File size: 2,641 Bytes
155a6de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import glob"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"path = 'custrev.*'\n",
"text, label_text, label = [], [], []\n",
"for file in glob.glob(path):\n",
" with open(file, 'r') as f:\n",
" cr, sentiment = file.split('.')\n",
" \n",
" if sentiment == 'pos':\n",
" lab_text = 'positive'\n",
" lab = 1\n",
"\n",
" else:\n",
" lab_text = 'negative'\n",
" lab = 0\n",
"\n",
" \n",
" for line in f:\n",
" if line.strip():\n",
" text.append(line.rstrip())\n",
" label_text.append(lab_text)\n",
" label.append(lab)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame({'text':text, 'label':label, 'label_text':label_text}).drop_duplicates()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"test = df.sample(frac=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"train = df.drop(test.index)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"with open('test.jsonl', 'w') as f:\n",
" f.write(test.to_json(orient='records', lines=True))\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"with open('train.jsonl', 'w') as f:\n",
" f.write(train.to_json(orient='records', lines=True))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f4f7bf0ead705f9496960dd44ed8785939deb14cc456821001bcb47e882c9346"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|