# --------------------------------------------- # Evaluation code for E.T. Bench # Copyright (c) 2024 Ye Liu # Licensed under CC BY-NC-SA 4.0 license # --------------------------------------------- import argparse import copy import random import re import string import nncore import numpy as np import torch from nncore.ops import temporal_iou from tabulate import tabulate import sentence_transformers from pycocoevalcap.bleu.bleu import Bleu from pycocoevalcap.cider.cider import Cider from pycocoevalcap.meteor.meteor import Meteor from pycocoevalcap.rouge.rouge import Rouge from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer from sentence_transformers.util import dot_score class SentenceTransformerSimilarity(object): def __init__(self): self.model = sentence_transformers.SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def compute_sim(self, a, b): a_emb = self.model.encode([a]) b_emb = self.model.encode([b]) score = dot_score(a_emb, b_emb)[0, 0].cpu() return float(score) def compute_score(self, a, b): assert len(a) == len(b) keys = list(a.keys()) aa, bb = [], [] for key in keys: assert len(a[key]) == len(b[key]) == 1 aa.append(a[key][0]) bb.append(b[key][0]) a_emb = self.model.encode(aa) b_emb = self.model.encode(bb) score = dot_score(a_emb, b_emb).cpu() assert score.shape[0] == score.shape[1] score = [score[i, i].item() for i in range(score.shape[0])] score = sum(score) / len(score) return float(score), None def random_string(string_length): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(string_length)) def remove_nonascii(text): return ''.join([i if ord(i) < 128 else ' ' for i in text]) class DVCEval(object): def __init__(self, ground_truth, prediction, tious=None, max_proposals=1000, sentsim=None): self.tious = tious self.max_proposals = max_proposals self.ground_truths = [ground_truth] self.prediction = self.import_prediction(prediction) self.ground_truths_keys = list(ground_truth.keys()) self.tokenizer = PTBTokenizer(verbose=False) self.scorers = [(Bleu(4), ['Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4']), (Meteor(), 'METEOR'), (Rouge(), 'ROUGE_L'), (Cider(), 'CIDEr'), (sentsim, 'SentSim')] def import_prediction(self, prediction): results = dict() for vid_id in prediction['results']: results[vid_id] = prediction['results'][vid_id][:self.max_proposals] return results def iou(self, interval_1, interval_2): start_i, end_i = interval_1[0], interval_1[1] start, end = interval_2[0], interval_2[1] intersection = max(0, min(end, end_i) - max(start, start_i)) union = min(max(end, end_i) - min(start, start_i), end - start + end_i - start_i) iou = float(intersection) / (union + 1e-8) return iou def get_gt_vid_ids(self): vid_ids = set([]) for gt in self.ground_truths: vid_ids |= set(gt.keys()) return list(vid_ids) def evaluate(self): self.scores = dict() for tiou in self.tious: scores = self.evaluate_tiou(tiou) for metric, score in scores.items(): if metric not in self.scores: self.scores[metric] = [] self.scores[metric].append(score) self.scores['Recall'] = [] self.scores['Precision'] = [] for tiou in self.tious: precision, recall = self.evaluate_detection(tiou) self.scores['Recall'].append(recall) self.scores['Precision'].append(precision) def evaluate_detection(self, tiou): gt_vid_ids = self.get_gt_vid_ids() recall = [0] * len(gt_vid_ids) precision = [0] * len(gt_vid_ids) for vid_i, vid_id in enumerate(gt_vid_ids): best_recall = 0 best_precision = 0 for gt in self.ground_truths: if vid_id not in gt: continue refs = gt[vid_id] ref_set_covered = set([]) pred_set_covered = set([]) if vid_id in self.prediction: for pred_i, pred in enumerate(self.prediction[vid_id]): pred_timestamp = pred['timestamp'] for ref_i, ref_timestamp in enumerate(refs['timestamps']): if self.iou(pred_timestamp, ref_timestamp) > tiou: ref_set_covered.add(ref_i) pred_set_covered.add(pred_i) new_precision = float(len(pred_set_covered)) / (pred_i + 1) best_precision = max(best_precision, new_precision) new_recall = float(len(ref_set_covered)) / len(refs['timestamps']) best_recall = max(best_recall, new_recall) recall[vid_i] = best_recall precision[vid_i] = best_precision return sum(precision) / len(precision), sum(recall) / len(recall) def evaluate_tiou(self, tiou): vid2capid, res, gts, cur_res, cur_gts = dict(), dict(), dict(), dict(), dict() unique_index = 0 gt_vid_ids = self.get_gt_vid_ids() for vid_id in gt_vid_ids: vid2capid[vid_id] = [] if vid_id not in self.prediction: pass else: for pred in self.prediction[vid_id]: has_added = False for gt in self.ground_truths: if vid_id not in gt: continue gt_captions = gt[vid_id] for caption_idx, caption_timestamp in enumerate(gt_captions['timestamps']): if self.iou(pred['timestamp'], caption_timestamp) >= tiou: cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}] cur_gts[unique_index] = [{ 'caption': remove_nonascii(gt_captions['sentences'][caption_idx]) }] vid2capid[vid_id].append(unique_index) unique_index += 1 has_added = True if not has_added: cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}] cur_gts[unique_index] = [{'caption': random_string(random.randint(10, 20))}] vid2capid[vid_id].append(unique_index) unique_index += 1 output = dict() for scorer, method in self.scorers: all_scores = dict() tokenize_res = self.tokenizer.tokenize(cur_res) tokenize_gts = self.tokenizer.tokenize(cur_gts) for vid in vid2capid.keys(): res[vid] = {index: tokenize_res[index] for index in vid2capid[vid]} gts[vid] = {index: tokenize_gts[index] for index in vid2capid[vid]} for vid_id in gt_vid_ids: if len(res[vid_id]) == 0 or len(gts[vid_id]) == 0: if isinstance(method, list): score = [0] * len(method) else: score = 0 else: if isinstance(method, list): score, scores = scorer.compute_score(gts[vid_id], res[vid_id], verbose=0) else: score, scores = scorer.compute_score(gts[vid_id], res[vid_id]) all_scores[vid_id] = score if isinstance(method, list): scores = np.mean(list(all_scores.values()), axis=0) for m in range(len(method)): output[method[m]] = scores[m] else: output[method] = np.mean(list(all_scores.values())) return output def extract_time_part(time_part): radius = 20 extracted_time_part = re.compile(r"\d+\.*\d*\s*-\s*\d+\.*\d*").findall(time_part) if len(extracted_time_part) == 0: if time_part.count(':') == 1: extracted_time = re.compile(r"\d+\.*\d*:\d+\.*\d*").findall(time_part)[0] extracted_time = int(extracted_time.split(':')[0]) * 60 + int(extracted_time.split(':')[1]) if extracted_time > radius: extracted_time_part = [f'{extracted_time - radius} - {extracted_time + radius}'] else: extracted_time_part = [f'{extracted_time} - {extracted_time + 2*radius}'] elif time_part.count(':') == 2: start, end = re.compile(r"\d+\.*\d*:\d+\.*\d*").findall(time_part) start_seconds = int(start.split(':')[0]) * 60 + int(start.split(':')[1]) end_seconds = int(end.split(':')[0]) * 60 + int(end.split(':')[1]) extracted_time_part = [f'{start_seconds} - {end_seconds}'] if len(extracted_time_part) == 0: extracted_time_part = re.compile(r"\d+\.*\d*(?!\.)").findall(time_part) if len(extracted_time_part) == 1: extracted_time = float(extracted_time_part[0]) if extracted_time > radius: extracted_time_part = [f'{extracted_time - radius} - {extracted_time + radius}'] else: extracted_time_part = [f'{extracted_time} - {extracted_time + 2 * radius}'] elif len(extracted_time_part) == 2: extracted_time_part = [f'{extracted_time_part[0]} - {extracted_time_part[1]}'] return extracted_time_part def extract_time_from_paragraph(paragraph): paragraph = paragraph.lower() patterns = [(r"(\d+\.*\d*)\s*-\s*(\d+\.*\d*)", r"(\d+\.*\d*\s*-\s*\d+\.*\d*)")] timestamps, captions = [], [] for time_pattern, string_pattern in patterns: time_matches = re.findall(time_pattern, paragraph) string_matches = re.findall(string_pattern, paragraph) if time_matches: timestamps = [[float(start), float(end)] for start, end in time_matches] rest_para = paragraph for time_string in string_matches: rest_para = rest_para.replace(time_string, '\n') captions = rest_para.replace('seconds', '').split('\n') if len(timestamps) > 0: break if len(timestamps) == 0: start_time_pattern = r"(?:start(?:ing)? time: (\d+\.*\d*)(?:s| seconds)?)" end_time_pattern = r"(?:end(?:ing)? time: (\d+\.*\d*)(?:s| seconds)?)" end_matches = re.findall(end_time_pattern, paragraph, re.DOTALL | re.IGNORECASE) start_matches = re.findall(start_time_pattern, paragraph, re.DOTALL | re.IGNORECASE) if start_matches and end_matches: timestamps = [[float(start), float(end)] for start, end in zip(start_matches, end_matches)] captions = re.findall(r"description: (.*)", paragraph) if len(captions) == 0: captions = re.findall(r"\*\s*(.*)", paragraph) if len(timestamps) == 0: start_end_matches = re.findall(r"start time (\d+\.*\d*), end time (\d+\.*\d*)", paragraph) if start_end_matches: timestamps = list(start_end_matches) for (start, end) in start_end_matches: paragraph = paragraph.replace(f'start time {start}, end time {end}', '\n') captions = paragraph.split('\n') assert len(timestamps) <= 0 captions = [c.strip().strip(', ').rstrip() for c in captions if len(c) > 5] min_len = min(len(timestamps), len(captions)) timestamps = timestamps[:min_len] captions = captions[:min_len] assert len(timestamps) == len(captions) return timestamps, captions def dvc_format(caption): timestamps = [] sents = [] paras = caption try: timestamps, sents = extract_time_from_paragraph(paras) except Exception: return None, None if len(timestamps) == 0: if '\n' in caption: caps = caption.split('\n') caps = [c for c in caps if len(c) > 7] else: raw_caps = caption.split('.') caps = [c for c in raw_caps if len(c) > 7] caps = [c + '.' for c in caps] for cap in caps: try: if len(timestamps) == 0: parts = cap.split('seconds') parts = [p.strip(',') for p in parts] time_part = parts[0] extracted_time_part = extract_time_part(time_part) if len(extracted_time_part) == 0: continue else: time_part = extracted_time_part[0] sent_part = parts[-1] stime = round(float(time_part.split('-')[0].strip()), 2) etime = round(float(time_part.split('-')[1].strip()), 2) timestamps.append([stime, etime]) sents.append(sent_part.strip()) except Exception: continue assert len(timestamps) == len(sents) if len(timestamps) == 0: return None, None for i in range(len(timestamps)): assert isinstance(timestamps[i], list) and len(timestamps[i]) == 2 and isinstance( timestamps[i][0], (int, float)) and isinstance(timestamps[i][1], (int, float)) timestamps[i] = [min(timestamps[i]), max(timestamps[i])] return timestamps, sents def tvg_format(ans): ans = ans.lower() sentences = re.split(r'[!?\n]', ans) keywords = ['starts', 'ends', 'happens in', 'start time', 'end time', 'start', 'end', 'happen'] candidates = [] for sentence in sentences: if any(keyword in sentence for keyword in keywords): candidates.append(sentence) timestamps = [] patterns = [r"(\d+\.*\d*)\s*-\s*(\d+\.*\d*)"] for time_pattern in patterns: time_matches = re.findall(time_pattern, ans) if time_matches: timestamps = [[float(start), float(end)] for start, end in time_matches] if len(timestamps) == 0: pattern = r"(\d+\.*\d*)\s* to \s*(\d+\.*\d*)" time_matches = re.findall(pattern, ans) if time_matches: timestamps = [[float(start), float(end)] for start, end in time_matches] if len(sentences) == 0: return None if len(timestamps) == 0: times = [] time_regex = re.compile(r'\b(\d+\.\d+\b|\b\d+)\b') for sentence in candidates: time = re.findall(time_regex, sentence) if time: time_in_sec = float(time[0]) times.append(time_in_sec) times = times[:len(times) // 2 * 2] timestamps = [(times[i], times[i + 1]) for i in range(0, len(times), 2)] if len(timestamps) == 0: times = [] time_regex = re.compile(r'\b((\d{1,2}:\d{2}:\d{2}))\b') for sentence in candidates: time = re.findall(time_regex, sentence) if time: t = time[0] else: continue if t.count(':') == 2: h, m, s = map(int, t.split(':')) time_in_sec = h * 3600 + m * 60 + s elif t.count(':') == 1: m, s = map(int, t.split(':')) time_in_sec = m * 60 + s times.append(time_in_sec) times = times[:len(times) // 2 * 2] timestamps = [(times[i], times[i + 1]) for i in range(0, len(times), 2)] results = [] for (start, end) in timestamps: if end > start: results.append([start, end]) else: results.append([end, start]) if len(results) == 0: results = None if results is not None: assert isinstance(results, list) for item in results: assert isinstance(item, list) assert len(item) == 2 assert isinstance(item[0], (int, float)) assert isinstance(item[1], (int, float)) return results def tvg_eval(samples): iou_thr = [0.1, 0.3, 0.5, 0.7] hit = [0 for _ in iou_thr] cnt, sum_iou = 0, 0 for sample in samples: gt = sample['tgt'] pred = tvg_format(sample['a']) if pred is None: cnt += 1 continue pred = pred[0] gt = torch.Tensor([gt]) pred = torch.Tensor([pred]) iou = temporal_iou(gt, pred).item() sum_iou += iou for i, thr in enumerate(iou_thr): if iou >= thr: hit[i] += 1 recall = [h / len(samples) for h in hit] miou = sum_iou / len(samples) out = dict(Total=len(samples), Failed=cnt, mIoU=round(miou, 5)) for rec, thr in zip(recall, iou_thr): out[f'F1@{thr}'] = round(rec, 5) out['F1'] = round(sum(recall) / len(recall), 5) return out def vhd_eval(samples): hit, cnt = 0, 0 for sample in samples: gt = sample['tgt'] if not isinstance(gt[0][0], (list, tuple)): gt = [gt] match = re.search(r"[-+]?\d*\.\d+|[-+]?\d+", sample['a']) if not match: cnt += 1 continue pred = float(match.group(0)) matched = False for annotator in gt: for g in annotator: if pred >= g[0] and pred <= g[1]: matched = True break if matched: hit += 1 out = dict(Total=len(samples), Failed=cnt) out['F1'] = round(hit / len(samples), 5) return out def tem_eval(samples): iou_thr = [0.1, 0.3, 0.5, 0.7] hit = [0 for _ in iou_thr] cnt, sum_iou = 0, 0 for sample in samples: gt = sample['tgt'] pred = tvg_format(sample['a']) if pred is None: cnt += 1 continue pred = pred[0] gt = torch.Tensor(gt) pred = torch.Tensor([pred]) iou = temporal_iou(gt, pred).max().item() sum_iou += iou for i, thr in enumerate(iou_thr): if iou >= thr: hit[i] += 1 recall = [h / len(samples) for h in hit] miou = sum_iou / len(samples) out = dict(Total=len(samples), Failed=cnt, mIoU=round(miou, 5)) for rec, thr in zip(recall, iou_thr): out[f'R@{thr}'] = round(rec, 5) out['mRec'] = round(sum(recall) / len(recall), 5) return out def tal_eval(samples): iou_thr = [0.1, 0.3, 0.5, 0.7] f1_score = [0 for _ in iou_thr] cnt = 0 for sample in samples: gt = sample['tgt'] pred = tvg_format(sample['a']) if pred is None: cnt += 1 continue gt = torch.Tensor(gt) pred = torch.Tensor(pred) iou = temporal_iou(gt, pred) for i, thr in enumerate(iou_thr): if iou.max() < thr: continue else: rec = (iou.amax(dim=1) >= thr).float().mean().item() prc = (iou.amax(dim=0) >= thr).float().mean().item() f1_score[i] += 2 * prc * rec / (prc + rec) f1_score = [f / len(samples) for f in f1_score] out = dict(Total=len(samples), Failed=cnt) for f1, thr in zip(f1_score, iou_thr): out[f'F1@{thr}'] = round(f1, 5) out['F1'] = round(sum(f1_score) / len(f1_score), 5) return out def evs_eval(samples): f1_score = [] cnt = 0 for sample in samples: gt = sample['tgt'] pred = tvg_format(sample['a']) if pred is None: cnt += 1 continue gt_map = torch.zeros(1000) gt_len = 0 for g in gt: s = max(0, round(g[0])) e = round(g[1]) gt_map[s:e] = 1 gt_len += e - s pred_map = torch.zeros(1000) pred_len = 0 for p in pred: s = max(0, round(p[0])) e = round(p[1]) pred_map[s:e] = 2 pred_len += e - s com_map = gt_map + pred_map tp = (com_map == 3).sum().item() fp = (com_map == 2).sum().item() fn = (com_map == 1).sum().item() if tp == 0: f1 = 0 else: rec = tp / (tp + fn) prc = tp / (tp + fp) f1 = 2 * prc * rec / (prc + rec) f1_score.append(f1) f1_score = round(sum(f1_score) / len(f1_score), 5) if len(f1_score) > 0 else 0 out = dict(Total=len(samples), Failed=cnt) out['F1'] = f1_score return out def rvq_eval(samples, st): if len(samples[0]['o']) == 4: match_map = dict(a=0, b=1, c=2, d=3) elif len(samples[0]['o']) == 5: match_map = dict(a=0, b=1, c=2, d=3, e=4) else: raise NotImplementedError hit, cnt = 0, 0 for sample in samples: gt = sample['p'] pred = sample['a'] ever_matched = False match = re.search(r'\(([A-Za-z])\)', pred) if match: ever_matched = True choice = match.group(1).lower() if choice in match_map and gt == match_map[choice]: hit += 1 continue pred = pred.lower() if pred.startswith('best option:'): pred = pred[12:] pred = pred.lstrip().lstrip('(').lstrip() if len(pred) == 0: cnt += 1 continue if len(pred) == 1 or pred[1] in ('.', ',', ' ', ')'): ever_matched = True if pred[0] in match_map and gt == match_map[pred[0]]: hit += 1 continue hit_idx, max_score = 0, float('-inf') _map = ['A', 'B', 'C', 'D', 'E'] for idx, option in enumerate(sample['o']): if isinstance(option, (list, tuple)): opt = f'{option[0]} - {option[1]}' else: opt = option opt = f'({_map[idx]}) {opt}' sim = st.compute_sim(pred, opt) if sim > max_score: hit_idx = idx max_score = sim assert max_score != float('-inf') if not ever_matched: cnt += 1 if gt == hit_idx: hit += 1 acc = hit / len(samples) out = dict(Total=len(samples), Failed=cnt, Acc=round(acc, 5)) return out def gvq_eval(samples, st): acc_hit_idx, acc_cnt = [], 0 _samples = copy.deepcopy(samples) for sample_idx, sample in enumerate(_samples): gt = sample['p'] pred = sample['a'] if pred.lower().startswith('best option:'): pred = pred[12:] pred = pred.lstrip().lstrip('(').lstrip() if len(pred) == 0: acc_cnt += 1 continue if len(sample['o']) == 4: match_map = dict(a=0, b=1, c=2, d=3) elif len(sample['o']) == 5: match_map = dict(a=0, b=1, c=2, d=3, e=4) else: raise NotImplementedError if len(pred) == 1 or pred[1] in ('.', ',', ' ', ')'): if pred[0].lower() in match_map: if gt == match_map[pred[0].lower()]: acc_hit_idx.append(sample_idx) continue hit_idx, max_score = 0, float('-inf') _map = ['A', 'B', 'C', 'D', 'E'] for idx, option in enumerate(sample['o']): if isinstance(option, (list, tuple)): opt = f'{option[0]} - {option[1]}' else: opt = option opt = f'({_map[idx]}) {opt}' sim = st.compute_sim(pred, opt) if sim > max_score: hit_idx = idx max_score = sim if max_score == float('-inf'): acc_cnt += 1 continue if gt == hit_idx: acc_hit_idx.append(sample_idx) acc_hit_idx = set(acc_hit_idx) iou_thr = [0.1, 0.3, 0.5, 0.7] hit = [0 for _ in iou_thr] rec_cnt, sum_iou = 0, 0 for sample_idx, sample in enumerate(samples): if sample_idx not in acc_hit_idx: continue gt = sample['tgt'] pred = tvg_format(sample['a']) if pred is None: rec_cnt += 1 continue pred = pred[0] gt = torch.Tensor([gt]) pred = torch.Tensor([pred]) iou = temporal_iou(gt, pred).item() sum_iou += iou for i, thr in enumerate(iou_thr): if iou >= thr: hit[i] += 1 recall = [h / len(samples) for h in hit] miou = sum_iou / len(samples) out = dict(Total=len(samples), Failed=rec_cnt + acc_cnt, mIoU=round(miou, 5)) for rec, thr in zip(recall, iou_thr): out[f'R@{thr}'] = round(rec, 5) out['mRec'] = round(sum(recall) / len(recall), 5) out['Acc'] = round(len(acc_hit_idx) / len(samples), 5) return out def dvc_eval(samples, st): iou_thr = [0.1, 0.3, 0.5, 0.7] gt_dict, pred = dict(), dict(results=dict()) cnt = 0 for sample in samples: gt = sample['tgt'] gt_cap = sample['g'] time, cap = dvc_format(sample['a']) if time is None or cap is None: cnt += 1 continue gt_dict[sample['video']] = dict(timestamps=gt, sentences=gt_cap) pred['results'][sample['video']] = [dict(sentence=c, timestamp=t) for t, c in zip(time, cap)] scale = len(pred['results']) / len(samples) if gt_dict: evaluator = DVCEval(ground_truth=gt_dict, prediction=pred, tious=iou_thr, sentsim=st) evaluator.evaluate() scores = evaluator.scores else: scores = dict() for key in ('Recall', 'Precision', 'Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr', 'SentSim'): scores[key] = [0] * len(iou_thr) out = dict(Total=len(samples), Failed=cnt) f1_score = [] for rec, prc, thr in zip(scores['Recall'], scores['Precision'], iou_thr): rec = rec * scale prc = prc * scale f1 = 0 if prc + rec == 0 else 2 * prc * rec / (prc + rec) out[f'F1@{thr}'] = round(f1, 5) f1_score.append(f1) out['F1'] = round(sum(f1_score) / len(f1_score), 5) for key in ('Bleu_1', 'Bleu_2', 'Bleu_3', 'Bleu_4', 'METEOR', 'ROUGE_L', 'CIDEr', 'SentSim'): out[key] = round(sum(scores[key]) / len(scores[key]), 5) return out def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('pred_path') parser.add_argument('--subset', action='store_true') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() if args.pred_path.endswith('.json') or args.pred_path.endswith('.jsonl'): pred_paths = [args.pred_path] dir_name = nncore.dir_name(args.pred_path) else: pred_paths = nncore.ls(args.pred_path, ext=['json', 'jsonl'], join_path=True) pred_paths = [path for path in pred_paths if path != 'metrics.json'] dir_name = args.pred_path log_file = nncore.join(dir_name, 'metrics.log') nncore.set_default_logger('etbench', fmt=None, log_file=log_file) nncore.log(f'Total number of files: {len(pred_paths)}') all_samples = [] for path in pred_paths: nncore.log(f'Loading {path}...') all_samples += nncore.load(path) nncore.log(f'Total number of samples: {len(all_samples)}') if args.subset: subset = nncore.load(nncore.same_dir(__file__, 'subset.json')) pred = dict() for sample in all_samples: task, source, idx = sample['task'], sample['source'], sample['idx'] if task not in pred: pred[task] = dict() if source not in pred[task]: pred[task][source] = [] if not args.subset or (source in subset[task] and idx in subset[task][source]): pred[task][source].append(sample) if args.subset: cnt = sum(len(d) for t in pred.values() for d in t.values()) nncore.log(f'Evaluating on a subset with {cnt} samples') print('==========================================') print('Start evaluation...') st = SentenceTransformerSimilarity() collected = dict() for task in pred: for source in pred[task]: print(f'{task}_{source}: {len(pred[task][source])}') if task in ('tvg', 'epm'): out = tvg_eval(pred[task][source]) elif task in ('vhd', ): out = vhd_eval(pred[task][source]) elif task in ('tem', ): out = tem_eval(pred[task][source]) elif task in ('tal', ): out = tal_eval(pred[task][source]) elif task in ('evs', ): out = evs_eval(pred[task][source]) elif task in ('dvc', 'slc'): out = dvc_eval(pred[task][source], st) elif task in ('rar', 'rvq', 'eca'): out = rvq_eval(pred[task][source], st) elif task in ('gvq', ): out = gvq_eval(pred[task][source], st) else: raise NotImplementedError if task not in collected: collected[task] = dict() collected[task][source] = out nncore.log('==========================================') met = [] tasks = ['rar', 'eca', 'rvq'] if any(t in collected for t in tasks): nncore.log('\nReferring\n') out = [('Task', 'Source', 'Total', 'Failed', 'Acc')] mean_acc = [] for task in tasks: if task not in collected: continue task_acc = [] for source in collected[task]: d = collected[task][source] out.append((task, source, d['Total'], d['Failed'], d['Acc'])) mean_acc.append(d['Acc']) task_acc.append(d['Acc']) met.append(round(sum(task_acc) / len(task_acc), 5)) nncore.log(tabulate(out)) nncore.log(f'Mean Acc: {round(sum(mean_acc) / len(mean_acc), 5)}') tasks = ['tvg', 'epm', 'tal', 'evs', 'vhd'] if any(t in collected for t in tasks): nncore.log('\nGrounding\n') out = [('Task', 'Source', 'Total', 'Failed', 'F1@0.1', 'F1@0.3', 'F1@0.5', 'F1@0.7', 'F1')] mean_rec = [] for task in tasks: if task not in collected: continue task_rec = [] for source in collected[task]: d = collected[task][source] o = [task, source, d['Total'], d['Failed']] for thr in [0.1, 0.3, 0.5, 0.7]: o.append(d.get(f'F1@{thr}', '-')) o.append(d.get('F1', '-')) out.append(tuple(o)) mean_rec.append(o[-1]) task_rec.append(o[-1]) met.append(round(sum(task_rec) / len(task_rec), 5)) nncore.log(tabulate(out)) nncore.log(f'Mean F1: {round(sum(mean_rec) / len(mean_rec), 5)}') tasks = ['dvc', 'slc'] if any(t in collected for t in tasks): nncore.log('\nCaptioning\n') out = [('Task', 'Source', 'Total', 'Failed', 'F1@0.1', 'F1@0.3', 'F1@0.5', 'F1@0.7', 'F1', 'METEOR', 'ROUGE_L', 'CIDEr', 'SentSim')] mean_rec, mean_sim = [], [] for task in tasks: if task not in collected: continue task_rec, task_sim = [], [] for source in collected[task]: d = collected[task][source] o = [task, source] for key in out[0][2:]: o.append(d[key]) out.append(tuple(o)) mean_rec.append(d['F1']) task_rec.append(d['F1']) mean_sim.append(d['SentSim']) task_sim.append(d['SentSim']) met.append(round(sum(task_rec) / len(task_rec), 5)) met.append(round(sum(task_sim) / len(task_sim), 5)) nncore.log(tabulate(out)) nncore.log(f'Mean F1: {round(sum(mean_rec) / len(mean_rec), 5)}') nncore.log(f'Mean SentSim: {round(sum(mean_sim) / len(mean_sim), 5)}') tasks = ['tem', 'gvq'] if any(t in collected for t in tasks): nncore.log('\nComplex\n') out = [('Task', 'Source', 'Total', 'Failed', 'R@0.1', 'R@0.3', 'R@0.5', 'R@0.7', 'mRec', 'Acc')] for task in tasks: if task not in collected: continue task_rec = [] for source in collected[task]: d = collected[task][source] o = [task, source] for key in out[0][2:]: o.append(d.get(key, '-')) out.append(tuple(o)) task_rec.append(o[-2]) met.append(round(sum(task_rec) / len(task_rec), 5)) nncore.log(tabulate(out)) nncore.log(f'TEM Mean Rec: {met[-2]}') nncore.log(f'GVQ Mean Rec: {met[-1]}') nncore.log('\nOverall\n') out = [('RAR (Acc)', 'EVC (Acc)', 'RVQ (Acc)', 'TVG (F1)', 'EPM (F1)', 'TAL (F1)', 'EVS (F1)', 'VHD (F1)', 'DVC (F1)', 'DVC (Sim)', 'SLC (F1)', 'SLC (Sim)', 'TEM (Rec)', 'GVQ (Rec)')] out.append(tuple([str(round(m * 100, 1)) for m in met])) nncore.log(tabulate(out)) nncore.log('\nMerged\n') out = [('Acc (ref)', 'F1 (gnd)', 'F1 (cap)', 'Sim (cap)', 'Rec (com)')] out.append( tuple([ str(round(sum(met[:3]) * 100 / 3, 1)), str(round(sum(met[3:8]) * 100 / 5, 1)), str(round((met[8] + met[10]) * 100 / 2, 1)), str(round((met[9] + met[11]) * 100 / 2, 1)), str(round(sum(met[12:]) * 100 / 2, 1)) ])) nncore.log(tabulate(out)) path = nncore.join(dir_name, 'metrics.json') nncore.dump(collected, path, indent=4)