Create PEYMA.py
Browse files
PEYMA.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import pandas as pd
|
3 |
+
import datasets
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
|
7 |
+
_CITATION = """\\
|
8 |
+
@article{shahshahani2018peyma,
|
9 |
+
title={PEYMA: A Tagged Corpus for Persian Named Entities},
|
10 |
+
author={Mahsa Sadat Shahshahani and Mahdi Mohseni and Azadeh Shakery and Heshaam Faili},
|
11 |
+
year=2018,
|
12 |
+
journal={ArXiv},
|
13 |
+
volume={abs/1801.09936}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
_DESCRIPTION = """\\\\\\\\
|
17 |
+
PEYMA dataset includes 7,145 sentences with a total of 302,530 tokens from which 41,148 tokens are tagged with seven different classes.
|
18 |
+
"""
|
19 |
+
|
20 |
+
_DRIVE_URL = "https://drive.google.com/uc?export=download&id=1WZxpFRtEs5HZWyWQ2Pyg9CCuIBs1Kmvx"
|
21 |
+
|
22 |
+
class PEYMAConfig(datasets.BuilderConfig):
|
23 |
+
"""BuilderConfig for PEYMA."""
|
24 |
+
def __init__(self, **kwargs):
|
25 |
+
super(PEYMAConfig, self).__init__(**kwargs)
|
26 |
+
|
27 |
+
class PEYMA(datasets.GeneratorBasedBuilder):
|
28 |
+
BUILDER_CONFIGS = [
|
29 |
+
PEYMAConfig(name="PEYMA", version=datasets.Version("1.0.0"), description="persian ner dataset"),
|
30 |
+
]
|
31 |
+
def _info(self):
|
32 |
+
return datasets.DatasetInfo(
|
33 |
+
# This is the description that will appear on the datasets page.
|
34 |
+
description=_DESCRIPTION,
|
35 |
+
# datasets.features.FeatureConnectors
|
36 |
+
features=datasets.Features(
|
37 |
+
{
|
38 |
+
"token": datasets.Value("string"),
|
39 |
+
"label": datasets.Value("string")
|
40 |
+
}
|
41 |
+
),
|
42 |
+
supervised_keys=None,
|
43 |
+
# Homepage of the dataset for documentation
|
44 |
+
homepage="https://hooshvare.github.io/docs/datasets/ner#peyma",
|
45 |
+
citation=_CITATION,
|
46 |
+
)
|
47 |
+
|
48 |
+
def custom_dataset(self, src_url, dest_path):
|
49 |
+
response = requests.get(src_url)
|
50 |
+
response.raise_for_status()
|
51 |
+
|
52 |
+
with open(dest_path, 'wb') as f:
|
53 |
+
f.write(response.content)
|
54 |
+
|
55 |
+
|
56 |
+
def _split_generators(self, dl_manager):
|
57 |
+
"""Returns SplitGenerators."""
|
58 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
59 |
+
# download and extract URLs
|
60 |
+
|
61 |
+
downloaded_file = dl_manager.download_custom(_DRIVE_URL, self.custom_dataset)
|
62 |
+
extracted_file = dl_manager.extract(downloaded_file)
|
63 |
+
return [
|
64 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(extracted_file, 'peyma/train.txt')}),
|
65 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(extracted_file, 'peyma/test.txt')}),
|
66 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(extracted_file, 'peyma/dev.txt')}),
|
67 |
+
]
|
68 |
+
|
69 |
+
def _generate_examples(self, filepath):
|
70 |
+
try:
|
71 |
+
df = pd.read_csv(filepath, error_bad_lines=False, engine='python',
|
72 |
+
sep='|', names=["token", "label"])
|
73 |
+
for idx, row in enumerate(reader):
|
74 |
+
yield idx, {
|
75 |
+
"token": row["token"],
|
76 |
+
"label": row["label"]
|
77 |
+
}
|
78 |
+
except Exception as e:
|
79 |
+
print(e)
|