File size: 8,747 Bytes
2976de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
function [tpr,tnr,info] = vl_roc(labels, scores, varargin)
%VL_ROC   ROC curve.
%   [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating
%   Characteristic (ROC) curve. LABELS are the ground truth labels,
%   greather than zero for a positive sample and smaller than zero for
%   a negative one. SCORES are the scores of the samples obtained from
%   a classifier, where lager scores should correspond to positive
%   labels.
%
%   Samples are ranked by decreasing scores, starting from rank 1.
%   TPR(K) and TNR(K) are the true positive and true negative rates
%   when samples of rank smaller or equal to K-1 are predicted to be
%   positive. So for example TPR(3) is the true positive rate when the
%   two samples with largest score are predicted to be
%   positive. Similarly, TPR(1) is the true positive rate when no
%   samples are predicted to be positive, i.e. the constant 0.
%
%   Set the zero the lables of samples that should be ignored in the
%   evaluation. Set to -INF the scores of samples which are not
%   retrieved. If there are samples with -INF score, then the ROC curve
%   may have maximum TPR and TNR smaller than 1.
%
%   [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO
%   with the following fields:
%
%   info.auc:: Area under the ROC curve (AUC).
%     The ROC curve has a `staircase shape' because for each sample
%     only TP or TN changes, but not both at the same time. Therefore
%     there is no approximation involved in the computation of the
%     area.
%
%   info.eer:: Equal error rate (EER).
%     The equal error rate is the value of FPR (or FNR) when the ROC
%     curves intersects the line connecting (0,0) to (1,1).
%
%   VL_ROC(...) with no output arguments plots the ROC curve in the
%   current axis.
%
%   VL_ROC() acccepts the following options:
%
%   Plot:: []
%     Setting this option turns on plotting unconditionally. The
%     following plot variants are supported:
%
%     tntp:: Plot TPR against TNR (standard ROC plot).
%     tptn:: Plot TNR against TPR (recall on the horizontal axis).
%     fptp:: Plot TPR against FPR.
%     fpfn:: Plot FNR against FPR (similar to DET curve).
%
%   NumPositives:: []
%   NumNegatives:: []
%     If set to a number, pretend that LABELS contains this may
%     positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be
%     smaller than the actual number of positive/negative entrires in
%     LABELS. The additional positive/negative labels are appended to
%     the end of the sequence, as if they had -INF scores (not
%     retrieved). This is useful to evaluate large retrieval systems in
%     which one stores ony a handful of top results for efficiency
%     reasons.
%
%   About the ROC curve::
%     Consider a classifier that predicts as positive all samples whose
%     score is not smaller than a threshold S. The ROC curve represents
%     the performance of such classifier as the threshold S is
%     changed. Formally, define
%
%       P = overall num. of positive samples,
%       N = overall num. of negative samples,
%
%     and for each threshold S
%
%       TP(S) = num. of samples that are correctly classified as positive,
%       TN(S) = num. of samples that are correctly classified as negative,
%       FP(S) = num. of samples that are incorrectly classified as positive,
%       FN(S) = num. of samples that are incorrectly classified as negative.
%
%     Consider also the rates:
%
%       TPR = TP(S) / P,      FNR = FN(S) / P,
%       TNR = TN(S) / N,      FPR = FP(S) / N,
%
%     and notice that by definition
%
%       P = TP(S) + FN(S) ,    N = TN(S) + FP(S),
%       1 = TPR(S) + FNR(S),   1 = TNR(S) + FPR(S).
%
%     The ROC curve is the parametric curve (TPR(S), TNR(S)) obtained
%     as the classifier threshold S is varied in the reals. The TPR is
%     also known as recall (see VL_PR()).
%
%     The ROC curve is contained in the square with vertices (0,0) The
%     (average) ROC curve of a random classifier is a line which
%     connects (1,0) and (0,1).
%
%     The ROC curve is independent of the prior probability of the
%     labels (i.e. of P/(P+N) and N/(P+N)).
%
%   REFERENCES:
%   [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic
%
%   See also: VL_PR(), VL_DET(), VL_HELP().

% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).

[tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ;
opts.plot = [] ;
opts.stable = false ;
opts = vl_argparse(opts,varargin) ;

% compute the rates
small = 1e-10 ;
tpr = tp / max(p, small) ;
fpr = fp / max(n, small) ;
fnr = 1 - tpr ;
tnr = 1 - fpr ;

% --------------------------------------------------------------------
%                                                      Additional info
% --------------------------------------------------------------------

if nargout > 2 || nargout == 0
  % Area under the curve. Since the curve is a staircase (in the
  % sense that for each sample either tn is decremented by one
  % or tp is incremented by one but the other remains fixed),
  % the integral is particularly simple and exact.

  info.auc = sum(tnr .* diff([0 tpr])) ;

  % Equal error rate. One must find the index S for which there is a
  % crossing between TNR(S) and TPR(s). If such a crossing exists,
  % there are two cases:
  %
  %                  o             tnr o
  %                 /                   \
  % 1-eer =  tnr o-x-o     1-eer = tpr o-x-o
  %               /                       \
  %          tpr o                         o
  %
  % Moreover, if the maximum TPR is smaller than 1, then it is
  % possible that neither of the two cases realizes (then EER=NaN).

  s = max(find(tnr > tpr)) ;
  if s == length(tpr)
    info.eer = NaN ;
  else
    if tpr(s) == tpr(s+1)
      info.eer = 1 - tpr(s) ;
    else
      info.eer = 1 - tnr(s) ;
    end
  end
end

% --------------------------------------------------------------------
%                                                                 Plot
% --------------------------------------------------------------------

if ~isempty(opts.plot) || nargout == 0
  if isempty(opts.plot), opts.plot = 'fptp' ; end
  cla ; hold on ;
  switch lower(opts.plot)
    case {'truenegatives', 'tn', 'tntp'}
      hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ;
      hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ;
      spline([0 1], [0 1], 'k--', 'linewidth', 1) ;
      plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ;
      xlabel('true negative rate') ;
      ylabel('true positive rate (recall)') ;
      loc = 'sw' ;

    case {'falsepositives', 'fp', 'fptp'}
      hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ;
      hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ;
      spline([1 0], [0 1], 'k--', 'linewidth', 1) ;
      plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ;
      xlabel('false positive rate') ;
      ylabel('true positive rate (recall)') ;
      loc = 'se' ;

    case {'tptn'}
      hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ;
      hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ;
      spline([0 1], [0 1], 'k--', 'linewidth', 1) ;
      plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ;
      xlabel('true positive rate (recall)') ;
      ylabel('false positive rate') ;
      loc = 'sw' ;

    case {'fpfn'}
      hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ;
      hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ;
      spline([0 1], [0 1], 'k--', 'linewidth', 1) ;
      plot(info.eer, info.eer, 'k*', 'linewidth', 1) ;
      xlabel('false positive (false alarm) rate') ;
      ylabel('false negative (miss) rate') ;
      loc = 'ne' ;

    otherwise
      error('''%s'' is not a valid PLOT type.', opts.plot);
  end

  grid on ;
  xlim([0 1]) ;
  ylim([0 1]) ;
  axis square ;
  title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ...
        'interpreter', 'none') ;
  legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ;
end

% --------------------------------------------------------------------
%                                                        Stable output
% --------------------------------------------------------------------

if opts.stable
  tpr(1) = [] ;
  tnr(1) = [] ;
  tpr_ = tpr ;
  tnr_ = tnr ;
  tpr = NaN(size(tpr)) ;
  tnr = NaN(size(tnr)) ;
  tpr(perm) = tpr_ ;
  tnr(perm) = tnr_ ;
end

% --------------------------------------------------------------------
function h = spline(x,y,spec,varargin)
% --------------------------------------------------------------------
prop = vl_linespec2prop(spec) ;
h = line(x,y,prop{:},varargin{:}) ;