Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
English
Size:
< 1K
License:
Upload wikicat_en.py
Browse files- wikicat_en.py +88 -0
wikicat_en.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Loading script for the WikiCAT dataset.
|
2 |
+
import json
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
|
7 |
+
_CITATION = """
|
8 |
+
|
9 |
+
"""
|
10 |
+
|
11 |
+
_DESCRIPTION = """
|
12 |
+
WikiCAT: Text Classification English dataset from the Viquipedia
|
13 |
+
|
14 |
+
"""
|
15 |
+
|
16 |
+
_HOMEPAGE = """ """
|
17 |
+
|
18 |
+
# TODO: upload datasets to github
|
19 |
+
_URL = "https://huggingface.co/datasets/crodri/wikicat_en/resolve/main/"
|
20 |
+
_TRAINING_FILE = "hftrain_en.json"
|
21 |
+
_DEV_FILE = "hfeval_en.json"
|
22 |
+
#_TEST_FILE = "test.json"
|
23 |
+
|
24 |
+
|
25 |
+
class wikicat_enConfig(datasets.BuilderConfig):
|
26 |
+
""" Builder config for the Topicat dataset """
|
27 |
+
|
28 |
+
def __init__(self, **kwargs):
|
29 |
+
"""BuilderConfig for wikicat_en.
|
30 |
+
Args:
|
31 |
+
**kwargs: keyword arguments forwarded to super.
|
32 |
+
"""
|
33 |
+
super(teclaConfig, self).__init__(**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class wikicat_en(datasets.GeneratorBasedBuilder):
|
37 |
+
""" wikicat_en Dataset """
|
38 |
+
|
39 |
+
BUILDER_CONFIGS = [
|
40 |
+
wikicat_enConfig(
|
41 |
+
name="wikicat_en",
|
42 |
+
version=datasets.Version("1.1.0"),
|
43 |
+
description="wikicat_en",
|
44 |
+
),
|
45 |
+
]
|
46 |
+
|
47 |
+
def _info(self):
|
48 |
+
return datasets.DatasetInfo(
|
49 |
+
description=_DESCRIPTION,
|
50 |
+
features=datasets.Features(
|
51 |
+
{
|
52 |
+
"text": datasets.Value("string"),
|
53 |
+
"label": datasets.features.ClassLabel
|
54 |
+
(names= ['Health', 'Law', 'Entertainment', 'Religion', 'Business', 'Science', 'Engineering', 'Nature', 'Philosophy', 'Economy', 'Sports', 'Technology', 'Government', 'Mathematics', 'Military', 'Humanities', 'Music', 'Politics', 'History']
|
55 |
+
),
|
56 |
+
}
|
57 |
+
),
|
58 |
+
homepage=_HOMEPAGE,
|
59 |
+
citation=_CITATION,
|
60 |
+
)
|
61 |
+
|
62 |
+
def _split_generators(self, dl_manager):
|
63 |
+
"""Returns SplitGenerators."""
|
64 |
+
urls_to_download = {
|
65 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
66 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
67 |
+
# "test": f"{_URL}{_TEST_FILE}",
|
68 |
+
}
|
69 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
70 |
+
|
71 |
+
return [
|
72 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
73 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
74 |
+
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
75 |
+
]
|
76 |
+
|
77 |
+
def _generate_examples(self, filepath):
|
78 |
+
"""This function returns the examples in the raw (text) form."""
|
79 |
+
logger.info("generating examples from = %s", filepath)
|
80 |
+
with open(filepath, encoding="utf-8") as f:
|
81 |
+
wikicat_en = json.load(f)
|
82 |
+
for id_, article in enumerate(wikicat_en["data"]):
|
83 |
+
text = article["sentence"]
|
84 |
+
label = article["label"]
|
85 |
+
yield id_, {
|
86 |
+
"text": text,
|
87 |
+
"label": label,
|
88 |
+
}
|