753e-02 -1.83024451e-01
-6.66399777e-01 -4.05679911e-01 5.52864134e-01 6.01056457e-01
3.27996872e-02 -9.64551091e-01 -7.45126605e-01 3.54832828e-01
6.04013085e-01 -6.15036190e-01 -2.97562242e-01 2.55579323e-01
-8.57835829e-01 9.83793199e-01 -3.72527801e-02 9.35945311e-04
-1.31935787e+00 5.20681202e-01 1.07914463e-01 -5.68202555e-01
-4.71324503e-01 4.39389437e-01 -6.09388411e-01 -6.84763372e-01
-3.73523206e-01 -6.70285642e-01 -4.98780400e-01 1.47351518e-01
4.09922332e-01 1.41633123e-01 6.57936931e-01 -1.32035446e+00
-8.16328943e-01 1.49980664e-01 3.75601470e-01 -6.09460473e-01
1.26957107e+00 -2.40378588e-01 -3.75945777e-01 7.14821219e-01
7.81626940e-01 6.56215608e-01 -1.86683655e-01 -1.30576029e-01
3.15214664e-01 -1.30615816e-01 1.05137438e-01 -6.36969686e-01
-4.49721634e-01 3.39613646e-01 2.03935578e-01 4.86517608e-01
7.42297053e-01 2.14860439e-01 7.70479441e-01 2.81995565e-01
7.46744812e-01 -1.42610180e+00 -9.22204256e-01 1.29146945e+00
4.15920556e-01 -8.68818581e-01 -9.60106626e-02 -7.73790240e-01
-4.12087470e-01 1.16178572e+00 -3.56156975e-01 1.60637032e-02
1.18252206e+00 4.61416572e-01 4.09349293e-01 -1.70658052e-01
-5.25493979e-01 -8.38127971e-01 3.27529311e-01 7.42668092e-01
1.07000709e+00 5.02677679e-01 -1.05760527e+00 6.38297975e-01
-5.15523791e-01 -1.82511553e-01 4.91493881e-01 1.36682737e+00
-9.66999829e-01 -2.03339982e+00 -3.62187535e-01 -1.46785796e-01
-1.05622876e+00 -4.42174166e-01 -5.91601789e-01 1.24605942e+00
1.98731735e-01 1.05499494e+00 9.16728750e-03 -1.25512734e-01
3.36750865e-01 2.98929989e-01 3.41081500e-01 -1.27771795e+00
-1.01284349e+00 4.52720910e-01 8.94411027e-01 -4.08338785e-01
-6.89926565e-01 -9.82137144e-01 -1.38896930e+00 -6.39380068e-02
-1.15553387e-01 5.19984901e-01 1.01323843e+00 1.08837783e+00
-2.66032442e-02 1.11151472e-01 1.73275307e-01 -6.90176368e-01
-2.88812071e-01 -1.28501451e+00 -1.03743219e+00 2.49206796e-02
-3.40883315e-01 -1.99887112e-01 -1.03700563e-01 9.88022238e-03] | [10.300787925720215, 10.089329719543457] |
55f7121c-5fe1-4516-bdcb-f6be2064e145 | a-random-forest-and-current-fault-texture | 2211.03789 | null | https://arxiv.org/abs/2211.03789v1 | https://arxiv.org/pdf/2211.03789v1.pdf | A Random Forest and Current Fault Texture Feature-Based Method for Current Sensor Fault Diagnosis in Three-Phase PWM VSR | Three-phase PWM voltage-source rectifier (VSR) systems have been widely used in various energy conversion systems, where current sensors are the key component for state monitoring and system control. The current sensor faults may bring hidden danger or damage to the whole system; therefore, this paper proposed a random forest (RF) and current fault texture feature-based method for current sensor fault diagnosis in three-phase PWM VSR systems. First, the three-phase alternating currents (ACs) of the three-phase PWM VSR are collected to extract the current fault texture features, and no additional hardware sensors are needed to avoid causing additional unstable factors. Then, the current fault texture features are adopted to train the random forest current sensor fault detection and diagnosis (CSFDD) classifier, which is a data-driven CSFDD classifier. Finally, the effectiveness of the proposed method is verified by simulation experiments. The result shows that the current sensor faults can be detected and located successfully and that it can effectively provide fault locations for maintenance personnel to keep the stable operation of the whole system. | ['Ya-nan Dong', 'Quan-de Yuan', 'Yang Li', 'Xiu-hui Ni', 'Yi Zheng', 'Xiao-dong Gong', 'Lei Kou'] | 2022-11-08 | null | null | null | null | ['fault-detection'] | ['miscellaneous'] | [ 2.79734910e-01 -7.51254082e-01 -3.06101471e-01 6.03907816e-02
-4.00448106e-02 -2.65065879e-01 2.15262443e-01 -3.49364251e-01
3.47844958e-01 6.29957020e-01 -2.92181104e-01 -3.73610586e-01
-7.29795933e-01 -7.46802032e-01 -2.12752298e-02 -1.17254925e+00
4.57484387e-02 9.37140882e-02 4.38403070e-01 -1.76828071e-01
8.00624430e-01 9.76180792e-01 -1.75751841e+00 6.27942532e-02
1.22053266e+00 1.34939718e+00 3.24664026e-01 3.00528675e-01
3.54498625e-01 6.48886740e-01 -1.25060523e+00 1.17949128e+00
-1.69733584e-01 -2.58982062e-01 -6.80869639e-01 2.43732944e-01
-6.98428690e-01 -2.79182702e-01 -7.40518749e-01 1.02867079e+00
3.90997320e-01 3.85082699e-03 7.82964885e-01 -1.97435391e+00
-1.55917183e-01 -5.77907525e-02 -5.69904447e-01 5.77870250e-01
4.11330462e-01 2.32262403e-01 2.85636187e-01 -7.04518020e-01
9.05138403e-02 9.87997293e-01 2.56187379e-01 9.58363414e-02
-5.37247896e-01 -9.09869373e-01 -1.93712845e-01 1.28748775e+00
-1.47235978e+00 -5.45196123e-02 9.21050191e-01 -1.33991048e-01
1.18884552e+00 6.05101287e-01 8.75170112e-01 4.49900538e-01
9.60975826e-01 7.41350889e-01 1.42842877e+00 -5.26564717e-02
2.06297621e-01 -5.26388049e-01 3.27639133e-01 4.15020257e-01
6.16639197e-01 1.73890442e-02 -3.41702133e-01 1.53615341e-01
4.63346839e-01 3.86140943e-01 -1.03539360e+00 6.91339448e-02
-7.89998412e-01 4.88729715e-01 5.17702878e-01 7.41810203e-01
-2.69770592e-01 -4.87591624e-01 2.70565927e-01 4.88658756e-01
7.97331110e-02 -4.82519157e-03 -5.85443616e-01 -3.51618767e-01
-6.55285418e-01 -6.59760237e-02 5.00012398e-01 5.20583451e-01
3.07075948e-01 4.14656669e-01 2.96323806e-01 4.10687387e-01
4.48358536e-01 1.04970920e+00 8.45786512e-01 -2.38909274e-01
-7.87192062e-02 8.77126813e-01 9.25795883e-02 -9.59260285e-01
-4.32488531e-01 -3.54100391e-03 -9.92389321e-01 3.72623384e-01
-4.30845112e-01 3.73010859e-02 -1.14589214e+00 5.33562601e-01
2.94637773e-02 2.45237842e-01 1.03792787e-01 1.05613875e+00
7.87535131e-01 9.27640855e-01 -3.85226727e-01 -4.30826366e-01
1.46472466e+00 -4.66477871e-01 -1.21831298e+00 -1.46475047e-01
3.02813888e-01 -5.75667322e-01 5.19918919e-01 7.10816681e-01
-4.63301420e-01 -4.62366045e-01 -1.85312068e+00 4.92813885e-01
-2.52215445e-01 2.17158183e-01 1.77469015e-01 2.30137095e-01
-5.17379403e-01 7.96575785e-01 -7.62520432e-01 -4.29862700e-02
4.90870714e-01 2.97042549e-01 -4.16151136e-01 -3.70618850e-01
-1.42344022e+00 1.64918196e+00 6.73318803e-02 6.14670515e-01
-3.83458018e-01 -4.29145753e-01 -6.93103015e-01 -1.94265425e-01
1.64143562e-01 -3.95802828e-03 8.44015777e-01 -3.44919324e-01
-1.08648467e+00 -3.57097313e-02 -3.59661371e-01 8.38429481e-02
8.22472274e-02 -8.99977461e-02 -1.02737439e+00 4.28758025e-01
3.58009376e-02 -4.66468364e-01 7.83105850e-01 -8.69490802e-01
-7.93386936e-01 -4.13689196e-01 -8.96808863e-01 6.93885162e-02
1.42676175e-01 -1.28297061e-01 7.79354513e-01 -1.12370782e-01
5.99749923e-01 -3.93687725e-01 -8.81459285e-03 -2.64536440e-01
-2.77302027e-01 -8.44671071e-01 1.87102199e+00 -8.68573666e-01
9.46080327e-01 -1.99053562e+00 9.58516169e-03 6.39494479e-01
-2.33446419e-01 4.08527404e-01 3.71470034e-01 3.48654240e-01
-2.63579607e-01 -2.05032080e-01 -1.28951505e-01 1.07000124e+00
-2.82763749e-01 5.26349604e-01 -1.22071430e-01 1.03995025e+00
5.11616468e-01 6.31629646e-01 -4.43452209e-01 4.25570412e-03
6.58025265e-01 3.22332829e-01 4.16777611e-01 2.33146012e-01
2.70193756e-01 3.30743819e-01 -6.01289272e-01 5.74151635e-01
9.65954423e-01 1.41279742e-01 -9.35541093e-02 -7.45486140e-01
-1.68651134e-01 2.95786768e-01 -1.65842175e+00 9.51384783e-01
-1.07012764e-01 6.28708661e-01 8.67107958e-02 -1.45949900e+00
1.29186296e+00 5.38449228e-01 6.79390728e-01 -1.16498518e+00
4.48437572e-01 3.42350304e-01 4.08543535e-02 -9.70439136e-01
-1.06973797e-01 1.16384462e-01 6.50732443e-02 1.07293598e-01
-1.29160613e-01 -2.40827590e-01 -5.70848808e-02 -3.16483170e-01
1.24322224e+00 -8.84144455e-02 2.25075796e-01 -5.97590029e-01
8.96324575e-01 4.36230123e-01 1.03753233e+00 -2.66779602e-01
-1.12282922e-02 -6.93732277e-02 -3.06437686e-02 -2.26139843e-01
-5.25947034e-01 -7.88934171e-01 -4.97683197e-01 -2.92558074e-01
8.71112049e-01 2.41116479e-01 -2.58424491e-01 -6.02523923e-01
2.83479601e-01 6.86584592e-01 5.34337685e-02 -7.29687452e-01
-6.89076781e-01 -6.91660404e-01 9.85200405e-02 7.39660621e-01
7.42130697e-01 -1.05952358e+00 -7.66252697e-01 8.01541731e-02
-1.39146090e-01 -6.04287624e-01 8.12136829e-02 3.89337003e-01
-6.99128330e-01 -1.87736464e+00 -2.89799154e-01 -1.08572817e+00
8.67531598e-01 5.00029266e-01 3.82380724e-01 7.07346201e-01
-9.49645996e-01 -1.47657454e-01 -4.08007741e-01 -2.30361819e-01
-2.25528598e-01 -5.35282195e-01 2.77690500e-01 -4.25690472e-01
6.03746116e-01 -3.80867034e-01 -5.84907711e-01 7.49917805e-01
-6.83293164e-01 -3.13176334e-01 8.36119473e-01 9.80100989e-01
-6.32962435e-02 1.33666325e+00 1.11441326e+00 -3.14022601e-01
4.83463347e-01 -3.14020783e-01 -6.28184319e-01 1.00087859e-01
-1.07919109e+00 -3.67532432e-01 7.00332999e-01 -2.94419795e-01
-9.24244881e-01 -4.13901240e-01 -3.42824578e-01 -1.42410576e-01
-5.33915997e-01 1.63095772e-01 -8.49771500e-01 -1.42896861e-01
1.10685199e-01 4.04923975e-01 3.00895363e-01 -4.34318364e-01
-1.39561817e-01 1.47989845e+00 5.19993246e-01 2.03787871e-02
1.18836343e+00 -5.51869608e-02 2.65956938e-01 -8.81328344e-01
-1.42243719e-02 -6.38363779e-01 -3.86445999e-01 -2.78798729e-01
4.94668156e-01 -9.34640169e-01 -1.01390517e+00 1.15927029e+00
-7.63445616e-01 1.40828088e-01 -5.87345213e-02 3.55345488e-01
-5.15790619e-02 3.10552716e-01 -6.96372390e-01 -7.22268701e-01
-5.31539798e-01 -1.27607942e+00 7.40746081e-01 7.02404022e-01
-9.80104506e-02 -7.31478870e-01 -6.20620847e-01 1.52239576e-02
4.99109805e-01 9.41062421e-02 1.07169640e+00 -4.36149061e-01
-4.66548830e-01 -2.77607173e-01 -3.14408466e-02 4.59953010e-01
6.85533941e-01 2.61973292e-02 -5.78643382e-01 -5.50765932e-01
5.69476545e-01 1.78904623e-01 4.33257282e-01 3.41490768e-02
9.21516895e-01 -1.45398125e-01 -8.88369620e-01 2.68128902e-01
1.60657215e+00 9.92909491e-01 1.05843234e+00 3.93806219e-01
5.22504389e-01 7.13786557e-02 1.16871226e+00 1.76699013e-01
8.54880735e-02 1.19070850e-01 -5.95733942e-03 -3.26419175e-01
2.01268747e-01 4.20585498e-02 2.76428849e-01 9.79393423e-01
2.09762216e-01 -1.16921164e-01 -3.42546165e-01 3.99749309e-01
-1.51197326e+00 -7.88245857e-01 -5.88171840e-01 1.54947996e+00
6.15348220e-01 6.66994750e-02 -5.44894814e-01 1.54692042e+00
7.90555894e-01 -1.66543812e-01 -7.69800246e-01 -1.70030013e-01
-1.32025741e-02 6.95752263e-01 5.48613846e-01 -3.36768776e-02
-6.35967612e-01 -4.96374257e-02 5.23369026e+00 9.66896832e-01
-1.36597395e+00 -3.59828144e-01 -5.97385392e-02 5.02938390e-01
-1.89358100e-01 7.96792433e-02 -3.27113599e-01 7.75526524e-01
6.10505044e-01 -2.45853499e-01 1.69333890e-01 5.30361831e-01
2.59423286e-01 -7.68618107e-01 -7.04554617e-01 9.34081793e-01
-8.32188278e-02 -8.28512371e-01 -3.06010246e-01 -3.08607161e-01
1.94630504e-01 -5.58310926e-01 -6.16583169e-01 -1.93401724e-01
-9.97353718e-02 -9.05964553e-01 2.18399540e-01 4.51773494e-01
8.46382320e-01 -9.97053564e-01 1.14071178e+00 3.60433877e-01
-1.35561514e+00 -5.15905797e-01 -3.80431831e-01 -1.88321069e-01
4.02153939e-01 7.55212843e-01 -3.36449414e-01 1.11357987e+00
1.02627122e+00 8.22830677e-01 -3.66838753e-01 9.61278558e-01
-5.19342184e-01 5.25946736e-01 -1.85754254e-01 -2.25238919e-01
-5.36068201e-01 -1.76109165e-01 3.84901047e-01 3.23779643e-01
3.69874150e-01 3.35455775e-01 2.39189118e-01 3.53899509e-01
5.79123974e-01 -2.40325019e-01 -4.16026831e-01 3.81411076e-01
9.37952101e-01 1.27650619e+00 -6.31245911e-01 -2.44879752e-01
-1.67529151e-01 8.32725406e-01 -6.10868573e-01 1.28606364e-01
-6.15437925e-01 -1.13314974e+00 5.85700333e-01 2.35951975e-01
2.45614812e-01 1.09239660e-01 -1.22816510e-01 -7.63743281e-01
5.33105768e-02 -8.00602853e-01 2.87986249e-01 -1.18620276e+00
-1.39516664e+00 4.71788645e-02 -4.15925495e-03 -1.25632632e+00
4.47388925e-02 -6.85655892e-01 -1.11589265e+00 1.05676961e+00
-1.66849971e+00 -7.10096478e-01 -5.35754561e-01 6.19744420e-01
6.44145548e-01 -3.48832943e-02 7.73530483e-01 3.06375802e-01
-8.75735998e-01 1.01075592e-02 -8.21108893e-02 7.32776448e-02
2.02844560e-01 -9.28315759e-01 2.29306463e-02 1.01882565e+00
-6.77896023e-01 6.98068067e-02 5.23421526e-01 -8.40352356e-01
-2.02730393e+00 -7.21481085e-01 3.17506224e-01 5.24057508e-01
3.62765431e-01 7.09218457e-02 -1.05314767e+00 2.38317728e-01
4.34606433e-01 1.28154814e-01 -3.56319570e-03 -8.40263963e-01
4.76360738e-01 -2.83066899e-01 -1.73958445e+00 1.28246069e-01
6.06188953e-01 -2.35615268e-01 -9.88819778e-01 6.23579323e-02
1.83194220e-01 -3.48198056e-01 -1.23554003e+00 1.03188932e+00
1.30375385e-01 -1.86984330e-01 6.55690789e-01 1.80467591e-02
-2.78021961e-01 -9.41943347e-01 3.92120689e-01 -1.69976377e+00
-3.50127876e-01 -1.71744078e-01 1.16094081e-02 1.10453045e+00
-2.18527079e-01 -1.24723613e+00 3.49809378e-01 -1.43657118e-01
-2.75668383e-01 -7.60073364e-01 -9.89553213e-01 -4.05870914e-01
-2.95110136e-01 2.89262414e-01 5.59373677e-01 8.34108651e-01
5.00352740e-01 3.66100580e-01 3.17551434e-01 6.04815304e-01
4.97621059e-01 2.19215274e-01 5.52589074e-02 -1.52387810e+00
5.56202710e-01 -5.37257604e-02 -7.66594827e-01 -7.60023773e-01
1.72836617e-01 -6.88893616e-01 4.39894646e-01 -2.18014455e+00
-1.62842661e-01 -5.73895097e-01 -3.27754945e-01 4.27967012e-01
-3.30188096e-01 -9.96735319e-02 -6.40051246e-01 1.41697988e-01
1.35435835e-01 5.53170860e-01 1.23402214e+00 -2.57859111e-01
3.82948846e-01 1.63422525e-01 -1.79893285e-01 5.52255630e-01
9.94425595e-01 -1.30562291e-01 -3.96506667e-01 3.05147260e-01
-6.45937741e-01 3.67589116e-01 2.23606512e-01 -1.22737682e+00
4.26058739e-01 -1.51034027e-01 1.03557110e+00 -1.05516863e+00
-2.08320633e-01 -1.31440985e+00 1.47558942e-01 1.14092481e+00
7.23921895e-01 3.89445573e-01 3.38264145e-02 1.62917718e-01
-1.69839472e-01 -1.90797582e-01 6.68484986e-01 3.96658480e-01
-9.88929689e-01 -5.72765581e-02 -1.08529210e+00 -2.77658015e-01
1.42898011e+00 -2.73961693e-01 -7.60965049e-01 2.42139563e-01
-3.90744582e-02 5.74378729e-01 2.78639317e-01 7.60211229e-01
1.18214512e+00 -1.32697189e+00 -3.80560130e-01 9.54563737e-01
-1.02073491e-01 3.22543472e-01 4.64385808e-01 8.14492881e-01
-6.40783966e-01 2.32184425e-01 -4.28280652e-01 -9.12344158e-01
-1.44409239e+00 3.32805604e-01 4.38647389e-01 3.73724103e-01
-1.00320125e+00 2.14130804e-01 -1.03543746e+00 2.31987581e-01
-7.26888403e-02 -3.82949889e-01 -4.69448924e-01 -1.48435950e-01
4.32224780e-01 8.46978068e-01 5.07035196e-01 -5.45862556e-01
-6.04069531e-01 6.72529638e-01 3.56413901e-01 3.53184760e-01
1.21997046e+00 7.09025115e-02 -3.12893629e-01 2.35559225e-01
9.43171322e-01 -4.68867362e-01 -9.67711210e-01 2.07407430e-01
1.91314146e-02 -5.51162422e-01 2.53971905e-01 -8.26929271e-01
-1.36444092e+00 6.38196945e-01 8.92056227e-01 2.37170771e-01
1.41495419e+00 -3.91267419e-01 1.12520075e+00 -4.89604287e-02
7.49255419e-01 -1.02451694e+00 -2.26451576e-01 -2.28611678e-01
5.03056288e-01 -4.84542102e-01 4.74178731e-01 -5.50593317e-01
-2.99164176e-01 1.23387229e+00 6.79603457e-01 -3.39917392e-01
9.25736070e-01 9.71894026e-01 1.55401185e-01 -1.65885121e-01
-6.97081387e-01 1.56705916e-01 1.12443790e-02 8.58952463e-01
-2.55004019e-01 1.56951025e-02 -4.00454432e-01 5.20969033e-01
7.55501688e-02 4.08932939e-02 3.89964938e-01 1.48036897e+00
-8.95233095e-01 -1.05448830e+00 -6.05747283e-01 9.20571744e-01
-3.41026634e-01 6.38802469e-01 3.98310572e-01 6.14687145e-01
1.24914624e-01 1.49971843e+00 2.34202787e-01 -5.64588726e-01
8.14461768e-01 4.38766107e-02 5.42054355e-01 7.21687749e-02
-4.55236621e-02 -3.87127697e-01 -2.24925831e-01 -4.02232677e-01
-1.52431205e-01 -4.51075226e-01 -1.95729840e+00 -2.02380121e-01
-1.14663696e+00 5.78374505e-01 7.97158659e-01 1.21486461e+00
1.71047868e-03 1.16719878e+00 1.25179434e+00 -4.49371517e-01
-6.22337520e-01 -1.31841171e+00 -9.01235461e-01 3.15773606e-01
1.89427912e-01 -1.23916709e+00 -7.59137273e-01 -4.45325017e-01] | [6.492737293243408, 2.373523473739624] |
f104b05b-3b84-434c-92df-b6b18b0a028e | a-comparative-genomic-analysis-of-coronavirus | 2107.06282 | null | https://arxiv.org/abs/2107.06282v1 | https://arxiv.org/pdf/2107.06282v1.pdf | A Comparative Genomic Analysis of Coronavirus Families Using Chaos Game Representation and Fisher-Shannon Complexity | From its first emergence in Wuhan, China in December, 2019 the COVID-19 pandemic has caused unprecedented health crisis throughout the world. The novel coronavirus disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which belongs to the coronaviridae family. In this paper, a comparative genomic analysis of eight coronaviruses namely Human coronavirus OC43 (HCoV-OC43), Human coronavirus HKU1 (HCoV-HKU1), Human coronavirus 229E (HCoV-229E), Human coronavirus NL63 (HCoV-NL63), Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Bat coronavirus RaTG13 has been carried out using Chaos Game Representation and Fisher-Shannon Complexity (CGR-FSC) measure. Chaos Game Representation (CGR) is a unique alignment-free method to visualize one dimensional DNA sequence in a two-dimensional fractal-like pattern. The two-dimensional CGR pattern is then quantified by Fisher-Shannon Complexity (FSC) measure. The CGR-FSC can effectively identify the viruses uniquely and their similarity/dissimilarity can be revealed in the Fisher-Shannon Information Plane (FSIP). | ['S. K. Laha'] | 2021-07-13 | null | null | null | null | ['information-plane'] | ['methodology'] | [ 6.23356886e-02 -6.23875856e-01 2.66037226e-01 2.06645995e-01
-2.71241311e-02 -9.46883976e-01 2.16208503e-01 3.25463444e-01
-2.85010010e-01 6.28340542e-01 1.06171697e-01 -6.82931483e-01
-3.71090055e-01 -4.77860183e-01 6.88507780e-02 -6.73668444e-01
-8.44038069e-01 6.18003368e-01 -2.65051335e-01 -2.22054005e-01
1.23108529e-01 1.02512908e+00 -1.21479881e+00 -1.18059255e-01
1.08168089e+00 3.22336078e-01 6.24131799e-01 1.35799909e+00
2.39980310e-01 -1.74009442e-01 -2.85838068e-01 2.42552429e-01
1.43093660e-01 -6.95833027e-01 -2.07891211e-01 -7.65444875e-01
-5.74470282e-01 -1.40796721e-01 2.52244741e-01 7.91287482e-01
2.85596639e-01 -2.17594147e-01 1.34615302e+00 -1.58787417e+00
-1.87166914e-01 -4.10769641e-01 -4.51245338e-01 3.22012931e-01
2.95913368e-01 3.17863435e-01 4.66659606e-01 -4.88387376e-01
1.15773344e+00 1.19104087e+00 1.06477749e+00 5.36240637e-01
-1.04603577e+00 -4.74796772e-01 -6.18826270e-01 -4.46505547e-02
-1.66169786e+00 6.45705283e-01 1.77711472e-01 -1.17609012e+00
9.64155436e-01 5.22260189e-01 9.70495701e-01 1.99187011e-01
8.15154374e-01 6.56137168e-02 1.16041267e+00 2.59150505e-01
5.06387293e-01 -4.85552609e-01 1.61789402e-01 4.77000356e-01
8.34594071e-01 4.64379996e-01 6.84073150e-01 -8.40368748e-01
4.52169329e-01 7.66877353e-01 -4.23533916e-01 -2.28398234e-01
-1.13710785e+00 1.38359141e+00 1.96693152e-01 3.80603790e-01
-6.14816785e-01 -3.53529006e-01 4.36964869e-01 4.62514251e-01
-2.46349990e-01 1.70066699e-01 -4.93984401e-01 4.64914963e-02
-8.04034770e-01 3.66616279e-01 5.32787204e-01 7.23452270e-01
7.19103813e-01 -1.23762041e-01 -1.19364366e-01 3.39555442e-01
7.36472666e-01 1.34012461e+00 8.75357389e-02 -4.76263106e-01
-2.49732167e-01 5.80120504e-01 2.43231818e-01 -1.07852983e+00
-9.32919264e-01 7.63242915e-02 -1.25298965e+00 1.44885585e-01
-5.40453941e-02 -4.31706429e-01 -6.12254918e-01 1.70384002e+00
3.56039941e-01 3.21166068e-01 3.90637100e-01 9.19970810e-01
6.81134343e-01 8.83781016e-01 1.48655266e-01 -8.32289517e-01
1.83823717e+00 -2.37238199e-01 -6.05001867e-01 4.69119489e-01
9.83672798e-01 -5.13221741e-01 5.78279555e-01 -3.70771348e-01
-5.07013872e-02 -1.14579843e-02 -1.14898205e+00 7.80742884e-01
-4.56537068e-01 -2.90196121e-01 -4.14153840e-03 9.78256702e-01
-8.29146504e-01 3.29730660e-01 -6.74180329e-01 -8.94197941e-01
3.57573986e-01 6.28615245e-02 -3.76932353e-01 -3.11239716e-02
-1.03001392e+00 7.00157166e-01 3.26723129e-01 -1.69558987e-01
-5.44137239e-01 -6.75371349e-01 -6.17749155e-01 -4.05017436e-02
-4.84378010e-01 -9.36225951e-01 3.61989707e-01 7.36256503e-03
-1.10643268e+00 8.62206280e-01 -1.77616373e-01 -1.54522300e-01
-4.33330908e-02 3.00099343e-01 -8.14972460e-01 3.14972669e-01
5.36008645e-03 1.83047518e-01 -1.88149698e-02 -1.27598846e+00
-1.99006215e-01 -6.45160258e-01 -9.09257948e-01 -1.89082474e-01
8.20023358e-01 4.98911530e-01 8.41004491e-01 -7.89496720e-01
-2.33977765e-01 -1.42780280e+00 -4.41769719e-01 -3.14037502e-01
-8.17785636e-02 -1.19533055e-01 1.16101110e+00 -2.91889995e-01
1.18594027e+00 -2.30160117e+00 -2.78978854e-01 3.26758415e-01
1.43777356e-01 9.95555580e-01 -4.09492970e-01 1.04898572e+00
2.11384475e-01 4.40330684e-01 -6.31094277e-01 7.63760746e-01
-2.60788739e-01 1.98540121e-01 -1.55067369e-01 8.40204537e-01
8.04702789e-02 1.05165219e+00 -1.22043967e+00 -2.50932485e-01
-1.95084196e-02 6.94510043e-01 -5.45283616e-01 3.12610239e-01
-1.32443264e-01 4.14139390e-01 -5.79718649e-01 2.73388684e-01
1.38880086e+00 -2.43655130e-01 3.64546359e-01 2.91236371e-01
-2.45652825e-01 -6.31729782e-01 -5.89655161e-01 7.81511188e-01
3.41679484e-01 5.91321826e-01 2.52409607e-01 -3.59743506e-01
9.27524269e-01 4.12286550e-01 2.84573555e-01 -2.25176439e-01
3.43508929e-01 6.63546771e-02 1.17667563e-01 -6.74149275e-01
6.25266284e-02 -4.89168465e-01 2.26980969e-01 6.81954920e-01
-5.07465363e-01 1.72040418e-01 3.62897992e-01 1.87005445e-01
9.50972617e-01 -5.98625362e-01 9.45743799e-01 -7.57039309e-01
5.27598679e-01 3.25799227e-01 6.83121502e-01 3.98519844e-01
-5.46445370e-01 7.22759545e-01 3.49784464e-01 -3.22798967e-01
-9.90763962e-01 -1.44788742e+00 -1.35389045e-01 2.64685839e-01
1.32323608e-01 -4.57805604e-01 -6.14412248e-01 -1.36137649e-01
2.73791939e-01 7.91425943e-01 -5.05610406e-01 2.21457109e-01
-5.91866016e-01 -6.05371296e-01 7.90600240e-01 1.05822794e-02
4.01185304e-01 -9.64108407e-01 -1.09807467e+00 6.74593374e-02
-1.26680270e-01 -6.13411367e-01 -7.91420281e-01 -2.83732593e-01
-1.00928724e+00 -1.55040538e+00 -6.97558582e-01 -8.04767847e-01
3.30591559e-01 5.37824154e-01 5.02208591e-01 1.37056366e-01
-6.79223835e-01 2.95844525e-01 -3.36248547e-01 -3.11060011e-01
-6.80780768e-01 -7.21213222e-01 3.97270828e-01 -5.42408109e-01
8.74355197e-01 -3.78699601e-01 -9.30196583e-01 4.55809146e-01
-6.95115447e-01 -2.40874141e-01 2.65874773e-01 6.16616368e-01
3.25965464e-01 -3.70372742e-01 7.27726936e-01 -3.80875379e-01
7.95308471e-01 -6.92115307e-01 -6.54988110e-01 1.86777309e-01
-6.66132867e-01 -3.64734650e-01 6.79562807e-01 -1.57824978e-01
-3.29166293e-01 -4.66315933e-02 2.78593570e-01 -3.23466331e-01
-2.98493981e-01 5.72770774e-01 2.31516302e-01 4.87488329e-01
4.92377996e-01 4.24875438e-01 2.87453413e-01 -2.15351582e-01
3.60820234e-01 1.14470923e+00 5.46875238e-01 4.23479259e-01
6.28749371e-01 4.40067381e-01 1.56945020e-01 -1.35105681e+00
2.14607045e-01 -8.96661460e-01 -4.06066537e-01 -2.00552061e-01
1.66514468e+00 -8.30657423e-01 -1.43655193e+00 5.07386923e-01
-1.31188428e+00 7.65264109e-02 1.37306511e-01 9.24140036e-01
-4.25802976e-01 6.26802027e-01 -7.31300831e-01 -1.04266775e+00
-6.19405627e-01 -6.42345130e-01 5.10139465e-01 1.73638269e-01
-3.31201017e-01 -9.87810016e-01 1.08606339e+00 -6.93605617e-02
6.66069031e-01 8.72797608e-01 1.35366809e+00 -8.66922319e-01
-3.46163094e-01 6.92706462e-03 -4.30586576e-01 6.03406131e-02
4.23871279e-02 1.72059387e-02 -2.00530842e-01 -6.06771290e-01
1.52259633e-01 3.13784629e-01 3.54705811e-01 6.27718389e-01
-3.18269253e-01 -5.69829345e-01 -5.77825487e-01 6.44133568e-01
1.64303553e+00 9.32969689e-01 6.55808270e-01 1.04622170e-01
1.81375638e-01 1.95405528e-01 5.06183147e-01 5.41353047e-01
2.65309036e-01 2.85098732e-01 1.82087868e-01 3.42474908e-01
5.80427885e-01 -1.08345568e-01 1.38966307e-01 1.09044099e+00
-2.75108010e-01 -6.18209541e-01 -9.81445968e-01 7.05896765e-02
-1.45697498e+00 -1.27751696e+00 -5.19403994e-01 2.01346970e+00
-2.12195124e-02 -7.79522181e-01 7.73611888e-02 -3.16393375e-01
1.01208532e+00 -3.44151109e-02 -4.93249297e-01 -8.44913960e-01
-4.21576142e-01 -4.33827490e-01 1.69687539e-01 4.00769085e-01
-6.99058354e-01 1.20864116e-01 5.70514822e+00 2.13906929e-01
-9.47592854e-01 -2.18533814e-01 4.64109220e-02 5.32420576e-01
-3.76124024e-01 1.25472814e-01 -4.92892340e-02 5.22900105e-01
7.39609361e-01 -5.43904841e-01 4.83909249e-01 5.86634457e-01
3.37362021e-01 1.15719348e-01 -4.22464699e-01 1.28518856e+00
8.64010155e-02 -1.32504857e+00 -1.32575631e-01 2.97052592e-01
7.83319175e-01 5.84361076e-01 -4.64632481e-01 -1.36423439e-01
-3.31760757e-02 -9.50049698e-01 -4.76940066e-01 4.94118035e-01
1.14363909e+00 -8.75649869e-01 9.76034403e-01 3.93027872e-01
-1.52685285e+00 2.71696061e-01 -4.88656014e-01 9.77116898e-02
7.06645787e-01 5.14622331e-01 -7.91707575e-01 1.18324719e-01
4.45731133e-01 2.99203277e-01 1.81172460e-01 1.20106888e+00
2.20132440e-01 3.75600010e-01 -3.66235673e-01 -4.10419136e-01
2.04324901e-01 -6.66330874e-01 1.02103317e+00 1.44943082e+00
6.06428206e-01 9.89426255e-01 -1.77798465e-01 8.77091229e-01
4.66331780e-01 4.10323828e-01 -7.95009911e-01 -5.44989765e-01
4.32057321e-01 1.15796030e+00 -9.50282395e-01 -5.39375186e-01
9.44630243e-03 6.09033525e-01 -4.64484513e-01 3.16082805e-01
-4.45615232e-01 -8.57154131e-01 1.27660275e+00 2.03850970e-01
7.70910442e-01 1.90947182e-03 2.64526218e-01 -8.28242183e-01
-8.46971452e-01 -4.28653479e-01 5.82437634e-01 -8.46994519e-01
-1.43378282e+00 6.79293871e-01 -7.83929154e-02 -1.45748055e+00
-5.81453383e-01 -3.87998641e-01 -1.02560449e+00 7.93463290e-01
-8.87325704e-01 -4.94152844e-01 -6.73511550e-02 4.11559224e-01
-3.32037866e-01 -2.56421268e-01 1.23194695e+00 -1.63959816e-01
4.57314178e-02 6.11694669e-03 9.86229956e-01 -1.67750955e-01
8.17785934e-02 -7.88633883e-01 3.62925887e-01 2.19046801e-01
-9.64613438e-01 8.69536698e-01 8.02885532e-01 -1.26165926e+00
-1.31157041e+00 -1.24753988e+00 1.24774444e+00 4.81329486e-03
2.47244716e-01 -2.61768103e-01 -7.12152839e-01 3.59872639e-01
2.82960206e-01 -2.89308071e-01 1.21920061e+00 -1.01125407e+00
-5.98832846e-01 8.05470467e-01 -1.76698005e+00 5.73141038e-01
6.68498456e-01 -5.16468048e-01 -5.81385374e-01 1.55101359e-01
7.75240839e-01 2.29188755e-01 -8.63295674e-01 5.93568981e-01
8.49974751e-01 -1.24899232e+00 6.96213007e-01 -8.29133153e-01
-1.96456268e-01 -9.63283181e-01 -2.25488871e-01 -1.19860005e+00
-6.69264913e-01 -8.71086061e-01 6.29835784e-01 4.38072830e-01
-2.76102483e-01 -9.90439534e-01 2.36352965e-01 -4.11421657e-01
2.45175436e-01 -5.28922617e-01 -9.52250242e-01 -1.12245488e+00
-4.77548353e-02 6.58469126e-02 7.61873901e-01 1.00329554e+00
2.40524963e-01 3.13859433e-01 -2.96568364e-01 3.12949084e-02
5.13362765e-01 5.12413800e-01 5.53732514e-01 -1.64443278e+00
1.77165359e-01 -4.39972430e-01 -7.84735084e-01 -6.19793296e-01
-6.30797446e-01 -8.53970587e-01 -1.38240531e-01 -1.68918955e+00
3.17280293e-01 -6.29343539e-02 -1.34263858e-01 -2.31846914e-01
1.49628371e-01 5.77552542e-02 6.31950617e-01 1.89921066e-01
-1.21162251e-01 1.86819270e-01 1.18420768e+00 2.68671364e-01
-4.38439995e-01 -6.65570870e-02 -2.10249752e-01 4.78048325e-01
9.32813346e-01 -6.83838129e-01 -4.51804936e-01 6.64612353e-01
4.12543088e-01 4.59848613e-01 1.61861613e-01 -5.34142733e-01
-4.54578884e-02 -4.06412393e-01 -1.07069686e-01 -1.25877786e+00
-1.82273805e-01 -7.37343371e-01 9.79744375e-01 1.46271551e+00
4.28936511e-01 7.28898883e-01 1.25833735e-01 6.78717136e-01
2.46072277e-01 5.28184362e-02 8.95061612e-01 3.23983133e-01
-1.25828777e-02 1.64578751e-01 -1.47325194e+00 3.97567332e-01
1.37534153e+00 -3.60483229e-01 -7.29274094e-01 -2.30027452e-01
-3.35737467e-01 2.44488209e-01 7.68962204e-01 2.14060396e-01
7.80685365e-01 -1.23811388e+00 -1.16279316e+00 6.30631328e-01
3.29922080e-01 -6.83956385e-01 8.16558480e-01 9.99562502e-01
-1.19204223e+00 7.03265071e-01 -5.23694277e-01 -7.02986598e-01
-1.31784821e+00 1.11724079e+00 -8.36536735e-02 -2.24099189e-01
-5.42826891e-01 9.12618116e-02 3.05627853e-01 -4.57517058e-01
-3.05301666e-01 -1.18517801e-01 -4.50922161e-01 -2.73916107e-02
6.89681768e-01 6.54851854e-01 -6.50320113e-01 -1.23951042e+00
-9.04709101e-01 8.40175152e-01 3.06892365e-01 6.01348758e-01
1.12648106e+00 -1.04357079e-01 -5.49460769e-01 2.40482271e-01
1.67682016e+00 -9.09412578e-02 -3.31031919e-01 4.83548999e-01
-1.32747158e-01 -1.58346042e-01 -6.35995030e-01 -6.21151805e-01
-4.75010335e-01 6.09613776e-01 1.16747987e+00 2.30941772e-02
1.00792611e+00 -6.47429079e-02 1.03615046e+00 1.20733231e-01
1.20340526e-01 -5.83182156e-01 -6.89388871e-01 7.42979109e-01
8.17161560e-01 -7.78018534e-01 -2.15646401e-01 -2.79885322e-01
-7.54992843e-01 1.04803300e+00 -3.44989777e-01 -2.20764413e-01
1.15791070e+00 2.27948487e-01 4.61158872e-01 -5.03296077e-01
-7.93061912e-01 -1.07759021e-01 5.00467978e-02 1.08780730e+00
1.56574205e-01 6.81017876e-01 -8.76845598e-01 4.91647542e-01
-2.22922474e-01 1.59732670e-01 3.30033839e-01 9.82715726e-01
-6.77554011e-01 -3.78906012e-01 -2.52206266e-01 7.30945647e-01
1.31691948e-01 -1.21082842e-01 -2.54130304e-01 6.32032931e-01
-2.90245730e-02 9.04734194e-01 2.59931773e-01 -4.23464149e-01
-3.43561247e-02 1.29569750e-02 -7.94354081e-02 3.61731537e-02
-4.83363211e-01 1.09655224e-01 -4.04187977e-01 -9.49926600e-02
-4.23956841e-01 -4.55470502e-01 -1.71815658e+00 -6.55875564e-01
-2.11511597e-01 5.44557929e-01 6.53643787e-01 5.77109635e-01
6.22257411e-01 -3.29266399e-01 7.16435671e-01 -2.83852249e-01
-2.12601036e-01 -6.98772788e-01 -1.07684612e+00 3.28823775e-01
4.83416528e-01 -2.64814824e-01 -8.86826336e-01 -1.83146715e-01] | [4.981790065765381, 5.26345157623291] |
717b3b15-3c88-4343-b3eb-3e628dd3edef | a-learning-approach-for-joint-design-of-event | 2205.0707 | null | https://arxiv.org/abs/2205.07070v1 | https://arxiv.org/pdf/2205.07070v1.pdf | A Learning Approach for Joint Design of Event-triggered Control and Power-Efficient Resource Allocation | In emerging Industrial Cyber-Physical Systems (ICPSs), the joint design of communication and control sub-systems is essential, as these sub-systems are interconnected. In this paper, we study the joint design problem of an event-triggered control and an energy-efficient resource allocation in a fifth generation (5G) wireless network. We formally state the problem as a multi-objective optimization one, aiming to minimize the number of updates on the actuators' input and the power consumption in the downlink transmission. To address the problem, we propose a model-free hierarchical reinforcement learning approach \textcolor{blue}{with uniformly ultimate boundedness stability guarantee} that learns four policies simultaneously. These policies contain an update time policy on the actuators' input, a control policy, and energy-efficient sub-carrier and power allocation policies. Our simulation results show that the proposed approach can properly control a simulated ICPS and significantly decrease the number of updates on the actuators' input as well as the downlink power consumption. | ['Mehdi Rasti', 'Atefeh Termehchi'] | 2022-05-14 | null | null | null | null | ['hierarchical-reinforcement-learning'] | ['methodology'] | [ 1.31855205e-01 5.45073688e-01 -5.33749223e-01 8.08867291e-02
-3.50599498e-01 -4.77896452e-01 -1.12072192e-02 -9.83887538e-02
-4.95749433e-03 1.13497996e+00 -4.97088194e-01 -5.00369787e-01
-5.66322029e-01 -8.43394518e-01 -3.78677905e-01 -1.19655335e+00
-3.49496335e-01 6.87420368e-02 -6.53766170e-02 2.07717597e-01
-1.64702341e-01 1.96359724e-01 -7.09417105e-01 -7.15952635e-01
6.91622257e-01 1.55452037e+00 3.93434376e-01 6.24300659e-01
7.57591486e-01 4.70022649e-01 -8.58449101e-01 3.30075353e-01
2.12707147e-01 -5.55277646e-01 -4.68513638e-01 3.09847564e-01
-5.83050966e-01 -5.49555838e-01 -4.96519417e-01 9.04272676e-01
7.54027426e-01 5.85338324e-02 3.99995863e-01 -1.97599459e+00
-1.70930117e-01 6.22288048e-01 -6.54577851e-01 -7.58379400e-02
-3.75508398e-01 3.25409472e-01 6.73740327e-01 1.29176214e-01
2.53320575e-01 8.66198778e-01 -5.06426767e-02 6.98567569e-01
-9.85774457e-01 -8.69477391e-01 2.67013162e-01 1.28791943e-01
-1.02233100e+00 -3.39379132e-01 5.35255373e-01 -6.48087338e-02
6.38047814e-01 3.47589940e-01 9.63712513e-01 5.38402677e-01
3.98938298e-01 3.25108200e-01 7.07433224e-01 -6.44970775e-01
7.56824493e-01 -3.16783488e-02 -4.92364287e-01 7.16077387e-01
5.76282620e-01 7.11913258e-02 -8.20910633e-02 -2.92517811e-01
1.14454222e+00 -6.94046244e-02 -2.04867899e-01 -3.17060649e-01
-1.13980722e+00 4.64060426e-01 1.96825936e-01 1.70956656e-01
-7.40328312e-01 9.92057145e-01 -7.83264637e-02 2.81538725e-01
1.39175028e-01 3.54374915e-01 -5.94800234e-01 -7.61198476e-02
-3.92174602e-01 -1.79539457e-01 8.05695236e-01 1.35523677e+00
2.87979215e-01 4.41985488e-01 -4.53338176e-01 4.53698695e-01
5.62601864e-01 7.09262311e-01 -1.10845573e-01 -1.22775865e+00
5.38965583e-01 2.59062588e-01 6.12356722e-01 -4.15796489e-01
-5.87862015e-01 -5.05500972e-01 -1.10543990e+00 5.22497110e-02
1.29661977e-01 -1.24294090e+00 -5.08896232e-01 1.90322292e+00
4.09772962e-01 1.52963504e-01 -3.41581441e-02 8.01531434e-01
-2.26411402e-01 9.98969376e-01 1.61931798e-01 -1.07495904e+00
1.23625493e+00 -7.45353341e-01 -1.07396519e+00 -2.58708112e-02
1.97131619e-01 -5.02038956e-01 4.53860134e-01 1.68785438e-01
-1.36096239e+00 -6.69153407e-02 -1.52512002e+00 8.18611503e-01
6.44873828e-03 5.87817013e-01 -1.27844051e-01 6.34337723e-01
-7.40303695e-01 5.10737240e-01 -6.74927235e-01 -2.72433430e-01
7.88250044e-02 7.29938388e-01 5.80417752e-01 4.90578115e-01
-1.03242469e+00 5.65263033e-01 5.92004776e-01 -1.41475154e-02
-8.00438643e-01 -5.25456011e-01 -8.97930861e-02 2.94424862e-01
9.56496119e-01 -8.84040296e-01 1.50322485e+00 -5.06700158e-01
-2.05813646e+00 -1.45474911e-01 6.87476575e-01 -1.71088457e-01
3.21199477e-01 3.04063499e-01 -3.95989358e-01 1.83719769e-01
-3.23159367e-01 1.67220369e-01 9.51455832e-01 -1.24743378e+00
-1.17512202e+00 -1.66313589e-01 2.13880375e-01 3.09552401e-01
-7.76830077e-01 -5.74750245e-01 -4.24417883e-01 -7.33375967e-01
-4.21892226e-01 -1.16475749e+00 -4.84256059e-01 -5.98179661e-02
-5.22180915e-01 -2.37255037e-01 1.27949262e+00 -3.42094749e-01
1.33106637e+00 -2.12059140e+00 3.45756561e-01 4.67650980e-01
-5.98534457e-02 -6.93838894e-02 2.20814526e-01 5.00352740e-01
5.18786967e-01 9.13580433e-02 1.34035096e-01 4.77929451e-02
2.97007740e-01 4.05472189e-01 1.41492963e-01 3.75213921e-01
-1.24334164e-01 2.60308504e-01 -7.62697637e-01 -2.20960870e-01
2.94469774e-01 -8.01147148e-02 -2.11713240e-01 3.07973087e-01
-4.95455384e-01 2.55477279e-01 -1.06334484e+00 3.31367224e-01
3.25008512e-01 -3.63606483e-01 8.00356805e-01 -3.89076561e-01
-8.27322081e-02 -4.79285747e-01 -1.24099767e+00 1.12568533e+00
-7.05997646e-01 7.41714314e-02 9.66764569e-01 -9.21123087e-01
4.43695664e-01 6.67045414e-01 1.17181492e+00 -6.54225290e-01
3.78287643e-01 1.04287639e-01 -1.80405453e-01 -3.12755525e-01
-3.15513946e-02 -1.94981117e-02 -3.42756599e-01 4.92680430e-01
5.78311011e-02 -1.84297860e-01 2.01933026e-01 1.52044386e-01
1.27396274e+00 -3.88593018e-01 3.77763450e-01 -5.63896120e-01
5.42006254e-01 -3.62489939e-01 8.28761816e-01 4.15847331e-01
-1.91910088e-01 -6.51837885e-01 5.63994884e-01 2.98132241e-01
-8.33315551e-01 -8.43265772e-01 6.10706449e-01 8.15437496e-01
6.45747840e-01 4.66167973e-03 -7.05034971e-01 -5.45916319e-01
2.56116707e-02 7.68919528e-01 4.83956970e-02 -3.88651669e-01
-3.07131499e-01 -7.11599290e-01 -1.90151945e-01 1.10911988e-01
5.08699834e-01 -5.21763384e-01 -1.13519835e+00 6.39002740e-01
2.12550774e-01 -1.37834728e+00 -7.28801847e-01 6.12809062e-01
-4.33674544e-01 -1.04483509e+00 -4.39507246e-01 -7.32308686e-01
8.51692975e-01 -1.86473832e-01 5.16630292e-01 -1.02102250e-01
-2.03653142e-01 8.68948042e-01 5.09775020e-02 -6.38015509e-01
-1.84272930e-01 1.27176598e-01 1.45116210e-01 6.34312779e-02
-6.87477648e-01 -5.92553854e-01 -8.66052926e-01 3.53083611e-01
-6.52228951e-01 8.42242613e-02 6.22125506e-01 3.92621040e-01
7.06914604e-01 6.20593727e-01 1.05403090e+00 -2.83275932e-01
7.92153180e-01 -3.93934608e-01 -1.32972515e+00 4.85284209e-01
-5.92944562e-01 5.57260737e-02 1.00724208e+00 -1.87474936e-01
-8.70278060e-01 3.24913144e-01 5.58159649e-01 -2.98037529e-01
4.90554363e-01 -2.39898995e-01 -5.74685276e-01 -1.67744413e-01
-2.68531203e-01 8.43968987e-02 -7.80166164e-02 1.81141347e-02
2.13174149e-01 6.73942208e-01 3.47076982e-01 -6.81290567e-01
8.94346356e-01 1.15565006e-02 5.78604460e-01 -7.79384971e-01
-2.55174309e-01 -5.01360670e-02 -5.90070486e-02 -7.39091635e-01
6.78478360e-01 -8.75911117e-01 -1.46759820e+00 6.85095415e-03
-8.81070912e-01 -5.17945111e-01 -1.88374266e-01 5.58480859e-01
-9.94434655e-01 -1.16897956e-01 -3.03745747e-01 -9.26339984e-01
-6.25547349e-01 -8.70166183e-01 7.28759468e-01 4.94211137e-01
1.08178854e-01 -6.33030057e-01 -2.99624771e-01 -2.02580556e-01
5.14862955e-01 6.12356126e-01 1.18806040e+00 2.02594236e-01
-7.99466729e-01 2.53066868e-01 7.38752307e-03 1.92870677e-01
3.93331975e-01 -1.57894686e-01 -3.17054451e-01 -7.90671885e-01
-1.41197070e-01 1.74622424e-02 5.42200357e-03 5.96311092e-01
1.57487476e+00 -9.07218158e-01 -7.39136517e-01 2.45122284e-01
1.88467789e+00 8.34539235e-01 1.22855352e-02 -2.37259820e-01
2.67747462e-01 6.16268367e-02 7.52809107e-01 1.19410646e+00
8.40348899e-02 6.96352065e-01 1.11604095e+00 1.07226007e-01
3.86938006e-01 1.59536585e-01 3.27329904e-01 6.30064011e-01
-4.18943577e-02 -9.83247638e-01 -1.50265738e-01 9.19990540e-02
-2.02856159e+00 -4.37042922e-01 4.05347854e-01 2.22876596e+00
5.78941047e-01 -3.39328498e-02 2.42631450e-01 1.87352300e-01
7.58936644e-01 -1.45951092e-01 -9.44622934e-01 -2.26703629e-01
5.95867872e-01 -1.68033913e-01 1.09703016e+00 1.33901179e-01
-9.62221205e-01 1.03091784e-01 5.22701359e+00 8.78956914e-01
-1.08663261e+00 1.23782612e-01 5.78876436e-01 -6.27770722e-01
1.94847837e-01 -4.40775901e-01 -3.81036401e-01 9.36561704e-01
1.28045130e+00 -5.75164020e-01 8.73835385e-01 7.20801771e-01
7.61599481e-01 -2.03093484e-01 -1.06073177e+00 9.33698475e-01
-8.31312656e-01 -1.18429065e+00 -4.96599406e-01 3.28843594e-01
7.61329889e-01 -4.35794473e-01 -1.87767655e-01 9.42774024e-03
4.32669103e-01 -2.20792174e-01 7.23853171e-01 4.11690801e-01
7.50081241e-01 -1.27801299e+00 1.60070971e-01 3.62553298e-01
-1.24483657e+00 -7.15910196e-01 1.24720261e-01 2.50681013e-01
4.75891411e-01 6.39534116e-01 -4.09929991e-01 7.03225672e-01
3.75625759e-01 1.54157221e-01 3.40611815e-01 8.18232596e-01
-6.39084801e-02 2.98623413e-01 -4.61183071e-01 -6.44174933e-01
9.93179232e-02 -2.55866259e-01 4.45251018e-01 6.92986250e-01
5.29568732e-01 7.72805452e-01 6.27162933e-01 3.74195576e-01
-3.78878236e-01 -4.19254929e-01 1.91380823e-04 -1.84548810e-01
9.90084946e-01 1.44462252e+00 -8.18961143e-01 -3.06833565e-01
-1.99526817e-01 7.26973057e-01 -3.89848709e-01 4.31721568e-01
-1.22264707e+00 -5.63658595e-01 8.47989976e-01 -1.91693790e-02
1.56536654e-01 -4.40522283e-01 -1.15238473e-01 -2.43665993e-01
1.68442637e-01 -2.93450117e-01 2.90102452e-01 -4.63248432e-01
-9.68411744e-01 -3.60380262e-02 -7.61207864e-02 -1.34300220e+00
-2.17802525e-01 -2.10781395e-01 -4.74705577e-01 2.25185603e-01
-1.33388662e+00 -4.44591343e-01 -1.59830630e-01 6.01583481e-01
4.46399719e-01 -3.37811001e-02 4.48569983e-01 5.39770365e-01
-9.25320268e-01 1.94503590e-01 4.40710574e-01 -4.42209840e-01
1.37936845e-01 -1.26863241e+00 -5.98743320e-01 6.50226176e-01
-9.26490545e-01 -1.81528404e-01 7.52728939e-01 -1.79976925e-01
-2.14834309e+00 -1.29529953e+00 -1.55522093e-01 9.13182378e-01
7.45611608e-01 -9.69811976e-02 1.65828764e-01 2.56079912e-01
8.33542109e-01 7.59457052e-02 1.14938617e-01 -8.92621875e-01
1.05081892e+00 -5.86676836e-01 -1.28654742e+00 7.45274723e-01
8.64937484e-01 2.19302326e-01 5.66441894e-01 5.74669659e-01
7.34254479e-01 -2.26203755e-01 -1.10676777e+00 3.37032437e-01
2.36285746e-01 -1.71721540e-02 6.36448443e-01 -1.44013450e-01
-2.95038015e-01 -2.93586791e-01 -2.05566987e-01 -1.75402796e+00
-2.54325986e-01 -1.25229073e+00 -6.63940430e-01 1.08731556e+00
2.01036572e-01 -4.33960199e-01 7.23500371e-01 2.60498881e-01
-1.07273757e-01 -9.41587329e-01 -1.28753757e+00 -8.20566118e-01
-5.45982838e-01 3.79661858e-01 3.07506323e-01 4.31280941e-01
4.75301653e-01 5.85694551e-01 -4.58151519e-01 6.03653312e-01
8.19235742e-01 -1.06147617e-01 3.51185471e-01 -9.05435324e-01
-3.92907649e-01 -3.43020201e-01 2.55389929e-01 -8.59665573e-01
-2.02928513e-01 -1.64291114e-01 2.17808589e-01 -1.74243522e+00
-2.62511224e-01 -4.33546990e-01 -3.26277792e-01 6.34427965e-01
3.73304695e-01 -5.14334440e-01 2.97984123e-01 -3.30249578e-01
-6.88665092e-01 7.57239103e-01 1.26485169e+00 -2.93801814e-01
-1.94439083e-01 3.94000739e-01 -2.78526783e-01 3.07194710e-01
1.03395534e+00 -3.37435484e-01 -1.02047765e+00 -1.47351161e-01
-2.37728849e-01 9.26209688e-01 1.78398024e-02 -1.05892015e+00
2.12179676e-01 -6.85606182e-01 7.62582570e-02 -4.56248462e-01
5.01737177e-01 -1.73111129e+00 2.46441171e-01 1.23276746e+00
1.51226437e-03 -1.29769174e-02 -1.11674495e-01 9.58073795e-01
3.62770677e-01 2.28801847e-01 9.78190899e-01 2.32119814e-01
-4.49465454e-01 4.96292412e-01 -8.31436694e-01 -4.01615828e-01
1.78958511e+00 3.35169762e-01 -3.43904048e-01 -3.41961294e-01
-7.02655494e-01 1.02224088e+00 -3.38584185e-01 4.08295661e-01
2.02196166e-01 -1.19229126e+00 -9.83821899e-02 -2.31102645e-01
-5.60502172e-01 -5.14579237e-01 1.54661953e-01 6.61684096e-01
-1.21678017e-01 5.35791993e-01 -2.57228106e-01 -2.53951609e-01
-1.09275234e+00 2.51391143e-01 6.72080517e-01 -2.73750186e-01
1.35552883e-01 2.15361163e-01 -4.42353845e-01 1.85842767e-01
3.79188985e-01 -5.08995354e-01 2.02075601e-01 -1.41500264e-01
-2.56233364e-01 9.95484889e-01 -3.39016914e-01 4.47556078e-01
-2.62838006e-01 3.41259450e-01 4.66203064e-01 4.38116193e-02
1.27431440e+00 -5.66929102e-01 9.23668444e-02 -1.28816575e-01
8.89361024e-01 -4.76321399e-01 -1.29006684e+00 4.45364267e-02
-1.98462486e-01 -7.79375881e-02 4.30416554e-01 -8.91777277e-01
-1.54845452e+00 -1.92119312e-02 8.14214170e-01 7.48177350e-01
1.67145431e+00 -3.34907293e-01 7.32298911e-01 2.90602773e-01
6.53965831e-01 -1.78025544e+00 3.47406983e-01 -1.22909574e-02
4.66613501e-01 -4.86641884e-01 1.05518557e-01 -7.27655172e-01
-8.87565166e-02 1.22390282e+00 9.55750585e-01 1.00168906e-01
9.74674046e-01 4.81260389e-01 -6.57641172e-01 -2.88059260e-03
-1.02114511e+00 6.93591386e-02 -3.37721497e-01 2.88785547e-01
-9.65255201e-02 4.60434794e-01 -7.32109487e-01 5.63150883e-01
4.77191836e-01 4.77155298e-02 5.62794089e-01 1.15714097e+00
-6.87257290e-01 -1.04783845e+00 -2.28425726e-01 5.26024520e-01
-3.87369424e-01 7.49440789e-01 1.00435868e-01 7.57749557e-01
2.84177274e-01 1.14926529e+00 9.51698720e-02 -1.77787974e-01
4.76630539e-01 -4.72776592e-01 5.70506632e-01 -3.21575046e-01
-1.16640121e-01 4.08337593e-01 3.16969782e-01 -5.39884508e-01
-2.94484824e-01 -1.55067399e-01 -1.42679393e+00 -7.45835900e-02
-4.04209197e-01 3.11851799e-01 7.41744816e-01 9.53380585e-01
5.52715600e-01 1.27261913e+00 1.22810841e+00 -4.54538018e-01
-9.71916735e-01 -6.34212255e-01 -9.59645092e-01 -6.28025472e-01
3.70457232e-01 -4.36935723e-01 -6.77784756e-02 -1.10154144e-01] | [5.8379130363464355, 1.6787192821502686] |
d43781b4-2025-4d84-8ae2-6265fe8a472e | range-gan-range-constrained-generative | 2103.0623 | null | https://arxiv.org/abs/2103.06230v1 | https://arxiv.org/pdf/2103.06230v1.pdf | Range-GAN: Range-Constrained Generative Adversarial Network for Conditioned Design Synthesis | Typical engineering design tasks require the effort to modify designs iteratively until they meet certain constraints, i.e., performance or attribute requirements. Past work has proposed ways to solve the inverse design problem, where desired designs are directly generated from specified requirements, thus avoid the trial and error process. Among those approaches, the conditional deep generative model shows great potential since 1) it works for complex high-dimensional designs and 2) it can generate multiple alternative designs given any condition. In this work, we propose a conditional deep generative model, Range-GAN, to achieve automatic design synthesis subject to range constraints. The proposed model addresses the sparse conditioning issue in data-driven inverse design problems by introducing a label-aware self-augmentation approach. We also propose a new uniformity loss to ensure generated designs evenly cover the given requirement range. Through a real-world example of constrained 3D shape generation, we show that the label-aware self-augmentation leads to an average improvement of 14% on the constraint satisfaction for generated 3D shapes, and the uniformity loss leads to a 125% average increase on the uniformity of generated shapes' attributes. This work laid the foundation for data-driven inverse design problems where we consider range constraints and there are sparse regions in the condition space. | ['Faez Ahmed', 'Wei Chen', 'Amin Heyrani Nobari'] | 2021-03-10 | null | null | null | null | ['design-synthesis', '3d-shape-generation'] | ['adversarial', 'computer-vision'] | [ 5.24266958e-01 2.84478545e-01 -1.64905399e-01 -5.22679925e-01
-5.26740253e-01 -4.12060350e-01 1.01395920e-01 -4.03667718e-01
4.29121852e-01 6.30062282e-01 4.24826384e-01 -3.08574252e-02
-3.99439633e-01 -1.07562602e+00 -6.67241693e-01 -4.02378023e-01
3.86423528e-01 7.60383904e-01 -5.20743370e-01 -3.04678738e-01
2.59367555e-01 4.92086112e-01 -1.56913245e+00 2.58993328e-01
1.02996147e+00 1.00536203e+00 8.11095387e-02 2.20784515e-01
-3.43388468e-02 2.98073024e-01 -6.40940905e-01 -1.62517149e-02
3.78111154e-01 -6.51041150e-01 -3.53673756e-01 4.43929911e-01
6.08090870e-02 -2.96655864e-01 1.01542309e-01 7.69163907e-01
7.87475586e-01 2.14819089e-02 9.74789083e-01 -1.33890069e+00
-1.19681835e+00 6.15073562e-01 -6.56393170e-01 -7.29982972e-01
3.39099795e-01 2.43079767e-01 9.95278597e-01 -1.01485336e+00
2.68459737e-01 1.18997562e+00 5.01841307e-01 7.07648695e-01
-1.61564720e+00 -7.06620336e-01 1.97714910e-01 -2.41343260e-01
-1.60708177e+00 -2.29173586e-01 1.05203962e+00 -5.95088720e-01
8.38257313e-01 2.51824021e-01 7.48347938e-01 8.76189291e-01
1.70110166e-01 5.70076168e-01 7.57124245e-01 -3.18133086e-01
6.63316905e-01 -1.37750894e-01 -4.83718723e-01 2.80360729e-01
2.61826277e-01 2.60100961e-01 -2.67228007e-01 -7.94054791e-02
1.03741527e+00 -8.39695334e-02 -1.37776583e-01 -5.23144484e-01
-9.22944486e-01 9.74452853e-01 3.11540037e-01 1.30322099e-01
-3.54221851e-01 3.76947492e-01 -3.99856493e-02 1.13464192e-01
4.76247728e-01 8.69364381e-01 -5.71470380e-01 1.49367377e-01
-9.78775918e-01 3.94865870e-01 5.41703045e-01 1.68349123e+00
7.20244169e-01 5.18955529e-01 -4.01305437e-01 8.49966884e-01
5.94389856e-01 6.73262537e-01 3.19969505e-02 -8.46475959e-01
3.60561579e-01 7.43054211e-01 1.06724195e-01 -9.92308140e-01
-2.46446848e-01 -6.42225683e-01 -1.01320446e+00 3.03341687e-01
-1.39859200e-01 -4.74422097e-01 -1.44933140e+00 2.00797844e+00
1.67898282e-01 -2.75129348e-01 -2.34472856e-01 9.79728878e-01
5.56537688e-01 8.01572740e-01 -2.56904960e-01 -1.94329709e-01
9.38652694e-01 -3.65895003e-01 -9.89255428e-01 -1.87264368e-01
3.28584611e-01 -8.41786683e-01 1.24187732e+00 3.36587757e-01
-1.12703729e+00 -4.11884278e-01 -1.15331554e+00 3.51238102e-01
-1.18319094e-02 3.81856382e-01 6.52476192e-01 9.32907522e-01
-8.29966605e-01 1.85880914e-01 -3.97774607e-01 1.67222187e-01
5.34052610e-01 5.09391844e-01 1.57602057e-01 -1.91246346e-01
-9.65361476e-01 5.81052542e-01 5.70435971e-02 1.82077244e-01
-1.08027256e+00 -1.28416204e+00 -9.05182600e-01 3.05412769e-01
6.19212985e-01 -9.05379355e-01 8.84223878e-01 -5.83347619e-01
-1.70309842e+00 3.08943868e-01 1.27155602e-01 3.33587676e-01
1.91091925e-01 -8.69645029e-02 -3.03965837e-01 -5.91424823e-01
7.81740323e-02 5.38345754e-01 9.14050043e-01 -1.59698021e+00
-1.20565891e-01 -1.59552470e-01 -1.38981283e-01 -1.91309601e-01
-2.60098308e-01 -5.32289803e-01 -2.48280585e-01 -9.83865619e-01
1.63990378e-01 -1.11248779e+00 -7.00602770e-01 -1.58038065e-01
-6.54725909e-01 1.88691691e-02 7.78771698e-01 -4.46163893e-01
1.42521787e+00 -2.00229955e+00 3.82713199e-01 6.58144712e-01
-8.98623541e-02 -2.52887886e-02 -1.27161518e-01 5.04097462e-01
-1.88044637e-01 3.14805865e-01 -6.45027041e-01 -5.95279746e-02
3.41027260e-01 2.38240495e-01 -1.95246667e-01 1.85211986e-01
4.56286520e-01 9.39445317e-01 -4.50826764e-01 3.28209549e-02
2.09716544e-01 5.41426063e-01 -1.15564179e+00 2.08934069e-01
-7.28217602e-01 4.15882736e-01 -5.78372896e-01 5.62609494e-01
7.62782276e-01 -6.59312755e-02 1.69395059e-01 -4.50457424e-01
1.40382666e-02 -1.79758549e-01 -1.41844010e+00 1.91402912e+00
-8.91924143e-01 1.62286192e-01 -4.25180495e-02 -7.45992601e-01
1.49250710e+00 3.28110456e-01 6.16104960e-01 -5.83146870e-01
2.80599296e-01 1.98471799e-01 -1.11642815e-02 -1.08708270e-01
3.57047707e-01 -2.58211315e-01 -5.64719141e-01 5.41287839e-01
-2.55484104e-01 -8.27449858e-01 7.52972253e-03 -1.87547609e-01
8.55802119e-01 2.72588491e-01 -4.39637452e-02 -5.13620615e-01
3.48829538e-01 -1.12211257e-01 9.43319440e-01 1.67980477e-01
7.68686175e-01 9.77453887e-01 5.27514100e-01 -2.59614855e-01
-1.31587791e+00 -9.42824125e-01 8.66234973e-02 5.54172695e-01
-8.99778605e-02 -2.25336060e-01 -5.16168416e-01 -4.13668483e-01
1.79553002e-01 1.08538437e+00 -6.68483675e-01 -4.96044397e-01
-5.80862164e-01 -5.78627646e-01 -1.91724626e-03 6.82504058e-01
2.56103635e-01 -7.67296195e-01 -4.70148087e-01 2.01592550e-01
1.95209846e-01 -6.31655753e-01 -8.16271722e-01 1.26282036e-01
-5.95943034e-01 -5.95584333e-01 -8.40161681e-01 -8.78029704e-01
1.16645658e+00 -4.71233577e-01 1.08816040e+00 -1.50144860e-01
-6.14348173e-01 2.29374364e-01 -1.93148196e-01 -2.83817321e-01
-3.44086915e-01 -4.93281819e-02 -6.86098938e-04 -3.40391658e-02
-8.62629935e-02 -8.22374403e-01 -5.63451588e-01 6.97971642e-01
-9.36864734e-01 1.82644635e-01 7.71089494e-01 8.77477825e-01
9.13369715e-01 3.00504714e-01 1.17536032e+00 -5.73383749e-01
7.38757133e-01 -2.66104668e-01 -6.89257205e-01 2.42449403e-01
-8.56264234e-01 4.26061004e-01 6.08993590e-01 -5.93226850e-01
-1.22799063e+00 3.64906162e-01 -1.70477092e-01 -5.10342836e-01
-2.07189247e-02 4.95728880e-01 -7.69577086e-01 2.50485122e-01
4.58485872e-01 -1.51736885e-01 -6.05821125e-02 -4.91483539e-01
7.11427569e-01 5.54390252e-01 1.02152407e-01 -1.09097445e+00
9.12415922e-01 1.33071169e-02 2.67269254e-01 -4.38504934e-01
-4.78184789e-01 2.10748747e-01 -3.43150020e-01 -2.44078800e-01
7.60051072e-01 -6.86549366e-01 -7.24379718e-01 -5.50362021e-02
-9.20479298e-01 -2.59934992e-01 -7.17766106e-01 2.76743382e-01
-9.97992635e-01 -1.02454178e-01 -9.67151895e-02 -8.75092030e-01
-2.47955754e-01 -1.18536246e+00 1.16532230e+00 8.82884264e-02
-5.81402659e-01 -6.11798346e-01 -1.79136291e-01 -5.89178503e-02
6.94038510e-01 5.50731361e-01 1.27558410e+00 -2.35101841e-02
-4.80678469e-01 -1.92373648e-01 4.92868870e-02 3.36278558e-01
6.20355427e-01 -1.15533374e-01 -4.83635217e-01 -2.50717252e-01
2.57318895e-02 -1.28255188e-01 2.53698349e-01 6.74228728e-01
1.17095923e+00 -3.29217494e-01 -1.48132801e-01 4.78100747e-01
1.50299573e+00 5.88382542e-01 7.99214482e-01 -4.77193058e-01
7.86511958e-01 5.98251879e-01 6.75096214e-01 1.00124574e+00
3.07018794e-02 7.53494859e-01 4.63064909e-01 -2.77592003e-01
-2.68931121e-01 -4.60373700e-01 -1.87648714e-01 5.61443567e-01
2.01435894e-01 -4.54117358e-01 -7.74218798e-01 7.05728889e-01
-1.87718546e+00 -5.67822278e-01 -1.41636943e-02 2.04092288e+00
7.99335837e-01 -6.50239270e-03 -1.48271650e-01 2.06060603e-01
8.36201608e-01 -2.17477947e-01 -7.91472733e-01 -5.23980200e-01
1.70716852e-01 4.48664814e-01 3.91108871e-01 2.88384259e-01
-4.41447318e-01 5.20329475e-01 6.67815208e+00 8.85339379e-01
-8.00297678e-01 -3.34635615e-01 8.20137739e-01 -2.61326253e-01
-1.06715262e+00 -2.55907401e-02 -6.30628049e-01 3.85684341e-01
3.71204108e-01 -4.18651462e-01 3.39249730e-01 9.12868977e-01
4.09698248e-01 4.98008989e-02 -1.31867254e+00 8.49024832e-01
6.77038804e-02 -1.33820117e+00 1.38843313e-01 3.86813283e-01
1.31940985e+00 -1.07753897e+00 3.75532866e-01 1.50333628e-01
4.13510561e-01 -1.24513960e+00 7.70665348e-01 4.89669383e-01
1.32459557e+00 -1.28509438e+00 4.18402672e-01 1.57168984e-01
-1.20910108e+00 -1.07775457e-01 -1.36975795e-01 7.51237124e-02
5.93183398e-01 1.00891507e+00 -7.46097267e-01 4.96195793e-01
2.67739445e-01 4.74244952e-01 -6.97118491e-02 7.20215797e-01
-1.32069036e-01 2.97394872e-01 -3.36034417e-01 -5.61966822e-02
-1.49590239e-01 -3.29537094e-01 4.75992620e-01 6.92119837e-01
8.07896554e-01 5.37086800e-02 1.40238494e-01 1.83901072e+00
1.35961652e-01 -1.00503013e-01 -5.56752264e-01 -1.01543680e-01
4.25149679e-01 8.10638666e-01 -4.68436331e-01 1.78512692e-01
-9.70007759e-03 6.48538053e-01 -4.04061049e-01 4.16084260e-01
-1.13174844e+00 -4.10527289e-01 6.48774028e-01 3.61826688e-01
5.70407987e-01 -4.31771755e-01 -8.58476818e-01 -4.46109921e-01
3.01955338e-03 -8.45182300e-01 -1.49191156e-01 -7.13071764e-01
-1.31554186e+00 3.44170988e-01 1.09866038e-01 -1.41772354e+00
-3.80798250e-01 -2.96794027e-01 -3.29600364e-01 1.03085613e+00
-9.40054834e-01 -1.03316736e+00 -1.44565031e-01 2.84084946e-01
6.71427727e-01 -3.77742648e-01 6.37609661e-01 5.72401226e-01
-4.34677929e-01 5.87183833e-01 -3.62661362e-01 -3.11355770e-01
4.54124063e-01 -9.06769156e-01 4.11142319e-01 5.66287577e-01
-3.96513700e-01 5.89804053e-01 7.94207394e-01 -9.79699016e-01
-1.61097455e+00 -1.07029057e+00 2.21716702e-01 -8.05532411e-02
9.69395414e-02 -3.84419382e-01 -4.47172374e-01 3.62758398e-01
4.56510559e-02 -3.29923719e-01 8.05620253e-01 -1.69873625e-01
9.00399499e-03 7.44054914e-02 -1.47776079e+00 5.36998212e-01
1.24479055e+00 3.43035348e-02 -1.92136571e-01 5.72498441e-02
9.27490473e-01 -3.15352947e-01 -1.25489771e+00 9.31965590e-01
4.32844877e-01 -5.41458905e-01 8.91896009e-01 -3.21741849e-01
7.02716589e-01 -6.47956789e-01 -4.33861643e-01 -1.59748483e+00
-6.21897101e-01 -6.29937291e-01 -1.07719094e-01 1.55037260e+00
7.76577890e-01 -1.38668835e-01 9.03194249e-01 1.10340369e+00
-5.46525776e-01 -9.65567231e-01 -6.58191264e-01 -8.80006552e-01
-1.06675386e-01 -4.15947407e-01 1.17770123e+00 7.42396533e-01
-2.94538647e-01 3.72479230e-01 -6.25101566e-01 -1.00903101e-01
5.07031560e-01 2.89640635e-01 5.85967660e-01 -8.92366767e-01
-4.47323292e-01 -3.53924841e-01 -1.75224364e-01 -1.21829247e+00
-1.15485020e-01 -6.69133365e-01 3.39096308e-01 -1.88404500e+00
-1.91541493e-01 -8.60677838e-01 3.18209231e-01 3.49157304e-01
1.87166780e-01 -1.18055724e-01 3.05278786e-02 -4.30230230e-01
1.93630904e-01 1.12817812e+00 1.66887927e+00 -3.94487321e-01
-4.86848921e-01 1.47741541e-01 -1.11059356e+00 2.13280395e-01
7.50907004e-01 -3.30232352e-01 -8.75481367e-01 -4.73871112e-01
5.96105278e-01 1.87433466e-01 -1.64561838e-01 -8.62978697e-01
-1.34465724e-01 -4.37209606e-01 4.09790039e-01 -8.11719954e-01
3.37149352e-01 -1.24222219e+00 7.65926838e-01 3.18734199e-01
-2.97966450e-01 3.15546878e-02 3.26041877e-01 4.98763621e-01
2.38225888e-03 -1.28619537e-01 7.29680836e-01 1.51541248e-01
-3.66929173e-01 2.51529515e-01 -4.13029283e-01 -8.92674774e-02
1.12010467e+00 -2.42000133e-01 7.02482983e-02 -4.96206969e-01
-8.11668158e-01 2.69556046e-01 4.66432005e-01 4.95879054e-01
8.84229064e-01 -1.88964701e+00 -7.83922732e-01 4.77851421e-01
8.99934210e-03 3.39582145e-01 2.21606284e-01 2.08778232e-01
-1.25693142e-01 1.76814646e-01 -1.30615741e-01 -6.59759283e-01
-6.94701433e-01 6.81816995e-01 1.06167726e-01 1.91323850e-02
-4.20064270e-01 7.69113362e-01 2.58001834e-01 -4.37140048e-01
-2.62912400e-02 -5.00806510e-01 2.11457267e-01 -1.33942485e-01
1.21745721e-01 3.28616232e-01 2.81708166e-02 -3.04099888e-01
-2.83988565e-01 9.47453797e-01 3.46342862e-01 -1.70389444e-01
1.46825719e+00 1.93859413e-01 8.47384334e-02 1.05665997e-02
1.07569087e+00 -1.02859557e-01 -1.29831004e+00 7.20105246e-02
-2.74780422e-01 -7.19809294e-01 1.46440715e-01 -8.99692059e-01
-1.50034952e+00 3.68977666e-01 4.95252848e-01 4.14023176e-02
1.39115191e+00 -4.24669906e-02 7.44205594e-01 -6.75577670e-02
4.02330071e-01 -1.17255270e+00 3.64192188e-01 4.41785902e-01
1.29124773e+00 -7.08316565e-01 1.65466636e-01 -6.85722768e-01
-7.48687327e-01 7.96933413e-01 7.18399107e-01 -1.12770557e-01
6.66597366e-01 8.14529717e-01 -4.58142430e-01 -2.76141614e-01
-5.87073028e-01 -5.80545738e-02 6.13084733e-01 8.09435308e-01
5.28563976e-01 1.15068004e-01 -2.36414462e-01 7.65380263e-01
-2.56919652e-01 -3.26790251e-02 2.65104979e-01 9.43157196e-01
-2.99492925e-01 -1.27921128e+00 -4.38223124e-01 6.48045003e-01
1.91166937e-01 7.31615499e-02 -3.69849294e-01 5.20916641e-01
2.10075378e-01 9.86017644e-01 -1.21339867e-02 -5.12076259e-01
7.62318373e-01 -1.71705768e-01 6.51469946e-01 -9.16188121e-01
-2.17227980e-01 2.84100682e-01 1.07929349e-01 -3.09268326e-01
-3.69076096e-02 -4.91920918e-01 -1.35838127e+00 -1.85764998e-01
-5.66330731e-01 8.40075500e-03 6.96514010e-01 5.42627037e-01
6.99384928e-01 1.07602417e+00 9.46297646e-01 -8.33040595e-01
-2.42689610e-01 -5.79137444e-01 -5.15842855e-01 1.55392826e-01
4.34788987e-02 -8.72192085e-01 -1.87885061e-01 1.07099734e-01] | [5.841895580291748, 3.3025553226470947] |
b1253f22-7e1f-42bd-b0f0-eb61e6e5c1c4 | dissecting-image-crops | 2011.11831 | null | https://arxiv.org/abs/2011.11831v4 | https://arxiv.org/pdf/2011.11831v4.pdf | Dissecting Image Crops | The elementary operation of cropping underpins nearly every computer vision system, ranging from data augmentation and translation invariance to computational photography and representation learning. This paper investigates the subtle traces introduced by this operation. For example, despite refinements to camera optics, lenses will leave behind certain clues, notably chromatic aberration and vignetting. Photographers also leave behind other clues relating to image aesthetics and scene composition. We study how to detect these traces, and investigate the impact that cropping has on the image distribution. While our aim is to dissect the fundamental impact of spatial crops, there are also a number of practical implications to our work, such as revealing faulty photojournalism and equipping neural network researchers with a better understanding of shortcut learning. Code is available at https://github.com/basilevh/dissecting-image-crops. | ['Carl Vondrick', 'Basile Van Hoorick'] | 2020-11-24 | null | http://openaccess.thecvf.com//content/ICCV2021/html/Van_Hoorick_Dissecting_Image_Crops_ICCV_2021_paper.html | http://openaccess.thecvf.com//content/ICCV2021/papers/Van_Hoorick_Dissecting_Image_Crops_ICCV_2021_paper.pdf | iccv-2021-1 | ['image-forensics', 'image-cropping'] | ['computer-vision', 'computer-vision'] | [ 7.42894292e-01 -9.73633826e-02 7.73731768e-02 -3.51101339e-01
-2.14484632e-01 -8.07654917e-01 4.75230932e-01 2.64702737e-02
-1.51081234e-01 3.46880376e-01 2.57000476e-01 -5.63003480e-01
-9.17062908e-02 -5.32861352e-01 -1.13110399e+00 -7.17061341e-01
-2.46969834e-02 -3.93679857e-01 -9.07052904e-02 -9.01110768e-02
7.39687622e-01 5.14936090e-01 -1.80502403e+00 6.67926371e-02
5.20001590e-01 5.99804044e-01 3.45977902e-01 8.61642599e-01
1.19118333e-01 6.05100155e-01 -5.18712521e-01 -4.08176005e-01
5.01538754e-01 -3.77615452e-01 -5.53103924e-01 5.90659976e-01
9.09783661e-01 -4.82088506e-01 -3.36029857e-01 1.29888749e+00
2.44801387e-01 -1.08175494e-01 5.62339306e-01 -1.38315582e+00
-1.37948585e+00 3.59896719e-01 -8.82897735e-01 2.75112689e-01
-5.67198405e-03 6.10963225e-01 9.29664850e-01 -7.52539575e-01
5.63581109e-01 1.08185112e+00 6.99724615e-01 2.20002607e-01
-1.34367144e+00 -7.40706265e-01 6.57035410e-02 1.28793582e-01
-1.06714416e+00 -7.27625430e-01 7.62936532e-01 -5.90800107e-01
5.56071162e-01 4.25244421e-01 6.89478874e-01 1.01091862e+00
2.65959740e-01 6.45277262e-01 1.56073189e+00 -6.79238558e-01
-2.52357908e-02 2.66962588e-01 5.31840995e-02 6.89833879e-01
6.31829023e-01 5.12015879e-01 -4.36471105e-01 3.15384299e-01
1.05409908e+00 -2.70707048e-02 -4.61672544e-01 -3.60051453e-01
-8.82163942e-01 6.46626472e-01 7.38787711e-01 -2.45410353e-02
-1.37839049e-01 2.43214101e-01 4.64609973e-02 2.82461345e-01
2.06845686e-01 1.05130970e+00 -4.05577183e-01 2.29148537e-01
-6.39711142e-01 3.77508961e-02 2.72411227e-01 8.62269163e-01
9.44893539e-01 1.55896008e-01 3.44356686e-01 6.01069629e-01
-6.32801428e-02 4.27299887e-01 1.61937386e-01 -1.30895889e+00
-5.83957955e-02 4.65710223e-01 2.33832048e-03 -1.23554420e+00
-4.46016222e-01 -1.78244725e-01 -6.02579176e-01 8.94710898e-01
8.00211906e-01 -1.01288319e-01 -1.01988733e+00 1.51940250e+00
-1.53119296e-01 1.45050846e-02 -2.81866997e-01 1.07978392e+00
4.46707159e-01 2.49815166e-01 -7.73385763e-02 7.96428695e-02
1.44706154e+00 -6.89406157e-01 -4.28945035e-01 -6.06102228e-01
4.61752504e-01 -1.22095311e+00 1.49241149e+00 5.59997559e-01
-9.18698251e-01 -3.80892783e-01 -1.32870567e+00 -3.54432374e-01
-4.73343015e-01 1.52721524e-01 9.01948035e-01 6.81660950e-01
-9.98526692e-01 6.38975084e-01 -5.56636035e-01 -7.07211077e-01
5.71817458e-01 6.68471083e-02 -2.81031668e-01 -3.40098023e-01
-5.77383459e-01 1.03918314e+00 6.41111359e-02 6.09424412e-02
-4.59473342e-01 -6.90621912e-01 -7.53307521e-01 -1.34973884e-01
3.47279489e-01 -5.25947809e-01 1.30055451e+00 -1.45602000e+00
-9.62423205e-01 1.06368887e+00 -1.99178994e-01 -2.71585315e-01
2.55912989e-01 -1.62323639e-01 -8.49305168e-02 -9.68512446e-02
-1.75245211e-01 8.06262672e-01 9.72385705e-01 -1.49345601e+00
-3.75478029e-01 -4.25056756e-01 9.16357711e-02 2.75885195e-01
-2.16888905e-01 -5.88277504e-02 -1.33735716e-01 -6.17799342e-01
1.13636494e-01 -1.05349624e+00 -2.83252448e-02 3.37765187e-01
-3.99659574e-01 4.41946208e-01 6.80981040e-01 -7.49419987e-01
6.63586676e-01 -2.14847088e+00 -3.87098193e-01 -8.23529661e-02
2.51508802e-01 1.46358281e-01 -3.44092846e-01 5.08184493e-01
-3.48994225e-01 3.18245947e-01 -2.64168352e-01 3.93675789e-02
-2.32170731e-01 3.04698460e-02 -4.36065942e-01 6.92709506e-01
6.36645198e-01 9.99604821e-01 -6.98865831e-01 3.55494693e-02
4.66545761e-01 4.50838089e-01 -3.43849003e-01 -1.42316326e-01
-1.69125184e-01 3.04977924e-01 -1.06450748e-02 8.17841768e-01
9.61276293e-01 -9.23993811e-02 -1.80502012e-02 -1.66585103e-01
-2.91761309e-01 7.40472749e-02 -8.47429514e-01 1.36044967e+00
-1.76898569e-01 1.28060830e+00 4.59477641e-02 -7.97762752e-01
7.55608320e-01 -3.95182639e-01 1.30303815e-01 -1.02705371e+00
3.35803628e-01 -9.46061388e-02 1.09811492e-01 -7.24485040e-01
8.50446224e-01 -1.67259172e-01 4.29941207e-01 5.01809716e-01
-2.36341849e-01 -2.69740939e-01 -8.25756490e-02 2.57756505e-02
9.19574142e-01 3.36704701e-01 3.36291283e-01 -2.82428086e-01
-3.67828012e-01 4.08175111e-01 2.66372114e-01 4.84660268e-01
-1.63617373e-01 1.03332448e+00 5.08022130e-01 -3.77843052e-01
-1.38603628e+00 -8.64780605e-01 -1.79376900e-01 1.11832583e+00
2.89392471e-01 -1.50569528e-01 -6.02196217e-01 -9.22154263e-02
2.11278886e-01 9.24089491e-01 -7.46090472e-01 -3.80284101e-01
-1.49338409e-01 -8.95702302e-01 4.98096526e-01 5.73159933e-01
2.57249057e-01 -9.33775663e-01 -1.13083684e+00 -4.32144523e-01
4.45014499e-02 -9.80157137e-01 -3.60894412e-01 2.69026071e-01
-8.75216484e-01 -1.30719543e+00 -4.00253594e-01 -5.70968032e-01
9.63555098e-01 9.12411809e-01 1.08758223e+00 4.57952559e-01
-7.78529346e-01 5.21053851e-01 -4.11383778e-01 -8.43027830e-01
-2.77833790e-01 -3.63392234e-01 -1.94203392e-01 -3.23256642e-01
4.41197544e-01 -5.81524849e-01 -7.66427279e-01 2.33056664e-01
-1.02500367e+00 1.83125943e-01 8.63720119e-01 6.44976079e-01
2.31224924e-01 2.16424048e-01 -1.23994932e-01 -1.06546843e+00
5.74432909e-01 -1.09822623e-01 -6.10439122e-01 6.41084760e-02
-6.81349039e-01 -1.12346962e-01 2.55175740e-01 -3.98665726e-01
-9.15282071e-01 1.50129870e-01 4.38783735e-01 -4.24732804e-01
-4.71125543e-01 1.93690374e-01 -2.41995994e-02 -3.25133145e-01
1.12375796e+00 1.49266168e-01 1.90314382e-01 -2.52617538e-01
5.83717883e-01 1.66826963e-01 6.58647239e-01 -2.85464823e-01
1.06389928e+00 5.88260829e-01 -5.39577939e-02 -1.33846235e+00
-5.03545880e-01 -2.13747710e-01 -7.11740613e-01 -1.91954464e-01
6.89461350e-01 -6.69738531e-01 -5.51199257e-01 6.75400913e-01
-9.82491791e-01 -5.29450297e-01 -1.79690152e-01 2.05074310e-01
-3.59753966e-01 1.42100707e-01 -3.55709970e-01 -8.15346479e-01
2.42157161e-01 -8.74953449e-01 6.95498288e-01 4.71844167e-01
-2.40353003e-01 -7.09576786e-01 -3.86173040e-01 3.48956704e-01
3.36509109e-01 4.19918567e-01 1.02843404e+00 9.36124660e-03
-8.20964932e-01 -2.17694864e-02 -5.97715378e-01 3.77954900e-01
2.08835468e-01 3.25096160e-01 -1.53638315e+00 -2.02380955e-01
-9.65070575e-02 -3.33306551e-01 1.06263638e+00 6.80130064e-01
9.79173720e-01 -1.81440279e-01 -4.18704264e-02 9.50259805e-01
1.58871603e+00 2.07011744e-01 8.83816063e-01 5.90364277e-01
7.18440711e-01 9.83280361e-01 5.21063745e-01 9.14543048e-02
1.63444102e-01 1.84349507e-01 6.21213436e-01 -5.37708819e-01
-4.59479123e-01 -3.01936775e-01 2.18146309e-01 2.91897327e-01
2.33715996e-02 -1.16637610e-01 -8.91627789e-01 4.10685390e-01
-1.33896601e+00 -9.08728659e-01 -2.79246390e-01 2.23198581e+00
4.16887283e-01 2.26967037e-01 -1.23542182e-01 1.16891578e-01
5.95630705e-01 2.73104399e-01 -7.92646348e-01 -5.31662345e-01
-4.60052073e-01 2.97690164e-02 1.07156944e+00 4.50580001e-01
-1.05508864e+00 9.27710593e-01 6.47034025e+00 1.27137259e-01
-1.43362880e+00 -4.40921068e-01 8.14648151e-01 -9.82243940e-02
-3.35522294e-01 1.21381395e-01 -3.17730278e-01 1.79833218e-01
2.98245609e-01 -1.08824499e-01 7.62057185e-01 5.83714366e-01
2.32152432e-01 -5.97432435e-01 -9.90486622e-01 7.16148794e-01
4.12888616e-01 -1.09380531e+00 -2.57927328e-01 2.84999490e-01
6.26298964e-01 5.66146225e-02 5.04817367e-01 -2.52517521e-01
3.26126903e-01 -1.16502643e+00 6.64953530e-01 3.45875621e-01
9.37480688e-01 -4.15445328e-01 1.46785259e-01 3.04861390e-03
-7.08611012e-01 -1.93151921e-01 -6.29591644e-01 -6.27376735e-01
-3.35366637e-01 4.20599461e-01 -1.01866639e+00 -1.07071146e-01
6.55392528e-01 4.38170344e-01 -1.12782276e+00 1.10437512e+00
-2.97134101e-01 5.23841441e-01 -6.62309304e-02 1.83789268e-01
-2.46325620e-02 -2.93098807e-01 3.13506663e-01 1.00712109e+00
3.68035167e-01 8.09659436e-02 -4.28471148e-01 8.69588733e-01
3.47064696e-02 -2.56008625e-01 -1.11718321e+00 -4.26933318e-01
4.43941742e-01 1.29051256e+00 -1.06692982e+00 2.65681416e-01
-5.27172983e-01 1.14269722e+00 1.11593708e-01 5.32736242e-01
-3.65949124e-01 -2.96885043e-01 9.17358041e-01 4.25651938e-01
2.42540911e-01 -3.93469423e-01 -8.49945426e-01 -8.68289351e-01
8.87682065e-02 -9.16654408e-01 -5.15913889e-02 -1.23699737e+00
-9.90833700e-01 1.35005929e-03 -3.86944950e-01 -9.90674496e-01
2.98658133e-01 -9.21694577e-01 -7.85460234e-01 6.21867359e-01
-1.64468431e+00 -1.35728657e+00 -5.16273558e-01 3.04168880e-01
6.53699517e-01 1.85233727e-01 7.58914769e-01 -8.64134878e-02
-3.60869855e-01 3.78860563e-01 1.15244612e-01 7.72851110e-02
9.47424173e-01 -1.28987348e+00 8.00259113e-01 1.14787853e+00
4.33434278e-01 6.62297547e-01 1.06766367e+00 -3.16478759e-01
-1.66554129e+00 -9.47292805e-01 4.62782949e-01 -7.76910484e-01
5.88067889e-01 -2.81128317e-01 -9.46114600e-01 7.43649423e-01
4.28585172e-01 -3.10502052e-01 4.93118972e-01 2.82175213e-01
-7.56803334e-01 1.52940616e-01 -8.23844492e-01 7.16041088e-01
9.97997880e-01 -5.01250625e-01 -2.90642291e-01 2.57589787e-01
4.90113854e-01 -2.68707871e-01 -2.55146861e-01 1.06254838e-01
7.98442066e-01 -1.20546901e+00 9.32232261e-01 -5.77116191e-01
8.65358531e-01 -1.42700419e-01 -1.17843606e-01 -1.50048625e+00
-6.01305842e-01 -4.68715459e-01 7.00418949e-01 1.16307712e+00
3.99154574e-01 -6.63265705e-01 7.12787628e-01 7.08373010e-01
-1.11510731e-01 -3.82493347e-01 -2.74807811e-01 -5.93559206e-01
1.88264385e-01 -5.49698412e-01 2.67537296e-01 1.29159522e+00
-3.07071716e-01 2.80149490e-01 -5.22927046e-01 4.42236096e-01
6.50733232e-01 3.06590460e-02 7.67349184e-01 -1.10194564e+00
-1.33036584e-01 -6.63046598e-01 -3.80808771e-01 -4.58329976e-01
-3.07823837e-01 -6.92433238e-01 2.60044634e-02 -1.24762774e+00
1.50574505e-01 -3.19680065e-01 -2.26181671e-01 3.03271353e-01
-1.61738113e-01 6.28559411e-01 4.84789670e-01 1.70219794e-01
6.69837417e-03 -1.82389319e-02 1.34220243e+00 1.94196589e-02
-8.95411819e-02 -1.68363705e-01 -1.41330564e+00 9.24517155e-01
1.16064692e+00 -2.85106629e-01 -5.46567380e-01 -9.23537433e-01
3.03171188e-01 -5.09382427e-01 7.70102203e-01 -8.58972073e-01
1.77419305e-01 -3.03327084e-01 7.81349123e-01 -3.18044089e-02
3.29429060e-01 -7.01866031e-01 -1.41327903e-01 2.76431441e-01
-2.15733454e-01 2.69318521e-01 5.08375168e-01 3.67783189e-01
2.59557486e-01 -2.18691245e-01 8.67290318e-01 -2.59389400e-01
-1.04405260e+00 -1.73594907e-01 -2.70836204e-01 3.76867037e-03
8.38859081e-01 -4.30392593e-01 -8.41988504e-01 -3.42572510e-01
-2.06565648e-01 1.18275499e-02 1.07707715e+00 5.60184181e-01
5.57910144e-01 -1.01227224e+00 -5.32490373e-01 4.66416568e-01
2.33379647e-01 -3.39299262e-01 2.82111228e-01 7.38233149e-01
-7.26410627e-01 1.13082409e-01 -5.58291078e-01 -3.87644976e-01
-1.46593130e+00 6.38930559e-01 -6.69538649e-03 7.83036888e-01
-6.49515450e-01 1.18496013e+00 4.70520794e-01 1.26113975e-02
1.72172129e-01 -3.88942122e-01 1.76727369e-01 1.26521364e-01
4.70156521e-01 3.12793076e-01 -1.05201766e-01 -3.43174964e-01
-5.88650741e-02 7.43024409e-01 -2.46052146e-02 1.10027626e-01
1.23873758e+00 -1.77964792e-01 7.49204308e-02 4.95108753e-01
9.44501102e-01 -2.05099568e-01 -1.52261806e+00 -1.11977801e-01
-7.04688951e-02 -9.92526293e-01 1.26674756e-01 -9.07355070e-01
-9.37173724e-01 1.14815652e+00 7.93846965e-01 2.66443342e-01
1.44354713e+00 -1.20407254e-01 3.31566811e-01 4.11075711e-01
2.20412351e-02 -8.77386212e-01 1.31890476e-01 1.53609112e-01
9.40787971e-01 -1.45017982e+00 3.77942890e-01 -3.24732333e-01
-8.91627491e-01 9.90651429e-01 5.89444518e-01 -2.99331069e-01
3.49646568e-01 5.71049392e-01 5.03952801e-01 -2.40950897e-01
-6.33318126e-01 -3.27452064e-01 -2.85623521e-02 9.86750722e-01
4.61192936e-01 8.33884180e-02 8.15034583e-02 -1.13571316e-01
-6.03338957e-01 -5.97731583e-02 8.47172856e-01 7.73207068e-01
-7.16868162e-01 -8.24198246e-01 -6.91300154e-01 4.64800775e-01
-1.34812593e-01 -2.03561336e-01 -7.67013550e-01 1.01438046e+00
2.88715243e-01 7.25058794e-01 3.09141248e-01 -5.12911916e-01
2.35583335e-01 2.61882301e-02 6.92884088e-01 -4.88819718e-01
-8.51375312e-02 8.85290131e-02 -4.05116640e-02 -4.77865994e-01
-3.42088997e-01 -8.80877733e-01 -6.86025798e-01 -5.50706267e-01
-3.43600154e-01 -6.21404767e-01 8.82986188e-01 5.85227072e-01
1.80893183e-01 4.75706100e-01 3.79059732e-01 -9.50005591e-01
-1.97339505e-01 -9.01272714e-01 -7.70927310e-01 3.15184504e-01
5.57702601e-01 -4.76937950e-01 -3.82420331e-01 5.56452334e-01] | [11.495616912841797, 0.5610564351081848] |
be22e198-62b3-43b3-9014-783dd4403619 | se-gsl-a-general-and-effective-graph | 2303.09778 | null | https://arxiv.org/abs/2303.09778v1 | https://arxiv.org/pdf/2303.09778v1.pdf | SE-GSL: A General and Effective Graph Structure Learning Framework through Structural Entropy Optimization | Graph Neural Networks (GNNs) are de facto solutions to structural data learning. However, it is susceptible to low-quality and unreliable structure, which has been a norm rather than an exception in real-world graphs. Existing graph structure learning (GSL) frameworks still lack robustness and interpretability. This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree. Particularly, we exploit the one-dimensional structural entropy to maximize embedded information content when auxiliary neighbourhood attributes are fused to enhance the original graph. A new scheme of constructing optimal encoding trees is proposed to minimize the uncertainty and noises in the graph whilst assuring proper community partition in hierarchical abstraction. We present a novel sample-based mechanism for restoring the graph structure via node structural entropy distribution. It increases the connectivity among nodes with larger uncertainty in lower-level communities. SE-GSL is compatible with various GNN models and enhances the robustness towards noisy and heterophily structures. Extensive experiments show significant improvements in the effectiveness and robustness of structure learning and node representation learning. | ['Philip S. Yu', 'Chunyang Liu', 'Jia Wu', 'JianXin Li', 'Renyu Yang', 'Xiang Huang', 'Hao Peng', 'Dongcheng Zou'] | 2023-03-17 | null | null | null | null | ['graph-structure-learning'] | ['graphs'] | [ 2.28911802e-01 7.86708653e-01 -1.81008235e-01 -1.76560953e-01
-3.49668823e-02 -3.78411382e-01 2.26913556e-01 6.88886464e-01
2.47850977e-02 8.60909820e-01 4.02874440e-01 -5.83121590e-02
-7.88935304e-01 -1.38671327e+00 -6.42803848e-01 -9.83661711e-01
-6.16708279e-01 3.57838333e-01 -2.38636676e-02 -2.99845099e-01
1.20681107e-01 5.51580906e-01 -1.33339131e+00 3.18928100e-02
1.09640062e+00 6.50514424e-01 1.38560861e-01 5.40416002e-01
-2.69195735e-01 8.38941276e-01 -4.44689006e-01 -3.61304790e-01
2.24595040e-01 -2.79180676e-01 -8.68189156e-01 1.46136880e-01
7.42792860e-02 2.73080587e-01 -6.18903697e-01 1.43708181e+00
5.73244393e-01 -2.48663966e-02 6.27244949e-01 -1.37743151e+00
-9.89920974e-01 1.22510314e+00 -4.52954233e-01 5.57604358e-02
3.47381860e-01 -6.99931383e-02 1.38061607e+00 -4.19617355e-01
8.57417881e-01 1.52043092e+00 9.37819600e-01 3.35783541e-01
-1.48888147e+00 -2.59411365e-01 4.00973648e-01 1.95707679e-01
-1.44153559e+00 -3.05243395e-02 1.21517611e+00 -2.57837892e-01
6.72039568e-01 2.53249317e-01 8.59277427e-01 1.14132166e+00
3.90596539e-01 5.76292038e-01 8.03533733e-01 -3.10761541e-01
1.83381483e-01 -1.48523487e-02 5.91649227e-02 1.01061785e+00
8.53129268e-01 6.64849728e-02 -4.51876462e-01 -1.19238049e-01
7.47509956e-01 -8.01970661e-02 -3.36885184e-01 -7.18913972e-01
-7.97657311e-01 8.32279503e-01 1.06986105e+00 4.73401695e-01
-2.35904694e-01 -1.54527575e-01 4.07834232e-01 4.24652576e-01
4.83097553e-01 5.83336353e-01 -2.21737117e-01 5.21507978e-01
-5.14291465e-01 -2.11742654e-01 1.02736425e+00 7.72145748e-01
9.32024419e-01 3.75867039e-01 3.68632600e-02 6.93144798e-01
4.36718851e-01 2.35640347e-01 1.30311519e-01 -7.73358047e-01
3.05308580e-01 1.37352347e+00 -7.51178801e-01 -1.90684545e+00
-5.34735799e-01 -9.64412391e-01 -1.73005354e+00 -1.79362461e-01
-8.59277397e-02 8.62365663e-02 -7.86418855e-01 1.85690022e+00
3.22108358e-01 2.54199475e-01 -2.04217224e-03 4.15300041e-01
1.16012490e+00 6.25212371e-01 -1.31469458e-01 -2.05795720e-01
8.05532157e-01 -6.40258253e-01 -7.40136385e-01 -9.41928178e-02
6.95389867e-01 -1.51935481e-02 7.00113893e-01 1.40456796e-01
-8.28785658e-01 -3.09150159e-01 -1.01732492e+00 2.44673237e-01
-5.18826544e-01 -3.03756297e-01 6.50099039e-01 6.81328714e-01
-1.49181569e+00 9.45983112e-01 -5.20390630e-01 -4.21763301e-01
4.11445707e-01 5.70345700e-01 -5.94663441e-01 1.50522247e-01
-1.35847151e+00 5.62283754e-01 8.84808898e-01 2.45793879e-01
-5.73422730e-01 -3.43927324e-01 -1.19350040e+00 3.51295412e-01
5.70245981e-01 -6.69176817e-01 1.07914068e-01 -7.91173995e-01
-1.02303731e+00 5.11945426e-01 2.70567447e-01 -5.29401541e-01
5.45804836e-02 5.07998168e-01 -2.39233360e-01 2.69465744e-01
-1.22442823e-02 5.21644056e-01 6.69066846e-01 -1.68736660e+00
-5.99788986e-02 -3.99833947e-01 -1.66720062e-01 2.80012041e-01
-6.21789873e-01 -6.69610918e-01 4.06506322e-02 -8.24536145e-01
5.17283857e-01 -5.53253353e-01 -4.13042277e-01 -1.75738439e-01
-5.00894368e-01 -1.75459877e-01 7.90122569e-01 -7.12734163e-01
1.66650391e+00 -1.75494719e+00 4.41656440e-01 8.12183797e-01
8.53338063e-01 2.53472298e-01 -4.55252290e-01 6.70057714e-01
1.59375891e-02 5.53983152e-01 -4.87123281e-01 5.66069484e-02
-1.15043089e-01 6.39628053e-01 2.49545366e-01 3.34643602e-01
2.03431204e-01 9.18316185e-01 -1.01161373e+00 -7.17802465e-01
7.31446370e-02 5.98817170e-01 -7.21660078e-01 7.61409625e-02
3.87423672e-02 2.87795424e-01 -4.12380666e-01 8.49031210e-01
6.48931980e-01 -6.28665626e-01 6.95041537e-01 -1.27280563e-01
5.04536152e-01 -3.55036347e-03 -1.48250568e+00 1.32681954e+00
1.01338215e-02 2.85490185e-01 4.98532891e-01 -1.34637547e+00
1.43341684e+00 2.94414591e-02 6.26857936e-01 -4.58739728e-01
1.13507517e-01 -1.12161227e-01 2.01438412e-01 -3.71919662e-01
2.41835296e-01 2.27510706e-01 3.27906013e-02 3.07450652e-01
1.99970663e-01 8.69105384e-02 2.80821502e-01 6.21829748e-01
1.26889563e+00 -3.12587798e-01 5.58214545e-01 -5.39193451e-01
6.81727946e-01 -7.56369770e-01 7.77161837e-01 7.92353451e-01
-2.53585577e-01 2.49022290e-01 7.88330913e-01 -5.74045122e-01
-1.11164045e+00 -1.04786503e+00 2.19289869e-01 8.06047440e-01
3.01484138e-01 -7.44805813e-01 -7.24819541e-01 -6.44715846e-01
1.75048597e-02 2.02629089e-01 -6.67558551e-01 -7.29190648e-01
-4.86538649e-01 -9.40171480e-01 4.52926636e-01 2.50581890e-01
5.40082514e-01 -1.13604558e+00 3.60636741e-01 4.05775160e-01
-3.17448020e-01 -8.20697486e-01 -1.15431033e-01 1.71442270e-01
-1.21807528e+00 -1.04980826e+00 2.38926858e-02 -9.93623972e-01
9.98523176e-01 5.48568405e-02 1.27806878e+00 7.67501950e-01
-2.06067383e-01 2.28662744e-01 -3.45579684e-01 5.18143848e-02
-6.28715575e-01 5.02036989e-01 5.91484196e-02 9.95315239e-02
3.25990170e-02 -1.07147896e+00 -3.23340505e-01 -9.88171026e-02
-8.59498024e-01 -1.69761419e-01 7.00813711e-01 1.09484649e+00
4.44139093e-01 5.61593354e-01 7.44798720e-01 -8.90464664e-01
9.89464343e-01 -5.27782381e-01 -3.17517608e-01 4.66265708e-01
-1.19212604e+00 4.22123045e-01 6.91310048e-01 4.21935767e-02
-8.95453095e-01 -1.16483219e-01 -8.83022044e-03 -1.21608853e-01
5.38991541e-02 8.51823628e-01 -3.55905265e-01 -4.12627637e-01
6.48554504e-01 2.73076534e-01 2.37389088e-01 -3.85027498e-01
1.84758335e-01 4.13437724e-01 2.91798025e-01 -7.15948582e-01
8.25397134e-01 2.23451123e-01 5.15156865e-01 -9.77150738e-01
-6.21055007e-01 -1.31829664e-01 -9.81313884e-01 -3.92828643e-01
3.98978263e-01 -6.42363667e-01 -7.90448725e-01 3.04829359e-01
-8.42194021e-01 1.03342965e-01 -3.12366962e-01 -1.81369483e-02
-1.06327191e-01 9.45334077e-01 -8.61290574e-01 -8.77761841e-01
-5.45706391e-01 -8.14314306e-01 7.61013687e-01 1.29823506e-01
2.34344751e-01 -1.45522952e+00 1.87355205e-02 1.64814129e-01
2.37919345e-01 6.67292058e-01 1.15121579e+00 -6.26289666e-01
-7.85089374e-01 -3.39185111e-02 -2.90658891e-01 3.24934661e-01
1.51761129e-01 2.36402810e-01 -5.15730500e-01 -7.39090443e-01
-2.30722323e-01 -1.36041611e-01 9.95345771e-01 4.64696795e-01
1.06398094e+00 -7.32637346e-01 -4.08264101e-01 7.03120887e-01
1.58251512e+00 -5.81043400e-02 5.10007501e-01 1.96734145e-01
9.95708227e-01 8.17646444e-01 -9.27706510e-02 4.81402010e-01
4.73920286e-01 -8.92542005e-02 7.30017841e-01 -1.49375051e-01
-1.17660798e-01 -5.57123125e-01 1.64283872e-01 1.52151930e+00
-1.29723564e-01 -5.48104048e-01 -8.60225022e-01 4.44593370e-01
-1.89314628e+00 -9.29202914e-01 -2.33011648e-01 1.83384418e+00
6.88673973e-01 1.72865510e-01 -9.27315280e-02 2.91795015e-01
1.11481702e+00 3.99256796e-01 -3.86246800e-01 -1.91450864e-01
-5.98563552e-01 -1.35923520e-01 3.78112197e-01 6.61358416e-01
-8.85928452e-01 7.77003109e-01 6.65221548e+00 6.61631525e-01
-5.45866668e-01 -4.35373604e-01 6.60016716e-01 4.53494042e-01
-6.42656744e-01 4.30546924e-02 -4.96363014e-01 3.21179122e-01
7.42724597e-01 -1.99369967e-01 5.42246819e-01 8.61927629e-01
-1.16438270e-01 3.01516980e-01 -7.52068758e-01 7.93393493e-01
4.25904430e-02 -1.50027919e+00 4.36237037e-01 2.45389700e-01
7.78904676e-01 -6.92591593e-02 -2.81590998e-01 1.57962874e-01
6.25493824e-01 -1.08491170e+00 1.88288718e-01 5.14132679e-01
4.57011700e-01 -8.52211714e-01 9.37120616e-01 4.10678416e-01
-1.67193031e+00 -2.73442805e-01 -4.69400316e-01 -1.37419417e-03
-8.07286054e-02 5.91292381e-01 -7.93521345e-01 9.65807617e-01
6.93852067e-01 1.00023973e+00 -1.03231823e+00 8.91167879e-01
-2.56798923e-01 4.85153675e-01 -3.88335824e-01 -2.11163953e-01
1.94893941e-01 -5.64457953e-01 9.24444854e-01 9.95969594e-01
1.76794305e-01 -1.86835453e-01 4.45555687e-01 8.29402149e-01
-3.50809246e-01 1.47816494e-01 -1.08938575e+00 -2.47206926e-01
7.87506521e-01 1.21889687e+00 -9.53238249e-01 -7.72514194e-02
-3.26066054e-02 4.55574185e-01 7.52835929e-01 2.73136675e-01
-2.14510500e-01 -4.23057526e-01 1.82405144e-01 1.76768035e-01
6.92362338e-02 -1.92051791e-02 -2.29650065e-01 -1.09893239e+00
-1.27496868e-01 -1.02260625e+00 7.64381588e-01 -3.87841851e-01
-1.69179416e+00 6.65217996e-01 -1.31787330e-01 -8.01181436e-01
1.65523157e-01 -5.22646844e-01 -3.83098692e-01 2.73442119e-01
-1.29029346e+00 -1.24676096e+00 -2.79476941e-01 6.04873240e-01
-5.36934957e-02 -3.62929881e-01 7.05271661e-01 1.71008930e-01
-6.22529566e-01 4.68452245e-01 2.40416035e-01 2.53100306e-01
2.38451809e-01 -1.49876499e+00 2.11755216e-01 9.51853991e-01
1.20083623e-01 6.38640821e-01 5.59564412e-01 -1.07385230e+00
-1.27195084e+00 -1.06811440e+00 7.71994948e-01 -1.08035795e-01
7.02406168e-01 -5.95143080e-01 -1.18950856e+00 5.55595934e-01
9.53242034e-02 -5.31996638e-02 4.18714374e-01 2.02560022e-01
-3.13724220e-01 -2.49685556e-01 -1.25240564e+00 6.14403546e-01
1.34231043e+00 -5.65287411e-01 -5.27726531e-01 1.93902373e-01
8.85203719e-01 9.73315686e-02 -1.16417491e+00 6.95744276e-01
1.01117469e-01 -8.96905839e-01 1.01118648e+00 -4.89435554e-01
1.55317737e-02 -3.62874329e-01 -6.76952899e-02 -1.36955714e+00
-8.17421675e-01 -7.20970929e-01 -3.15475047e-01 1.18732321e+00
2.37854004e-01 -6.47986591e-01 1.10741913e+00 8.22217241e-02
1.47196010e-01 -7.45564520e-01 -9.35526490e-01 -7.47070312e-01
-1.81485429e-01 1.80060789e-01 7.68805623e-01 1.17895043e+00
-1.55108973e-01 6.52665198e-01 -3.88790220e-01 2.22546190e-01
1.11336040e+00 -1.54111594e-01 4.24177557e-01 -1.92784679e+00
-1.44770607e-01 -5.09829164e-01 -6.59094453e-01 -4.20163989e-01
3.10939580e-01 -1.40623438e+00 -3.17104638e-01 -1.93632829e+00
2.72223443e-01 -2.09680542e-01 -4.30152088e-01 3.33333164e-01
-1.14216372e-01 -2.99990624e-01 4.17665616e-02 1.83385704e-02
-6.56996667e-01 8.23329508e-01 1.44116986e+00 -3.32096249e-01
-3.00329983e-01 -2.26040691e-01 -7.69332469e-01 5.56037843e-01
8.39469016e-01 -6.14733696e-01 -7.29166985e-01 6.56298250e-02
5.23719370e-01 -1.05223760e-01 1.94304422e-01 -9.24854159e-01
3.19709301e-01 1.19850196e-01 2.98877686e-01 -5.22644460e-01
-6.23163022e-02 -8.31267357e-01 3.90572041e-01 7.37825751e-01
-3.47660094e-01 1.75763946e-03 -2.54090756e-01 1.03005469e+00
-1.40278667e-01 -1.69668823e-01 8.41626167e-01 -4.36790466e-01
-4.59257632e-01 5.52607238e-01 -1.70184508e-01 -2.72536390e-02
7.27868855e-01 -4.40312475e-01 -3.38417917e-01 -5.23268878e-01
-9.98943448e-01 3.83229166e-01 3.57896745e-01 2.11184323e-01
8.55434239e-01 -1.40512109e+00 -7.18954206e-01 3.57149959e-01
-1.06414311e-01 8.79528970e-02 2.42955312e-01 4.48909312e-01
-4.84133095e-01 3.31345061e-03 -3.83732349e-01 -5.57519972e-01
-1.35217118e+00 7.08815694e-01 3.96411598e-01 -6.73903167e-01
-6.60166681e-01 8.45029950e-01 -6.54530227e-02 -9.94563699e-01
4.24445152e-01 -2.15852298e-02 -4.43374723e-01 6.51498809e-02
4.89294678e-02 4.74949539e-01 -1.48632526e-01 -6.78171933e-01
-1.87213436e-01 3.64765882e-01 5.18534705e-03 5.44501960e-01
1.67056108e+00 -4.03581351e-01 -7.64946759e-01 1.28843531e-01
9.93418932e-01 -3.27999622e-01 -1.06564522e+00 -3.65012854e-01
3.64605665e-01 -2.14209631e-01 8.42598081e-02 -4.70269501e-01
-1.25705397e+00 6.45497680e-01 2.51547575e-01 8.55719268e-01
1.06446815e+00 -1.11648522e-01 5.07437050e-01 7.37599492e-01
3.51284981e-01 -1.22456026e+00 2.41412774e-01 4.08937156e-01
9.31602299e-01 -1.03471804e+00 2.88113773e-01 -5.93977511e-01
-2.50176221e-01 1.05426776e+00 7.42523909e-01 -1.14158839e-01
8.43398213e-01 2.60846287e-01 -4.59927499e-01 -4.83281672e-01
-7.54717052e-01 -5.17035984e-02 2.70607978e-01 1.07614422e+00
1.40593663e-01 3.06021478e-02 -4.62415703e-02 2.84056067e-01
-7.51478150e-02 -6.99847817e-01 5.28744757e-01 7.42924452e-01
-5.92551172e-01 -1.12019777e+00 -2.22104579e-01 5.78049481e-01
-2.43429601e-01 -3.40984613e-02 -9.65483785e-01 7.71182656e-01
-8.60487856e-03 7.61364937e-01 -2.99701452e-01 -5.55303812e-01
3.55055928e-02 -2.35893488e-01 2.90323555e-01 -5.22922277e-01
-5.33634365e-01 -2.08766870e-02 1.34517178e-01 -4.46822762e-01
-5.78549623e-01 -2.36962169e-01 -1.11821508e+00 -6.36921227e-01
-4.68481541e-01 2.64494151e-01 2.34869361e-01 4.93641883e-01
6.55235231e-01 5.96735477e-01 6.82756305e-01 -5.84779561e-01
-3.77521515e-01 -7.93335259e-01 -9.30839598e-01 4.14715528e-01
2.36517489e-01 -5.92245519e-01 -7.18679070e-01 -2.26235121e-01] | [6.974442958831787, 6.156213283538818] |
f529cef8-53dc-4e21-baf8-10624b241778 | speech-enhancement-for-virtual-meetings-on | 2302.00868 | null | https://arxiv.org/abs/2302.00868v2 | https://arxiv.org/pdf/2302.00868v2.pdf | Speech Enhancement for Virtual Meetings on Cellular Networks | We study speech enhancement using deep learning (DL) for virtual meetings on cellular devices, where transmitted speech has background noise and transmission loss that affects speech quality. Since the Deep Noise Suppression (DNS) Challenge dataset does not contain practical disturbance, we collect a transmitted DNS (t-DNS) dataset using Zoom Meetings over T-Mobile network. We select two baseline models: Demucs and FullSubNet. The Demucs is an end-to-end model that takes time-domain inputs and outputs time-domain denoised speech, and the FullSubNet takes time-frequency-domain inputs and outputs the energy ratio of the target speech in the inputs. The goal of this project is to enhance the speech transmitted over the cellular networks using deep learning models. | ['Ojas Bhargave', 'Joseph Konan', 'Minjeong Kim', 'Kawon Lee', 'Minseon Gwak', 'Hojeong Lee'] | 2023-02-02 | null | null | null | null | ['speech-enhancement'] | ['speech'] | [-2.04048127e-01 1.23896427e-01 2.52868712e-01 -1.10744707e-01
-7.47005343e-01 -2.99480647e-01 4.79670852e-01 -5.99385500e-01
-4.04938072e-01 8.74896228e-01 8.52484584e-01 -6.51424289e-01
7.87430350e-03 -5.49345851e-01 -2.88072079e-01 -8.54864836e-01
-6.42782375e-02 -2.18966991e-01 9.13796201e-02 -6.09874070e-01
-7.08634973e-01 4.60776597e-01 -8.50895405e-01 5.06851494e-01
5.07952750e-01 1.07946193e+00 2.34114915e-01 1.51112556e+00
1.59586184e-02 9.94144917e-01 -1.40529907e+00 -3.08397263e-01
3.30180734e-01 -4.57488000e-01 -4.33801264e-01 -2.12766156e-01
2.06321478e-01 -5.75327456e-01 -1.41255534e+00 1.03014612e+00
1.63816810e+00 1.91070676e-01 3.86170208e-01 -1.32262480e+00
-4.88458723e-01 6.37469888e-01 -5.62535971e-02 8.01048696e-01
-2.19203442e-01 2.61774600e-01 4.30083454e-01 -4.44717705e-01
4.65475142e-01 1.69333315e+00 1.01802218e+00 7.47324109e-01
-9.67093647e-01 -1.01667905e+00 -1.47542939e-01 -1.37694245e-02
-9.11679983e-01 -1.20157242e+00 4.97618467e-01 2.62025505e-01
1.28529453e+00 3.00702155e-01 3.91020775e-01 1.66090202e+00
1.40851602e-01 6.31223500e-01 4.83590752e-01 -2.97357500e-01
3.51392657e-01 -1.09050691e-01 -3.59111249e-01 2.54893035e-01
-5.26008964e-01 7.55032480e-01 -6.39400899e-01 -1.23900265e-01
6.64977491e-01 -6.18193626e-01 -2.75037438e-01 5.97906947e-01
-9.45712566e-01 2.43111119e-01 2.32992753e-01 4.68141317e-01
-4.44151253e-01 5.45324385e-01 5.18210709e-01 1.12883842e+00
8.71614039e-01 5.92450835e-02 -7.30710804e-01 -6.21245444e-01
-1.27986181e+00 3.00921537e-02 7.37516284e-01 9.43571448e-01
1.03460945e-01 9.04598892e-01 -5.06456673e-01 1.17794836e+00
1.21175818e-01 9.63100314e-01 3.08043152e-01 -1.66012752e+00
3.73469979e-01 -6.36208951e-01 -2.23578751e-01 -6.70622051e-01
-5.60561538e-01 -1.11989963e+00 -1.47826362e+00 3.18851471e-01
4.22553271e-02 -1.12031090e+00 -1.07747960e+00 2.07558417e+00
8.45134724e-03 6.51519895e-01 5.60466945e-01 7.03344703e-01
1.05712712e+00 9.97162163e-01 -2.41540466e-02 -4.68249500e-01
8.13839555e-01 -1.05592430e+00 -1.45911443e+00 4.70644161e-02
2.80128777e-01 -9.80180085e-01 4.45465773e-01 5.59093177e-01
-1.46582115e+00 -4.92987990e-01 -1.08163035e+00 -1.57975674e-01
-3.15310866e-01 9.49661285e-02 2.56685734e-01 1.12744164e+00
-1.99928367e+00 5.69647193e-01 -6.23616755e-01 -3.63369584e-01
2.45200738e-01 5.85991502e-01 4.83575873e-02 4.95321423e-01
-1.33549857e+00 4.40716565e-01 -5.29804647e-01 -2.70142585e-01
-1.19621539e+00 -8.70740056e-01 -5.54211140e-01 2.73615897e-01
-2.72545189e-01 -8.92431021e-01 1.93118131e+00 -9.88918722e-01
-1.90993989e+00 3.93584281e-01 -1.92183122e-01 -6.97030962e-01
4.96168971e-01 2.80463219e-01 -1.21462989e+00 9.08100083e-02
-7.36137554e-02 6.31768167e-01 9.88258779e-01 -1.09957421e+00
-7.67329335e-01 5.72783165e-02 -1.21958978e-01 2.08142344e-02
-3.79726142e-01 -4.37673181e-02 -5.13327003e-01 -1.30711949e+00
2.49512065e-02 -5.78580618e-01 -1.45882323e-01 -2.05019861e-01
-5.18375099e-01 2.55212098e-01 1.36939144e+00 -1.19384348e+00
1.10831535e+00 -2.29705381e+00 -2.18731850e-01 5.86016104e-02
2.50873834e-01 6.57976091e-01 -6.59323275e-01 1.68116897e-01
-1.93297431e-01 3.55312139e-01 4.52511519e-01 -8.47673059e-01
4.18292247e-02 -4.36979122e-02 -3.55653971e-01 1.16399348e-01
-3.29519212e-01 4.12006587e-01 -6.84358716e-01 -1.02203958e-01
1.52234107e-01 8.42576265e-01 -6.76809430e-01 7.04174861e-02
2.95532476e-02 1.76298514e-01 8.22546780e-02 6.10940218e-01
8.54531527e-01 3.35760236e-01 -2.43897480e-03 -5.17230570e-01
1.04196183e-01 4.69815582e-01 -7.34763980e-01 1.49129236e+00
-7.69764543e-01 1.23826623e+00 1.01456988e+00 -6.10371351e-01
5.71668684e-01 8.53487670e-01 5.11807442e-01 -1.07625854e+00
3.17431569e-01 3.17014515e-01 -2.13336185e-01 -4.58853096e-01
4.59415048e-01 -2.52844602e-01 1.37270555e-01 2.22411618e-01
5.25154114e-01 -9.41880792e-02 -3.65186095e-01 4.37534034e-01
1.68240166e+00 -7.64280021e-01 -2.52451181e-01 2.67021097e-02
1.90965265e-01 -7.20256865e-01 6.67544603e-01 9.17209506e-01
-7.52295375e-01 4.70743626e-01 5.46064675e-01 1.22623734e-01
-1.40499628e+00 -1.56425357e+00 3.08470935e-01 1.34970558e+00
-1.81951225e-01 5.80752678e-02 -1.04173303e+00 -3.44720274e-01
-4.38693851e-01 7.81411886e-01 -1.66703593e-02 -3.35357189e-01
-2.42625892e-01 -5.87973893e-01 1.44913352e+00 3.67402941e-01
8.35072517e-01 -6.90681398e-01 6.07276738e-01 4.30149764e-01
-5.72619259e-01 -1.35730541e+00 -1.04588437e+00 5.43501437e-01
-6.22382164e-01 -1.69381782e-01 -1.02659047e+00 -1.10448837e+00
-7.70429745e-02 3.75357151e-01 1.03847396e+00 -3.26816767e-01
2.54612118e-01 4.35457528e-01 -2.16942956e-03 -5.02955496e-01
-7.52516448e-01 2.42902935e-02 5.73923051e-01 -3.40217054e-01
1.37529165e-01 -1.19330966e+00 -3.17260981e-01 2.36174613e-01
-6.07084215e-01 -3.82484466e-01 4.58938599e-01 5.71769178e-01
1.15823500e-01 6.10720038e-01 1.21279049e+00 1.47455856e-01
1.13465703e+00 -3.73429686e-01 -1.46220714e-01 7.99366646e-03
2.60460377e-01 -2.53313810e-01 4.38867718e-01 -5.00251114e-01
-1.27616620e+00 -4.18108910e-01 -9.28194106e-01 -5.02737284e-01
5.98484427e-02 -3.58324274e-02 -5.90855360e-01 8.77982825e-02
9.32167709e-01 1.41233340e-01 2.98675057e-03 -4.08076406e-01
8.72794166e-02 1.44204402e+00 9.88491654e-01 -6.81573078e-02
5.66364169e-01 4.48391974e-01 -3.47114176e-01 -1.47514486e+00
-2.43118554e-01 -2.58348823e-01 2.13148147e-01 -3.65782529e-02
6.63989544e-01 -1.24093926e+00 -6.14483476e-01 6.18886709e-01
-1.56824148e+00 -7.46379375e-01 -3.26279044e-01 5.74911773e-01
-5.93307137e-01 2.43128940e-01 -1.23571646e+00 -1.06656861e+00
-5.96453965e-01 -9.26384389e-01 9.83073533e-01 1.79127321e-01
-1.28689051e-01 -8.29421401e-01 -4.34938744e-02 1.64312869e-01
8.89704704e-01 -3.04567635e-01 7.39954531e-01 -4.14589524e-01
-2.46198952e-01 3.17120641e-01 -3.08595840e-02 8.57239962e-01
2.48471528e-01 -2.78843045e-01 -1.57698298e+00 -2.89752066e-01
2.85148948e-01 9.60304514e-02 9.58794117e-01 1.33301544e+00
9.90078270e-01 -1.99282974e-01 -2.79288828e-01 9.02837634e-01
5.88042855e-01 5.33066094e-01 8.94309878e-01 -5.82573004e-02
-1.20933823e-01 -4.07071970e-02 -1.52873829e-01 2.82135755e-01
-5.94065757e-03 4.23943192e-01 3.19327712e-01 -4.83869106e-01
-9.94246066e-01 1.35304213e-01 7.62842298e-01 9.76240218e-01
3.33621711e-01 -1.09841120e+00 -3.47801238e-01 5.20318031e-01
-1.35414577e+00 -1.22903538e+00 9.18523073e-02 1.55735934e+00
7.66790390e-01 9.15920809e-02 1.35364518e-01 3.50838006e-01
7.71515489e-01 2.79568881e-01 -6.07820153e-01 -4.55951005e-01
-7.04564631e-01 1.44193947e-01 5.68387866e-01 8.96149635e-01
-1.20474732e+00 6.96416378e-01 7.04905176e+00 1.24012065e+00
-1.06837749e+00 4.48168635e-01 9.22078848e-01 -5.85526168e-01
-9.67830420e-02 -1.03763974e+00 -3.02973449e-01 2.44737163e-01
1.61367321e+00 -1.98800087e-01 7.68409073e-01 3.24410319e-01
1.04832757e+00 4.65883464e-01 -7.23731995e-01 1.19015419e+00
-4.53840733e-01 -1.44329178e+00 -2.99830973e-01 1.95227176e-01
6.99533045e-01 4.78648365e-01 5.40221095e-01 7.73778856e-01
6.33676410e-01 -9.30011868e-01 4.83206123e-01 4.42355722e-01
1.09393334e+00 -8.79909635e-01 8.93600762e-01 1.85997769e-01
-1.01035345e+00 -3.28162819e-01 -2.91672409e-01 1.72220334e-01
2.37136543e-01 9.46013033e-01 -9.73207891e-01 1.39064252e-01
8.35914135e-01 1.88756838e-01 2.74565518e-01 9.75210249e-01
2.82778233e-01 8.58638287e-01 -3.86224598e-01 2.62724400e-01
1.86327085e-01 2.75999129e-01 1.02015793e+00 1.68144906e+00
8.37517977e-01 8.54622126e-02 -3.63699734e-01 3.97856981e-01
-7.45435596e-01 -7.53811717e-01 -5.77774525e-01 8.26673061e-02
6.49967670e-01 9.23881114e-01 -1.76422626e-01 -2.90465534e-01
-2.81889867e-02 1.04868627e+00 -6.76358521e-01 9.98310089e-01
-8.47297370e-01 -5.67304850e-01 1.48363459e+00 -1.05551034e-01
1.37894213e-01 -9.68938619e-02 -4.19362396e-01 -5.04035413e-01
-4.66643989e-01 -1.13643849e+00 -1.24689043e-01 -1.04837608e+00
-1.25721025e+00 7.56955147e-01 -7.27317691e-01 -9.87902701e-01
5.94653375e-03 -3.13033998e-01 -5.75858951e-01 1.02996469e+00
-1.25525177e+00 -7.77924240e-01 -1.97361633e-01 7.01143384e-01
7.91924953e-01 -8.03756297e-01 6.68317676e-01 1.05961347e+00
-1.76304027e-01 8.79573941e-01 5.59133172e-01 2.40781486e-01
6.57850623e-01 -1.17419493e+00 7.56314933e-01 6.31296992e-01
-4.09027517e-01 1.02039389e-01 1.04758739e+00 -6.62460744e-01
-6.75737739e-01 -1.44702828e+00 9.37806726e-01 -5.70026040e-02
2.17815056e-01 -3.21795970e-01 -3.19523960e-01 3.19378018e-01
8.19098473e-01 5.58453873e-02 5.49413800e-01 -2.98442781e-01
2.58904576e-01 -3.73133183e-01 -1.39610445e+00 9.01896954e-01
1.18424773e+00 -9.94826674e-01 -4.10402305e-02 2.56522268e-01
1.37620819e+00 -5.22336304e-01 -3.98974210e-01 -1.92163885e-02
1.19205266e-01 -7.81950593e-01 1.13905931e+00 -6.03603542e-01
-1.33740917e-01 -1.10146575e-01 -6.28230155e-01 -1.91526794e+00
-1.51787639e-01 -1.39999545e+00 -1.97619185e-01 1.45264184e+00
5.18511772e-01 -1.01198807e-01 1.01384890e+00 -1.35330930e-01
-6.15614057e-01 1.24728605e-02 -1.30080330e+00 -1.07585573e+00
3.85530367e-02 -7.38115907e-01 5.45203269e-01 5.39842963e-01
-1.95699632e-01 3.63879710e-01 -5.51124990e-01 6.21251643e-01
5.06683767e-01 -1.26706350e+00 3.65186483e-01 -7.64129162e-01
-1.46147594e-01 -3.38104099e-01 -2.37085447e-01 -1.41449571e+00
1.42454226e-02 -6.25527501e-01 7.04693049e-02 -1.56356287e+00
-6.22180283e-01 -7.22778738e-02 -2.41666690e-01 -3.07793189e-02
5.18084168e-01 -1.70792341e-01 -1.16122849e-02 -5.84288955e-01
-4.53601748e-01 9.16527867e-01 1.03824973e+00 -6.03038311e-01
-5.13532341e-01 3.89922351e-01 -7.29884624e-01 7.69241691e-01
1.01390266e+00 -2.50039220e-01 -5.92965543e-01 -5.84808469e-01
-3.91753376e-01 4.49795097e-01 3.78324717e-01 -1.33688450e+00
5.40519834e-01 2.37026051e-01 2.12263763e-01 -5.81628323e-01
7.47593343e-01 -8.79752636e-01 9.12348405e-02 3.43916714e-01
-5.15655100e-01 -3.92189324e-01 4.92705464e-01 7.38293171e-01
-1.81553587e-01 4.70996469e-01 1.06580436e+00 1.73113450e-01
-1.92541182e-01 2.61691719e-01 -1.01404107e+00 2.18039975e-02
3.81196231e-01 1.04527362e-01 -6.17703140e-01 -1.34648407e+00
-1.20261657e+00 -2.60547805e-03 -3.15545917e-01 3.24183524e-01
5.31136751e-01 -1.49169576e+00 -6.30834281e-01 2.46691424e-02
-9.92901742e-01 -4.37269807e-01 5.36122203e-01 6.20431542e-01
-2.99021274e-01 4.59053814e-01 1.61614969e-01 -4.05238330e-01
-1.43237555e+00 1.25147283e-01 1.33349645e+00 -7.50582293e-02
-2.89041311e-01 1.22286928e+00 1.58292249e-01 -7.40476012e-01
1.05337596e+00 -5.47098696e-01 9.56097171e-02 -2.80230731e-01
6.75182521e-01 8.19838703e-01 3.91219109e-01 -2.08329961e-01
-8.01916867e-02 -2.31126711e-01 3.48582178e-01 -7.09010482e-01
1.27890718e+00 -6.09396338e-01 2.81393945e-01 -1.82085216e-01
1.40847993e+00 7.60585442e-02 -1.23129952e+00 -4.73505855e-01
-4.74841744e-01 2.54504412e-01 9.77774203e-01 -1.17312813e+00
-1.46167946e+00 8.09426308e-01 1.24136651e+00 2.60619104e-01
1.61254764e+00 -3.43488216e-01 1.45771921e+00 5.42906582e-01
-1.16241492e-01 -1.57636511e+00 3.99299532e-01 9.08135056e-01
8.75758529e-01 -7.75922239e-01 -6.66932344e-01 -2.02668145e-01
-3.24739516e-01 8.87752950e-01 4.11999673e-01 7.41065204e-01
1.08873999e+00 1.15490937e+00 4.40499812e-01 2.08455458e-01
-1.06349754e+00 -1.28288761e-01 -5.04061580e-01 1.28228128e+00
1.72461003e-01 -9.79173481e-02 5.39027870e-01 8.97482634e-01
-5.32215297e-01 2.04656973e-01 5.16394556e-01 4.37018216e-01
-6.74926877e-01 -8.72798622e-01 -6.04233265e-01 4.07404512e-01
-6.24496281e-01 -2.92812884e-01 -3.93537760e-01 1.20379224e-01
2.66275644e-01 1.85801888e+00 4.17363830e-02 -8.81508648e-01
6.96813822e-01 -3.28271031e-01 -2.49564484e-01 1.91586725e-02
-7.35980988e-01 5.73932707e-01 6.63444400e-01 -2.70517737e-01
9.05301049e-03 -2.51089782e-01 -1.22945428e+00 -1.19890893e+00
7.28972703e-02 5.79904281e-02 6.68868899e-01 7.27010489e-01
5.19667745e-01 1.51124394e+00 7.16937423e-01 -8.92963111e-01
-4.36046302e-01 -9.35844421e-01 -9.27703381e-01 -2.24789113e-01
1.28542757e+00 6.08628541e-02 -5.45386016e-01 1.27717908e-02] | [14.949984550476074, 6.019769191741943] |
21fe4b73-f4af-4d3a-ae5b-a3555ef8b9f3 | functional-code-building-genetic-programming | 2206.04561 | null | https://arxiv.org/abs/2206.04561v1 | https://arxiv.org/pdf/2206.04561v1.pdf | Functional Code Building Genetic Programming | General program synthesis has become an important application area for genetic programming (GP), and for artificial intelligence more generally. Code Building Genetic Programming (CBGP) is a recently introduced GP method for general program synthesis that leverages reflection and first class specifications to support the evolution of programs that may use arbitrary data types, polymorphism, and functions drawn from existing codebases. However, neither a formal description nor a thorough benchmarking of CBGP have yet been reported. In this work, we formalize the method of CBGP using algorithms from type theory. Specially, we show that a functional programming language and a Hindley-Milner type system can be used to evolve type-safe programs using the process abstractly described in the original CBGP paper. Furthermore, we perform a comprehensive analysis of the search performance of this functional variant of CBGP compared to other contemporary GP program synthesis methods. | ['Lee Spector', 'Thomas Helmuth', 'Edward Pantridge'] | 2022-06-09 | null | null | null | null | ['program-synthesis'] | ['computer-code'] | [ 2.28953287e-01 3.11006427e-01 -2.30985835e-01 -6.12369217e-02
-2.42604718e-01 -5.43929636e-01 4.34883207e-01 2.39362702e-01
1.07855454e-01 8.23817134e-01 -4.37503517e-01 -7.33544350e-01
-7.98465833e-02 -1.38352370e+00 -8.87519896e-01 -5.60107648e-01
-2.05132067e-01 1.93604037e-01 3.36208373e-01 -6.52586341e-01
6.21337950e-01 2.08398834e-01 -2.43867278e+00 2.97969609e-01
1.23677325e+00 5.13042867e-01 7.53527656e-02 7.52654970e-01
-3.74380648e-01 1.61858559e-01 -8.15512776e-01 -6.19334280e-01
1.90016046e-01 -5.80583632e-01 -6.65877819e-01 -4.14368361e-01
-3.14212769e-01 4.35246021e-01 3.26368898e-01 1.05735791e+00
5.35231411e-01 -8.54351744e-02 2.52042413e-01 -1.70472360e+00
-7.41101742e-01 8.73750925e-01 -1.53144985e-01 -3.79072845e-01
4.42114592e-01 3.39405417e-01 7.64617085e-01 -5.22084713e-01
6.94925904e-01 1.21636617e+00 8.04295719e-01 8.98183048e-01
-1.31245112e+00 -1.86023667e-01 -1.08026922e-01 -3.42386395e-01
-1.29939377e+00 1.03615910e-01 4.97302622e-01 -5.85891366e-01
1.36717212e+00 7.63724327e-01 1.20363176e+00 5.79166591e-01
5.19811869e-01 5.31170189e-01 8.07084143e-01 -9.42261279e-01
5.95015883e-01 2.02471331e-01 1.21361196e-01 8.65140498e-01
7.07787812e-01 4.04903829e-01 -3.56907547e-01 -7.36486614e-01
2.16865107e-01 -7.22758591e-01 -2.29036763e-01 -8.19979131e-01
-8.68445933e-01 9.91601825e-01 1.53080881e-01 2.87490875e-01
4.85449471e-02 5.33612132e-01 5.52735686e-01 3.18046272e-01
2.53566224e-02 7.59037256e-01 -4.99779105e-01 -4.25280720e-01
-5.03471911e-01 7.12714314e-01 1.28402710e+00 1.40317678e+00
7.26654768e-01 3.29366684e-01 -1.72948718e-01 5.88942945e-01
3.64409834e-01 3.86096299e-01 4.45623249e-01 -7.94031560e-01
3.92248295e-02 1.05843723e+00 -3.35513145e-01 -9.52576697e-01
-1.14482813e-01 -1.51803374e-01 -1.29091755e-01 4.36901063e-01
-3.43464255e-01 -2.46422440e-01 -3.77855033e-01 1.43346620e+00
2.92570561e-01 -3.87587726e-01 3.89996290e-01 1.70958057e-01
7.75761127e-01 6.50085509e-01 -3.69202942e-01 -1.16501689e-01
1.09967196e+00 -9.16366935e-01 -1.49029627e-01 -4.32931334e-02
9.69052196e-01 -2.00015932e-01 8.01813364e-01 4.44532752e-01
-1.28843176e+00 -2.35868901e-01 -1.33067000e+00 1.75059989e-01
-5.94352961e-01 -2.37191379e-01 1.12882090e+00 1.71083891e+00
-1.59331381e+00 3.06920499e-01 -6.74742937e-01 -4.25406307e-01
1.03033572e-01 4.82032508e-01 1.54517502e-01 1.74761936e-01
-7.69758940e-01 6.76769495e-01 9.02593791e-01 -1.09783262e-01
-4.32379484e-01 -9.33439076e-01 -9.09990966e-01 -3.26016769e-02
2.85568476e-01 -1.13083053e+00 1.10149825e+00 -9.80963886e-01
-1.86025834e+00 9.81618285e-01 1.19030565e-01 -6.11895025e-01
9.98140052e-02 4.84004676e-01 -3.58130008e-01 -4.83568519e-01
-4.26675618e-01 4.59685624e-01 4.14337844e-01 -1.28586817e+00
-5.98076165e-01 9.40766372e-03 3.25044185e-01 -1.41204625e-01
-6.54579548e-04 2.41393760e-01 -2.85213709e-01 -7.35548556e-01
-3.70464116e-01 -1.09994996e+00 -7.83845410e-02 -1.92508489e-01
-4.54257801e-02 -1.29268318e-01 4.42277968e-01 -2.08784685e-01
1.51866746e+00 -2.25885081e+00 5.58173716e-01 5.12613475e-01
-1.94905311e-01 3.81789207e-01 2.72585917e-02 6.74943566e-01
3.22059356e-02 5.03840864e-01 -8.81473482e-01 5.11781693e-01
5.11352897e-01 5.43144941e-01 -8.51201788e-02 -3.83555256e-02
1.14406906e-01 1.01517379e+00 -8.56078684e-01 -1.29333660e-01
-2.69071043e-01 1.05843917e-01 -1.50392103e+00 -4.19127941e-03
-9.39764798e-01 -9.29057598e-03 -3.62393111e-01 7.24177778e-01
5.90284765e-01 3.17944437e-01 3.60986739e-01 3.34855288e-01
-4.89203155e-01 5.68503588e-02 -8.86772752e-01 1.79765677e+00
-5.69178045e-01 2.28141189e-01 3.39847505e-02 -9.66425836e-01
1.32951736e+00 1.07636064e-01 2.30724514e-01 -4.46228534e-01
-1.35992065e-01 5.50328135e-01 1.42921031e-01 -4.91450191e-01
5.97466946e-01 2.12413236e-01 -4.84257698e-01 4.86757696e-01
-2.48540208e-01 -8.48680794e-01 8.10993552e-01 -3.27142566e-01
1.10865581e+00 6.15516305e-01 5.06605923e-01 -5.33185899e-01
9.26647246e-01 5.87698460e-01 7.17740417e-01 1.00014067e+00
3.81448478e-01 4.41829503e-01 8.50695431e-01 -3.75727952e-01
-1.01350665e+00 -5.55442929e-01 -2.28245959e-01 9.46651399e-01
-2.73941010e-01 -1.01617229e+00 -1.04353344e+00 -3.53181958e-01
-8.36426839e-02 1.11698329e+00 -4.10716981e-01 -3.68948042e-01
-8.63964796e-01 -1.18210673e+00 9.29377198e-01 5.10967672e-02
5.38205624e-01 -1.25489759e+00 -1.16583014e+00 3.83450210e-01
2.06407756e-01 -2.61033744e-01 1.61110029e-01 3.14711034e-02
-5.32837391e-01 -9.29487407e-01 -3.15103114e-01 -9.31101084e-01
6.09308362e-01 -4.26015347e-01 1.39828968e+00 8.41521025e-01
-3.75873059e-01 4.19976145e-01 -5.67139924e-01 -4.34123784e-01
-1.16649914e+00 2.56901830e-01 -6.20013297e-01 -6.23189330e-01
1.02555543e-01 -5.63074589e-01 7.66006187e-02 8.94513577e-02
-1.08395815e+00 4.91215773e-02 3.20380211e-01 1.11507297e+00
1.88649431e-01 4.05453980e-01 2.49593720e-01 -1.00156188e+00
8.07043552e-01 -4.31378186e-01 -1.30362105e+00 5.65492332e-01
-7.73703516e-01 4.10216093e-01 2.75727481e-01 9.74965990e-02
-1.07439411e+00 -9.53194499e-02 -5.65067828e-01 4.66528982e-01
2.73374975e-01 9.57784176e-01 -4.64629769e-01 -6.28884375e-01
7.50817180e-01 4.30336773e-01 3.76445577e-02 -8.15274939e-02
3.55779022e-01 4.38169301e-01 4.37222779e-01 -1.51299119e+00
4.92890269e-01 -1.50546014e-01 9.57543999e-02 -5.41207373e-01
4.62177396e-01 3.19186509e-01 -2.71226704e-01 3.12074423e-01
4.22532767e-01 -2.22175926e-01 -6.46618068e-01 5.10113657e-01
-1.18313622e+00 -5.33276618e-01 -2.96526164e-01 -3.94177347e-01
-9.64765310e-01 9.56576243e-02 8.19873363e-02 -6.60867572e-01
-3.03057283e-01 -1.53086865e+00 9.29324567e-01 5.88600412e-02
-2.59592921e-01 -9.15896058e-01 3.83152574e-01 -2.92981237e-01
7.03224778e-01 3.74360234e-01 1.58784604e+00 -2.00772956e-01
-5.05884767e-01 1.20885633e-01 3.90123695e-01 -9.94791370e-03
-1.79856032e-01 7.03197122e-01 -2.92273849e-01 -1.79711178e-01
-6.33646324e-02 3.04300159e-01 1.22252315e-01 8.81729200e-02
1.02550936e+00 -6.06068909e-01 -5.39925456e-01 9.79505658e-01
1.70041883e+00 6.49566174e-01 9.66643155e-01 9.19599831e-01
2.19811991e-01 5.88941872e-01 4.78340566e-01 5.52598655e-01
2.66237497e-01 9.06504512e-01 2.56540835e-01 5.34078717e-01
1.23713784e-01 3.86362188e-02 4.94277000e-01 2.11985260e-01
7.12514073e-02 -2.08043262e-01 -1.42627704e+00 4.60376859e-01
-1.78830230e+00 -8.17312181e-01 -3.09547365e-01 2.25980783e+00
1.01547027e+00 -1.89563274e-01 3.39790285e-01 2.77348548e-01
7.14109778e-01 -5.39547682e-01 -1.96091324e-01 -1.08893216e+00
-9.45760831e-02 5.98388314e-01 4.56431270e-01 2.13564500e-01
-5.61857998e-01 7.14322269e-01 7.03327990e+00 3.76089364e-01
-9.46666002e-01 -8.62190053e-02 1.19389139e-01 1.53374895e-01
-9.19681609e-01 5.18912911e-01 -8.19194317e-01 5.56696773e-01
1.08902299e+00 -1.01684320e+00 6.23586416e-01 1.03366899e+00
-4.12404180e-01 -1.44022852e-02 -9.87587750e-01 5.31300843e-01
-1.44983921e-02 -1.53507435e+00 -7.14160874e-02 1.88852903e-02
9.67334628e-01 -4.39129084e-01 -4.66187997e-03 5.91156185e-01
5.88032842e-01 -9.27472413e-01 9.53364849e-01 1.91795290e-01
3.32084715e-01 -9.37069833e-01 4.12365675e-01 6.49169311e-02
-8.31855357e-01 -3.71758878e-01 -2.01737523e-01 2.17819467e-01
-6.39757216e-02 4.38453704e-01 -5.28437555e-01 9.18059289e-01
8.10064316e-01 2.79787779e-01 -6.87607944e-01 1.43753195e+00
-2.55652517e-01 2.77127296e-01 -3.71296182e-02 -2.61180311e-01
-9.34590325e-02 -1.52672410e-01 7.44097590e-01 1.14358020e+00
1.02024257e+00 -2.62255426e-02 -1.48199826e-01 1.23974776e+00
4.08101678e-01 1.94272976e-02 -7.28425205e-01 -2.32149422e-01
4.33256090e-01 7.99667895e-01 -4.52712893e-01 -2.06012726e-01
-4.12019461e-01 4.21909720e-01 -6.25234470e-02 6.13860972e-02
-8.65651190e-01 -5.60824513e-01 5.18592954e-01 -1.02981083e-01
4.51621354e-01 -1.19909808e-01 -4.97631639e-01 -9.68883812e-01
9.51514691e-02 -1.42448235e+00 3.23982388e-01 -7.40919292e-01
-7.26171613e-01 7.22983599e-01 3.26048583e-01 -6.07406676e-01
-6.64583862e-01 -5.07358134e-01 -5.97275794e-01 7.91079760e-01
-9.57385957e-01 -9.13641453e-01 -7.18699545e-02 6.11528866e-02
1.02688996e-02 -3.91360521e-01 9.29115355e-01 -7.68520236e-02
-7.08247423e-01 6.32317185e-01 -5.42402752e-02 -5.96607268e-01
-3.54447402e-02 -1.15510190e+00 8.04072440e-01 1.07981980e+00
-6.56639993e-01 1.08184075e+00 8.30441952e-01 -7.09378302e-01
-2.08201885e+00 -9.56678212e-01 5.68703294e-01 -7.50844255e-02
5.44693351e-01 -4.23762113e-01 -8.96996081e-01 5.30125141e-01
2.14870393e-01 -3.26087236e-01 2.88538158e-01 -1.70753688e-01
-1.69836938e-01 -7.10625798e-02 -1.39493763e+00 7.86046803e-01
1.22551918e+00 -9.52302071e-04 -3.65310073e-01 1.22027174e-01
6.69973016e-01 -7.37190068e-01 -1.02902305e+00 3.88854474e-01
5.15675485e-01 -1.16587842e+00 9.34766471e-01 2.75048856e-02
2.73997098e-01 -5.06336689e-01 -2.09307700e-01 -1.39728224e+00
-8.24009627e-02 -9.99058068e-01 2.72418279e-03 1.45049059e+00
5.01152635e-01 -1.15262866e+00 5.89296937e-01 7.43871093e-01
-6.88259482e-01 -4.47894335e-01 -5.11384666e-01 -1.07324016e+00
4.63437974e-01 -1.45902961e-01 1.43698561e+00 6.27503753e-01
3.61467123e-01 -2.35145137e-01 1.47114575e-01 -1.48594439e-01
1.47137120e-01 3.37540329e-01 1.01199543e+00 -1.09302807e+00
-9.44514394e-01 -1.04137504e+00 -5.82954466e-01 -8.93611461e-02
3.20222974e-01 -1.30690980e+00 1.98322922e-01 -1.22648728e+00
-9.57233906e-02 -9.94883180e-01 3.22830230e-01 5.40768862e-01
8.52573141e-02 -2.06358314e-01 -7.59177506e-02 -2.37218253e-02
2.79056907e-01 3.39285791e-01 6.78566575e-01 -2.23545909e-01
-3.43883127e-01 -7.02885836e-02 -9.14058208e-01 1.91167295e-01
9.17827904e-01 -7.21319795e-01 -5.34945190e-01 -3.51394385e-01
1.12059915e+00 8.82323906e-02 2.37125099e-01 -1.04982066e+00
9.59595144e-02 -3.50367457e-01 -7.04969287e-01 -2.66340166e-01
-2.55364239e-01 -5.28127253e-01 1.10915327e+00 8.73796642e-01
-2.62926906e-01 4.32110906e-01 5.16121089e-01 1.64355412e-01
-1.63680047e-01 -9.42257822e-01 4.99354661e-01 -3.30991328e-01
-9.65520978e-01 -1.21012144e-01 -5.42306721e-01 -1.34125963e-01
1.32133102e+00 -3.23696911e-01 -7.29020298e-01 4.94288594e-01
-1.59309745e-01 -5.53866439e-02 1.30819690e+00 4.98237967e-01
3.19370657e-01 -1.11153567e+00 -5.98626792e-01 5.13448834e-01
4.90008801e-01 -2.19875664e-01 -2.80146569e-01 5.76315463e-01
-1.00452578e+00 4.00590718e-01 -5.48197627e-01 -5.50736070e-01
-1.16545999e+00 8.93922448e-01 4.62628126e-01 5.61780930e-02
-4.62730318e-01 6.29789710e-01 6.84466446e-03 -9.85795379e-01
-2.93088645e-01 -2.44207054e-01 2.01451972e-01 -5.56906939e-01
3.63677591e-01 1.57457501e-01 5.29318213e-01 -3.25540394e-01
-5.01398981e-01 4.42595869e-01 4.81522471e-01 -2.81471968e-01
1.38718545e+00 4.33332384e-01 -8.83706748e-01 1.30445763e-01
9.00969625e-01 -8.05356428e-02 -5.30882478e-01 4.85084355e-01
2.15356126e-01 -4.46439326e-01 -3.11559349e-01 -6.92101240e-01
-9.82645690e-01 3.45319510e-01 1.84922680e-01 3.83247972e-01
1.19124401e+00 -4.50851142e-01 1.02613859e-01 3.92338872e-01
9.91301656e-01 -7.61910439e-01 -3.69214207e-01 5.39448798e-01
1.06560373e+00 -2.71680802e-01 -1.26514226e-01 -7.23671496e-01
-3.12718928e-01 1.22227633e+00 4.49629068e-01 1.54044017e-01
3.24663311e-01 7.13516057e-01 -6.44937336e-01 -1.43406734e-01
-8.74965727e-01 7.49715865e-02 6.70580640e-02 1.11467934e+00
3.74573857e-01 -1.88091144e-01 -1.00821054e+00 5.07713735e-01
-5.33968270e-01 3.91887158e-01 7.96685576e-01 1.81033564e+00
-2.67132521e-01 -1.96595287e+00 -5.77278495e-01 1.37322471e-01
-1.89838707e-01 -3.86578500e-01 -4.26031739e-01 8.17046762e-01
3.42130393e-01 7.08081782e-01 -1.00000478e-01 -1.52870700e-01
1.73792616e-01 1.14637010e-01 9.20900643e-01 -8.97692382e-01
-1.15634418e+00 -6.06595993e-01 5.61810374e-01 -2.93764532e-01
-2.88962811e-01 -7.31279075e-01 -1.13634241e+00 -4.16297346e-01
-1.00189313e-01 3.86903614e-01 9.77939725e-01 4.36601877e-01
7.23927259e-01 4.91179854e-01 1.92137346e-01 -4.30132926e-01
-1.31495865e-02 1.51312009e-01 -2.49957740e-01 -2.60566801e-01
-2.95213431e-01 -7.21765935e-01 -3.01857833e-02 6.98789507e-02] | [8.04471206665039, 7.298954486846924] |
4f5042be-f023-4657-8fb4-b1b7dd4c41c3 | one-shot-affordance-detection | 2106.14747 | null | https://arxiv.org/abs/2106.14747v1 | https://arxiv.org/pdf/2106.14747v1.pdf | One-Shot Affordance Detection | Affordance detection refers to identifying the potential action possibilities of objects in an image, which is an important ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we consider the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection (OS-AD) network that firstly estimates the purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OS-AD can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a Purpose-driven Affordance Dataset (PAD) by collecting and labeling 4k images from 31 affordance and 72 object categories. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality. The benchmark suite is at ProjectPage. | ['DaCheng Tao', 'Yang Cao', 'Jing Zhang', 'Wei Zhai', 'Hongchen Luo'] | 2021-06-28 | null | null | null | null | ['affordance-detection'] | ['computer-vision'] | [ 1.75224438e-01 -1.37223706e-01 -1.73527479e-01 -3.37476283e-01
-1.56722471e-01 -2.74188668e-01 3.83947432e-01 -1.49886876e-01
-3.33601207e-01 1.96975738e-01 3.90270174e-01 1.84571952e-01
-3.77363175e-01 -2.75535703e-01 -7.72221804e-01 -5.21572113e-01
-2.08212450e-01 1.91731408e-01 4.12298471e-01 -3.40484768e-01
2.92605668e-01 4.71155137e-01 -1.77277613e+00 6.13214858e-02
9.83017445e-01 1.03222096e+00 8.37564290e-01 3.67545396e-01
4.07598764e-01 7.95454204e-01 -3.08778226e-01 2.23894760e-01
2.07902223e-01 1.38846477e-02 -7.32247174e-01 4.77173477e-01
4.89552647e-01 -8.68317127e-01 -4.62276578e-01 1.12098706e+00
2.94912606e-01 5.89605093e-01 6.38748646e-01 -1.68955934e+00
-9.68354642e-01 4.99795169e-01 -3.27783674e-01 4.26999509e-01
6.63306832e-01 6.99372649e-01 1.20000577e+00 -1.19514394e+00
5.59306800e-01 1.76665485e+00 -2.71205753e-01 8.18248332e-01
-1.07370257e+00 -4.54618514e-01 6.40316248e-01 4.39413995e-01
-1.14578176e+00 -4.45477694e-01 7.35906720e-01 -3.78220081e-01
9.08864617e-01 2.95846045e-01 6.99963510e-01 1.08153915e+00
-1.62011459e-01 1.37618697e+00 7.40700901e-01 -1.69185579e-01
2.74105091e-02 -3.60505342e-01 2.06349388e-01 8.27247143e-01
1.68672323e-01 1.26635864e-01 -4.65668917e-01 3.70390266e-02
1.06808722e+00 6.37834668e-01 -4.63341922e-01 -8.12341392e-01
-2.00535131e+00 3.19438547e-01 1.18308985e+00 2.23851934e-01
-3.22670996e-01 2.43104532e-01 1.20693691e-01 2.97541201e-01
-2.23172277e-01 7.29166448e-01 -3.21812898e-01 2.91059375e-01
1.85055360e-01 4.40666467e-01 4.34420586e-01 1.50824809e+00
8.32426608e-01 -3.58322799e-01 -4.96270448e-01 6.08424425e-01
5.19524157e-01 2.96691924e-01 3.57663304e-01 -9.82232690e-01
6.16801858e-01 1.10700297e+00 4.54119891e-01 -9.05163348e-01
-4.87409353e-01 1.80725515e-01 -5.08626282e-01 1.82831123e-01
2.60791361e-01 2.73741424e-01 -1.14861715e+00 1.56665385e+00
6.45110667e-01 1.07163757e-01 2.08746746e-01 1.65121591e+00
1.09349942e+00 5.36133647e-01 1.89254761e-01 1.34458944e-01
1.61363709e+00 -1.37707746e+00 -5.96278906e-01 -3.63687456e-01
5.26475132e-01 -4.24405277e-01 1.75008583e+00 1.99472621e-01
-3.46511066e-01 -7.26851106e-01 -1.27569723e+00 -4.84455794e-01
-1.45920143e-01 4.51265961e-01 9.80437100e-01 4.20219498e-03
-3.93068939e-01 4.06982064e-01 -7.91471064e-01 -3.87810200e-01
6.40203476e-01 1.37034714e-01 -4.66617465e-01 -4.02209759e-01
-7.57658243e-01 5.88475466e-01 7.98708439e-01 1.68495357e-01
-1.72175050e+00 -2.38130078e-01 -1.09653056e+00 1.15493266e-02
1.19160616e+00 -5.99609911e-01 1.15490127e+00 -8.13859105e-01
-1.08991563e+00 4.77783084e-01 2.23278627e-02 -3.16449553e-02
3.48405510e-01 -6.13518298e-01 -3.10510039e-01 -5.20276465e-02
4.61325437e-01 9.14375007e-01 1.05516648e+00 -1.36923707e+00
-7.15441883e-01 -4.58106011e-01 5.55736542e-01 5.58106363e-01
-2.51725763e-01 -6.94372552e-03 -3.90783012e-01 -4.77050841e-01
7.04441547e-01 -7.66795516e-01 -2.20909491e-01 4.94918346e-01
-8.64616752e-01 -9.37040687e-01 7.81983793e-01 -2.83094347e-01
6.52339935e-01 -2.32429528e+00 5.25706351e-01 -2.77837932e-01
4.31192905e-01 -2.19280005e-01 -2.25342974e-01 2.70136774e-01
1.94329143e-01 -2.06923783e-01 -8.38337243e-02 -1.29645705e-01
2.08060592e-01 3.96791637e-01 -3.82219344e-01 4.63123649e-01
4.68596518e-01 9.45331156e-01 -1.27819347e+00 -5.48980713e-01
3.30080003e-01 -2.94811092e-02 -4.86861765e-01 6.98316336e-01
-5.21548033e-01 6.23778582e-01 -8.99766743e-01 1.10655940e+00
2.79465050e-01 -2.49612525e-01 -8.50011259e-02 -2.59973645e-01
1.63827971e-01 -1.82217732e-02 -1.25361192e+00 2.19948316e+00
-1.18079208e-01 2.11969212e-01 -3.82190317e-01 -4.86625671e-01
9.34650719e-01 -6.21582903e-02 -2.38678344e-02 -3.97316009e-01
-1.92936417e-02 3.42397481e-01 3.80339473e-01 -1.08589315e+00
4.19646025e-01 3.74249607e-01 -2.89420217e-01 3.52158785e-01
3.81167561e-01 -1.27105474e-01 1.48620263e-01 4.57055569e-02
7.71323860e-01 5.33467352e-01 4.04852182e-01 -2.90121824e-01
4.07903314e-01 -1.21324755e-01 4.79640394e-01 6.56383634e-01
-5.70849359e-01 4.29560900e-01 3.39416444e-01 -8.28482211e-01
-9.20426726e-01 -9.81436133e-01 2.01167628e-01 1.45266175e+00
9.08385992e-01 -9.40863118e-02 -2.91508883e-01 -6.29060149e-01
-3.08153853e-02 5.17089128e-01 -8.05382133e-01 -3.04313481e-01
-4.88317758e-01 -2.01912165e-01 -1.55842885e-01 5.08462012e-01
5.07840335e-01 -1.57916093e+00 -1.21722639e+00 -1.29243746e-01
-1.47756845e-01 -1.05042231e+00 -6.06504798e-01 9.75188687e-02
-5.83344877e-01 -1.13352668e+00 -7.65203059e-01 -1.04064500e+00
7.42418945e-01 7.75811553e-01 7.59916306e-01 2.84006804e-01
-4.44268882e-01 1.37633368e-01 -4.79984730e-01 -4.17649090e-01
2.28381045e-02 -4.09104601e-02 3.73812050e-01 1.91466391e-01
4.00217295e-01 -2.61351436e-01 -8.59466195e-01 4.21037436e-01
-7.04155445e-01 1.52967364e-01 8.46040368e-01 7.21202016e-01
7.18612611e-01 -2.83354044e-01 3.87712389e-01 -3.10743731e-02
5.25802612e-01 -4.24368829e-01 -3.68115842e-01 3.23094517e-01
-2.75265276e-01 6.03020191e-02 2.19146103e-01 -5.36189437e-01
-8.31184506e-01 2.77916908e-01 4.53358680e-01 -6.73467338e-01
-4.09682751e-01 5.33187017e-02 -5.97476900e-01 2.20940575e-01
6.30227566e-01 1.93874121e-01 -1.23427257e-01 -6.06380105e-01
6.02884650e-01 5.47281265e-01 4.61452812e-01 -5.61166286e-01
5.22149563e-01 5.62494874e-01 -2.19346702e-01 -5.42790830e-01
-1.12291014e+00 -7.13223517e-01 -9.17855620e-01 -2.93920636e-01
1.04127240e+00 -1.02784264e+00 -7.65420735e-01 2.69713551e-01
-1.25964403e+00 -1.71149030e-01 -1.79768398e-01 5.63016772e-01
-8.10041428e-01 1.33351550e-01 -7.81958848e-02 -8.36506903e-01
-8.22101086e-02 -1.41178668e+00 1.32080293e+00 3.90728384e-01
6.37466833e-03 -7.52825812e-02 -4.52063203e-01 -6.97535370e-03
-3.57235551e-01 4.24588233e-01 7.54015267e-01 -5.21378279e-01
-1.04747522e+00 8.21251646e-02 -6.47341788e-01 -1.53349414e-02
3.94402564e-01 -3.95323873e-01 -7.18692005e-01 -2.67004132e-01
-6.82583600e-02 -7.89588153e-01 9.90170121e-01 -6.93968385e-02
1.16124392e+00 -2.98058212e-01 -5.24616301e-01 4.73521799e-01
1.20966780e+00 4.29238565e-03 2.37113014e-01 3.12149674e-01
1.20325398e+00 8.75020504e-01 1.34428310e+00 3.39591861e-01
3.98994297e-01 5.41703403e-01 1.00376225e+00 2.87989914e-01
1.67463366e-02 -5.09384811e-01 1.60180777e-01 1.82972759e-01
-2.32196465e-01 -1.52580244e-02 -7.67944753e-01 5.10382891e-01
-2.17109752e+00 -6.21573269e-01 1.83786470e-02 1.70342135e+00
5.15013099e-01 1.40374601e-01 1.99154705e-01 -5.53863607e-02
5.98762989e-01 2.27637097e-01 -1.27518499e+00 2.41222307e-01
5.72025031e-02 -7.99743891e-01 -3.77413514e-03 -1.57318279e-01
-1.29745209e+00 9.63038266e-01 5.04055977e+00 4.92613912e-01
-5.87132990e-01 6.49052486e-02 2.96912909e-01 2.31288583e-03
-5.80680445e-02 -1.39804622e-02 -5.47746122e-01 1.36649564e-01
-9.82981622e-02 1.73719838e-01 6.46754980e-01 1.29569566e+00
2.26315930e-02 -1.33358479e-01 -1.44285381e+00 1.01090229e+00
3.06902051e-01 -6.49882853e-01 2.74005651e-01 -1.24436900e-01
5.75601161e-01 5.18136248e-02 -1.09369412e-01 3.01320732e-01
1.56047210e-01 -9.78475511e-01 1.07424700e+00 7.54724145e-01
6.51804626e-01 -4.24809217e-01 2.50740409e-01 7.33277857e-01
-1.23035145e+00 -6.72596335e-01 -8.27651501e-01 -2.05745935e-01
-6.59277961e-02 -9.52804238e-02 -6.54585838e-01 4.37111706e-01
8.79861653e-01 1.11761153e+00 -5.23565948e-01 1.02697003e+00
-5.61672330e-01 -2.71908790e-01 -1.62258729e-01 -4.68486816e-01
3.40640515e-01 4.11638292e-03 7.79789209e-01 4.03733075e-01
2.98984051e-01 1.98854312e-01 4.98414069e-01 1.19091439e+00
7.71258026e-02 4.28291261e-02 -5.35396159e-01 8.15667491e-03
5.71077883e-01 1.21054959e+00 -8.09205234e-01 -3.28986377e-01
-2.77835041e-01 1.14556956e+00 6.22114301e-01 3.80713880e-01
-5.35224020e-01 -3.17420304e-01 7.18705118e-01 -3.14703822e-01
2.32172310e-01 -3.89727235e-01 1.44699082e-01 -1.25849307e+00
2.96063572e-01 -8.29159975e-01 3.83739233e-01 -1.14847267e+00
-1.11330545e+00 5.40164053e-01 5.33212200e-02 -1.71785998e+00
3.37250948e-01 -9.15615559e-01 -4.00217414e-01 6.48660362e-01
-1.55648625e+00 -1.47036815e+00 -8.45663428e-01 6.78874671e-01
1.02093458e+00 -4.16871607e-02 6.41510963e-01 -2.90077090e-01
-3.99210066e-01 3.29408832e-02 -5.83005905e-01 9.76012927e-03
3.98965776e-01 -1.25844395e+00 4.18301523e-01 7.85640299e-01
3.14288348e-01 7.86024392e-01 5.95307469e-01 -5.70970595e-01
-1.87038386e+00 -1.05489898e+00 3.35408866e-01 -8.24325144e-01
5.67353904e-01 -4.97270495e-01 -7.47679710e-01 6.74156070e-01
-1.11315981e-01 3.67203981e-01 2.08799422e-01 -1.53714180e-01
-4.29360718e-01 1.81235954e-01 -7.58060396e-01 9.26004708e-01
1.82539511e+00 -4.29922968e-01 -1.05073845e+00 5.38604379e-01
1.39385295e+00 -5.04842520e-01 -6.57734215e-01 2.97871798e-01
6.75680935e-01 -8.89157355e-01 9.53147590e-01 -8.18331838e-01
3.81282449e-01 -5.95008373e-01 -3.69331717e-01 -1.09305811e+00
-3.52602750e-01 -4.57205981e-01 -3.10241163e-01 8.62109721e-01
6.97527826e-02 -3.03353727e-01 2.09677309e-01 3.41244847e-01
-3.78077686e-01 -5.86982906e-01 -7.97406673e-01 -8.15097988e-01
-6.27836883e-01 -2.99421430e-01 1.17323351e+00 6.27857387e-01
-4.40697111e-02 4.90917712e-01 -3.57792646e-01 2.49778062e-01
5.48123896e-01 5.19272983e-01 1.09040713e+00 -1.26086652e+00
-2.86389086e-02 -2.17848480e-01 -4.72514510e-01 -1.53087306e+00
7.51779974e-02 -8.84963453e-01 5.79483867e-01 -1.55176532e+00
3.67206275e-01 -4.97166336e-01 -5.31965673e-01 6.43546700e-01
-5.26956677e-01 -7.62731284e-02 2.71471739e-01 6.65610552e-01
-9.79760587e-01 8.56247723e-01 2.01389933e+00 -3.49888235e-01
-2.99077749e-01 -3.57201695e-01 -6.31939471e-01 6.41738474e-01
4.38085139e-01 -1.84434235e-01 -4.86052424e-01 -6.24715686e-01
6.41532913e-02 -2.26033285e-01 8.60611737e-01 -1.00582862e+00
-1.13228306e-01 -4.43235904e-01 3.26337904e-01 -6.25226438e-01
3.30545366e-01 -1.02296078e+00 -5.06813109e-01 7.16443956e-01
-3.95137489e-01 -1.57258824e-01 -2.78301090e-01 1.12584317e+00
1.61829010e-01 -8.89675692e-02 2.17999950e-01 -3.01871926e-01
-1.65677488e+00 6.94776952e-01 2.16334999e-01 -2.94385374e-01
1.24891317e+00 -1.58637479e-01 -2.68149018e-01 1.51011318e-01
-5.81871808e-01 5.67070723e-01 4.80253637e-01 1.02030551e+00
1.09197855e+00 -1.47437489e+00 -4.61204678e-01 4.43251729e-01
1.06904387e+00 3.67534608e-01 2.73097724e-01 6.53169274e-01
-2.17568129e-01 2.63055172e-02 -4.19675082e-01 -8.40314150e-01
-8.36026430e-01 1.11510789e+00 2.00119853e-01 5.49323380e-01
-9.24633920e-01 1.13558066e+00 4.73324835e-01 -5.65758586e-01
3.78961653e-01 -8.42739999e-01 -6.44482315e-01 -3.39884907e-01
5.66178143e-01 2.29229197e-01 -6.17303669e-01 -8.35596502e-01
-4.05901194e-01 4.24404919e-01 4.19217385e-02 3.09568614e-01
1.13951397e+00 -3.74079257e-01 -2.10889876e-01 7.96070337e-01
9.83458281e-01 -8.57238293e-01 -1.89518785e+00 -3.73457611e-01
1.93372756e-01 -7.64837801e-01 -2.76695490e-01 -4.66112524e-01
-5.40289223e-01 9.29709792e-01 6.15054846e-01 8.82260725e-02
8.27296853e-01 4.66306925e-01 4.44959879e-01 9.80304301e-01
5.69870949e-01 -8.68445277e-01 8.28838289e-01 3.52099061e-01
1.39359868e+00 -1.76267219e+00 -1.83470711e-01 -4.76246387e-01
-7.23986626e-01 1.10165703e+00 1.09703279e+00 -4.92936760e-01
3.60860407e-01 -5.70906103e-01 -2.17981786e-01 -5.56937933e-01
-5.16877592e-01 -5.54204881e-01 5.04824102e-01 7.52043545e-01
-1.20004244e-01 3.08548123e-01 4.77940813e-02 5.73690534e-01
5.39483987e-02 -1.58168286e-01 2.83921570e-01 9.11270797e-01
-7.27998197e-01 -3.02121520e-01 -4.21277583e-02 4.82672572e-01
2.17031941e-01 1.02293931e-01 -3.72871429e-01 4.46581215e-01
1.72642291e-01 9.29085135e-01 -9.11287144e-02 -3.81681651e-01
5.67904592e-01 -2.97320008e-01 5.24692535e-01 -9.78991270e-01
1.03230171e-01 -5.22743538e-02 -9.84978452e-02 -9.17615652e-01
-6.48055494e-01 -6.65149629e-01 -1.31175494e+00 5.16833425e-01
-5.15167594e-01 -4.24637735e-01 3.17272574e-01 1.04903114e+00
1.26800478e-01 7.65279949e-01 5.20257175e-01 -1.14195383e+00
-7.60450780e-01 -1.20079231e+00 -6.61228001e-01 4.71250147e-01
6.59955561e-01 -1.21694374e+00 -1.57767639e-01 -9.67609882e-02] | [5.147587776184082, -0.09687581658363342] |
6eb73d36-5dfa-4281-995f-b679568ab47c | drug-repurposing-for-cancer-an-nlp-approach | 1911.07819 | null | https://arxiv.org/abs/1911.07819v2 | https://arxiv.org/pdf/1911.07819v2.pdf | Drug Repurposing for Cancer: An NLP Approach to Identify Low-Cost Therapies | More than 200 generic drugs approved by the U.S. Food and Drug Administration for non-cancer indications have shown promise for treating cancer. Due to their long history of safe patient use, low cost, and widespread availability, repurposing of generic drugs represents a major opportunity to rapidly improve outcomes for cancer patients and reduce healthcare costs worldwide. Evidence on the efficacy of non-cancer generic drugs being tested for cancer exists in scientific publications, but trying to manually identify and extract such evidence is intractable. In this paper, we introduce a system to automate this evidence extraction from PubMed abstracts. Our primary contribution is to define the natural language processing pipeline required to obtain such evidence, comprising the following modules: querying, filtering, cancer type entity extraction, therapeutic association classification, and study type classification. Using the subject matter expertise on our team, we create our own datasets for these specialized domain-specific tasks. We obtain promising performance in each of the modules by utilizing modern language modeling techniques and plan to treat them as baseline approaches for future improvement of individual components. | ['Laura B. Kleiman', 'Prasanna Sattigeri', 'Dmitriy A. Katz-Rogozhnikov', 'Shivashankar Subramanian', 'Sushma Ravichandran', 'Pradeep Mangalath', 'Kush R. Varshney', 'Karthikeyan Natesan Ramamurthy', 'Annmarie Wang', 'Ioana Baldini'] | 2019-11-18 | null | null | null | null | ['entity-extraction'] | ['natural-language-processing'] | [ 3.03233296e-01 1.29012123e-01 -1.04612780e+00 -1.40249774e-01
-1.36215091e+00 -8.07061374e-01 6.17720068e-01 1.11373878e+00
-4.51055795e-01 1.10509312e+00 3.28244895e-01 -8.51630330e-01
-1.94608018e-01 -5.67985713e-01 -3.23746890e-01 -4.03447986e-01
2.40700379e-01 5.70912182e-01 9.83038452e-03 3.15537214e-01
2.69759566e-01 7.90469050e-01 -1.02129781e+00 6.05261147e-01
9.86502826e-01 7.09243298e-01 1.79799739e-02 3.72487217e-01
-2.66432643e-01 5.85939467e-01 -4.97584730e-01 -1.88340679e-01
-1.49006277e-01 -2.46740729e-01 -9.03177917e-01 -2.41766155e-01
2.56673396e-01 -4.50923070e-02 -8.79488587e-02 8.02273691e-01
5.62434137e-01 -3.86869758e-01 6.03061378e-01 -7.44080186e-01
-2.93480396e-01 6.42182112e-01 -3.01980585e-01 -1.22843251e-01
7.04163909e-01 4.40750979e-02 8.29547584e-01 -7.31526017e-01
9.56512153e-01 6.99238122e-01 5.15293658e-01 6.51499689e-01
-1.10979271e+00 -6.88597918e-01 -1.00141518e-01 -1.89748555e-01
-1.45214856e+00 -6.53408587e-01 3.73192914e-02 -5.51093102e-01
1.23357701e+00 4.69443738e-01 5.22955716e-01 9.44712877e-01
6.85524821e-01 4.56734151e-01 9.62800026e-01 -3.60183418e-01
4.23830330e-01 4.93501425e-01 2.52174567e-02 6.37694359e-01
4.52090293e-01 -1.44543931e-01 -3.66580993e-01 -7.40844727e-01
2.75268078e-01 -4.48540188e-02 -3.17058146e-01 -1.43484741e-01
-1.07397056e+00 7.48826981e-01 1.20246515e-01 4.76192594e-01
-3.59869748e-01 -1.53111279e-01 4.84270364e-01 -7.79166445e-02
4.09909874e-01 5.17694235e-01 -8.48508418e-01 -3.80715206e-02
-1.04853976e+00 3.37104172e-01 1.00067317e+00 1.00319493e+00
-1.02535553e-01 -8.48714828e-01 -2.11394399e-01 7.73746610e-01
2.98172593e-01 6.94862530e-02 5.89767754e-01 -5.44849396e-01
1.26437142e-01 7.40946233e-01 2.36261562e-01 -3.87291819e-01
-7.54363060e-01 -4.43190873e-01 -5.32527566e-01 -3.42580706e-01
3.84536982e-01 2.51227338e-02 -9.11597431e-01 1.51007354e+00
1.79511622e-01 8.41323957e-02 2.52200425e-01 3.63575131e-01
1.13134468e+00 2.34860644e-01 9.50807035e-01 -6.14200771e-01
1.91292906e+00 -4.62554932e-01 -8.04524839e-01 1.07182197e-01
1.18614006e+00 -9.91554320e-01 6.14705741e-01 5.99151015e-01
-1.12009716e+00 2.68434376e-01 -8.51281762e-01 -1.36083364e-01
-7.16623604e-01 2.67573535e-01 9.32651043e-01 7.47067273e-01
-7.43245661e-01 5.31481981e-01 -8.33964050e-01 -6.49456024e-01
9.01179135e-01 5.84182024e-01 -6.34504974e-01 -2.53387094e-01
-1.07088327e+00 9.84880328e-01 4.62128490e-01 -3.65704179e-01
-5.76631784e-01 -1.20377922e+00 -7.66242146e-01 -1.38308302e-01
2.94370860e-01 -1.16335762e+00 1.19327450e+00 -1.75741926e-01
-1.07616115e+00 1.08768570e+00 -3.08666497e-01 -3.45598012e-01
5.80598265e-02 8.38027075e-02 -5.90518534e-01 2.32787207e-02
1.42163798e-01 4.39121127e-01 -3.70449806e-03 -4.32490230e-01
-8.90769660e-01 -5.38021564e-01 -3.22161734e-01 1.25138775e-01
-4.14480776e-01 4.30676073e-01 -6.29362404e-01 -7.31310666e-01
-2.46576026e-01 -8.81851196e-01 -5.77490628e-01 -8.85868520e-02
-3.36422950e-01 -5.03964484e-01 4.45690930e-01 -6.85498118e-01
1.48586130e+00 -1.94561577e+00 -1.00180857e-01 1.66840464e-01
2.11480856e-01 4.89353649e-02 1.70548603e-01 5.16167939e-01
-2.29644239e-01 5.43774009e-01 -2.06461281e-01 1.33701399e-01
-4.55309480e-01 -7.77293220e-02 -3.98316123e-02 4.68458921e-01
2.56813169e-01 9.00075316e-01 -1.12649262e+00 -5.17636180e-01
3.15378010e-02 5.20734072e-01 -4.16670114e-01 -2.04688519e-01
-4.72748756e-01 1.87944889e-01 -7.99468756e-01 9.74174082e-01
4.86336738e-01 -4.32119429e-01 4.76121575e-01 -3.14495206e-01
-2.07641318e-01 6.72532856e-01 -8.41051996e-01 1.83359194e+00
-2.27718517e-01 1.35866985e-01 2.27616751e-03 -6.26085877e-01
2.21619695e-01 6.73974812e-01 8.72352064e-01 -1.29886135e-01
2.88384091e-02 5.87117791e-01 -5.27072772e-02 -7.11590588e-01
1.09698631e-01 -4.12011921e-01 -1.09499112e-01 -4.80720028e-02
-7.93729722e-02 -1.47241876e-01 2.61109114e-01 3.28047842e-01
1.47525823e+00 -4.08017039e-02 8.68375599e-01 -2.60604411e-01
6.29157066e-01 6.26004457e-01 3.87609512e-01 4.57899988e-01
8.03944170e-02 1.55555785e-01 2.61308998e-01 -2.28315890e-01
-6.30553782e-01 -7.54776657e-01 -8.61341953e-01 4.41839635e-01
-4.93508369e-01 -5.80098689e-01 -4.72319543e-01 -6.21253669e-01
6.97800294e-02 7.64623702e-01 -3.67919058e-01 1.21527962e-01
-2.53294080e-01 -1.10522783e+00 6.29001856e-01 3.62967551e-01
4.85050753e-02 -7.05798745e-01 -1.93676084e-01 6.06458008e-01
6.99369386e-02 -8.87795925e-01 -2.75622129e-01 2.65404612e-01
-8.54876041e-01 -1.33716917e+00 -8.04431498e-01 -8.43617857e-01
4.76836592e-01 -2.16882572e-01 1.01237035e+00 -4.97654751e-02
-7.22059429e-01 1.14041574e-01 1.45388797e-01 -7.96811044e-01
-5.24133027e-01 2.69687455e-02 -1.87445894e-01 -7.04876781e-01
7.73648083e-01 -7.01476857e-02 -6.37542069e-01 -8.38614404e-02
-1.00714576e+00 -2.84491628e-01 9.16684747e-01 4.35925335e-01
8.61294270e-01 2.28675589e-01 5.94225407e-01 -1.30299354e+00
9.86901045e-01 -7.16357887e-01 -4.43232328e-01 2.94762731e-01
-6.77350104e-01 -1.91558953e-02 3.32745552e-01 -1.47234872e-01
-6.88438654e-01 4.08902645e-01 -3.80738318e-01 2.18571231e-01
-5.14970243e-01 1.14474332e+00 -3.16230774e-01 7.02921003e-02
6.22243941e-01 -3.85978073e-01 -6.58457130e-02 -5.09898663e-01
1.53749019e-01 8.81758869e-01 2.35710546e-01 -3.81565899e-01
1.66702449e-01 4.13189709e-01 1.53723627e-01 -7.57396460e-01
-8.18670869e-01 -7.91426837e-01 -1.13773840e-02 5.17206967e-01
8.13477457e-01 -1.10136187e+00 -7.73464501e-01 8.41698125e-02
-1.11395323e+00 9.33186859e-02 -1.77301615e-01 7.33175874e-01
-1.96544528e-01 2.34168082e-01 -6.69345140e-01 -2.42013320e-01
-5.23492336e-01 -1.24346232e+00 9.31847572e-01 1.90182105e-01
-6.81840479e-01 -1.05195534e+00 2.35177785e-01 3.38105202e-01
1.20349832e-01 2.94411927e-01 1.27586818e+00 -9.10402715e-01
-2.99256206e-01 -6.19248927e-01 -2.17547446e-01 -2.45915160e-01
4.88773227e-01 2.92959362e-02 -7.64118791e-01 -1.20309666e-01
-4.74210307e-02 2.05965992e-02 6.61629021e-01 8.20952654e-01
1.40450799e+00 -2.05001384e-01 -1.06899905e+00 1.87294245e-01
1.43052351e+00 4.80740875e-01 4.79832441e-01 2.03742981e-01
3.11634332e-01 5.04819274e-01 6.21744335e-01 1.58511773e-01
1.39488250e-01 6.22695982e-01 -1.43584609e-01 -1.56906009e-01
8.80836174e-02 1.15420878e-01 2.93048024e-02 6.27692863e-02
4.32397388e-02 -3.80959243e-01 -1.05256939e+00 6.19748056e-01
-1.47076237e+00 -7.15094209e-01 -3.32285613e-01 2.28605437e+00
1.31138301e+00 2.85760015e-01 6.77562356e-02 -3.17676157e-01
1.73073351e-01 -7.21427143e-01 -5.53268909e-01 -4.57833886e-01
-1.40223935e-01 5.81415951e-01 7.49613702e-01 3.80961329e-01
-1.00074792e+00 7.20965207e-01 6.95304060e+00 1.00692832e+00
-9.20290709e-01 -1.62456676e-01 8.25696409e-01 -1.49361324e-04
-3.80668610e-01 2.29426604e-02 -9.57854629e-01 2.18162179e-01
1.22871363e+00 -4.11236674e-01 5.11192018e-04 6.15661979e-01
6.22267783e-01 -2.42275491e-01 -1.34780693e+00 6.25689268e-01
-2.71378815e-01 -1.87896407e+00 2.01852173e-02 2.81546086e-01
3.73437524e-01 2.58913152e-02 -8.50059986e-02 -1.44386142e-01
2.83822358e-01 -1.24116910e+00 1.11708120e-01 5.46132624e-01
9.22179282e-01 -5.67987621e-01 9.08297181e-01 1.19678967e-01
-6.84390247e-01 -5.85157378e-03 8.22861493e-02 3.82839978e-01
1.67885218e-02 9.64921534e-01 -1.16253734e+00 7.03149855e-01
3.82485896e-01 7.97714293e-01 -4.62362140e-01 1.25009775e+00
-6.51356131e-02 4.79450703e-01 -2.47762442e-01 -2.83016767e-02
-1.25133209e-02 1.22204468e-01 3.84793997e-01 1.27992940e+00
2.60536551e-01 3.33924294e-01 1.76148251e-01 5.40915608e-01
-1.98424503e-01 5.42184651e-01 -5.41770279e-01 -6.68744862e-01
3.27844411e-01 1.18322778e+00 -7.53734767e-01 -5.16525149e-01
-5.62483251e-01 4.41029131e-01 -1.43783242e-01 1.77376214e-02
-5.23660541e-01 -4.14726973e-01 5.15904069e-01 3.33882272e-01
-1.58998311e-01 1.64427578e-01 -5.19308090e-01 -8.82471740e-01
-3.59957874e-01 -1.27978373e+00 9.47177470e-01 -3.85405302e-01
-1.14314461e+00 3.62224996e-01 -3.75103652e-02 -1.10591030e+00
-7.97609910e-02 -7.05802321e-01 -1.87429801e-01 1.14539409e+00
-1.19599342e+00 -1.00729239e+00 1.15555428e-01 2.98668087e-01
3.29264998e-01 -9.08048376e-02 1.32121921e+00 5.03408074e-01
-4.78930503e-01 4.24218982e-01 -8.10241774e-02 -2.29104519e-01
1.06426406e+00 -1.01620400e+00 -1.20779641e-01 1.37772769e-01
-1.77137151e-01 1.13891530e+00 7.56209970e-01 -9.55055416e-01
-1.44717526e+00 -8.55794609e-01 1.29661119e+00 -7.15016901e-01
9.16826606e-01 -9.92225334e-02 -6.64304376e-01 3.91205996e-01
2.05540046e-01 -4.43461776e-01 1.29835796e+00 9.45478901e-02
-1.01141326e-01 2.54719466e-01 -1.33105397e+00 7.22521901e-01
4.61778969e-01 -2.00054452e-01 -3.34697336e-01 8.67163420e-01
5.95694900e-01 -3.88608873e-01 -1.46765542e+00 5.10817528e-01
4.29966122e-01 -3.31651717e-02 9.29760993e-01 -1.05522883e+00
4.21054065e-01 -3.77875656e-01 2.85899132e-01 -9.86821175e-01
-1.87563390e-01 -5.53228080e-01 1.31942570e-01 8.24599326e-01
1.05058825e+00 -6.42063498e-01 9.62055027e-01 1.14920425e+00
-1.51432887e-01 -1.01238513e+00 -7.27909803e-01 -2.53755301e-01
2.63487786e-01 -2.39142254e-01 2.76566029e-01 9.96323347e-01
6.07253373e-01 4.64310676e-01 2.65660226e-01 8.94928128e-02
3.98653448e-01 6.28979206e-02 3.19757223e-01 -1.18976569e+00
-2.65600055e-01 -5.30738294e-01 -2.76476771e-01 -4.36475486e-01
-1.54715896e-01 -9.57188845e-01 -4.36699122e-01 -1.98259962e+00
6.14580035e-01 -5.36227822e-01 -3.90507966e-01 8.01348507e-01
-4.58403975e-02 4.80143093e-02 -6.20529115e-01 7.92234540e-02
-1.06557518e-01 -3.93488795e-01 7.42612600e-01 -2.97156185e-01
-3.58562738e-01 -2.67474959e-03 -1.16899359e+00 5.93876839e-01
7.98843622e-01 -7.17097878e-01 -2.19494537e-01 2.20541522e-01
2.80912250e-01 1.55970147e-02 6.49303123e-02 -6.08951569e-01
2.22722024e-01 -5.37009597e-01 4.11671996e-01 -6.73488498e-01
-8.52710828e-02 -8.74452472e-01 5.47521949e-01 7.95653880e-01
-3.88518631e-01 -2.37537399e-01 6.89789712e-01 4.32518631e-01
-1.78186402e-01 -2.72484988e-01 5.99322617e-01 -2.87237763e-01
-2.68362969e-01 1.51805133e-01 -6.94402277e-01 -1.63035586e-01
1.13548422e+00 5.68477698e-02 -4.44768965e-01 2.36373837e-03
-9.10251856e-01 1.83694705e-01 4.67901081e-01 3.41638207e-01
3.22782874e-01 -8.84629071e-01 -7.51727939e-01 -1.98254332e-01
3.06709260e-01 -1.68435127e-01 1.33463636e-01 1.08523166e+00
-4.57469910e-01 8.64972591e-01 2.43909389e-01 -2.32886031e-01
-1.49866879e+00 8.33433747e-01 1.68558896e-01 -6.33966506e-01
-3.29340935e-01 6.76568806e-01 2.21399274e-02 -6.13648370e-02
2.15580657e-01 -3.46940815e-01 -2.59127587e-01 8.56164657e-03
6.69912100e-01 2.82015055e-02 6.77759707e-01 -1.13712050e-01
-6.70701146e-01 4.43474911e-02 -6.10072732e-01 -1.09816389e-03
1.51020718e+00 3.61319840e-01 -3.48813742e-01 -9.20084491e-03
1.08350992e+00 4.05932248e-01 -1.34062842e-01 2.57393926e-01
4.17200714e-01 4.66610342e-02 1.48086995e-01 -1.23774552e+00
-6.04055822e-01 2.41309762e-01 3.71598959e-01 4.09209356e-02
1.05992591e+00 2.61100560e-01 4.01417226e-01 1.52401730e-01
1.40086100e-01 -8.20164859e-01 -7.57000506e-01 9.21945050e-02
6.09709203e-01 -9.78839159e-01 6.12468898e-01 -7.92986095e-01
-1.50401965e-01 1.03472507e+00 -9.57676768e-02 4.83257502e-01
7.61464000e-01 5.71072876e-01 -1.24322630e-01 -4.98006225e-01
-8.80954683e-01 2.41999224e-01 4.31676418e-01 2.51666963e-01
1.10790741e+00 1.04735091e-01 -9.86464858e-01 7.17497051e-01
2.77291894e-01 5.77058315e-01 2.84043342e-01 1.18934810e+00
-1.02317266e-01 -1.83135247e+00 -2.31939614e-01 8.67785633e-01
-1.02862298e+00 -4.99862850e-01 -7.72332489e-01 7.16293097e-01
-2.08223797e-02 8.86627197e-01 -5.07446706e-01 2.13885695e-01
4.99853134e-01 1.37202099e-01 4.63151991e-01 -8.69795442e-01
-7.99941242e-01 4.45486814e-01 5.36943138e-01 -3.89501333e-01
-5.54993808e-01 -7.07617998e-01 -1.38174999e+00 1.37815580e-01
-3.29604387e-01 4.58059043e-01 8.24878871e-01 8.54092300e-01
7.06781268e-01 5.38203418e-01 -1.02410756e-01 5.73964678e-02
-2.87100703e-01 -6.61819518e-01 -3.36175561e-01 1.28727153e-01
-2.11505052e-02 -3.31787974e-01 -1.94526702e-01 2.71725118e-01] | [8.414144515991211, 8.656289100646973] |