--- language: - en license: cc0-1.0 task_categories: - text-to-audio - automatic-speech-recognition - audio-to-audio - audio-classification dataset_info: features: - name: audio dtype: audio - name: speaker_id dtype: string - name: transcript dtype: string - name: native_language dtype: string - name: subset dtype: string splits: - name: all num_bytes: 3179636720.056 num_examples: 41806 download_size: 3667597693 dataset_size: 3179636720.056 configs: - config_name: default data_files: - split: all path: data/all-* --- # ESLTTS The full paper can be accessed here: [arXiv](https://arxiv.org/abs/2404.18094), [IEEE Xplore](https://ieeexplore.ieee.org/document/10508477). ## Dataset Access You can access this dataset through [Huggingface](https://huggingface.co/datasets/MushanW/ESLTTS) or [Google Driver](https://drive.google.com/file/d/1ChQ_z-TxvKWNUbUMWnbyjM2VY3v2SKEi/view?usp=sharing) or [IEEE Dataport](http://ieee-dataport.org/documents/english-second-language-tts-esltts-dataset). ## Abstract With the progress made in speaker-adaptive TTS approaches, advanced approaches have shown a remarkable capacity to reproduce the speaker’s voice in the commonly used TTS datasets. However, mimicking voices characterized by substantial accents, such as non-native English speakers, is still challenging. Regrettably, the absence of a dedicated TTS dataset for speakers with substantial accents inhibits the research and evaluation of speaker-adaptive TTS models under such conditions. To address this gap, we developed a corpus of non-native speakers' English utterances. We named this corpus “English as a Second Language TTS dataset ” (ESLTTS). The ESLTTS dataset consists of roughly 37 hours of 42,000 utterances from 134 non-native English speakers. These speakers represent a diversity of linguistic backgrounds spanning 31 native languages. For each speaker, the dataset includes an adaptation set lasting about 5 minutes for speaker adaptation, a test set comprising 10 utterances for speaker-adaptive TTS evaluation, and a development set for further research. ## Dataset Structure ``` ESLTTS Dataset/ ├─ Malayalam_3/ ------------ {Speaker Native Language}_{Speaker id} │ ├─ ada_1.flac ------------ {Subset Name}_{Utterance id} │ ├─ ada_1.txt ------------ Transcription for "ada_1.flac" │ ├─ test_1.flac ------------ {Subset Name}_{Utterance id} │ ├─ test_1.txt ------------ Transcription for "test_1.flac" │ ├─ dev_1.flac ------------ {Subset Name}_{Utterance id} │ ├─ dev_1.txt ------------ Transcription for "dev_1.flac" │ ├─ ... ├─ Arabic_3/ ------------ {Speaker Native Language}_{Speaker id} │ ├─ ada_1.flac ------------ {Subset Name}_{Utterance id} │ ├─ ... ├─ ... ``` ## Citation ``` @article{wang2024usat, author = {Wenbin Wang and Yang Song and Sanjay K. Jha}, title = {{USAT:} {A} Universal Speaker-Adaptive Text-to-Speech Approach}, journal = {{IEEE} {ACM} Trans. Audio Speech Lang. Process.}, volume = {32}, pages = {2590--2604}, year = {2024}, url = {https://doi.org/10.1109/TASLP.2024.3393714}, doi = {10.1109/TASLP.2024.3393714}, } ```