holylovenia
commited on
Commit
•
dc2f917
1
Parent(s):
e032ad8
Upload cod.py with huggingface_hub
Browse files
cod.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
8 |
+
from nusacrowd.utils.constants import Tasks
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@article{majewska2022cross,
|
12 |
+
title={Cross-lingual dialogue dataset creation via outline-based generation},
|
13 |
+
author={Majewska, Olga and Razumovskaia, Evgeniia and Ponti, Edoardo Maria and Vuli{\'c}, Ivan and Korhonen, Anna},
|
14 |
+
journal={arXiv preprint arXiv:2201.13405},
|
15 |
+
year={2022}
|
16 |
+
}
|
17 |
+
"""
|
18 |
+
|
19 |
+
_LANGUAGES = ["ind"]
|
20 |
+
_LOCAL = False
|
21 |
+
|
22 |
+
_DATASETNAME = "cod"
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
Cross-lingual Outline-based Dialogue (COD) is a dataset comprised of manually generated, localized, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data that served as the source of dialogue prompts.
|
26 |
+
COD enables natural language understanding, dialogue state tracking, and end-to-end dialogue modeling and evaluation.
|
27 |
+
Majewska et al. (2022) create COD using a novel outline-based annotation pipeline for multilingual TOD by Majewska et al. (2022).
|
28 |
+
English Schema-Guided Dialogue (SGD; Shah et al., 2018; Rastogi et al., 2020) dataset is automatically sampled and mapped into outlines. The outlines are then paraphrased and adapted to the local target domain by human subjects.
|
29 |
+
"""
|
30 |
+
|
31 |
+
_HOMEPAGE = "https://github.com/cambridgeltl/COD"
|
32 |
+
|
33 |
+
_LICENSE = "Unknown"
|
34 |
+
|
35 |
+
_URLS = {
|
36 |
+
_DATASETNAME: {
|
37 |
+
"validation": "https://raw.githubusercontent.com/cambridgeltl/COD/main/id_dev.json",
|
38 |
+
"test": "https://raw.githubusercontent.com/cambridgeltl/COD/main/id_test.json",
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
_SUPPORTED_TASKS = [Tasks.DIALOGUE_SYSTEM]
|
43 |
+
|
44 |
+
_SOURCE_VERSION = "1.0.0"
|
45 |
+
|
46 |
+
_NUSANTARA_VERSION = "1.0.0"
|
47 |
+
|
48 |
+
|
49 |
+
class NewDataset(datasets.GeneratorBasedBuilder):
|
50 |
+
"""Cross-lingual Outline-based Dialogue (COD) is a dataset comprises manually generated, localised, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data which served as the source of dialogue prompts."""
|
51 |
+
|
52 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
53 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
NusantaraConfig(
|
57 |
+
name="cod_source",
|
58 |
+
version=SOURCE_VERSION,
|
59 |
+
description="Cross-lingual Outline-based Dialogue (COD) source schema",
|
60 |
+
schema="source",
|
61 |
+
subset_id="cod",
|
62 |
+
),
|
63 |
+
]
|
64 |
+
|
65 |
+
DEFAULT_CONFIG_NAME = "cod_source"
|
66 |
+
|
67 |
+
def _info(self) -> datasets.DatasetInfo:
|
68 |
+
|
69 |
+
if self.config.schema == "source":
|
70 |
+
features = datasets.Features(
|
71 |
+
{
|
72 |
+
"index": datasets.Value("string"),
|
73 |
+
"dialogue_id": datasets.Value("string"),
|
74 |
+
"services": [datasets.Value("string")],
|
75 |
+
"turns": [
|
76 |
+
{
|
77 |
+
"speaker": datasets.Value("string"),
|
78 |
+
"utterance": datasets.Value("string"),
|
79 |
+
"frames": [
|
80 |
+
{
|
81 |
+
"actions": [
|
82 |
+
{
|
83 |
+
"act": datasets.Value("string"),
|
84 |
+
"slot": datasets.Value("string"),
|
85 |
+
"values": [datasets.Value("string")],
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"service": datasets.Value("string"),
|
89 |
+
"slots": [
|
90 |
+
{
|
91 |
+
"exclusive_end": datasets.Value("int32"),
|
92 |
+
"slot": datasets.Value("string"),
|
93 |
+
"start": datasets.Value("int32"),
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"state": {
|
97 |
+
"active_intent": datasets.Value("string"),
|
98 |
+
"requested_slots": [datasets.Value("string")],
|
99 |
+
"slot_values": [
|
100 |
+
{"slot": datasets.Value("string"), "values": [datasets.Value("string")]},
|
101 |
+
],
|
102 |
+
},
|
103 |
+
}
|
104 |
+
],
|
105 |
+
}
|
106 |
+
],
|
107 |
+
}
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
raise NotImplementedError()
|
111 |
+
|
112 |
+
return datasets.DatasetInfo(
|
113 |
+
description=_DESCRIPTION,
|
114 |
+
features=features,
|
115 |
+
homepage=_HOMEPAGE,
|
116 |
+
license=_LICENSE,
|
117 |
+
citation=_CITATION,
|
118 |
+
)
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
121 |
+
urls = _URLS[_DATASETNAME]
|
122 |
+
data_dir = dl_manager.download_and_extract(urls)
|
123 |
+
|
124 |
+
return [
|
125 |
+
datasets.SplitGenerator(
|
126 |
+
name=datasets.Split.TEST,
|
127 |
+
gen_kwargs={
|
128 |
+
"filepath": data_dir["test"],
|
129 |
+
"split": "test",
|
130 |
+
},
|
131 |
+
),
|
132 |
+
datasets.SplitGenerator(
|
133 |
+
name=datasets.Split.VALIDATION,
|
134 |
+
gen_kwargs={
|
135 |
+
"filepath": data_dir["validation"],
|
136 |
+
"split": "dev",
|
137 |
+
},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
142 |
+
|
143 |
+
with open(filepath, "r+") as fw:
|
144 |
+
data = json.loads(fw.read())
|
145 |
+
|
146 |
+
if self.config.schema == "source":
|
147 |
+
for idx, example in enumerate(data):
|
148 |
+
example["index"] = str(idx)
|
149 |
+
for turn in example["turns"]:
|
150 |
+
for frame in turn["frames"]:
|
151 |
+
if "state" not in frame:
|
152 |
+
continue
|
153 |
+
ls_slot_values = []
|
154 |
+
for slot in frame["state"]["slot_values"]:
|
155 |
+
ls_slot_values.append({"slot": slot, "values": frame["state"]["slot_values"][slot]})
|
156 |
+
frame["state"]["slot_values"] = ls_slot_values
|
157 |
+
|
158 |
+
yield str(idx), example
|