holylovenia
commited on
Commit
•
918b382
1
Parent(s):
b3d4260
Upload su_emot.py with huggingface_hub
Browse files- su_emot.py +126 -0
su_emot.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
|
11 |
+
|
12 |
+
_DATASETNAME = "su_emot"
|
13 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
14 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
15 |
+
|
16 |
+
_LANGUAGES = ["sun"]
|
17 |
+
_LOCAL = False
|
18 |
+
_CITATION = """\
|
19 |
+
@INPROCEEDINGS{
|
20 |
+
9297929,
|
21 |
+
author={Putra, Oddy Virgantara and Wasmanson, Fathin Muhammad and Harmini, Triana and Utama, Shoffin Nahwa},
|
22 |
+
booktitle={2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)},
|
23 |
+
title={Sundanese Twitter Dataset for Emotion Classification},
|
24 |
+
year={2020},
|
25 |
+
volume={},
|
26 |
+
number={},
|
27 |
+
pages={391--395},
|
28 |
+
doi={10.1109/CENIM51130.2020.9297929}
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DESCRIPTION = """\
|
33 |
+
This is a dataset for emotion classification of Sundanese text. The dataset is gathered from Twitter API between January and March 2019 with 2518 tweets in total.
|
34 |
+
The tweets filtered by using some hashtags which are represented Sundanese emotion, for instance, #persib, #corona, #saredih, #nyakakak, #garoblog, #sangsara, #gumujeng, #bungah, #sararieun, #ceurik, and #hariwang.
|
35 |
+
This dataset contains four distinctive emotions: anger, joy, fear, and sadness. Each tweet is annotated using related emotion. For data
|
36 |
+
validation, the authors consulted a Sundanese language teacher for expert validation.
|
37 |
+
"""
|
38 |
+
_HOMEPAGE = "https://github.com/virgantara/sundanese-twitter-dataset"
|
39 |
+
|
40 |
+
_LICENSE = "UNKNOWN"
|
41 |
+
|
42 |
+
_URLS = {
|
43 |
+
"datasets": "https://raw.githubusercontent.com/virgantara/sundanese-twitter-dataset/master/newdataset.csv"
|
44 |
+
}
|
45 |
+
|
46 |
+
_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]
|
47 |
+
|
48 |
+
|
49 |
+
_SOURCE_VERSION = "1.0.0"
|
50 |
+
|
51 |
+
_SEACROWD_VERSION = "2024.06.20"
|
52 |
+
|
53 |
+
|
54 |
+
class SuEmot(datasets.GeneratorBasedBuilder):
|
55 |
+
"""This is a dataset for emotion classification of Sundanese text. The dataset is gathered from Twitter API between January and March 2019 with 2518 tweets in total."""
|
56 |
+
|
57 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
58 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
59 |
+
|
60 |
+
BUILDER_CONFIGS = [
|
61 |
+
SEACrowdConfig(
|
62 |
+
name="su_emot_source",
|
63 |
+
version=SOURCE_VERSION,
|
64 |
+
description="Sundanese Twitter Dataset for Emotion source schema",
|
65 |
+
schema="source",
|
66 |
+
subset_id="su_emot",
|
67 |
+
),
|
68 |
+
SEACrowdConfig(
|
69 |
+
name="su_emot_seacrowd_text",
|
70 |
+
version=SEACROWD_VERSION,
|
71 |
+
description="Sundanese Twitter Dataset for Emotion Nusantara schema",
|
72 |
+
schema="seacrowd_text",
|
73 |
+
subset_id="su_emot",
|
74 |
+
),
|
75 |
+
]
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = "su_emot_source"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
|
81 |
+
if self.config.schema == "source":
|
82 |
+
features = datasets.Features({
|
83 |
+
"index": datasets.Value("string"),
|
84 |
+
"data": datasets.Value("string"),
|
85 |
+
"label": datasets.Value("string")})
|
86 |
+
|
87 |
+
# For example seacrowd_kb, seacrowd_t2t
|
88 |
+
elif self.config.schema == "seacrowd_text":
|
89 |
+
features = schemas.text_features(["anger", "joy", "fear", "sadness"])
|
90 |
+
|
91 |
+
return datasets.DatasetInfo(
|
92 |
+
description=_DESCRIPTION,
|
93 |
+
features=features,
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
license=_LICENSE,
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
100 |
+
urls = _URLS
|
101 |
+
data_dir = Path(dl_manager.download_and_extract(urls['datasets']))
|
102 |
+
data_files = {"train":data_dir}
|
103 |
+
|
104 |
+
return [
|
105 |
+
datasets.SplitGenerator(
|
106 |
+
name=datasets.Split.TRAIN,
|
107 |
+
gen_kwargs={
|
108 |
+
"filepath": data_files['train'],
|
109 |
+
"split": "train",
|
110 |
+
},
|
111 |
+
)
|
112 |
+
]
|
113 |
+
|
114 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
115 |
+
|
116 |
+
df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
|
117 |
+
df.columns = ["index","label", "data"]
|
118 |
+
|
119 |
+
if self.config.schema == "source":
|
120 |
+
for row in df.itertuples():
|
121 |
+
ex = {"index": str(row.index+1), "data": row.data, "label": row.label}
|
122 |
+
yield row.index, ex
|
123 |
+
elif self.config.schema == "seacrowd_text":
|
124 |
+
for row in df.itertuples():
|
125 |
+
ex = {"id": str(row.index+1), "text": row.data, "label": row.label}
|
126 |
+
yield row.index, ex
|