Datasets:
File size: 6,208 Bytes
3652748 2757638 3652748 0d49fca 3652748 0d49fca 3652748 0d49fca 616cf67 0d49fca 3652748 0d49fca 3652748 0d49fca 3652748 0d49fca 3652748 0d49fca 3652748 573d9d4 cc03dda 3652748 aaff689 af08558 aaff689 af08558 c556070 f2a6770 17b49e1 af08558 ab9029e af08558 ec1d5ac af08558 835024a 61fe2d1 c643bb9 835024a c643bb9 e0d4ede c643bb9 7f590f9 c643bb9 835024a ec1d5ac 835024a ec1d5ac c643bb9 ec1d5ac af08558 e665e9c 31f7dc0 af08558 95a8a1e eaa5c5a ef117d5 4d5db43 1389f2e 4d5db43 1389f2e 4d5db43 1389f2e eaa5c5a 1389f2e eaa5c5a cc03dda 95a8a1e 835024a 95a8a1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
language:
- en
size_categories:
- 10K<n<100K
configs:
- config_name: chat
default: true
data_files:
- split: train
path: data/chat/train.json.gz
- split: validation
path: data/chat/valid.json.gz
- split: test
path: data/chat/test_iid.json.gz
- split: test_iid
path: data/chat/test_iid.json.gz
- split: test_geo
path: data/chat/test_geo.json.gz
- split: test_vis
path: data/chat/test_vis.json.gz
- split: test_cat
path: data/chat/test_cat.json.gz
- split: test_web
path: data/chat/test_web.json.gz
- config_name: reranking
data_files:
- split: validation
path: data/reranking/valid.json.gz
- split: test
path: data/reranking/test_iid.json.gz
- split: test_iid
path: data/reranking/test_iid.json.gz
- split: test_geo
path: data/reranking/test_geo.json.gz
- split: test_vis
path: data/reranking/test_vis.json.gz
- split: test_web
path: data/reranking/test_web.json.gz
- split: test_cat
path: data/reranking/test_cat.json.gz
tags:
- image-to-text
- vision
- convAI
task_categories:
- image-to-text
- text-generation
- text2text-generation
- sentence-similarity
pretty_name: weblinx
license: cc-by-nc-sa-4.0
---
<div align="center">
<h1 style="margin-bottom: 0.5em;">WebLINX: Real-World Website Navigation with Multi-Turn Dialogue</h1>
<em>Xing Han Lù*, Zdeněk Kasner*, Siva Reddy</em>
</div>
<div style="margin-bottom: 2em"></div>
| [**💾Code**](https://github.com/McGill-NLP/WebLINX) | [**📄Paper**](https://arxiv.org/abs/2402.05930) | [**🌐Website**](https://mcgill-nlp.github.io/weblinx) | [**📓Colab**](https://colab.research.google.com/github/McGill-NLP/weblinx/blob/main/examples/WebLINX_Colab_Notebook.ipynb) |
| :--: | :--: | :--: | :--: |
| [**🤖Models**](https://huggingface.co/collections/McGill-NLP/weblinx-models-65c57d4afeeb282d1dcf8434) | [**💻Explorer**](https://huggingface.co/spaces/McGill-NLP/weblinx-explorer) | [**🐦Tweets**](https://twitter.com/sivareddyg/status/1755799365031965140) | [**🏆Leaderboard**](https://paperswithcode.com/sota/conversational-web-navigation-on-weblinx) |
<video width="100%" controls autoplay muted loop>
<source src="https://huggingface.co/datasets/McGill-NLP/WebLINX/resolve/main/WeblinxWebsiteDemo.mp4?download=false" type="video/mp4">
Your browser does not support the video tag.
</video>
## Quickstart
To get started, simply install `datasets` with `pip install datasets` and load the chat data splits:
```python
from datasets import load_dataset
from huggingface_hub import snapshot_download
# Load the validation split
valid = load_dataset("McGill-NLP/weblinx", split="validation")
# Download the input templates and use the LLaMA one
snapshot_download(
"McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/*", local_dir="."
)
with open('templates/llama.txt') as f:
template = f.read()
# To get the input text, simply pass a turn from the valid split to the template
turn = valid[0]
turn_text = template.format(**turn)
```
You can now use `turn_text` as an input to LLaMA-style models. For example, you can use Sheared-LLaMA:
```python
from transformers import pipeline
action_model = pipeline(
model="McGill-NLP/Sheared-LLaMA-2.7B-weblinx", device=0, torch_dtype='auto'
)
out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True)
pred = out[0]['generated_text']
print("Ref:", turn["action"])
print("Pred:", pred)
```
## Raw Data
To use the raw data, you will need to use the `huggingface_hub`:
```python
from huggingface_hub import snapshot_download
# If you want to download the complete dataset (may take a while!)
snapshot_download(repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data")
# You can download specific demos, for example
demo_names = ['saabwsg', 'ygprzve', 'iqaazif'] # 3 random demo from valid
patterns = [f"demonstrations/{name}/*" for name in demo_names]
snapshot_download(
repo_id="McGill-NLP/WebLINX-full", repo_type="dataset", local_dir="./wl_data", allow_patterns=patterns
)
```
For more information on how to use this data using our [official library](https://github.com/McGill-NLP/WebLINX), please refer to the [WebLINX documentation](https://mcgill-nlp.github.io/weblinx/docs).
## Reranking Data
You can also access the data processed for reranking tasks. To do that:
```python
from datasets import load_dataset
path = 'McGill-NLP/WebLINX'
# validation split:
valid = load_dataset(path=path, name='reranking', split='validation')
# test-iid split
test_iid = load_dataset(path, 'reranking', split='test_iid')
# other options: test_cat, test_geo, test_vis, test_web
print("Query:")
print(valid[0]['query'])
print("\nPositive:")
print(valid[0]['positives'][0])
print("\nNegative #1:")
print(valid[0]['negatives'][0])
print("\nNegative #2:")
print(valid[0]['negatives'][1])
```
## License and Terms of Use
License: The Dataset is made available under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
By downloading this Dataset, you agree to comply with the following terms of use:
- Restrictions: You agree not to use the Dataset in any way that is unlawful or would infringe upon the rights of others.
- Acknowledgment: By using the Dataset, you acknowledge that the Dataset may contain data derived from third-party sources, and you agree to abide by any additional terms and conditions that may apply to such third-party data.
- Fair Use Declaration: The Dataset may be used for research if it constitutes "fair use" under copyright laws within your jurisdiction. You are responsible for ensuring your use complies with applicable laws.
Derivatives must also include the terms of use above.
## Citation
If you use our dataset, please cite our work as follows:
```bibtex
@misc{lu-2024-weblinx,
title={WebLINX: Real-World Website Navigation with Multi-Turn Dialogue},
author={Xing Han Lù and Zdeněk Kasner and Siva Reddy},
year={2024},
eprint={2402.05930},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |