Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 10,290 Bytes
fcc3454
 
 
8136cf6
fcc3454
 
8136cf6
 
 
 
4697ac2
8136cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4697ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c01d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8136cf6
 
 
 
 
4697ac2
 
 
 
23c01d2
 
 
 
fcc3454
 
11475e1
 
fcc3454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
language:
- en
license: cc-by-4.0
size_categories:
- 100M<n<1B
task_categories:
- image-to-text
- visual-question-answering
dataset_info:
- config_name: CC-MAIN-2013-20
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 19908676196
    num_examples: 3878063
  download_size: 9303464923
  dataset_size: 19908676196
- config_name: CC-MAIN-2013-48
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 15282078925
    num_examples: 3091537
  download_size: 6965036866
  dataset_size: 15282078925
- config_name: CC-MAIN-2014-10
  features:
  - name: general_metadata
    struct:
    - name: domain
      sequence: string
    - name: fluency_prob
      dtype: float64
    - name: id
      dtype: string
    - name: non_advertisement_prob
      dtype: float64
    - name: politics_prob
      dtype: float64
    - name: porn_prob
      dtype: float64
    - name: toxic_prob
      dtype: float64
    - name: url
      dtype: string
  - name: images
    sequence: string
  - name: texts
    sequence: string
  - name: metadata
    list:
    - name: aesthetic_prob
      dtype: float64
    - name: bytes
      dtype: int64
    - name: d_hash
      dtype: string
    - name: d_hash_dup_count
      dtype: int64
    - name: height
      dtype: int64
    - name: img_url_sha
      dtype: string
    - name: p_hash
      dtype: string
    - name: p_hash_dup_count
      dtype: int64
    - name: unsafe_prob
      dtype: float64
    - name: width
      dtype: int64
  splits:
  - name: train
    num_bytes: 7227087609
    num_examples: 1390034
  download_size: 3259239561
  dataset_size: 7227087609
configs:
- config_name: CC-MAIN-2013-20
  data_files:
  - split: train
    path: CC-MAIN-2013-20/train-*
- config_name: CC-MAIN-2013-48
  data_files:
  - split: train
    path: CC-MAIN-2013-48/train-*
- config_name: CC-MAIN-2014-10
  data_files:
  - split: train
    path: CC-MAIN-2014-10/train-*
---

We are uploading the dataset files ~ 

# OmniCorpus-CC

This is the repository of OmniCorpus-CC, which contains 988 million image-text interleaved documents collected from [Common Crawl](https://commoncrawl.org/).

- Repository: https://github.com/OpenGVLab/OmniCorpus
- Paper: https://arxiv.org/abs/2406.08418

OmniCorpus dataset is a large-scale image-text interleaved dataset, which pushes the boundaries of scale and diversity by encompassing **8.6 billion images** interleaved with **1,696 text tokens** from diverse sources, significantly surpassing previous datasets.
This dataset demonstrates several advantages over its counterparts:

1. **Larger data scale:** Our dataset is 1.7 times larger in images and 12.5 times larger in texts compared to the previously largest multimodal dataset, LAION-5B, while maintaining excellent data quality.
2. **Richer data diversity:** Drawing from a broader range of data sources, our dataset is more diverse than other image-text interleaved datasets. It includes bilingual multimodal data in both Chinese and English, and encompasses text-centric and vision-centric documents extracted from common websites and video platforms.
3. **More flexible format:** The streaming data format of our dataset offers exceptional flexibility, allowing adaptation to various data structures, including pure text corpora, image-text pairs, and interleaved data formats.

<img width="578" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/641a6427-ba50-41e6-8634-8810113fd803">

The OmniCorpus contains three sections:

- **OmniCorpus-CC**: processed from dumps in Common Crawl from 2013 to Nov./Dec. 2023.
- **OmniCorpus-CW**: sourced from Chinese internet resources, will be availiable in [OpenDataLab](https://opendatalab.com/) platform.
- **OmniCorpus-YT**: samples Youtube video frames as images and collects subtitles as texts.

Code for pre-training, evaluating, main body extracting, and filtering have been released in the official [repository](https://github.com/OpenGVLab/OmniCorpus). A pre-trained model is availiable [here](). We are processing and uploading the rest data sections as soon as possible.

### Update (2024-10-16):
We are uploading the natural arrangement version of the OmniCorpus-CC documents.

Coming soon:
- Documents with Similarities: Documents with  split at the sentence level, resulting in minor differences of text content.

# Data Pipeline

Our data pipeline consists of five key stages: main body extraction, preliminary text filtering, document deduplication, image downloading \& filtering, and detailed text filtering. Each stage efficiently reduces the dataset to retain only high-quality data.
Please refer to our paper for more details about the data pipeline.

<img width="723" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/a6de8928-58fb-4ff4-8ef9-4bd90e9ada5f">

# Usages

The image-text interleaved documents are recommanded for the following usages:
- Pre-training multimodal large language model (MLLM): Recent MLLMs (such as Flamingo series, EMU series, IDEFICS series, MM1, Cambrian-1, and xGen-MM) have shown that image-text interleaved data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning.
- Long text-image retrieval: We provide image-text similarities calculated with CLIP, which can convert the documents to image-text retrieval dataset with longer text. A retrieval model pre-trained on such data can retrieval images based on longer text, which can be used for multimodal RAG, converting pure text to multimodal sample, etc.
- Source for futher dataset research: Our data is large-scale, which can serve as the source for researches for data curation strategies. We provide many useful attributes as metadata for each document, which can enrich the filtering strategy and reduce the cost.
- ......

# Data Format

Following common practices, the data is organized into Parquet file format.
You might encounter errors when using `pandas.read_parquet` (because the data structure contains nested elements). We recommend using fastparquet to load the parquet files.
```Python
import fastparquet
df = fastparquet.ParquetFile(parquet_file_path).to_pandas()

# You can also use iter_batches
parquet_file = pq.ParquetFile(filepath)
for batch in parquet_file.iter_batches():
    df = batch.to_pandas()
```

You can convert the i-th document and convert it into a dictionary. 
```Python
doc_dict = df.iloc[i].to_dict()
```

The document format is as follow:
```json
{
    'images': [
        <str: image_1_url>,
        None,
        <str: image_2_url>,
        None,
    ],
    'texts': [
        None,
        <str: text_paragraph_1_content>
        None,
        <str: text_paragraph_2_content>,
    ]
    'metadata': [
        <dict: image_1_metadata>,
        None,
        <dict: image_2_metadata>,
        None
    ],
    'general_metadata': {
        "url": <str: document url>,
        "id": <str: document id>,
        "domain": <list[str]: domains extracted from document url>,
        "fluency_prob": <float: the probability of fluency>,
        "non_advertisement_prob": <float: the probability of non-advertisement>,
        "porn_prob": <float: the probability of porn content>,
        "politics_prob": <float: the probability of politics content>,
        "toxic_prob": <float: the probability of toxic content>,
    }
}
```
Each image metadata is as follow:
```json
{
    "img_url_sha": <str: sha code of image url>,
    "width": <int: image width>,
    "height": <int: image height>,
    "bytes": <int: byte number of the image file>,
    "d_hash": <str: d_hash code of the image, used for image deduplication>,
    "p_hash": <str: p_hash code of the image, used for image deduplication>,
    "d_hash_dup_count": <int: duplicated times detected by d_hash code>,
    "p_hash_dup_count": <int: duplicated times detected by p_hash code>,
    "aesthetic prob": <float: aesthetic probility>,
    "unsafe prob": <float: NSFW probility>, 
}
```

# License

OmniCorpus is released under a [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/deed.en) license, with the primary intent of supporting research activities. 

# Citation

```
@article{li2024omnicorpus,
  title={OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text},
  author={Li, Qingyun and Chen, Zhe and Wang, Weiyun and Wang, Wenhai and Ye, Shenglong and Jin, Zhenjiang and others},
  journal={arXiv preprint arXiv:2406.08418},
  year={2024}
}
```