---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- crowdsourced
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K following latest trump tirades.',
'edit': 'therapist',
'grades': '33332',
'meanGrade': 2.8
}
```
For subtask-2, i.e Given the original headline and two edited versions, predict which edited version is the funnier of the two.
```
{
'id': 1183,
'original1': 'Gene Cernan , Last on the Moon , Dies at 82',
'edit1': 'Dancer',
'grades1': '1113',
'meanGrade1': 1.2,
'original2': 'Gene Cernan , Last Astronaut on the Moon , at 82',
'edit2': 'impregnated',
'grades2': '30001',
'meanGrade2': 0.8,
'label': 1
}
```
### Data Fields
For subtask-1
- `id`: Unique identifier of an edited headline.
- `original`: The headline with replaced word(s) identified with the > tag.
- `edit`: The new word which replaces the word marked in > tag in the original field.
- `grades`: 'grades' are the concatenation of all the grades by different annotators.
- `mean` is the mean of all the judges scores.
For subtask-2
- `id`: Unique identifier of an edited headline.
- `original1`: The original headline with replaced word(s) identified with > tag.
- `edit1`: The new word which replaces the word marked in > tag in the `original1` field.
- `grades1`: The concatenation of all the grades annotated by different annotators for sentence1.
- `meanGrade1` is the mean of all the judges scores for sentence1.
- `original2`: The original headline with replaced word(s) identified with > tag.
- `edit2`: The new word which replaces the word marked in > tag in the `original1` field.
- `grades2`: The concatenation of all the grades annotated by different annotators for the sentence2.
- `meanGrade2` is the mean of all the judges scores for sentence2.
- `label` is 1 if sentence1 is more humourous than sentence2,
2 if sentence 2 is more humorous than sentence1,
0 if both the sentences are equally humorous
### Data Splits
| Sub Task | Train | Dev | Test | Funlines|
| ----- | ------ | ---- | ---- |-----|
| Subtask-1:Regression | 9652 | 2419 | 3024| 8248 |
| Subtask-2: Funnier headline prediction| 9381 | 2355 | 2960| 1958 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Crowd-sourced the data by gamifying it as on the website funlines.co. Players rate the headlines on a scale of 0-4.
Players are scored based on their editing and rating, and they
are ranked on the game’s leaderboard page.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@article{hossain2019president,
title={" President Vows to Cut< Taxes> Hair": Dataset and Analysis of Creative Text Editing for Humorous Headlines},
author={Hossain, Nabil and Krumm, John and Gamon, Michael},
journal={arXiv preprint arXiv:1906.00274},
year={2019}
}```
### Contributions
Thanks to [@saradhix](https://github.com/saradhix) for adding this dataset.