Datasets:

Languages:
English
ArXiv:
License:
peoples_speech_v1.0 / peoples_speech.py
polinaeterna's picture
polinaeterna HF staff
add loading script
2ce90a9
raw
history blame
6.63 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import datasets
from datasets.tasks import AutomaticSpeechRecognition
from tqdm.auto import tqdm
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/abs-2111-09344,
author = {Daniel Galvez and
Greg Diamos and
Juan Ciro and
Juan Felipe Ceron and
Keith Achorn and
Anjali Gopi and
David Kanter and
Maximilian Lam and
Mark Mazumder and
Vijay Janapa Reddi},
title = {The People's Speech: A Large-Scale Diverse English Speech Recognition
Dataset for Commercial Usage},
journal = {CoRR},
volume = {abs/2111.09344},
year = {2021},
url = {https://arxiv.org/abs/2111.09344},
eprinttype = {arXiv},
eprint = {2111.09344},
timestamp = {Mon, 22 Nov 2021 16:44:07 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
# You can copy an official description
_DESCRIPTION = """\
The People's Speech is a free-to-download 30,000-hour and growing supervised
conversational English speech recognition dataset licensed for academic and
commercial usage under CC-BY-SA (with a CC-BY subset).
"""
_HOMEPAGE = "https://mlcommons.org/en/peoples-speech/"
_LICENSE = [
"cc-by-2.0", "cc-by-2.5", "cc-by-3.0", "cc-by-4.0", "cc-by-sa-2.5",
"cc-by-sa-3.0", "cc-by-sa-4.0"
]
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"clean-cc-by": {
"audio_tar": "",
"manifest": "",
},
"dirty-cc-by": {
"audio_tar": "",
"manifest": "",
},
"clean-cc-by-sa": {
"audio_tar": "",
"manifest": "",
},
"dirty-cc-by-sa": {
"audio_tar": "",
"manifest": "",
},
"microset": {
"audio_tar": "",
"manifest": "",
},
}
# _BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"
# relative path to data inside dataset's repo
_DATA_URL = "{config}/{config}_00000{archive_id}.tar"
# relative path to metadata inside dataset's repo
_MANIFEST_URL = "{config}.json"
class PeoplesSpeech(datasets.GeneratorBasedBuilder):
"""The People's Speech dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="clean", version=VERSION, description="Clean, CC-BY licensed subset."),
datasets.BuilderConfig(name="dirty", version=VERSION, description="Dirty, CC-BY licensed subset."),
datasets.BuilderConfig(name="clean_sa", version=VERSION, description="Clean, CC-BY-SA licensed subset."),
datasets.BuilderConfig(name="dirty_sa", version=VERSION, description="Dirty, CC-BY-SA licensed subset."),
]
DEFAULT_CONFIG_NAME = "clean"
DEFAULT_WRITER_BATCH_SIZE = 1
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"duration_ms": datasets.Value("int32"),
"text": datasets.Value("string"),
}
),
task_templates=[AutomaticSpeechRecognition()],
supervised_keys=("file", "text"),
homepage=_HOMEPAGE,
license="/".join(_LICENSE), # license must be a string
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: for demo purposes I use just first 5 archives
# TODO: this should be changed to the actual number of archives further
urls = [_DATA_URL.format(config=self.config.name, archive_id=i) for i in range(5)]
archives = [dl_manager.iter_archive(dl_manager.download(url)) for url in urls]
manifest_url = _MANIFEST_URL.format(config=self.config.name)
manifest_path = dl_manager.download_and_extract(manifest_url) # maybe just download?
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"archives": archives,
"manifest_path": manifest_path
},
),
]
def _generate_examples(self, archives, manifest_path):
meta = dict()
with open(manifest_path, "r", encoding="utf-8") as f:
for line in tqdm(f, desc="reading metadata file"):
sample_meta = json.loads(line)
_id = sample_meta["audio_document_id"]
texts = sample_meta["training_data"]["label"]
audio_filenames = sample_meta["training_data"]["name"]
durations = sample_meta["training_data"]["duration_ms"]
for audio_filename, text, duration in zip(audio_filenames, texts, durations):
meta[audio_filename] = {
"audio_document_id": _id,
"text": text,
"duration_ms": duration
}
print("generating examples")
for archive in archives:
# note that you don't need to use `tarfile` library and open tar archives manually
# dl_manager.iter_archive() does it for you :)
for audio_filename, audio_file in archive:
yield audio_filename, {
"id": audio_filename,
"audio": {"path": audio_filename, "bytes": audio_file.read()},
"text": meta[audio_filename]["text"],
"duration_ms": meta[audio_filename]["duration_ms"]
}