|
|
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{tran2021vivqa, |
|
title={ViVQA: Vietnamese visual question answering}, |
|
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet}, |
|
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation}, |
|
pages={683--691}, |
|
year={2021} |
|
} |
|
""" |
|
_DATASETNAME = "openvivqa" |
|
_DESCRIPTION = """\ |
|
OpenViVQA (Open-domain Vietnamese Visual Question Answering) is a dataset for VQA (Visual Question Answering) with |
|
open-ended answers in Vietnamese. It consisted of 11199 images associated with 37914 question-answer pairs (QAs). |
|
Images in the OpenViVQA dataset are captured in Vietnam and question-answer pairs are created manually by Vietnamese |
|
crowd workers. |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset" |
|
_LANGUAGES = ["vie"] |
|
_LICENSE = Licenses.MIT.value |
|
_LOCAL = False |
|
_HF_URL = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset" |
|
_URLS = { |
|
"dataset": { |
|
"train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_train_data.json", |
|
"test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_test_data.json", |
|
"dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_dev_data.json", |
|
}, |
|
"images": { |
|
"train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/train-images.zip?download=true", |
|
"test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/test-images.zip?download=true", |
|
"dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/dev-images.zip?download=true", |
|
}, |
|
} |
|
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class OpenViVQADataset(datasets.GeneratorBasedBuilder): |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_imqa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_imqa", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features({"img_path": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"id": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_imqa": |
|
features = schemas.imqa_features |
|
|
|
else: |
|
raise ValueError(f"No schema matched for {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLS["dataset"]) |
|
image_dir = dl_manager.download_and_extract(_URLS["images"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"imagepath": os.path.join(image_dir["train"], "training-images"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"imagepath": os.path.join(image_dir["test"], "test-images"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["dev"], |
|
"imagepath": os.path.join(image_dir["dev"], "dev-images"), |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, imagepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
raw_examples = json.load(open(filepath, "r")) |
|
images = raw_examples["images"] |
|
data_annotations = raw_examples["annotations"] |
|
for sample_id, q_key in enumerate(list(data_annotations.keys())): |
|
quest_id = q_key |
|
sample = data_annotations[q_key] |
|
sample_img_id = sample["image_id"] |
|
sample_img_name = images[str(sample_img_id)] |
|
sample_img_path = os.path.join(imagepath, sample_img_name) |
|
sample_question = sample["question"] |
|
sample_answer = sample["answer"] |
|
if self.config.schema == "source": |
|
example = { |
|
"img_path": sample_img_path, |
|
"question": sample_question, |
|
"answer": sample_answer, |
|
"id": quest_id, |
|
} |
|
elif self.config.schema == "seacrowd_imqa": |
|
example = { |
|
"id": q_key, |
|
"question_id": q_key, |
|
"document_id": q_key, |
|
"questions": [sample_question], |
|
"type": None, |
|
"choices": None, |
|
"context": sample_img_id, |
|
"answer": [sample_answer], |
|
"image_paths": [sample_img_path], |
|
"meta": {}, |
|
} |
|
yield sample_id, example |
|
|