Datasets:

Languages:
Indonesian
ArXiv:
File size: 3,593 Bytes
452a727
1e4a3ba
452a727
1e4a3ba
452a727
 
 
 
 
1e4a3ba
 
 
 
 
 
 
452a727
 
 
 
 
 
 
 
518446f
1e4a3ba
452a727
 
518446f
 
452a727
 
 
 
518446f
452a727
518446f
452a727
518446f
452a727
518446f
 
 
1e4a3ba
452a727
 
 
 
 
 
 
 
 
 
 
1e4a3ba
 
 
452a727
1e4a3ba
 
 
 
 
 
 
 
 
452a727
 
 
 
 
 
 
1e4a3ba
452a727
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

---
language: 
- ind
pretty_name: Cod
task_categories: 
- dialogue-system
tags: 
- dialogue-system
---

Cross-lingual Outline-based Dialogue (COD) is a dataset comprised of manually generated, localized, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data that served as the source of dialogue prompts.
COD enables natural language understanding, dialogue state tracking, and end-to-end dialogue modeling and evaluation.
Majewska et al. (2022) create COD using a novel outline-based annotation pipeline for multilingual TOD by Majewska et al. (2022).
English Schema-Guided Dialogue (SGD; Shah et al., 2018; Rastogi et al., 2020) dataset is automatically sampled and mapped into outlines. The outlines are then paraphrased and adapted to the local target domain by human subjects.


## Languages

ind

## Supported Tasks

Dialogue System

## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/cod", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("cod", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("cod"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```

More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).


## Dataset Homepage

[https://github.com/cambridgeltl/COD](https://github.com/cambridgeltl/COD)

## Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

## Dataset License

Unknown

## Citation

If you are using the **Cod** dataloader in your work, please cite the following:
```
@article{majewska2022cross,
  title={Cross-lingual dialogue dataset creation via outline-based generation},
  author={Majewska, Olga and Razumovskaia, Evgeniia and Ponti, Edoardo Maria and Vuli{'c}, Ivan and Korhonen, Anna},
  journal={arXiv preprint arXiv:2201.13405},
  year={2022}
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```