|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.sea_datasets.mtop_intent_classification.labels import ( |
|
DOMAIN_LABELS, INTENT_LABELS) |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{li-etal-2021-mtop, |
|
author = {Li, Haoran and Arora, Abhinav and Chen, Shuochi and Gupta, Anchit and Gupta, Sonal and Mehdad, Yashar}, |
|
title = {MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark}, |
|
booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume}, |
|
publisher = {Association for Computational Linguistics}, |
|
year = {2021}, |
|
url = {https://aclanthology.org/2021.eacl-main.257}, |
|
doi = {10.18653/v1/2021.eacl-main.257}, |
|
pages = {2950-2962}, |
|
} |
|
""" |
|
_LOCAL = False |
|
_LANGUAGES = ["tha"] |
|
_DATASETNAME = "mtop_intent_classification" |
|
_DESCRIPTION = """ |
|
This dataset contains annotated utterances from 6 languages, including Thai, |
|
for semantic parsing. Queries corresponding to the chosen domains are crowdsourced. |
|
Two subsets are included in this dataset: 'domain' (eg. 'news', 'people', 'weather') |
|
and 'intent' (eg. 'GET_MESSAGE', 'STOP_MUSIC', 'END_CALL') |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/mteb" |
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
_URL = "https://huggingface.co/datasets/mteb/" |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MTOPIntentClassificationDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset of Thai sentences and their domains or intents.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SUBSETS = ["domain", "intent"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema for {subset} subset", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema for {subset} subset", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_domain_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("int32"), |
|
"label_text": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
if self.config.subset_id == "domain": |
|
labels = DOMAIN_LABELS |
|
elif self.config.subset_id == "intent": |
|
labels = INTENT_LABELS |
|
else: |
|
raise ValueError(f"Received unexpected schema name {self.config.name}") |
|
features = schemas.text_features(label_names=labels) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)] |
|
|
|
def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict: |
|
"""Load dataset from HuggingFace.""" |
|
if self.config.subset_id not in ("domain", "intent"): |
|
raise ValueError(f"Received unexpected schema name {self.config.name}") |
|
HF_REMOTE_REF = "/".join(_URL.split("/")[-2:]) + f"mtop_{self.config.subset_id}" |
|
_hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, "th", split=split) |
|
return _hf_dataset_source |
|
|
|
def _generate_examples(self, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data = self._load_hf_data_from_remote(split=split) |
|
for index, row in enumerate(data): |
|
if self.config.schema == "source": |
|
example = row |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
example = {"id": str(index), "text": row["text"], "label": row["label_text"]} |
|
yield index, example |
|
|