Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Libraries:
Datasets
pandas
File size: 2,840 Bytes
b282ceb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868ee48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
language:
- en
---

> 上述数据集为ABSA(Aspect-Based Sentiment Analysis)领域数据集,基本形式为从句子中抽取:方面术语、方面类别(术语类别)、术语在上下文中情感极性以及针对该术语的观点词,不同数据集抽取不同的信息,这点在jsonl文件的“instruction”键中有分别提到,在此我将其改造为了生成任务,需要模型按照一定格式生成抽取结果。

#### 以acos数据集中抽取的jsonl文件一条数据举例:

```
{
    "task_type": "generation",
    "dataset": "acos", 
    "input": ["the computer has difficulty switching between tablet and computer ."], 
    "output": "[['computer', 'laptop usability', 'negative', 'difficulty']]",
    "situation": "none", 
    "label": "", 
    "extra": "", 
    "instruction": "    
        Task: Extracting aspect terms and their corresponding aspect categories, sentiment polarities, and opinion words. 
        Input: A sentence
        Output: A list of 4-tuples, where each tuple contains the extracted aspect term, its aspect category, sentiment polarity, and opinion words (if any). Supplement: \"Null\" means that there is no occurrence in the sentence.
        Example:  
            Sentence: \"Also it's not a true SSD drive in there but eMMC, which makes a difference.\"  
            Output: [['SSD drive', 'hard_disc operation_performance', 'negative', 'NULL']]' 
    "
}
```
> 此处未设置label和extra,在instruction中以如上所示的字符串模板,并给出一个例子进行one-shot,ABSA领域数据集(absa-quad,acos,arts,aste-data-v2,mams,semeval-2014,semeval-2015,semeval-2016,towe)每个数据集对应instruction模板相同,内容有细微不同,且部分数据集存在同一数据集不同数据instruction内容不同的情况。

#### 原始数据集
- 数据[链接](https://alt.qcri.org/semeval2016/task5/)
- Paper:[SemEval-2016 Task 5: Aspect Based Sentiment Analysis](https://aclanthology.org/S16-1002/)
- 说明:数据分为Laptop和restaurant两个主题的数据,分别在两个文件夹中放置。两个主题的数据抽取的元素不同。

#### 当前SOTA
*数据来自[PaperWithCode](https://paperswithcode.com/sota)*

- SemEval2016-Laptop
    未调研到相关评测工作

- [SemEval2016-Restaurant](https://paperswithcode.com/sota/aspect-based-sentiment-analysis-on-semeval-2)
    - 评价指标:Accuracy(抽取的分类准确率)
    - 模型:BERT-IL Finetuned (**88.70**)
    - Paper:[Does BERT Understand Sentiment? Leveraging Comparisons Between Contextual and Non-Contextual Embeddings to Improve Aspect-Based Sentiment Models](https://paperswithcode.com/paper/does-bert-understand-sentiment-leveraging)
    - 信息来源:[SemEval-2016](https://paperswithcode.com/sota/aspect-based-sentiment-analysis-on-semeval-2)