# coding=utf-8 from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @inproceedings{ho2020emotion, title={Emotion recognition for vietnamese social media text}, author={Ho, Vong Anh and Nguyen, Duong Huynh-Cong and Nguyen, Danh Hoang and Pham, Linh Thi-Van and Nguyen, Duc-Vu and Nguyen, Kiet Van and Nguyen, Ngan Luu-Thuy}, booktitle={Computational Linguistics: 16th International Conference of the Pacific Association for Computational Linguistics, PACLING 2019, Hanoi, Vietnam, October 11--13, 2019, Revised Selected Papers 16}, pages={319--333}, year={2020}, organization={Springer} } """ _DATASETNAME = "uit_vsmec" _DESCRIPTION = """\ This dataset consists of Vietnamese Facebook comments that were manually annotated for sentiment. There are seven possible emotion labels: enjoyment, sadness, fear, anger, disgust, surprise or other (for comments with no or neutral emotions). Two rounds of manual annotations were done to train annotators with tagging and editing guidelines. Annotation was performed until inter-annotator agreement reached at least 80%. """ _HOMEPAGE = "https://drive.google.com/drive/folders/1HooABJyrddVGzll7fgkJ6VzkG_XuWfRu" _LICENSE = Licenses.UNKNOWN.value _LANGUAGES = ["vie"] _LOCAL = False _URLS = { "train": "https://docs.google.com/spreadsheets/export?id=10VYzfK7JLg-vfmqH0UmKX62z_uaXU-Hp&format=csv", "valid": "https://docs.google.com/spreadsheets/export?id=1EsSFZ94fj2yTvFKO6EyxM0wBRcG0s1KE&format=csv", "test": "https://docs.google.com/spreadsheets/export?id=1D16FCKKgJ0T6t2aSA3biWVwvD9fa4G9a&format=csv", } _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class UITVSMECDataset(datasets.GeneratorBasedBuilder): """ This is the main class of SEACrowd dataloader for UIT-VSMEC, focusing on emotion/sentiment classification task. """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_text", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_text", subset_id=f"{_DATASETNAME}", ), ] LABEL_NAMES = ["Other", "Disgust", "Enjoyment", "Anger", "Surprise", "Sadness", "Fear"] DEFAULT_CONFIG_NAME = "uit_vsmec_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features({"Emotion": datasets.Value("string"), "Sentence": datasets.Value("string")}) elif self.config.schema == "seacrowd_text": features = schemas.text_features(self.LABEL_NAMES) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: path_dict = dl_manager.download_and_extract(_URLS) train_path, valid_path, test_path = path_dict["train"], path_dict["valid"], path_dict["test"] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": valid_path, }, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: df = pd.read_csv(filepath).reset_index() if self.config.schema == "source": for row in df.itertuples(): ex = {"Emotion": row.Emotion, "Sentence": row.Sentence} yield row.index, ex elif self.config.schema == "seacrowd_text": for row in df.itertuples(): ex = {"id": str(row.index), "text": row.Sentence, "label": self.LABEL_NAMES.index(row.Emotion)} yield row.index, ex