yuchen005 commited on
Commit
eed57d6
1 Parent(s): 8aee1fb

Delete jiwer

Browse files
jiwer/.github/workflows/pythonpackage.yml DELETED
@@ -1,63 +0,0 @@
1
- # This workflow will install Python dependencies, run tests and lint with a variety of Python versions
2
- # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
3
-
4
- name: Python package
5
-
6
- on:
7
- push:
8
- branches: [ master ]
9
- pull_request:
10
- branches: [ master ]
11
-
12
- jobs:
13
- style:
14
- runs-on: ubuntu-latest
15
- strategy:
16
- matrix:
17
- python-version: [3.7]
18
-
19
- steps:
20
- - uses: actions/checkout@v3
21
- - name: Set up Python ${{ matrix.python-version }}
22
- uses: actions/setup-python@v4
23
- with:
24
- python-version: ${{ matrix.python-version }}
25
- - name: Install Poetry
26
- uses: snok/install-poetry@v1
27
- - name: Setup dependencies
28
- run: |
29
- poetry update
30
- poetry install
31
- - name: Lint with flake8
32
- run: |
33
- # stop the build if there are Python syntax errors or undefined names
34
- poetry run flake8 jiwer --count --select=E9,F63,F7,F82 --show-source --statistics
35
- # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
36
- poetry run flake8 jiwer --count --exit-zero --max-complexity=10 --max-line-length=88 --statistics
37
- - name: Check formatting with black
38
- run: |
39
- poetry run black . --check
40
-
41
- build:
42
- runs-on: ubuntu-latest
43
- strategy:
44
- matrix:
45
- python-version: ["3.7", "3.8", "3.9", "3.10", "3.11"]
46
-
47
- steps:
48
- - uses: actions/checkout@v3
49
- - name: Set up Python ${{ matrix.python-version }}
50
- uses: actions/setup-python@v4
51
- with:
52
- python-version: ${{ matrix.python-version }}
53
- - name: Install Poetry
54
- uses: snok/install-poetry@v1
55
- - name: Install dependencies
56
- run: |
57
- poetry run python -m pip install --upgrade pip
58
- poetry update
59
- poetry install
60
- - name: Test with pytest
61
- run: |
62
- poetry run python --version
63
- poetry run pytest
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/.github/workflows/pythonpublish.yml DELETED
@@ -1,33 +0,0 @@
1
- # This workflows will upload a Python Package using Twine when a release is created
2
- # For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
3
-
4
- name: Upload Python Package
5
-
6
- on:
7
- release:
8
- types: [created]
9
-
10
- jobs:
11
- deploy:
12
-
13
- runs-on: ubuntu-latest
14
-
15
- steps:
16
- - uses: actions/checkout@v3
17
- - name: Set up Python
18
- uses: actions/setup-python@v4
19
- with:
20
- python-version: '3.x'
21
- - name: Install Poetry
22
- uses: snok/install-poetry@v1
23
- - name: Install dependencies
24
- run: |
25
- poetry run python -m pip install --upgrade pip
26
- poetry update
27
- poetry install
28
- - name: Build and publish
29
- env:
30
- POETRY_HTTP_BASIC_PYPI_USERNAME: ${{ secrets.PYPI_USERNAME }}
31
- POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
32
- run: |
33
- poetry publish --build
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/.gitignore DELETED
@@ -1,28 +0,0 @@
1
- # Compiled python modules.
2
- *.pyc
3
-
4
- # Setuptools distribution folder.
5
- /dist/
6
-
7
- # Python egg metadata, regenerated from source files by setuptools.
8
- /*.egg-info
9
-
10
- # playground directory for running local debug code
11
- playground
12
-
13
- # poetry .lock file
14
- poetry.lock
15
-
16
- # idea specific folders
17
- .idea
18
- .vscode
19
-
20
- # virtual environments
21
- venv
22
- .venv
23
-
24
- # cache folders
25
- .pytest_cache
26
- .benchmarks
27
- /docs/site/
28
- /site/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/.mailmap DELETED
@@ -1,6 +0,0 @@
1
- # mail map file
2
- # for cleaner output of e.g. `git shortlog -nes`
3
-
4
- Nik Vaessen <nikvaes@gmail.com>
5
- Nik Vaessen <nikvaes@gmail.com> <nikvaessen@users.noreply.github.com>
6
- Bart van Andel <bavanandel@gmail.com>
 
 
 
 
 
 
 
jiwer/LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2018 8x8, Inc.
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/README.md DELETED
@@ -1,55 +0,0 @@
1
- # JiWER
2
-
3
- JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
4
- It supports the following measures:
5
-
6
- 1. word error rate (WER)
7
- 2. match error rate (MER)
8
- 3. word information lost (WIL)
9
- 4. word information preserved (WIP)
10
- 5. character error rate (CER)
11
-
12
- These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
13
- The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
14
-
15
- ## Documentation
16
-
17
- For further info, see the documentation at [jitsi.github.io/jiwer](https://jitsi.github.io/jiwer).
18
-
19
- ## Installation
20
-
21
- You should be able to install this package using [poetry](https://python-poetry.org/docs/):
22
-
23
- ```
24
- $ poetry add jiwer
25
- ```
26
-
27
- Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
28
-
29
- ```bash
30
- $ pip install jiwer
31
- ```
32
-
33
- ## Usage
34
-
35
- The most simple use-case is computing the word error rate between two strings:
36
-
37
- ```python
38
- from jiwer import wer
39
-
40
- reference = "hello world"
41
- hypothesis = "hello duck"
42
-
43
- error = wer(reference, hypothesis)
44
- ```
45
-
46
- ## Licence
47
-
48
- The jiwer package is released under the `Apache License, Version 2.0` licence by [8x8](https://www.8x8.com/).
49
-
50
- For further information, see [`LICENCE`](./LICENSE).
51
-
52
- ## Reference
53
-
54
- _For a comparison between WER, MER and WIL, see: \
55
- Morris, Andrew & Maier, Viktoria & Green, Phil. (2004). [From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.](https://www.researchgate.net/publication/221478089_From_WER_and_RIL_to_MER_and_WIL_improved_evaluation_measures_for_connected_speech_recognition)_
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/docs/cli.md DELETED
@@ -1,29 +0,0 @@
1
-
2
- JiWER provides a simple CLI, which should be available after installation.
3
-
4
- For details, see `jiwer --help`.
5
-
6
- ```text
7
- $ jiwer --help
8
- Usage: jiwer [OPTIONS]
9
-
10
- JiWER is a python tool for computing the word-error-rate of ASR systems. To
11
- use this CLI, store the reference and hypothesis sentences in a text file,
12
- where each sentence is delimited by a new-line character. The text files are
13
- expected to have an equal number of lines, unless the `-g` flag is used. The
14
- `-g` flag joins computation of the WER by doing a global minimal alignment.
15
-
16
- Options:
17
- -r, --reference PATH Path to new-line delimited text file of reference
18
- sentences. [required]
19
- -h, --hypothesis PATH Path to new-line delimited text file of hypothesis
20
- sentences. [required]
21
- -c, --cer Compute CER instead of WER.
22
- -a, --align Print alignment of each sentence.
23
- -g, --global Apply a global minimal alignment between reference
24
- and hypothesis sentences before computing the WER.
25
- --help Show this message and exit.
26
- ```
27
-
28
- Note that the CLI does not support a custom pre-processing (as described below). Any pre-processing
29
- should be done on the text files manually before calling JiWER when using the CLI.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/docs/gen_ref_pages.py DELETED
@@ -1,28 +0,0 @@
1
- """Generate the code reference pages and navigation."""
2
-
3
- from pathlib import Path
4
- import mkdocs_gen_files
5
-
6
- nav = mkdocs_gen_files.Nav()
7
-
8
- for path in sorted(Path("jiwer").rglob("*.py")):
9
- doc_path = path.relative_to("jiwer").with_suffix(".md")
10
- full_doc_path = Path("reference", doc_path)
11
-
12
- module_path = path.relative_to("jiwer").with_suffix("")
13
- parts = list(module_path.parts)
14
-
15
- if parts[-1] == "__init__" or parts[-1] == "cli":
16
- continue
17
-
18
- nav[parts] = doc_path.as_posix()
19
-
20
- with mkdocs_gen_files.open(full_doc_path, "w") as fd:
21
- identifier = ".".join(parts)
22
- print("::: " + identifier, file=fd)
23
-
24
- mkdocs_gen_files.set_edit_path(full_doc_path, path)
25
-
26
-
27
- with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file:
28
- nav_file.writelines(nav.build_literate_nav())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/docs/index.md DELETED
@@ -1,31 +0,0 @@
1
- # JiWER
2
-
3
- JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
4
- It supports the following measures:
5
-
6
- 1. word error rate (WER)
7
- 2. match error rate (MER)
8
- 3. word information lost (WIL)
9
- 4. word information preserved (WIP)
10
- 5. character error rate (CER)
11
-
12
- These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
13
- The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
14
-
15
- # Installation
16
-
17
- You should be able to install this package using [poetry](https://python-poetry.org/docs/):
18
-
19
- ```
20
- $ poetry add jiwer
21
- ```
22
-
23
- Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
24
-
25
- ```bash
26
- $ pip install jiwer
27
- ```
28
-
29
-
30
-
31
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/docs/requirements.txt DELETED
@@ -1,5 +0,0 @@
1
- mkdocs==1.4.2
2
- mkdocstrings[python]==0.20.0
3
- mkdocs-gen-files==0.4.0
4
- mkdocs-literate-nav==0.6.0
5
- mkdocs-material==9.1.3
 
 
 
 
 
 
jiwer/docs/usage.md DELETED
@@ -1,111 +0,0 @@
1
- # Usage
2
-
3
- The most simple use-case is computing the word error rate between two strings:
4
-
5
- ```python
6
- from jiwer import wer
7
-
8
- reference = "hello world"
9
- hypothesis = "hello duck"
10
-
11
- error = wer(reference, hypothesis)
12
- ```
13
-
14
- Similarly, to get other measures:
15
-
16
- ```python
17
- import jiwer
18
-
19
- reference = "hello world"
20
- hypothesis = "hello duck"
21
-
22
- wer = jiwer.wer(reference, hypothesis)
23
- mer = jiwer.mer(reference, hypothesis)
24
- wil = jiwer.wil(reference, hypothesis)
25
-
26
- # faster, because `compute_measures` only needs to perform the heavy lifting once:
27
- output = jiwer.process_words(reference, hypothesis)
28
- wer = output.wer
29
- mer = output.mer
30
- wil = output.wil
31
- ```
32
-
33
- You can also compute the WER over multiple sentences:
34
-
35
- ```python
36
- from jiwer import wer
37
-
38
- reference = ["hello world", "i like monthy python"]
39
- hypothesis = ["hello duck", "i like python"]
40
-
41
- error = wer(reference, hypothesis)
42
- ```
43
-
44
- We also provide the character error rate:
45
-
46
- ```python
47
- import jiwer
48
-
49
- reference = ["i can spell", "i hope"]
50
- hypothesis = ["i kan cpell", "i hop"]
51
-
52
- error = jiwer.cer(reference, hypothesis)
53
-
54
- # if you also want the alignment
55
- output = jiwer.process_characters(reference, hypothesis)
56
- error = output.cer
57
- ```
58
-
59
- # Alignment
60
-
61
- With `jiwer.process_words`, you also get the alignment between the reference and hypothesis.
62
-
63
- We provide the alignment as a list of `(op, ref_start_idx, ref_idx_end, hyp_idx_start, hyp_idx_end)`, where `op` is one of
64
- `equal`, `replace`, `delete`, or `insert`.
65
-
66
- This looks like the following:
67
-
68
- ```python3
69
- import jiwer
70
-
71
- out = jiwer.process_words("short one here", "shoe order one")
72
- print(out.alignments)
73
- # [[[AlignmentChunk(type='insert', ref_start_idx=0, ref_end_idx=0, hyp_start_idx=0, hyp_end_idx=1), ...]]
74
- ```
75
-
76
- To visualize the alignment, you can use `jiwer.visualize_alignment()`
77
-
78
- For example:
79
-
80
- ```python3
81
- import jiwer
82
-
83
- out = jiwer.process_words(
84
- ["short one here", "quite a bit of longer sentence"],
85
- ["shoe order one", "quite bit of an even longest sentence here"],
86
- )
87
-
88
- print(jiwer.visualize_alignment(out))
89
- ```
90
- Gives the following output
91
- ```text
92
- sentence 1
93
- REF: **** short one here
94
- HYP: shoe order one ****
95
- I S D
96
-
97
- sentence 2
98
- REF: quite a bit of ** **** longer sentence ****
99
- HYP: quite * bit of an even longest sentence here
100
- D I I S I
101
-
102
- number of sentences: 2
103
- substitutions=2 deletions=2 insertions=4 hits=5
104
-
105
- mer=61.54%
106
- wil=74.75%
107
- wip=25.25%
108
- wer=88.89%
109
- ```
110
-
111
- Note that it also possible to visualize the character-level alignment, simply use the output of `jiwer.process_characters()` instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/jiwer/__init__.py DELETED
@@ -1,7 +0,0 @@
1
- from .measures import *
2
- from .transforms import *
3
- from .transformations import *
4
- from .alignment import *
5
- from .process import *
6
-
7
- name = "jiwer"
 
 
 
 
 
 
 
 
jiwer/jiwer/__pycache__/__init__.cpython-38.pyc DELETED
Binary file (281 Bytes)
 
jiwer/jiwer/__pycache__/alignment.cpython-38.pyc DELETED
Binary file (4.97 kB)
 
jiwer/jiwer/__pycache__/measures.cpython-38.pyc DELETED
Binary file (11.2 kB)
 
jiwer/jiwer/__pycache__/process.cpython-38.pyc DELETED
Binary file (12.2 kB)
 
jiwer/jiwer/__pycache__/transformations.cpython-38.pyc DELETED
Binary file (1.19 kB)
 
jiwer/jiwer/__pycache__/transforms.cpython-38.pyc DELETED
Binary file (21.8 kB)
 
jiwer/jiwer/alignment.py DELETED
@@ -1,185 +0,0 @@
1
- #
2
- # JiWER - Jitsi Word Error Rate
3
- #
4
- # Copyright @ 2018 - present 8x8, Inc.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- #
18
-
19
- """
20
- Utility method to visualize the alignment between one or more reference and hypothesis
21
- pairs.
22
- """
23
-
24
- from typing import Dict, List, Tuple, Union
25
-
26
-
27
- from jiwer.process import CharacterOutput, WordOutput, AlignmentChunk
28
-
29
- __all__ = ["visualize_alignment"]
30
-
31
-
32
- def visualize_alignment(
33
- output: Union[WordOutput, CharacterOutput],
34
- show_measures: bool = True,
35
- skip_correct: bool = True,
36
- ) -> str:
37
- """
38
- Visualize the output of [jiwer.process_words][process.process_words] and
39
- [jiwer.process_characters][process.process_characters]. The visualization
40
- shows the alignment between each processed reference and hypothesis pair.
41
- If `show_measures=True`, the output string will also contain all measures in the
42
- output.
43
-
44
- Args:
45
- output: The processed output of reference and hypothesis pair(s).
46
- show_measures: If enabled, the visualization will include measures like the WER
47
- or CER
48
- skip_correct: If enabled, the visualization will exclude correct reference and hypothesis pairs
49
-
50
- Returns:
51
- (str): The visualization as a string
52
-
53
- Example:
54
- This code snippet
55
- ```python
56
- import jiwer
57
-
58
- out = jiwer.process_words(
59
- ["short one here", "quite a bit of longer sentence"],
60
- ["shoe order one", "quite bit of an even longest sentence here"],
61
- )
62
-
63
- print(jiwer.visualize_alignment(out))
64
- ```
65
- will produce this visualization:
66
- ```txt
67
- sentence 1
68
- REF: # short one here
69
- HYP: shoe order one *
70
- I S D
71
-
72
- sentence 2
73
- REF: quite a bit of # # longer sentence #
74
- HYP: quite * bit of an even longest sentence here
75
- D I I S I
76
-
77
- number of sentences: 2
78
- substitutions=2 deletions=2 insertions=4 hits=5
79
-
80
- mer=61.54%
81
- wil=74.75%
82
- wip=25.25%
83
- wer=88.89%
84
- ```
85
-
86
- When `show_measures=False`, only the alignment will be printed:
87
-
88
- ```txt
89
- sentence 1
90
- REF: # short one here
91
- HYP: shoe order one *
92
- I S D
93
-
94
- sentence 2
95
- REF: quite a bit of # # longer sentence #
96
- HYP: quite * bit of an even longest sentence here
97
- D I I S I
98
- ```
99
- """
100
- references = output.references
101
- hypothesis = output.hypotheses
102
- alignment = output.alignments
103
- is_cer = isinstance(output, CharacterOutput)
104
-
105
- final_str = ""
106
- for idx, (gt, hp, chunks) in enumerate(zip(references, hypothesis, alignment)):
107
- if skip_correct and len(chunks) == 1 and chunks[0].type == "equal":
108
- continue
109
-
110
- final_str += f"sentence {idx+1}\n"
111
- final_str += _construct_comparison_string(
112
- gt, hp, chunks, include_space_seperator=not is_cer
113
- )
114
- final_str += "\n"
115
-
116
- if show_measures:
117
- final_str += f"number of sentences: {len(alignment)}\n"
118
- final_str += f"substitutions={output.substitutions} "
119
- final_str += f"deletions={output.deletions} "
120
- final_str += f"insertions={output.insertions} "
121
- final_str += f"hits={output.hits}\n"
122
-
123
- if is_cer:
124
- final_str += f"\ncer={output.cer*100:.2f}%\n"
125
- else:
126
- final_str += f"\nmer={output.mer*100:.2f}%"
127
- final_str += f"\nwil={output.wil*100:.2f}%"
128
- final_str += f"\nwip={output.wip*100:.2f}%"
129
- final_str += f"\nwer={output.wer*100:.2f}%\n"
130
- else:
131
- # remove last newline
132
- final_str = final_str[:-1]
133
-
134
- return final_str
135
-
136
-
137
- def _construct_comparison_string(
138
- reference: List[str],
139
- hypothesis: List[str],
140
- ops: List[AlignmentChunk],
141
- include_space_seperator: bool = False,
142
- ) -> str:
143
- ref_str = "REF: "
144
- hyp_str = "HYP: "
145
- op_str = " "
146
-
147
- for op in ops:
148
- if op.type == "equal" or op.type == "substitute":
149
- ref = reference[op.ref_start_idx : op.ref_end_idx]
150
- hyp = hypothesis[op.hyp_start_idx : op.hyp_end_idx]
151
- op_char = " " if op.type == "equal" else "s"
152
- elif op.type == "delete":
153
- ref = reference[op.ref_start_idx : op.ref_end_idx]
154
- hyp = ["*" for _ in range(len(ref))]
155
- op_char = "d"
156
- elif op.type == "insert":
157
- hyp = hypothesis[op.hyp_start_idx : op.hyp_end_idx]
158
- ref = ["*" for _ in range(len(hyp))]
159
- op_char = "i"
160
- else:
161
- raise ValueError(f"unparseable op name={op.type}")
162
-
163
- op_chars = [op_char for _ in range(len(ref))]
164
- for rf, hp, c in zip(ref, hyp, op_chars):
165
- str_len = max(len(rf), len(hp), len(c))
166
-
167
- if rf == "*":
168
- rf = "".join(["*"] * str_len)
169
- elif hp == "*":
170
- hp = "".join(["*"] * str_len)
171
-
172
- ref_str += f"{rf:>{str_len}}"
173
- hyp_str += f"{hp:>{str_len}}"
174
- op_str += f"{c.upper():>{str_len}}"
175
-
176
- if include_space_seperator:
177
- ref_str += " "
178
- hyp_str += " "
179
- op_str += " "
180
-
181
- if include_space_seperator:
182
- # remove last space
183
- return f"{ref_str[:-1]}\n{hyp_str[:-1]}\n{op_str[:-1]}\n"
184
- else:
185
- return f"{ref_str}\n{hyp_str}\n{op_str}\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/jiwer/cli.py DELETED
@@ -1,133 +0,0 @@
1
- #
2
- # JiWER - Jitsi Word Error Rate
3
- #
4
- # Copyright @ 2018 - present 8x8, Inc.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- #
18
-
19
- """
20
- Provide a simple CLI wrapper for JiWER. The CLI does not support custom transforms.
21
- """
22
-
23
- import click
24
- import pathlib
25
-
26
- import jiwer
27
-
28
-
29
- @click.command()
30
- @click.option(
31
- "-r",
32
- "--reference",
33
- "reference_file",
34
- type=pathlib.Path,
35
- required=True,
36
- help="Path to new-line delimited text file of reference sentences.",
37
- )
38
- @click.option(
39
- "-h",
40
- "--hypothesis",
41
- "hypothesis_file",
42
- type=pathlib.Path,
43
- required=True,
44
- help="Path to new-line delimited text file of hypothesis sentences.",
45
- )
46
- @click.option(
47
- "--cer",
48
- "-c",
49
- "compute_cer",
50
- is_flag=True,
51
- default=False,
52
- help="Compute CER instead of WER.",
53
- )
54
- @click.option(
55
- "--align",
56
- "-a",
57
- "show_alignment",
58
- is_flag=True,
59
- default=False,
60
- help="Print alignment of each sentence.",
61
- )
62
- @click.option(
63
- "--global",
64
- "-g",
65
- "global_alignment",
66
- is_flag=True,
67
- default=False,
68
- help="Apply a global minimal alignment between reference and hypothesis sentences "
69
- "before computing the WER.",
70
- )
71
- def cli(
72
- reference_file: pathlib.Path,
73
- hypothesis_file: pathlib.Path,
74
- compute_cer: bool,
75
- show_alignment: bool,
76
- global_alignment: bool,
77
- ):
78
- """
79
- JiWER is a python tool for computing the word-error-rate of ASR systems. To use
80
- this CLI, store the reference and hypothesis sentences in a text file, where
81
- each sentence is delimited by a new-line character.
82
- The text files are expected to have an equal number of lines, unless the `-g` flag
83
- is used. The `-g` flag joins computation of the WER by doing a global minimal
84
- alignment.
85
-
86
- """
87
- with reference_file.open("r") as f:
88
- reference_sentences = [
89
- ln.strip() for ln in f.readlines() if len(ln.strip()) > 1
90
- ]
91
-
92
- with hypothesis_file.open("r") as f:
93
- hypothesis_sentences = [
94
- ln.strip() for ln in f.readlines() if len(ln.strip()) > 1
95
- ]
96
-
97
- if not global_alignment and len(reference_sentences) != len(hypothesis_sentences):
98
- raise ValueError(
99
- f"Number of sentences does not match. "
100
- f"{reference_file} contains {len(reference_sentences)} lines."
101
- f"{hypothesis_file} contains {len(hypothesis_sentences)} lines."
102
- )
103
-
104
- if global_alignment and compute_cer:
105
- raise ValueError("--global and --cer are mutually exclusive.")
106
-
107
- if compute_cer:
108
- out = jiwer.process_characters(
109
- reference_sentences,
110
- hypothesis_sentences,
111
- )
112
- else:
113
- if global_alignment:
114
- out = jiwer.process_words(
115
- reference_sentences,
116
- hypothesis_sentences,
117
- reference_transform=jiwer.wer_contiguous,
118
- hypothesis_transform=jiwer.wer_contiguous,
119
- )
120
- else:
121
- out = jiwer.process_words(reference_sentences, hypothesis_sentences)
122
-
123
- if show_alignment:
124
- print(jiwer.visualize_alignment(out, show_measures=True))
125
- else:
126
- if compute_cer:
127
- print(out.cer)
128
- else:
129
- print(out.wer)
130
-
131
-
132
- if __name__ == "__main__":
133
- cli()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/jiwer/measures.py DELETED
@@ -1,488 +0,0 @@
1
- #
2
- # JiWER - Jitsi Word Error Rate
3
- #
4
- # Copyright @ 2018 - present 8x8, Inc.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- #
18
-
19
- """
20
- Convenience methods for calculating a number of similarity error
21
- measures between a reference and hypothesis sentence.
22
- These measures are
23
- commonly used to measure the performance for an automatic speech recognition
24
- (ASR) system.
25
-
26
- The following measures are implemented:
27
-
28
- - Word Error Rate (WER), which is where this library got its name from. This
29
- has long been (and arguably still is) the de facto standard for computing
30
- ASR performance.
31
- - Match Error Rate (MER)
32
- - Word Information Lost (WIL)
33
- - Word Information Preserved (WIP)
34
- - Character Error Rate (CER)
35
-
36
- Note that these functions merely call
37
- [jiwer.process_words][process.process_words] and
38
- [jiwer.process_characters][process.process_characters].
39
- It is more efficient to call `process_words` or `process_characters` and access the
40
- results from the
41
- [jiwer.WordOutput][process.WordOutput] and
42
- [jiwer.CharacterOutput][process.CharacterOutput]
43
- classes.
44
- """
45
- import warnings
46
-
47
- from typing import List, Union, Dict, Any
48
-
49
- from jiwer import transforms as tr
50
- from jiwer.transformations import wer_default, cer_default
51
- from jiwer.process import process_words, process_words_embdiff, process_characters
52
-
53
- __all__ = [
54
- "wer",
55
- "wer_embdiff",
56
- "mer",
57
- "wil",
58
- "wip",
59
- "cer",
60
- "compute_measures",
61
- ]
62
-
63
- ########################################################################################
64
- # Implementation of the WER method and co, exposed publicly
65
-
66
-
67
- def wer(
68
- reference: Union[str, List[str]] = None,
69
- hypothesis: Union[str, List[str]] = None,
70
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
71
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
72
- truth: Union[str, List[str]] = None,
73
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
74
- ) -> float:
75
- """
76
- Calculate the word error rate (WER) between one or more reference and
77
- hypothesis sentences.
78
-
79
- Args:
80
- reference: The reference sentence(s)
81
- hypothesis: The hypothesis sentence(s)
82
- reference_transform: The transformation(s) to apply to the reference string(s)
83
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
84
- truth: Deprecated, renamed to `reference`
85
- truth_transform: Deprecated, renamed to `reference_transform`
86
-
87
- Deprecated:
88
- Arguments `truth` and `truth_transform` have been renamed to respectively
89
- `reference` and `reference_transform`. Therefore, the keyword arguments
90
- `truth` and `truth_transform` will be removed in the next release.
91
- At the same time, `reference` and `reference_transform` will lose their
92
- default value.
93
-
94
- Returns:
95
- (float): The word error rate of the given reference and
96
- hypothesis sentence(s).
97
- """
98
- (
99
- reference,
100
- hypothesis,
101
- reference_transform,
102
- hypothesis_transform,
103
- ) = _deprecate_truth(
104
- reference=reference,
105
- hypothesis=hypothesis,
106
- truth=truth,
107
- reference_transform=reference_transform,
108
- truth_transform=truth_transform,
109
- hypothesis_transform=hypothesis_transform,
110
- )
111
-
112
- output = process_words(
113
- reference, hypothesis, reference_transform, hypothesis_transform
114
- )
115
- return output.wer
116
-
117
- def wer_embdiff(
118
- reference: Union[str, List[str]] = None,
119
- hypothesis: Union[str, List[str]] = None,
120
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
121
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
122
- truth: Union[str, List[str]] = None,
123
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
124
- ) -> float:
125
- """
126
- Calculate the word error rate (WER) between one or more reference and
127
- hypothesis sentences.
128
-
129
- Args:
130
- reference: The reference sentence(s)
131
- hypothesis: The hypothesis sentence(s)
132
- reference_transform: The transformation(s) to apply to the reference string(s)
133
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
134
- truth: Deprecated, renamed to `reference`
135
- truth_transform: Deprecated, renamed to `reference_transform`
136
-
137
- Deprecated:
138
- Arguments `truth` and `truth_transform` have been renamed to respectively
139
- `reference` and `reference_transform`. Therefore, the keyword arguments
140
- `truth` and `truth_transform` will be removed in the next release.
141
- At the same time, `reference` and `reference_transform` will lose their
142
- default value.
143
-
144
- Returns:
145
- (float): The word error rate of the given reference and
146
- hypothesis sentence(s).
147
- """
148
- (
149
- reference,
150
- hypothesis,
151
- reference_transform,
152
- hypothesis_transform,
153
- ) = _deprecate_truth(
154
- reference=reference,
155
- hypothesis=hypothesis,
156
- truth=truth,
157
- reference_transform=reference_transform,
158
- truth_transform=truth_transform,
159
- hypothesis_transform=hypothesis_transform,
160
- )
161
-
162
- output, edit_ops = process_words_embdiff(
163
- reference, hypothesis, reference_transform, hypothesis_transform
164
- )
165
- return output, edit_ops
166
-
167
-
168
- def mer(
169
- reference: Union[str, List[str]] = None,
170
- hypothesis: Union[str, List[str]] = None,
171
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
172
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
173
- truth: Union[str, List[str]] = None,
174
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
175
- ) -> float:
176
- """
177
- Calculate the match error rate (MER) between one or more reference and
178
- hypothesis sentences.
179
-
180
- Args:
181
- reference: The reference sentence(s)
182
- hypothesis: The hypothesis sentence(s)
183
- reference_transform: The transformation(s) to apply to the reference string(s)
184
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
185
- truth: Deprecated, renamed to `reference`
186
- truth_transform: Deprecated, renamed to `reference_transform`
187
-
188
- Deprecated:
189
- Arguments `truth` and `truth_transform` have been renamed to respectively
190
- `reference` and `reference_transform`. Therefore, the keyword arguments
191
- `truth` and `truth_transform` will be removed in the next release.
192
- At the same time, `reference` and `reference_transform` will lose their
193
- default value.
194
-
195
- Returns:
196
- (float): The match error rate of the given reference and
197
- hypothesis sentence(s).
198
- """
199
- (
200
- reference,
201
- hypothesis,
202
- reference_transform,
203
- hypothesis_transform,
204
- ) = _deprecate_truth(
205
- reference=reference,
206
- hypothesis=hypothesis,
207
- truth=truth,
208
- reference_transform=reference_transform,
209
- truth_transform=truth_transform,
210
- hypothesis_transform=hypothesis_transform,
211
- )
212
-
213
- output = process_words(
214
- reference, hypothesis, reference_transform, hypothesis_transform
215
- )
216
-
217
- return output.mer
218
-
219
-
220
- def wip(
221
- reference: Union[str, List[str]] = None,
222
- hypothesis: Union[str, List[str]] = None,
223
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
224
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
225
- truth: Union[str, List[str]] = None,
226
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
227
- ) -> float:
228
- """
229
- Calculate the word information preserved (WIP) between one or more reference and
230
- hypothesis sentences.
231
-
232
- Args:
233
- reference: The reference sentence(s)
234
- hypothesis: The hypothesis sentence(s)
235
- reference_transform: The transformation(s) to apply to the reference string(s)
236
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
237
- truth: Deprecated, renamed to `reference`
238
- truth_transform: Deprecated, renamed to `reference_transform`
239
-
240
- Deprecated:
241
- Arguments `truth` and `truth_transform` have been renamed to respectively
242
- `reference` and `reference_transform`. Therefore, the keyword arguments
243
- `truth` and `truth_transform` will be removed in the next release.
244
- At the same time, `reference` and `reference_transform` will lose their
245
- default value.
246
-
247
- Returns:
248
- (float): The word information preserved of the given reference and
249
- hypothesis sentence(s).
250
- """
251
- (
252
- reference,
253
- hypothesis,
254
- reference_transform,
255
- hypothesis_transform,
256
- ) = _deprecate_truth(
257
- reference=reference,
258
- hypothesis=hypothesis,
259
- truth=truth,
260
- reference_transform=reference_transform,
261
- truth_transform=truth_transform,
262
- hypothesis_transform=hypothesis_transform,
263
- )
264
-
265
- output = process_words(
266
- reference, hypothesis, reference_transform, hypothesis_transform
267
- )
268
-
269
- return output.wip
270
-
271
-
272
- def wil(
273
- reference: Union[str, List[str]] = None,
274
- hypothesis: Union[str, List[str]] = None,
275
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
276
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
277
- truth: Union[str, List[str]] = None,
278
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
279
- ) -> float:
280
- """
281
- Calculate the word information lost (WIL) between one or more reference and
282
- hypothesis sentences.
283
-
284
- Args:
285
- reference: The reference sentence(s)
286
- hypothesis: The hypothesis sentence(s)
287
- reference_transform: The transformation(s) to apply to the reference string(s)
288
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
289
- truth: Deprecated, renamed to `reference`
290
- truth_transform: Deprecated, renamed to `reference_transform`
291
-
292
- Deprecated:
293
- Arguments `truth` and `truth_transform` have been renamed to respectively
294
- `reference` and `reference_transform`. Therefore, the keyword arguments
295
- `truth` and `truth_transform` will be removed in the next release.
296
- At the same time, `reference` and `reference_transform` will lose their
297
- default value.
298
-
299
- Returns:
300
- (float): The word information lost of the given reference and
301
- hypothesis sentence(s).
302
- """
303
- (
304
- reference,
305
- hypothesis,
306
- reference_transform,
307
- hypothesis_transform,
308
- ) = _deprecate_truth(
309
- reference=reference,
310
- hypothesis=hypothesis,
311
- truth=truth,
312
- reference_transform=reference_transform,
313
- truth_transform=truth_transform,
314
- hypothesis_transform=hypothesis_transform,
315
- )
316
-
317
- output = process_words(
318
- reference, hypothesis, reference_transform, hypothesis_transform
319
- )
320
-
321
- return output.wil
322
-
323
-
324
- ########################################################################################
325
- # deprecated method 'compute_measures'
326
-
327
-
328
- def compute_measures(
329
- truth: Union[str, List[str]],
330
- hypothesis: Union[str, List[str]],
331
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
332
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
333
- ) -> Dict[str, Any]:
334
- """
335
- Efficiently computes all measures using only one function call.
336
-
337
- Deprecated:
338
- Deprecated method. Superseded by [jiwer.process_words][process.process_words].
339
- This method will be removed on next release.
340
-
341
- Args:
342
- truth: The reference sentence(s)
343
- hypothesis: The hypothesis sentence(s)
344
- truth_transform: The transformation(s) to apply to the reference string(s)
345
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
346
-
347
- Returns:
348
- (dict): A dictionary containing key-value pairs for all measures.
349
-
350
- """
351
- warnings.warn(
352
- DeprecationWarning(
353
- "jiwer.compute_measures() is deprecated. Please use jiwer.process_words()."
354
- )
355
- )
356
-
357
- output = process_words(
358
- reference=truth,
359
- hypothesis=hypothesis,
360
- reference_transform=truth_transform,
361
- hypothesis_transform=hypothesis_transform,
362
- )
363
-
364
- return {
365
- "wer": output.wer,
366
- "mer": output.mer,
367
- "wil": output.wil,
368
- "wip": output.wip,
369
- "hits": output.hits,
370
- "substitutions": output.substitutions,
371
- "deletions": output.deletions,
372
- "insertions": output.insertions,
373
- "ops": output.alignments,
374
- "truth": output.references,
375
- "hypothesis": output.hypotheses,
376
- }
377
-
378
-
379
- ########################################################################################
380
- # Implementation of character-error-rate, exposed publicly
381
-
382
-
383
- def cer(
384
- reference: Union[str, List[str]] = None,
385
- hypothesis: Union[str, List[str]] = None,
386
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
387
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
388
- return_dict: bool = False,
389
- truth: Union[str, List[str]] = None,
390
- truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
391
- ) -> Union[float, Dict[str, Any]]:
392
- """
393
- Calculate the character error rate (CER) between one or more reference and
394
- hypothesis sentences.
395
-
396
- Args:
397
- reference: The reference sentence(s)
398
- hypothesis: The hypothesis sentence(s)
399
- reference_transform: The transformation(s) to apply to the reference string(s)
400
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
401
- return_dict: Deprecated option to return the more results in a dict instead of
402
- returning only the cer as a single float value
403
- truth: Deprecated, renamed to `reference`
404
- truth_transform: Deprecated, renamed to `reference_transform`
405
-
406
- Deprecated:
407
- Argument `return_dict` will be deprecated. Please use
408
- [jiwer.process_characters][process.process_characters] instead.
409
-
410
- Arguments `truth` and `truth_transform` have been renamed to respectively
411
- `reference` and `reference_transform`. Therefore, the keyword arguments
412
- `truth` and `truth_transform` will be removed in the next release.
413
- At the same time, `reference` and `reference_transform` will lose their
414
- default value.
415
-
416
- Returns:
417
- (float): The character error rate of the given reference and hypothesis
418
- sentence(s).
419
- """
420
- (
421
- reference,
422
- hypothesis,
423
- reference_transform,
424
- hypothesis_transform,
425
- ) = _deprecate_truth(
426
- reference=reference,
427
- hypothesis=hypothesis,
428
- truth=truth,
429
- reference_transform=reference_transform,
430
- truth_transform=truth_transform,
431
- hypothesis_transform=hypothesis_transform,
432
- )
433
-
434
- output = process_characters(
435
- reference, hypothesis, reference_transform, hypothesis_transform
436
- )
437
-
438
- if return_dict:
439
- warnings.warn(
440
- DeprecationWarning(
441
- "`return_dict` is deprecated, "
442
- "please use jiwer.process_characters() instead."
443
- )
444
- )
445
- return {
446
- "cer": output.cer,
447
- "hits": output.hits,
448
- "substitutions": output.substitutions,
449
- "deletions": output.deletions,
450
- "insertions": output.insertions,
451
- }
452
- else:
453
- return output.cer
454
-
455
-
456
- def _deprecate_truth(
457
- reference: Union[str, List[str]],
458
- hypothesis: Union[str, List[str]],
459
- truth: Union[str, List[str]],
460
- reference_transform: Union[tr.Compose, tr.AbstractTransform],
461
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform],
462
- truth_transform: Union[tr.Compose, tr.AbstractTransform],
463
- ):
464
- if truth is not None:
465
- warnings.warn(
466
- DeprecationWarning(
467
- "keyword argument `truth` is deprecated, please use `reference`."
468
- )
469
- )
470
- if reference is not None:
471
- raise ValueError("cannot give `reference` and `truth`")
472
- reference = truth
473
- if truth_transform is not None:
474
- warnings.warn(
475
- DeprecationWarning(
476
- "keyword argument `truth_transform` is deprecated, "
477
- "please use `reference_transform`."
478
- )
479
- )
480
- reference_transform = truth_transform
481
-
482
- if reference is None or hypothesis is None:
483
- raise ValueError(
484
- "detected default values for reference or hypothesis arguments, "
485
- "please provide actual string or list of strings"
486
- )
487
-
488
- return reference, hypothesis, reference_transform, hypothesis_transform
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/jiwer/process.py DELETED
@@ -1,525 +0,0 @@
1
- #
2
- # JiWER - Jitsi Word Error Rate
3
- #
4
- # Copyright @ 2018 - present 8x8, Inc.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- #
18
-
19
- """
20
- The core algorithm(s) for processing a one or more reference and hypothesis sentences
21
- so that measures can be computed and an alignment can be visualized.
22
- """
23
-
24
- from dataclasses import dataclass
25
-
26
- from typing import Any, List, Union
27
- from itertools import chain
28
-
29
- import rapidfuzz
30
-
31
- from rapidfuzz.distance import Opcodes
32
-
33
- from jiwer import transforms as tr
34
- from jiwer.transformations import wer_default, cer_default
35
-
36
-
37
- __all__ = [
38
- "AlignmentChunk",
39
- "WordOutput",
40
- "CharacterOutput",
41
- "process_words",
42
- "process_words_embdiff",
43
- "process_characters",
44
- ]
45
-
46
-
47
- @dataclass
48
- class AlignmentChunk:
49
- """
50
- Define an alignment between two subsequence of the reference and hypothesis.
51
-
52
- Attributes:
53
- type: one of `equal`, `substitute`, `insert`, or `delete`
54
- ref_start_idx: the start index of the reference subsequence
55
- ref_end_idx: the end index of the reference subsequence
56
- hyp_start_idx: the start index of the hypothesis subsequence
57
- hyp_end_idx: the end index of the hypothesis subsequence
58
- """
59
-
60
- type: str
61
-
62
- ref_start_idx: int
63
- ref_end_idx: int
64
-
65
- hyp_start_idx: int
66
- hyp_end_idx: int
67
-
68
- def __post_init__(self):
69
- if self.type not in ["replace", "insert", "delete", "equal", "substitute"]:
70
- raise ValueError("")
71
-
72
- # rapidfuzz uses replace instead of substitute... For consistency, we change it
73
- if self.type == "replace":
74
- self.type = "substitute"
75
-
76
- if self.ref_start_idx > self.ref_end_idx:
77
- raise ValueError(
78
- f"ref_start_idx={self.ref_start_idx} "
79
- f"is larger "
80
- f"than ref_end_idx={self.ref_end_idx}"
81
- )
82
- if self.hyp_start_idx > self.hyp_end_idx:
83
- raise ValueError(
84
- f"hyp_start_idx={self.hyp_start_idx} "
85
- f"is larger "
86
- f"than hyp_end_idx={self.hyp_end_idx}"
87
- )
88
-
89
-
90
- @dataclass
91
- class WordOutput:
92
- """
93
- The output of calculating the word-level levenshtein distance between one or more
94
- reference and hypothesis sentence(s).
95
-
96
- Attributes:
97
- references: The reference sentences
98
- hypotheses: The hypothesis sentences
99
- alignments: The alignment between reference and hypothesis sentences
100
- wer: The word error rate
101
- mer: The match error rate
102
- wil: The word information lost measure
103
- wip: The word information preserved measure
104
- hits: The number of correct words between reference and hypothesis sentences
105
- substitutions: The number of substitutions required to transform hypothesis
106
- sentences to reference sentences
107
- insertions: The number of insertions required to transform hypothesis
108
- sentences to reference sentences
109
- deletions: The number of deletions required to transform hypothesis
110
- sentences to reference sentences
111
-
112
- """
113
-
114
- # processed input data
115
- references: List[List[str]]
116
- hypotheses: List[List[str]]
117
-
118
- # alignment
119
- alignments: List[List[AlignmentChunk]]
120
-
121
- # measures
122
- wer: float
123
- mer: float
124
- wil: float
125
- wip: float
126
-
127
- # stats
128
- hits: int
129
- substitutions: int
130
- insertions: int
131
- deletions: int
132
-
133
-
134
- def process_words(
135
- reference: Union[str, List[str]],
136
- hypothesis: Union[str, List[str]],
137
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
138
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
139
- ) -> WordOutput:
140
- """
141
- Compute the word-level levenshtein distance and alignment between one or more
142
- reference and hypothesis sentences. Based on the result, multiple measures
143
- can be computed, such as the word error rate.
144
-
145
- Args:
146
- reference: The reference sentence(s)
147
- hypothesis: The hypothesis sentence(s)
148
- reference_transform: The transformation(s) to apply to the reference string(s)
149
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
150
-
151
- Returns:
152
- (WordOutput): The processed reference and hypothesis sentences
153
- """
154
- # validate input type
155
- if isinstance(reference, str):
156
- reference = [reference]
157
- if isinstance(hypothesis, str):
158
- hypothesis = [hypothesis]
159
- if any(len(t) == 0 for t in reference):
160
- raise ValueError("one or more references are empty strings")
161
-
162
- # pre-process reference and hypothesis by applying transforms
163
- ref_transformed = _apply_transform(
164
- reference, reference_transform, is_reference=True
165
- )
166
- hyp_transformed = _apply_transform(
167
- hypothesis, hypothesis_transform, is_reference=False
168
- )
169
-
170
- if len(ref_transformed) != len(hyp_transformed):
171
- raise ValueError(
172
- "After applying the transforms on the reference and hypothesis sentences, "
173
- f"their lengths must match. "
174
- f"Instead got {len(ref_transformed)} reference and "
175
- f"{len(hyp_transformed)} hypothesis sentences."
176
- )
177
-
178
- # Change each word into a unique character in order to compute
179
- # word-level levenshtein distance
180
- ref_as_chars, hyp_as_chars = _word2char(ref_transformed, hyp_transformed)
181
-
182
- # keep track of total hits, substitutions, deletions and insertions
183
- # across all input sentences
184
- num_hits, num_substitutions, num_deletions, num_insertions = 0, 0, 0, 0
185
-
186
- # also keep track of the total number of words in the reference and hypothesis
187
- num_rf_words, num_hp_words = 0, 0
188
-
189
- # anf finally, keep track of the alignment between each reference and hypothesis
190
- alignments = []
191
-
192
- for reference_sentence, hypothesis_sentence in zip(ref_as_chars, hyp_as_chars):
193
- # Get the required edit operations to transform reference into hypothesis
194
- edit_ops = rapidfuzz.distance.Levenshtein.editops(
195
- reference_sentence, hypothesis_sentence
196
- )
197
-
198
- # count the number of edits of each type
199
- substitutions = sum(1 if op.tag == "replace" else 0 for op in edit_ops)
200
- deletions = sum(1 if op.tag == "delete" else 0 for op in edit_ops)
201
- insertions = sum(1 if op.tag == "insert" else 0 for op in edit_ops)
202
- hits = len(reference_sentence) - (substitutions + deletions)
203
-
204
- # update state
205
- num_hits += hits
206
- num_substitutions += substitutions
207
- num_deletions += deletions
208
- num_insertions += insertions
209
- num_rf_words += len(reference_sentence)
210
- num_hp_words += len(hypothesis_sentence)
211
- alignments.append(
212
- [
213
- AlignmentChunk(
214
- type=op.tag,
215
- ref_start_idx=op.src_start,
216
- ref_end_idx=op.src_end,
217
- hyp_start_idx=op.dest_start,
218
- hyp_end_idx=op.dest_end,
219
- )
220
- for op in Opcodes.from_editops(edit_ops)
221
- ]
222
- )
223
-
224
- # Compute all measures
225
- S, D, I, H = num_substitutions, num_deletions, num_insertions, num_hits
226
-
227
- wer = float(S + D + I) / float(H + S + D)
228
- mer = float(S + D + I) / float(H + S + D + I)
229
- wip = (
230
- (float(H) / num_rf_words) * (float(H) / num_hp_words)
231
- if num_hp_words >= 1
232
- else 0
233
- )
234
- wil = 1 - wip
235
-
236
- # return all output
237
- return WordOutput(
238
- references=ref_transformed,
239
- hypotheses=hyp_transformed,
240
- alignments=alignments,
241
- wer=wer,
242
- mer=mer,
243
- wil=wil,
244
- wip=wip,
245
- hits=num_hits,
246
- substitutions=num_substitutions,
247
- insertions=num_insertions,
248
- deletions=num_deletions,
249
- )
250
-
251
- def process_words_embdiff(
252
- reference: Union[str, List[str]],
253
- hypothesis: Union[str, List[str]],
254
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
255
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
256
- ) -> WordOutput:
257
- """
258
- Compute the word-level levenshtein distance and alignment between one or more
259
- reference and hypothesis sentences. Based on the result, multiple measures
260
- can be computed, such as the word error rate.
261
-
262
- Args:
263
- reference: The reference sentence(s)
264
- hypothesis: The hypothesis sentence(s)
265
- reference_transform: The transformation(s) to apply to the reference string(s)
266
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
267
-
268
- Returns:
269
- (WordOutput): The processed reference and hypothesis sentences
270
- """
271
- # validate input type
272
- if isinstance(reference, str):
273
- reference = [reference]
274
- if isinstance(hypothesis, str):
275
- hypothesis = [hypothesis]
276
- if any(len(t) == 0 for t in reference):
277
- raise ValueError("one or more references are empty strings")
278
-
279
- # pre-process reference and hypothesis by applying transforms
280
- ref_transformed = _apply_transform(
281
- reference, reference_transform, is_reference=True
282
- )
283
- hyp_transformed = _apply_transform(
284
- hypothesis, hypothesis_transform, is_reference=False
285
- )
286
-
287
- if len(ref_transformed) != len(hyp_transformed):
288
- raise ValueError(
289
- "After applying the transforms on the reference and hypothesis sentences, "
290
- f"their lengths must match. "
291
- f"Instead got {len(ref_transformed)} reference and "
292
- f"{len(hyp_transformed)} hypothesis sentences."
293
- )
294
-
295
- # Change each word into a unique character in order to compute
296
- # word-level levenshtein distance
297
- ref_as_chars, hyp_as_chars = _word2char(ref_transformed, hyp_transformed)
298
-
299
- # keep track of total hits, substitutions, deletions and insertions
300
- # across all input sentences
301
- num_hits, num_substitutions, num_deletions, num_insertions = 0, 0, 0, 0
302
-
303
- # also keep track of the total number of words in the reference and hypothesis
304
- num_rf_words, num_hp_words = 0, 0
305
-
306
- # anf finally, keep track of the alignment between each reference and hypothesis
307
- alignments = []
308
-
309
- for reference_sentence, hypothesis_sentence in zip(ref_as_chars, hyp_as_chars):
310
- # Get the required edit operations to transform reference into hypothesis
311
- edit_ops = rapidfuzz.distance.Levenshtein.editops(
312
- reference_sentence, hypothesis_sentence
313
- )
314
-
315
- # count the number of edits of each type
316
- substitutions = sum(1 if op.tag == "replace" else 0 for op in edit_ops)
317
- deletions = sum(1 if op.tag == "delete" else 0 for op in edit_ops)
318
- insertions = sum(1 if op.tag == "insert" else 0 for op in edit_ops)
319
- hits = len(reference_sentence) - (substitutions + deletions)
320
-
321
- # update state
322
- num_hits += hits
323
- num_substitutions += substitutions
324
- num_deletions += deletions
325
- num_insertions += insertions
326
- num_rf_words += len(reference_sentence)
327
- num_hp_words += len(hypothesis_sentence)
328
- alignments.append(
329
- [
330
- AlignmentChunk(
331
- type=op.tag,
332
- ref_start_idx=op.src_start,
333
- ref_end_idx=op.src_end,
334
- hyp_start_idx=op.dest_start,
335
- hyp_end_idx=op.dest_end,
336
- )
337
- for op in Opcodes.from_editops(edit_ops)
338
- ]
339
- )
340
-
341
- # Compute all measures
342
- S, D, I, H = num_substitutions, num_deletions, num_insertions, num_hits
343
-
344
- wer = float(S + D + I) / float(H + S + D)
345
- mer = float(S + D + I) / float(H + S + D + I)
346
- wip = (
347
- (float(H) / num_rf_words) * (float(H) / num_hp_words)
348
- if num_hp_words >= 1
349
- else 0
350
- )
351
- wil = 1 - wip
352
-
353
- # return all output
354
- return WordOutput(
355
- references=ref_transformed,
356
- hypotheses=hyp_transformed,
357
- alignments=alignments,
358
- wer=wer,
359
- mer=mer,
360
- wil=wil,
361
- wip=wip,
362
- hits=num_hits,
363
- substitutions=num_substitutions,
364
- insertions=num_insertions,
365
- deletions=num_deletions,
366
- ), edit_ops
367
-
368
-
369
- ########################################################################################
370
- # Implementation of character error rate
371
-
372
-
373
- @dataclass
374
- class CharacterOutput:
375
- """
376
- The output of calculating the character-level levenshtein distance between one or
377
- more reference and hypothesis sentence(s).
378
-
379
- Attributes:
380
- references: The reference sentences
381
- hypotheses: The hypothesis sentences
382
- alignments: The alignment between reference and hypothesis sentences
383
- cer: The character error rate
384
- hits: The number of correct characters between reference and hypothesis
385
- sentences
386
- substitutions: The number of substitutions required to transform hypothesis
387
- sentences to reference sentences
388
- insertions: The number of insertions required to transform hypothesis
389
- sentences to reference sentences
390
- deletions: The number of deletions required to transform hypothesis
391
- sentences to reference sentences
392
- """
393
-
394
- # processed input data
395
- references: List[List[str]]
396
- hypotheses: List[List[str]]
397
-
398
- # alignment
399
- alignments: List[List[AlignmentChunk]]
400
-
401
- # measures
402
- cer: float
403
-
404
- # stats
405
- hits: int
406
- substitutions: int
407
- insertions: int
408
- deletions: int
409
-
410
-
411
- def process_characters(
412
- reference: Union[str, List[str]],
413
- hypothesis: Union[str, List[str]],
414
- reference_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
415
- hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
416
- ) -> CharacterOutput:
417
- """
418
- Compute the character-level levenshtein distance and alignment between one or more
419
- reference and hypothesis sentences. Based on the result, the character error rate
420
- can be computed.
421
-
422
- Note that the by default this method includes space (` `) as a
423
- character over which the error rate is computed. If this is not desired, the
424
- reference and hypothesis transform need to be modified.
425
-
426
- Args:
427
- reference: The reference sentence(s)
428
- hypothesis: The hypothesis sentence(s)
429
- reference_transform: The transformation(s) to apply to the reference string(s)
430
- hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
431
-
432
- Returns:
433
- (CharacterOutput): The processed reference and hypothesis sentences.
434
-
435
- """
436
- # make sure the transforms end with tr.ReduceToListOfListOfChars(),
437
-
438
- # it's the same as word processing, just every word is of length 1
439
- result = process_words(
440
- reference, hypothesis, reference_transform, hypothesis_transform
441
- )
442
-
443
- return CharacterOutput(
444
- references=result.references,
445
- hypotheses=result.hypotheses,
446
- alignments=result.alignments,
447
- cer=result.wer,
448
- hits=result.hits,
449
- substitutions=result.substitutions,
450
- insertions=result.insertions,
451
- deletions=result.deletions,
452
- )
453
-
454
-
455
- ################################################################################
456
- # Implementation of helper methods
457
-
458
-
459
- def _apply_transform(
460
- sentence: Union[str, List[str]],
461
- transform: Union[tr.Compose, tr.AbstractTransform],
462
- is_reference: bool,
463
- ):
464
- # Apply transforms. The transforms should collapse input to a
465
- # list with lists of words
466
- transformed_sentence = transform(sentence)
467
-
468
- # Validate the output is a list containing lists of strings
469
- if is_reference:
470
- if not _is_list_of_list_of_strings(
471
- transformed_sentence, require_non_empty_lists=True
472
- ):
473
- raise ValueError(
474
- "After applying the transformation, each reference should be a "
475
- "non-empty list of strings, with each string being a single word."
476
- )
477
- else:
478
- if not _is_list_of_list_of_strings(
479
- transformed_sentence, require_non_empty_lists=False
480
- ):
481
- raise ValueError(
482
- "After applying the transformation, each hypothesis should be a "
483
- "list of strings, with each string being a single word."
484
- )
485
-
486
- return transformed_sentence
487
-
488
-
489
- def _is_list_of_list_of_strings(x: Any, require_non_empty_lists: bool):
490
- if not isinstance(x, list):
491
- return False
492
-
493
- for e in x:
494
- if not isinstance(e, list):
495
- return False
496
-
497
- if require_non_empty_lists and len(e) == 0:
498
- return False
499
-
500
- if not all([isinstance(s, str) for s in e]):
501
- return False
502
-
503
- return True
504
-
505
-
506
- def _word2char(reference: List[List[str]], hypothesis: List[List[str]]):
507
- # tokenize each word into an integer
508
- vocabulary = set(chain(*reference, *hypothesis))
509
-
510
- if "" in vocabulary:
511
- raise ValueError(
512
- "Empty strings cannot be a word. "
513
- "Please ensure that the given transform removes empty strings."
514
- )
515
-
516
- word2char = dict(zip(vocabulary, range(len(vocabulary))))
517
-
518
- reference_chars = [
519
- "".join([chr(word2char[w]) for w in sentence]) for sentence in reference
520
- ]
521
- hypothesis_chars = [
522
- "".join([chr(word2char[w]) for w in sentence]) for sentence in hypothesis
523
- ]
524
-
525
- return reference_chars, hypothesis_chars
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/jiwer/transformations.py DELETED
@@ -1,128 +0,0 @@
1
- #
2
- # JiWER - Jitsi Word Error Rate
3
- #
4
- # Copyright @ 2018 - present 8x8, Inc.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
-
18
- """
19
- This file is intended to provide the default transformation which need
20
- to be applied to input text in order to compute the WER (or similar measures).
21
-
22
- It also implements some alternative transformations which might be
23
- useful in specific use cases.
24
- """
25
-
26
- import jiwer.transforms as tr
27
-
28
- __all__ = [
29
- "wer_default",
30
- "wer_contiguous",
31
- "wer_standardize",
32
- "wer_standardize_contiguous",
33
- "cer_default",
34
- "cer_contiguous",
35
- ]
36
-
37
- ########################################################################################
38
- # implement transformations for WER (and accompanying measures)
39
-
40
- wer_default = tr.Compose(
41
- [
42
- tr.RemoveMultipleSpaces(),
43
- tr.Strip(),
44
- tr.ReduceToListOfListOfWords(),
45
- ]
46
- )
47
- """
48
- This is the default transformation when using `proces_words`. Each input string will
49
- have its leading and tailing white space removed.
50
- Thereafter multiple spaces between words are also removed.
51
- Then each string is transformed into a list with lists of strings, where each string
52
- is a single word.
53
- """
54
-
55
- wer_contiguous = tr.Compose(
56
- [
57
- tr.RemoveMultipleSpaces(),
58
- tr.Strip(),
59
- tr.ReduceToSingleSentence(),
60
- tr.ReduceToListOfListOfWords(),
61
- ]
62
- )
63
- """
64
- This is can be used instead of `wer_default` when the number of reference and hypothesis
65
- sentences differ.
66
- """
67
-
68
- wer_standardize = tr.Compose(
69
- [
70
- tr.ToLowerCase(),
71
- tr.ExpandCommonEnglishContractions(),
72
- tr.RemoveKaldiNonWords(),
73
- tr.RemoveWhiteSpace(replace_by_space=True),
74
- tr.RemoveMultipleSpaces(),
75
- tr.Strip(),
76
- tr.ReduceToListOfListOfWords(),
77
- ]
78
- )
79
- """
80
- This transform attempts to standardize the strings by setting all characters to lower
81
- case, expanding common contractions, and removing non-words. Then the default operations
82
- are applied.
83
- """
84
-
85
- wer_standardize_contiguous = tr.Compose(
86
- [
87
- tr.ToLowerCase(),
88
- tr.ExpandCommonEnglishContractions(),
89
- tr.RemoveKaldiNonWords(),
90
- tr.RemoveWhiteSpace(replace_by_space=True),
91
- tr.RemoveMultipleSpaces(),
92
- tr.Strip(),
93
- tr.ReduceToSingleSentence(),
94
- tr.ReduceToListOfListOfWords(),
95
- ]
96
- )
97
- """
98
- This is the same as `wer_standize`, but this version can be usd when the number of
99
- reference and hypothesis sentences differ.
100
- """
101
-
102
- ########################################################################################
103
- # implement transformations for CER
104
-
105
-
106
- cer_default = tr.Compose(
107
- [
108
- tr.Strip(),
109
- tr.ReduceToListOfListOfChars(),
110
- ]
111
- )
112
- """
113
- This is the default transformation when using `process_characters`. Each input string
114
- will have its leading and tailing white space removed. Then each string is
115
- transformed into a list with lists of strings, where each string is a single character.
116
- """
117
-
118
- cer_contiguous = tr.Compose(
119
- [
120
- tr.Strip(),
121
- tr.ReduceToSingleSentence(),
122
- tr.ReduceToListOfListOfChars(),
123
- ]
124
- )
125
- """
126
- This can used instead of `cer_default` when the number of reference and hypothesis
127
- sentences differ.
128
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/jiwer/transforms.py DELETED
@@ -1,620 +0,0 @@
1
- #
2
- # JiWER - Jitsi Word Error Rate
3
- #
4
- # Copyright @ 2018 - present 8x8, Inc.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- #
18
-
19
- """
20
- This file implements the building blocks for transforming a collection
21
- of input strings to the desired format in order to calculate the WER of CER.
22
-
23
- In principle, for word error rate calculations, every string of a sentence needs to be
24
- collapsed into a list of strings, where each string is a *single* word.
25
- This is done with [transforms.ReduceToListOfListOfWords][].
26
- A composition of multiple transformations must therefore *always* end with
27
- [transforms.ReduceToListOfListOfWords][].
28
-
29
- For the character error rate, every string of a sentence also needs to be collapsed into
30
- a list of strings, but here each string is a *single* character.
31
- This is done with [transforms.ReduceToListOfListOfChars][]. Similarly, a
32
- composition of multiple transformations must therefore also always end with
33
- [transforms.ReduceToListOfListOfChars][].
34
- """
35
-
36
- import sys
37
- import functools
38
- import re
39
- import string
40
- import unicodedata
41
-
42
- from typing import Union, List, Mapping
43
-
44
-
45
- __all__ = [
46
- "AbstractTransform",
47
- "Compose",
48
- "ExpandCommonEnglishContractions",
49
- "RemoveEmptyStrings",
50
- "ReduceToListOfListOfWords",
51
- "ReduceToListOfListOfChars",
52
- "ReduceToSingleSentence",
53
- "RemoveKaldiNonWords",
54
- "RemoveMultipleSpaces",
55
- "RemovePunctuation",
56
- "RemoveSpecificWords",
57
- "RemoveWhiteSpace",
58
- "Strip",
59
- "SubstituteRegexes",
60
- "SubstituteWords",
61
- "ToLowerCase",
62
- "ToUpperCase",
63
- ]
64
-
65
-
66
- class AbstractTransform(object):
67
- """
68
- The base class of a Transform.
69
- """
70
-
71
- def __call__(self, sentences: Union[str, List[str]]):
72
- """
73
- Transforms one or more strings.
74
-
75
- Args:
76
- sentences: The strings to transform.
77
-
78
- Returns:
79
- (Union[str, List[str]]): The transformed strings.
80
-
81
- """
82
- if isinstance(sentences, str):
83
- return self.process_string(sentences)
84
- elif isinstance(sentences, list):
85
- return self.process_list(sentences)
86
- else:
87
- raise ValueError(
88
- "input {} was expected to be a string or list of strings".format(
89
- sentences
90
- )
91
- )
92
-
93
- def process_string(self, s: str):
94
- raise NotImplementedError()
95
-
96
- def process_list(self, inp: List[str]):
97
- return [self.process_string(s) for s in inp]
98
-
99
-
100
- class Compose(object):
101
- """
102
- Chain multiple transformations back-to-back to create a pipeline combining multiple
103
- transformations.
104
-
105
- Note that each transformation needs to end with either `ReduceToListOfListOfWords`
106
- or `ReduceToListOfListOfChars`, depending on whether word error rate,
107
- or character error rate is desired.
108
-
109
- Example:
110
- ```python3
111
- import jiwer
112
-
113
- jiwer.Compose([
114
- jiwer.RemoveMultipleSpaces(),
115
- jiwer.ReduceToListOfListOfWords()
116
- ])
117
- ```
118
- """
119
-
120
- def __init__(self, transforms: List[AbstractTransform]):
121
- """
122
-
123
- Args:
124
- transforms: The list of transformations to chain.
125
- """
126
- self.transforms = transforms
127
-
128
- def __call__(self, text):
129
- for tr in self.transforms:
130
- text = tr(text)
131
-
132
- return text
133
-
134
-
135
- class BaseRemoveTransform(AbstractTransform):
136
- def __init__(self, tokens_to_remove: List[str], replace_token=""):
137
- self.tokens_to_remove = tokens_to_remove
138
- self.replace_token = replace_token
139
-
140
- def process_string(self, s: str):
141
- for w in self.tokens_to_remove:
142
- s = s.replace(w, self.replace_token)
143
-
144
- return s
145
-
146
- def process_list(self, inp: List[str]):
147
- return [self.process_string(s) for s in inp]
148
-
149
-
150
- class ReduceToListOfListOfWords(AbstractTransform):
151
- """
152
- Transforms a single input sentence, or a list of input sentences, into
153
- a list with lists of words, which is the expected format for calculating the
154
- edit operations between two input sentences on a word-level.
155
-
156
- A sentence is assumed to be a string, where words are delimited by a token
157
- (such as ` `, space). Each string is expected to contain only a single sentence.
158
- Empty strings (no output) are removed for the list.
159
-
160
- Example:
161
- ```python
162
- import jiwer
163
-
164
- sentences = ["hi", "this is an example"]
165
-
166
- print(jiwer.ReduceToListOfListOfWords()(sentences))
167
- # prints: [['hi'], ['this', 'is', 'an, 'example']]
168
- ```
169
- """
170
-
171
- def __init__(self, word_delimiter: str = " "):
172
- """
173
- Args:
174
- word_delimiter: the character which delimits words. Default is ` ` (space).
175
- """
176
- self.word_delimiter = word_delimiter
177
-
178
- def process_string(self, s: str):
179
- return [[w for w in s.split(self.word_delimiter) if len(w) >= 1]]
180
-
181
- def process_list(self, inp: List[str]):
182
- sentence_collection = []
183
-
184
- for sentence in inp:
185
- list_of_words = self.process_string(sentence)[0]
186
-
187
- sentence_collection.append(list_of_words)
188
-
189
- if len(sentence_collection) == 0:
190
- return [[]]
191
-
192
- return sentence_collection
193
-
194
-
195
- class ReduceToListOfListOfChars(AbstractTransform):
196
- """
197
- Transforms a single input sentence, or a list of input sentences, into
198
- a list with lists of characters, which is the expected format for calculating the
199
- edit operations between two input sentences on a character-level.
200
-
201
- A sentence is assumed to be a string. Each string is expected to contain only a
202
- single sentence.
203
-
204
- Example:
205
- ```python
206
- import jiwer
207
-
208
- sentences = ["hi", "this is an example"]
209
-
210
- print(jiwer.ReduceToListOfListOfChars()(sentences))
211
- # prints: [['h', 'i'], ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', 'n', ' ', 'e', 'x', 'a', 'm', 'p', 'l', 'e']]
212
- ```
213
- """
214
-
215
- def process_string(self, s: str):
216
- return [[w for w in s]]
217
-
218
- def process_list(self, inp: List[str]):
219
- sentence_collection = []
220
-
221
- for sentence in inp:
222
- list_of_words = self.process_string(sentence)[0]
223
-
224
- sentence_collection.append(list_of_words)
225
-
226
- if len(sentence_collection) == 0:
227
- return [[]]
228
-
229
- return sentence_collection
230
-
231
-
232
- class ReduceToSingleSentence(AbstractTransform):
233
- """
234
- Transforms multiple sentences into a single sentence.
235
- This operation can be useful when the number of reference and hypothesis sentences
236
- differ, and you want to do a minimal alignment over these lists.
237
- Note that this creates an invariance: `wer([a, b], [a, b])` might not be equal to
238
- `wer([b, a], [b, a])`.
239
-
240
- Example:
241
- ```python3
242
- import jiwer
243
-
244
- sentences = ["hi", "this is an example"]
245
-
246
- print(jiwer.ReduceToSingleSentence()(sentences))
247
- # prints: ['hi this is an example']
248
- ```
249
- """
250
-
251
- def __init__(self, word_delimiter: str = " "):
252
- """
253
- :param word_delimiter: the character which delimits words. Default is ` ` (space).
254
- """
255
- self.word_delimiter = word_delimiter
256
-
257
- def process_string(self, s: str):
258
- return s
259
-
260
- def process_list(self, inp: List[str]):
261
- filtered_inp = [i for i in inp if len(i) >= 1]
262
-
263
- if len(filtered_inp) == 0:
264
- return []
265
- else:
266
- return ["{}".format(self.word_delimiter).join(filtered_inp)]
267
-
268
-
269
- class SubstituteRegexes(AbstractTransform):
270
- """
271
- Transform strings by substituting substrings matching regex expressions into
272
- another substring.
273
-
274
- Example:
275
- ```python
276
- import jiwer
277
-
278
- sentences = ["is the world doomed or loved?", "edibles are allegedly cultivated"]
279
-
280
- # note: the regex string "\b(\w+)ed\b", matches every word ending in 'ed',
281
- # and "\1" stands for the first group ('\w+). It therefore removes 'ed' in every match.
282
- print(jiwer.SubstituteRegexes({r"doom": r"sacr", r"\b(\w+)ed\b": r"\1"})(sentences))
283
-
284
- # prints: ["is the world sacr or lov?", "edibles are allegedly cultivat"]
285
- ```
286
- """
287
-
288
- def __init__(self, substitutions: Mapping[str, str]):
289
- """
290
-
291
- Args:
292
- substitutions: a mapping of regex expressions to replacement strings.
293
- """
294
- self.substitutions = substitutions
295
-
296
- def process_string(self, s: str):
297
- for key, value in self.substitutions.items():
298
- s = re.sub(key, value, s)
299
-
300
- return s
301
-
302
-
303
- class SubstituteWords(AbstractTransform):
304
- """
305
- This transform can be used to replace a word into another word.
306
- Note that the whole word is matched. If the word you're attempting to substitute
307
- is a substring of another word it will not be affected.
308
- For example, if you're substituting `foo` into `bar`, the word `foobar` will NOT
309
- be substituted into `barbar`.
310
-
311
- Example:
312
- ```python
313
- import jiwer
314
-
315
- sentences = ["you're pretty", "your book", "foobar"]
316
-
317
- print(jiwer.SubstituteWords({"pretty": "awesome", "you": "i", "'re": " am", 'foo': 'bar'})(sentences))
318
-
319
- # prints: ["i am awesome", "your book", "foobar"]
320
- ```
321
-
322
- """
323
-
324
- def __init__(self, substitutions: Mapping[str, str]):
325
- """
326
- Args:
327
- substitutions: A mapping of words to replacement words.
328
- """
329
- self.substitutions = substitutions
330
-
331
- def process_string(self, s: str):
332
- for key, value in self.substitutions.items():
333
- s = re.sub(r"\b{}\b".format(re.escape(key)), value, s)
334
-
335
- return s
336
-
337
-
338
- class RemoveSpecificWords(SubstituteWords):
339
- """
340
- Can be used to filter out certain words.
341
- As words are replaced with a ` ` character, make sure to that
342
- `RemoveMultipleSpaces`, `Strip()` and `RemoveEmptyStrings` are present
343
- in the composition _after_ `RemoveSpecificWords`.
344
-
345
- Example:
346
- ```python
347
- import jiwer
348
-
349
- sentences = ["yhe awesome", "the apple is not a pear", "yhe"]
350
-
351
- print(jiwer.RemoveSpecificWords(["yhe", "the", "a"])(sentences))
352
- # prints: [' awesome', ' apple is not pear', ' ']
353
- # note the extra spaces
354
- ```
355
- """
356
-
357
- def __init__(self, words_to_remove: List[str]):
358
- """
359
- Args:
360
- words_to_remove: List of words to remove.
361
- """
362
- mapping = {word: " " for word in words_to_remove}
363
-
364
- super().__init__(mapping)
365
-
366
-
367
- class RemoveWhiteSpace(BaseRemoveTransform):
368
- """
369
- This transform filters out white space characters.
370
- Note that by default space (` `) is also removed, which will make it impossible to
371
- split a sentence into a list of words by using `ReduceToListOfListOfWords` or
372
- `ReduceToSingleSentence`.
373
- This can be prevented by replacing all whitespace with the space character.
374
- If so, make sure that `jiwer.RemoveMultipleSpaces`,
375
- `Strip()` and `RemoveEmptyStrings` are present in the composition _after_
376
- `RemoveWhiteSpace`.
377
-
378
- Example:
379
- ```python
380
- import jiwer
381
-
382
- sentences = ["this is an example", "hello world\t"]
383
-
384
- print(jiwer.RemoveWhiteSpace()(sentences))
385
- # prints: ["thisisanexample", "helloworld"]
386
-
387
- print(jiwer.RemoveWhiteSpace(replace_by_space=True)(sentences))
388
- # prints: ["this is an example", "hello world "]
389
- # note the trailing spaces
390
- ```
391
- """
392
-
393
- def __init__(self, replace_by_space: bool = False):
394
- """
395
-
396
- Args:
397
- replace_by_space: every white space character is replaced with a space (` `)
398
- """
399
- characters = [c for c in string.whitespace]
400
-
401
- if replace_by_space:
402
- replace_token = " "
403
- else:
404
- replace_token = ""
405
-
406
- super().__init__(characters, replace_token=replace_token)
407
-
408
-
409
- @functools.lru_cache(1)
410
- def _get_punctuation_characters():
411
- """Compute the punctuation characters only once and memoize."""
412
- codepoints = range(sys.maxunicode + 1)
413
- punctuation = set(
414
- chr(i) for i in codepoints if unicodedata.category(chr(i)).startswith("P")
415
- )
416
- return punctuation
417
-
418
-
419
- class RemovePunctuation(BaseRemoveTransform):
420
- """
421
- This transform filters out punctuation. The punctuation characters are defined as
422
- all unicode characters whose category name starts with `P`.
423
- See [here](https://www.unicode.org/reports/tr44/#General_Category_Values) for more
424
- information.
425
- Example:
426
- ```python
427
- import jiwer
428
-
429
- sentences = ["this is an example!", "hello. goodbye"]
430
-
431
- print(jiwer.RemovePunctuation()(sentences))
432
- # prints: ['this is an example', "hello goodbye"]
433
- ```
434
- """
435
-
436
- def __init__(self):
437
- punctuation_characters = _get_punctuation_characters()
438
- super().__init__(punctuation_characters)
439
-
440
-
441
- class RemoveMultipleSpaces(AbstractTransform):
442
- """
443
- Filter out multiple spaces between words.
444
-
445
- Example:
446
- ```python
447
- import jiwer
448
-
449
- sentences = ["this is an example ", " hello goodbye ", " "]
450
-
451
- print(jiwer.RemoveMultipleSpaces()(sentences))
452
- # prints: ['this is an example ', " hello goodbye ", " "]
453
- # note that there are still trailing spaces
454
- ```
455
-
456
- """
457
-
458
- def process_string(self, s: str):
459
- return re.sub(r"\s\s+", " ", s)
460
-
461
- def process_list(self, inp: List[str]):
462
- return [self.process_string(s) for s in inp]
463
-
464
-
465
- class Strip(AbstractTransform):
466
- """
467
- Removes all leading and trailing spaces.
468
-
469
- Example:
470
- ```python
471
- import jiwer
472
-
473
- sentences = [" this is an example ", " hello goodbye ", " "]
474
-
475
- print(jiwer.Strip()(sentences))
476
- # prints: ['this is an example', "hello goodbye", ""]
477
- # note that there is an empty string left behind which might need to be cleaned up
478
- ```
479
- """
480
-
481
- def process_string(self, s: str):
482
- return s.strip()
483
-
484
-
485
- class RemoveEmptyStrings(AbstractTransform):
486
- """
487
- Remove empty strings from a list of strings.
488
-
489
- Example:
490
- ```python
491
- import jiwer
492
-
493
- sentences = ["", "this is an example", " ", " "]
494
-
495
- print(jiwer.RemoveEmptyStrings()(sentences))
496
- # prints: ['this is an example']
497
- ```
498
- """
499
-
500
- def process_string(self, s: str):
501
- return s.strip()
502
-
503
- def process_list(self, inp: List[str]):
504
- return [s for s in inp if self.process_string(s) != ""]
505
-
506
-
507
- class ExpandCommonEnglishContractions(AbstractTransform):
508
- """
509
- Replace common contractions such as `let's` to `let us`.
510
-
511
- Currently, this method will perform the following replacements. Note that `␣` is
512
- used to indicate a space (` `) to get around markdown rendering constrains.
513
-
514
- | Contraction | transformed into |
515
- | ------------- |:----------------:|
516
- | `won't` | `␣will not` |
517
- | `can't` | `␣can not` |
518
- | `let's` | `␣let us` |
519
- | `n't` | `␣not` |
520
- | `'re` | `␣are` |
521
- | `'s` | `␣is` |
522
- | `'d` | `␣would` |
523
- | `'ll` | `␣will` |
524
- | `'t` | `␣not` |
525
- | `'ve` | `␣have` |
526
- | `'m` | `␣am` |
527
-
528
- Example:
529
- ```python
530
- import jiwer
531
-
532
- sentences = ["she'll make sure you can't make it", "let's party!"]
533
-
534
- print(jiwer.ExpandCommonEnglishContractions()(sentences))
535
- # prints: ["she will make sure you can not make it", "let us party!"]
536
- ```
537
-
538
- """
539
-
540
- def process_string(self, s: str):
541
- # definitely a non exhaustive list
542
-
543
- # specific words
544
- s = re.sub(r"won't", "will not", s)
545
- s = re.sub(r"can\'t", "can not", s)
546
- s = re.sub(r"let\'s", "let us", s)
547
-
548
- # general attachments
549
- s = re.sub(r"n\'t", " not", s)
550
- s = re.sub(r"\'re", " are", s)
551
- s = re.sub(r"\'s", " is", s)
552
- s = re.sub(r"\'d", " would", s)
553
- s = re.sub(r"\'ll", " will", s)
554
- s = re.sub(r"\'t", " not", s)
555
- s = re.sub(r"\'ve", " have", s)
556
- s = re.sub(r"\'m", " am", s)
557
-
558
- return s
559
-
560
-
561
- class ToLowerCase(AbstractTransform):
562
- """
563
- Convert every character into lowercase.
564
- Example:
565
- ```python
566
- import jiwer
567
-
568
- sentences = ["You're PRETTY"]
569
-
570
- print(jiwer.ToLowerCase()(sentences))
571
-
572
- # prints: ["you're pretty"]
573
- ```
574
- """
575
-
576
- def process_string(self, s: str):
577
- return s.lower()
578
-
579
-
580
- class ToUpperCase(AbstractTransform):
581
- """
582
- Convert every character to uppercase.
583
-
584
- Example:
585
- ```python
586
- import jiwer
587
-
588
- sentences = ["You're amazing"]
589
-
590
- print(jiwer.ToUpperCase()(sentences))
591
-
592
- # prints: ["YOU'RE AMAZING"]
593
- ```
594
- """
595
-
596
- def process_string(self, s: str):
597
- return s.upper()
598
-
599
-
600
- class RemoveKaldiNonWords(AbstractTransform):
601
- """
602
- Remove any word between `[]` and `<>`. This can be useful when working
603
- with hypotheses from the Kaldi project, which can output non-words such as
604
- `[laugh]` and `<unk>`.
605
-
606
- Example:
607
- ```python
608
- import jiwer
609
-
610
- sentences = ["you <unk> like [laugh]"]
611
-
612
- print(jiwer.RemoveKaldiNonWords()(sentences))
613
-
614
- # prints: ["you like "]
615
- # note the extra spaces
616
- ```
617
- """
618
-
619
- def process_string(self, s: str):
620
- return re.sub(r"[<\[][^>\]]*[>\]]", "", s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/mkdocs.yml DELETED
@@ -1,47 +0,0 @@
1
- site_name: "jiwer"
2
- site_description: "Documentation for jiwer."
3
- site_url: "https://jitsi.github.io/jiwer/"
4
- repo_url: "https://github.com/jitsi/jiwer"
5
- edit_uri: "blob/master/docs/"
6
- repo_name: "jitsi/jiwer"
7
- site_dir: "site"
8
-
9
- theme:
10
- name: "material"
11
- features:
12
- - content.code.annotate
13
- - navigation.tabs
14
- - navigation.tabs.sticky
15
- - navigation.top
16
-
17
- plugins:
18
- - mkdocstrings:
19
- handlers:
20
- python:
21
- paths: [jiwer]
22
- options:
23
- separate_signature: true
24
- show_root_heading: true
25
- show_root_members_full_path: false
26
- - search
27
- - gen-files:
28
- scripts:
29
- - docs/gen_ref_pages.py
30
- - literate-nav:
31
- nav_file: SUMMARY.md
32
- - autorefs
33
-
34
- nav:
35
- - jiwer: index.md
36
- - Usage: usage.md
37
- - Command-line interface: cli.md
38
- - API reference: reference/
39
-
40
- markdown_extensions:
41
- - toc:
42
- permalink: "#"
43
- - pymdownx.superfences
44
-
45
- watch:
46
- - docs
47
- - jiwer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/pyproject.toml DELETED
@@ -1,27 +0,0 @@
1
- [tool.poetry]
2
- name = "jiwer"
3
- version = "3.0.2"
4
- description = "Evaluate your speech-to-text system with similarity measures such as word error rate (WER)"
5
- authors = ["Nik Vaessen <nikvaes@gmail.com>"]
6
- readme = "README.md"
7
- license = "Apache-2.0"
8
- repository = "https://github.com/jitsi/jiwer"
9
- include = ["LICENCE"]
10
-
11
- [tool.poetry.dependencies]
12
- python = "^3.7"
13
- rapidfuzz = "2.13.7"
14
- click = "^8.1.3"
15
-
16
- [tool.poetry.group.dev.dependencies]
17
- black = "^22.8.0"
18
- pytest = "7.1.3"
19
- pytest-benchmark = "^3.4.1"
20
- flake8 = "5.0.4"
21
-
22
- [tool.poetry.scripts]
23
- jiwer = "jiwer.cli:cli"
24
-
25
- [build-system]
26
- requires = ["poetry-core>=1.0.0"]
27
- build-backend = "poetry.core.masonry.api"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/tests/__init__.py DELETED
File without changes
jiwer/tests/test_alignment.py DELETED
@@ -1,225 +0,0 @@
1
- import unittest
2
- import jiwer
3
-
4
-
5
- class TestAlignmentVisualizationWords(unittest.TestCase):
6
- def test_insertion(self):
7
- correct_alignment = (
8
- "sentence 1\n"
9
- "REF: this is a ****\n"
10
- "HYP: this is a test\n"
11
- " I\n"
12
- )
13
- alignment = jiwer.visualize_alignment(
14
- jiwer.process_words("this is a", "this is a test"), show_measures=False
15
- )
16
- self.assertEqual(alignment, correct_alignment)
17
-
18
- pass
19
-
20
- def test_deletion(self):
21
- correct_alignment = (
22
- "sentence 1\n"
23
- "REF: this is a test\n"
24
- "HYP: this is a ****\n"
25
- " D\n"
26
- )
27
- alignment = jiwer.visualize_alignment(
28
- jiwer.process_words("this is a test", "this is a"), show_measures=False
29
- )
30
- self.assertEqual(alignment, correct_alignment)
31
-
32
- def test_substitution(self):
33
- correct_alignment = (
34
- "sentence 1\n"
35
- "REF: this is a test\n"
36
- "HYP: this was a test\n"
37
- " S \n"
38
- )
39
- alignment = jiwer.visualize_alignment(
40
- jiwer.process_words("this is a test", "this was a test"),
41
- show_measures=False,
42
- )
43
- self.assertEqual(alignment, correct_alignment)
44
-
45
- def test_all_three(self):
46
- correct_alignment = (
47
- "sentence 1\n"
48
- "REF: this is a ***** test of skill\n"
49
- "HYP: this was a messy test ** *****\n"
50
- " S I D D\n"
51
- )
52
- alignment = jiwer.visualize_alignment(
53
- jiwer.process_words("this is a test of skill", "this was a messy test"),
54
- show_measures=False,
55
- )
56
- self.assertEqual(alignment, correct_alignment)
57
-
58
- def test_show_measures(self):
59
- correct_alignment = (
60
- "sentence 1\n"
61
- "REF: this test will have a high word error rate\n"
62
- "HYP: no it will not * **** **** ***** ****\n"
63
- " S S S D D D D D\n"
64
- "\n"
65
- "number of sentences: 1\n"
66
- "substitutions=3 deletions=5 insertions=0 hits=1\n"
67
- "\n"
68
- "mer=88.89%\n"
69
- "wil=97.22%\n"
70
- "wip=2.78%\n"
71
- "wer=88.89%\n"
72
- )
73
- alignment = jiwer.visualize_alignment(
74
- jiwer.process_words(
75
- "this test will have a high word error rate", "no it will not"
76
- ),
77
- show_measures=True,
78
- )
79
- self.assertEqual(alignment, correct_alignment)
80
-
81
- def test_empty_hypothesis(self):
82
- correct_alignment = "sentence 1\n" "REF: empty\n" "HYP: *****\n" " D\n"
83
- alignment = jiwer.visualize_alignment(
84
- jiwer.process_words("empty", ""), show_measures=False
85
- )
86
- self.assertEqual(alignment, correct_alignment)
87
-
88
- def test_multiple_sentences(self):
89
- correct_alignment = (
90
- "sentence 1\n"
91
- "REF: one\n"
92
- "HYP: 1\n"
93
- " S\n"
94
- "\n"
95
- "sentence 2\n"
96
- "REF: two\n"
97
- "HYP: 2\n"
98
- " S\n"
99
- )
100
- alignment = jiwer.visualize_alignment(
101
- jiwer.process_words(["one", "two"], ["1", "2"]),
102
- show_measures=False,
103
- )
104
- self.assertEqual(alignment, correct_alignment)
105
-
106
- def test_skip_correct(self):
107
- correct_alignment = (
108
- "sentence 2\n"
109
- "REF: one\n"
110
- "HYP: 1\n"
111
- " S\n"
112
- "\n"
113
- "sentence 3\n"
114
- "REF: two\n"
115
- "HYP: 2\n"
116
- " S\n"
117
- )
118
- alignment = jiwer.visualize_alignment(
119
- jiwer.process_words(
120
- ["perfect", "one", "two", "three"], ["perfect", "1", "2", "three"]
121
- ),
122
- show_measures=False,
123
- )
124
- self.assertEqual(alignment, correct_alignment)
125
-
126
-
127
- class TestAlignmentVisualizationCharacters(unittest.TestCase):
128
- def test_insertion(self):
129
- correct_alignment = (
130
- "sentence 1\n"
131
- "REF: this is a*****\n"
132
- "HYP: this is a test\n"
133
- " IIIII\n"
134
- )
135
- alignment = jiwer.visualize_alignment(
136
- jiwer.process_characters("this is a", "this is a test"), show_measures=False
137
- )
138
- self.assertEqual(alignment, correct_alignment)
139
-
140
- pass
141
-
142
- def test_deletion(self):
143
- correct_alignment = (
144
- "sentence 1\n"
145
- "REF: this is a test\n"
146
- "HYP: this is a*****\n"
147
- " DDDDD\n"
148
- )
149
- alignment = jiwer.visualize_alignment(
150
- jiwer.process_characters("this is a test", "this is a"), show_measures=False
151
- )
152
- self.assertEqual(alignment, correct_alignment)
153
-
154
- def test_substitution(self):
155
- correct_alignment = (
156
- "sentence 1\n"
157
- "REF: this is a test\n"
158
- "HYP: this iz a test\n"
159
- " S \n"
160
- )
161
- alignment = jiwer.visualize_alignment(
162
- jiwer.process_characters("this is a test", "this iz a test"),
163
- show_measures=False,
164
- )
165
- self.assertEqual(alignment, correct_alignment)
166
-
167
- def test_all_three(self):
168
- correct_alignment = (
169
- "sentence 1\n"
170
- "REF: this *is a tes*t of skill\n"
171
- "HYP: this was a messy te*st***\n"
172
- " IS S IS SSD SDDD\n"
173
- )
174
- alignment = jiwer.visualize_alignment(
175
- jiwer.process_characters(
176
- "this is a test of skill", "this was a messy test"
177
- ),
178
- show_measures=False,
179
- )
180
- self.assertEqual(alignment, correct_alignment)
181
-
182
- def test_show_measures(self):
183
- correct_alignment = (
184
- "sentence 1\n"
185
- "REF: this test will have a high word error rate\n"
186
- "HYP: no** i**t will n*************o***********t*\n"
187
- " SSDD SDD SDDDDDDDDDDDDD DDDDDDDDDDD D\n"
188
- "\n"
189
- "number of sentences: 1\n"
190
- "substitutions=4 deletions=29 insertions=0 hits=10\n"
191
- "\n"
192
- "cer=76.74%\n"
193
- )
194
- alignment = jiwer.visualize_alignment(
195
- jiwer.process_characters(
196
- "this test will have a high word error rate", "no it will not"
197
- ),
198
- show_measures=True,
199
- )
200
- self.assertEqual(alignment, correct_alignment)
201
-
202
- def test_empty_hypothesis(self):
203
- correct_alignment = "sentence 1\n" "REF: empty\n" "HYP: *****\n" " DDDDD\n"
204
- alignment = jiwer.visualize_alignment(
205
- jiwer.process_characters("empty", ""), show_measures=False
206
- )
207
- self.assertEqual(alignment, correct_alignment)
208
-
209
- def test_multiple_sentences(self):
210
- correct_alignment = (
211
- "sentence 1\n"
212
- "REF: one\n"
213
- "HYP: 1**\n"
214
- " SDD\n"
215
- "\n"
216
- "sentence 2\n"
217
- "REF: two\n"
218
- "HYP: 2**\n"
219
- " SDD\n"
220
- )
221
- alignment = jiwer.visualize_alignment(
222
- jiwer.process_characters(["one", "two"], ["1", "2"]),
223
- show_measures=False,
224
- )
225
- self.assertEqual(alignment, correct_alignment)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/tests/test_cer.py DELETED
@@ -1,135 +0,0 @@
1
- import unittest
2
- import pytest
3
-
4
- import jiwer
5
-
6
- from .test_measures import assert_dict_almost_equal
7
-
8
-
9
- class TestCERInputMethods(unittest.TestCase):
10
- def test_input_ref_string_hyp_string(self):
11
- cases = [
12
- ("This is a test", "This is a test", 0 / 14),
13
- ("This is a test", "", 14 / 14),
14
- ("This is a test", "This test", 5 / 14),
15
- ]
16
-
17
- self._apply_test_on(cases)
18
-
19
- def test_input_ref_string_hyp_list(self):
20
- cases = [
21
- ("This is a test", ["This is a test"], 0 / 14),
22
- ("This is a test", [""], 14 / 14),
23
- ("This is a test", ["This test"], 5 / 14),
24
- ]
25
-
26
- self._apply_test_on(cases)
27
-
28
- def test_input_ref_list_hyp_string(self):
29
- cases = [
30
- (["This is a test"], "This is a test", 0 / 14),
31
- (["This is a test"], "", 14 / 14),
32
- (["This is a test"], "This test", 5 / 14),
33
- ]
34
-
35
- self._apply_test_on(cases)
36
-
37
- def test_input_ref_list_hyp_list(self):
38
- cases = [
39
- (["This is a test"], ["This is a test"], 0 / 14),
40
- (["This is a test"], [""], 14 / 14),
41
- (["This is a test"], ["This test"], 5 / 14),
42
- ]
43
-
44
- self._apply_test_on(cases)
45
-
46
- def test_fail_on_different_sentence_length(self):
47
- def callback():
48
- jiwer.cer(["hello", "this", "sentence", "is fractured"], ["this sentence"])
49
-
50
- self.assertRaises(ValueError, callback)
51
-
52
- def test_fail_on_empty_reference(self):
53
- def callback():
54
- jiwer.cer("", "test")
55
-
56
- self.assertRaises(ValueError, callback)
57
-
58
- def test_known_values(self):
59
- # Taken from the "From WER and RIL to MER and WIL" paper, for link see README.md
60
- cases = [
61
- (
62
- "X",
63
- "X",
64
- 0,
65
- ),
66
- (
67
- "X",
68
- "X X Y Y",
69
- 6,
70
- ),
71
- (
72
- "X Y X",
73
- "X Z",
74
- 3 / 5,
75
- ),
76
- (
77
- "X",
78
- "Y",
79
- 1,
80
- ),
81
- (
82
- "X",
83
- "Y Z",
84
- 3,
85
- ),
86
- ]
87
-
88
- self._apply_test_on(cases)
89
-
90
- def test_permutations_invariance(self):
91
- cases = [
92
- (
93
- ["i", "am i good"],
94
- ["i am", "i good"],
95
- 0.6,
96
- ),
97
- (
98
- ["am i good", "i"],
99
- [
100
- "i good",
101
- "i am",
102
- ],
103
- 0.6,
104
- ),
105
- ]
106
-
107
- self._apply_test_on(cases)
108
-
109
- def test_return_dict(self):
110
- # TODO: remove unit test once deprecated
111
- with pytest.deprecated_call():
112
- return_dict = jiwer.cer(
113
- ["i", "am i good"], ["i am", "y good"], return_dict=True
114
- )
115
-
116
- assert_dict_almost_equal(
117
- self,
118
- return_dict,
119
- {
120
- "cer": 0.7,
121
- "hits": 6,
122
- "substitutions": 1,
123
- "deletions": 3,
124
- "insertions": 3,
125
- },
126
- delta=1e-16,
127
- )
128
-
129
- def _apply_test_on(self, cases):
130
- for ref, hyp, correct_cer in cases:
131
- cer = jiwer.cer(reference=ref, hypothesis=hyp)
132
-
133
- self.assertTrue(isinstance(cer, float))
134
- if isinstance(cer, float):
135
- self.assertAlmostEqual(cer, correct_cer, delta=1e-16)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/tests/test_measures.py DELETED
@@ -1,410 +0,0 @@
1
- import unittest
2
-
3
- import pytest
4
-
5
- import jiwer
6
-
7
-
8
- def all_m(wer, mer, wil):
9
- return {
10
- "wer": wer,
11
- "mer": mer,
12
- "wip": 1 - wil,
13
- "wil": wil,
14
- }
15
-
16
-
17
- def to_measure_dict(x: jiwer.WordOutput):
18
- return {"wer": x.wer, "mer": x.mer, "wip": x.wip, "wil": x.wil}
19
-
20
-
21
- def assert_dict_almost_equal(
22
- test_case: unittest.TestCase, a, b, places=None, msg=None, delta=None
23
- ):
24
- test_case.assertIsInstance(a, dict)
25
- test_case.assertIsInstance(b, dict)
26
- test_case.assertEqual(set(a.keys()), set(b.keys()))
27
-
28
- for k in a.keys():
29
- test_case.assertAlmostEqual(a[k], b[k], places=places, msg=msg, delta=delta)
30
-
31
-
32
- class TestMeasuresContiguousSentencesTransform(unittest.TestCase):
33
- def test_input_ref_string_hyp_string(self):
34
- cases = [
35
- ("This is a test", "This is a test", all_m(0, 0, 0)),
36
- ("This is a test", "", all_m(1, 1, 1)),
37
- ("This is a test", "This test", all_m(0.5, 0.5, 0.5)),
38
- ]
39
-
40
- self._apply_test_on(cases)
41
-
42
- def test_input_ref_string_hyp_list(self):
43
- cases = [
44
- ("This is a test", ["This is a test"], all_m(0, 0, 0)),
45
- ("This is a test", [""], all_m(1, 1, 1)),
46
- ("This is a test", ["This test"], all_m(0.5, 0.5, 0.5)),
47
- ]
48
-
49
- self._apply_test_on(cases)
50
-
51
- def test_input_ref_list_hyp_string(self):
52
- cases = [
53
- (["This is a test"], "This is a test", all_m(0, 0, 0)),
54
- (["This is a test"], "", all_m(1, 1, 1)),
55
- (["This is a test"], "This test", all_m(0.5, 0.5, 0.5)),
56
- ]
57
-
58
- self._apply_test_on(cases)
59
-
60
- def test_input_ref_list_hyp_list(self):
61
- cases = [
62
- (["This is a test"], ["This is a test"], all_m(0, 0, 0)),
63
- (["This is a test"], [""], all_m(1, 1, 1)),
64
- (["This is a test"], ["This test"], all_m(0.5, 0.5, 0.5)),
65
- ]
66
-
67
- self._apply_test_on(cases)
68
-
69
- def test_different_sentence_length_equal_type(self):
70
- cases = [
71
- (
72
- ["hello", "this", "sentence", "is fractured"],
73
- ["this sentence"],
74
- all_m(0.6, 0.6, 0.6),
75
- ),
76
- (
77
- "i am a short ground truth",
78
- "i am a considerably longer and very much incorrect hypothesis",
79
- all_m(7 / 6, 0.7, 0.85),
80
- ),
81
- ]
82
-
83
- self._apply_test_on(cases)
84
-
85
- def test_different_sentence_length_unequaL_type(self):
86
- reference = [
87
- "i like monthy python",
88
- "what do you mean african or european swallow",
89
- ]
90
- hypothesis = ["i like", "python", "what you mean", "or swallow"]
91
- x = jiwer.process_words(
92
- reference,
93
- hypothesis,
94
- reference_transform=jiwer.transformations.wer_contiguous,
95
- hypothesis_transform=jiwer.transformations.wer_contiguous,
96
- )
97
- x_dict = to_measure_dict(x)
98
-
99
- # is equivalent to
100
-
101
- reference = "i like monthy python what do you mean african or european swallow"
102
- hypothesis = "i like python what you mean or swallow"
103
- y = jiwer.process_words(
104
- reference,
105
- hypothesis,
106
- reference_transform=jiwer.transformations.wer_contiguous,
107
- hypothesis_transform=jiwer.transformations.wer_contiguous,
108
- )
109
- y_dict = to_measure_dict(y)
110
-
111
- assert_dict_almost_equal(self, x_dict, y_dict, delta=1e-9)
112
-
113
- def test_fail_on_empty_reference(self):
114
- for method in [
115
- jiwer.wer,
116
- jiwer.wil,
117
- jiwer.wip,
118
- jiwer.mer,
119
- jiwer.compute_measures,
120
- ]:
121
-
122
- def callback():
123
- method("", "test")
124
-
125
- self.assertRaises(ValueError, callback)
126
-
127
- def test_known_values(self):
128
- # Taken from the "From WER and RIL to MER and WIL" paper, for link see README.md
129
- cases = [
130
- (
131
- "X",
132
- "X",
133
- all_m(0, 0, 0),
134
- ),
135
- (
136
- "X",
137
- "X X Y Y",
138
- all_m(3, 0.75, 0.75),
139
- ),
140
- (
141
- "X Y X",
142
- "X Z",
143
- all_m(2 / 3, 2 / 3, 5 / 6),
144
- ),
145
- (
146
- "X",
147
- "Y",
148
- all_m(1, 1, 1),
149
- ),
150
- (
151
- "X",
152
- "Y Z",
153
- all_m(2, 1, 1),
154
- ),
155
- ]
156
-
157
- self._apply_test_on(cases)
158
-
159
- def test_permutations_variance(self):
160
- cases = [
161
- (
162
- ["i", "am i good"],
163
- ["i am", "i good"],
164
- all_m(0.0, 0.0, 0),
165
- ),
166
- (
167
- ["am i good", "i"],
168
- [
169
- "i good",
170
- "i am",
171
- ],
172
- all_m(0.5, 0.4, 7 / 16),
173
- ),
174
- ]
175
-
176
- self._apply_test_on(cases)
177
-
178
- def _apply_test_on(self, cases):
179
- for ref, hyp, correct_measures in cases:
180
- output = jiwer.process_words(
181
- reference=ref,
182
- hypothesis=hyp,
183
- reference_transform=jiwer.transformations.wer_contiguous,
184
- hypothesis_transform=jiwer.transformations.wer_contiguous,
185
- )
186
- output_dict = to_measure_dict(output)
187
-
188
- assert_dict_almost_equal(self, output_dict, correct_measures, delta=1e-16)
189
-
190
-
191
- class TestMeasuresDefaultTransform(unittest.TestCase):
192
- def test_input_gt_string_h_string(self):
193
- cases = [
194
- ("This is a test", "This is a test", all_m(0, 0, 0)),
195
- ("This is a test", "", all_m(1, 1, 1)),
196
- ("This is a test", "This test", all_m(0.5, 0.5, 0.5)),
197
- ]
198
-
199
- self._apply_test_on(cases)
200
-
201
- def test_input_gt_string_h_list(self):
202
- cases = [
203
- ("This is a test", ["This is a test"], all_m(0, 0, 0)),
204
- ("This is a test", [""], all_m(1, 1, 1)),
205
- ("This is a test", ["This test"], all_m(0.5, 0.5, 0.5)),
206
- ]
207
-
208
- self._apply_test_on(cases)
209
-
210
- def test_input_gt_list_h_string(self):
211
- cases = [
212
- (["This is a test"], "This is a test", all_m(0, 0, 0)),
213
- (["This is a test"], "", all_m(1, 1, 1)),
214
- (["This is a test"], "This test", all_m(0.5, 0.5, 0.5)),
215
- ]
216
-
217
- self._apply_test_on(cases)
218
-
219
- def test_input_gt_list_h_list(self):
220
- cases = [
221
- (["This is a test"], ["This is a test"], all_m(0, 0, 0)),
222
- (["This is a test"], [""], all_m(1, 1, 1)),
223
- (["This is a test"], ["This test"], all_m(0.5, 0.5, 0.5)),
224
- ]
225
-
226
- self._apply_test_on(cases)
227
-
228
- def test_fail_on_different_sentence_length(self):
229
- for method in [
230
- jiwer.process_words,
231
- jiwer.wer,
232
- jiwer.wil,
233
- jiwer.wip,
234
- jiwer.mer,
235
- jiwer.compute_measures,
236
- ]:
237
-
238
- def callback():
239
- method(["hello", "this", "sentence", "is fractured"], ["this sentence"])
240
-
241
- self.assertRaises(ValueError, callback)
242
-
243
- def test_fail_on_empty_reference(self):
244
- for method in [
245
- jiwer.process_words,
246
- jiwer.wer,
247
- jiwer.wil,
248
- jiwer.wip,
249
- jiwer.mer,
250
- jiwer.compute_measures,
251
- ]:
252
-
253
- def callback():
254
- method("", "test")
255
-
256
- self.assertRaises(ValueError, callback)
257
-
258
- def test_known_values(self):
259
- # Taken from the "From WER and RIL to MER and WIL" paper, for link see README.md
260
- cases = [
261
- (
262
- "X",
263
- "X",
264
- all_m(0, 0, 0),
265
- ),
266
- (
267
- "X",
268
- "X X Y Y",
269
- all_m(3, 0.75, 0.75),
270
- ),
271
- (
272
- "X Y X",
273
- "X Z",
274
- all_m(2 / 3, 2 / 3, 5 / 6),
275
- ),
276
- (
277
- "X",
278
- "Y",
279
- all_m(1, 1, 1),
280
- ),
281
- (
282
- "X",
283
- "Y Z",
284
- all_m(2, 1, 1),
285
- ),
286
- ]
287
-
288
- self._apply_test_on(cases)
289
-
290
- def test_permutations_invariance(self):
291
- cases = [
292
- (
293
- ["i", "am i good"],
294
- ["i am", "i good"],
295
- all_m(0.5, 0.4, 7 / 16),
296
- ),
297
- (
298
- ["am i good", "i"],
299
- [
300
- "i good",
301
- "i am",
302
- ],
303
- all_m(0.5, 0.4, 7 / 16),
304
- ),
305
- ]
306
-
307
- self._apply_test_on(cases)
308
-
309
- def _apply_test_on(self, cases):
310
- for ref, hyp, correct_measures in cases:
311
- output = jiwer.process_words(reference=ref, hypothesis=hyp)
312
- output_dict = to_measure_dict(output)
313
-
314
- assert_dict_almost_equal(self, output_dict, correct_measures, delta=1e-16)
315
-
316
- with pytest.deprecated_call():
317
- output = jiwer.compute_measures(truth=ref, hypothesis=hyp)
318
- output_dict = {
319
- "wer": output["wer"],
320
- "mer": output["mer"],
321
- "wil": output["wil"],
322
- "wip": output["wip"],
323
- }
324
- assert_dict_almost_equal(
325
- self, output_dict, correct_measures, delta=1e-16
326
- )
327
-
328
- self._apply_test_deprecated_truth(cases)
329
-
330
- def _apply_test_deprecated_truth(self, cases):
331
- with pytest.deprecated_call():
332
- for ref, hyp, correct_measures in cases:
333
- output_dict = {}
334
- for key, method in [
335
- ("wer", jiwer.wer),
336
- ("mer", jiwer.mer),
337
- ("wil", jiwer.wil),
338
- ("wip", jiwer.wip),
339
- ]:
340
- output = method(truth=ref, hypothesis=hyp)
341
- output_dict[key] = output
342
-
343
- assert_dict_almost_equal(
344
- self, output_dict, correct_measures, delta=1e-16
345
- )
346
-
347
- def test_deprecated_truth_and_ref(self):
348
- for key, method in [
349
- ("wer", jiwer.wer),
350
- ("mer", jiwer.mer),
351
- ("wil", jiwer.wil),
352
- ("wip", jiwer.wip),
353
- ("cer", jiwer.cer),
354
- ]:
355
- with pytest.raises(ValueError):
356
- method(truth="ref", reference="truth", hypothesis="huh")
357
- method()
358
- method(truth="only truth")
359
- method(reference="only ref")
360
- method(hypothesis="only hypothesis")
361
-
362
- def test_deprecated_truth_and_ref_with_transform(self):
363
- wer_transform = jiwer.Compose(
364
- [
365
- jiwer.ToLowerCase(),
366
- jiwer.RemoveMultipleSpaces(),
367
- jiwer.Strip(),
368
- jiwer.ReduceToListOfListOfWords(),
369
- ]
370
- )
371
- cer_transform = jiwer.Compose(
372
- [
373
- jiwer.ToLowerCase(),
374
- jiwer.RemoveMultipleSpaces(),
375
- jiwer.Strip(),
376
- jiwer.ReduceToListOfListOfChars(),
377
- ]
378
- )
379
-
380
- for key, method in [
381
- ("wer", jiwer.wer),
382
- ("mer", jiwer.mer),
383
- ("wil", jiwer.wil),
384
- ("wip", jiwer.wip),
385
- ("cer", jiwer.cer),
386
- ]:
387
- if key == "cer":
388
- tr = cer_transform
389
- else:
390
- tr = wer_transform
391
-
392
- result = method(
393
- truth="This is a short Sentence with a few Words with upper and Lower cases",
394
- hypothesis="His is a short Sentence with a few Words with upper and Lower cases",
395
- truth_transform=tr,
396
- hypothesis_transform=tr,
397
- )
398
- result_same = method(
399
- reference="This is a short Sentence with a few Words with upper and Lower cases",
400
- hypothesis="His is a short Sentence with a few Words with upper and Lower cases",
401
- reference_transform=tr,
402
- hypothesis_transform=tr,
403
- )
404
- self.assertAlmostEqual(result, result_same)
405
-
406
-
407
- def test_deprecate_compute_measures():
408
- # TODO: remove once deprecated
409
- with pytest.deprecated_call():
410
- jiwer.compute_measures("no more", "compute_measures")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/tests/test_speed.py DELETED
@@ -1,24 +0,0 @@
1
- from jiwer import wer
2
-
3
-
4
- def perform_computation(num_sentences):
5
- truth = ["this is a speed test" for _ in range(0, num_sentences)]
6
- hypo = ["this is not a speed test" for _ in range(0, num_sentences)]
7
-
8
- wer(truth, hypo)
9
-
10
-
11
- def test_speed_n1(benchmark):
12
- benchmark(perform_computation, 1)
13
-
14
-
15
- def test_speed_n10(benchmark):
16
- benchmark(perform_computation, 10)
17
-
18
-
19
- def test_speed_n100(benchmark):
20
- benchmark(perform_computation, 100)
21
-
22
-
23
- def test_speed_n1000(benchmark):
24
- benchmark(perform_computation, 1000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
jiwer/tests/test_transforms.py DELETED
@@ -1,337 +0,0 @@
1
- import unittest
2
-
3
- from jiwer.transforms import *
4
- from jiwer.transforms import ReduceToListOfListOfChars
5
-
6
-
7
- def _apply_test_on(self: unittest.TestCase, tr, cases):
8
- for inp, outp in cases:
9
- self.assertEqual(outp, tr(inp))
10
-
11
-
12
- class TestReduceToSingleSentence(unittest.TestCase):
13
- def test_normal(self):
14
- cases = [
15
- ("this is a test", "this is a test"),
16
- ("", ""),
17
- (["this is one", "is two"], ["this is one is two"]),
18
- (["one", "two", "three", "", "five six"], ["one two three five six"]),
19
- ([""], []),
20
- ]
21
-
22
- _apply_test_on(self, ReduceToSingleSentence(), cases)
23
-
24
- def test_delimiter(self):
25
- cases = [
26
- ("this_is_a_test", "this_is_a_test"),
27
- ("", ""),
28
- (["this_is_one", "is_two"], ["this_is_one_is_two"]),
29
- (["one", "two", "three", "", "five_six"], ["one_two_three_five_six"]),
30
- ([""], []),
31
- ]
32
-
33
- _apply_test_on(self, ReduceToSingleSentence("_"), cases)
34
-
35
-
36
- class TestReduceToListOfListOfWords(unittest.TestCase):
37
- def test_normal(self):
38
- cases = [
39
- ("this is a test", [["this", "is", "a", "test"]]),
40
- ("", [[]]),
41
- (["this is one", "is two"], [["this", "is", "one"], ["is", "two"]]),
42
- (
43
- ["one", "two", "three", "", "five six"],
44
- [["one"], ["two"], ["three"], [], ["five", "six"]],
45
- ),
46
- ([], [[]]),
47
- ([""], [[]]),
48
- (["", "", ""], [[], [], []]),
49
- ]
50
-
51
- _apply_test_on(self, ReduceToListOfListOfWords(), cases)
52
-
53
- def test_delimiter(self):
54
- cases = [
55
- ("this_is_a_test", [["this", "is", "a", "test"]]),
56
- ("", [[]]),
57
- (["this_is_one", "is_two"], [["this", "is", "one"], ["is", "two"]]),
58
- (
59
- ["one", "two", "three", "", "five_six"],
60
- [["one"], ["two"], ["three"], [], ["five", "six"]],
61
- ),
62
- ([], [[]]),
63
- ([""], [[]]),
64
- (["", "", ""], [[], [], []]),
65
- ]
66
-
67
- _apply_test_on(self, ReduceToListOfListOfWords("_"), cases)
68
-
69
-
70
- class TestReduceToListOfListOfChars(unittest.TestCase):
71
- def test_normal(self):
72
- cases = [
73
- (
74
- "this is a test",
75
- [
76
- [
77
- "t",
78
- "h",
79
- "i",
80
- "s",
81
- " ",
82
- "i",
83
- "s",
84
- " ",
85
- "a",
86
- " ",
87
- "t",
88
- "e",
89
- "s",
90
- "t",
91
- ]
92
- ],
93
- ),
94
- ("", [[]]),
95
- (
96
- ["this is one", "is two"],
97
- [
98
- ["t", "h", "i", "s", " ", "i", "s", " ", "o", "n", "e"],
99
- ["i", "s", " ", "t", "w", "o"],
100
- ],
101
- ),
102
- (
103
- ["one", "two", "three", "", "five six"],
104
- [
105
- ["o", "n", "e"],
106
- ["t", "w", "o"],
107
- ["t", "h", "r", "e", "e"],
108
- [],
109
- ["f", "i", "v", "e", " ", "s", "i", "x"],
110
- ],
111
- ),
112
- ([], [[]]),
113
- ([""], [[]]),
114
- (["", "", ""], [[], [], []]),
115
- ]
116
-
117
- _apply_test_on(self, ReduceToListOfListOfChars(), cases)
118
-
119
- def test_delimiter(self):
120
- cases = [
121
- (
122
- "this_is_a_test",
123
- [
124
- [
125
- "t",
126
- "h",
127
- "i",
128
- "s",
129
- "_",
130
- "i",
131
- "s",
132
- "_",
133
- "a",
134
- "_",
135
- "t",
136
- "e",
137
- "s",
138
- "t",
139
- ]
140
- ],
141
- ),
142
- ("", [[]]),
143
- (
144
- ["this_is_one", "is_two"],
145
- [
146
- ["t", "h", "i", "s", "_", "i", "s", "_", "o", "n", "e"],
147
- ["i", "s", "_", "t", "w", "o"],
148
- ],
149
- ),
150
- (
151
- ["one", "two", "three", "", "five_six"],
152
- [
153
- ["o", "n", "e"],
154
- ["t", "w", "o"],
155
- ["t", "h", "r", "e", "e"],
156
- [],
157
- ["f", "i", "v", "e", "_", "s", "i", "x"],
158
- ],
159
- ),
160
- ([], [[]]),
161
- ([""], [[]]),
162
- (["", "", ""], [[], [], []]),
163
- ]
164
-
165
- _apply_test_on(self, ReduceToListOfListOfChars(), cases)
166
-
167
-
168
- class TestRemoveSpecificWords(unittest.TestCase):
169
- def test_normal(self):
170
- cases = [
171
- (["yhe about that bug"], [" about that bug"]),
172
- (["yeah about that bug"], [" about that bug"]),
173
- (["one bug"], ["one bug"]),
174
- (["yhe", "about", "bug"], [" ", "about", "bug"]),
175
- (["yeah", "about", "bug"], [" ", "about", "bug"]),
176
- (["one", "bug"], ["one", "bug"]),
177
- (["yhe about bug"], [" about bug"]),
178
- (["yeah about bug"], [" about bug"]),
179
- (["about bug yhe"], ["about bug "]),
180
- (["one bug"], ["one bug"]),
181
- (["he asked a helpful question"], [" asked helpful question"]),
182
- (["normal sentence"], ["normal sentence"]),
183
- (["yhe awesome", " awesome"]),
184
- (["the apple is not a pear", " apple is not pear"]),
185
- (["yhe", " "]),
186
- ]
187
-
188
- _apply_test_on(
189
- self, RemoveSpecificWords(["yhe", "yeah", "a", "he", "the"]), cases
190
- )
191
-
192
-
193
- class TestRemoveWhiteSpace(unittest.TestCase):
194
- def test_normal(self):
195
- cases = [
196
- (["this is an example", "thisisanexample"]),
197
- (["hello\tworld\n\r", "helloworld"]),
198
- ]
199
-
200
- _apply_test_on(self, RemoveWhiteSpace(), cases)
201
-
202
- def test_replace_by_space(self):
203
- cases = [
204
- (["this is an example", "this is an example"]),
205
- (["hello\tworld\n\r", "hello world "]),
206
- ]
207
-
208
- _apply_test_on(self, RemoveWhiteSpace(replace_by_space=True), cases)
209
-
210
-
211
- class TestRemovePunctuation(unittest.TestCase):
212
- def test_normal(self):
213
- cases = [
214
- (["this is an example!", "this is an example"]),
215
- (["hello. goodbye", "hello goodbye"]),
216
- (["this sentence has no punctuation", "this sentence has no punctuation"]),
217
- ]
218
-
219
- _apply_test_on(self, RemovePunctuation(), cases)
220
-
221
- def test_non_ascii_punctuation(self):
222
- cases = [
223
- (["word༆’'", "word"]),
224
- (["‘no’", "no"]),
225
- (["“yes”", "yes"]),
226
- ]
227
-
228
- _apply_test_on(self, RemovePunctuation(), cases)
229
-
230
-
231
- class TestRemoveMultipleSpaces(unittest.TestCase):
232
- def test_normal(self):
233
- cases = [
234
- (["this is an example "], ["this is an example "]),
235
- ([" hello goodbye "], [" hello goodbye "]),
236
- ([" "], [" "]),
237
- ]
238
-
239
- _apply_test_on(self, RemoveMultipleSpaces(), cases)
240
-
241
- pass
242
-
243
-
244
- class TestSubstituteWords(unittest.TestCase):
245
- def test_normal(self):
246
- cases = [
247
- (["you're pretty"], ["i am awesome"]),
248
- (["your book"], ["your book"]),
249
- (["foobar"], ["foobar"]),
250
- ]
251
-
252
- _apply_test_on(
253
- self,
254
- SubstituteWords(
255
- {"pretty": "awesome", "you": "i", "'re": " am", "foo": "bar"}
256
- ),
257
- cases,
258
- )
259
-
260
-
261
- class TestSubstituteRegexes(unittest.TestCase):
262
- def test_normal(self):
263
- cases = [
264
- (["is the world doomed or loved?"], ["is the world sacr or lov?"]),
265
- (["the sun is loved"], ["the sun is lov"]),
266
- (["edibles are allegedly cultivated"], ["edibles are allegedly cultivat"]),
267
- ]
268
-
269
- _apply_test_on(
270
- self,
271
- SubstituteRegexes({r"doom": r"sacr", r"\b(\w+)ed\b": r"\1"}),
272
- cases,
273
- )
274
-
275
-
276
- class TestStrip(unittest.TestCase):
277
- def test_normal(self):
278
- cases = [
279
- ([" this is an example "], ["this is an example"]),
280
- ([" hello goodbye "], ["hello goodbye"]),
281
- ([" "], [""]),
282
- ([" "], [""]),
283
- ]
284
-
285
- _apply_test_on(self, Strip(), cases)
286
-
287
-
288
- class TestRemoveEmptyStrings(unittest.TestCase):
289
- def test_normal(self):
290
- cases = [
291
- ([""], []),
292
- (["this is an example"], ["this is an example"]),
293
- ([" "], []),
294
- ([" "], []),
295
- ]
296
-
297
- _apply_test_on(self, RemoveEmptyStrings(), cases)
298
-
299
-
300
- class TestExpandCommonEnglishContractions(unittest.TestCase):
301
- def test_normal(self):
302
- cases = [
303
- (
304
- ["she'll make sure you can't make it"],
305
- ["she will make sure you can not make it"],
306
- ),
307
- (["let's party!"], ["let us party!"]),
308
- ]
309
-
310
- _apply_test_on(self, ExpandCommonEnglishContractions(), cases)
311
-
312
-
313
- class TestToLowerCase(unittest.TestCase):
314
- def test_normal(self):
315
- cases = [
316
- (["You're PRETTY"], ["you're pretty"]),
317
- ]
318
-
319
- _apply_test_on(self, ToLowerCase(), cases)
320
-
321
-
322
- class TestToUpperCase(unittest.TestCase):
323
- def test_normal(self):
324
- cases = [
325
- (["You're amazing"], ["YOU'RE AMAZING"]),
326
- ]
327
-
328
- _apply_test_on(self, ToUpperCase(), cases)
329
-
330
-
331
- class TestRemoveKaldiNonWords(unittest.TestCase):
332
- def test_normal(self):
333
- cases = [
334
- (["you <unk> like [laugh]"], ["you like "]),
335
- ]
336
-
337
- _apply_test_on(self, RemoveKaldiNonWords(), cases)