function [accuracy, confusion_matrix] = eval_train(pred_fname) | |
% Evaluates training accuracy. | |
% Arguments: | |
% pred_fname: Filename of prediction file for training. The required format | |
% is described in the README. | |
% Returns: | |
% accuracy: The accuracy on the training set. | |
% confusion_matrix: The confusion matrix on the training set. | |
accuracy = []; | |
confusion_matrix = []; | |
train_data = load('cars_train_annos.mat'); | |
train_annos = train_data.annotations; | |
train_classes = [train_annos.class]; | |
unique_classes = unique(train_classes); | |
try | |
preds = csvread(pred_fname); | |
catch err | |
fprintf('Invalid file format for input file %s.', pred_fname); | |
return | |
end | |
% Check whether predictions look sane | |
if numel(preds) ~= numel(train_classes) | |
fprintf(['Given predictions have length %d but there are %d images ' ... | |
'in the training set.\n'], numel(preds), numel(train_classes)); | |
return; | |
elseif any(~ismember(preds, unique_classes)) | |
bad_ind = find(~ismember(preds, unique_classes), 1); | |
fprintf(['Predicted class for image %d is %d, which is an invalid ' ... | |
'class.\n'], bad_ind, preds(bad_ind)); | |
return; | |
end | |
% Evaluate | |
accuracy = mean(preds(:) == train_classes(:)); | |
confusion_matrix = confusionmat(train_classes(:), preds(:)); | |