|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@article{riccosan2023, |
|
author = {Riccosan and Saputra, Karen Etania}, |
|
title = {Multilabel multiclass sentiment and emotion dataset from indonesian mobile application review}, |
|
journal = {Data in Brief}, |
|
volume = {50}, |
|
year = {2023}, |
|
doi = {10.1016/j.dib.2023.109576}, |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "id_sent_emo_mobile_apps" |
|
_DESCRIPTION = """ |
|
This dataset contains manually annotated public reviews of mobile applications in Indonesia. |
|
Each review is given a sentiment label (positive, negative, neutral) and |
|
an emotion label (anger, sadness, fear, happiness, love, neutral). |
|
""" |
|
_HOMEPAGE = "https://github.com/Ricco48/Multilabel-Sentiment-and-Emotion-Dataset-from-Indonesian-" "Mobile-Application-Review/tree/CreateCodeForPaper" |
|
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value |
|
_URL = ( |
|
"https://github.com/Ricco48/Multilabel-Sentiment-and-Emotion-Dataset-from-Indonesian-Mobile-Application-Review/raw/CreateCodeForPaper/" |
|
"Multilabel%20Sentiment%20and%20Emotion%20Dataset%20from%20Indonesian%20Mobile%20Application%20Review/Multilabel%20Sentiment%20and%20Emotion" |
|
"%20Dataset%20from%20Indonesian%20Mobile%20Application%20Review.csv" |
|
) |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.EMOTION_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class EmoSentIndMobile(datasets.GeneratorBasedBuilder): |
|
"""Dataset of Indonesian mobile application reviews manually annotated for emotion and sentiment.""" |
|
|
|
SUBSETS = ["emotion", "sentiment"] |
|
EMOTION_CLASS_LABELS = ["Sad", "Anger", "Fear", "Happy", "Love", "Neutral"] |
|
SENTIMENT_CLASS_LABELS = ["Negative", "Positive", "Neutral"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME |
|
) |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for {subset} subset", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"content": datasets.Value("string"), |
|
"sentiment": datasets.Value("string"), |
|
"emotion": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
if "emotion" in self.config.subset_id: |
|
labels = self.EMOTION_CLASS_LABELS |
|
elif "sentiment" in self.config.subset_id: |
|
labels = self.SENTIMENT_CLASS_LABELS |
|
features = schemas.text_features(label_names=labels) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
fp = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": fp}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_csv(filepath, sep="\t", index_col=None) |
|
for index, row in df.iterrows(): |
|
if self.config.schema == "source": |
|
example = { |
|
"content": row["content"], |
|
"sentiment": row["Sentiment"].title(), |
|
"emotion": row["Emotion"].title(), |
|
} |
|
elif self.config.schema == "seacrowd_text": |
|
if "emotion" in self.config.subset_id: |
|
label = row["Emotion"] |
|
elif "sentiment" in self.config.subset_id: |
|
label = row["Sentiment"] |
|
example = {"id": str(index), "text": row["content"], "label": label.title()} |
|
yield index, example |
|
|