Upload 4 files
Browse files- app.py +46 -0
- model.joblib +3 -0
- requirements.txt +4 -0
- unique_values.joblib +3 -0
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Load the model and unique brand values
|
7 |
+
model = joblib.load('model.joblib')
|
8 |
+
unique_values = joblib.load('unique_values.joblib')
|
9 |
+
brand_values = unique_values['Brand']
|
10 |
+
|
11 |
+
# Define the prediction function
|
12 |
+
def predict(brand, screen_size, resolution_width, resolution_height):
|
13 |
+
# Convert inputs to appropriate types
|
14 |
+
screen_size = float(screen_size)
|
15 |
+
resolution_width = int(resolution_width)
|
16 |
+
resolution_height = int(resolution_height)
|
17 |
+
|
18 |
+
# Prepare the input array for prediction
|
19 |
+
input_data = pd.DataFrame({
|
20 |
+
'Brand': [brand],
|
21 |
+
'Screen Size': [screen_size],
|
22 |
+
'Resolution (Width)': [resolution_width],
|
23 |
+
'Resolution (Height)': [resolution_height]
|
24 |
+
})
|
25 |
+
|
26 |
+
# Perform the prediction
|
27 |
+
prediction = model.predict(input_data)
|
28 |
+
|
29 |
+
return prediction[0]
|
30 |
+
|
31 |
+
# Create the Gradio interface
|
32 |
+
interface = gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs=[
|
35 |
+
gr.Dropdown(choices=list(brand_values), label="Brand"),
|
36 |
+
gr.Textbox(label="Screen Size"),
|
37 |
+
gr.Textbox(label="Resolution (Width)"),
|
38 |
+
gr.Textbox(label="Resolution (Height)")
|
39 |
+
],
|
40 |
+
outputs="text",
|
41 |
+
title="Monitor Predictor",
|
42 |
+
description="Enter the brand, screen size, and resolution to predict the target value."
|
43 |
+
)
|
44 |
+
|
45 |
+
# Launch the app
|
46 |
+
interface.launch()
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3791b6924a3511c032ec93116e277ecda73f7a7e745a3c8dd170fd069dd1a62
|
3 |
+
size 165387
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib
|
2 |
+
pandas
|
3 |
+
scikit-learn==1.3.2
|
4 |
+
xgboost==2.1.1
|
unique_values.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fae982d906ebe09bb185149a43b296d40305dd74a80eb1c2731dd1ad1f32589
|
3 |
+
size 1203
|