# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Tuple import datasets from seacrowd.sea_datasets.mtop_intent_classification.labels import ( DOMAIN_LABELS, INTENT_LABELS) from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{li-etal-2021-mtop, author = {Li, Haoran and Arora, Abhinav and Chen, Shuochi and Gupta, Anchit and Gupta, Sonal and Mehdad, Yashar}, title = {MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume}, publisher = {Association for Computational Linguistics}, year = {2021}, url = {https://aclanthology.org/2021.eacl-main.257}, doi = {10.18653/v1/2021.eacl-main.257}, pages = {2950-2962}, } """ _LOCAL = False _LANGUAGES = ["tha"] _DATASETNAME = "mtop_intent_classification" _DESCRIPTION = """ This dataset contains annotated utterances from 6 languages, including Thai, for semantic parsing. Queries corresponding to the chosen domains are crowdsourced. Two subsets are included in this dataset: 'domain' (eg. 'news', 'people', 'weather') and 'intent' (eg. 'GET_MESSAGE', 'STOP_MUSIC', 'END_CALL') """ _HOMEPAGE = "https://huggingface.co/mteb" _LICENSE = Licenses.CC_BY_SA_4_0.value # Found in original dataset (not HF) linked in paper _URL = "https://huggingface.co/datasets/mteb/" _SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class MTOPIntentClassificationDataset(datasets.GeneratorBasedBuilder): """Dataset of Thai sentences and their domains or intents.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SUBSETS = ["domain", "intent"] BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_{subset}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema for {subset} subset", schema="source", subset_id=f"{_DATASETNAME}_{subset}", ) for subset in SUBSETS ] + [ SEACrowdConfig( name=f"{_DATASETNAME}_{subset}_seacrowd_text", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} SEACrowd schema for {subset} subset", schema="seacrowd_text", subset_id=f"{_DATASETNAME}_{subset}", ) for subset in SUBSETS ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_domain_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("int64"), "text": datasets.Value("string"), "label": datasets.Value("int32"), "label_text": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_text": if self.config.subset_id == "domain": labels = DOMAIN_LABELS elif self.config.subset_id == "intent": labels = INTENT_LABELS else: raise ValueError(f"Received unexpected schema name {self.config.name}") features = schemas.text_features(label_names=labels) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: # dl_manager not used since dataloader uses HF `load_dataset` return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)] def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict: """Load dataset from HuggingFace.""" if self.config.subset_id not in ("domain", "intent"): raise ValueError(f"Received unexpected schema name {self.config.name}") HF_REMOTE_REF = "/".join(_URL.split("/")[-2:]) + f"mtop_{self.config.subset_id}" _hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, "th", split=split) return _hf_dataset_source def _generate_examples(self, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" data = self._load_hf_data_from_remote(split=split) for index, row in enumerate(data): if self.config.schema == "source": example = row elif self.config.schema == "seacrowd_text": example = {"id": str(index), "text": row["text"], "label": row["label_text"]} yield index, example