Datasets:
File size: 12,391 Bytes
82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 2509efe 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 10a5626 82cf72e d5524d7 6b9311b 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 10a5626 82cf72e d5524d7 6b9311b 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 10a5626 82cf72e d5524d7 6b9311b 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e d5524d7 82cf72e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
---
license: cc-by-nc-sa-4.0
task_categories:
- image-classification
language:
- en
tags:
- Disaster
- Crisis Informatics
pretty_name: 'CrisisMMD: Multimodal Twitter Datasets from Natural Disasters'
size_categories:
- 10K<n<100K
dataset_info:
- config_name: humanitarian
splits:
- name: train
num_examples: 13608
- name: dev
num_examples: 2237
- name: test
num_examples: 2237
features:
- name: event_name
dtype: string
description: "Name of the disaster event, such as 'hurricane_maria'."
- name: tweet_id
dtype: string
description: "Unique identifier for the tweet."
- name: image_id
dtype: string
description: "Unique identifier for the image associated with the tweet."
- name: tweet_text
dtype: string
description: "The text content of the tweet."
- name: image_path
dtype: string
description: "File path to the image."
- name: image
dtype: Image
description: "Image data loaded directly from file."
- name: label
dtype:
class_label:
names:
'0': affected_individuals
'1': infrastructure_and_utility_damage
'2': injured_or_dead_people
'3': missing_or_found_people
'4': not_humanitarian
'5': other_relevant_information
'6': rescue_volunteering_or_donation_effort
'7': vehicle_damage
description: "Humanitarian classification label for the tweet."
- config_name: informative
splits:
- name: train
num_examples: 13608
- name: dev
num_examples: 2237
- name: test
num_examples: 2237
features:
- name: event_name
dtype: string
description: "Name of the disaster event, such as 'hurricane_maria'."
- name: tweet_id
dtype: string
description: "Unique identifier for the tweet."
- name: image_id
dtype: string
description: "Unique identifier for the image associated with the tweet."
- name: tweet_text
dtype: string
description: "The text content of the tweet."
- name: image_path
dtype: string
description: "File path to the image."
- name: image
dtype: Image
description: "Image data loaded directly from file."
- name: label
dtype:
class_label:
names:
'0': informative
'1': not_informative
description: "Informativeness classification label for the tweet."
- config_name: damage
splits:
- name: train
num_examples: 2468
- name: dev
num_examples: 529
- name: test
num_examples: 529
features:
- name: event_name
dtype: string
description: "Name of the disaster event, such as 'hurricane_maria'."
- name: tweet_id
dtype: string
description: "Unique identifier for the tweet."
- name: image_id
dtype: string
description: "Unique identifier for the image associated with the tweet."
- name: tweet_text
dtype: string
description: "The text content of the tweet."
- name: image_path
dtype: string
description: "File path to the image."
- name: image
dtype: Image
description: "Image data loaded directly from file."
- name: label
dtype:
class_label:
names:
'0': little_or_no_damage
'1': mild_damage
'2': severe_damage
description: "Damage severity classification label for the tweet."
configs:
- config_name: humanitarian
data_files:
- split: train
path: humanitarian/train.json
- split: dev
path: humanitarian/dev.json
- split: test
path: humanitarian/test.json
- config_name: informative
data_files:
- split: train
path: informative/train.json
- split: dev
path: informative/dev.json
- split: test
path: informative/test.json
- config_name: damage
data_files:
- split: train
path: damage/train.json
- split: dev
path: damage/dev.json
- split: test
path: damage/test.json
---
# CrisisMMD: Multimodal Twitter Datasets from Natural Disasters
The **CrisisMMD** multimodal Twitter dataset consists of several thousand manually annotated tweets and images collected during seven major natural disasters, including earthquakes, hurricanes, wildfires, and floods from 2017. The dataset includes three types of annotations:
On HuggingFace, we hosted version 2.0 of the CrisisMMD dataset. Please see further information below.
### Disaster Response Tasks
1. **Task 1: Informative vs Not Informative**
- Informative
- Not informative
- "Don't know or can't judge" → **Removed in version 2.0**
2. **Task 2: Humanitarian Categories**
- Affected individuals
- Infrastructure and utility damage
- Injured or dead people
- Missing or found people
- Rescue, volunteering, or donation effort
- Vehicle damage
- Other relevant information
- "Not relevant or can't judge" → **Updated to "Not humanitarian" in version 2.0**
3. **Task 3: Damage Severity Assessment**
- Severe damage
- Mild damage
- Little or no damage
- "Don't know or can't judge"
## Datasets Details
The keywords used for collecting tweets, along with the start and end dates for each event, are outlined in the following table.
| Crisis Name | Keywords | Start Date | End Date |
|--------------------|------------------------------------------------|-------------------|-------------------|
| [Hurricane Irma](https://en.wikipedia.org/wiki/Hurricane_Irma) | Hurricane Irma, Irma storm, Storm Irma, etc. | Sep 6, 2017 | Sep 21, 2017 |
| [Hurricane Harvey](https://en.wikipedia.org/wiki/Hurricane_Harvey) | Hurricane Harvey, Tornado, etc. | August 25, 2017 | September 20, 2017|
| [Hurricane Maria](https://en.wikipedia.org/wiki/Hurricane_Maria) | Hurricane Maria, Maria Storm, etc. | September 20, 2017| November 13, 2017 |
| [California wildfires](https://en.wikipedia.org/wiki/List_of_California_wildfires) | California fire, USA Wildfire, etc. | October 10, 2017 | October 27, 2017 |
### Event-wise data distribution
For each event, we collected tweets and associated images, filtered and sampled them for the annotation.
## [**Data distribution from the CrisisMMD version v1.0**](https://crisisnlp.qcri.org/data/crisismmd/CrisisMMD_v1.0.tar.gz)
| Crisis Name | # Tweets | # Images | # Filtered Tweets | # Sampled Tweets | # Sampled Images |
|------------------------|-------------|------------|-------------------|------------------|------------------|
| Hurricane Irma | 3,517,280 | 176,972 | 5,739 | 4,041 | 4,525 |
| Hurricane Harvey | 6,664,349 | 321,435 | 19,967 | 4,000 | 4,443 |
| Hurricane Maria | 2,953,322 | 52,231 | 6,597 | 4,000 | 4,562 |
| California wildfires | 455,311 | 10,130 | 1,488 | 1,486 | 1,589 |
| Mexico earthquake | 383,341 | 7,111 | 1,241 | 1,239 | 1,382 |
| Iraq-Iran earthquake | 207,729 | 6,307 | 501 | 499 | 600 |
| Sri Lanka floods | 41,809 | 2,108 | 870 | 832 | 1,025 |
| **Total** | **14,223,141** | **576,294** | **36,403** | **16,097** | **18,126** |
## Data preparation for multimodal baseline
For the multimodal baseline experiments, we first combined the tweet text and image from all events. It resulted in 24 duplicate entries (tweet ids: text and associated images). We manually checked these duplicate entries and kept the one, which were annotated properly. We changed the label “Not relevant or can’t judge” to “Not humanitarian”. In addition, as the annotation consists of a label - “don't know or can't not judge”, we also removed them for the classification experiments. Hence, this preprocessing part filtered out 39 tweets and associated 44 images. The resulted total dataset consists of 16058 and 18082 tweet texts and images, respectively as shown in the following table. This version of this dataset is released as version 2.0 and is available for download.
## [**Data distribution from the CrisisMMD version v2.0**](https://crisisnlp.qcri.org/data/crisismmd/CrisisMMD_v2.0.tar.gz)
In this version, the "Not relevant or can't judge" label has been mapped to "Not humanitarian" for the humanitarian task. Additionally, the "Not informative" label from the informative task has also been mapped to "Not humanitarian" for the humanitarian task. Duplicate entries from different events have been removed.
### Informativeness
| | Text | Image |
|---------------|--------|--------|
| Informative | 11,509 | 9,374 |
| Not informative | 4,549 | 8,708 |
| **Total** | 16,058 | 18,082 |
### Humanitarian
| | Text | Image |
|-------------------------------|--------|-------|
| Affected individuals | 472 | 562 |
| Infrastructure and utility damage | 1,210 | 3,624 |
| Injured or dead people | 486 | 110 |
| Missing or found people | 40 | 14 |
| Not humanitarian | 4,549 | 8,708 |
| Other relevant information | 5,954 | 2,529 |
| Rescue, volunteering, or donation effort | 3,293 | 2,231 |
| Vehicle damage | 54 | 304 |
| **Total** | 16,058 | 18,082 |
### Damage Severity
| | Text | Image |
|-----------------|------|-------|
| Little or no damage | - | 475 |
| Mild damage | - | 839 |
| Severe damage | - | 2,212 |
| **Total** | - | 3,526 |
## Downloads (Alternate options)
- **CrisisMMD dataset version v2.0**: [Download labeled images and tweets (~1.8GB)](https://crisisnlp.qcri.org/data/crisismmd/CrisisMMD_v2.0.tar.gz)
- **Datasplit**: [Annotations Download](https://crisisnlp.qcri.org/data/crisismmd/crisismmd_datasplit_all.zip)
- **Datasplit for multimodal baseline with agreed labels**: [Annotations Download](https://crisisnlp.qcri.org/data/crisismmd/crisismmd_datasplit_agreed_label.zip)
## Citation
**Please cite the following papers if you use any of these resources in your research.**
1. [Ferda Ofli](https://sites.google.com/site/ferdaofli/), [Firoj Alam](https://firojalam.one/), and [Muhammad Imran](http://mimran.me/), [**Analysis of Social Media Data using Multimodal Deep Learning for Disaster Response**](https://arxiv.org/abs/2004.11838), In Proceedings of the 17th International Conference on Information Systems for Crisis Response and Management (ISCRAM), 2020, USA.
2. [Firoj Alam](https://firojalam.one/), [Ferda Ofli](https://sites.google.com/site/ferdaofli/), and [Muhammad Imran](http://mimran.me/), [**CrisisMMD: Multimodal Twitter Datasets from Natural Disasters**](https://arxiv.org/pdf/1805.00713.pdf), In Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM), 2018, Stanford, California, USA.
```
@InProceedings{crisismmd2018icwsm,
author = {Alam, Firoj and Ofli, Ferda and Imran, Muhammad},
title = {{CrisisMMD}: Multimodal Twitter Datasets from Natural Disasters},
booktitle = {Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM)},
year = {2018},
month = {June},
date = {23-28},
location = {USA}
}
@inproceedings{multimodalbaseline2020,
Author = {Ferda Ofli and Firoj Alam and Muhammad Imran},
Booktitle = {17th International Conference on Information Systems for Crisis Response and Management},
Keywords = {Multimodal deep learning, Multimedia content, Natural disasters, Crisis Computing, Social media},
Month = {May},
Organization = {ISCRAM},
Publisher = {ISCRAM},
Title = {Analysis of Social Media Data using Multimodal Deep Learning for Disaster Response},
Year = {2020}
}
```
|