paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cb29abcf-8c05-4830-8fef-5c786d1b1633 | attend-memorize-and-generate-towards-faithful-1 | 2203.00732 | null | https://arxiv.org/abs/2203.00732v1 | https://arxiv.org/pdf/2203.00732v1.pdf | Attend, Memorize and Generate: Towards Faithful Table-to-Text Generation in Few Shots | Few-shot table-to-text generation is a task of composing fluent and faithful sentences to convey table content using limited data. Despite many efforts having been made towards generating impressive fluent sentences by fine-tuning powerful pre-trained language models, the faithfulness of generated content still needs to be improved. To this end, this paper proposes a novel approach Attend, Memorize and Generate (called AMG), inspired by the text generation process of humans. In particular, AMG (1) attends over the multi-granularity of context using a novel strategy based on table slot level and traditional token-by-token level attention to exploit both the table structure and natural linguistic information; (2) dynamically memorizes the table slot allocation states; and (3) generates faithful sentences according to both the context and memory allocation states. Comprehensive experiments with human evaluation on three domains (i.e., humans, songs, and books) of the Wiki dataset show that our model can generate higher qualified texts when compared with several state-of-the-art baselines, in both fluency and faithfulness. | ['Philip S. Yu', 'Yao Wan', 'Ye Liu', 'Wenting Zhao'] | 2022-03-01 | attend-memorize-and-generate-towards-faithful | https://aclanthology.org/2021.findings-emnlp.347 | https://aclanthology.org/2021.findings-emnlp.347.pdf | findings-emnlp-2021-11 | ['table-to-text-generation'] | ['natural-language-processing'] | [ 2.48318046e-01 3.91110957e-01 -1.18735723e-01 -2.69467860e-01
-8.77848864e-01 -3.80086809e-01 1.07433569e+00 2.19238430e-01
-3.53820361e-02 1.14471436e+00 9.70313311e-01 1.47242369e-02
4.90506917e-01 -1.29464829e+00 -5.97611904e-01 -2.14932814e-01
4.12561297e-01 6.79615438e-01 8.78864378e-02 -9.14010823e-01
6.02926075e-01 -1.29910946e-01 -1.44573510e+00 8.25672030e-01
1.20829415e+00 5.72362065e-01 4.46854442e-01 6.24477327e-01
-8.02228510e-01 1.52818286e+00 -7.86109209e-01 -5.68484902e-01
-2.19509140e-01 -1.11018467e+00 -1.16124427e+00 5.05312718e-02
1.71855301e-01 -2.72170782e-01 -1.08506821e-01 8.07177544e-01
5.99072635e-01 3.27367097e-01 6.75456882e-01 -7.43661106e-01
-1.15641081e+00 1.38913536e+00 -2.10055575e-01 2.26565763e-01
6.66088879e-01 1.66547284e-01 9.71760094e-01 -9.16398823e-01
7.81342328e-01 1.36234260e+00 2.37718925e-01 9.57563221e-01
-1.09245872e+00 -3.65079999e-01 1.51909858e-01 -1.56459548e-02
-1.16232252e+00 -6.67219937e-01 6.68461382e-01 -3.00120443e-01
1.33126700e+00 2.23925412e-01 6.42088115e-01 1.22161543e+00
4.33264822e-01 8.09373140e-01 9.19236600e-01 -6.32632434e-01
1.84199840e-01 2.28088707e-01 -2.34667078e-01 7.38578081e-01
-1.16900413e-03 -2.66228586e-01 -1.19399595e+00 1.65260270e-01
6.00815475e-01 -5.61707735e-01 -1.46646410e-01 3.08146805e-01
-1.62813616e+00 9.39802945e-01 1.69883966e-01 4.19773817e-01
-5.42861521e-01 5.49616106e-03 5.32178640e-01 6.07452728e-02
5.71873665e-01 7.94609487e-01 -4.79290448e-02 -2.97568202e-01
-1.09988499e+00 4.79335159e-01 9.26177382e-01 1.19039881e+00
6.37306035e-01 3.75822037e-01 -9.57096219e-01 7.32327938e-01
3.50764282e-02 4.88280743e-01 9.91678417e-01 -4.59645212e-01
7.73863435e-01 6.41075730e-01 2.16850892e-01 -8.56991589e-01
-8.11799318e-02 -1.63872555e-01 -1.05945349e+00 -4.12485659e-01
-3.25075351e-02 -1.15277730e-01 -7.74324417e-01 1.86639833e+00
1.32174954e-01 -2.68714398e-01 3.24744523e-01 5.92199564e-01
1.18688571e+00 1.08144903e+00 1.48210645e-01 -3.02055746e-01
1.35260034e+00 -1.11191022e+00 -1.17272103e+00 -5.23451746e-01
3.85099053e-01 -8.01884651e-01 1.54537380e+00 5.71122617e-02
-1.69420290e+00 -8.22469950e-01 -1.12144136e+00 -3.42650831e-01
-5.28385520e-01 -4.23091762e-02 6.02324128e-01 4.58222538e-01
-1.17004764e+00 3.98350954e-01 -4.65805113e-01 -2.55476534e-01
2.46886373e-01 -2.35509381e-01 -8.51073861e-02 2.53575712e-01
-1.71655512e+00 1.00702882e+00 6.49088204e-01 -1.29452869e-01
-7.61571229e-01 -5.87106884e-01 -9.51290071e-01 2.00873762e-01
2.99298435e-01 -1.07283533e+00 1.41916990e+00 -5.83886981e-01
-1.86500347e+00 8.59035552e-01 -2.41046414e-01 -5.60711682e-01
2.93371052e-01 -1.98577687e-01 -1.37611166e-01 -1.67794414e-02
4.86994833e-01 9.11139727e-01 5.49508810e-01 -9.71919656e-01
-4.58071291e-01 -3.36744972e-02 3.93286273e-02 5.56343436e-01
-3.81463677e-01 -4.77409214e-02 -1.36971548e-01 -9.69016194e-01
-1.35330155e-01 -3.79197299e-01 -7.38640800e-02 -6.01963341e-01
-7.32699811e-01 -4.52409238e-01 1.08023137e-01 -6.62299752e-01
1.61815381e+00 -1.65970719e+00 2.16502607e-01 -3.14497054e-01
-4.84722070e-02 2.87270285e-02 -1.01057976e-01 9.50333834e-01
3.81068140e-01 2.10091904e-01 -1.43441111e-01 -3.74933720e-01
1.91317022e-01 -2.46549957e-02 -7.75285244e-01 -3.17213565e-01
2.58976370e-01 1.13700044e+00 -1.14732409e+00 -8.18968654e-01
8.23188648e-02 1.92646861e-01 -5.95723271e-01 4.23604727e-01
-6.41451120e-01 1.71722993e-01 -3.71050864e-01 2.97977775e-01
1.13471121e-01 -3.01891416e-01 1.74919978e-01 -7.27628451e-03
-1.78350791e-01 9.04417634e-01 -8.57379258e-01 1.95648944e+00
-7.66361952e-01 1.89084321e-01 -5.97815096e-01 -4.81589407e-01
1.01758528e+00 4.90962088e-01 -2.09071353e-01 -8.76914620e-01
-1.55422026e-02 1.39895558e-01 -2.15776265e-01 -2.97063112e-01
1.12036300e+00 -4.59953547e-01 -6.04575276e-01 7.86926091e-01
9.11831632e-02 -4.36184883e-01 6.74103796e-01 7.07389891e-01
6.55416608e-01 2.66800493e-01 5.39724410e-01 -4.55626220e-01
6.63548410e-01 4.06413116e-02 1.15915380e-01 8.56796682e-01
8.33335370e-02 5.55525601e-01 3.85186017e-01 -3.04687560e-01
-9.38244224e-01 -9.30932879e-01 4.24689889e-01 1.43986475e+00
6.38386086e-02 -6.32478952e-01 -1.14246273e+00 -3.32918704e-01
-4.47745562e-01 1.32633638e+00 -7.94338346e-01 -4.87143278e-01
-6.84501052e-01 -5.89669645e-01 6.00571990e-01 6.30922914e-01
8.83615792e-01 -1.80616903e+00 -6.79378450e-01 6.60387099e-01
-9.51271892e-01 -9.26261246e-01 -8.55835915e-01 -1.29016459e-01
-4.87639308e-01 -3.53471845e-01 -4.48216170e-01 -8.28509569e-01
4.14992154e-01 1.95329506e-02 1.65231192e+00 5.30246086e-02
-1.75715350e-02 -7.27247819e-02 -4.97187942e-01 -4.75706279e-01
-8.99368525e-01 3.27286184e-01 -2.31353089e-01 -1.47156075e-01
8.02958533e-02 -3.71976227e-01 -2.90135205e-01 -1.21915169e-01
-9.30320024e-01 9.05339241e-01 6.39194429e-01 8.77690077e-01
5.70265293e-01 -1.61898106e-01 9.06846642e-01 -1.18771684e+00
1.18144131e+00 -3.49162161e-01 -5.03607802e-02 5.11102915e-01
-4.39144820e-01 3.17410231e-01 9.16574776e-01 -2.11275086e-01
-1.53354812e+00 -3.05667847e-01 -1.00312039e-01 4.36891913e-01
1.74888894e-01 5.53897977e-01 -3.09487611e-01 7.38231421e-01
8.66061270e-01 7.58710504e-01 -1.83795244e-01 -1.59865022e-02
7.41709948e-01 7.17899382e-01 7.06470013e-01 -8.92561555e-01
6.43361449e-01 2.44699210e-01 -3.60140681e-01 -4.15681869e-01
-1.19039178e+00 1.40652940e-01 -4.86035764e-01 -2.93925434e-01
9.61556017e-01 -8.71554792e-01 -3.31012487e-01 4.14095372e-01
-1.29098511e+00 -6.39360726e-01 -4.81910020e-01 -6.58242777e-02
-8.57851624e-01 9.80999470e-02 -9.00478661e-01 -7.15594590e-01
-9.00286198e-01 -7.54066586e-01 1.09366107e+00 2.17973396e-01
-5.45154989e-01 -9.55268502e-01 1.55694842e-01 2.11029172e-01
7.62434125e-01 2.87865162e-01 1.05433762e+00 -3.60618591e-01
-5.48790097e-01 8.19808766e-02 2.91501582e-02 -7.95267224e-02
1.90534309e-01 -1.48575693e-01 -7.45011806e-01 8.92532170e-02
-9.50249359e-02 -7.99174845e-01 8.22766006e-01 -1.57789849e-02
8.88713598e-01 -7.67585933e-01 1.17099427e-01 1.56785324e-01
9.83851373e-01 1.08072661e-01 9.29271638e-01 3.05748194e-01
4.92008001e-01 6.50740445e-01 5.78418374e-01 7.01276183e-01
7.77555227e-01 5.91295600e-01 -7.35399127e-02 1.37821630e-01
-4.44651693e-01 -9.44127977e-01 4.36428249e-01 9.93122458e-01
9.43820253e-02 -4.18478847e-01 -6.25873506e-01 4.88545895e-01
-1.83682477e+00 -1.41304862e+00 1.93380117e-01 1.86784840e+00
1.62042069e+00 3.35388899e-01 -6.64401278e-02 9.35682058e-02
6.85887337e-01 5.03125548e-01 -1.84117034e-01 -7.49547184e-01
-2.68938422e-01 2.54536629e-01 -1.86842844e-01 6.45143867e-01
-6.72961295e-01 1.51277602e+00 5.75618792e+00 9.72312927e-01
-8.80060077e-01 -7.62014166e-02 7.47058690e-01 -4.08440605e-02
-6.06525064e-01 -1.79129884e-01 -9.30056870e-01 4.74065036e-01
1.02565026e+00 -7.64162004e-01 6.49173796e-01 6.21938050e-01
8.29766095e-02 5.38669527e-02 -1.00495255e+00 5.49200535e-01
4.59826469e-01 -1.60867083e+00 7.57995665e-01 -3.79540950e-01
8.07247043e-01 -7.11109221e-01 -4.27941792e-02 7.82822192e-01
3.48539144e-01 -1.12883806e+00 1.39691997e+00 7.24755168e-01
9.37786400e-01 -7.13221729e-01 5.17578959e-01 6.08475804e-01
-1.26903760e+00 3.96816164e-01 -4.88611579e-01 -2.79674053e-01
3.55762899e-01 4.13531870e-01 -8.12785804e-01 5.08959711e-01
3.20322782e-01 3.93670410e-01 -5.45072556e-01 1.64256483e-01
-6.18371069e-01 5.35556614e-01 2.79867381e-01 -5.33080041e-01
1.95405528e-01 1.41170904e-01 2.50266612e-01 1.40252602e+00
1.84853718e-01 2.66576976e-01 1.38588488e-01 1.24694240e+00
-1.89737633e-01 3.34212780e-01 -4.35962975e-01 -2.93056071e-01
6.25188947e-01 1.22604001e+00 -6.82476282e-01 -7.83261001e-01
-7.90561661e-02 1.15357757e+00 4.93140191e-01 1.09562151e-01
-6.10920012e-01 -6.12600923e-01 5.97112030e-02 1.64403334e-01
7.99924731e-02 1.16787245e-02 -5.63901246e-01 -1.10556066e+00
-7.65699893e-02 -9.44394231e-01 2.59553939e-01 -9.93439674e-01
-1.16168451e+00 1.00136948e+00 -2.23303717e-02 -7.84952700e-01
-8.25348139e-01 6.88562915e-02 -8.18353415e-01 1.07347167e+00
-1.28163838e+00 -1.17037773e+00 -3.49031925e-01 5.00336945e-01
1.03636205e+00 -2.54977733e-01 9.86088336e-01 -2.53482699e-01
-3.48801374e-01 6.17477298e-01 -5.84714413e-01 4.02431795e-03
5.67370296e-01 -1.40198302e+00 8.77348423e-01 9.74299848e-01
2.16486454e-01 8.85163546e-01 7.04324603e-01 -8.32567990e-01
-1.11328363e+00 -1.17218530e+00 1.71800470e+00 -4.14808124e-01
4.27207828e-01 -6.99159563e-01 -8.07008505e-01 4.48833495e-01
7.41458058e-01 -5.99567354e-01 6.94030583e-01 -1.93085015e-01
-2.26281479e-01 6.76138513e-03 -1.06594121e+00 8.48982036e-01
1.04985559e+00 -4.61470574e-01 -8.40639353e-01 4.38508779e-01
8.95977378e-01 -6.85488760e-01 -3.43277186e-01 7.76275918e-02
2.74245381e-01 -1.06124246e+00 6.46761477e-01 -6.05965495e-01
1.10582507e+00 -2.35974625e-01 -1.64267849e-02 -1.46432257e+00
-4.89033103e-01 -8.72045517e-01 -1.71510085e-01 1.47201633e+00
5.01101375e-01 -2.75746763e-01 4.04942662e-01 4.15685117e-01
-4.81174648e-01 -8.06871593e-01 -5.83931088e-01 -4.22017395e-01
1.42299637e-01 -4.25049476e-02 9.19056296e-01 6.66711330e-01
4.13304448e-01 9.35484052e-01 -5.55470288e-01 -5.56874752e-01
1.38667017e-01 2.81695336e-01 6.71289861e-01 -7.49763370e-01
-2.88318217e-01 -5.98681390e-01 3.63531172e-01 -9.84183788e-01
2.75759131e-01 -1.14814043e+00 4.71357524e-01 -1.96184397e+00
3.72337878e-01 3.51250172e-03 1.91031441e-01 5.48534751e-01
-6.58195317e-01 1.30264834e-01 3.45534950e-01 1.14628553e-01
-6.70276582e-01 6.68543994e-01 1.50657976e+00 -2.94455551e-02
-2.01974824e-01 -2.79417396e-01 -1.25550652e+00 2.71585196e-01
8.84926319e-01 -1.21374525e-01 -6.23632133e-01 -3.28398585e-01
4.98318642e-01 3.94336730e-01 -4.74587269e-02 -9.52544928e-01
1.68548241e-01 -4.32908028e-01 4.34950233e-01 -5.91243684e-01
7.42349401e-02 2.13323250e-01 -1.46157160e-01 4.50866789e-01
-8.87053132e-01 2.12561727e-01 2.19067916e-01 2.50945538e-01
-1.81897804e-01 -1.60968602e-01 7.40659475e-01 -6.65608287e-01
-4.79552805e-01 3.20873186e-02 -6.36086881e-01 5.66379189e-01
5.42949438e-01 9.80551075e-03 -5.64552188e-01 -5.77615082e-01
-1.73003882e-01 9.64408889e-02 2.27977082e-01 4.89102870e-01
7.16562450e-01 -1.51804209e+00 -1.04996526e+00 1.86284691e-01
2.06171617e-01 -8.88878703e-02 3.22229743e-01 1.06383324e-01
-3.71836931e-01 6.39335990e-01 -2.32804567e-01 -4.92714085e-02
-6.42452359e-01 3.98155004e-01 8.86286050e-02 -8.12931776e-01
-4.62619364e-01 1.01854539e+00 8.32616240e-02 -2.07986712e-01
3.77936140e-02 -2.06537127e-01 -3.51151913e-01 7.61227980e-02
9.14206445e-01 1.74358800e-01 2.92159449e-02 -4.16035980e-01
-8.69823471e-02 9.43822786e-02 -2.63009995e-01 -5.27317405e-01
8.69029701e-01 -1.30769789e-01 -2.43723258e-01 6.65051579e-01
5.68402767e-01 7.56069943e-02 -7.96614289e-01 -7.58157298e-02
-6.08858205e-02 -2.34399915e-01 -3.17410201e-01 -1.24238598e+00
-5.68688571e-01 8.80998790e-01 -2.90364742e-01 2.73029804e-01
8.85886729e-01 -1.02831088e-01 1.18579948e+00 3.63547146e-01
4.31036264e-01 -1.24656689e+00 6.20054543e-01 7.36301601e-01
1.20721805e+00 -8.68140578e-01 -3.58882248e-01 -1.63025334e-01
-1.07898974e+00 9.90136027e-01 9.48653758e-01 8.80362317e-02
-1.04120253e-02 1.90117806e-01 3.57848108e-02 5.17572239e-02
-1.12867904e+00 -1.34076953e-01 1.86944053e-01 4.29504126e-01
9.67112422e-01 2.75427587e-02 -5.40821850e-01 9.27824795e-01
-8.29128206e-01 6.19633496e-03 7.27316499e-01 8.69616330e-01
-7.44615614e-01 -9.47891355e-01 -4.93892916e-02 3.68603528e-01
-2.03752235e-01 -5.84640920e-01 -5.19735336e-01 4.95751232e-01
-1.02736219e-03 1.10238242e+00 -6.26695752e-02 -1.69300407e-01
2.92212367e-01 2.80471325e-01 4.56982911e-01 -1.04364502e+00
-8.83534908e-01 -2.59142846e-01 2.43603140e-01 -3.76470745e-01
-1.31906345e-01 -3.05649489e-01 -1.50765944e+00 -3.59365225e-01
5.96852526e-02 3.40772867e-01 2.98680514e-01 8.20654869e-01
2.43255079e-01 8.04872930e-01 4.95371878e-01 -7.34879494e-01
-8.00113440e-01 -1.36872184e+00 -4.52589869e-01 4.33885187e-01
-1.33641526e-01 -3.49231362e-01 -1.84409007e-01 1.83570623e-01] | [11.703781127929688, 8.851287841796875] |
66d27375-2389-4888-9192-258c555567bb | weighted-anisotropic-isotropic-total | 2307.00439 | null | https://arxiv.org/abs/2307.00439v1 | https://arxiv.org/pdf/2307.00439v1.pdf | Weighted Anisotropic-Isotropic Total Variation for Poisson Denoising | Poisson noise commonly occurs in images captured by photon-limited imaging systems such as in astronomy and medicine. As the distribution of Poisson noise depends on the pixel intensity value, noise levels vary from pixels to pixels. Hence, denoising a Poisson-corrupted image while preserving important details can be challenging. In this paper, we propose a Poisson denoising model by incorporating the weighted anisotropic-isotropic total variation (AITV) as a regularization. We then develop an alternating direction method of multipliers with a combination of a proximal operator for an efficient implementation. Lastly, numerical experiments demonstrate that our algorithm outperforms other Poisson denoising methods in terms of image quality and computational efficiency. | ['Jack Xin', 'Fredrick Park', 'Yifei Lou', 'Kevin Bui'] | 2023-07-01 | null | null | null | null | ['astronomy'] | ['miscellaneous'] | [ 4.72609639e-01 -5.39900661e-01 3.25475872e-01 -5.54059558e-02
-6.74447358e-01 -3.48109454e-01 1.86620414e-01 -1.57979012e-01
-8.24611247e-01 8.91159832e-01 -5.02316914e-02 3.81806903e-02
1.90205947e-01 -8.49868298e-01 -6.16052806e-01 -1.23703384e+00
5.00646174e-01 5.17346337e-02 3.21784407e-01 4.71579790e-01
3.97758186e-01 3.67627829e-01 -7.98747361e-01 -1.56279594e-01
8.20190430e-01 9.01749134e-01 4.45713550e-01 6.63370550e-01
-2.39387393e-01 6.60850346e-01 -3.34484547e-01 -1.84754401e-01
4.10769224e-01 -5.68533838e-01 -4.29757833e-01 3.68133515e-01
1.43854693e-01 -3.97045851e-01 -3.70444030e-01 1.17481291e+00
4.42458391e-01 2.19462931e-01 8.19218874e-01 -6.24958634e-01
-5.53437114e-01 9.57641602e-02 -1.25162053e+00 5.08137405e-01
-9.03092325e-02 3.06467861e-01 2.44296655e-01 -1.06246865e+00
5.88502049e-01 1.20181358e+00 7.81215310e-01 2.31690928e-01
-1.31815171e+00 -2.47252062e-01 -3.07717741e-01 -9.37512740e-02
-1.32969320e+00 -1.94242015e-01 7.15410113e-01 -2.20407382e-01
3.71805578e-01 1.61675751e-01 5.05617261e-01 7.95757234e-01
7.36206353e-01 3.01069826e-01 1.32323456e+00 -2.81983733e-01
4.00440603e-01 -2.10186660e-01 -7.08915219e-02 5.01777887e-01
6.19456410e-01 -2.21941814e-01 -4.10491973e-01 -4.48664606e-01
1.40722609e+00 6.26387745e-02 -4.68839139e-01 1.79154888e-01
-1.23326838e+00 7.78444767e-01 3.09584856e-01 1.51887015e-01
-8.09732497e-01 5.58076859e-01 1.33457065e-01 -1.56805709e-01
7.09883988e-01 9.87589210e-02 2.09575087e-01 1.63215250e-01
-8.35393250e-01 1.65524781e-01 6.07641995e-01 7.46554375e-01
8.43649209e-01 1.60361543e-01 -2.18451768e-01 1.03245401e+00
2.86659718e-01 8.89216721e-01 -1.03746196e-02 -1.65930951e+00
-1.69529408e-01 2.37641633e-02 2.59794891e-01 -1.09143329e+00
-1.11168213e-02 -2.69027710e-01 -1.51812172e+00 2.29496449e-01
4.29486960e-01 3.85047868e-02 -9.77408290e-01 1.32207704e+00
5.63816607e-01 5.69802821e-01 -2.24369228e-01 1.06292284e+00
6.79020643e-01 8.33625972e-01 1.72002301e-01 -8.49833846e-01
1.32000422e+00 -5.57035625e-01 -1.17706823e+00 -2.37007439e-01
-1.19948782e-01 -1.23467875e+00 5.94324887e-01 4.52744603e-01
-1.47629666e+00 -1.55245304e-01 -5.24486601e-01 -1.98192582e-01
5.08623898e-01 -4.55198020e-01 2.39177525e-01 4.21311766e-01
-7.92335927e-01 4.89996493e-01 -8.28030109e-01 -1.58752084e-01
5.49383402e-01 -2.99031474e-02 -5.02407253e-02 -3.67469490e-01
-4.84238833e-01 5.58257699e-01 4.82017994e-02 1.35914445e-01
-5.43451607e-01 -9.93870437e-01 -6.42074764e-01 -2.79590994e-01
1.91692948e-01 -1.28211939e+00 7.05867589e-01 -4.89095062e-01
-1.27896607e+00 7.54659712e-01 -6.16557062e-01 -2.63474226e-01
7.65665948e-01 4.94624600e-02 2.52183527e-01 5.70746839e-01
2.46240035e-01 3.83149117e-01 1.00570035e+00 -1.56464756e+00
-4.33064491e-01 -1.62412241e-01 -4.45322901e-01 4.35896181e-02
6.85698912e-02 -5.32150269e-02 -5.13060153e-01 -8.43140721e-01
4.73623425e-01 -7.20722258e-01 -6.26572907e-01 4.40564454e-01
-2.62856722e-01 2.74002254e-01 7.00198770e-01 -6.63977385e-01
9.72388446e-01 -2.30516338e+00 2.34465018e-01 1.71936780e-01
6.10937059e-01 -2.36030906e-01 9.82517600e-02 1.41202614e-01
2.66520292e-01 3.03708874e-02 -9.75840032e-01 -4.88799870e-01
-6.40578151e-01 6.15012050e-01 5.95171377e-02 8.44913006e-01
1.28000200e-01 6.57059431e-01 -8.90896261e-01 -7.27195621e-01
3.35262269e-01 8.49278748e-01 -2.90566117e-01 1.66230321e-01
1.93526983e-01 9.42450047e-01 -4.17588323e-01 5.84206402e-01
1.37720180e+00 -2.95568973e-01 -3.50545138e-01 -4.20636386e-01
-4.94576573e-01 -4.53903049e-01 -1.22976065e+00 1.22673523e+00
-3.55165809e-01 3.00820649e-01 6.73224866e-01 -8.59372675e-01
6.19518042e-01 1.75606161e-01 6.91291392e-01 -3.87415558e-01
2.26540670e-01 4.83296901e-01 -4.36142743e-01 -4.48247522e-01
3.16045463e-01 -6.05475724e-01 4.83411908e-01 2.52693534e-01
-4.01599497e-01 -5.65969229e-01 3.00762147e-01 1.58923745e-01
1.31608427e+00 -5.64061344e-01 2.59574085e-01 -5.14311850e-01
4.09374535e-01 -4.21073362e-02 8.51161480e-01 1.02097559e+00
-3.21510762e-01 1.05183399e+00 1.97746113e-01 -2.67397642e-01
-1.40976262e+00 -1.16340172e+00 -6.26694322e-01 1.04598820e-01
3.05821091e-01 1.47671759e-01 -6.15930617e-01 5.09215295e-02
-1.91156849e-01 4.87622112e-01 -2.57464230e-01 2.51483649e-01
-8.09785962e-01 -1.20213377e+00 1.88800231e-01 1.17519639e-01
9.09316003e-01 -7.66212046e-01 -3.63773853e-01 2.83007920e-01
-4.50131923e-01 -1.56955755e+00 -5.48177540e-01 -1.44398510e-01
-9.40845490e-01 -9.21429932e-01 -1.04278421e+00 -7.40873396e-01
8.29689562e-01 7.12711334e-01 1.16645491e+00 1.54582694e-01
-5.14333665e-01 6.93505347e-01 -1.32530063e-01 -3.98725003e-01
-3.24712932e-01 -6.23811722e-01 -4.91273813e-02 1.54232994e-01
-8.19263309e-02 -7.07345366e-01 -1.01952684e+00 1.40290633e-01
-1.34184682e+00 -1.49902239e-01 5.65348804e-01 9.30387497e-01
1.20738101e+00 4.12513345e-01 -9.29082260e-02 -8.07386756e-01
3.83429885e-01 -5.61393678e-01 -5.90153873e-01 -2.31117278e-01
-2.30995268e-01 -4.40457165e-01 2.67826468e-01 -3.68828148e-01
-1.19686842e+00 -7.24818790e-04 9.55417976e-02 -5.09121716e-01
1.35180220e-01 3.14292222e-01 3.85340005e-01 -5.51221788e-01
3.23013127e-01 4.67890352e-01 5.71679287e-02 -2.00474441e-01
4.68788408e-02 1.34818092e-01 6.38932168e-01 -3.43559146e-01
9.07850742e-01 1.19191933e+00 4.37599659e-01 -1.37030005e+00
-7.08411396e-01 -6.71238005e-01 -3.15627337e-01 -3.03369105e-01
1.13159275e+00 -9.38743472e-01 -7.64308035e-01 8.03311646e-01
-1.41514885e+00 -9.93978456e-02 -3.97671014e-01 7.33765721e-01
-4.52754676e-01 8.94417644e-01 -1.01084602e+00 -9.32063878e-01
-2.35374212e-01 -1.29354608e+00 9.32159543e-01 2.92218953e-01
1.31485224e-01 -1.18879664e+00 -1.13126501e-01 4.21045274e-01
5.89024842e-01 2.32900009e-01 6.21859968e-01 5.88072062e-01
-9.31470037e-01 2.21743181e-01 -5.88917315e-01 5.12106359e-01
1.34616971e-01 -1.17979079e-01 -6.46870077e-01 -2.73123197e-02
1.05421340e+00 8.23181644e-02 1.03434920e+00 1.28036416e+00
1.37973380e+00 -3.34409058e-01 -1.21150941e-01 9.78412807e-01
1.79407883e+00 -1.60073042e-01 8.64572406e-01 1.36096090e-01
9.36271548e-01 3.13980222e-01 2.71163493e-01 5.11569679e-01
4.83270781e-03 1.76677451e-01 3.52953523e-01 -2.01256335e-01
-2.66797006e-01 5.69064379e-01 -2.18259573e-01 9.12981927e-01
-3.19205344e-01 -3.90394598e-01 -5.79625547e-01 5.26636720e-01
-1.53043664e+00 -1.01067817e+00 -9.21700120e-01 2.02372408e+00
9.41939712e-01 -2.77054518e-01 -3.15428495e-01 4.06065807e-02
8.30555260e-01 1.44934207e-01 -4.76724714e-01 -9.19840485e-02
-4.66764569e-01 5.48069552e-02 9.75043476e-01 7.51522422e-01
-1.04040718e+00 4.74242240e-01 7.23983145e+00 1.05955541e+00
-6.80984497e-01 3.71297508e-01 9.51664627e-01 5.18589318e-02
-4.80112404e-01 -1.62853375e-01 -4.30361599e-01 7.34235346e-01
3.60512525e-01 -8.58116895e-02 3.16056579e-01 1.34727329e-01
5.92309594e-01 -7.62485385e-01 -3.72773767e-01 1.34850574e+00
-1.34932175e-01 -1.14839530e+00 1.55710235e-01 2.90805161e-01
9.40646291e-01 -1.87278628e-01 1.54669002e-01 -6.30552888e-01
9.54820774e-03 -8.70140374e-01 2.33345702e-01 7.84808278e-01
4.41296011e-01 -6.65178478e-01 7.88652539e-01 2.35743418e-01
-8.75832021e-01 2.97470868e-01 -8.06728065e-01 6.60884604e-02
6.73381031e-01 1.64406586e+00 -1.71256326e-02 2.06445515e-01
8.16665113e-01 5.98984838e-01 1.95907086e-01 1.15029502e+00
-5.98781183e-02 6.90332949e-01 -5.35345256e-01 4.59749967e-01
1.57575384e-01 -1.08430421e+00 1.02897561e+00 1.11786687e+00
5.94593227e-01 7.81617343e-01 3.08352485e-02 1.10363221e+00
-1.46368384e-01 2.30239294e-02 -5.34799039e-01 4.15718466e-01
2.90431768e-01 1.33663559e+00 -9.32657659e-01 -1.66794822e-01
-5.59854150e-01 1.15341866e+00 -2.98242033e-01 6.45084620e-01
-5.74000299e-01 2.89870709e-01 5.13264954e-01 2.17961237e-01
1.82470247e-01 -4.49952722e-01 -8.26235652e-01 -1.02817833e+00
8.10140446e-02 -4.88703132e-01 -2.85845399e-02 -6.51248097e-01
-1.74221027e+00 1.38336942e-01 -1.18920572e-01 -1.01307201e+00
7.13218510e-01 -3.59536588e-01 -7.92755365e-01 1.01096618e+00
-1.56472015e+00 -7.87745774e-01 -5.57095051e-01 4.84549642e-01
5.52867591e-01 3.34605247e-01 3.02758545e-01 3.94331992e-01
-5.91078639e-01 -1.14324436e-01 3.51349086e-01 -1.17114931e-01
6.28650844e-01 -1.01373208e+00 -7.56888911e-02 9.94184375e-01
-5.96194267e-01 4.02021199e-01 9.26995933e-01 -8.59441578e-01
-1.38892365e+00 -9.40414250e-01 5.13694763e-01 3.23026143e-02
5.70416868e-01 1.63930669e-01 -1.16734421e+00 5.26605785e-01
4.29415733e-01 4.02089298e-01 4.94992673e-01 -8.09538484e-01
6.98620453e-02 1.24944681e-02 -1.50067711e+00 4.88815904e-01
8.44897628e-01 -6.59250990e-02 5.08795902e-02 6.32346332e-01
4.69171911e-01 -4.32009131e-01 -9.66238499e-01 4.50341105e-01
1.43990621e-01 -9.95282888e-01 1.21581078e+00 3.09901863e-01
6.52461410e-01 -3.43663245e-01 -1.80122241e-01 -1.09786534e+00
-6.06230676e-01 -5.53597391e-01 6.27270341e-02 1.17200899e+00
-1.41262114e-01 -6.14740372e-01 6.06152773e-01 3.98372680e-01
3.77209559e-02 -4.55051780e-01 -1.18024933e+00 -5.70245922e-01
-2.31426675e-02 -2.94640511e-01 -3.46570760e-01 7.88646519e-01
-7.72347987e-01 1.93423182e-02 -4.78283435e-01 3.02603304e-01
1.62046063e+00 -4.69629407e-01 4.65083957e-01 -9.06570852e-01
-9.76015553e-02 -3.77243459e-01 -3.71325433e-01 -1.01831257e+00
-2.01036498e-01 -4.45480227e-01 1.53824240e-01 -1.45364761e+00
6.51035249e-01 -4.63552088e-01 -1.01896070e-01 -2.52043128e-01
-5.81749618e-01 7.29698002e-01 -2.04504102e-01 5.44404387e-01
-2.20026419e-01 5.85056305e-01 1.54647744e+00 -1.59830347e-01
1.63175032e-01 -1.90626249e-01 -3.31338227e-01 9.30620670e-01
7.14889765e-01 -7.15882421e-01 -7.43888095e-02 -6.87669396e-01
1.47197425e-01 -5.97849265e-02 5.80447912e-01 -8.72185886e-01
1.76206127e-01 -3.51625592e-01 4.79171813e-01 -4.04273570e-01
4.95256990e-01 -7.51249194e-01 1.71743616e-01 4.82955188e-01
1.60168871e-01 -1.74255610e-01 1.51185859e-02 9.19067979e-01
-2.24312216e-01 -5.26080489e-01 1.43062615e+00 -5.02797425e-01
-2.43854925e-01 3.61435115e-01 -6.95110440e-01 -2.34981477e-02
1.00952578e+00 -2.75494665e-01 -2.67581373e-01 -3.13179970e-01
-3.80796283e-01 -2.86728200e-02 5.92273414e-01 -5.53085327e-01
8.79882395e-01 -1.25197434e+00 -1.02990615e+00 -1.22926809e-01
-3.53450209e-01 2.35062540e-01 5.95726311e-01 1.27243447e+00
-1.11036003e+00 -2.49114931e-01 6.97858036e-02 -9.32468295e-01
-1.17570174e+00 2.61385351e-01 3.25750589e-01 -7.62301460e-02
-7.20369339e-01 1.09867215e+00 5.48433006e-01 -5.69198355e-02
-1.31713733e-01 -5.01133613e-02 2.20456332e-01 -3.28105420e-01
6.96680725e-01 7.86274493e-01 -3.00257891e-01 -5.54928124e-01
-1.21603251e-01 1.01472080e+00 2.78854668e-01 -1.21625386e-01
1.33672643e+00 -5.43844521e-01 -7.79752910e-01 6.09857380e-01
1.04276872e+00 1.57010511e-01 -1.17564905e+00 -2.92391241e-01
-5.21981537e-01 -8.02451611e-01 4.46540028e-01 -9.09610167e-02
-1.37511563e+00 4.77430165e-01 3.93159926e-01 1.01527430e-01
1.32592368e+00 -1.79644004e-01 1.11001253e+00 7.49275163e-02
1.50221989e-01 -1.01287520e+00 1.33598655e-01 3.37829500e-01
7.84514844e-01 -1.53528750e+00 3.51742923e-01 -9.41745758e-01
-3.23770404e-01 9.29225504e-01 1.61136091e-01 -4.97895837e-01
8.93811703e-01 5.05868256e-01 3.08510602e-01 -1.40579313e-01
-3.53685230e-01 2.77861226e-02 -8.72271061e-02 4.76633072e-01
4.44111884e-01 -2.83674687e-01 -9.92685974e-01 -2.89439112e-01
3.78110677e-01 -8.97214860e-02 8.18535328e-01 9.09938931e-01
-5.56293488e-01 -8.82802546e-01 -9.70307827e-01 5.52284002e-01
-8.25847507e-01 -1.93199605e-01 2.61103898e-01 2.60312527e-01
7.34055862e-02 1.14838660e+00 1.91910908e-01 4.65030015e-01
8.40877891e-02 -4.80690569e-01 5.36701560e-01 -4.00482118e-01
-2.29173675e-01 6.18526399e-01 -4.68075544e-01 -3.49811465e-01
-8.38402212e-01 -5.89369774e-01 -1.19848168e+00 -7.25841641e-01
-5.95544912e-02 -2.41911307e-01 6.66677535e-01 8.55524898e-01
-7.55982548e-02 5.42681932e-01 6.94079876e-01 -1.01103187e+00
-1.47760004e-01 -7.21751869e-01 -9.73799109e-01 3.83568585e-01
2.63575315e-01 -4.27330911e-01 -8.55015576e-01 2.02775851e-01] | [11.629626274108887, -2.5683696269989014] |
bf18f094-75b8-49a3-a859-79e2b51ece54 | constructing-colloquial-dataset-for-persian | 2306.12679 | null | https://arxiv.org/abs/2306.12679v1 | https://arxiv.org/pdf/2306.12679v1.pdf | Constructing Colloquial Dataset for Persian Sentiment Analysis of Social Microblogs | Introduction: Microblogging websites have massed rich data sources for sentiment analysis and opinion mining. In this regard, sentiment classification has frequently proven inefficient because microblog posts typically lack syntactically consistent terms and representatives since users on these social networks do not like to write lengthy statements. Also, there are some limitations to low-resource languages. The Persian language has exceptional characteristics and demands unique annotated data and models for the sentiment analysis task, which are distinctive from text features within the English dialect. Method: This paper first constructs a user opinion dataset called ITRC-Opinion by collaborative environment and insource way. Our dataset contains 60,000 informal and colloquial Persian texts from social microblogs such as Twitter and Instagram. Second, this study proposes a new deep convolutional neural network (CNN) model for more effective sentiment analysis of colloquial text in social microblog posts. The constructed datasets are used to evaluate the presented model. Furthermore, some models, such as LSTM, CNN-RNN, BiLSTM, and BiGRU with different word embeddings, including Fasttext, Glove, and Word2vec, investigated our dataset and evaluated the results. Results: The results demonstrate the benefit of our dataset and the proposed model (72% accuracy), displaying meaningful improvement in sentiment classification performance. | ['Zeinab Rajabi', 'Farzaneh Rahmani', 'Leyla Rabiei', 'Mojtaba Mazoochi'] | 2023-06-22 | null | null | null | null | ['word-embeddings', 'sentiment-analysis', 'opinion-mining', 'persian-sentiment-anlysis'] | ['methodology', 'natural-language-processing', 'natural-language-processing', 'natural-language-processing'] | [-6.57622278e-01 -1.94170043e-01 -1.49049228e-02 -5.08473754e-01
-1.67083547e-01 -5.07351160e-01 5.23753285e-01 4.15796369e-01
-9.09481347e-01 8.27754140e-01 4.94359702e-01 -4.04529244e-01
3.18236798e-01 -1.04155016e+00 -4.79589365e-02 -4.57130373e-01
1.55199900e-01 1.46449938e-01 -2.41594285e-01 -1.10949278e+00
5.85139275e-01 1.06392711e-01 -1.35014069e+00 2.94497758e-01
9.61333334e-01 1.14052117e+00 6.54486716e-02 5.68249702e-01
-7.27602065e-01 1.25291169e+00 -9.15571570e-01 -9.79532957e-01
-1.96191877e-01 -5.12337759e-02 -9.57746387e-01 -3.09947908e-01
-5.36595397e-02 -3.69592085e-02 1.63239688e-01 1.01223230e+00
7.49145806e-01 2.82024264e-01 5.09314120e-01 -9.68466580e-01
-1.29777396e+00 8.29772472e-01 -4.36635613e-01 1.97439626e-01
2.45767742e-01 -6.52960598e-01 1.04993117e+00 -8.90141904e-01
5.98778963e-01 1.17541325e+00 8.55390072e-01 2.25322157e-01
-3.30649227e-01 -6.12410069e-01 2.68414140e-01 2.33337238e-01
-9.55077350e-01 4.61249379e-03 6.80093527e-01 -4.27922368e-01
1.10596180e+00 2.60014813e-02 7.21642971e-01 1.30520380e+00
6.21273875e-01 5.64886808e-01 1.16928875e+00 -2.69334942e-01
-1.78524908e-02 9.18514669e-01 6.32825494e-01 5.18467605e-01
1.54090568e-01 -5.64104795e-01 -5.77418447e-01 1.30905267e-02
-1.47032917e-01 3.80752653e-01 -5.53114377e-02 3.40355456e-01
-7.83772230e-01 1.12457335e+00 5.65248966e-01 8.11119318e-01
-3.22311640e-01 -3.14016819e-01 9.55226362e-01 7.46375680e-01
1.11949611e+00 4.71181095e-01 -9.77155089e-01 -1.35869235e-01
-4.55017239e-01 -1.36589274e-01 1.07306182e+00 6.85693800e-01
7.86147833e-01 1.81345269e-01 3.81959438e-01 1.14306247e+00
4.65178996e-01 8.01451147e-01 1.40291107e+00 8.11650679e-02
4.48372811e-01 8.51250648e-01 -1.66868106e-01 -1.89115679e+00
-6.18029058e-01 -3.41053218e-01 -1.04539454e+00 -3.33940476e-01
-2.81254828e-01 -7.52223134e-01 -4.58932519e-01 1.27581513e+00
1.19467594e-01 -4.71404076e-01 4.97306824e-01 5.35119355e-01
1.33848691e+00 8.33775520e-01 6.56164810e-02 -4.85063270e-02
1.35368252e+00 -9.48766112e-01 -8.62914264e-01 -1.15595743e-01
9.14632797e-01 -9.43448663e-01 1.09043658e+00 4.98308450e-01
-5.28031170e-01 -7.36378908e-01 -9.85601723e-01 -1.17225135e-02
-1.28151596e+00 2.28360295e-02 6.80472970e-01 9.19189095e-01
-9.67537940e-01 5.12662411e-01 -4.11150873e-01 -6.19829655e-01
2.74413943e-01 2.79503047e-01 -5.05606294e-01 3.76650006e-01
-1.55722284e+00 1.05090630e+00 2.39605635e-01 3.24450821e-01
-1.63629912e-02 -1.78967848e-01 -9.97872055e-01 -2.41134420e-01
-1.86594501e-01 -1.14326112e-01 1.16347241e+00 -1.62733984e+00
-1.36453927e+00 8.00980270e-01 -4.51077111e-02 -4.06538546e-01
-7.50874579e-02 -4.41807926e-01 -1.01656294e+00 -2.34121636e-01
2.49516964e-01 8.74839500e-02 6.38652384e-01 -8.63219082e-01
-7.09943831e-01 -5.10901392e-01 1.95672408e-01 1.32487237e-01
-1.11607981e+00 3.78294408e-01 7.44070932e-02 -5.25421739e-01
-1.34109750e-01 -6.54712617e-01 -2.42224276e-01 -8.90633643e-01
-3.78042758e-01 -2.64817357e-01 9.37364578e-01 -6.06686711e-01
1.31856072e+00 -2.08397436e+00 -2.95658171e-01 9.40723941e-02
1.55275539e-01 2.59525001e-01 1.49806574e-01 7.18211293e-01
6.61225542e-02 5.39787412e-01 1.86684281e-01 -4.10155594e-01
2.36907601e-02 1.04621716e-01 -3.90736818e-01 2.84310699e-01
-2.25369930e-01 7.06208169e-01 -7.55420923e-01 -5.15526950e-01
1.14137121e-01 5.63262641e-01 -4.09566671e-01 -1.94519013e-02
1.26900107e-01 2.00077519e-02 -6.60231292e-01 5.69494367e-01
5.57413459e-01 -2.56415755e-01 1.79310754e-01 -3.30833554e-01
-3.07697922e-01 1.53563410e-01 -8.11990976e-01 1.02435505e+00
-1.05432010e+00 8.49502325e-01 -1.80855885e-01 -8.82301271e-01
1.28847063e+00 2.84269005e-01 2.53966123e-01 -6.53443217e-01
8.37781191e-01 3.09223861e-01 -3.51070940e-01 -7.48752594e-01
1.13909745e+00 -1.93168402e-01 -3.73634696e-01 3.91437382e-01
1.84906796e-01 -1.27507955e-01 2.76815504e-01 2.06924915e-01
3.77824455e-01 -2.94360101e-01 3.33751172e-01 -4.19033706e-01
8.88449728e-01 -4.63249385e-02 2.35620931e-01 2.99388647e-01
-1.10072218e-01 3.63323450e-01 4.65534508e-01 -7.16506898e-01
-4.46999460e-01 -3.50298792e-01 -1.46909773e-01 1.42279828e+00
3.45461443e-02 -4.38562751e-01 -5.14236510e-01 -8.40553880e-01
-2.88537025e-01 4.58349437e-01 -7.43182302e-01 3.03779930e-01
-1.60782635e-01 -1.03916264e+00 2.82445490e-01 3.20752054e-01
8.74252439e-01 -1.51048887e+00 -1.48689225e-01 2.41597101e-01
-1.04123190e-01 -9.68107104e-01 -1.08408771e-01 2.85179257e-01
-5.93850255e-01 -1.09693658e+00 -4.31109518e-01 -1.24561715e+00
5.83791375e-01 1.01912342e-01 1.20419431e+00 7.94449896e-02
3.36237222e-01 5.21614961e-02 -1.08646059e+00 -8.25132251e-01
-2.20192466e-02 4.00891781e-01 2.39426970e-01 1.37807608e-01
8.88235331e-01 -3.30552608e-01 -3.60437781e-01 -7.10040377e-03
-8.49118114e-01 -3.89557838e-01 1.55585214e-01 8.53908420e-01
8.19392130e-02 1.17089510e-01 9.08584535e-01 -1.23604143e+00
1.16924691e+00 -7.27756500e-01 -1.14730932e-01 -1.86057493e-01
-6.50913894e-01 -4.56424981e-01 1.13221359e+00 -4.83777002e-02
-1.17900181e+00 -7.10481822e-01 -6.42780960e-01 4.72188801e-01
1.14182830e-01 1.06950593e+00 3.08635384e-01 1.19296037e-01
7.77914822e-01 8.14211294e-02 -7.57368729e-02 -2.67312139e-01
1.88741550e-01 1.29506624e+00 -1.21071890e-01 -1.67786539e-01
2.71617353e-01 4.43641841e-01 -7.96098530e-01 -1.16817033e+00
-1.21337795e+00 -3.94971132e-01 -3.00462246e-01 -1.61079183e-01
1.07931840e+00 -8.56903732e-01 -9.66168284e-01 8.46339524e-01
-1.07857120e+00 2.13724717e-01 5.61091006e-02 5.05134761e-01
1.45417690e-01 3.88155073e-01 -9.91406798e-01 -7.86057532e-01
-1.03885949e+00 -9.92444038e-01 4.51838374e-01 3.83845717e-01
-4.22680616e-01 -1.57476151e+00 2.52244234e-01 3.27635705e-01
7.92069376e-01 1.79221436e-01 6.61617994e-01 -1.26851571e+00
5.05537212e-01 -5.02251565e-01 -1.51734143e-01 9.98217881e-01
3.08922201e-01 2.66777456e-01 -1.02241778e+00 -9.72056165e-02
1.65822536e-01 -6.65639281e-01 7.40606070e-01 1.63696289e-01
1.04099309e+00 -4.22759682e-01 1.06239662e-01 3.15388978e-01
1.44086361e+00 1.77327052e-01 4.82458651e-01 8.76294971e-01
6.59851193e-01 6.97614193e-01 4.59764391e-01 4.87863749e-01
7.64592648e-01 -2.04049394e-01 2.37739980e-01 -1.67320985e-02
7.32290268e-01 2.66265739e-02 6.55709088e-01 1.72491264e+00
4.79389727e-02 -5.10848701e-01 -7.45526671e-01 5.95181942e-01
-1.61063087e+00 -8.05720329e-01 -3.79052758e-01 1.52561951e+00
5.71752310e-01 2.52680659e-01 -3.00082922e-01 2.49572128e-01
5.07165730e-01 5.16849816e-01 -1.39063776e-01 -1.06942618e+00
-4.08481956e-01 5.46472549e-01 4.49893236e-01 4.55721885e-01
-1.23103034e+00 1.11946189e+00 5.27814722e+00 5.97050250e-01
-1.45515764e+00 3.14810604e-01 7.51746535e-01 1.99564323e-01
-3.19149047e-01 -5.57796121e-01 -9.10619557e-01 4.70736027e-01
1.09034407e+00 -3.76410261e-02 -1.76652044e-01 1.13906240e+00
8.31084326e-02 6.22985475e-02 -2.97697097e-01 8.06248903e-01
4.66889113e-01 -1.26773202e+00 -8.22754726e-02 -3.34727585e-01
9.21548426e-01 4.81156081e-01 1.87037840e-01 7.18936622e-01
3.73431832e-01 -9.02597725e-01 3.77011925e-01 1.35422021e-01
2.22181767e-01 -1.08057559e+00 1.57002389e+00 -1.36490967e-02
-8.31847608e-01 -2.32029818e-02 -4.61299211e-01 -4.40325767e-01
1.52725056e-01 7.60518491e-01 -4.43270743e-01 5.72763205e-01
1.06074035e+00 1.30770683e+00 -6.57410264e-01 1.17580801e-01
-1.97554514e-01 5.85965574e-01 1.73381623e-02 -9.84165728e-01
5.59328496e-01 -4.27710295e-01 -3.42986770e-02 1.47118247e+00
3.39646697e-01 -4.03048724e-01 -1.60783619e-01 1.29260510e-01
-1.15921669e-01 9.52194750e-01 -6.98110521e-01 -3.52123886e-01
1.91517666e-01 1.73202896e+00 -6.59061432e-01 -4.13795233e-01
-6.63346529e-01 8.05255055e-01 3.10217798e-01 3.23794693e-01
-5.62638938e-01 -8.10495198e-01 6.36281013e-01 -3.34929228e-01
1.13725632e-01 -5.46244718e-02 -1.80152759e-01 -1.35373676e+00
-7.40649626e-02 -1.03196836e+00 1.83719993e-01 -6.89109385e-01
-1.60177219e+00 1.27401412e+00 -7.02556849e-01 -1.01523674e+00
-1.03640385e-01 -1.14569902e+00 -6.32621646e-01 7.24504828e-01
-1.56600106e+00 -1.12701821e+00 -2.20375538e-01 7.39411056e-01
4.86211509e-01 -6.11706436e-01 1.02951956e+00 5.33158481e-01
-6.40653133e-01 5.01966536e-01 3.64197135e-01 4.18917954e-01
7.73088455e-01 -1.31223536e+00 2.50951558e-01 3.64613056e-01
-2.43572012e-01 8.76760006e-01 5.66155851e-01 -4.37782228e-01
-1.21112978e+00 -9.78561878e-01 1.46336615e+00 -4.41943556e-01
1.22991121e+00 -1.66857675e-01 -3.68825495e-01 6.66907787e-01
6.08143806e-01 -5.35142899e-01 1.26837909e+00 5.07467330e-01
-1.71474934e-01 -2.62229979e-01 -1.12749207e+00 7.24922478e-01
2.37871885e-01 -5.78411639e-01 -6.30423367e-01 4.69090968e-01
8.24146628e-01 7.13672340e-02 -7.94655979e-01 6.44229054e-02
4.93737847e-01 -1.07343698e+00 5.14111042e-01 -6.55672312e-01
9.79308844e-01 1.69535205e-02 -4.62431908e-01 -1.57394636e+00
2.04048216e-01 -8.21384564e-02 2.77895898e-01 1.30858231e+00
7.76250601e-01 -1.12994170e+00 6.47855222e-01 2.76289672e-01
-1.84883237e-01 -7.92943716e-01 -4.13720787e-01 -1.08768001e-01
1.87646151e-01 -6.89527929e-01 5.16725898e-01 1.29997909e+00
2.30283454e-01 7.95688450e-01 -3.65604103e-01 -2.72873878e-01
-1.21664330e-01 1.64958145e-02 7.38772690e-01 -1.23037934e+00
1.29380241e-01 -4.49204922e-01 -4.11863416e-01 -8.33928704e-01
2.92160034e-01 -7.16595888e-01 -3.76985461e-01 -1.60053575e+00
-3.08590323e-01 -2.74272531e-01 -4.20716375e-01 1.04758605e-01
-8.10107158e-05 3.92097294e-01 -9.61347297e-02 -1.99886546e-01
-6.10044003e-01 5.84429026e-01 1.22286403e+00 -2.55679756e-01
-1.71480998e-01 -1.41311273e-01 -1.25207973e+00 1.10052538e+00
9.70939517e-01 -2.50437438e-01 -1.96358964e-01 -3.71819377e-01
1.17498147e+00 -4.98971105e-01 -3.58797342e-01 -6.12436354e-01
7.35412166e-02 1.73510730e-01 2.51461774e-01 -7.52861381e-01
1.53233990e-01 -8.97591412e-01 -5.68020582e-01 3.62840384e-01
-2.28017643e-01 4.59311604e-01 3.15848179e-02 1.54010236e-01
-7.03371525e-01 -3.93982202e-01 4.64175731e-01 -2.39802569e-01
-8.36650550e-01 2.50372410e-01 -7.61407375e-01 6.50959313e-02
5.92888534e-01 -5.61271347e-02 -3.40083748e-01 -5.79753697e-01
-5.30030668e-01 2.17581183e-01 1.56193346e-01 7.34220505e-01
4.70560849e-01 -1.18718028e+00 -5.99155068e-01 1.69595063e-01
1.60988897e-01 -2.03609332e-01 3.39872539e-01 7.02415764e-01
-8.85867655e-01 1.53483123e-01 -1.57267809e-01 -1.75174214e-02
-1.10610676e+00 2.52830774e-01 2.69815296e-01 -2.00117856e-01
-6.43568560e-02 1.05796087e+00 -2.41188213e-01 -1.25377274e+00
-6.65311441e-02 -4.24775511e-01 -1.15116966e+00 9.30772424e-01
5.69729269e-01 1.58028811e-01 3.02103400e-01 -1.01846099e+00
-1.89680576e-01 5.04567504e-01 -3.65997553e-01 1.41470462e-01
1.43312764e+00 -2.66991049e-01 -6.77165031e-01 6.38845742e-01
1.68477869e+00 4.04460073e-01 1.00203753e-01 3.22643034e-02
-8.78353864e-02 -7.94049129e-02 8.14867839e-02 -5.19699574e-01
-1.19478941e+00 6.23706818e-01 3.34358215e-01 8.25629950e-01
8.78068447e-01 -4.86955166e-01 1.10136449e+00 8.88100505e-01
2.20231131e-01 -1.65899205e+00 1.21170627e-02 1.27126026e+00
6.03042126e-01 -1.49453139e+00 -2.61583805e-01 3.28374088e-01
-9.22271609e-01 1.10441482e+00 7.37670302e-01 -3.32591832e-01
1.36599386e+00 -7.31929690e-02 7.21485674e-01 -3.83044451e-01
-4.26161796e-01 -8.03173520e-03 -1.05913535e-01 3.94126326e-01
1.02529836e+00 -4.75282110e-02 -6.43404126e-01 1.06336796e+00
-1.03628719e+00 -2.52951086e-01 7.67433047e-01 8.55698526e-01
-5.90547681e-01 -7.93076336e-01 -1.17276132e-01 6.22536719e-01
-1.04914308e+00 -4.14184541e-01 -3.53802413e-01 6.64923966e-01
7.60721043e-02 1.42334795e+00 1.46584008e-02 -7.96480834e-01
3.03763062e-01 -7.52030984e-02 -4.12359327e-01 -5.43247521e-01
-1.23603857e+00 -5.07325411e-01 3.50754201e-01 -1.59073725e-01
-7.47228026e-01 -8.03351626e-02 -1.07993948e+00 -6.53780401e-01
-5.04824042e-01 5.89370072e-01 9.98522401e-01 1.03474379e+00
2.57598877e-01 5.23454547e-01 1.06487012e+00 -6.15552366e-01
-1.69790924e-01 -1.34154582e+00 -8.33762228e-01 5.60417831e-01
2.81806380e-01 -1.98873356e-01 -5.88173509e-01 -8.66930485e-02] | [11.200174331665039, 6.942314624786377] |
ed129eb1-3528-4e9e-a385-bd189043bbb0 | self-supervised-sparse-to-dense-motion | 2008.07872 | null | https://arxiv.org/abs/2008.07872v1 | https://arxiv.org/pdf/2008.07872v1.pdf | Self-supervised Sparse to Dense Motion Segmentation | Observable motion in videos can give rise to the definition of objects moving with respect to the scene. The task of segmenting such moving objects is referred to as motion segmentation and is usually tackled either by aggregating motion information in long, sparse point trajectories, or by directly producing per frame dense segmentations relying on large amounts of training data. In this paper, we propose a self supervised method to learn the densification of sparse motion segmentations from single video frames. While previous approaches towards motion segmentation build upon pre-training on large surrogate datasets and use dense motion information as an essential cue for the pixelwise segmentation, our model does not require pre-training and operates at test time on single frames. It can be trained in a sequence specific way to produce high quality dense segmentations from sparse and noisy input. We evaluate our method on the well-known motion segmentation datasets FBMS59 and DAVIS16. | ['Margret Keuper', 'Kalun Ho', 'Peter Ochs', 'Amirhossein Kardoost'] | 2020-08-18 | null | null | null | null | ['motion-segmentation'] | ['computer-vision'] | [ 4.56552863e-01 7.98271075e-02 -2.72133380e-01 -3.20848197e-01
-8.72884095e-01 -5.68032742e-01 6.07108772e-01 -8.03866163e-02
-6.42430127e-01 5.28616369e-01 1.53480306e-01 3.95579711e-02
4.93509583e-02 -6.14381790e-01 -8.97096992e-01 -7.94770062e-01
-1.41401544e-01 6.64917946e-01 6.25478029e-01 2.55602241e-01
1.16921432e-01 4.48127121e-01 -1.39574575e+00 1.58808902e-01
8.16779613e-01 7.16787696e-01 5.09180009e-01 1.10318112e+00
-1.97950929e-01 7.41876125e-01 -4.35440987e-01 1.07812975e-02
3.85508895e-01 -7.36941814e-01 -1.19754446e+00 8.08774292e-01
4.05590087e-01 -3.10866028e-01 -1.99334770e-01 9.74470615e-01
6.14255071e-02 4.96439278e-01 5.90056181e-01 -9.34639335e-01
7.56185427e-02 6.01820052e-01 -4.97462928e-01 3.08623344e-01
3.22213769e-01 3.54754597e-01 8.19413126e-01 -6.93042755e-01
9.99471188e-01 1.01693046e+00 6.07844710e-01 6.50494993e-01
-1.38284838e+00 1.28411740e-01 9.19233933e-02 7.41207451e-02
-1.14527357e+00 -5.23544908e-01 9.16874111e-01 -7.20225453e-01
3.95666242e-01 2.54840374e-01 7.79007554e-01 9.79752243e-01
-4.54569846e-01 1.21338820e+00 6.51992202e-01 -2.04153016e-01
5.37023187e-01 -4.15498257e-01 1.01505443e-01 5.44629872e-01
1.06000721e-01 -1.57854319e-01 -1.23938434e-01 8.21031332e-02
1.05972111e+00 6.05747253e-02 -4.76346076e-01 -4.40640897e-01
-1.51372218e+00 6.80331886e-01 3.13728720e-01 5.73166490e-01
-6.05410755e-01 2.74417579e-01 2.38413081e-01 -5.06021380e-02
4.69447911e-01 1.93923026e-01 -2.75424987e-01 -3.42297345e-01
-1.96317542e+00 1.79276749e-01 7.66360104e-01 8.35176706e-01
1.15923285e+00 1.18418202e-01 -7.15877935e-02 5.23790956e-01
1.58953801e-01 3.83684665e-01 4.75711375e-01 -1.52653241e+00
3.08929145e-01 3.73991907e-01 3.41357172e-01 -9.09471750e-01
-2.82427341e-01 -4.68934374e-03 -8.30097318e-01 -7.22391233e-02
8.70618284e-01 -3.46082330e-01 -1.38253152e+00 1.50227797e+00
5.28347015e-01 7.68407285e-01 1.02147469e-02 1.06195390e+00
5.58945179e-01 8.48246753e-01 6.32785587e-03 -3.54661494e-01
6.94721997e-01 -1.18942940e+00 -5.42196333e-01 -1.13125101e-01
7.01021969e-01 -5.15259206e-01 7.89668083e-01 4.43210095e-01
-1.25657225e+00 -6.98337674e-01 -5.88956833e-01 -7.92761445e-02
1.85722142e-01 -6.57330602e-02 2.49532312e-01 3.20067376e-01
-1.01848233e+00 8.11236918e-01 -1.36208284e+00 -2.19996676e-01
7.09525764e-01 4.38993156e-01 -3.69412184e-01 -1.84509993e-01
-6.70050621e-01 3.82428199e-01 6.26191020e-01 2.63053477e-01
-1.31494355e+00 -4.61194813e-01 -1.01167750e+00 -3.33737433e-01
4.96802539e-01 -8.34398925e-01 1.02553391e+00 -1.33227253e+00
-1.44310391e+00 6.49925351e-01 -2.90339619e-01 -6.96883798e-01
7.02150285e-01 -4.30841327e-01 1.26755863e-01 6.13817751e-01
1.51177689e-01 1.15148950e+00 1.20958459e+00 -1.37423444e+00
-7.04053700e-01 -1.26194246e-02 -5.63965999e-02 2.97871046e-02
1.09575406e-01 -2.79510796e-01 -7.60196567e-01 -7.20162153e-01
5.47261313e-02 -9.63847518e-01 -7.89021134e-01 -3.44887435e-01
-5.17057657e-01 2.00836286e-01 1.18005133e+00 -7.27909803e-01
1.08279419e+00 -1.91048205e+00 7.48487294e-01 1.32894605e-01
1.17866963e-01 4.66253608e-01 -1.44188493e-01 8.05981271e-03
3.02486330e-01 -1.32584706e-01 -9.38315153e-01 -4.54604894e-01
-2.24518180e-01 6.15657091e-01 -6.72178203e-03 6.11504018e-01
3.00255328e-01 1.05442452e+00 -1.16855884e+00 -7.65656710e-01
4.45598871e-01 3.72862071e-01 -7.68097520e-01 3.84769291e-01
-5.49896181e-01 1.11243045e+00 -5.21026075e-01 4.45432812e-01
3.75669062e-01 -4.51107204e-01 -1.14104204e-01 -5.74836247e-02
-9.49899554e-02 -2.88190782e-01 -1.38932836e+00 2.25867891e+00
-1.70070797e-01 4.49120075e-01 2.23640010e-01 -1.43880188e+00
5.05751789e-01 3.51302773e-01 1.05240881e+00 1.38701782e-01
2.35027879e-01 1.63398340e-01 -2.70347416e-01 -6.84157848e-01
5.44556677e-01 -1.18334100e-01 -8.12800229e-02 3.44966739e-01
3.29815209e-01 -2.64146656e-01 6.14983797e-01 3.03283799e-02
1.12953472e+00 4.59814310e-01 3.74332108e-02 -1.15736060e-01
7.15679049e-01 3.84377331e-01 6.02011263e-01 5.85172057e-01
-8.12262520e-02 1.13211012e+00 2.34740585e-01 -3.63387227e-01
-1.18345737e+00 -8.48410010e-01 -4.29116702e-03 6.32026196e-01
3.23685825e-01 -2.87100852e-01 -1.11467099e+00 -8.29889536e-01
-3.54773343e-01 1.80709958e-01 -3.60213727e-01 3.82552594e-01
-8.50176811e-01 -6.09763086e-01 2.74041504e-01 4.80384022e-01
5.31477034e-01 -1.13081539e+00 -8.22547317e-01 4.33827043e-01
-4.30939049e-01 -1.42195272e+00 -5.96904039e-01 7.30541870e-02
-1.11635041e+00 -1.06535935e+00 -1.27829790e+00 -7.27644444e-01
7.57958412e-01 1.71080828e-01 1.13605785e+00 1.05472483e-01
-2.58110553e-01 5.74800611e-01 -3.49704832e-01 3.83601367e-01
-3.78204107e-01 1.97386846e-01 -2.02570394e-01 4.28432554e-01
-5.62521517e-02 -5.96090078e-01 -7.25741804e-01 2.26725608e-01
-1.19980657e+00 4.53631617e-02 6.53905153e-01 6.35644615e-01
8.99543464e-01 -1.05850160e-01 2.27489114e-01 -1.14217567e+00
-1.32914931e-01 -6.56277239e-01 -5.30177772e-01 -6.05092160e-02
6.04494549e-02 1.42956913e-01 4.38774109e-01 -4.12974447e-01
-8.60964417e-01 9.09889102e-01 -2.14421153e-01 -7.72819161e-01
-5.95151126e-01 3.00275028e-01 -1.52130485e-01 -1.93205904e-02
4.70910668e-01 2.01962098e-01 -2.23484188e-01 -4.43360716e-01
7.34939575e-01 2.49411538e-01 8.83983195e-01 -6.05750859e-01
8.35480094e-01 7.22354770e-01 4.16735299e-02 -1.07385337e+00
-6.71493888e-01 -9.88396227e-01 -1.18984854e+00 -2.84868658e-01
1.45664942e+00 -7.77612209e-01 -6.83175102e-02 3.26975346e-01
-1.01230180e+00 -8.28778565e-01 -5.69843471e-01 4.61249679e-01
-9.49195683e-01 6.10601902e-01 -5.73744237e-01 -6.46417379e-01
1.45610683e-02 -1.16493714e+00 1.39366817e+00 5.32865524e-02
-4.20577168e-01 -1.24576318e+00 2.11212739e-01 4.08983380e-01
-1.02740712e-01 5.49907684e-01 1.15502551e-01 -3.67059469e-01
-9.66081560e-01 -3.84851620e-02 2.19196856e-01 4.99658644e-01
1.50784492e-01 -1.75847951e-02 -6.99859142e-01 -5.07549606e-02
1.57142729e-01 -2.34303251e-01 1.04102015e+00 8.53293836e-01
9.60226417e-01 -3.66559356e-01 -3.10247362e-01 9.09294903e-01
1.39407682e+00 -5.92938215e-02 5.42317271e-01 1.58704948e-02
1.29074359e+00 5.57850361e-01 7.32685506e-01 2.05723390e-01
1.02386348e-01 5.25861144e-01 2.37817124e-01 -1.05410747e-01
-6.47003800e-02 -1.24533482e-01 2.69280493e-01 8.53829861e-01
-3.03624600e-01 -2.02012256e-01 -9.58933175e-01 8.86876404e-01
-2.04734254e+00 -1.13136888e+00 -4.02655810e-01 1.91595459e+00
7.38885283e-01 -3.71390209e-02 4.78742540e-01 3.15332144e-01
6.77995682e-01 3.52653086e-01 -3.76820326e-01 2.68873781e-01
-7.15288594e-02 2.95242667e-02 4.66823488e-01 8.46103847e-01
-1.37468266e+00 1.07178354e+00 6.19676352e+00 6.73777282e-01
-1.10440743e+00 1.64340094e-01 8.30897272e-01 -8.24126080e-02
-1.55376166e-01 1.45370767e-01 -6.84437156e-01 5.55435896e-01
8.29391897e-01 1.79307610e-01 1.72269836e-01 6.71808898e-01
5.09683967e-01 -4.85865116e-01 -1.07795882e+00 9.95236754e-01
-2.37418666e-01 -1.45864451e+00 5.86904064e-02 -9.32337269e-02
1.23489201e+00 3.52217723e-03 -3.55537444e-01 -2.74729282e-01
4.17083979e-01 -9.78116393e-01 7.15437233e-01 6.95808291e-01
3.48499864e-01 -4.51954991e-01 4.46812063e-01 6.29795611e-01
-1.12469602e+00 1.74231842e-01 -1.12081498e-01 2.21163686e-02
6.79820299e-01 7.49211490e-01 -5.28248787e-01 6.17259026e-01
4.50596124e-01 1.22286105e+00 -3.70028973e-01 1.13946354e+00
-8.60949233e-02 8.91757011e-01 -4.73418325e-01 4.99564916e-01
6.03424549e-01 -5.17168820e-01 6.43539250e-01 1.29177940e+00
2.33594224e-01 1.45614892e-01 6.60005093e-01 7.45219469e-01
2.32464448e-01 -1.78739578e-01 -5.00208378e-01 -1.18506521e-01
-9.06753093e-02 1.32137287e+00 -1.31220603e+00 -6.81862652e-01
-3.34944695e-01 1.13472843e+00 -8.49305689e-02 6.28748834e-01
-6.05283678e-01 2.16164112e-01 3.30063075e-01 1.96293727e-01
7.29860723e-01 -6.53308630e-01 -8.01076740e-02 -1.32603300e+00
-2.40520269e-01 -5.00064135e-01 2.50593096e-01 -3.76163453e-01
-9.53386128e-01 5.37316561e-01 1.03708379e-01 -1.24962735e+00
-6.66594207e-01 -1.78545713e-01 -6.28796518e-01 5.68438709e-01
-1.18821692e+00 -8.85217965e-01 -3.29652101e-01 7.92460799e-01
9.00565207e-01 3.44657242e-01 3.13167870e-01 3.52544159e-01
-4.84497607e-01 -2.21057847e-01 -6.20496199e-02 2.52181411e-01
1.93701237e-01 -1.32027328e+00 2.34184310e-01 1.23609889e+00
5.81071794e-01 1.96695819e-01 8.30999672e-01 -6.53010666e-01
-1.06982064e+00 -1.39989853e+00 4.16785777e-01 -5.53266287e-01
4.48502421e-01 -1.78412765e-01 -1.08417928e+00 6.69479489e-01
2.84536555e-03 5.11429191e-01 3.85058463e-01 -5.14542282e-01
6.01819813e-01 3.15240115e-01 -8.43699396e-01 1.92613512e-01
1.15519917e+00 -2.98965007e-01 -6.22938275e-01 2.46122062e-01
4.50912476e-01 -3.90211254e-01 -8.44775319e-01 2.31305510e-01
-6.82025328e-02 -7.53517747e-01 1.02471042e+00 -5.52003324e-01
6.15196943e-01 -5.77584863e-01 4.59071398e-02 -1.13230908e+00
5.63951805e-02 -9.62972343e-01 -2.31942460e-01 1.11427116e+00
6.09564669e-02 3.19811553e-01 1.20266473e+00 4.50957745e-01
-2.10413858e-01 -4.57756341e-01 -7.73252904e-01 -5.97777128e-01
-1.67173132e-01 -6.02174520e-01 1.49367020e-01 8.54699492e-01
-4.19762462e-01 9.11000371e-02 -4.18353379e-01 1.79725453e-01
8.41417968e-01 1.94886506e-01 9.68626678e-01 -9.26097333e-01
-3.21809709e-01 -2.84052581e-01 -6.15878105e-01 -1.56710970e+00
2.33290121e-01 -7.45436370e-01 5.14098883e-01 -1.61969280e+00
-4.53877784e-02 -3.24245661e-01 1.82481796e-01 9.55037996e-02
-2.83472240e-01 4.36581314e-01 9.90702286e-02 4.12122101e-01
-1.11355305e+00 4.46117967e-01 1.46865726e+00 -1.60914809e-01
-3.81666660e-01 1.72476947e-01 4.68658702e-03 1.03976417e+00
4.32067126e-01 -4.02734071e-01 -6.40395403e-01 -3.43121767e-01
-3.20090681e-01 5.06096542e-01 5.43299913e-01 -1.12654901e+00
3.11883718e-01 -3.51081252e-01 2.43227988e-01 -6.43110991e-01
3.12779903e-01 -7.46830583e-01 3.52055460e-01 3.40806961e-01
-3.11768264e-01 -2.67788798e-01 -1.45366862e-01 7.54951537e-01
-5.28924763e-01 -4.93654549e-01 7.63006270e-01 -5.21379590e-01
-1.13719869e+00 5.87271035e-01 -4.55803305e-01 4.26746935e-01
1.08050692e+00 -3.21350068e-01 5.02007723e-01 -2.56179899e-01
-1.37018037e+00 2.01846868e-01 7.30359495e-01 8.98736343e-02
5.43732703e-01 -1.23697734e+00 -4.02316660e-01 -3.49740498e-02
-4.59293276e-01 7.25354135e-01 1.70438990e-01 9.27561283e-01
-7.76717544e-01 2.62203783e-01 -1.04057230e-01 -1.16056991e+00
-9.57214296e-01 6.88589513e-01 2.75658399e-01 -2.43405625e-02
-1.01120710e+00 7.87707865e-01 3.03032875e-01 2.48400822e-01
1.62456229e-01 -6.21972740e-01 -2.54720688e-01 1.06665052e-01
4.00265396e-01 3.50774199e-01 -3.69143218e-01 -1.02609098e+00
-6.76226541e-02 7.48825014e-01 3.68634701e-01 -4.06219035e-01
1.38829029e+00 -2.97415882e-01 1.45480797e-01 6.25658572e-01
1.36709821e+00 -2.09402040e-01 -1.93236732e+00 -8.20522755e-02
4.87538487e-01 -6.27296925e-01 -7.93817118e-02 5.78705817e-02
-1.41610920e+00 7.63819039e-01 4.52092066e-02 1.54083252e-01
9.98358130e-01 7.46746585e-02 1.16981232e+00 1.44344181e-01
3.19744080e-01 -1.03439915e+00 2.32214540e-01 2.83028305e-01
3.92015308e-01 -1.32557750e+00 -2.08796397e-01 -4.49239582e-01
-6.31397963e-01 1.02487457e+00 2.26404995e-01 -5.07862747e-01
6.20009899e-01 2.65992284e-01 -2.31184512e-02 -2.19463017e-02
-3.13940138e-01 -5.18573880e-01 4.70415950e-01 5.53695679e-01
1.24410972e-01 -2.18364358e-01 -1.68118685e-01 1.89632848e-01
4.97430153e-02 3.13047528e-01 4.87512231e-01 8.94811273e-01
-4.92979825e-01 -1.10416138e+00 -4.03906941e-01 3.17594141e-01
-4.42558318e-01 1.77227139e-01 -1.79565951e-01 5.34389734e-01
2.49656469e-01 7.60497868e-01 9.18779448e-02 -1.39176413e-01
-1.38091624e-01 4.65719402e-02 4.92958874e-01 -8.64358962e-01
-2.64854342e-01 3.70529771e-01 -4.32371087e-02 -7.77090251e-01
-1.16396344e+00 -1.14400947e+00 -1.55866051e+00 3.78290191e-02
-5.85472723e-03 2.84980386e-01 2.20531523e-01 1.19214153e+00
-6.91936389e-02 4.92902666e-01 4.81855422e-01 -1.56861269e+00
-3.15681845e-02 -6.54015541e-01 -4.28545505e-01 8.66208673e-01
6.01238549e-01 -4.21344370e-01 -2.68604815e-01 8.68775487e-01] | [9.140424728393555, -0.25388726592063904] |
176dabcc-9aa8-44f7-b4b9-be82ed58c7c1 | visual-sentiment-prediction-with-deep | 1411.5731 | null | http://arxiv.org/abs/1411.5731v1 | http://arxiv.org/pdf/1411.5731v1.pdf | Visual Sentiment Prediction with Deep Convolutional Neural Networks | Images have become one of the most popular types of media through which users
convey their emotions within online social networks. Although vast amount of
research is devoted to sentiment analysis of textual data, there has been very
limited work that focuses on analyzing sentiment of image data. In this work,
we propose a novel visual sentiment prediction framework that performs image
understanding with Deep Convolutional Neural Networks (CNN). Specifically, the
proposed sentiment prediction framework performs transfer learning from a CNN
with millions of parameters, which is pre-trained on large-scale data for
object recognition. Experiments conducted on two real-world datasets from
Twitter and Tumblr demonstrate the effectiveness of the proposed visual
sentiment analysis framework. | ['Li-Jia Li', 'Kuang-Chih Lee', 'Suleyman Cetintas', 'Can Xu'] | 2014-11-21 | null | null | null | null | ['visual-sentiment-prediction'] | ['computer-vision'] | [ 1.15398735e-01 -1.94553539e-01 -2.85752833e-01 -6.62082732e-01
-6.90789595e-02 -3.50712419e-01 5.18204868e-01 2.18310907e-01
-5.09545684e-01 4.23828155e-01 1.36488885e-01 -4.28235561e-01
6.22605681e-01 -8.86213839e-01 -7.42325425e-01 -3.34147125e-01
3.39343607e-01 -2.13886663e-01 4.00644355e-02 -3.18376184e-01
4.52931792e-01 2.52366483e-01 -1.23624539e+00 6.58948004e-01
3.41298461e-01 1.52482164e+00 7.72785023e-02 5.45093894e-01
-3.57917786e-01 1.35766351e+00 -4.89148051e-01 -6.68080986e-01
-1.47899956e-01 -9.19464529e-02 -6.41111791e-01 4.07884359e-01
1.37521073e-01 -2.01063052e-01 -3.06832194e-01 9.92276132e-01
3.74850005e-01 -1.32832021e-01 6.68467999e-01 -1.28969848e+00
-1.22344697e+00 2.39101887e-01 -8.92270684e-01 4.56246376e-01
3.89626175e-02 2.00699978e-02 7.27680027e-01 -9.76792991e-01
3.50045860e-01 1.20253861e+00 4.69726890e-01 2.24804267e-01
-7.28985488e-01 -8.07124853e-01 2.51896054e-01 2.22012788e-01
-9.75046337e-01 -5.20927869e-02 1.09220350e+00 -5.67041337e-01
7.65885770e-01 -1.64890260e-01 9.79705811e-01 9.91841853e-01
2.71647483e-01 1.13157296e+00 1.22696805e+00 -1.35562971e-01
6.47873133e-02 7.73119450e-01 8.81534964e-02 7.40128696e-01
-7.97302797e-02 -3.43895435e-01 -7.17860222e-01 3.30623984e-01
4.27956909e-01 3.45746487e-01 2.20708866e-02 -4.06983435e-01
-7.51750946e-01 1.01752102e+00 8.71862411e-01 5.70272505e-02
-3.30773026e-01 1.70662001e-01 7.53963053e-01 2.89903313e-01
1.00504720e+00 -1.69199020e-01 -3.14629406e-01 1.17664129e-01
-5.88557482e-01 -2.06227273e-01 4.57381099e-01 6.43343568e-01
6.59971833e-01 9.27733853e-02 2.92906910e-01 8.50927413e-01
5.28315783e-01 6.26157224e-01 6.55169666e-01 -1.28630161e-01
3.96987915e-01 1.01308644e+00 -4.94638979e-02 -1.80645204e+00
-3.56507540e-01 -2.69049019e-01 -9.20609534e-01 1.25954688e-01
1.09620824e-01 -3.62165987e-01 -6.11364663e-01 1.16918588e+00
3.36786807e-01 3.24244052e-02 2.42269844e-01 1.06136382e+00
1.21413279e+00 9.29194570e-01 2.84190834e-01 1.47471756e-01
1.40018606e+00 -1.10875022e+00 -4.65090871e-01 -4.81625140e-01
4.24730986e-01 -7.88141072e-01 1.11607897e+00 4.31312263e-01
-8.23163927e-01 -7.14287102e-01 -1.06601596e+00 -1.58451557e-01
-7.88163602e-01 2.35235617e-01 9.06012475e-01 6.63274407e-01
-8.24226439e-01 -9.64250043e-02 -5.79114020e-01 -4.90454674e-01
9.53379989e-01 2.37234801e-01 -3.81187767e-01 6.94502071e-02
-8.12522352e-01 4.93855000e-01 9.25329402e-02 3.50482911e-01
-6.00131929e-01 -3.61415833e-01 -7.95983791e-01 4.18507531e-02
1.31774098e-01 -2.61762053e-01 9.95789826e-01 -1.89744055e+00
-1.22358096e+00 9.85022664e-01 -4.58974503e-02 -2.71659344e-01
2.95686513e-01 -1.79475546e-01 -5.31216204e-01 3.36858273e-01
-1.29972249e-01 7.13250637e-01 9.73745406e-01 -1.36093903e+00
-4.32386488e-01 -5.28345406e-01 1.54909000e-01 1.54259130e-01
-1.24419510e+00 3.10267299e-01 -4.92859006e-01 -5.54064155e-01
-2.89676905e-01 -6.33212090e-01 -6.96344003e-02 8.67018253e-02
-4.06098157e-01 -1.71382770e-01 1.27796257e+00 -4.01015669e-01
8.62979233e-01 -2.08524656e+00 -2.16166452e-01 2.43238434e-01
1.66254908e-01 3.00936490e-01 -1.29891515e-01 4.49991077e-01
-1.57800615e-01 1.76727891e-01 1.88481316e-01 -2.18905926e-01
-2.24473059e-01 -1.52688056e-01 -5.88804901e-01 3.60693961e-01
2.84111619e-01 1.10882020e+00 -7.11445987e-01 -6.76961958e-01
3.93894672e-01 7.63817966e-01 -3.69741380e-01 1.51219442e-01
-1.44524023e-01 4.65100139e-01 -8.84872615e-01 6.54842138e-01
5.94897509e-01 -7.39014804e-01 7.59424716e-02 -4.15836364e-01
-7.39006028e-02 -3.47359538e-01 -5.28718412e-01 1.14024675e+00
-4.88458931e-01 9.83846009e-01 -2.64200211e-01 -1.37029481e+00
1.00926340e+00 3.52754332e-02 3.66874784e-01 -8.78292739e-01
6.94839001e-01 -2.53925860e-01 -5.10887027e-01 -7.94738233e-01
6.17957711e-01 -3.33069086e-01 -1.74692914e-01 4.86149549e-01
-1.31875470e-01 2.83889845e-02 9.38879922e-02 3.14145416e-01
4.19642478e-01 -1.88494816e-01 1.56240299e-01 1.41637698e-01
7.05258369e-01 2.83932120e-01 4.30931523e-02 3.04836363e-01
-2.36063749e-01 4.02007669e-01 6.94667101e-01 -8.67288589e-01
-9.41691399e-01 -4.96070027e-01 4.01323810e-02 1.19384539e+00
4.05701220e-01 -1.16802998e-01 -6.67635381e-01 -7.70806909e-01
-6.50976375e-02 5.11602275e-02 -9.34150517e-01 1.07393347e-01
-1.16171338e-01 -7.13566303e-01 2.19802171e-01 6.88644767e-01
7.30744064e-01 -1.65875745e+00 -5.73971629e-01 -2.11078838e-01
-2.07523797e-02 -1.21858537e+00 -1.69886172e-01 -2.11210370e-01
-6.09469056e-01 -1.17472565e+00 -6.00178063e-01 -1.29601753e+00
8.93681049e-01 5.58379471e-01 8.19003403e-01 4.25947905e-01
-2.75204509e-01 3.74489099e-01 -4.79882240e-01 -8.69788706e-01
2.15729494e-02 4.78310734e-02 -3.63080323e-01 5.10808527e-01
6.88072741e-01 -1.07216418e-01 -8.31807435e-01 1.58017278e-01
-1.07185626e+00 2.15573058e-01 5.16597092e-01 7.29164422e-01
4.63183880e-01 -5.44270612e-02 7.44202197e-01 -1.08864594e+00
7.15329647e-01 -6.47369921e-01 -5.22498548e-01 2.53506731e-02
-3.01628560e-01 -4.87131298e-01 7.77200222e-01 -3.42363268e-01
-1.12697840e+00 4.38655987e-02 -4.95228432e-02 -2.06147388e-01
-1.36867866e-01 9.23898101e-01 2.57736921e-01 -2.17834502e-01
2.26289287e-01 2.42631331e-01 7.59267882e-02 -3.21663693e-02
1.78800657e-01 1.04966152e+00 1.56204641e-01 1.41949635e-02
4.42005664e-01 8.85312200e-01 -3.35823178e-01 -8.95863950e-01
-1.32784247e+00 -4.78281319e-01 -2.85551161e-01 -6.62090838e-01
1.18678653e+00 -1.05082130e+00 -1.07556629e+00 6.67243898e-01
-8.10791135e-01 -2.25509688e-01 3.04005712e-01 2.19144180e-01
-3.50518614e-01 3.46472800e-01 -5.91746032e-01 -6.77389741e-01
-5.35986841e-01 -1.08900619e+00 8.93221796e-01 3.89264494e-01
1.19995996e-01 -1.12594283e+00 -8.45307782e-02 7.14740336e-01
4.95283216e-01 1.53395951e-01 6.69260204e-01 -4.65870351e-01
-4.18165237e-01 -5.28861582e-01 -8.61731529e-01 5.58207393e-01
-1.08987778e-01 -1.52651155e-02 -1.00761271e+00 -1.56189665e-01
-2.46665254e-01 -9.63835537e-01 9.77321804e-01 3.66578639e-01
1.69424820e+00 -2.37893626e-01 -3.29063326e-01 4.42067653e-01
1.63682437e+00 1.57628745e-01 6.09594047e-01 6.35936499e-01
8.50583673e-01 6.78964019e-01 6.15809262e-01 6.01195633e-01
5.86828470e-01 1.37391016e-01 7.79214680e-01 -6.75670505e-01
3.56013060e-01 -1.94791317e-01 1.81845114e-01 8.14092755e-01
9.83125642e-02 -3.76960933e-01 -8.65937114e-01 4.72947240e-01
-1.82167721e+00 -8.25869203e-01 6.09936602e-02 1.37088990e+00
3.14055204e-01 2.37845644e-01 -4.97520017e-03 -1.46796495e-01
5.65031290e-01 4.35015827e-01 -5.82761765e-01 -4.80356067e-01
-1.77396089e-01 1.22239716e-01 3.53053242e-01 3.03815063e-02
-1.41535687e+00 1.12562311e+00 5.68828297e+00 3.82690996e-01
-1.70668375e+00 -1.78154677e-01 1.19067335e+00 3.16204429e-02
1.95235256e-02 -4.32577789e-01 -3.36331338e-01 3.41592640e-01
5.34077048e-01 8.50915611e-02 -3.24543715e-02 1.16634655e+00
2.98944324e-01 2.28412058e-02 -4.29686040e-01 1.00127852e+00
4.97971714e-01 -1.43565309e+00 2.08625495e-01 -2.33012930e-01
8.46341968e-01 -6.04161173e-02 6.18627369e-01 1.74440145e-01
2.10622698e-02 -1.07367730e+00 7.05271602e-01 3.87242794e-01
5.09246290e-01 -1.04943728e+00 9.27589417e-01 2.35494133e-02
-9.84096944e-01 -2.94683397e-01 -5.61369121e-01 -2.07515448e-01
1.53011337e-01 4.21348214e-01 -7.29560733e-01 -5.84855266e-02
1.13859546e+00 1.37549841e+00 -6.98735118e-01 5.33414245e-01
-1.56393185e-01 6.76495373e-01 1.87211499e-01 -5.46436071e-01
3.81360561e-01 -1.23530805e-01 -2.15862319e-01 1.37068236e+00
3.71735767e-02 -2.37176530e-02 1.29256666e-01 3.75208437e-01
-3.59025747e-01 4.89298731e-01 -6.50319099e-01 -4.41868901e-01
-1.99075878e-01 1.78957319e+00 -1.02834880e+00 -4.37192976e-01
-8.72691870e-01 8.17409039e-01 5.01903176e-01 3.63050222e-01
-6.97525501e-01 -1.88884854e-01 3.48742127e-01 -1.02259472e-01
4.14032549e-01 4.98629361e-02 -3.91690850e-01 -1.11780119e+00
-1.38125926e-01 -7.98987746e-01 2.52293825e-01 -1.24610007e+00
-1.38457048e+00 5.79224467e-01 -5.45640945e-01 -1.12583673e+00
3.28809321e-01 -1.02105963e+00 -7.29307890e-01 5.91650426e-01
-1.83101487e+00 -1.42403877e+00 -6.57351255e-01 7.97548354e-01
5.91011465e-01 -2.90545523e-01 5.59226453e-01 1.47085741e-01
-6.11936808e-01 3.22370201e-01 -7.75321648e-02 4.69187886e-01
5.99029124e-01 -9.28550184e-01 1.20429523e-01 4.82781261e-01
-1.81108713e-01 4.17347282e-01 4.83812898e-01 -5.63940227e-01
-1.48746991e+00 -1.22047424e+00 5.67059398e-01 -1.10802144e-01
8.87996078e-01 -3.00624400e-01 -6.08160853e-01 7.49068737e-01
5.79204202e-01 1.14124663e-01 9.52443004e-01 -1.48294017e-01
-2.44863212e-01 -1.81604534e-01 -8.38806272e-01 5.33632517e-01
3.92828643e-01 -4.70742732e-01 -1.50529802e-01 4.27603811e-01
2.99093544e-01 -6.93761930e-02 -6.99311972e-01 2.47792557e-01
8.06071639e-01 -8.12579513e-01 1.02687716e+00 -7.09441662e-01
1.18903673e+00 -1.85740009e-01 -1.60222985e-02 -1.30494356e+00
2.20553428e-01 2.36973137e-01 3.83106709e-01 1.07894039e+00
3.17170501e-01 -4.25012410e-01 1.11324525e+00 2.04473004e-01
1.19447775e-01 -8.16612780e-01 -9.87938493e-02 1.36292055e-01
-2.59040266e-01 -5.16176343e-01 2.86610812e-01 1.06780958e+00
1.31463751e-01 5.10039747e-01 -5.28515160e-01 -9.01689827e-02
2.55319476e-01 2.76509941e-01 1.01441669e+00 -8.96888316e-01
4.42617387e-03 -2.46921375e-01 -5.07897139e-01 -8.78303826e-01
1.87526599e-01 -7.68284321e-01 -2.41499558e-01 -1.69599807e+00
5.67371488e-01 -2.03281909e-01 -4.30572242e-01 4.90973741e-01
-3.49796489e-02 9.40316439e-01 9.58087444e-02 -8.27609152e-02
-9.66620803e-01 5.83887398e-01 1.45508468e+00 -5.13095677e-01
1.16484165e-01 -3.96043748e-01 -9.37878251e-01 1.01127541e+00
9.33908463e-01 -3.01896065e-01 -3.53522629e-01 -4.90667373e-01
7.97990382e-01 -4.97437455e-02 4.33225662e-01 -5.64411640e-01
2.13284656e-01 -1.43566489e-01 9.21537697e-01 -9.45168972e-01
2.70678282e-01 -7.77039111e-01 -2.98646927e-01 4.21670228e-01
-4.80840504e-01 1.88988045e-01 3.11316043e-01 7.05022216e-01
-6.40701771e-01 1.29331723e-01 6.21161342e-01 -8.12674984e-02
-1.03827286e+00 4.28780854e-01 -3.87304008e-01 -2.34129444e-01
1.08293951e+00 -1.95346996e-01 -4.45195347e-01 -5.34207404e-01
-5.57711482e-01 2.67924339e-01 2.86951572e-01 6.95657551e-01
9.36505139e-01 -1.14150798e+00 -4.09592748e-01 1.00000888e-01
4.99618411e-01 -2.24036723e-01 4.95083630e-01 6.31562710e-01
-6.71843231e-01 2.73513734e-01 -4.50141817e-01 -5.41873038e-01
-1.48523903e+00 7.76678681e-01 6.32620901e-02 5.78725822e-02
-4.31037009e-01 9.21513081e-01 5.28083205e-01 -4.12605286e-01
8.02401900e-02 1.61068901e-01 -8.89527857e-01 2.01554671e-01
7.15897858e-01 -1.80225655e-01 -1.86722323e-01 -9.87848461e-01
-2.16966689e-01 5.78021705e-01 -2.12312981e-01 2.31069922e-01
1.51842368e+00 -3.08334529e-01 -1.59031376e-01 3.64260942e-01
1.39275360e+00 -2.68533587e-01 -1.18032169e+00 -5.81092425e-02
-3.70838344e-01 -3.67024899e-01 2.23820761e-01 -4.73388165e-01
-1.60621595e+00 1.28778398e+00 6.09016836e-01 3.54214519e-01
1.19280398e+00 -1.04914449e-01 8.16284120e-01 4.51847464e-01
-4.03485121e-03 -1.19747829e+00 8.20215404e-01 3.87478590e-01
6.48754656e-01 -1.77322543e+00 -1.75453126e-01 -3.02934557e-01
-1.11940372e+00 1.15123129e+00 7.36451864e-01 -3.75527054e-01
9.13254380e-01 -1.22070666e-02 4.27142739e-01 -3.93188834e-01
-4.58805352e-01 -2.91289054e-02 2.21417338e-01 4.58173066e-01
5.56750596e-01 -2.39726286e-02 -1.05398558e-01 6.91998541e-01
-2.13368848e-01 2.65553474e-01 4.80769396e-01 9.26065147e-01
-5.52921116e-01 -6.80385113e-01 -1.50827408e-01 4.98118877e-01
-8.99598241e-01 -1.50467366e-01 -3.71908009e-01 6.89286947e-01
-2.52620786e-01 1.03293812e+00 1.73602104e-01 -3.34713042e-01
6.95011243e-02 -3.07347268e-01 8.75897333e-02 -4.21647936e-01
-6.80839777e-01 -1.51909977e-01 -1.43974960e-01 -4.11680102e-01
-8.50180686e-01 -3.53612185e-01 -1.11713850e+00 -2.22108543e-01
-9.70436446e-03 -1.08628623e-01 1.03732884e+00 9.17669058e-01
1.10117368e-01 5.97455800e-01 8.26274633e-01 -7.61967301e-01
2.20816776e-01 -7.75314331e-01 -5.79411626e-01 6.97140634e-01
1.60700083e-01 -5.29380560e-01 -6.77086413e-02 3.43246132e-01] | [10.9176664352417, 2.693315267562866] |
19b1de35-291e-4378-95cc-9fb77a431a90 | parallelizing-legendre-memory-unit-training | 2102.11417 | null | https://arxiv.org/abs/2102.11417v2 | https://arxiv.org/pdf/2102.11417v2.pdf | Parallelizing Legendre Memory Unit Training | Recently, a new recurrent neural network (RNN) named the Legendre Memory Unit (LMU) was proposed and shown to achieve state-of-the-art performance on several benchmark datasets. Here we leverage the linear time-invariant (LTI) memory component of the LMU to construct a simplified variant that can be parallelized during training (and yet executed as an RNN during inference), thus overcoming a well known limitation of training RNNs on GPUs. We show that this reformulation that aids parallelizing, which can be applied generally to any deep network whose recurrent components are linear, makes training up to 200 times faster. Second, to validate its utility, we compare its performance against the original LMU and a variety of published LSTM and transformer networks on seven benchmarks, ranging from psMNIST to sentiment analysis to machine translation. We demonstrate that our models exhibit superior performance on all datasets, often using fewer parameters. For instance, our LMU sets a new state-of-the-art result on psMNIST, and uses half the parameters while outperforming DistilBERT and LSTM models on IMDB sentiment analysis. | ['Chris Eliasmith', 'Narsimha Chilkuri'] | 2021-02-22 | parallelizing-legendre-memory-unit-training-1 | https://arxiv.org/abs/2102.11417 | https://arxiv.org/pdf/2102.11417.pdf | null | ['sequential-image-classification'] | ['computer-vision'] | [ 5.45695312e-02 -7.23649487e-02 -2.27879882e-01 -1.71583742e-01
-7.87501097e-01 -6.31634414e-01 7.29906797e-01 -2.53846526e-01
-6.85765088e-01 4.77833599e-01 1.11220784e-01 -8.97384524e-01
3.29277486e-01 -8.36020470e-01 -1.01316822e+00 -6.96915209e-01
1.34891793e-01 6.86463773e-01 2.12884456e-01 -3.73787671e-01
9.37704891e-02 5.02076745e-01 -1.36701035e+00 6.39587522e-01
2.16718435e-01 1.21811938e+00 1.29720464e-01 6.93467677e-01
-6.39317855e-02 1.28103507e+00 -5.09553134e-01 -2.73080647e-01
7.60142356e-02 2.43028700e-02 -1.13407958e+00 -6.81392431e-01
3.24043334e-01 -2.76218742e-01 -4.38866556e-01 5.39696693e-01
6.42014861e-01 3.22497755e-01 3.00391942e-01 -6.27202511e-01
-5.30866027e-01 9.21869397e-01 -3.44398886e-01 4.17769372e-01
-1.19391091e-01 -3.95176947e-01 1.13045931e+00 -8.20683002e-01
4.54674065e-01 1.13171542e+00 1.02540052e+00 4.60921526e-01
-1.05730355e+00 -6.26372218e-01 1.53694794e-01 3.32018346e-01
-8.45822215e-01 -4.95351166e-01 2.82584101e-01 1.37899086e-01
1.96412480e+00 3.80558074e-02 4.54154313e-01 1.38950944e+00
4.31316584e-01 1.07848811e+00 9.84049499e-01 -4.90522861e-01
-1.10732250e-01 -1.12308145e-01 5.43088555e-01 8.33010733e-01
-1.92418605e-01 -4.38443832e-02 -5.36049485e-01 -9.61891860e-02
5.12472034e-01 7.07839727e-02 1.16204808e-03 2.09422439e-01
-1.19226289e+00 7.86629200e-01 5.00240386e-01 4.91624117e-01
-1.91019982e-01 4.48563397e-01 1.09531915e+00 5.32607734e-01
7.20348656e-01 2.72855729e-01 -8.10664892e-01 -4.89007354e-01
-8.73226404e-01 -3.27043116e-01 1.06439519e+00 6.49283469e-01
6.38039887e-01 4.36999530e-01 -5.39867729e-02 9.42876518e-01
-2.87664622e-01 5.52086055e-01 1.18859148e+00 -6.27925932e-01
3.12165946e-01 4.64643270e-01 -3.37472111e-01 -6.63568735e-01
-7.78741837e-01 -7.30025530e-01 -1.04497242e+00 -1.93474129e-01
-2.71304902e-02 -1.20880418e-01 -9.32038426e-01 1.60572040e+00
-2.06203759e-01 3.28565866e-01 2.17813119e-01 4.97833580e-01
8.95301998e-01 9.59934473e-01 -3.43827546e-01 9.92863327e-02
1.26609421e+00 -1.52452183e+00 -2.62138784e-01 -4.38072681e-01
1.22572601e+00 -7.53121674e-01 1.05581677e+00 5.28727293e-01
-1.20285249e+00 -4.67674524e-01 -9.88607943e-01 -4.45753157e-01
-6.38141990e-01 3.43360275e-01 8.20260465e-01 4.26397085e-01
-1.45817482e+00 9.34182465e-01 -1.25410509e+00 -4.30174947e-01
-9.98987034e-02 6.46597505e-01 -2.02407420e-01 4.07816321e-01
-1.26084387e+00 1.21202886e+00 2.78583825e-01 3.16810727e-01
-8.34988713e-01 -5.39629281e-01 -5.90566874e-01 1.12570524e-01
7.00701103e-02 -7.08595455e-01 1.76227772e+00 -9.21042323e-01
-2.03210139e+00 8.33497465e-01 -5.37601352e-01 -1.19107187e+00
1.53323159e-01 -3.64067078e-01 -3.87703478e-01 -1.41316622e-01
-3.30309212e-01 4.14490730e-01 6.36630356e-01 -5.41567266e-01
-5.43703735e-01 -1.02452137e-01 -7.82345757e-02 -1.71253271e-02
-6.29875004e-01 2.25143433e-02 -2.82902569e-01 -4.86370862e-01
4.97597679e-02 -1.15666759e+00 -4.61592078e-02 -7.38271832e-01
-3.52446973e-01 -2.88447380e-01 8.90721381e-01 -5.50602257e-01
1.06837904e+00 -1.86104655e+00 2.20027134e-01 6.46377057e-02
-9.24863219e-02 5.19147038e-01 -3.29612732e-01 3.11951160e-01
-2.86016345e-01 -1.40293345e-01 6.57568946e-02 -8.20091426e-01
-7.99976569e-03 5.80190003e-01 -9.91886675e-01 3.18070203e-01
-2.14187950e-01 1.18863022e+00 -6.61022305e-01 -8.59863963e-03
-2.55644675e-02 6.29606962e-01 -3.31777066e-01 -6.13225624e-02
-1.45946115e-01 1.11490056e-01 -1.30534291e-01 3.29143256e-01
1.91943765e-01 -5.54987967e-01 1.49993345e-01 -2.51462340e-01
-2.02864334e-01 9.95784402e-01 -3.63577366e-01 1.49134660e+00
-1.12110782e+00 1.10045099e+00 -4.38643664e-01 -1.15436625e+00
8.98400068e-01 4.40390587e-01 1.56183392e-01 -1.05725646e+00
1.52172834e-01 4.26957548e-01 -1.90303594e-01 1.10823691e-01
7.22290635e-01 5.61188348e-02 8.35362002e-02 8.40919554e-01
1.97959244e-01 1.89494878e-01 9.58453715e-02 -9.35815554e-03
1.15644252e+00 3.92940119e-02 -2.11711675e-02 -2.64907718e-01
4.19886261e-01 -2.30181307e-01 2.66269207e-01 9.25317109e-01
3.79057199e-01 3.89829069e-01 5.29720366e-01 -7.90242016e-01
-1.07692206e+00 -7.52288401e-01 -6.66796863e-02 1.63010609e+00
-6.33027434e-01 -4.78410780e-01 -7.08556890e-01 -3.05402577e-01
-4.58811402e-01 7.96278358e-01 -7.34510303e-01 -1.06060028e-01
-1.02264273e+00 -1.05488455e+00 9.83926654e-01 7.44047880e-01
7.28454471e-01 -1.20419574e+00 -7.97186017e-01 3.27347785e-01
-1.86900958e-01 -1.21329951e+00 -1.77228093e-01 6.20952845e-01
-1.13464308e+00 -5.73137403e-01 -4.94222403e-01 -8.37150395e-01
2.03664958e-01 1.33073464e-01 1.52457166e+00 -4.28369530e-02
1.62641674e-01 1.08281679e-01 -2.04997197e-01 -2.16410965e-01
-4.49817508e-01 8.71376872e-01 3.36060748e-02 -4.56892282e-01
2.43626118e-01 -7.74253368e-01 -3.45338613e-01 3.13515633e-01
-6.94923818e-01 1.99075252e-01 5.65014958e-01 1.16728604e+00
5.91687500e-01 -1.20537572e-01 4.03452009e-01 -1.11666596e+00
3.55838627e-01 -3.26220781e-01 -5.96357167e-01 2.55205840e-01
-6.40422702e-01 2.41783038e-01 1.11726832e+00 -4.43866163e-01
-8.18288326e-01 -2.79988289e-01 -3.31069499e-01 -3.95884812e-01
4.42167073e-01 6.83720112e-01 5.78832626e-01 -1.55836746e-01
4.75827634e-01 5.04972041e-01 -8.68141726e-02 -5.04305184e-01
3.06396604e-01 3.86101782e-01 5.38109243e-01 -5.56758285e-01
2.33170107e-01 5.57763755e-01 6.32958487e-02 -6.44896686e-01
-1.18179655e+00 -2.61963606e-01 -4.38271016e-01 3.84613812e-01
3.95658970e-01 -8.61827791e-01 -1.11608243e+00 6.21951699e-01
-1.26106048e+00 -7.24899948e-01 -1.90826222e-01 2.60294646e-01
-6.19615197e-01 8.51550624e-02 -1.40400529e+00 -4.88547295e-01
-1.12871766e+00 -1.10770929e+00 1.04897296e+00 -2.28043720e-01
-1.33266017e-01 -1.29534948e+00 1.65575176e-01 -6.79382533e-02
7.64294744e-01 -2.75522947e-01 9.96791899e-01 -8.32757413e-01
-2.60104507e-01 -1.06202312e-01 -2.98303902e-01 5.02605498e-01
-2.54136175e-01 -1.25545949e-01 -1.22514594e+00 -5.26088476e-01
3.07608485e-01 -3.56751978e-01 1.33881676e+00 4.08963829e-01
1.05424976e+00 -3.80792737e-01 -3.53757024e-01 8.56740177e-01
1.17666948e+00 -6.07019829e-05 7.74878621e-01 7.32788861e-01
6.85638487e-01 1.44212410e-01 8.23579952e-02 1.86507717e-01
2.81973690e-01 5.84932685e-01 1.77354857e-01 -2.78850615e-01
1.27196774e-01 -3.07773482e-02 7.61450052e-01 1.40970767e+00
-1.92720786e-01 -1.51459128e-01 -9.55196023e-01 3.04650873e-01
-2.02408051e+00 -7.92425513e-01 1.14805572e-01 2.05264044e+00
6.01482034e-01 3.63452315e-01 5.67910001e-02 3.28796878e-02
2.76942462e-01 3.06662232e-01 -5.56152821e-01 -9.80804682e-01
-3.03638309e-01 6.71355546e-01 8.83306265e-01 4.28005576e-01
-9.66863692e-01 1.37425494e+00 7.38054657e+00 8.70887160e-01
-1.52560735e+00 5.11206985e-01 9.18429255e-01 -3.40260297e-01
-5.65317422e-02 -2.64167845e-01 -1.09116375e+00 3.07483822e-02
1.81624734e+00 -9.25198663e-03 6.04822278e-01 8.79392862e-01
-1.45912664e-02 2.30180264e-01 -1.11780798e+00 8.27902496e-01
1.23574317e-01 -1.36832678e+00 5.62996157e-02 -2.18928382e-01
6.30334139e-01 9.52952087e-01 5.21838844e-01 7.36083746e-01
4.92219061e-01 -1.20086205e+00 4.42705452e-01 2.64633656e-01
6.56559587e-01 -9.66263115e-01 8.51600707e-01 1.22168794e-01
-1.09929919e+00 -1.26881316e-01 -7.77851164e-01 -3.12239826e-01
-6.44976040e-03 6.41642213e-01 -9.12055373e-01 4.49598014e-01
8.37299109e-01 9.70554769e-01 -4.17228729e-01 2.82126129e-01
-1.06062554e-01 7.57799268e-01 -5.65745294e-01 -1.41410187e-01
8.04208279e-01 3.45575884e-02 2.06087068e-01 1.37858248e+00
4.89804268e-01 -3.25249821e-01 -2.95915455e-01 4.32880789e-01
-2.29822010e-01 -3.51931155e-02 -5.26057541e-01 3.96862775e-02
2.09825307e-01 1.30572486e+00 -6.06911182e-01 -5.20357132e-01
-3.77326906e-01 1.09311390e+00 6.80566907e-01 3.82381082e-01
-8.72673869e-01 -1.30275428e-01 4.54311043e-01 -2.99240738e-01
4.58360463e-01 -2.69314647e-01 -1.40422061e-01 -1.18738782e+00
-9.47075039e-02 -9.63500202e-01 4.80647087e-01 -7.02761769e-01
-9.35022652e-01 1.29692352e+00 -4.63735998e-01 -1.04932272e+00
-7.01050520e-01 -1.01170814e+00 -5.36297679e-01 8.12835038e-01
-1.71687949e+00 -1.27179551e+00 1.96809620e-01 5.22757292e-01
3.49412113e-01 -4.38403845e-01 1.21694589e+00 4.36396480e-01
-8.29598248e-01 8.08963835e-01 4.35818702e-01 6.07733019e-02
5.45627952e-01 -9.34446573e-01 9.80765164e-01 5.36760867e-01
2.61251569e-01 8.06918740e-01 5.17697453e-01 -1.00905783e-01
-1.63635910e+00 -1.07712805e+00 8.74554276e-01 -3.68323028e-01
1.13384354e+00 -3.40661198e-01 -8.14416468e-01 1.50620580e+00
3.53752166e-01 -1.01795636e-01 3.60072732e-01 5.44859648e-01
-5.97938597e-01 -1.26686260e-01 -4.91056859e-01 7.10818648e-01
8.36762071e-01 -8.30331326e-01 -4.67440486e-01 4.85729903e-01
8.85102868e-01 -7.99636602e-01 -7.39428937e-01 4.23320919e-01
6.54380083e-01 -1.03422415e+00 9.32679594e-01 -5.74307799e-01
5.70888937e-01 2.65240043e-01 -1.48456648e-01 -1.29572582e+00
-1.53769419e-01 -8.08778822e-01 -3.29004019e-01 7.43674636e-01
6.99335575e-01 -1.18035889e+00 7.54874468e-01 1.08006760e-01
-3.67438018e-01 -1.06161129e+00 -1.10334492e+00 -6.85670197e-01
2.57118702e-01 -4.81823295e-01 4.35127050e-01 7.46850193e-01
-3.38799208e-02 6.06190622e-01 -5.68270147e-01 -2.47003481e-01
-3.33916359e-02 2.08016306e-01 5.61292648e-01 -8.30276191e-01
-5.09400547e-01 -6.33810699e-01 -1.22372910e-01 -1.54582989e+00
6.08487487e-01 -1.06534231e+00 -2.79423773e-01 -1.23290896e+00
3.17524448e-02 -2.95388043e-01 -5.41528463e-01 8.84279311e-01
3.97340000e-01 3.82169276e-01 -1.05341561e-01 2.96029508e-01
-4.35490996e-01 3.98474127e-01 9.01080251e-01 -6.42422065e-02
-6.31428882e-02 -4.73987340e-04 -3.50077122e-01 8.38199079e-01
6.55411303e-01 -3.20374638e-01 -1.50522247e-01 -7.64473140e-01
6.57914162e-01 -5.64193018e-02 6.68926835e-02 -9.41935301e-01
5.83628476e-01 6.81189537e-01 8.10582563e-02 -7.72310495e-01
5.66014946e-01 -4.90588546e-01 -1.64875925e-01 6.33883297e-01
-2.55221754e-01 6.41995728e-01 6.09699190e-01 -8.02332237e-02
-2.90549874e-01 -8.24290812e-02 6.71908915e-01 -6.48994297e-02
-6.55763388e-01 1.30489558e-01 -4.16237235e-01 -2.70599753e-01
2.23189741e-01 1.79300070e-01 -7.89096415e-01 -4.27350551e-01
-4.80512768e-01 -1.21104255e-01 1.24587089e-01 2.74408400e-01
3.10662001e-01 -9.56329346e-01 -5.16472101e-01 2.42300764e-01
-3.56724560e-01 -1.66959405e-01 1.13487944e-01 9.47008193e-01
-5.33027411e-01 9.23572779e-01 5.17196804e-02 -6.53598249e-01
-9.86785114e-01 4.37477201e-01 6.23375535e-01 -8.54409814e-01
-8.80201399e-01 8.45612109e-01 1.37779176e-01 -8.01640511e-01
7.99027160e-02 -5.88818848e-01 -1.58854816e-02 8.08916837e-02
4.87940133e-01 4.24503446e-01 6.67435110e-01 -3.96429926e-01
-1.36408925e-01 6.17371678e-01 -4.47236747e-01 -3.20359915e-02
1.35164773e+00 1.52705863e-01 -5.39360702e-01 7.62627900e-01
1.49665117e+00 -4.00680870e-01 -6.31545603e-01 -5.43658733e-01
-6.95594177e-02 3.99647444e-01 2.09118307e-01 -6.09257519e-01
-1.26021791e+00 1.01870334e+00 3.58587205e-01 1.47630915e-01
1.21044636e+00 -3.86619568e-01 1.39599025e+00 1.15737760e+00
3.72793376e-01 -9.69941258e-01 -1.35645941e-01 1.39809632e+00
4.98104990e-01 -9.01469409e-01 -2.17510164e-01 1.80765107e-01
-4.04752940e-01 1.32395267e+00 2.52867520e-01 -2.68299699e-01
5.65618753e-01 6.58940494e-01 5.75271919e-02 3.64224203e-02
-1.26940656e+00 2.27041587e-01 7.86753744e-02 -2.06817642e-01
7.17574835e-01 -7.04038218e-02 7.65239671e-02 3.04060727e-01
-6.38374031e-01 -8.35128874e-02 3.69327635e-01 7.72147715e-01
-1.46402374e-01 -1.08325481e+00 1.17806636e-01 4.89315033e-01
-7.71278977e-01 -6.47266984e-01 5.04897647e-02 7.48752236e-01
-6.87793851e-01 6.28175080e-01 3.63982499e-01 -4.46942300e-01
1.51920944e-01 6.80881962e-02 4.33793157e-01 -3.83440912e-01
-1.04627120e+00 -7.29955956e-02 2.74382502e-01 -6.49194598e-01
-2.75463909e-01 -1.98836476e-01 -1.28706813e+00 -7.61678398e-01
-1.64068177e-01 1.20293036e-01 7.84697831e-01 1.10759413e+00
4.87778604e-01 7.57044077e-01 5.01098454e-01 -1.00639927e+00
-5.50611198e-01 -1.04997313e+00 -3.06903988e-01 -6.60623908e-02
3.26874793e-01 -2.84211516e-01 -3.66087466e-01 -3.56137395e-01] | [10.803276062011719, 6.806011199951172] |
adecbd42-75ff-4f6c-a9b1-7f6083914c26 | a-comprehensive-evaluation-on-multi-channel | 2202.10286 | null | https://arxiv.org/abs/2202.10286v1 | https://arxiv.org/pdf/2202.10286v1.pdf | A Comprehensive Evaluation on Multi-channel Biometric Face Presentation Attack Detection | The vulnerability against presentation attacks is a crucial problem undermining the wide-deployment of face recognition systems. Though presentation attack detection (PAD) systems try to address this problem, the lack of generalization and robustness continues to be a major concern. Several works have shown that using multi-channel PAD systems could alleviate this vulnerability and result in more robust systems. However, there is a wide selection of channels available for a PAD system such as RGB, Near Infrared, Shortwave Infrared, Depth, and Thermal sensors. Having a lot of sensors increases the cost of the system, and therefore an understanding of the performance of different sensors against a wide variety of attacks is necessary while selecting the modalities. In this work, we perform a comprehensive study to understand the effectiveness of various imaging modalities for PAD. The studies are performed on a multi-channel PAD dataset, collected with 14 different sensing modalities considering a wide range of 2D, 3D, and partial attacks. We used the multi-channel convolutional network-based architecture, which uses pixel-wise binary supervision. The model has been evaluated with different combinations of channels, and different image qualities on a variety of challenging known and unknown attack protocols. The results reveal interesting trends and can act as pointers for sensor selection for safety-critical presentation attack detection systems. The source codes and protocols to reproduce the results are made available publicly making it possible to extend this work to other architectures. | ['Sebastien Marcel', 'David Geissbuhler', 'Anjith George'] | 2022-02-21 | null | null | null | null | ['face-presentation-attack-detection'] | ['computer-vision'] | [ 3.95066291e-01 -3.70497495e-01 -7.29599819e-02 -1.79519325e-01
-6.69078290e-01 -7.79925287e-01 4.77633148e-01 -2.14746725e-02
-3.77866477e-01 2.72229254e-01 -1.43926308e-01 -4.01406229e-01
-2.42403328e-01 -6.48262203e-01 -5.33195734e-01 -1.06980157e+00
-4.44071293e-01 -2.20999703e-01 2.58212060e-01 -3.79727155e-01
8.70772600e-02 1.15373886e+00 -1.61223495e+00 2.89766341e-01
-1.12888016e-01 1.52032721e+00 -4.69923586e-01 6.56769037e-01
3.77249807e-01 1.24132268e-01 -9.54875529e-01 -6.31293833e-01
6.54324889e-01 -6.27295524e-02 -1.59892201e-01 -1.53154090e-01
5.92690527e-01 -4.71555233e-01 -3.21534693e-01 1.02391243e+00
1.12071288e+00 -5.70787787e-01 2.33915269e-01 -1.73060942e+00
-1.29301652e-01 4.37925309e-01 -5.54197729e-01 2.18226939e-01
6.12343371e-01 3.01933199e-01 4.14945453e-01 -4.23125297e-01
3.12096268e-01 1.31189442e+00 5.71108520e-01 7.27041125e-01
-9.29340482e-01 -1.30166817e+00 -4.14749682e-01 2.95572013e-01
-1.43713284e+00 -3.96632552e-01 1.00398695e+00 -1.15177602e-01
6.52351439e-01 1.94021404e-01 2.54778773e-01 1.64634788e+00
3.61492932e-01 1.74471438e-01 1.45429361e+00 -3.63377601e-01
3.49210709e-01 2.56271303e-01 1.45497188e-01 3.36404204e-01
5.66826701e-01 3.93687218e-01 -6.64527714e-01 -5.11738181e-01
3.21608573e-01 -9.40627083e-02 -2.22115263e-01 -2.19330370e-01
-4.28093135e-01 7.97653496e-01 2.20381021e-01 2.20075607e-01
-1.65676877e-01 -1.37209930e-02 5.16606629e-01 4.41503733e-01
-9.75293517e-02 2.05978289e-01 -3.03059608e-01 -1.73866414e-02
-5.26934683e-01 1.75171159e-02 8.33689094e-01 3.92360747e-01
5.50765812e-01 6.74955174e-02 1.84783608e-01 4.17286575e-01
4.98815864e-01 9.62219238e-01 -1.49920536e-02 -6.54834092e-01
4.12022859e-01 2.63944119e-01 -3.66005242e-01 -1.25316417e+00
-5.57457149e-01 -3.00326530e-04 -8.71379137e-01 6.95648611e-01
4.01103824e-01 -4.79577601e-01 -1.00520909e+00 1.64694655e+00
1.80225492e-01 1.21836036e-01 2.12827787e-01 8.84584129e-01
6.78712666e-01 3.41108263e-01 1.90471202e-01 -9.43332389e-02
1.38250673e+00 -3.85525711e-02 -6.23238981e-01 3.82989459e-02
2.24830791e-01 -9.10897434e-01 5.98069310e-01 7.56125867e-01
-5.80570221e-01 -3.24986100e-01 -1.40745413e+00 7.35276222e-01
-4.93119210e-01 -1.89299345e-01 5.19598126e-01 1.69954765e+00
-9.72269773e-01 1.26391515e-01 -6.93323016e-01 -5.71520507e-01
5.80139041e-01 5.49152255e-01 -6.20211840e-01 -3.64243686e-01
-1.42226100e+00 7.26684153e-01 1.46899410e-02 1.32219613e-01
-9.64264572e-01 -2.91342854e-01 -6.38935745e-01 -2.57498264e-01
4.96469922e-02 1.83830291e-01 6.81808829e-01 -7.04360425e-01
-1.33240485e+00 5.74307919e-01 3.78684580e-01 -4.45158243e-01
2.94612646e-01 -6.77695423e-02 -8.56598616e-01 4.50228304e-01
-5.60761511e-01 3.88077319e-01 1.02723551e+00 -1.02920210e+00
7.35522434e-03 -4.78049785e-01 1.16201930e-01 -3.75691772e-01
-6.93148255e-01 5.22674024e-01 -1.20095052e-01 -3.79433304e-01
-1.53104916e-01 -1.10739875e+00 6.66344687e-02 7.24353194e-02
-4.87858534e-01 3.35510850e-01 1.29188228e+00 -4.36498106e-01
8.47592652e-01 -2.37109709e+00 -2.80821830e-01 5.65325022e-01
-2.87200063e-01 5.56645930e-01 -1.75950035e-01 5.84092617e-01
-2.60153681e-01 2.23335832e-01 -1.75943673e-01 -1.95747942e-01
-4.75754887e-02 1.29749611e-01 -2.90840924e-01 7.18257844e-01
1.77747339e-01 1.18815877e-01 -3.94816138e-02 -1.75420165e-01
3.60843301e-01 8.33666682e-01 -1.74236268e-01 8.04181844e-02
1.24074362e-01 3.08418512e-01 -4.18745279e-01 1.10003185e+00
1.16687655e+00 2.18800470e-01 -1.25749588e-01 -3.00606459e-01
2.49922141e-01 -1.73872575e-01 -1.55675590e+00 1.24406207e+00
-6.24207743e-02 6.45155430e-01 2.40598053e-01 -7.04017997e-01
1.00756574e+00 5.11984646e-01 5.47818363e-01 -8.90673280e-01
4.96350080e-01 9.16443169e-02 9.91708711e-02 -4.85385627e-01
6.23827018e-02 1.46548778e-01 -2.06190050e-01 5.57114184e-01
-1.30618498e-01 2.17765912e-01 -8.56769979e-02 1.64693892e-01
1.44558942e+00 -4.06172425e-01 -2.00986698e-01 1.95388809e-01
4.35127616e-01 -2.88885504e-01 2.27323875e-01 7.98913419e-01
-5.43476284e-01 4.95878726e-01 5.05727291e-01 -2.43663609e-01
-5.80868781e-01 -1.05683923e+00 -4.76717949e-01 4.57137853e-01
3.20959061e-01 -3.29582006e-01 -6.42684758e-01 -4.52903569e-01
7.20036682e-03 8.22597519e-02 -5.33645034e-01 -2.46849626e-01
-3.53402734e-01 -8.93486202e-01 1.31603158e+00 2.52802432e-01
8.26265395e-01 -9.00686443e-01 -1.00191867e+00 -3.09670717e-01
1.72017708e-01 -1.41104054e+00 3.31299275e-01 3.30097139e-01
-3.12992007e-01 -1.29244876e+00 -3.80894303e-01 -1.41011804e-01
3.52175057e-01 1.19811796e-01 3.82039815e-01 1.17889725e-01
-6.27938449e-01 7.19671011e-01 -5.02270222e-01 -6.60303056e-01
-4.02335107e-01 -3.17637563e-01 1.75756633e-01 1.71634883e-01
4.32471484e-01 -3.20404470e-01 -4.94947344e-01 3.72173488e-01
-1.12915099e+00 -9.17163849e-01 7.18540668e-01 4.69291657e-01
1.41997695e-01 2.61360824e-01 1.59884766e-01 -4.69135851e-01
5.79325974e-01 -5.00636995e-01 -6.01768911e-01 1.62870139e-01
-3.98092836e-01 -1.23304777e-01 3.21565866e-01 -7.75812924e-01
-7.21643150e-01 1.80626348e-01 -3.87377739e-01 -4.97991830e-01
-5.60594618e-01 1.43827349e-01 -6.82536542e-01 -7.03154683e-01
8.16322803e-01 -1.82988554e-01 8.05389211e-02 -2.23391607e-01
3.79408114e-02 7.99899817e-01 1.35166526e-01 -3.35182011e-01
1.01407146e+00 5.74646831e-01 2.20580697e-01 -1.12599123e+00
-5.77664189e-03 -1.99866548e-01 -6.73579127e-02 -3.94164234e-01
6.00722551e-01 -7.35072732e-01 -8.71532917e-01 1.06029499e+00
-8.64099205e-01 -7.82926083e-02 4.02768582e-01 3.55261445e-01
2.21150130e-01 5.24255335e-01 -6.01399243e-01 -8.71376455e-01
-2.63428599e-01 -1.43578029e+00 9.67538595e-01 3.81905705e-01
-6.38035014e-02 -6.83115900e-01 -1.92941815e-01 2.98454374e-01
6.75766826e-01 4.99507636e-01 4.14840579e-01 -6.30998850e-01
-5.15060127e-01 -5.20120800e-01 -1.63879558e-01 4.69700575e-01
5.08913063e-02 1.90330416e-01 -1.47060812e+00 -6.32969797e-01
2.97343247e-02 -4.77932066e-01 6.84262633e-01 1.45770326e-01
1.15693581e+00 -1.65600270e-01 -2.54920542e-01 6.67857230e-01
1.43676734e+00 2.73306757e-01 1.03849697e+00 5.29965937e-01
3.09207052e-01 5.74031949e-01 4.12278235e-01 6.22617662e-01
-2.39439353e-01 6.02169156e-01 9.77750659e-01 -9.07957256e-02
1.42201617e-01 2.79032499e-01 5.89975655e-01 -2.54773796e-01
3.87364537e-01 -4.99637187e-01 -9.34773922e-01 3.53450961e-02
-1.04236794e+00 -9.65131998e-01 1.44601017e-01 2.15233803e+00
3.20374876e-01 3.13010573e-01 1.75360829e-01 7.13872492e-01
5.98007143e-01 2.00624526e-01 -3.87483090e-01 -6.13858402e-01
-4.43511069e-01 6.20427191e-01 9.17738497e-01 6.58538043e-02
-1.25603020e+00 3.74575019e-01 6.50619173e+00 5.50434470e-01
-1.85829341e+00 -8.71747807e-02 4.60245520e-01 7.56081343e-02
1.80866957e-01 -2.35360488e-01 -9.36383903e-01 5.00807285e-01
1.29060304e+00 3.90991956e-01 2.21114866e-02 7.00515330e-01
-1.32982120e-01 -2.66129613e-01 -7.20564067e-01 1.22114098e+00
4.30592954e-01 -9.51609492e-01 -2.28194818e-01 2.03004286e-01
2.22604573e-01 -1.87131222e-02 4.04746443e-01 -3.26444536e-01
-7.01719597e-02 -9.95480180e-01 4.64084893e-01 -2.52361707e-02
7.06795037e-01 -7.47143924e-01 8.19065511e-01 -1.43289477e-01
-9.23236668e-01 -3.63949955e-01 -9.13793221e-02 8.71110409e-02
-1.42374799e-01 4.11668926e-01 -5.97424865e-01 3.63919199e-01
1.06312132e+00 1.76003844e-01 -7.13268399e-01 1.04870903e+00
-3.31193805e-01 7.95367002e-01 -7.90336251e-01 -1.26269519e-01
-2.06320032e-01 5.26436985e-01 5.22848070e-01 1.07730389e+00
3.78478587e-01 5.32577839e-03 -4.74987291e-02 2.59819567e-01
1.98533759e-01 -1.86972037e-01 -7.41755128e-01 8.17713141e-03
5.99827409e-01 1.28089905e+00 -6.48563683e-01 3.12626660e-01
-4.41651791e-01 7.33345568e-01 -4.77302521e-01 3.56481910e-01
-8.62219334e-01 -3.46060067e-01 9.21572328e-01 7.14387232e-03
1.53058544e-01 -3.89833093e-01 -2.45932400e-01 -5.54204524e-01
4.09024842e-02 -1.10437357e+00 7.66303718e-01 -6.85539722e-01
-1.13223088e+00 5.93622148e-01 1.52249515e-01 -1.06772101e+00
3.36019956e-02 -9.96781230e-01 -4.46162254e-01 7.79744446e-01
-1.54662120e+00 -1.04429471e+00 -4.39793885e-01 9.46832240e-01
-1.36419639e-01 -3.63917112e-01 9.21524942e-01 6.14430130e-01
-6.55560851e-01 1.09735858e+00 -3.53773803e-01 3.26934755e-01
8.75790417e-01 -4.47218865e-01 -5.11202291e-02 1.02257097e+00
-4.81062084e-02 5.40784836e-01 6.95551097e-01 -4.52149212e-01
-1.87830448e+00 -7.39911854e-01 1.95290931e-02 -2.22480252e-01
4.31612223e-01 -3.41961175e-01 -8.06795478e-01 2.38958731e-01
2.54976571e-01 -9.04655829e-03 8.51937592e-01 -2.41223827e-01
-7.98327327e-01 -4.47220802e-01 -1.54484105e+00 3.67019981e-01
4.22468781e-01 -5.58967412e-01 6.54962063e-02 -5.81331216e-02
2.58777618e-01 -2.78658599e-01 -7.06180334e-01 4.30522799e-01
7.14726448e-01 -1.02044272e+00 1.02285218e+00 1.13093063e-01
-7.12002888e-02 -2.30344489e-01 -4.83667880e-01 -8.79780114e-01
2.66653538e-01 -5.73330402e-01 1.32208049e-01 1.29454410e+00
3.27890337e-01 -9.16775882e-01 8.90150845e-01 6.43220901e-01
2.76325226e-01 -3.13855976e-01 -1.11128664e+00 -7.19232559e-01
-1.92533627e-01 -8.16227078e-01 5.93927920e-01 7.29906738e-01
-1.61643386e-01 -2.34573334e-01 -4.19248343e-01 9.27724123e-01
8.87014031e-01 -4.89763141e-01 7.44979560e-01 -1.04380119e+00
-1.09087564e-01 -2.14096487e-01 -9.75287676e-01 -2.30885208e-01
-8.86478350e-02 -3.45538020e-01 -3.08544874e-01 -7.18186378e-01
-1.49042651e-01 -4.39028889e-01 -3.81496310e-01 8.00083041e-01
3.58048171e-01 5.82546353e-01 1.48528591e-01 2.25875825e-02
-1.25345454e-01 -1.73502229e-02 5.79673886e-01 -2.99505264e-01
1.28568843e-01 -1.38691425e-01 -5.48430443e-01 3.77340972e-01
1.02451193e+00 -5.38652480e-01 -3.64585310e-01 -2.25575656e-01
1.73234977e-02 -4.13754955e-02 5.91465533e-01 -1.40859246e+00
3.26431662e-01 -7.40658194e-02 5.64040422e-01 -3.13046843e-01
7.54413068e-01 -1.24559569e+00 2.21155792e-01 6.11471593e-01
-1.33287951e-01 1.20470375e-01 6.68581128e-01 3.44468921e-01
-7.35205859e-02 1.80115446e-01 9.47728872e-01 3.15620244e-01
-9.76297736e-01 2.76990384e-01 -2.71860957e-01 -4.67485636e-01
1.22565520e+00 -5.44802904e-01 -5.97703040e-01 -2.99883455e-01
-4.35814053e-01 -2.54067868e-01 5.11822701e-01 5.63662171e-01
8.55755568e-01 -9.78310943e-01 -4.71846938e-01 7.45637059e-01
1.83891028e-01 -7.20401406e-01 1.93738505e-01 5.19776225e-01
-4.92330164e-01 8.70974883e-02 -7.35295355e-01 -8.08769643e-01
-1.77543473e+00 3.68878484e-01 5.00446975e-01 3.53176057e-01
-2.31471375e-01 7.20689237e-01 -4.61564451e-01 4.92181331e-02
6.54856265e-01 3.16078544e-01 -1.99177042e-01 -1.13811502e-02
8.83454859e-01 1.78362951e-01 3.93909872e-01 -7.16288865e-01
-7.17436314e-01 6.46177471e-01 1.22690663e-01 -2.37055749e-01
1.06816280e+00 5.01839481e-02 5.58576062e-02 -7.83959776e-02
1.16107094e+00 -1.82530226e-03 -9.77019310e-01 1.11457892e-01
-1.46955058e-01 -5.79535365e-01 -8.90879780e-02 -8.74077141e-01
-1.40263236e+00 1.03226686e+00 1.55278218e+00 2.33635619e-01
1.48829544e+00 -2.32740209e-01 5.79564095e-01 2.13659063e-01
5.34907460e-01 -6.46986663e-01 3.07045698e-01 1.87426299e-01
5.96195638e-01 -1.20862973e+00 7.36472057e-03 -4.41568315e-01
-3.04499090e-01 1.22132683e+00 5.84318340e-01 1.51317388e-01
9.75139737e-01 8.39393854e-01 4.49146003e-01 -2.29221195e-01
-3.94268602e-01 2.05359459e-02 -2.48883337e-01 9.95960236e-01
1.39889419e-01 -1.70688212e-01 8.13307315e-02 1.99381575e-01
4.15484495e-02 -2.96629846e-01 6.77423000e-01 1.17639053e+00
-6.63308874e-02 -1.41129243e+00 -9.92839038e-01 9.11269560e-02
-7.55145490e-01 3.06371361e-01 -5.73078096e-01 7.74283469e-01
2.32159451e-01 1.37664175e+00 -3.75033885e-01 -7.39677727e-01
2.74352282e-01 -6.49058586e-03 3.29177499e-01 -1.85767561e-02
-5.45233548e-01 -2.97346234e-01 2.91577186e-02 -6.56304717e-01
-5.69503069e-01 -6.91379189e-01 -9.67729747e-01 -5.73713779e-01
-2.28412747e-01 -1.41744286e-01 1.17198157e+00 6.24550462e-01
3.38217974e-01 1.56512693e-01 7.80676484e-01 -6.25666320e-01
-5.56419551e-01 -6.30615175e-01 -5.78092456e-01 4.62449253e-01
5.14321566e-01 -7.50711977e-01 -6.23661757e-01 -2.35214725e-01] | [13.073018074035645, 1.097410798072815] |
af7a4476-939d-4120-af30-9c1f6cafaf3b | disclip-open-vocabulary-referring-expression | 2305.19108 | null | https://arxiv.org/abs/2305.19108v1 | https://arxiv.org/pdf/2305.19108v1.pdf | DisCLIP: Open-Vocabulary Referring Expression Generation | Referring Expressions Generation (REG) aims to produce textual descriptions that unambiguously identifies specific objects within a visual scene. Traditionally, this has been achieved through supervised learning methods, which perform well on specific data distributions but often struggle to generalize to new images and concepts. To address this issue, we present a novel approach for REG, named DisCLIP, short for discriminative CLIP. We build on CLIP, a large-scale visual-semantic model, to guide an LLM to generate a contextual description of a target concept in an image while avoiding other distracting concepts. Notably, this optimization happens at inference time and does not require additional training or tuning of learned parameters. We measure the quality of the generated text by evaluating the capability of a receiver model to accurately identify the described object within the scene. To achieve this, we use a frozen zero-shot comprehension module as a critique of our generated referring expressions. We evaluate DisCLIP on multiple referring expression benchmarks through human evaluation and show that it significantly outperforms previous methods on out-of-domain datasets. Our results highlight the potential of using pre-trained visual-semantic models for generating high-quality contextual descriptions. | ['Gal Chechik', 'Ethan Fetaya', 'Aviv Shamsian', 'Eitan Shaar', 'Lior Bracha'] | 2023-05-30 | null | null | null | null | ['referring-expression-generation', 'referring-expression'] | ['computer-vision', 'computer-vision'] | [ 4.60099041e-01 2.47159317e-01 2.82816049e-02 -5.95390439e-01
-1.13977981e+00 -7.23646760e-01 8.89009416e-01 2.08988488e-01
-1.91923589e-01 5.13793111e-01 3.29536200e-01 7.67076164e-02
3.62180978e-01 -5.76897800e-01 -9.16033566e-01 -3.37526411e-01
3.60788912e-01 5.84549069e-01 1.05524912e-01 -1.57100439e-01
2.64189899e-01 3.75245214e-01 -1.52223158e+00 6.55893147e-01
7.29277253e-01 8.25962901e-01 3.05279136e-01 5.00342607e-01
-3.15458953e-01 1.06726837e+00 -8.93106997e-01 -6.47062778e-01
-2.63806224e-01 -6.63160801e-01 -8.91151369e-01 3.72840613e-01
6.58539176e-01 -2.94301361e-01 -4.21425290e-02 9.43573713e-01
4.44620460e-01 2.31883675e-01 8.47937226e-01 -1.34184539e+00
-8.84260118e-01 4.79435205e-01 -2.72233397e-01 -8.47435966e-02
6.11700833e-01 2.74339348e-01 1.10233653e+00 -1.13967359e+00
1.09338057e+00 1.47628796e+00 2.98788190e-01 7.78124988e-01
-1.49672985e+00 -4.96602803e-01 2.88758546e-01 1.02542810e-01
-1.53112459e+00 -6.03991449e-01 8.44371736e-01 -3.61392081e-01
7.50394881e-01 5.55509999e-02 2.83403009e-01 1.57239318e+00
-2.38109633e-01 1.16736972e+00 9.32801068e-01 -4.05530572e-01
4.06189024e-01 3.25458944e-01 -2.59170145e-01 5.71464598e-01
-2.76403457e-01 -1.26568660e-01 -8.23097229e-01 1.21365078e-01
3.49540949e-01 -3.57454449e-01 -3.66605133e-01 -4.98602897e-01
-1.03373218e+00 7.73617685e-01 5.93327343e-01 1.48421720e-01
-2.87722260e-01 3.11289102e-01 4.17963862e-01 -1.76201060e-01
4.81449097e-01 5.71587741e-01 6.12900145e-02 -1.99805647e-01
-1.06805921e+00 3.86931837e-01 6.49295330e-01 1.32643831e+00
7.14693606e-01 -4.72141095e-02 -8.84267032e-01 8.77437353e-01
-3.02572753e-02 4.89010423e-01 1.72274575e-01 -1.13538289e+00
2.69328326e-01 6.18063867e-01 7.36431256e-02 -9.39284861e-01
-4.42037322e-02 -3.94810677e-01 -4.62133139e-01 2.61183102e-02
1.54591992e-01 1.69938430e-01 -8.43224406e-01 2.01540923e+00
1.13432191e-01 -1.85485054e-02 1.68131232e-01 9.94900525e-01
9.72677052e-01 8.66691113e-01 4.89493757e-01 6.50988072e-02
1.16883636e+00 -1.11736214e+00 -6.60667777e-01 -5.20104289e-01
6.55787170e-01 -5.32319188e-01 1.55808032e+00 1.79090336e-01
-1.13406706e+00 -4.81947213e-01 -7.89783537e-01 -3.98375183e-01
-3.58061880e-01 2.88826585e-01 3.85007322e-01 3.06011587e-01
-1.00243509e+00 2.71808833e-01 -3.89646709e-01 -4.00981069e-01
7.17442513e-01 -2.17782989e-01 -3.49876732e-01 -2.43233219e-01
-9.32761669e-01 8.06591690e-01 3.30745310e-01 -3.25477779e-01
-1.45149791e+00 -6.85868144e-01 -1.04306197e+00 1.76901549e-01
3.79528075e-01 -7.79783964e-01 1.43429959e+00 -1.48442566e+00
-1.09395611e+00 1.27635479e+00 -5.77195168e-01 -3.06798816e-01
4.71712798e-01 -2.92781919e-01 -7.94656649e-02 5.05210578e-01
4.18514520e-01 1.28152204e+00 9.99368072e-01 -1.83886445e+00
-3.78128648e-01 -1.25473917e-01 3.49257082e-01 1.69036612e-01
-3.57377753e-02 -3.75642255e-02 -7.34953821e-01 -6.46934569e-01
-2.67196059e-01 -7.22418070e-01 5.24913445e-02 2.24339247e-01
-4.69710529e-01 -3.86832863e-01 8.24810863e-01 -4.94308203e-01
9.22031045e-01 -2.34089589e+00 3.14367622e-01 -1.29834920e-01
6.14824928e-02 1.35119259e-01 -3.50575447e-01 4.35397148e-01
8.56805965e-02 4.96445522e-02 -3.10409665e-01 -7.87370920e-01
6.62309155e-02 3.00264329e-01 -7.05251515e-01 9.54177827e-02
6.48402333e-01 1.11892486e+00 -1.16089821e+00 -6.64572537e-01
1.35721877e-01 5.51399529e-01 -5.94589055e-01 5.04993737e-01
-7.80050397e-01 4.67806250e-01 -3.04127425e-01 5.81761956e-01
4.67280477e-01 -5.28063953e-01 -1.77750383e-02 -3.27378243e-01
2.88790107e-01 7.28117749e-02 -6.27422035e-01 2.05553627e+00
-7.06007361e-01 7.09856093e-01 -3.71439457e-01 -9.79119420e-01
9.83365536e-01 1.35099545e-01 -1.10841896e-02 -9.62556720e-01
5.60986921e-02 -3.94768268e-02 -6.26499534e-01 -5.74907362e-01
5.67725718e-01 -2.13253260e-01 -3.35467875e-01 4.35033649e-01
3.15310538e-01 -4.01354223e-01 2.56817043e-01 7.61389315e-01
9.04495180e-01 4.87396210e-01 1.73278317e-01 3.45422626e-02
4.09630030e-01 1.60765961e-01 1.86694503e-01 9.84468997e-01
-1.38782203e-01 7.82200575e-01 7.23215580e-01 -5.14676422e-02
-1.00720131e+00 -1.27667940e+00 1.55880228e-01 1.33033359e+00
2.86256224e-01 -5.18227398e-01 -8.44134212e-01 -8.13138425e-01
-3.02703738e-01 1.32854235e+00 -6.70605004e-01 -2.83467919e-01
-2.57215738e-01 -3.92612442e-02 4.97675598e-01 5.34779847e-01
4.04485762e-01 -1.23564839e+00 -8.06928754e-01 4.65214439e-03
-4.99129534e-01 -1.57735360e+00 -3.97207707e-01 -7.49808773e-02
-3.62679780e-01 -8.47605705e-01 -7.10738182e-01 -7.12384164e-01
9.70557809e-01 1.91592172e-01 1.54669344e+00 1.60778128e-02
-3.92738342e-01 7.17387617e-01 -6.67629063e-01 -2.45919764e-01
-6.42771065e-01 -3.92599925e-02 -5.02849817e-01 2.31762771e-02
3.36059511e-01 -3.20603609e-01 -4.18067425e-01 1.88546389e-01
-1.02607834e+00 4.91789430e-01 4.96561527e-01 8.25682163e-01
6.29857183e-01 -5.06101966e-01 5.62663496e-01 -6.67151034e-01
7.24678755e-01 -3.96252960e-01 -4.47435319e-01 3.80147606e-01
-1.47161767e-01 3.10049623e-01 6.02217197e-01 -3.67910773e-01
-1.16598463e+00 1.73558041e-01 7.07775429e-02 -6.43687129e-01
-1.52878806e-01 1.70041069e-01 -1.55179694e-01 3.41702610e-01
9.08849180e-01 5.02195418e-01 -1.85913682e-01 -5.10173552e-02
8.66917729e-01 5.10873079e-01 7.72344053e-01 -8.51035237e-01
6.45662665e-01 6.79385006e-01 -6.62111565e-02 -6.04794681e-01
-1.51369929e+00 -4.61767167e-01 -4.95773405e-01 -3.99332792e-01
9.64343250e-01 -1.10796046e+00 -4.62694883e-01 -4.69835773e-02
-1.52832544e+00 -4.33494449e-01 -2.71843433e-01 -7.21716359e-02
-8.42943251e-01 9.20677036e-02 -5.95694035e-02 -7.64442205e-01
-2.42278323e-01 -1.04060078e+00 1.66816008e+00 1.64142594e-01
-4.68130082e-01 -9.45756197e-01 -1.69436812e-01 3.15140158e-01
3.77035588e-01 3.69904697e-01 9.09885943e-01 -5.01224101e-01
-7.39853084e-01 9.80902370e-03 -5.95626831e-01 4.09399092e-01
-1.49847433e-01 -3.32091339e-02 -1.16544902e+00 -1.28717899e-01
-3.65087897e-01 -9.25593019e-01 8.20975006e-01 -4.08407971e-02
1.45562875e+00 -3.46177727e-01 -3.45992059e-01 6.33110523e-01
1.35130084e+00 -1.08527310e-01 5.87063909e-01 7.95074478e-02
5.95889270e-01 8.55735719e-01 8.77781332e-01 4.87050980e-01
4.49928492e-01 8.68610263e-01 5.47986388e-01 -1.05359055e-01
-3.05090725e-01 -6.94957674e-01 3.04984450e-01 9.66754034e-02
3.28664333e-01 -4.34051394e-01 -8.58443260e-01 8.44466448e-01
-1.74119127e+00 -1.02697599e+00 1.81922287e-01 1.86844110e+00
9.70847607e-01 -1.02251865e-01 -1.48876160e-01 -3.36192906e-01
4.70283836e-01 1.78573072e-01 -5.65430939e-01 -3.47565234e-01
-2.99314350e-01 2.41695598e-01 3.55291367e-02 4.18746352e-01
-8.78437877e-01 1.45636261e+00 5.92603207e+00 8.70595396e-01
-1.02817440e+00 1.36647061e-01 6.25422060e-01 -2.14471504e-01
-4.86438513e-01 7.30070993e-02 -7.81286359e-01 1.87871173e-01
6.14858091e-01 -2.82932907e-01 2.27423713e-01 1.02683449e+00
2.81284094e-01 -2.80743212e-01 -1.43128955e+00 1.12155437e+00
6.06062412e-01 -1.32288873e+00 6.05480373e-01 -5.14640093e-01
7.08622396e-01 -4.18706775e-01 1.38991460e-01 5.04120708e-01
1.35623544e-01 -1.28233707e+00 9.87412035e-01 5.73133171e-01
8.56100857e-01 -7.35818326e-01 3.75745326e-01 2.22706631e-01
-7.95452058e-01 1.64081618e-01 -2.22543001e-01 2.06653461e-01
4.17556435e-01 2.72776067e-01 -1.05880880e+00 1.65586263e-01
4.86758053e-01 7.07975149e-01 -8.47913682e-01 6.76819563e-01
-7.05707312e-01 4.23760056e-01 8.13282430e-02 -8.97896215e-02
4.71274853e-01 2.72943944e-01 5.23043215e-01 1.45035851e+00
2.57209152e-01 -1.98342316e-02 4.64098901e-03 1.59845710e+00
-2.39717096e-01 7.15860277e-02 -6.26502752e-01 -1.28267020e-01
5.48997402e-01 1.20506251e+00 -2.90761143e-01 -4.76962060e-01
-1.82308376e-01 1.30054140e+00 5.53989828e-01 5.22560835e-01
-1.03170228e+00 -1.48310915e-01 3.79974037e-01 1.99016213e-01
2.09386423e-01 -8.49564299e-02 1.28496988e-02 -1.11420250e+00
7.65559375e-02 -9.50842261e-01 2.31056079e-01 -1.60934448e+00
-1.01549459e+00 5.04532278e-01 1.39773294e-01 -1.06956315e+00
-4.97178108e-01 -4.96813774e-01 -3.42887878e-01 7.22719193e-01
-1.47844911e+00 -1.42926455e+00 -7.87624061e-01 6.56432986e-01
8.69717777e-01 2.24323105e-02 8.42804134e-01 -1.70327395e-01
-1.59161806e-01 5.66941738e-01 -3.37084293e-01 5.01028970e-02
9.66279268e-01 -1.18321609e+00 1.88158900e-01 7.65650451e-01
3.55215311e-01 5.10575354e-01 9.94322360e-01 -4.35791790e-01
-1.00169981e+00 -1.33837092e+00 8.97167563e-01 -5.68671107e-01
4.60777521e-01 -5.91912448e-01 -9.54679549e-01 7.45663524e-01
2.87946731e-01 -5.61606884e-03 5.11918068e-01 -7.77904019e-02
-6.36655211e-01 1.19604424e-01 -9.34671581e-01 8.35741937e-01
1.20817184e+00 -7.09357440e-01 -6.33926630e-01 4.72177714e-01
7.90511906e-01 -3.96603674e-01 -3.60657394e-01 1.47940204e-01
1.71353370e-01 -1.14694476e+00 9.33076501e-01 -6.43996775e-01
1.07228804e+00 -2.88502872e-01 -3.35937619e-01 -1.32496715e+00
1.03405148e-01 -4.76305366e-01 1.36272743e-01 1.33402312e+00
2.72541523e-01 7.34994486e-02 5.00625610e-01 4.76575136e-01
-1.12729140e-01 -4.70171183e-01 -7.62406349e-01 -7.83796489e-01
-8.26201886e-02 -5.02270758e-01 3.16025555e-01 7.90119350e-01
3.98555100e-02 7.29595423e-01 -3.17201376e-01 2.74296850e-02
6.70659482e-01 1.09010972e-01 1.13345098e+00 -6.28787816e-01
-1.13148101e-01 -2.96301663e-01 -4.67446536e-01 -1.18436408e+00
7.48805642e-01 -1.01928532e+00 1.62196949e-01 -1.63428438e+00
4.31536764e-01 -2.02262282e-01 2.53380746e-01 5.42115450e-01
-1.84648603e-01 1.19231932e-01 3.12635213e-01 1.37669444e-01
-1.04653442e+00 8.35554361e-01 1.32311475e+00 -3.15866023e-01
3.47875208e-02 -4.71159369e-01 -8.07677567e-01 5.48990726e-01
5.20091832e-01 -3.81914407e-01 -6.31484032e-01 -5.98001480e-01
2.80845761e-01 -9.63203907e-02 8.94245446e-01 -9.36361134e-01
5.70705645e-02 -3.85308042e-02 2.50408709e-01 -5.66604614e-01
5.29563963e-01 -5.46740532e-01 -7.25625828e-02 -1.18362075e-02
-6.78184569e-01 -2.51315087e-01 2.32508063e-01 4.67102110e-01
-4.38419849e-01 -3.13273668e-01 9.19503033e-01 -1.34580180e-01
-1.06754482e+00 -4.25629728e-02 -5.33189997e-02 4.83823150e-01
1.13717461e+00 -8.58599097e-02 -5.51684499e-01 -7.97070920e-01
-7.61968970e-01 2.68379182e-01 6.64141774e-01 5.90318739e-01
9.38464344e-01 -1.31846166e+00 -7.60344386e-01 -1.62960455e-01
8.72071266e-01 9.67357159e-02 2.29845732e-01 4.49293077e-01
-3.37249219e-01 2.96536088e-01 -4.13488559e-02 -9.41345036e-01
-1.14201236e+00 6.95047021e-01 4.66410220e-01 -2.35678907e-02
-6.71219409e-01 8.83957684e-01 6.19864643e-01 -9.68982503e-02
1.97310254e-01 -1.47782434e-02 -8.76205638e-02 -9.92994173e-04
5.55385053e-01 -1.93785831e-01 -3.13664883e-01 -8.11371505e-01
-2.43568584e-01 4.63236004e-01 -5.48583418e-02 -3.46189916e-01
1.10684228e+00 -2.08550081e-01 8.21644291e-02 4.75648820e-01
1.27866209e+00 -1.25211522e-01 -1.47477341e+00 -3.20997268e-01
-8.49287286e-02 -5.07071614e-01 -1.89952806e-01 -9.00063097e-01
-6.69924796e-01 1.00856233e+00 2.74440140e-01 -2.35762656e-01
9.88941550e-01 4.60252970e-01 4.68508780e-01 2.88481236e-01
2.97574818e-01 -1.03055930e+00 7.88382411e-01 4.45937127e-01
1.31579936e+00 -1.27028036e+00 -2.68070489e-01 -3.60860080e-01
-1.24214554e+00 9.40504313e-01 7.28155434e-01 2.09513940e-02
-7.23662153e-02 -1.97325815e-02 1.46810174e-01 -2.37528458e-01
-9.24347043e-01 -3.52038383e-01 2.13920489e-01 8.60986888e-01
3.73540848e-01 -1.70212090e-01 1.15158513e-01 4.05833513e-01
-1.42915159e-01 -2.57975198e-02 5.52321672e-01 7.40256131e-01
-3.69291395e-01 -7.64073670e-01 -1.38818949e-01 1.02481842e-02
-1.94723442e-01 -1.82853758e-01 -6.61640346e-01 6.92710400e-01
-1.66308001e-01 9.21670020e-01 1.59606874e-01 1.00924499e-01
4.55730855e-01 1.39041811e-01 4.90633100e-01 -7.63066828e-01
-2.66068101e-01 -2.04880461e-01 1.37291119e-01 -8.23306680e-01
-6.13429785e-01 -4.93449062e-01 -1.25937629e+00 1.44389480e-01
8.89636427e-02 7.11347349e-03 5.60977519e-01 9.56026614e-01
4.81647402e-01 5.75993121e-01 3.96789730e-01 -8.14707458e-01
-4.56521869e-01 -6.83159053e-01 -2.64350235e-01 1.03198612e+00
1.51146039e-01 -6.76380694e-01 -3.81076545e-01 4.92755204e-01] | [10.80776309967041, 1.378513216972351] |