Datasets:
Tasks:
Object Detection
Modalities:
Image
Sub-tasks:
face-detection
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
RiccardoMaso
commited on
Commit
•
9472272
1
Parent(s):
e38f762
Delete README.md
Browse files
README.md
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""WIDER FACE dataset."""
|
16 |
-
|
17 |
-
import os
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
|
22 |
-
_HOMEPAGE = "http://shuoyang1213.me/WIDERFACE/"
|
23 |
-
|
24 |
-
_LICENSE = "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)"
|
25 |
-
|
26 |
-
_CITATION = """\
|
27 |
-
@inproceedings{yang2016wider,
|
28 |
-
Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou},
|
29 |
-
Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
30 |
-
Title = {WIDER FACE: A Face Detection Benchmark},
|
31 |
-
Year = {2016}}
|
32 |
-
"""
|
33 |
-
|
34 |
-
_DESCRIPTION = """\
|
35 |
-
WIDER FACE dataset is a face detection benchmark dataset, of which images are
|
36 |
-
selected from the publicly available WIDER dataset. We choose 32,203 images and
|
37 |
-
label 393,703 faces with a high degree of variability in scale, pose and
|
38 |
-
occlusion as depicted in the sample images. WIDER FACE dataset is organized
|
39 |
-
based on 61 event classes. For each event class, we randomly select 40%/10%/50%
|
40 |
-
data as training, validation and testing sets. We adopt the same evaluation
|
41 |
-
metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets,
|
42 |
-
we do not release bounding box ground truth for the test images. Users are
|
43 |
-
required to submit final prediction files, which we shall proceed to evaluate.
|
44 |
-
"""
|
45 |
-
|
46 |
-
|
47 |
-
_REPO = "https://huggingface.co/datasets/wider_face/resolve/main/data"
|
48 |
-
_URLS = {
|
49 |
-
"train": f"{_REPO}/WIDER_train.zip",
|
50 |
-
"validation": f"{_REPO}/WIDER_val.zip",
|
51 |
-
"test": f"{_REPO}/WIDER_test.zip",
|
52 |
-
"annot": f"{_REPO}/wider_face_split.zip",
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
class WiderFace(datasets.GeneratorBasedBuilder):
|
57 |
-
"""WIDER FACE dataset."""
|
58 |
-
|
59 |
-
VERSION = datasets.Version("1.0.0")
|
60 |
-
|
61 |
-
def _info(self):
|
62 |
-
return datasets.DatasetInfo(
|
63 |
-
description=_DESCRIPTION,
|
64 |
-
features=datasets.Features(
|
65 |
-
{
|
66 |
-
"image": datasets.Image(),
|
67 |
-
"faces": datasets.Sequence(
|
68 |
-
{
|
69 |
-
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
70 |
-
"blur": datasets.ClassLabel(names=["clear", "normal", "heavy"]),
|
71 |
-
"expression": datasets.ClassLabel(names=["typical", "exaggerate"]),
|
72 |
-
"illumination": datasets.ClassLabel(names=["normal", "exaggerate "]),
|
73 |
-
"occlusion": datasets.ClassLabel(names=["no", "partial", "heavy"]),
|
74 |
-
"pose": datasets.ClassLabel(names=["typical", "atypical"]),
|
75 |
-
"invalid": datasets.Value("bool"),
|
76 |
-
}
|
77 |
-
),
|
78 |
-
}
|
79 |
-
),
|
80 |
-
supervised_keys=None,
|
81 |
-
homepage=_HOMEPAGE,
|
82 |
-
license=_LICENSE,
|
83 |
-
citation=_CITATION,
|
84 |
-
)
|
85 |
-
|
86 |
-
def _split_generators(self, dl_manager):
|
87 |
-
data_dir = dl_manager.download_and_extract(_URLS)
|
88 |
-
return [
|
89 |
-
datasets.SplitGenerator(
|
90 |
-
name=datasets.Split.TRAIN,
|
91 |
-
gen_kwargs={
|
92 |
-
"split": "train",
|
93 |
-
"data_dir": data_dir["train"],
|
94 |
-
"annot_dir": data_dir["annot"],
|
95 |
-
},
|
96 |
-
),
|
97 |
-
datasets.SplitGenerator(
|
98 |
-
name=datasets.Split.TEST,
|
99 |
-
gen_kwargs={
|
100 |
-
"split": "test",
|
101 |
-
"data_dir": data_dir["test"],
|
102 |
-
"annot_dir": data_dir["annot"],
|
103 |
-
},
|
104 |
-
),
|
105 |
-
datasets.SplitGenerator(
|
106 |
-
name=datasets.Split.VALIDATION,
|
107 |
-
gen_kwargs={
|
108 |
-
"split": "val",
|
109 |
-
"data_dir": data_dir["validation"],
|
110 |
-
"annot_dir": data_dir["annot"],
|
111 |
-
},
|
112 |
-
),
|
113 |
-
]
|
114 |
-
|
115 |
-
def _generate_examples(self, split, data_dir, annot_dir):
|
116 |
-
image_dir = os.path.join(data_dir, "WIDER_" + split, "images")
|
117 |
-
annot_fname = "wider_face_test_filelist.txt" if split == "test" else f"wider_face_{split}_bbx_gt.txt"
|
118 |
-
with open(os.path.join(annot_dir, "wider_face_split", annot_fname), "r", encoding="utf-8") as f:
|
119 |
-
idx = 0
|
120 |
-
while True:
|
121 |
-
line = f.readline()
|
122 |
-
line = line.rstrip()
|
123 |
-
if not line.endswith(".jpg"):
|
124 |
-
break
|
125 |
-
image_file_path = os.path.join(image_dir, line)
|
126 |
-
faces = []
|
127 |
-
if split != "test":
|
128 |
-
# Read number of bounding boxes
|
129 |
-
nbboxes = int(f.readline())
|
130 |
-
# Cases with 0 bounding boxes, still have one line with all zeros.
|
131 |
-
# So we have to read it and discard it.
|
132 |
-
if nbboxes == 0:
|
133 |
-
f.readline()
|
134 |
-
else:
|
135 |
-
for _ in range(nbboxes):
|
136 |
-
line = f.readline()
|
137 |
-
line = line.rstrip()
|
138 |
-
line_split = line.split()
|
139 |
-
assert len(line_split) == 10, f"Cannot parse line: {line_split}"
|
140 |
-
line_parsed = [int(n) for n in line_split]
|
141 |
-
(
|
142 |
-
xmin,
|
143 |
-
ymin,
|
144 |
-
wbox,
|
145 |
-
hbox,
|
146 |
-
blur,
|
147 |
-
expression,
|
148 |
-
illumination,
|
149 |
-
invalid,
|
150 |
-
occlusion,
|
151 |
-
pose,
|
152 |
-
) = line_parsed
|
153 |
-
faces.append(
|
154 |
-
{
|
155 |
-
"bbox": [xmin, ymin, wbox, hbox],
|
156 |
-
"blur": blur,
|
157 |
-
"expression": expression,
|
158 |
-
"illumination": illumination,
|
159 |
-
"occlusion": occlusion,
|
160 |
-
"pose": pose,
|
161 |
-
"invalid": invalid,
|
162 |
-
}
|
163 |
-
)
|
164 |
-
yield idx, {"image": image_file_path, "faces": faces}
|
165 |
-
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|