|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Speech Dat dataset""" |
|
|
|
import datasets |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
_DESCRIPTION = """\ |
|
Speechdat dataset |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
class SpeechDat(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="audio", version=VERSION, description="SpeechDat dataset"), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"sentence": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
manual_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
path_to_data = "/".join(["wav"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": manual_dir |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
"""Yields examples.""" |
|
data_fields = list(self._info().features.keys()) |
|
|
|
def get_single_line(path): |
|
lines = [] |
|
with open(path, 'r', encoding="utf-8") as f: |
|
for line in f: |
|
line = line.strip() |
|
lines.append(line) |
|
if len(lines) == 1: |
|
return lines[0] |
|
elif len(lines) == 0: |
|
return None |
|
else: |
|
return " ".join(lines) |
|
|
|
data_path = Path(data_dir) |
|
for wav_file in data_path.glob("*.wav"): |
|
text_file = Path(str(wav_file).replace(".wav", ".svo")) |
|
if not text_file.is_file(): |
|
continue |
|
text_line = get_single_line(text_file) |
|
if text_line is None or text_line == "": |
|
continue |
|
size = os.path.getsize(wav_file) |
|
if size > 1024: |
|
with open(wav_file, "rb") as wav_data: |
|
yield str(wav_file), { |
|
"path": str(wav_file), |
|
"sentence": text_line, |
|
"audio": { |
|
"path": str(wav_file), |
|
"bytes": wav_data.read() |
|
} |
|
} |
|
|
|
|
|
|
|
def normalize(text): |
|
|
|
|
|
|
|
return text |