MuafiraThasni commited on
Commit
ed2431f
1 Parent(s): 104b484

Update README.md

Browse files

Updated dataset details

Files changed (1) hide show
  1. README.md +81 -0
README.md CHANGED
@@ -1,3 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  dataset_info:
3
  features:
 
1
+ ---
2
+ annotations_creators:
3
+ - other
4
+ language:
5
+ - en
6
+ license:
7
+ - other
8
+ multilinguality:
9
+ - no
10
+ size_categories:
11
+ - 10K<n<100K
12
+ source_datasets:
13
+ - original
14
+ task_categories:
15
+ - image-classification
16
+ task_ids:
17
+ - multi-class-classification
18
+ ---
19
+
20
+ # EuroSAT Dataset
21
+
22
+ ## Overview
23
+
24
+ This dataset contains satellite images from the EuroSAT datasetThe dataset consists of RGB images with 10 different classes, each representing a distinct type of land use.
25
+
26
+ ## Dataset Summary
27
+
28
+ - **Classes**: 10 (e.g., Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent Crop, Residential, River, Sea/Lake)
29
+ - **Number of Images**: 27,000+ images split into training and validation sets
30
+ - **Image Size**: 64x64 pixels, 3 channels (RGB)
31
+ - **Data Augmentation**: Random flipping, random rotation, and normalization
32
+
33
+ ## Usage
34
+
35
+ This dataset is ideal for training and fine-tuning image classification models, specifically for applications in remote sensing, urban planning, environmental monitoring, and agricultural management.
36
+
37
+ ### Key Features
38
+
39
+ - **Preprocessing**: Images were preprocessed using TensorFlow, including resizing, normalizing, and applying augmentation techniques to improve model robustness.
40
+ - **Model**: Fine-tuned with Vision Transformer (ViT) to leverage attention-based mechanisms for superior performance in image classification tasks.
41
+
42
+ ## Dataset Structure
43
+
44
+ - **Training Set**: Approximately 80% of the dataset
45
+ - **Validation Set**: Approximately 20% of the dataset
46
+ - **Format**: Images are stored as PNG files with associated labels.
47
+
48
+ ### Labels
49
+ - Class labels are encoded as integers and correspond to the following categories:
50
+ 0. Annual Crop
51
+ 1. Forest
52
+ 2. Herbaceous Vegetation
53
+ 3. Highway
54
+ 4. Industrial
55
+ 5. Pasture
56
+ 6. Permanent Crop
57
+ 7. Residential
58
+ 8. River
59
+ 9. Sea/Lake
60
+
61
+ ## Performance Metrics
62
+
63
+ - **Accuracy**: Achieved X% accuracy on the validation set
64
+ - **F1-Score**: Achieved X% F1-score across all classes
65
+
66
+ ## Practical Applications
67
+
68
+ - **Urban Planning**: Identifying residential and industrial areas from satellite imagery.
69
+ - **Agriculture**: Monitoring crop types and assessing agricultural land use.
70
+ - **Environmental Protection**: Tracking changes in natural land covers like forests and rivers.
71
+
72
+ ## How to Use
73
+
74
+ To use this dataset, you can directly load it through the Hugging Face `datasets` library:
75
+
76
+ ```python
77
+ from datasets import load_dataset
78
+
79
+ dataset = load_dataset("your_username/eurosat-land-use-classification")
80
+ ```
81
+
82
  ---
83
  dataset_info:
84
  features: