function [tpr,tnr,info] = vl_roc(labels, scores, varargin) | |
%VL_ROC ROC curve. | |
% [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating | |
% Characteristic (ROC) curve. LABELS are the ground truth labels, | |
% greather than zero for a positive sample and smaller than zero for | |
% a negative one. SCORES are the scores of the samples obtained from | |
% a classifier, where lager scores should correspond to positive | |
% labels. | |
% | |
% Samples are ranked by decreasing scores, starting from rank 1. | |
% TPR(K) and TNR(K) are the true positive and true negative rates | |
% when samples of rank smaller or equal to K-1 are predicted to be | |
% positive. So for example TPR(3) is the true positive rate when the | |
% two samples with largest score are predicted to be | |
% positive. Similarly, TPR(1) is the true positive rate when no | |
% samples are predicted to be positive, i.e. the constant 0. | |
% | |
% Set the zero the lables of samples that should be ignored in the | |
% evaluation. Set to -INF the scores of samples which are not | |
% retrieved. If there are samples with -INF score, then the ROC curve | |
% may have maximum TPR and TNR smaller than 1. | |
% | |
% [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO | |
% with the following fields: | |
% | |
% info.auc:: Area under the ROC curve (AUC). | |
% The ROC curve has a `staircase shape' because for each sample | |
% only TP or TN changes, but not both at the same time. Therefore | |
% there is no approximation involved in the computation of the | |
% area. | |
% | |
% info.eer:: Equal error rate (EER). | |
% The equal error rate is the value of FPR (or FNR) when the ROC | |
% curves intersects the line connecting (0,0) to (1,1). | |
% | |
% VL_ROC(...) with no output arguments plots the ROC curve in the | |
% current axis. | |
% | |
% VL_ROC() acccepts the following options: | |
% | |
% Plot:: [] | |
% Setting this option turns on plotting unconditionally. The | |
% following plot variants are supported: | |
% | |
% tntp:: Plot TPR against TNR (standard ROC plot). | |
% tptn:: Plot TNR against TPR (recall on the horizontal axis). | |
% fptp:: Plot TPR against FPR. | |
% fpfn:: Plot FNR against FPR (similar to DET curve). | |
% | |
% NumPositives:: [] | |
% NumNegatives:: [] | |
% If set to a number, pretend that LABELS contains this may | |
% positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be | |
% smaller than the actual number of positive/negative entrires in | |
% LABELS. The additional positive/negative labels are appended to | |
% the end of the sequence, as if they had -INF scores (not | |
% retrieved). This is useful to evaluate large retrieval systems in | |
% which one stores ony a handful of top results for efficiency | |
% reasons. | |
% | |
% About the ROC curve:: | |
% Consider a classifier that predicts as positive all samples whose | |
% score is not smaller than a threshold S. The ROC curve represents | |
% the performance of such classifier as the threshold S is | |
% changed. Formally, define | |
% | |
% P = overall num. of positive samples, | |
% N = overall num. of negative samples, | |
% | |
% and for each threshold S | |
% | |
% TP(S) = num. of samples that are correctly classified as positive, | |
% TN(S) = num. of samples that are correctly classified as negative, | |
% FP(S) = num. of samples that are incorrectly classified as positive, | |
% FN(S) = num. of samples that are incorrectly classified as negative. | |
% | |
% Consider also the rates: | |
% | |
% TPR = TP(S) / P, FNR = FN(S) / P, | |
% TNR = TN(S) / N, FPR = FP(S) / N, | |
% | |
% and notice that by definition | |
% | |
% P = TP(S) + FN(S) , N = TN(S) + FP(S), | |
% 1 = TPR(S) + FNR(S), 1 = TNR(S) + FPR(S). | |
% | |
% The ROC curve is the parametric curve (TPR(S), TNR(S)) obtained | |
% as the classifier threshold S is varied in the reals. The TPR is | |
% also known as recall (see VL_PR()). | |
% | |
% The ROC curve is contained in the square with vertices (0,0) The | |
% (average) ROC curve of a random classifier is a line which | |
% connects (1,0) and (0,1). | |
% | |
% The ROC curve is independent of the prior probability of the | |
% labels (i.e. of P/(P+N) and N/(P+N)). | |
% | |
% REFERENCES: | |
% [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic | |
% | |
% See also: VL_PR(), VL_DET(), VL_HELP(). | |
% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. | |
% All rights reserved. | |
% | |
% This file is part of the VLFeat library and is made available under | |
% the terms of the BSD license (see the COPYING file). | |
[tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; | |
opts.plot = [] ; | |
opts.= false ; | |
opts = vl_argparse(opts,varargin) ; | |
% compute the rates | |
small = 1e-10 ; | |
tpr = tp / max(p, small) ; | |
fpr = fp / max(n, small) ; | |
fnr = 1 - tpr ; | |
tnr = 1 - fpr ; | |
% -------------------------------------------------------------------- | |
% Additional info | |
% -------------------------------------------------------------------- | |
if nargout > 2 || nargout == 0 | |
% Area under the curve. Since the curve is a staircase (in the | |
% sense that for each sample either tn is decremented by one | |
% or tp is incremented by one but the other remains fixed), | |
% the integral is particularly simple and exact. | |
info.auc = sum(tnr .* diff([0 tpr])) ; | |
% Equal error rate. One must find the index S for which there is a | |
% crossing between TNR(S) and TPR(s). If such a crossing exists, | |
% there are two cases: | |
% | |
% o tnr o | |
% / \ | |
% 1-eer = tnr o-x-o 1-eer = tpr o-x-o | |
% / \ | |
% tpr o o | |
% | |
% Moreover, if the maximum TPR is smaller than 1, then it is | |
% possible that neither of the two cases realizes (then EER=NaN). | |
s = max(find(tnr > tpr)) ; | |
if s == length(tpr) | |
info.eer = NaN ; | |
else | |
if tpr(s) == tpr(s+1) | |
info.eer = 1 - tpr(s) ; | |
else | |
info.eer = 1 - tnr(s) ; | |
end | |
end | |
end | |
% -------------------------------------------------------------------- | |
% Plot | |
% -------------------------------------------------------------------- | |
if ~isempty(opts.plot) || nargout == 0 | |
if isempty(opts.plot), opts.plot = 'fptp' ; end | |
cla ; hold on ; | |
switch lower(opts.plot) | |
case {'truenegatives', 'tn', 'tntp'} | |
hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ; | |
hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; | |
spline([0 1], [0 1], 'k--', 'linewidth', 1) ; | |
plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; | |
xlabel('true negative rate') ; | |
ylabel('true positive rate (recall)') ; | |
loc = 'sw' ; | |
case {'falsepositives', 'fp', 'fptp'} | |
hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ; | |
hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ; | |
spline([1 0], [0 1], 'k--', 'linewidth', 1) ; | |
plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; | |
xlabel('false positive rate') ; | |
ylabel('true positive rate (recall)') ; | |
loc = 'se' ; | |
case {'tptn'} | |
hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ; | |
hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; | |
spline([0 1], [0 1], 'k--', 'linewidth', 1) ; | |
plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; | |
xlabel('true positive rate (recall)') ; | |
ylabel('false positive rate') ; | |
loc = 'sw' ; | |
case {'fpfn'} | |
hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ; | |
hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; | |
spline([0 1], [0 1], 'k--', 'linewidth', 1) ; | |
plot(info.eer, info.eer, 'k*', 'linewidth', 1) ; | |
xlabel('false positive (false alarm) rate') ; | |
ylabel('false negative (miss) rate') ; | |
loc = 'ne' ; | |
otherwise | |
error('''%s'' is not a valid PLOT type.', opts.plot); | |
end | |
grid on ; | |
xlim([0 1]) ; | |
ylim([0 1]) ; | |
axis square ; | |
title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ... | |
'interpreter', 'none') ; | |
legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ; | |
end | |
% -------------------------------------------------------------------- | |
% Stable output | |
% -------------------------------------------------------------------- | |
if opts. | |
tpr(1) = [] ; | |
tnr(1) = [] ; | |
tpr_ = tpr ; | |
tnr_ = tnr ; | |
tpr = NaN(size(tpr)) ; | |
tnr = NaN(size(tnr)) ; | |
tpr(perm) = tpr_ ; | |
tnr(perm) = tnr_ ; | |
end | |
% -------------------------------------------------------------------- | |
function h = spline(x,y,spec,varargin) | |
% -------------------------------------------------------------------- | |
prop = vl_linespec2prop(spec) ; | |
h = line(x,y,prop{:},varargin{:}) ; | |