File size: 9,203 Bytes
2976de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
function [recall, precision, info] = vl_pr(labels, scores, varargin)
%VL_PR   Precision-recall curve.
%   [RECALL, PRECISION] = VL_PR(LABELS, SCORES) computes the
%   precision-recall (PR) curve. LABELS are the ground truth labels,
%   greather than zero for a positive sample and smaller than zero for
%   a negative one. SCORES are the scores of the samples obtained from
%   a classifier, where lager scores should correspond to positive
%   samples.
%
%   Samples are ranked by decreasing scores, starting from rank 1.
%   PRECISION(K) and RECALL(K) are the precison and recall when
%   samples of rank smaller or equal to K-1 are predicted to be
%   positive and the remaining to be negative. So for example
%   PRECISION(3) is the percentage of positive samples among the two
%   samples with largest score. PRECISION(1) is the precision when no
%   samples are predicted to be positive and is conventionally set to
%   the value 1.
%
%   Set to zero the lables of samples that should be ignored in the
%   evaluation. Set to -INF the scores of samples which are not
%   retrieved. If there are samples with -INF score, then the PR curve
%   may have maximum recall smaller than 1, unless the INCLUDEINF
%   option is used (see below). The options NUMNEGATIVES and
%   NUMPOSITIVES can be used to add additional surrogate samples with
%   -INF score (see below).
%
%   [RECALL, PRECISION, INFO] = VL_PR(...) returns an additional
%   structure INFO with the following fields:
%
%   info.auc::
%     The area under the precision-recall curve. If the INTERPOLATE
%     option is set to FALSE, then trapezoidal interpolation is used
%     to integrate the PR curve. If the INTERPOLATE option is set to
%     TRUE, then the curve is piecewise constant and no other
%     approximation is introduced in the calculation of the area. In
%     the latter case, INFO.AUC is the same as INFO.AP.
%
%   info.ap::
%     Average precision as defined by TREC. This is the average of the
%     precision observed each time a new positive sample is
%     recalled. In this calculation, any sample with -INF score
%     (unless INCLUDEINF is used) and any additional positive induced
%     by NUMPOSITIVES has precision equal to zero. If the INTERPOLATE
%     option is set to true, the AP is computed from the interpolated
%     precision and the result is the same as INFO.AUC. Note that AP
%     as defined by TREC normally does not use interpolation [1].
%
%   info.ap_interp_11::
%     11-points interpolated average precision as defined by TREC.
%     This is the average of the maximum precision for recall levels
%     greather than 0.0, 0.1, 0.2, ..., 1.0. This measure was used in
%     the PASCAL VOC challenge up to the 2008 edition.
%
%   info.auc_pa08::
%     Deprecated. It is the same of INFO.AP_INTERP_11.
%
%   VL_PR(...) with no output arguments plots the PR curve in the
%   current axis.
%
%   VL_PR() accepts the following options:
%
%   Interpolate:: false
%     If set to true, use interpolated precision. The interpolated
%     precision is defined as the maximum precision for a given recall
%     level and onwards. Here it is implemented as the culumative
%     maximum from low to high scores of the precision.
%
%   NumPositives:: []
%   NumNegatives:: []
%     If set to a number, pretend that LABELS contains this may
%     positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be
%     smaller than the actual number of positive/negative entrires in
%     LABELS. The additional positive/negative labels are appended to
%     the end of the sequence, as if they had -INF scores (not
%     retrieved). This is useful to evaluate large retrieval systems
%     for which one stores ony a handful of top results for efficiency
%     reasons.
%
%   IncludeInf:: false
%     If set to true, data with -INF score SCORES is included in the
%     evaluation and the maximum recall is 1 even if -INF scores are
%     present. This option does not include any additional positive or
%     negative data introduced by specifying NUMPOSITIVES and
%     NUMNEGATIVES.
%
%   Stable:: false
%     If set to true, RECALL and PRECISION are returned the same order
%     of LABELS and SCORES rather than being sorted by decreasing
%     score (increasing recall). Samples with -INF scores are assigned
%     RECALL and PRECISION equal to NaN.
%
%   NormalizePrior:: []
%     If set to a scalar, reweights positive and negative labels so
%     that the fraction of positive ones is equal to the specified
%     value. This computes the normalised PR curves of [2]
%
%   About the PR curve::
%     This section uses the same symbols used in the documentation of
%     the VL_ROC() function. In addition to those quantities, define:
%
%       PRECISION(S) = TP(S) / (TP(S) + FP(S))
%       RECALL(S) = TPR(S) = TP(S) / P
%
%     The precision is the fraction of positivie predictions which are
%     correct, and the recall is the fraction of positive labels that
%     have been correctly classified (recalled). Notice that the recall
%     is also equal to the true positive rate for the ROC curve (see
%     VL_ROC()).
%
%   REFERENCES:
%   [1] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to
%   Information Retrieval. Cambridge University Press, 2008.
%   [2] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in
%   object detectors. In Proc. ECCV, 2012.
%
%   See also VL_ROC(), VL_HELP().

% Author: Andrea Vedaldi

% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).

% TP and FP are the vectors of true positie and false positve label
% counts for decreasing scores, P and N are the total number of
% positive and negative labels. Note that if certain options are used
% some labels may actually not be stored explicitly by LABELS, so P+N
% can be larger than the number of element of LABELS.

[tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ;
opts.stable = false ;
opts.interpolate = false ;
opts.normalizePrior = [] ;
opts = vl_argparse(opts,varargin) ;

% compute precision and recall
small = 1e-10 ;
recall = tp / max(p, small) ;
if isempty(opts.normalizePrior)
  precision = max(tp, small) ./ max(tp + fp, small) ;
else
  a = opts.normalizePrior ;
  precision = max(tp * a/max(p,small), small) ./ ...
      max(tp * a/max(p,small) + fp * (1-a)/max(n,small), small) ;
end

% interpolate precision if needed
if opts.interpolate
  precision = fliplr(vl_cummax(fliplr(precision))) ;
end

% --------------------------------------------------------------------
%                                                      Additional info
% --------------------------------------------------------------------

if nargout > 2 || nargout == 0

  % area under the curve using trapezoid interpolation
  if ~opts.interpolate
    if numel(precision) > 1
      info.auc = 0.5 * sum((precision(1:end-1) + precision(2:end)) .* diff(recall)) ;
    else
      info.auc = 0 ;
    end
  end

  % average precision (for each recalled positive sample)
  sel = find(diff(recall)) + 1 ;
  info.ap = sum(precision(sel)) / p ;
  if opts.interpolate
    info.auc = info.ap ;
  end

  % TREC 11 points average interpolated precision
  info.ap_interp_11 = 0.0 ;
  for rc = linspace(0,1,11)
    pr = max([0, precision(recall >= rc)]) ;
    info.ap_interp_11 = info.ap_interp_11 + pr / 11 ;
  end

  % legacy definition
  info.auc_pa08 = info.ap_interp_11 ;
end

% --------------------------------------------------------------------
%                                                                 Plot
% --------------------------------------------------------------------

if nargout == 0
  cla ; hold on ;
  plot(recall,precision,'linewidth',2) ;
  if isempty(opts.normalizePrior)
    randomPrecision = p / (p + n) ;
  else
    randomPrecision = opts.normalizePrior ;
  end
  spline([0 1], [1 1] * randomPrecision, 'r--', 'linewidth', 2) ;
  axis square ; grid on ;
  xlim([0 1]) ; xlabel('recall') ;
  ylim([0 1]) ; ylabel('precision') ;
  title(sprintf('PR (AUC: %.2f%%, AP: %.2f%%, AP11: %.2f%%)', ...
                info.auc * 100, ...
                info.ap * 100, ...
                info.ap_interp_11 * 100)) ;
  if opts.interpolate
    legend('PR interp.', 'PR rand.', 'Location', 'SouthEast') ;
  else
    legend('PR', 'PR rand.', 'Location', 'SouthEast') ;
  end
  clear recall precision info ;
end

% --------------------------------------------------------------------
%                                                        Stable output
% --------------------------------------------------------------------

if opts.stable
  precision(1) = [] ;
  recall(1) = [] ;
  precision_ = precision ;
  recall_ = recall ;
  precision = NaN(size(precision)) ;
  recall = NaN(size(recall)) ;
  precision(perm) = precision_ ;
  recall(perm) = recall_ ;
end

% --------------------------------------------------------------------
function h = spline(x,y,spec,varargin)
% --------------------------------------------------------------------
prop = vl_linespec2prop(spec) ;
h = line(x,y,prop{:},varargin{:}) ;