Datasets:

Modalities:
Text
ArXiv:
License:
xmcmic commited on
Commit
7e0c0ee
1 Parent(s): 82c1aac

Delete processed_code/preprocess_ctrate_train.py

Browse files
processed_code/preprocess_ctrate_train.py DELETED
@@ -1,148 +0,0 @@
1
- import os
2
- import nibabel as nib
3
- import pandas as pd
4
- import numpy as np
5
- import torch
6
- import monai
7
- import torch.nn.functional as F
8
- from multiprocessing import Pool
9
- from tqdm import tqdm
10
-
11
- def read_nii_files(directory):
12
- """
13
- Retrieve paths of all NIfTI files in the given directory.
14
-
15
- Args:
16
- directory (str): Path to the directory containing NIfTI files.
17
-
18
- Returns:
19
- list: List of paths to NIfTI files.
20
- """
21
- nii_files = []
22
- for root, dirs, files in os.walk(directory):
23
- for file in files:
24
- if file.endswith('1.nii.gz'):
25
- # /mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train_preprocessed
26
- # preprocessed_file = file.replace('/mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train','/mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train_preprocessed')
27
- nii_files.append(os.path.join(root, file))
28
- return nii_files
29
-
30
- def read_nii_data(file_path):
31
- """
32
- Read NIfTI file data.
33
-
34
- Args:
35
- file_path (str): Path to the NIfTI file.
36
-
37
- Returns:
38
- np.ndarray: NIfTI file data.
39
- """
40
- try:
41
- nii_img = nib.load(file_path)
42
- nii_data = nii_img.get_fdata()
43
- return nii_data
44
- except Exception as e:
45
- print(f"Error reading file {file_path}: {e}")
46
- return None
47
-
48
- def resize_array(array, current_spacing, target_spacing):
49
- """
50
- Resize the array to match the target spacing.
51
-
52
- Args:
53
- array (torch.Tensor): Input array to be resized.
54
- current_spacing (tuple): Current voxel spacing (z_spacing, xy_spacing, xy_spacing).
55
- target_spacing (tuple): Target voxel spacing (target_z_spacing, target_x_spacing, target_y_spacing).
56
-
57
- Returns:
58
- np.ndarray: Resized array.
59
- """
60
- # Calculate new dimensions
61
- original_shape = array.shape[2:]
62
- scaling_factors = [
63
- current_spacing[i] / target_spacing[i] for i in range(len(original_shape))
64
- ]
65
- new_shape = [
66
- int(original_shape[i] * scaling_factors[i]) for i in range(len(original_shape))
67
- ]
68
- # Resize the array
69
- resized_array = F.interpolate(array, size=new_shape, mode='trilinear', align_corners=False).cpu().numpy()
70
- return resized_array
71
-
72
- def process_file(file_path):
73
- """
74
- Process a single NIfTI file.
75
-
76
- Args:
77
- file_path (str): Path to the NIfTI file.
78
-
79
- Returns:
80
- None
81
- """
82
- monai_loader = monai.transforms.Compose(
83
- [
84
- monai.transforms.LoadImaged(keys=['image']),
85
- monai.transforms.AddChanneld(keys=['image']),
86
- monai.transforms.Orientationd(axcodes="LPS", keys=['image']), # zyx
87
- # monai.transforms.Spacingd(keys=["image"], pixdim=(1, 1, 3), mode=("bilinear")),
88
- monai.transforms.CropForegroundd(keys=["image"], source_key="image"),
89
- monai.transforms.ToTensord(keys=["image"]),
90
- ]
91
- )
92
-
93
- dictionary = monai_loader({'image':file_path})
94
- img_data = dictionary['image']
95
-
96
- file_name = os.path.basename(file_path)
97
- row = df[df['VolumeName'] == file_name]
98
- slope = float(row["RescaleSlope"].iloc[0])
99
- intercept = float(row["RescaleIntercept"].iloc[0])
100
- xy_spacing = float(row["XYSpacing"].iloc[0][1:][:-2].split(",")[0])
101
- z_spacing = float(row["ZSpacing"].iloc[0])
102
-
103
- # Define the target spacing values for SAT segmentation
104
- target_x_spacing = 1.0
105
- target_y_spacing = 1.0
106
- target_z_spacing = 3.0
107
-
108
- current = (z_spacing, xy_spacing, xy_spacing)
109
- target = (target_z_spacing, target_x_spacing, target_y_spacing)
110
- img_data = slope * img_data + intercept
111
-
112
- img_data = img_data[0].numpy()
113
- img_data = img_data.transpose(2, 0, 1)
114
- tensor = torch.tensor(img_data)
115
- tensor = tensor.unsqueeze(0).unsqueeze(0)
116
-
117
- resized_array = resize_array(tensor, current, target)
118
- resized_array = resized_array[0][0]
119
- resized_array = resized_array.transpose(1,2,0)
120
- # print('resized:',resized_array.shape)
121
- # resized: (231, 387, 387)
122
-
123
- save_folder = "../upload_data/train_preprocessed/" #save folder for preprocessed
124
- folder_path_new = os.path.join(save_folder, "train_" + file_name.split("_")[1], "train_" + file_name.split("_")[1] + file_name.split("_")[2]) #folder name for train or validation
125
- os.makedirs(folder_path_new, exist_ok=True)
126
- save_path = os.path.join(folder_path_new, file_name)
127
- # np.savez(save_path, resized_array)
128
- # Create an identity matrix
129
-
130
- image_nifti = nib.Nifti1Image(resized_array,affine = np.eye(4))
131
- nib.save(image_nifti, save_path)
132
-
133
-
134
-
135
-
136
- # Example usage:
137
- if __name__ == "__main__":
138
- split_to_preprocess = '../src_data/train' #select the validation or test split
139
- nii_files = read_nii_files(split_to_preprocess)
140
- print(len(nii_files))
141
-
142
- df = pd.read_csv("../src_data/metadata/train_metadata.csv") #select the metadata
143
-
144
- num_workers = 18 # Number of worker processes
145
-
146
- # # # Process files using multiprocessing with tqdm progress bar
147
- with Pool(num_workers) as pool:
148
- list(tqdm(pool.imap(process_file, nii_files), total=len(nii_files)))