|
import dgl |
|
from dgl.data import AmazonCoBuyPhotoDataset |
|
import torch |
|
import pickle |
|
from copy import deepcopy |
|
import scipy.sparse as sp |
|
import numpy as np |
|
import os |
|
|
|
|
|
def mask_test_edges(adj_orig, val_frac, test_frac): |
|
|
|
|
|
adj = deepcopy(adj_orig) |
|
|
|
adj.setdiag(0) |
|
adj.eliminate_zeros() |
|
|
|
|
|
|
|
adj_triu = sp.triu(adj, 1) |
|
edges = sparse_to_tuple(adj_triu)[0] |
|
num_test = int(np.floor(edges.shape[0] * test_frac)) |
|
num_val = int(np.floor(edges.shape[0] * val_frac)) |
|
|
|
all_edge_idx = list(range(edges.shape[0])) |
|
np.random.shuffle(all_edge_idx) |
|
val_edge_idx = all_edge_idx[:num_val] |
|
test_edge_idx = all_edge_idx[num_val : (num_val + num_test)] |
|
test_edges = edges[test_edge_idx] |
|
val_edges = edges[val_edge_idx] |
|
train_edges = edges[all_edge_idx[num_val + num_test :]] |
|
|
|
noedge_mask = np.ones(adj.shape) - adj |
|
noedges = np.asarray(sp.triu(noedge_mask, 1).nonzero()).T |
|
all_edge_idx = list(range(noedges.shape[0])) |
|
np.random.shuffle(all_edge_idx) |
|
val_edge_idx = all_edge_idx[:num_val] |
|
test_edge_idx = all_edge_idx[num_val : (num_val + num_test)] |
|
test_edges_false = noedges[test_edge_idx] |
|
val_edges_false = noedges[val_edge_idx] |
|
|
|
data = np.ones(train_edges.shape[0]) |
|
adj_train = sp.csr_matrix( |
|
(data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape |
|
) |
|
adj_train = adj_train + adj_train.T |
|
|
|
train_mask = np.ones(adj_train.shape) |
|
for edges_tmp in [val_edges, val_edges_false, test_edges, test_edges_false]: |
|
for e in edges_tmp: |
|
assert e[0] < e[1] |
|
train_mask[edges_tmp.T[0], edges_tmp.T[1]] = 0 |
|
train_mask[edges_tmp.T[1], edges_tmp.T[0]] = 0 |
|
|
|
train_edges = np.asarray(sp.triu(adj_train, 1).nonzero()).T |
|
train_edges_false = np.asarray( |
|
(sp.triu(train_mask, 1) - sp.triu(adj_train, 1)).nonzero() |
|
).T |
|
|
|
|
|
return ( |
|
train_edges, |
|
train_edges_false, |
|
val_edges, |
|
val_edges_false, |
|
test_edges, |
|
test_edges_false, |
|
) |
|
|
|
|
|
def sparse_to_tuple(sparse_mx): |
|
if not sp.isspmatrix_coo(sparse_mx): |
|
sparse_mx = sparse_mx.tocoo() |
|
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() |
|
values = sparse_mx.data |
|
shape = sparse_mx.shape |
|
return coords, values, shape |
|
|
|
|
|
if __name__ == "__main__": |
|
os.mkdir("links") |
|
os.mkdir("pretrain_labels") |
|
g = AmazonCoBuyPhotoDataset()[0] |
|
total_pos_edges = torch.randperm(g.num_edges()) |
|
adj_train = g.adjacency_matrix(scipy_fmt="csr") |
|
( |
|
train_edges, |
|
train_edges_false, |
|
val_edges, |
|
val_edges_false, |
|
test_edges, |
|
test_edges_false, |
|
) = mask_test_edges(adj_train, 0.1, 0.2) |
|
tvt_edges_file = "links/co_photo_tvtEdges.pkl" |
|
pickle.dump( |
|
( |
|
train_edges, |
|
train_edges_false, |
|
val_edges, |
|
val_edges_false, |
|
test_edges, |
|
test_edges_false, |
|
), |
|
open(tvt_edges_file, "wb"), |
|
) |
|
node_assignment = dgl.metis_partition_assignment(g, 10) |
|
torch.save(node_assignment, "pretrain_labels/metis_label_co_photo.pt") |