import os from pathlib import Path, PureWindowsPath from typing import Dict, List, Tuple try: import cv2 except: print("Install the `cv2` package to use.") import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @article{tupal4476867fsl105, title={FSL105: The Video Filipino Sign Language Sign Database of Introductory 105 FSL Signs}, author={Tupal, Isaiah Jassen Lizaso and Melvin, Cabatuan K}, journal={Available at SSRN 4476867} } """ _DATASETNAME = "fsl_105" _DESCRIPTION = """\ FSL-105 is a video dataset for 105 different Filipino Sign Language (FSL) signs. Each sign is categorized into one of 10 categories and is each represented by approximately 20 four-second video samples. Signs were performed by adult deaf FSL signers on a blank blue background and reviewed by an FSL expert. """ _HOMEPAGE = "https://data.mendeley.com/datasets/48y2y99mb9/2" _LICENSE = Licenses.CC_BY_4_0.value _LOCAL = False _URLS = { "clips": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/de95a3c3-02f4-4a3f-9a9e-ce2371160275", "train": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/09c71779-3a2a-4c98-8d9b-0ef74f54d92a", "test": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/39af8117-6b44-47b9-a551-0bdc40837295", } _LANGUAGES = ["psp"] _SUPPORTED_TASKS = [Tasks.VIDEO_TO_TEXT_RETRIEVAL, Tasks.VIDEO_CAPTIONING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class FSL105Dataset(datasets.GeneratorBasedBuilder): """ FSL-105 is a video dataset for 105 different Filipino Sign Language (FSL) signs. Each sign is categorized into one of 10 categories and is each represented by approximately 20 four-second video samples. Signs were performed by adult deaf FSL signers on a blank blue background and reviewed by an FSL expert. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_vidtext", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_vidtext", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" category = [ "CALENDAR", "COLOR", "DAYS", "DRINK", "FAMILY", "FOOD", "GREETING", "NUMBER", "RELATIONSHIPS", "SURVIVAL", ] def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "video_path": datasets.Value("string"), "text": datasets.Value("string"), "labels": datasets.ClassLabel(names=self.category), "metadata": { "resolution": { "width": datasets.Value("int64"), "height": datasets.Value("int64"), }, "duration": datasets.Value("float32"), "fps": datasets.Value("float32"), }, } ) elif self.config.schema == "seacrowd_vidtext": features = schemas.video_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" clips = dl_manager.download_and_extract(_URLS["clips"]) train = dl_manager.download_and_extract(_URLS["train"]) test = dl_manager.download_and_extract(_URLS["test"]) train_df = pd.read_csv(train) test_df = pd.read_csv(test) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": { "clips": clips, "data": train_df, }, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": {"clips": clips, "data": test_df}, "split": "test", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" for key, example in filepath["data"].iterrows(): video = cv2.VideoCapture(os.path.join(filepath["clips"], PureWindowsPath(example["vid_path"]).as_posix())) fps = video.get(cv2.CAP_PROP_FPS) frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT) duration = frame_count / fps vid_width = video.get(cv2.CAP_PROP_FRAME_WIDTH) vid_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT) if self.config.schema == "source": yield key, { "id": str(key), "video_path": os.path.join(filepath["clips"], example["vid_path"]), "text": example["label"], "labels": example["category"], "metadata": { "resolution": { "width": vid_width, "height": vid_height, }, "duration": duration, "fps": fps, }, } elif self.config.schema == "seacrowd_vidtext": yield key, { "id": str(key), "video_path": os.path.join(filepath["clips"], example["vid_path"]), "text": example["label"], "metadata": { "resolution": { "width": vid_width, "height": vid_height, }, "duration": duration, "fps": fps, }, }