Datasets:
File size: 7,859 Bytes
fe09823 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import whisper
import re
import sys
import os, random, copy
import numpy as np
import torch
import pandas as pd
import torchaudio
from tqdm.notebook import tqdm
import collections, json
import editdistance
from whisper.normalizers import EnglishTextNormalizer
from argparse import ArgumentParser
from num2words import num2words
sys.path.append('/home3/huyuchen/pytorch_workplace/jiwer')
from jiwer import wer_embdiff
import fasttext
from huggingface_hub import hf_hub_download
from pathlib import Path
from typing import Optional
from sentencepiece import SentencePieceProcessor, SentencePieceTrainer
from sentence_transformers import SentenceTransformer
from argparse import ArgumentParser
from evaluate import load
from lit_gpt.tokenizer import Tokenizer
eval_wer = load("wer")
normalizer = EnglishTextNormalizer()
checkpoint_dir = Path('/home3/huyuchen/pytorch_workplace/wgpt/checkpoints/Llama-2-7b-hf')
tokenizer = Tokenizer(checkpoint_dir)
sbert_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def calculate_wer(all_hypo, all_refer):
return eval_wer.compute(predictions=all_hypo, references=all_refer)
def word_emb_diff(reference, hypothesis):
output, edit_ops = wer_embdiff(reference, hypothesis)
ref_words, hypo_words = output.references[0], output.hypotheses[0]
emb_diffs = []
for op in edit_ops:
if op.tag == 'replace':
ref_word, hypo_word = ref_words[op.src_pos], hypo_words[op.dest_pos]
elif op.tag == 'delete':
ref_word, hypo_word = ref_words[op.src_pos], None
elif op.tag == 'insert':
ref_word, hypo_word = None, hypo_words[op.dest_pos]
else:
continue
ref_emb = torch.from_numpy(sbert_model.encode([ref_word])[0]) if ref_word else torch.zeros([384])
hypo_emb = torch.from_numpy(sbert_model.encode([hypo_word])[0]) if hypo_word else torch.zeros([384])
emb_diff = ref_emb - hypo_emb
emb_diffs.append(emb_diff)
# print('word', hypo_emb.mean(), ref_emb.mean(), emb_diff.mean())
if len(emb_diffs) == 0:
return torch.zeros([384])
else:
return torch.stack(emb_diffs, dim=0).mean(dim=0)
def sent_emb_diff(reference, hypothesis):
embeddings = sbert_model.encode([reference, hypothesis])
ref_emb, hypo_emb = torch.from_numpy(embeddings[0]), torch.from_numpy(embeddings[1])
emb_diff = ref_emb - hypo_emb
# print('sentence', hypo_emb.mean(), ref_emb.mean(), emb_diff.mean())
return emb_diff
def generate_prompt(input1, input2):
return (
f"Below is the best-hypotheses transcribed from speech recognition system. Please try to revise it using the words which are only included into other-hypothesis, and write the response for the true transcription.\n\n### Best-hypothesis:\n{input1}\n\n### Other-hypothesis:\n{input2}\n\n### Response:\n"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper.load_model('large-v2')
f_noisy_wav = open(f'noisy_wav.scp', 'r')
f_clean_wav = open(f'clean_wav.scp', 'r')
f_text = open(f'text', 'r')
id = 0
pt_file = []
all_hypo, all_refer = [], []
for line in f_noisy_wav.readlines():
utt_id, audio_path = line.strip().split()[0], line.strip().split()[1]
clean_line = f_clean_wav.readline()
clean_utt_id, clean_audio_path = clean_line.strip().split()[0], clean_line.strip().split()[1]
assert clean_utt_id == utt_id, (line, clean_line)
gt = ' '.join(f_text.readline().strip().split()[1:])
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
options = whisper.DecodingOptions(language='en', beam_size=50)
texts, confidences = whisper.decode_score(model, mel, options)
## noisy audio feats
audio_features = model.encoder(mel.unsqueeze(0))[0]
## clean audio feats
clean_audio = whisper.load_audio(clean_audio_path)
clean_audio = whisper.pad_or_trim(clean_audio)
clean_mel = whisper.log_mel_spectrogram(clean_audio).to(model.device)
clean_audio_features = model.encoder(clean_mel.unsqueeze(0))[0]
input, score = [], []
for text, confidence in zip(texts, confidences):
if len(input) < 5 and len(text) > 0 and text not in input:
input.append(text)
score.append(confidence)
# print('before', input, score, len(input))
if len(input) < 5:
options = whisper.DecodingOptions(language='en', temperature=1.2)
for _ in range(5 - len(input)):
result = whisper.decode(model, mel, options)
text, condidence = result.text, result.avg_logprob
if text in input:
continue
inserted = False
for i in range(len(input)):
if condidence > score[i]:
input.insert(i, text)
score.insert(i, condidence)
inserted = True
break
if not inserted:
input.append(text)
score.append(condidence)
# print('after ', input, score, len(input))
if len(input) < 5:
num_to_add = 5 - len(input)
for _ in range(num_to_add):
rand_id = random.randint(0, len(input) - 1)
rep_input, rep_score = copy.deepcopy(input[rand_id]), copy.deepcopy(score[rand_id])
input.insert(rand_id + 1, rep_input)
score.insert(rand_id + 1, rep_score)
for i in range(len(input)):
try:
text = normalizer(input[i])
text = re.sub(r"[-+]?\d*\.?\d+|\d+%?", lambda m: num2words(m.group()), text).replace('%', ' percent')
except Exception:
text = normalizer(input[i])
print(f'input exception: {text}')
input[i] = text if len(text) > 0 else '<UNK>'
try:
output = normalizer(gt)
output = re.sub(r"[-+]?\d*\.?\d+|\d+%?", lambda m: num2words(m.group()), output).replace('%', ' percent')
except Exception:
output = normalizer(gt)
print(f'output exception: {output}')
output = output if len(output) > 0 else '<UNK>'
cur_wer = calculate_wer([input[0]], [output])
# calculate emb diff
we_diffs, se_diffs = [], []
for i in range(5):
for j in range(i + 1, 5):
we_diffs.append(word_emb_diff(input[i], input[j]))
se_diffs.append(sent_emb_diff(input[i], input[j]))
we_diff = torch.stack(we_diffs, dim=0) # [10, 384]
se_diff = torch.stack(se_diffs, dim=0) # [10, 384]
emb_diff = torch.cat([we_diff, se_diff], dim=0) # [20, 384]
# generate ids
input1 = input[0] + '.'
input2 = '. '.join(input[1:]) + '.'
full_prompt = generate_prompt(input1, input2)
full_prompt_and_response = full_prompt + output
encoded_full_prompt = tokenizer.encode(full_prompt, max_length=1024)
encoded_full_prompt_and_response = tokenizer.encode(full_prompt_and_response, eos=True, max_length=1024)
labels = encoded_full_prompt_and_response.clone()
labels[: len(encoded_full_prompt)] = -1
data = {"id": utt_id, "input_ids": encoded_full_prompt_and_response, "input_ids_no_response": encoded_full_prompt, "labels": labels,
"input": input, 'ground_truth': output, "am_score": score, 'emb_diff': emb_diff, 'audio_features': noisy_audio_features,
'clean_audio_features': clean_audio_features}
pt_file.append(data)
# calculate wer
id += 1
print(f'utterance {id}: wer = {cur_wer}, confidence = {score[0]}')
all_hypo.append(input[0])
all_refer.append(output)
torch.save(pt_file, f'/home3/huyuchen/pytorch_workplace/wllama/hypo_paradise_v2/train_rats.pt')
f_noisy_wav.close()
f_clean_wav.close()
f_text.close()
all_wer = calculate_wer(all_hypo, all_refer)
print(f'all wer = {all_wer}')
|