|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import json |
|
import torch |
|
import random |
|
import cv2 |
|
import decord |
|
from einops import rearrange |
|
from utils import * |
|
|
|
|
|
|
|
|
|
dataset_root = 'root_path/360Motion-Dataset' |
|
video_res = '480_720' |
|
video_names = [] |
|
scenes = ['Desert', 'HDRI'] |
|
scene_location_pair = { |
|
'Desert' : 'desert', |
|
'HDRI' : |
|
{ |
|
'loc1' : 'snowy street', |
|
'loc2' : 'park', |
|
'loc3' : 'indoor open space', |
|
'loc11' : 'gymnastics room', |
|
'loc13' : 'autumn forest', |
|
} |
|
} |
|
for scene in scenes: |
|
video_path = os.path.join(dataset_root, video_res, scene) |
|
locations_path = os.path.join(video_path, "location_data.json") |
|
with open(locations_path, 'r') as f: locations = json.load(f) |
|
locations_info = {locations[idx]['name']:locations[idx] for idx in range(len(locations))} |
|
for video_name in os.listdir(video_path): |
|
if video_name.endswith('Hemi12_1') == True: |
|
if scene != 'HDRI': |
|
location = scene_location_pair[scene] |
|
else: |
|
location = scene_location_pair['HDRI'][video_name.split('_')[1]] |
|
video_names.append((video_res, scene, video_name, location, locations_info)) |
|
|
|
|
|
|
|
|
|
cam_num = 12 |
|
max_objs_num = 3 |
|
length = len(video_names) |
|
captions_path = os.path.join(dataset_root, "CharacterInfo.json") |
|
with open(captions_path, 'r') as f: captions = json.load(f)['CharacterInfo'] |
|
captions_info = {int(captions[idx]['index']):captions[idx]['eng'] for idx in range(len(captions))} |
|
cams_path = os.path.join(dataset_root, "Hemi12_transforms.json") |
|
with open(cams_path, 'r') as f: cams_info = json.load(f) |
|
cam_poses = [] |
|
for i, key in enumerate(cams_info.keys()): |
|
if "C_" in key: |
|
cam_poses.append(parse_matrix(cams_info[key])) |
|
cam_poses = np.stack(cam_poses) |
|
cam_poses = np.transpose(cam_poses, (0,2,1)) |
|
cam_poses = cam_poses[:,:,[1,2,0,3]] |
|
cam_poses[:,:3,3] /= 100. |
|
cam_poses = cam_poses |
|
sample_n_frames = 49 |
|
|
|
|
|
|
|
|
|
(video_res, scene, video_name, location, locations_info) = video_names[20] |
|
|
|
with open(os.path.join(dataset_root, video_res, scene, video_name, video_name+'.json'), 'r') as f: objs_file = json.load(f) |
|
objs_num = len(objs_file['0']) |
|
video_index = random.randint(1, cam_num-1) |
|
|
|
location_name = video_name.split('_')[1] |
|
location_info = locations_info[location_name] |
|
cam_pose = cam_poses[video_index-1] |
|
obj_transl = location_info['coordinates']['CameraTarget']['position'] |
|
|
|
prompt = '' |
|
video_caption_list = [] |
|
obj_poses_list = [] |
|
|
|
for obj_idx in range(objs_num): |
|
|
|
obj_name_index = objs_file['0'][obj_idx]['index'] |
|
video_caption = captions_info[obj_name_index] |
|
|
|
if video_caption.startswith(" "): |
|
video_caption = video_caption[1:] |
|
if video_caption.endswith("."): |
|
video_caption = video_caption[:-1] |
|
video_caption = video_caption.lower() |
|
video_caption_list.append(video_caption) |
|
|
|
obj_poses = load_sceneposes(objs_file, obj_idx, obj_transl) |
|
obj_poses = np.linalg.inv(cam_pose) @ obj_poses |
|
obj_poses_list.append(obj_poses) |
|
|
|
for obj_idx in range(objs_num): |
|
video_caption = video_caption_list[obj_idx] |
|
if obj_idx == objs_num - 1: |
|
if objs_num == 1: |
|
prompt += video_caption + ' is moving in the ' + location |
|
else: |
|
prompt += video_caption + ' are moving in the ' + location |
|
else: |
|
prompt += video_caption + ' and ' |
|
|
|
obj_poses_all = torch.from_numpy(np.array(obj_poses_list)) |
|
|
|
total_frames = 99 |
|
current_sample_stride = 1.75 |
|
cropped_length = int(sample_n_frames * current_sample_stride) |
|
start_frame_ind = random.randint(10, max(10, total_frames - cropped_length - 1)) |
|
end_frame_ind = min(start_frame_ind + cropped_length, total_frames) |
|
frame_indices = np.linspace(start_frame_ind, end_frame_ind - 1, sample_n_frames, dtype=int) |
|
|
|
video_frames_path = os.path.join(dataset_root, video_res, scene, video_name, 'videos', video_name+ f'_C_{video_index:02d}_35mm.mp4') |
|
cap = cv2.VideoCapture(video_frames_path) |
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
|
|
|
|
ctx = decord.cpu(0) |
|
reader = decord.VideoReader(video_frames_path, ctx=ctx, height=height, width=width) |
|
assert len(reader) == total_frames or len(reader) == total_frames+1 |
|
frame_indexes = [frame_idx for frame_idx in range(total_frames)] |
|
try: |
|
video_chunk = reader.get_batch(frame_indexes).asnumpy() |
|
except: |
|
video_chunk = reader.get_batch(frame_indexes).numpy() |
|
|
|
pixel_values = np.array([video_chunk[indice] for indice in frame_indices]) |
|
pixel_values = rearrange(torch.from_numpy(pixel_values) / 255.0, "f h w c -> f c h w") |
|
|
|
save_video = True |
|
if save_video: |
|
video_data = (pixel_values.cpu().to(torch.float32).numpy() * 255).astype(np.uint8) |
|
video_data = rearrange(video_data, "f c h w -> f h w c") |
|
save_images2video(video_data, video_name, 12) |
|
|