Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
Libraries:
Datasets
Dask
License:
WikiCAT_en / README.md
crodri's picture
Update README.md
3659a68
|
raw
history blame
3.74 kB
metadata
YAML tags: null
annotations_creators:
  - auromatically-generated
language_creators:
  - found
language:
  - en
license:
  - cc-by-sa-3.0
multilinguality:
  - monolingual
pretty_name: wikicat_en
size_categories:
  - unknown
source_datasets: []
task_categories:
  - text-classification
task_ids:
  - multi-class-classification

WikiCAT_es (Text Classification) English dataset

Dataset Description

Dataset Summary

WikiCAT_en is a English corpus for thematic Text Classification tasks. It is created automagically from Wikipedia and Wikidata sources, and contains 28921 article summaries from the Wikiipedia classified under 19 different categories.

This dataset was developed by BSC TeMU as part of the AINA project, and intended as an evaluation of LT capabilities to generate useful synthetic corpus.

Supported Tasks and Leaderboards

Text classification, Language Model

Languages

EN - English

Dataset Structure

Data Instances

Three json files, one for each split.

Data Fields

We used a simple model with the article text and associated labels, without further metadata.

Example:

{"version": "1.1.0",
 "data":
   [
    {
     {'sentence': 'The IEEE Donald G. Fink Prize Paper Award was established in 1979 by the board of directors of the Institute of Electrical and Electronics Engineers (IEEE) in honor of Donald G. Fink. He was a past president of the Institute of Radio Engineers (IRE), and the first general manager and executive director of the IEEE. Recipients of this award received a certificate and an honorarium. The award was presented annually since 1981 and discontinued in 2016.', 'label': 'Engineering'
     },
    .
    .
    .
  ]
}


Labels

'Health', 'Law', 'Entertainment', 'Religion', 'Business', 'Science', 'Engineering', 'Nature', 'Philosophy', 'Economy', 'Sports', 'Technology', 'Government', 'Mathematics', 'Military', 'Humanities', 'Music', 'Politics', 'History'

Data Splits

  • hftrain_es.json: 3970 label-document pairs
  • hfeval_es.json: 7909 label-document pairs

Dataset Creation

Methodology

Se eligen páginas de partida “Category:” para representar los temas en cada lengua.

Se extrae para cada categoría las páginas principales, así como las subcategorías, y las páginas individuales bajo estas subcategorías de primer nivel. Para cada página, se extrae también el “summary” que proporciona Wikipedia.

Curation Rationale

Source Data

Initial Data Collection and Normalization

The source data are Wikipedia page summaries and thematic categories

Who are the source language producers?

Annotations

Annotation process

Who are the annotators?

Automatic annotation

Personal and Sensitive Information

No personal or sensitive information included.

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

Carlos Rodríguez from BSC-CNS

Licensing Information

This work is licensed under a Attribution-ShareAlike 4.0 International.

Citation Information




Funding

This work was funded by the Catalan Ministry of the Vice-presidency, Digital Policies and Territory within the framework of the Aina project.