Datasets:
Tags:
speech-modeling
License:
File size: 7,806 Bytes
f19ff8a d0eabf1 f19ff8a 0e12b46 f19ff8a 5b01d58 f19ff8a 5b01d58 f19ff8a d69bf15 f19ff8a ddb68e8 f19ff8a ddb68e8 f19ff8a 0e12b46 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a f0aa293 f19ff8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""NPSC: Norwegian Parliament Speech Corpus"""
import io
import json
import tarfile
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@inproceedings{johansen2019ner,
title={},
author={},
booktitle={LREC 2022},
year={2022},
url={https://arxiv.org/abs/}
}
"""
_DESCRIPTION = """\
The Norwegian Parliament Speech Corpus (NPSC) is a corpus for training a Norwegian ASR (Automatic Speech Recognition) models. The corpus is created by Språkbanken at the National Library in Norway.
NPSC is based on sound recording from meeting in the Norwegian Parliament. These talks are orthographically transcribed to either Norwegian Bokmål or Norwegian Nynorsk. In addition to the data actually included in this dataset, there is a significant amount of metadata that is included in the original corpus. Through the speaker id there is additional information about the speaker, like gender, age, and place of birth (ie dialect). Through the proceedings id the corpus can be linked to the official proceedings from the meetings.
The corpus is in total sound recordings from 40 entire days of meetings. This amounts to 140 hours of speech, 65,000 sentences or 1.2 million words.
"""
_HOMEPAGE = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/"
# Example: https://huggingface.co/datasets/NbAiLab/NPSC/resolve/main/data/train/20170110_48K_mp3.tar.gz
_DATA_URL = "https://huggingface.co/datasets/NbAiLab/NPSC/resolve/main/data/{split}/{shard}_{config}.tar.gz"
# Example: https://huggingface.co/datasets/NbAiLab/NPSC/resolve/main/data/test/20170207.json
_METADATA_URL = "https://huggingface.co/datasets/NbAiLab/NPSC/resolve/main/data/{split}/{shard}.json"
_SHARDS = {
"eval": ["20170209", "20180109", "20180201", "20180307", "20180611"],
"test": ["20170207", "20171122", "20171219", "20180530"],
"train": ["20170110", "20170208", "20170215", "20170216", "20170222", "20170314", "20170322", "20170323", "20170403", "20170405", "20170419", "20170426", "20170503", "20170510", "20170516", "20170613", "20170615", "20171007", "20171012", "20171018", "20171024", "20171208", "20171211", "20171213", "20180316", "20180321", "20180404", "20180410", "20180411", "20180601", "20180613", "20180615"],
}
class NpscConfig(datasets.BuilderConfig):
"""BuilderConfig for NPSC."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for NPSC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NpscConfig, self).__init__(*args, **kwargs)
class Npsc(datasets.GeneratorBasedBuilder):
"""NPSC dataset."""
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [
NpscConfig(
name="48K_mp3",
version=datasets.Version("1.0.0"),
description="NPSC with samples in 48KHz stereo mp3)",
),
NpscConfig(
name="16K_mp3",
version=datasets.Version("1.0.0"),
description="NPSC with samples in 16KHz mono mp3)",
),
]
def _info(self):
sampling_rate = 16_000 if self.config.name == "16K_mp3" else 48_000
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"meeting_date": datasets.Value("string"),
"sentence_order": datasets.Value("int32"),
"speaker_id" : datasets.Value("int32"),
"speaker_name": datasets.Value("string"),
"sentence_text": datasets.Value("string"),
"sentence_language_code": datasets.Value("string"),
"text": datasets.Value("string"),
"start_time": datasets.Value("int32"),
"end_time": datasets.Value("int32"),
"normsentence_text": datasets.Value("string"),
"transsentence_text": datasets.Value("string"),
"translated": datasets.Value("int32"),
"audio": datasets.features.Audio(sampling_rate=sampling_rate),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[
AutomaticSpeechRecognition(
audio_file_path_column="path",
transcription_column="sentence_text"
)
],
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_urls = {}
config_name = self.config.name
for split in ["train", "eval", "test"]:
data_urls[split] = []
for shard in _SHARDS[split]:
data_urls[split] += [(
_METADATA_URL.format(split=split, shard=shard),
_DATA_URL.format(split=split, shard=shard, config=config_name)
)]
train_downloaded_data = dl_manager.download(data_urls["train"])
validation_downloaded_data = dl_manager.download(data_urls["eval"])
test_downloaded_data = dl_manager.download(data_urls["test"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={
"filepaths": train_downloaded_data,
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={
"filepaths": validation_downloaded_data,
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={
"filepaths": test_downloaded_data,
}
),
]
def _generate_examples(self, filepaths):
"""Yields examples."""
data_fields = list(self._info().features.keys())
data_fields.remove("audio")
for metadata_path, archive_path in filepaths:
metadata = {}
with open(metadata_path) as metadata_file:
for line in metadata_file.read().split("\n"):
if line:
metadata_object = json.loads(line)
if "path" in metadata_object:
metadata_key = metadata_object["path"].split("/", 1)[-1]
metadata[metadata_key] = metadata_object
with open(archive_path, "rb") as archive_fs:
archive_bytes = io.BytesIO(archive_fs.read())
with tarfile.open(fileobj=archive_bytes, mode="r") as tar:
for audio_file in tar.getmembers():
if audio_file.isfile():
metadata_key = audio_file.name.split(".mp3", 1)[0].split("/", 1)[-1]
audio_bytes = tar.extractfile(audio_file).read()
audio_dict = {"bytes": audio_bytes, "path": audio_file.name}
fields = {key: metadata[metadata_key][key] for key in data_fields}
yield metadata_key, {"audio": audio_dict, **fields}
|