Datasets:

Languages:
Thai
ArXiv:
License:
File size: 5,667 Bytes
4d85d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Tuple

import datasets

from seacrowd.sea_datasets.mtop_intent_classification.labels import (
    DOMAIN_LABELS, INTENT_LABELS)
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{li-etal-2021-mtop,
  author    = {Li, Haoran and Arora, Abhinav and Chen, Shuochi and Gupta, Anchit and Gupta, Sonal and Mehdad, Yashar},
  title     = {MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark},
  booktitle   = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume},
  publisher = {Association for Computational Linguistics},
  year      = {2021},
  url       = {https://aclanthology.org/2021.eacl-main.257},
  doi       = {10.18653/v1/2021.eacl-main.257},
  pages    = {2950-2962},
}
"""
_LOCAL = False
_LANGUAGES = ["tha"]
_DATASETNAME = "mtop_intent_classification"
_DESCRIPTION = """
This dataset contains annotated utterances from 6 languages, including Thai,
for semantic parsing. Queries corresponding to the chosen domains are crowdsourced.
 Two subsets are included in this dataset: 'domain' (eg. 'news', 'people', 'weather')
 and 'intent' (eg. 'GET_MESSAGE', 'STOP_MUSIC', 'END_CALL')
"""

_HOMEPAGE = "https://huggingface.co/mteb"
_LICENSE = Licenses.CC_BY_SA_4_0.value  # Found in original dataset (not HF) linked in paper
_URL = "https://huggingface.co/datasets/mteb/"


_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class MTOPIntentClassificationDataset(datasets.GeneratorBasedBuilder):
    """Dataset of Thai sentences and their domains or intents."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    SUBSETS = ["domain", "intent"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema for {subset} subset",
            schema="source",
            subset_id=f"{_DATASETNAME}_{subset}",
        )
        for subset in SUBSETS
    ] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_seacrowd_text",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema for {subset} subset",
            schema="seacrowd_text",
            subset_id=f"{_DATASETNAME}_{subset}",
        )
        for subset in SUBSETS
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_domain_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("int64"),
                    "text": datasets.Value("string"),
                    "label": datasets.Value("int32"),
                    "label_text": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_text":
            if self.config.subset_id == "domain":
                labels = DOMAIN_LABELS
            elif self.config.subset_id == "intent":
                labels = INTENT_LABELS
            else:
                raise ValueError(f"Received unexpected schema name {self.config.name}")
            features = schemas.text_features(label_names=labels)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        # dl_manager not used since dataloader uses HF `load_dataset`
        return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)]

    def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict:
        """Load dataset from HuggingFace."""
        if self.config.subset_id not in ("domain", "intent"):
            raise ValueError(f"Received unexpected schema name {self.config.name}")
        HF_REMOTE_REF = "/".join(_URL.split("/")[-2:]) + f"mtop_{self.config.subset_id}"
        _hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, "th", split=split)
        return _hf_dataset_source

    def _generate_examples(self, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        data = self._load_hf_data_from_remote(split=split)
        for index, row in enumerate(data):
            if self.config.schema == "source":
                example = row

            elif self.config.schema == "seacrowd_text":
                example = {"id": str(index), "text": row["text"], "label": row["label_text"]}
            yield index, example