add script
Browse files- feedbackQA.py +128 -0
feedbackQA.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""FeedbackQA: An Retrieval-based Question Answering Dataset with User Feedback"""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
import os
|
24 |
+
|
25 |
+
logger = datasets.logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
_CITATION = """
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
FeedbackQA is a retrieval-based QA dataset \
|
33 |
+
that contains interactive feedback from users. \
|
34 |
+
It has two parts: the first part contains a conventional RQA dataset, \
|
35 |
+
whilst this repo contains the second part, which contains feedback(ratings and natural language explanations) for QA pairs.
|
36 |
+
"""
|
37 |
+
|
38 |
+
_URL = "https://drive.google.com/drive/folders/1mIcxZZ643k6SVJnZw1FmEOhndaFx4_PG?usp=sharing"
|
39 |
+
#_URLS = {
|
40 |
+
# "train": _URL + "train-v1.1.json",
|
41 |
+
# "dev": _URL + "dev-v1.1.json",
|
42 |
+
#}
|
43 |
+
|
44 |
+
|
45 |
+
class FeedbackConfig(datasets.BuilderConfig):
|
46 |
+
"""BuilderConfig for FeedbackQA."""
|
47 |
+
|
48 |
+
def __init__(self, **kwargs):
|
49 |
+
"""BuilderConfig for FeedbackQA.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
**kwargs: keyword arguments forwarded to super.
|
53 |
+
"""
|
54 |
+
super(FeedbackConfig, self).__init__(**kwargs)
|
55 |
+
|
56 |
+
|
57 |
+
class FeedbackQA(datasets.GeneratorBasedBuilder):
|
58 |
+
"""FeedbackQA: retrieval-based QA dataset that contains interactive feedback from users."""
|
59 |
+
|
60 |
+
BUILDER_CONFIGS = [
|
61 |
+
FeedbackConfig(
|
62 |
+
name="plain_text",
|
63 |
+
version=datasets.Version("1.0.0", ""),
|
64 |
+
description="Plain text",
|
65 |
+
),
|
66 |
+
]
|
67 |
+
|
68 |
+
def _info(self):
|
69 |
+
return datasets.DatasetInfo(
|
70 |
+
description=_DESCRIPTION,
|
71 |
+
features=datasets.Features(
|
72 |
+
{
|
73 |
+
#"id": datasets.Value("string"),
|
74 |
+
#"title": datasets.Value("string"),
|
75 |
+
"question": datasets.Value("string"),
|
76 |
+
"answer": datasets.Value("string"),
|
77 |
+
"feedback": datasets.features.Sequence(
|
78 |
+
{
|
79 |
+
"rating": datasets.Value("string"),
|
80 |
+
"explanation": datasets.Value("string"),
|
81 |
+
}
|
82 |
+
),
|
83 |
+
}
|
84 |
+
),
|
85 |
+
# No default supervised_keys (as we have to pass both question
|
86 |
+
# and context as input).
|
87 |
+
supervised_keys=None,
|
88 |
+
homepage="https://mcgill-nlp.github.io/feedbackQA_data/",
|
89 |
+
citation=_CITATION
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
downloaded_files_path = dl_manager.download_and_extract(_URL)
|
94 |
+
train_file = os.path.join(downloaded_files_path, 'feedback_train.json')
|
95 |
+
valid_file = os.path.join(downloaded_files_path, 'feedback_valid.json')
|
96 |
+
test_file = os.path.join(downloaded_files_path, 'feedback_test.json')
|
97 |
+
|
98 |
+
return [
|
99 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file}),
|
100 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_file}),
|
101 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}),
|
102 |
+
]
|
103 |
+
|
104 |
+
def _generate_examples(self, filepath):
|
105 |
+
"""This function returns the examples in the raw (text) form."""
|
106 |
+
logger.info("generating examples from = %s", filepath)
|
107 |
+
key = 0
|
108 |
+
with open(filepath, encoding="utf-8") as f:
|
109 |
+
fbqa = json.load(f)
|
110 |
+
for dict_item in fbqa:
|
111 |
+
question = dict_item['question']
|
112 |
+
passage_text = ''
|
113 |
+
if dict_item['passage']['reference']['page_title']:
|
114 |
+
passage_text += dict_item['passage']['reference']['page_title'] + '\n'
|
115 |
+
if dict_item['passage']['reference']['section_headers']:
|
116 |
+
passage_text += '\n'.join(dict_item['passage']['reference']['section_headers']) + '\n'
|
117 |
+
if dict_item['passage']['reference']['section_content']:
|
118 |
+
passage_text += dict_item['passage']['reference']['section_content']
|
119 |
+
|
120 |
+
yield key, {
|
121 |
+
"question": question,
|
122 |
+
"answer": passage_text,
|
123 |
+
"feedback": {
|
124 |
+
"rating": dict_item['rating'],
|
125 |
+
"explanation": dict_item['feedback'],
|
126 |
+
},
|
127 |
+
}
|
128 |
+
key += 1
|